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Abstract. This article describes a proposal for the participation of su-
percomputing platforms and datacenters in the electric market, by im-
plementing demand response techniques and ancillary services. Super-
computing and datacenters are appropriate candidates to adjust their
power consumption in order to help the electric network to fulfill specific
goals, either by consuming available surplus of energy to execute complex
tasks, or by deferring activities when energy is more expensive or genera-
tion is lower than normal. Their thermal/cooling infrastructures demand
about half of the energy consumption and provide a large inertia that
can be carefully used to interact with the power grid. These strategies
allow implementing a smart management of the electric grid, achieving a
rational utilization of renewable energy sources, and the correct utiliza-
tion of information technologies to improve decision-making processes.
A specific case study is presented: The National Supercomputing Center
in Uruguay (Cluster-UY), for which strategies for optimal planning of
the execution of tasks and energy utilization are proposed, taking into
account the energy consumption, the Quality of Service provided to the
users, and the thermal/cooling demands of the infrastructure. In addi-
tion, the business opportunities and business models for supercomputing
and datacenters in the electric market are revisited. Results suggest the
effectiveness of the proposed strategies to implement demand response
techniques and provide ancillary services under the smart grid paradigm.

Keywords: Energy efficiency · demand response · datacenters.

1 Introduction

In modern electricity markets, a large consumer with flexible consumption of
active and reactive power can participate in the market in different ways. This
concept is key to implementing strategies oriented to smart networks, associating
consumers with the roles of active clients and market agents [18]. As an active
client, the consumer can adapt his demand to peak hours, reducing consumption
in these periods and contributing to flattening the demand curve of the system.
Multi-hour tariffs can also be implemented, handling time blocks where it is
preferable to consume. ‘Day-ahead agreements’ (based on price announced in
advance) can be set, or even a dynamic behavior can be stimulated, when the
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price of energy is available in real time. Acting as an agent, the consumer can
participate in the electricity market and receive income by applying mechanisms
that may be restricted or driven by regulations, e.g., by establishing bilateral
agreements between a large consumer and a generation company (possible in the
Uruguayan energy market) or by auctions, e.g., in a day-ahead market, offering
a profile of hourly consumption and establishing maximum prices to pay [13]
(not yet present in our country).

In this context, demand response planning strategies are needed to manage
energy consumption and be able to participate in the market, on different roles.
Specific techniques are needed to dimension the activities that consume energy,
advance or defer their execution, analyze the impact on global energy efficiency,
and the possible degradation of the Quality of Service (QoS) offered to users.

This article describes a proposal for developing and applying demand re-
sponse strategies on large consumers allowing them to participate in the electric
market and provide ancillary services. As a case study, the project proposes to
address the planning of supercomputing and datacenters, conceived as an ex-
ample of planned systems that have emerged in modern societies, linked to the
smart grid paradigm (other relevant examples are fleets of electric cars, smart
buildings, irrigation systems, etc.). Supercomputing and datacenters provide sce-
narios that allow the direct experimentation of demand response strategies in
the academic and business environments. These platforms can adjust power con-
sumption in order to help the electric network to fulfill specific goals, either by
consuming available surplus of energy to execute complex tasks, or by deferring
activities (i.e., tasks execution) when energy is more expensive or generation is
lower than normal. Furthermore, their thermal/cooling infrastructures demand
about half of the energy consumption and provide a large inertia, that can be
used to interact with the power grid. The studied strategies allow implementing
a smart management of the electric grid, achieving a rational utilization of re-
newable energy sources, and the correct utilization of information technologies
to improve decision-making processes.

Strategies for optimal planning of the execution of tasks and energy utiliza-
tion are proposed the National Supercomputing Center in Uruguay (Cluster-
UY) [22], taking into account the energy consumption, the QoS provided to
users, and the thermal/cooling demands of the infrastructure. In addition, the
business opportunities and business models for supercomputing and datacenters
in the electric market are revisited. Results suggest the effectiveness of the pro-
posed strategies to implement demand response techniques and provide ancillary
services under the smart grid paradigm.

