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Abstract—Routing policies determined by Internet Service
Providers (ISPs) can create sub-optimal communication paths in
terms of Quality of Service (QoS). An Overlay Network (ON)
architecture enables the definition of custom routing policies
between Points of Presence, enabling QoS metrics improvement
for a particular application. This work proposes a forwarding
strategy to implement a tunnelless overlay architecture, enabling
different traffic flows to follow different paths in order to provide
different QoS metrics for each one. Besides, the solution does not
affect the packets MTU and can be deployed independently of
the underlying ISPs. This article introduces a system architecture
built over the software-defined networking paradigm, taking
advantage of the centralized view of the network resources
and the ability to face challenges by deploying applications at
the controller level. The main components of the forwarding
strategy have been designed, implemented and tested over both
an emulated and a real network to demonstrate its feasibility.

Index Terms—Software Defined Network, Forwarding strategy,
ONOS, OpenDayLight, Quality of Service

I. INTRODUCTION

The widely extended use and exponential growth of cloud
services in our everyday lives, particularly those focused on
on-demand content delivery, have shifted the attention and
efforts of many researchers all over the world towards the
study of alternative solutions to provide certain levels of
Quality of Service (QoS) on the Internet. This has become
more than evident with the intense use of network resources
during the pandemic due to the Covid-19.

Data flows over the Internet are routed according to policies
defined by the Border Gateway Protocol (BGP). However,
BGP paths may have sub-optimal characteristics in terms of
QoS [1] [2] [3] [4]. For instance, it has been shown that
for some origin destination pairs and for some time intervals,
alternative paths can be found that will significantly improve
(around 20%) the end-to-end delay compared to the standard
IP path [5] [6].

Once the best path for a particular traffic flow is found, a
forwarding strategy is required to enable the packets belonging
to that flow to follow the desired path. Classic solutions for
performing traffic engineering to overcome this problem, like
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ATM or IP/MPLS, are not easily feasible on inter-domain sce-
narios because they become complex and expensive in terms
of management, especially due to the intervention of multiple
ISPs [7]. A solution applicable to a multi-domain environment
is the use of tunnels, but this technique affects the MTU size
and thus it may produce packet fragmentation, which may also
affect the traffic QoS. Moreover, this represents an expensive
and complex solution in terms of tunnel management. On
the other hand, Overlay Networks (ON) have been deployed
over the years to address the previous problems as well as
for privacy, or to be able to apply particular strategies for
content distribution. By using an ON, custom routing policies
can be applied in order to forward the traffic through the
paths with better QoS. Considering the growth of Software
Defined Networking (SDN) [8] deployments, new solutions
for the stated problems can be developed.

Based on the centralized view of the network provided
by the SDN paradigm together with the ON paradigm op-
portunities, our proposal offers a non tunnel solution for
flow based QoS management over an ON. The solution is
indeed independent of the collaboration of the underlying
ISPs and does not alter the MTU with additional headers.
The main contributions of this work are the proposal, design,
implementation and validation of a traffic forwarding strategy
based on the SDN paradigm. Some preliminary results were
published in our previous articles [9]-[11]. In this paper we
present a more general proposal including the implementation
of a complete application, which has been developed and
thoroughly tested for the Open Network Operating System
(ONOS) controller [12], that provides a complete solution
to the stated problem [13]. As a further contribution of this
article, we perform a complete validation of the proposal
(improving our preliminary tests presented in [11]) including
more diversity of commercial switches and tests with the
OpenDayLight (ODL) SDN controller.

The rest of this paper is organized as follows. The following
Section discusses related work. Section III focuses on the
designed ON architecture, and in Section IV the proposed
forwarding strategy is analysed in depth. In Section V the main
implementation aspects are addressed as well as the principal
challenges faced. In Section VI we validate our proposal in
emulated and real scenarios. Finally, Section VII presents the
main conclusions of this work.