The article is organized as follows. Next section describes the model applied
to characterize the energy consumption on datacenters. Section 3 describes the
opportunities for datacenters in the electric market. The proposed strategies for
energy-aware planning of datacenters are summarized in Section 4, including
some preliminary results for smart planning to follow a reference power profile.
Finally, Section 5 formulates the main conclusions and current lines of work.
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2 Modeling the energy consumption of datacenters

This section presents an analysis of the power consumption of the main com-
ponents of a datacenter. Since servers are a key part of the datacenter energy
usage, a power model for servers is introduced and a case study is evaluated.
Finally, a specific power model for high-end multicores is introduced.

2.1 Breakdown of the power consumption of datacenters

Two main operational components account for most power consumption of dat-
acenters: i) operation of the technological infrastructure (servers, network, stor-
age, etc.) and ii) operation of the cooling system and other physical resources [23,27].
Both sources of power consumption are related because more power is required
for the cooling system when servers operate a full capacity. Servers represent
a significant percentage of datacenter power consumption and the variability
of their power consumption in different load levels allows implementing specific
techniques for energy savings. Moreover, variability can be used for demand
response under external changes related to energy prices, temperature, etc.

Power models are used for predicting the servers power consumption and
evaluating the efficacy of energy aware policies. Due to the high complexity
and cost, the quality of energy aware policies is evaluated with simulation tools.
Power consumption of high-end servers found in datacenters is broadly described
by Eq. 1, where Pidle is the server power consumption without load and Ppeak
is the server power consumption at full (100%) utilization. The variable u is
the current utilization percentage of the server and function f describes the
relationship between utilization and power consumption [1,2].

Pserver = Pidle + (Ppeak − Pidle)f(u) (1)

Most of power consumption of servers corresponds to the CPU. However,
power consumption of other computing resources (memory, disk, network) are
not negligible. Through workload categorization by resource utilization highly
precise power models can be built. Modeling power consumption considering
resource utilization also allows taking advantage of task consolidation. Eq. 2
shows a server power model where uCPU is the percentage of server capacity
executing workload categorized as CPU-intensive, umem is the percentage of
server capacity executing workload categorized as memory-intensive, and so on
for each resource in the model.

Pserver = Pidle + (Ppeak − Pidle)f(uCPU , umem, udisk, uinet, . . . ) (2)

The empirical study of AMD and Intel multicores by Muraña et al. [20]
showed that for CPU-intensive workloads, the server power consumption has a
linear relationship with resource utilization. Furthermore, power consumption of
memory-intensive workload decelerates as utilization increases. Power consump-
tion of memory-intensive workload was greater than CPU-intensive workload.
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Some works have proposed empirical energy models that consider types of
computing resources, measuring power consumption using different benchmarks
(intensive in one specific computing resource), such as Linpack [12,17], Abinit [9],
and or Namd [17,25]. Power data can be collected through software tools that
consult internal hardware counters–e.g., Running Average Power Limit (RAPL)
interface on Intel servers–or by using an external power meter [8,20,28].

2.2 Empirical analysis of power consumption of servers in a
datacenter

Power characterization measurements were performed over a HP ProLiant DL380
G9 server (2 Intel Xeon Gold 6138 CPUs, 20 cores each, 128 GB RAM) from
Cluster-UY. The experiment consisted in executing a CPU-intensive benchmark
and measuring its power consumption using likwid [29], a software tool that
allows access to RAPL interface counters to estimate the power consumption.

Algorithm 1 presents the procedure applied for energy measurement. The
power consumption reported by likwid is logged while executing an increasing
number of benchmark instances to consider different levels of server utilization.

Algorithm 1 Procedure for power consumption measurement

1: process per level← 5
2: utilization levels← 8
3: independent executions← 30
4: for j = 1 to independent executions do
5: likwid-power-meter -s 60s

6: end for
7: for i = 1 to utilization levels do
8: instances current level← process per level × i
9: for j = 1 to independent executions do

10: launch benckmark instances(instances current level,60) . launch in
background the benchmark instances for 60 seconds

11: likwid-power-meter -s 60s

12: end for
13: end for

For the experiments, eight utilization levels (UL) were defined with five pro-
cess per level. Utilization level zero corresponds to server without load. UL one
corresponds to 12.5% of server utilization, UL two corresponds to 25% of server
utilization, and so on. Power consumption of each level is measured 30 times to
obtain statistically significant values. Measurements for each UL last 60 seconds.

The CPU-intensive benchmark utilized for experiment belongs to the Sys-
bench toolkit [16]. The benchmark is a procedure written in language c to cal-
culate the prime number counting function using a backtracking technique.

Figure 1 reports the results of power consumption measurements of the CPU-
intensive benchmark. The independent variable u corresponds to the percentage
of server utilization and PC is the power consumption (in Watts) reported by
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likwid by consulting the RAPL interface. A significant difference in power con-
sumption is measured between utilization zero and the following levels. This
difference is explained by the internal power management of Intel chip (decreas-
ing voltage of inactive resources).

u PC (W)

0 % 30.06± 3.91
12.5 % 120.38 ± 0.51

25 % 142.36 ± 0.72
37.5 % 162.83 ± 0.90

50 % 176.17 ± 0.46
62.5% 180.03 ± 1.02
75 % 192.63 ± 1.01

87.5% 194.09 ± 0.50
100% 208.17± 0.44
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120.31 + 0.92× u

Fig. 1. Power consumption of CPU-intensive benchmark over Cluster-UY multicore

If utilization zero is not considered, the power consumption can be adjusted to
a linear function, for example, using least squares. The derivative of the function
(0.92) is coherent to the one reported in [20] (0.82), where the same benchmark
was measured using a Power Distribution Unit over a similar high-end server.
The same work also reports experimental result of memory-intensive benchmark
in similar high-end servers. Eq. 3, introduced in [20], presents a linear combina-
tion of models of CPU-intensive and memory-intensive workload. Eq. 3, uCPU
is the server utilization corresponding to CPU-intensive workload and umem is
the server utilization corresponding to memory-intensive workload. The variable
u′CPU is zero when uCPU is less than 50% and uCPU − 50 otherwise. An analog
model can be built for the specific hardware of the case study.

Pserver = 0.802× uCPU + 0.042× u′CPU + 2.902× umem

−0.02107× u2mem + 7.644× 10−5 × u3mem + 56.36+36.89
2 + 57.0

(3)

Since the downside of energy savings is the degradation of system perfor-
mance, the energy model must be complemented with a performance model. To
empirically model the performance, similar experiments should be performed
considering execution times instead of power consumption.

3 Opportunities for datacenters in the electric market

This section describes the different ways a datacenter may participate in demand
response and ancillary services mechanisms and introduces the particular case
of multi-tenants datacenters.
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3.1 Participation in the electric market

A flexible consumer needs planning techniques to ensure a proper use of its en-
ergy resources and to response to the energy market signals. In a datacenter,
the energy is used evenly distributed into two particular sectors: the operative
hardware that provides the services required by the datacenter clients and the
thermal/cooling infrastructure. These are the knobs that may be adjusted ac-
cording some time-varying power consumption profile. In this way, the datacenter
can participate as an active agent in the electric market.

A relative simple way is to implement a mechanism of demand response,
using the thermal inertia of the building to increase or decrease the power con-
sumption, letting move the building temperature between acceptable levels. In
order to define the limits of an electric power band that the datacenter can offer
to the system operator, a proper model of the building temperature dynamics
must be used. The more accurate the model, the more wide the offered power
band and the more profit can be obtained. Of course, the model that describes
the temperature evolution should include the impact of the servers activity, and
this fact leads to the inclusion of the tasks execution profile into the datacen-
ter demand response strategy. As explained in Section 2, the execution of the
tasks directly consumes electric power and also affects the building temperature.
Maintaining that temperature within prescribed limits implies the utilization of
the thermal/cooling units, that also consume electric power. In this way, an ap-
propriate demand-response strategy should combine the flexibility of the thermal
behavior and the tasks allocation.