II. RELATED WORK

Performing traffic engineering by applying custom routing
policies on an ON has been proposed by various authors.
Three of the most relevant works in this area are [2] [1]
and [14]. The authors of [2] present an ON which uses IP-
in-IP encapsulation. The overlay proposed in [1] is based on
overlay servers which add a custom overlay header. Similarly,
the approach proposed in [14] also uses IP-in-IP encapsulation
between dedicated overlay servers. Naturally, any kind of
tunneling technology to deploy an ON can provide the ability
to perform traffic engineering, however, our approach consists
on a tunnelless ON architecture avoiding any extra headers
or encapsulation technique. Moreover, the solution enables
a fine grain flow based QoS management. Our proposal is
feasible by making use of the SDN technology, which enables
a centralized control of the network traffic.

It is also relevant to mention that commercial products
within the category SD-WAN, WAN Optimization, hybrid
WAN [15], have been deployed to address some of the
problems exposed in this article. As there is no industry
standard definition for SD-WAN, most solutions involve the
use of proprietary devices installed in each point of presence
and connected to a controller [16]. The main difference of
our proposal with SD-WAN is that our packet forwarding
method can be implemented using standard features provided
by OpenFlow. Also, whereas most SD-WAN solutions are
based on some kind of tunnelling technology (IPSec, MPLS,
IP-in-IP, GRE), our solution does not require tunnels.

III. SYSTEM ARCHITECTURE

The proposed system architecture is based on our previous
work [10] and it relies on the SDN approach. Two main
components are involved in the system: the Central Group,
integrated by all the instances of the SDN controller, and the
Distributed Group, integrated by all the Points of Presence
(PoPs) on the ON (see Fig. 1).

A. Central group

The Central Group consists of a SDN controller, logically
seen as a single instance with at least one public IP address,
but probably composed by multiple components for security
and high availability concerns. It includes four applications:

o Traffic Engineering Application (TEApp): It is responsi-
ble for deciding the forwarding policies between PoPs,
based on the QoS metrics of the available paths.

e Monitoring Application (MonApp): It is responsible for
deciding the paths which are to be measured and the
moment at which each measurement is to be executed.
This application provides the information required for the
decisions of TEApp.

« Routing Application (RouteApp): It is responsible for
managing the data flows and allowing the configuration
of forwarding rules in the involved SDN switches of the
ON. The forwarding policies are determined by TEApp
routing decisions and are deployed using the functional-
ities provided by the SDN controller.
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Fig. 1: General system architecture [10].

o Measurement Application (MeasureApp): It is responsi-
ble for managing the QoS measurement system, allowing
to obtain metrics for a selected path on the ON. This
application selects a path on the ON using RouteApp
services and also manages custom devices called Probe
Packet Generators (PPGs) to perform the measures .

This paper focuses mainly on the ON implementation and

the RouteApp details. The main ideas behind MonApp and
TEApp are presented in [6] and [5].

B. Distributed group

The Distributed Group includes all the PoPs belonging to
the ON whose traffic is desired to be controlled. Any PoP has
the simplified architecture shown in Fig. 2, and includes the
following components:

e An OpenFlow Switch to modify and forward the traffic

according to the rules provided by the Central Group.

o A Probe Package Generator device (PPG) capable of
generating specific traffic patterns so the desired QoS
metrics (delay, throughput, jitter) can be obtained for a
specific path.

o The client’s LAN which includes the devices that gener-
ate the traffic to be controlled.

o The ISP router, for simplicity it is supposed to be the
unique Internet access gateway of the PoP.
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Fig. 2: Internal architecture of a PoP.

As shown in Fig. 2, the OpenFlow Switch has two links
associated with the ISP router with two public IP addresses.
Whereas one of the IP addresses is used for establishing the



control channel with the SDN controller, the other one is
needed to implement the forwarding strategy. The in-depth
explanation of why a second IP address must be assigned to
the OpenFlow Switch is addressed later in Section IV. It is
important to notice that both the PPG and the client’s LAN
hosts, need to be “behind” the OpenFlow Switch with respect
to the ISP router, so that all outgoing traffic can be managed by
the OpenFlow Switch, and particularly by the specific custom
forwarding policies. In summary, for each of the PoPs the
proposed system requires a set of three public IP addresses,
one is for the control channel of the OpenFlow Switch, another
one used by the proposed forwarding strategy, and the last one
to be assigned to the PPG.

The proposed system architecture allows to choose custom
paths on the ON for each specific traffic flow, so that its QoS
metrics meet the desired requirements. Using the forwarding
strategy described in the next Section, as the selected traffic
traverses the OpenFlow Switches, it will be forced to follow
the desired path on the ON.

IV. FORWARDING STRATEGY

As explained earlier, the RouteApp application is responsible
for managing the paths on the ON, enabling the creation
and deletion of custom paths, by handling the OpenFlow
tables of the involved switches. The traffic will be forwarded
without adding any extra headers, not affecting the MTU and
moreover, with complete independence of the ISPs.

According to the ON presented in Fig. 3 and based on the
SDN paradigm, the main idea is that if the traffic from host
hy at LANI to host hg at LAN3 is to be forwarded through
PoP; (s92) (green path), the packet destination IP address will
be changed at s; to the sy switch IP address. When the packet
arrives at s, the packet will be bounced and the destination IP
address will be changed to the s3 switch IP address. Finally at
s switch, the packet destination IP address will be changed
again to the original destination IP address of hs.
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Fig. 3: Four PoPs: PoP, with (r1, s1, LANI), PoP, with
(rg9, s9, LAN2), PoP3 with (r3, s3, LAN3) and PoP, with
(r4, S4, LAN4). Three different Paths on the ON (green, red
and blue).

Since the ISP router r» is highly likely to have ‘“Reverse
Path Filtering” enabled, the source IP address of the bounced
packet must be also changed to a valid IP address assigned to
PoP,. Thus, the bounce process at PoP, will change both the
source and destination IP addresses of the packet. The source
IP address for bounced packets will be the address assigned
to the bounce switch (s in the example).

It is well known that transport (layer 4 or L4 for short) flows
are identified by the 5-tuple: {Source IP address, Destination
IP address, L4 Source Port, L4 Destination Port, L4 Protocol},
so changing the source or destination IP address on the way
would break this identification. Then, based on the above
ideas and challenges, the proposed forwarding method uses
the following definitions:

o A Flow will be identified by:
Flow = {Src_IP,Dst_IP,
Src_Port, Dst_Port, L4_protocol}.

e A Link will be defined by an ordered PoPs list:
Li)j:[POPi,POPj} /27]€N
On a full mesh topology between PoPs, it will have a
total of n * (n — 1) directional Links.

o A Path will be the set of PoPs the flow will follow from
source to destination.

o An Overlay Network Routing Policy (ONRP) composed
by a Path and the relevant fields to completely identify
a flow from source to destination, will be defined by:

ONRP = {ONRP_Id, Priority,
Src_Subnet, Dst_Subnet,
Src_Port, Dst_Port,
L4_Protocol, Path, ON AT _Id}.

With the ONRP definition, complex forwarding policies
can be implemented. Matching rules with sub-nets as source
or destination, allows generalized forwarding policies to be
applied to all the flows originated at or destined to a sub-net.
This proposal will also allows the Src_Port and Dst_Port
to be wild-carded, so that the ONRP can match a set of flows,
providing great flexibility. The inclusion of a priority level
enables general policies to be overwritten with more specific
flow rules, thus enabling complex and fine grained forwarding
strategies. Each ONRP has a straight correspondence with a
set of consistent flow entries that have to be added to all the
OpenFlow switches in the path, thus allowing the selected
packets to follow the specified route.