3.2 Demand response in multi-tenants datacenters

Over the two main actions of a datacenter, new variants can be devised. This
section focuses on a pricing mechanism for multi-tenant datacenter that allows
the operator to obtain load shedding among tenants. Following the ideas of our
previous work [19], a responsive scheme for the clients is proposed. Clients may
choose to postpone or lose a task in exchange of some kind of economical reward
provided by the datacenter, which is an active agent in the electric market.

We pay special attention on multi-tenants collocation datacenter, since the
tenants deploy and keep full control of their own physical servers, while the
datacenter operator provides facility support. Tenant’s workloads in collocation
datacenter are highly heterogeneous, and many tenants run non-critical work-
loads, with high scheduling flexibility, different delay sensitivities, different ser-
vice level agreements with peak loads periods. This type of datacenters are often
located in metropolitan areas, where demand response calls are most needed.
They can participate actively in the energy market by modulating their power
profile and helping maximize distribution grid resources. The main disadvantage
is that each tenant manage its own servers independently and has very different
incentives to cooperate with the operator during a demand response event.

In an electricity market with uncertainty in supply or price volatility, supply
function as a strategic variable allows to adapt better to changing market con-
ditions than a simple commitment to a fixed price or quantity does [15]. This



PR
EP

RIN
T

Demand response and ancillary services for supercomputing and datacenters 7

is one reason why we propose to use supply function bidding, creating a mar-
ket mechanism which fixed a uniform market clearing price. Other motivation
is to respect practical informational constraints in the power network. A cus-
tomer might not want to reveal its cost function because of incentive or security
concerns, or the cost function may require a high description complexity, which
means more communication. A properly chosen parameterized supply function
controls information revelation while demands less communication.

Chen et al. [3] considered two abstract market models for designing demand
response to match the supply and shape the demand, respectively. In the modeled
situation, there is an inelastic supply deficit on electricity, and study a supply
function bidding scheme for allocating load shedding among different users to
match the supply. Each customer submits a linear parameterized supply function
to the agent aggregator (i.e., the datacenter operator). In a competitive market
where customers are price taking, the system achieves an efficient equilibrium
that maximizes the social welfare. In an oligopolistic market where customers are
price anticipating and strategic, the system achieves a unique Nash equilibrium
that maximizes another additive, global objective function.

Montes de Oca et al. [19] proposed a distributed algorithm to optimize social
welfare over a distribution network considering AC physical constraints over the
grid but with several users aggregators. However, these forms of parameterized
supply function do not admit treatable analysis. Johari and Tsitsiklis [14] con-
sidered an alternative supply function model (Eq. 4) where a finite number of
producers compete to meet an infinitely divisible but inelastic demand reduce
δ. Each user (or tenant) is characterized by a production cost, convex in the
output produced, and the customers act as profit maximizers. The mechanism
yields bounded efficiency loss at a Nash equilibrium and also characterize the
problem of finding the Nash equilibrium as the solution of a collocation problem.

Sn(bn, p) = δ − bn
p

(4)

Chen et al. [4] extended the previous work by proposing a uniform pric-
ing mechanism for collocation datacenters where the operator can extract load
shedding from tenants, without using the backup generator. The goal is to ef-
fectively provide incentives for tenants to reduce energy consumption during
emergency demand response events. When an emergency demand response ar-
rives, tenants bid using a parameterized supply function (Eq. 4), and then the
datacenter operator announces a market clearing price which when plugged into
the bids, specifies how much energy tenants will reduce and how much they will
be paid. The main advantage of this mechanism is that for the tenants is very
easy to participate in the market since they are only asked to bid a parameter
but keeping the integrity of the private information. The authors propose a mar-
ket mechanism and prove existence and uniqueness of the best strategy for each
tenant. In addition, they characterize the Nash optima of the non-cooperative
game as an optimization problem, which can be solved in a distributed manner
between participants, preserving private information. A mathematical model for
this approach is presented in Section 4.2.
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4 Smart strategies for effective planning of datacenters

This section describes strategies for datacenter planning and operation and a
proposal for a demand response scheme in a multi-tenant datacenter.

4.1 Datacenter planning and operation

One of the key issues related with energy-aware datacenter planning refers to
the problem of following a reference power profile for energy consumption. The
main goal is to appropriately plan the execution of tasks and the operation of
the cooling system to minimize the deviation with respect to the reference power
profile. This way, the datacenter can adapt its operation and participate in the
energy market as an agent with the capabilities of fulfilling specific goals.

Our group has developed research on the holistic energy-aware planning of
datacenters, and also including the use of renewable energy sources [7,10,11,22,23,24].
The general approach consists in applying computational intelligence meth-
ods [21] to solve the underlying optimization problem that proposes determine
the tasks scheduling and the energy consumption of both infrastructure and
cooling systems, subject to QoS and operation (e.g., temperature) constraints.

Fig. 2 presents an overview of the proposed system model, including their
two key components: the computing infrastructure and the cooling system.

Computing  
infrastructure (CI) 

Cooling  
system (CS)

Internal
temperature 

Task
schedule 

Cooling
schedule 

External
temperature 

Renewable
energy 

Quality of
Service

Controllable variables for
demand-response services Non-controllable variables

CI power
consumption

CS power
consumption

Required
power

Renewable
power generation

Total brown power required
Optimization objectives for participation in the electric market 

Reference power
profile, energy price

Electric market
demands

Fig. 2. Schema of the proposed model for energy-aware planning in datacenters
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A realistic energy consumption model is considered for the computing infras-
tructure in which each computing resource may be executing, idle, or asleep. On
the one hand, when a computing resource is executing a task, it is considered to
be at its peak performance. On the other hand, when a computing resource is
idle it is considered to be consuming the minimum amount of energy required
of its operation. Finally, when asleep, a computing resource considered to be
consuming a marginal amount of energy.

The objective are controlled by two input variables, the task schedule and
the cooling schedule. The task schedule determines the execution of tasks on
the computing infrastructure for the scheduling horizon. Likewise, the cooling
schedule determines the on/off of the cooling system for the scheduling horizon.
Three non-controllable input variables are considered: external temperature (the
air temperature outside the datacenter), renewable energy generation (amount
of available energy generated by renewable energy source such as solar panels,
wind turbines, etc.), and power reference profile of the electric market, used by
the datacenter to provide ancillary services and to consider demand response to
match the supply and shape the demand. These variables are not controllable
by the system and have uncertainty.

The optimization objectives and constraints are defined as follows. The max-
imization of the QoS is related to the number of tasks with unmet due dates.
The total brown energy required by the datacenter and the reference power
profile requested by the electric market for maximizing the profit. The internal
temperature of the datacenter is constrained to a maximum operating value.

We proposed a number of exact methods, stochastic and deterministic heuris-
tics, and single- and multi-objective metaheuristics for addressing several vari-
ants of this optimization problem with promising results [10,11,21,23,24]. As an
example, our previous work [24] proposed the following mathematical model.

Controllable variables: cooling schedule (ck), controls the operation of the
cooling system; and the power schedule (sk), controls the computing infras-
tructure power consumption. It controls the number of servers running, load
constraints, and specific user requirements.

Non-controllable variables. External temperature (αk), air temperature out-
side the datacenter; target reference power profile (Rk), the desired total power
consumption for each time step; and the target reference temperature profile
(Tref ), the desired internal temperature of the datacenter for each time step.

Other variables. The internal temperature (Tk) in the datacenter; the power
consumption of the cooling system (Ck); the power consumption of the computing
infrastructure (Ik); and the total power consumption of the datacenter (Pk).