Each ONRP contains a path involving m PoPs, and thus
traversing m — 1 links, where m € N. To enable the proper
identification of traffic from different ONRPs, an identifier
number called Local ONRP_Id must be provided for each
ONRP on each Link. Thanks to the centralized SDN approach,
the management of those identifiers can be easily performed.
This work proposes to carry this Local ONRP_Id into the
L4 source port field, in order to avoid the need of additional
headers, but it should be clear that a method to retrieve the
original source port value must be provided. Using L4 ports
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to store the Local ONRP_Id implies a theoretical limit of
216 ONRPs per link, if only one IP address is assigned to
each OpenFlow switch. If more than one public IP address is
assigned to every OpenFlow switch on the ON, this limit can
be increased and thus the scalability of the solution.

TABLE I: Example of four ONRPs.

ONRP_Id 1 2 3 4
Src_subnet 172.16.1.8/32 172.16.1.0/24 | 172.16.2.0/24 | 172.16.1.0/24
Dst_subnet 172.16.4.10/32 | 172.16.3.0/28 | 172.16.4.4/32 | 172.16.3.0/24
L4_protocol UDP ® TCP TCP

Src port 15194 K * *

Dst port 15193 * 80 *

Path PoP;,PoPs, PoP;,PoPs, | PoP>,PoP;, | PoP,,PoP,,
PoPy PoPs PoPy PoPs
ONAT Id 3 4 5 6

As the presented method needs to change the IP addresses
and L4 ports headers, a proper way to retrieve the original
values must be provided in order to have a successful end-to-
end communication. To address this point, the ONRP includes
a link to an additional structure called Overlay Network
Address Translation Table (ONAT Table). This additional table,
will contain ONAT entries with the original IP addresses and
L4 ports of the flows matching the ONRP. The identifier of
these entries, called ONAT _Id, is proposed to be carried on
the way using the packet destination port header.

The complete specification of the proposed method should
be clearer with the following examples. Suppose that someone
wants to implement a routing policy over an ON, with par-
ticular rules for the three colored paths shown in Fig. 3. An
example of the required ONRPs making use of wild-card fields
can be shown in Table L. In this example, when the host with
IP address 172.16.1.8 at PoP; sends a UDP message matching
ONRP #1 in Table I, the flow entries at all OpenFlow switches
in the path will change the packet fields as shown in Table II.
This means that the involved IP addresses at the intermediate
links are the ones assigned to the OpenFlow switches (all
ending in .254 in the example), the source ports will store
the Local ONRP_Ids, and the destination ports will store the
ONAT _Ids, thus enabling the retrieval of the original packet
fields at the destination OpenFlow switch (Table III). It should
be clear that the mechanism is transparent to the end hosts
because all the relevant packet headers are preserved at source
and destination hosts.

A more complex example using ONRP#2 will show the
strength of the proposed method. Suppose two different hosts
at PoP; (172.16.1.8 and 172.16.1.10) want to communicate
with the same host 172.16.3.3 at PoPs;. As ONRP #2 makes
use of wild-cards, both flows will match it. Table IV shows
both flows following the same path on the ON, thus using

TABLE II: Flow matching ONRP #I at every Link.

Src Host L1,2 L24 Dst Host
Src IP 172.16.1.8 172.16.1.254 | 172.16.2.254 172.16.1.8
Dst IP 172.16.4.10 | 172.16.2.254 | 172.16.4.254 | 172.16.4.10
Protocol UDP UDP UDP UDP
Src port 15194 2 1 15194
Dst port 15193 53 53 15193

TABLE III: ONAT Table #3, entry #53 for the example flow.

ONAT_Id Src IP Dst IP Proto | Src port | Dst port

53 172.16.1.8 | 172.16.4.10 | UDP 15194 15193

the same Local ONRP_Ids. The original packet fields are
retrieved at the destination OpenFlow switch, looking at the
corresponding ONAT entry whose identifier is carried at the
destination port header, as shown in Table V.

In summary, the proposed forwarding strategy can be seen
as a kind of NAPT (Network Address/Port Translation) so-
lution, but involving both source and destination addresses
translation. The solution allows also both global and fine
grained routing policies, and thanks to the SDN approach,
the implementation can be performed with applications and
modules centrally deployed at the Central Group.

V. IMPLEMENTATION

The initial implementation approach, which modifies only
the source and destination IP addresses on the way was
implemented, as a proof of concept, over a Mininet [17]
simulated network and using the POX [18] controller (see
details in [9] and [10]). This first implementation has allowed
us to face some challenges to be addressed, in order to be able
to design a more general and scalable solution, the one that is
presented in this article.

The SDN controller is undoubtedly one of the fundamental
pieces within the SDN architecture, since it is responsible
of the control of the entire network. There are many works
that focused on the evaluation of the commercially available
controllers [19] [20] [21] considering parameters like through-
put, latency and scalability. We have chosen two of the best
evaluated controllers to implement our new proposal: Open
Network Operating System (ONOS) [12] and OpenDayLight
(ODL) [22]. In both cases, the communication between the
controller and the switches at each PoP is performed through
the OpenFlow Protocol.

A. ONOS implementation

Considering its features, market adoption, documentation
and performance reports [23], ONOS has been chosen to
perform a complete implementation of our proposal. An appli-
cation called ONRApp (Overlay Network Routing Application)
has been developed with the goal of performing the automatic
management of the ON topology, the route creation and man-
agement processes, and all the components of the measurement
system [13]. This last feature is not described in this work.

The ONRApp application creates an abstraction layer be-
tween the SDN application plane and the complex process
of implementing the forwarding policies at the OpenFlow
switches and also other required network functionalities. The
new implemented services are exposed by ONRApp through a
REST API so that external entities such as TEApp and Mon-
App can automatize and perform all the required functions.
Proper functions to manage the PoPs (register, de-register,
list, connect), to manage the ONRPs (create, modify, delete,



TABLE IV: Two flows following the same Path both matching ONRP #2.

Src Host L1,2 L2,3 Dst Host
Flow 1 Flow 2 Flow 1 Flow 2 Flow 1 Flow 2 Flow 1 Flow 2
Src IP 172.16.1.8 | 172.16.1.10 | 172.16.1.254 | 172.16.1.254 | 172.16.2.254 | 172.16.2.254 | 172.16.1.8 | 172.16.1.10
Dst IP 172.16.3.3 172.16.3.3 172.16.2.254 | 172.16.2.254 | 172.16.3.254 | 172.16.3.254 | 172.16.3.3 172.16.3.3
Protocol TCP TCP TCP TCP TCP TCP TCP TCP
Src port 43000 49000 2 2 1 1 43000 49000
Dst port 8080 22 1 2 1 2 8080 22

TABLE V: ONAT entries for two flows matching ONRP #2

ONAT_Id Src_IP Dst_IP Proto | Src_port | Dst_port
1 172.16.1.8 172.16.3.3 | UDP 43000 8080
2 172.16.1.10 | 172.16.3.3 | UDP 49000 22

list) and to manage the measurements (init, stop, get, trigger,
stop), are provided by the implemented REST API and are
available through POST and GET methods using JSON format
for sending and receiving parameters.

Any OpenFlow Switch have multiple “Flow Tables”, each of
them populated with a set of “Flow Entries” [24] and we have
made use of this feature. The ONRApp application configures
the required flow entries associated with a certain ONRP by
exchanging specific OpenFlow messages with the switches. As
stated earlier, the ONRP specification allows the use of wild-
carded fields, and therefore some traffic may match multiple
flow entries. To solve this, a priority must be established for
the flow entries in order to ensure the desired matching order,
otherwise the order will be undefined [24]. For example, as
shown in Table I, packets matching the ONRP #4 will also
match the ONRP#2, and therefore the priority will define
the final matching order. The detailed algorithm for priority
calculation can be found in [25].