The total computing infrastructure power is defined by Ik = Smaxk + Sidlek +

Ssleepk . Where Smaxk , Sidlek and Ssleepk are the total power of all servers that are
executing, idle, and sleep at time k, respectively.

The datacenter must execute a set of n tasks in a simulation period of K
time steps. Each task i must finish before a deadline D(i). The actual finishing
time of a task FT (i) and its deadline D(i) define whether a deadline is satisfied
or violated and contributes to the QoS of the schedule.
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The main goal is to schedule the operation of a datacenter in order to follow
as closely as possible a predefined power and temperature reference while simul-
taneously minimizing its impact on the QoS of the system. Formally, this means
to minimize the deviation from the reference power profile (Eq. (5)) and the
deviation from the reference temperature profile (Eq. (6)), while simultaneously
minimizing the total exceeding time of deadline violations (Eq. (7)).

K∑
k=1

|Pk −Rk|
max(Rk)

(5)

K∑
k=1

|Tref − Tk| (6)

K∑
i=1

max(0, FT (i)−D(i)) (7)

Our previous work [24] proposed a multiobjective evolutionary approach for
solving the proposed problem. The experimental results show the proposed ap-
proach computes accurate schedules for all objectives as well as competitive
trade-off schedules. Fig. 3 show the computed solution for the reference power
profile objective. It shows the power consumption closely follows the reference
power, enabling the datacenter to potentially reduce electricity costs, maximize
renewable energy use, or participate in the electricity market.
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Fig. 3. Best computed solution for the reference power profile objective
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4.2 Proposal for a demand response scheme in a multi-tenant
datacenter

This section proposes an optimization model for the demand response scheme
described in Section 3.2.

A simple model of the cooling infrastructure and the thermal inertia of the
building to increase or decrease the power consumption is proposed, letting move
the temperature into the room between acceptable levels. For that, a multistage
setting is considered. The proposal is based on a simple mechanism under which
each consumer submits a single bid that reflects the willingness to adjust the
consumer’s demand over the entire T stages. Such mechanisms are easy to im-
plement with a parameterized supply function, and would require the minimum
effort from the tenants. In this line of word, results must be established on equi-
librium characterization and bounded efficiency loss, analogous to those derived
in related works [4,14].

Overview of market mechanism. A market mechanism was conceived, where
tenants bid for the next T stages using parameterized supply functions (Eq. 4)
and then, given the bids, the operator decides how much load to shed via tenants
and how much to shed via on-site generation and cooling system.

The operation of the market is summarized below:

– The datacenter operator receives an emergency demand response event for a
reduction target δ := {δ1, .., δT } and broadcasts the supply function S(·,p),
specified by Eq. 4, to tenants;

– Participating tenants respond by placing their bids bn := {b1n, .., bTn} ;
– The operator decides the amount of on-site generation an the temperature

scheduling and calculate market clearing price p to minimize its cost for T
stages, using Eq. 8 to set the market clearing price p and Eq. 9 to set y
and ∆Pc, minimizing the cost of the operation during the demand response
event;

– Demand response event is exercised. Tenant n sheds Sn(bn,p) , and receives
Sn(bn,p) · pt as a reward.

The clearing market price is given by Eq. 8. This mechanism is illustrated in
Figure 4.

pt(btn, y
t, ∆Pt

c) =

∑
n b

t
n

(N − 1)δt + yt +∆Pt
c

(8)

To determine the vector of local generation amount y and power cooling
reduction ∆Pc, the operator minimizes the cost of the three load-reduction op-
tions, given by Eq. 9.

(y, ∆Pc) = arg min(δ + y +∆Pc) · p(bn,y, ∆Pc)
T + α · yT + C(∆Pc; t) (9)
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Fig. 4. Market mechanism for the proposed demand response scheme

Modeling cooling power. A simple temperature model can be considered as a
function of the power for cooling Pc and the outdoor temperature Tout (Eq. 10).