As mentioned, the implementation makes intensive use of
having multiples flow tables at the OpenFlow switches. The
“Flow Table 0” is used to match the traffic handled by the
forwarding architecture, that means, all TCP and UDP traffic
between our PoPs, and also the ARP traffic, as explained later.
After matching “Flow Table 0” the traffic will be forwarded to
“Flow Table 1 or 2” for further analysis. The “Flow Table 17
is used to match the traffic originated at the PoP, that means,
the origin switch of a path. The “Flow Table 2” is used to
match the traffic at any intermediate switch and also at the final
switch of a path. The “Flow Table 3” and onward are used to
implement the ONAT Tables. It is worth to mention that the
design of the forwarding strategy can support any traffic using
ports as L4 identifiers with the aditional condition that they
can be overwritten by OpenFlow actions. At the time of this
writing, the ONOS controller and the OpenFlow protocol have
little support for other protocols beyond TCP and UDP.

Following the example of ONRP #I shown in Tables I, II
and III, the Flow Table O at switch s; will contain the flow
entries for matching the traffic between PoP; and PoPy, as
shown in Table VI (only the UDP matching rule is shown, but
another one for TCP traffic is also needed). After matching
the specified rule in Flow Table 0, the packets will go to the
Flow Table 1 (shown in Table VII), where the specific flow

packets will be forwarded to the corresponding ONAT #3 in the
example. At the Flow Table 3 an entry will match the packets
and the corresponding action will be to change the required
fields in order that the packets follows the desired route
through PoP», as shown in Table VIII. At the intermediate

TABLE VI: Switch s1, Flow Table O entry for ONRP #1.

Field Value Comment
Match Ethertype 0x0800 IPv4
Src IP 172.16.1.0/24 PoP; network
Dst IP 172.16.4.0/24 PoPj network
Protocol Ox11 UDP
Action Value Comment
Action | Go-to Table 1 ONRPs matching

TABLE VII: Switch s1, Flow Table 1 entry for ONRP #1.

Field Value Comment
Match Ethertype 0x0800 1Pv4
Src TP 172.16.1.8/32 PoP; host
Dst IP 172.16.4.10/32 PoPy host
Protocol 0x11 UDP
Src Port 15194
Dst Port 15193
Action Value Comment
Action | Write-Metadata 1 Global ONRP_Id
Go-to Table 3 (example) Appropiate ONAT

TABLE VIII: Switch s1, Flow Table 3 entry for ONRP #1.

Field Value Comment
Match Metadata 1 ONRP#1
Ethertype 0x0800 1Pv4
Src IP 172.16.1.8/32 Original Src Address
Dst IP 172.16.4.10/32 Original Dst Address
Protocol Ox11 UDP
Src Port 15194 Original Src Port
Dst Port 15193 Original Dst Port
Action Value Comment
Action | Set Ethertype 0x0800 1Pv4
Set Src MAC | OF Switch MAC
Set Dst MAC | ISP Router MAC
Set Src IP 172.16.1.253/32 Switch s; Address
Set Dst IP 172.16.2.253/32 Switch so Address
Set Src Port 2 ONRP_Id for link 1-2
Set Dst Port 53 ONAT_Id 53
Send to port ALL All interfaces

OpenFlow switches, similar flow entries should be installed
so as the arriving traffic belonging to the ONRP #I follows
the selected path on the ON. Finally at the end point switch,
using a flow entry similar to the one specified in Table VIII,
the packets will be rewritten with its original values stored at
ONAT#53 in the example.



All the needed address rewriting for proper traffic
forwarding (IPs, ports, and MACs addresses), are performed
by using standard OpenFlow actions like SET_DL_SRC,
SET_DL_DST, SET_NW_SRC, SET_NW_DST,
SET_TP_SRC, SET_TP_DST.

During the system’s implementation, some optimisations
have arisen being the most relevant the ones focused on
reducing the cost of the matching processing at the controller
level (a), and at the OpenFlow switch pipeline (b).

In the first case (a), it is clear that when a packet arrives
at an OpenFlow switch and is sent to the controller as an
PACKET_IN, the matching of the packet is needed to be done
twice in order to decide the ONRP to which it belonged: once
at the switch and again at the controller level. In order to avoid
the cost of this duplication, the ONRP_id is configured in the
PACKET_IN’s COOKIE field. By doing this, at the controller
level, the application ONRApp becomes able to recover this
information and use it directly without repeating the matching
process.