Ṫ (t) = a1 [T (t)− Tout(t)] + a2Pc(t) (10)

The model needs to penalize the misalignment between the actual tempera-
ture Tin and a set-point temperature Tset. The cost function in Eq. 11 is consid-
ered, where ∆Pc(t) is the power difference between the power consumption at
time t and the reference power for cooling before demand response takes place.

C(∆Pc; t) = κ‖T (∆Pc; t)−Tset(t)‖ (11)

Cost function cn(s). Chen et. al. [4] proposed a cost function cn(·) that cap-
tures the effect of switching off m computers in a M/G/1/Processor-sharing
queue, let’s first consider an auxiliary function c̄n(·) defined as: c̄n(m) =

βT
1

vM−
1

M−m

, where λ is the workload arrival rate, v = λ
µM is the normalized work-

load arrival, µ is the service rate, β is a cost parameter ($/time unit/job), T is
the duration of the power reduction event, M is the total of available servers and
m the number of switched off servers for tenant n. The power reduction model
is considered linear in m, so that Sn = θm. Then the cost function for a tenant’s
energy reduction is written as: cn(Sn) = c̄n(Sn/θ)− c̄n(0) and 0 otherwise.

Efficiency analysis. The next step is to characterize the efficiency of the mech-
anism. There are two potential causes of inefficiency: the cost minimizing behav-
ior of the operator and the strategic behavior of the tenants. In particular, since
the forms of the tenant’s cost functions are likely more complex than the supply
function bids, tenants cannot bid their true cost function even if they wanted to.
This means that evaluating the equilibrium outcome is crucial to understanding
the efficiency of the mechanism. The equilibrium outcome depends highly on the
behavior of the tenants whether they are price-taking or price-anticipating. The
key to our analysis is the observation that the equilibrium can be characterized
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by an optimization problem. Once we have this optimization, we can use it to
characterize the efficiency of the equilibrium outcome. This approach parallels
the one proposed by Chen et al. [4] and Johari and Tsitsiklis [14].

Adding uncertainty. The task arrivals could introduce uncertainty that would
be better captured by probabilistic models. We are interested in deriving these
models for the uncertainty in the costs and prices from the queuing theory mod-
elling arrivals. Previous work relating workloads with prices and power resource
allocation can be found in [5]. Another line of research is the negotiation of the
power reduction levels (δ) between the grid and the datacenter operators. Under
uncertainty of random effects, and constraints in the power level provided by the
diesel generators, this δ may not be accommodated and should be negotiated
taking into account its conditional value at risk [6,26].

5 Conclusions and future work

This article introduced a proposal for supercomputing platforms and datacen-
ters to participate in the electric market, by implementing demand response
techniques and ancillary services.

A methodology was introduced for supercomputing and datacenters to adjust
their power consumption in order to help the electric network to fulfill specific
goals, either by consuming available surplus of energy to execute complex tasks,
or by deferring activities when energy is more expensive or generation is lower
than normal.

Smart strategies for effective energy-aware planning of datacenters were de-
scribed, including a methodology applying computational intelligence for the
problem of following a reference power profile, subject to QoS and temperature
constraints, considering the power consumption of computing infrastructure and
thermal/cooling system. A specific model is introduced for demand response in
a multi-tenant datacenter applying a multistage procedure.

Preliminary results demonstrate that the proposed strategies allow imple-
menting a smart management of the electric grid, achieving a rational utilization
of renewable energy sources, and the correct utilization of information technolo-
gies to improve decision-making processes.

The main lines for current and future work are related to develop the pro-
posed model and apply it to a relevant case study: The National Supercomputing
Center in Uruguay (Cluster-UY), for which preliminary studies on evaluation
and characterization of the power consumption of the computing infrastructure
were also presented. The proposed models should be further improved to capture
the reality of the case studies. Furthermore, more complex strategies are being
studied to implement demand response techniques and provide ancillary services
under the smart grid paradigm, including the application of single-objective and
multi-objective computational intelligence methods.
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