In the second case (b), when a packet arrives at an Open-
Flow switch, is matched and the associated ONRP is obtained,
if the packet needs to proceed further to the flow tables
associated with the ONATs, it would be required to repeat
the ONRP matching. In order to avoid this, once the ONRP
is obtained, the ONRP_id is configured in the METADATA
field, as shown in Table VIII. This enables the ONAT’s flow
tables to match only against this identifier, making this flow
entries simpler. Both optimisations imply a great improvement
of the processing cost and enable the system to be much more
scalable.

Regarding other relevant ONRApp features, every OpenFlow
Switch at the ON must have a dedicated IP address to
implement the forwarding strategy. Therefore, each OpenFlow
switch needs to handle the required ARP protocol messages to
be able to dialog with the corresponding ISP router. To solve
this requirement a specific module has been implemented to
handle the ARP requests and replies by implementing a global
ARP table for the whole ON [25].

The complete solution has been thoroughly tested including
functional and performance tests, as reported in [25] (ONOS
version 2.1.0). Many other challenges have been faced during
the design and implementation but it is important to mention
that the ONOS controller has been a good choice, because it
provides a great framework with enough documentation and
community support.

B. OpenDayLight implementation

We have not developed a complete application over this
controller so far, but by enabling some ODL features we
have managed to configure the OpenFlow switches with the
desired static forwarding rules in order to validate the proposal
(ODL version 0.4.4-Beryllium-SR4). More precisely the rules
have been configured using the REST API provided by “odl-
OpenFlowplugin-all” and “odl-restconf” features [26] [22].
We have also added the “odl-12switch-all” feature in order
to support the classic L2 switch forwarding.
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The REST API runs over HTTP and accepts requests in both
JSON or XML format, and we have used the former for the
current implementation. Particularly, this API has been found
very adequate to statically manage the switches flow entries.

VI. EVALUATION
A. Simulated environment

In order to evaluate the proposed forwarding strategy a
Mininet environment [17] has been deployed for both ONOS
and ODL controllers. With both controllers we have performed
the functional validation of the forwarding strategy and the
ON implementation. Furthermore for the ONOS application
developed, we have been able to evaluate the scalability and
performance of the solution. To show the scalability of the
ONRApp application, two tests are performed that measure
the time it takes the application from the moment the request
arrives until it is sent to ONOS to install the corresponding
flow inputs. The first test measures the time it takes to register
a certain amount of PoPs and the second to create ONRPs.
Both test are repeated 100 times and we have plotted the
10th and 90th percentiles and the median. These tests can



be found and can be replicated in the Gitlab repository [27].
The topology for the tests, which is represented in Fig. 3,
is implemented on Mininet with a direct link between the
ONOS controller and each of the OpenFlow switches. In the
first test (Fig. 4) an exponential graph is obtained because
each time a PoP is registered, all the links to the previous
PoPs need also to be registered, giving a total n(n — 1)/2
links for each n PoPs. Secondly, the other test (Fig. 5) gives a
linear value since the consumption per ONRP is constant and
does not depend on how many ONRPs have been registered
before. Lastly, the results of both tests give an average of 5
ms per PoP when adding add 1000 PoPs, and 3.5 ms per
ONRP. Considering that a new PoP registration is a transient
event when a new point is added to the network, and that
ONRP times are constant in the order of milliseconds, it
seems that these values are good enough to allow the use
of the application. For a real deployment, the internal ONOS
delay to communicate with the OpenFlow switches must be
considered, but this delay is intrinsic to the network topology
and hardware deployed. Tests have been performed in a PC
with the following characteristics: Dell Inspiron 5570, Intel
Core 17-8550U CPU @1.80GHz, 8GB DDR4 ram @2400MHz
and a ST1000LMO035-1RK1 hard disk.

i k |
in : |

Fig. 6: Implemented Real Overlay topology.

B. Real environment

To validate the ON architecture and forwarding algorithm in
a real scenario, a testbed with commercial switches has been
deployed with some tests previously reported in [11]. Fig. 6
depicts the main components of our real scenario described
below.

1) The Internet network is implemented by a full mesh of
three Mikrotik RouterBOARD 433AH (R1, R2 and R3)
which represents the gateway router of the three PoPs.

2) We have made two main deployments with different
hardware to implement the S1, S2 and S3 switches.

o For the first one we use a Pica8 switch [28] (model
P3297, PicOS version 2.6.4 ) supporting OpenFlow
1.3. Three bridges are created, so as to provide three
required switches.

o For the second deployment three TP-LINK TL-
WDR4300 (Hardware version: 1.6, FLASH 8 MB,
RAM 128 MB) are used. The stock firmware was
replaced with OpenWRT [29] version 19.07.2 and
the package OpenVSwitch [30] version 2.11.1 was
installed in order to support OpenFlow 1.3.

3) The two controllers ODL and ONOS runs on dedicated
PCs for simplicity. We use both ONOS and ODL when
implementing the OpenFlow switches with Pica8 and
only ODL for the TP-LINK switches.

4) At each PoP internal network we placed a linux laptop
representing a client hosts (H11, H21, H31).

DI SRC-MAC

DST-ADDRESS
0:FA:SB:2D:

3:2000 (btserv)
3:2000 (btserv)

7 &b
2.16.3.1:34878

(c) Traffic capture in R3. Traffic from R3 to S3, before S3 applies the
corresponding actions.

length
length
length

length
length

(d) Traffic capture in H31.

Fig. 7: Traffic captures at each link

The first deployment with the Pica8 switch work as expected
and is reported in [11]. For the second one, with TP-LINK
switches, we use only the ODL controller with static flow
entries. To test the system, a UDP flow from H11 to H31 port
8080 is forwarded through PoP», changing the IP addresses
and transport ports on the way as shown in Table IX. The
packet captures at R1 (Fig. 7a), R2 (Fig. 7b) and R3 (Fig. 7c)
show the modified packets in transit. Finally Fig. 7d shows the
packets arriving at final node H31.

TABLE IX: Validation: UDP flow from H11:43000 to
H31:8080.

HI11 Host | SI to S2 link | S2 to S3 link | H31 Host
Src IP 172.16.1.1 172.16.1.253 172.16.2.253 172.16.1.1
Dst IP 172.16.3.1 172.16.2.253 172.16.3.253 172.16.3.1
Protocol UDP UDP UDP UDP
Src port 43000 325 2000 43000
Dst port 8080 400 1000 8080




VII. CONCLUSIONS

The proposed forwarding strategy provides a way to ensure
that the selected flows will follow specific paths on the overlay
network. Moreover, this can be done without any collaboration
of the ISP equipment and also without introducing new extra
headers to the packets. We demonstrate that our proposal can
be properly implemented over a SDN architecture considering
the benefits of a software implementation at a centralized
point of the network. More precisely, we have implemented
and deployed the solution in a real environment, integrating
commercial OpenFlow switches (Pica8 and TP-Links) and
considering two of the most popular SDN controllers: ONOS
and ODL. Functional and performance tests have been done,
obtaining great results. A Java application called ONRApp has
been developed with the goal of performing the automatic
management of the ON topology, the route creation and
management processes. It is available in [13].

Some topics are kept open for future work. First of all, we
are working on a deployment over a more realistic Internet-
scale scenario. We also want to analyse further improvements
for an IPv6 scenario, where it is feasible to assign a dedicated
range of IPv6 addresses for each ON. It may be interesting
to analyse the security implications of the proposed solution,
though it relies on the intrinsic security of the components:
OpenFlow protocol and switches, controller and the applica-
tion itself. It would be also interesting to extend ONRApp to
ODL controller.
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