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Abstract—In this article, we provide a proof of concept
realization of the proposed demand response scheme described
in [1], modelling an EV-aggregator offering smart charging1

coordination services to several Electric Vehicles (EV). The ag-
gregator model promotes a distributed smart charge coordination
of the EVs optimizing energy costs and energy charging profiles.
This proposal considers EV’s battery health constraints and
mobility constraints and promotes spars day-ahead charging
profiles. The distributed scheme keeps the integrity of the private
information of the active agents. The sparsity solution is identified
using the alternating direction method of multipliers. The model
proposed alternates between promoting sparsity of the charging
profile accomplishing EV’s constraints and minimizing energy
cost. We assume a decentralized communication between the
participants of the optimization problem, exchanging adequate
signal prices and power profiles keeping the integrity of the
private information of each active agent.

Index Terms—Demand response, Actives agents on the elec-
tricity market, Smart Charge for Electric Vehicles

I. INTRODUCTION

The electricity generation throughout the world is shifting
from fuel-based resources towards a sustainable generation
of electricity using solar energy and wind farms. In this
sense, the power system is in a state of transition due to
the increased amount of renewable-based distributed energy
resources (DERs) emerging on the demand-side of the grid [2].
DERs include renewable technology such as solar photo-
voltaic systems, wind generations, but also encompass other
resource capacities such as demand response (DR) programs,
batteries, fleet of electric vehicles, and big consumers with
flexible load [3], [5]. The Integration of these new technology
resources into existing infrastructure and energy markets pose
great challenges for power systems as the grid operators
usually do not have the appropriate mechanisms for monitoring
or controlling distribution networks, which is typically where
these resources are connected [3].Besides this technological
changes, electricity markets are undergoing an institutional
transition. To enhance economic efficiency and improve ser-
vices to the consumer, the electricity markets have being lib-
eralized gradually, leading to the introduction of competition

1The term smart charging is used to describe the uni-directional use of an
EV, where the EV is only used as storage (G2V).

and opening in the wholesale markets first, and more slowly
in the retail market.

From the demand-side point of view, the evolution of the
energy sector under the paradigm of smart grids is enabling
the interaction between end-users and grid operators. Smart
electricity network, or smart grid, refers to a electrical grid that
includes operation and management features to improve the
controlling of production and distribution of energy [4]. Smart
grids are the current state-of-the-art technology for electricity
networks, the last step in their evolution from unidirectional
systems of electric power transmission and distribution to
holistic approaches that provide different services for demand-
driven control. The main goal of the smart grid is to maintain
a reliable, resilient and secure infrastructure to properly satisfy
the demand growth and the integration of distributed energy
resources [5], [8].

Under the smart grid framework and through different
demand response programs, end-users plays a major role as
prosumers (consumer/producer) [4], [6], changing its actual
passive role to active in the system. In order to absorb the
energy that is produced at a certain instant time, an end-
user need to allow the adjustment of the working periods
of the electrical appliances (smart appliances, battery storage,
PV-panels, electric vehicle, etc). This can be done through
manual control of each equipment or preferably through an
Energy Management System (EMS). EMS perform the control
and automation of the electrical appliances, reducing user
intervention by running an optimization algorithm that decide
when the electrical devices should work. This algorithm should
take into account several factors, not only power system status
but also end-user preferences in comfort and electrical devices
constraints with the main objectives of minimize energy cost
or maximize profits.

In this sense, EVs can become integral parts of the smart
grid paradigm, since they are capable of providing valuable
services to power systems other than just consuming power.
On the transmission system level, electric vehicles are regarded
as an important means of balancing the intermittent renewable
energy resources such as wind power, absorbing the energy
during the period of surplus. However, on the distribution
system level, the extra loads created by the increasing number
of electric vehicles may have adverse impacts on the grid that
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Table I: Nomeclature

Nev Set of EVs participating in the program
xn,t Charging rate of EV n time t
en,t Discharging rate of EV n at time t
Sn,t State of Charge (SoC) of EV n at time t
Bn Battery capacity of EV n

have to be address. As an example, the uncoordinated charging
of EV bring new challenges to the power system operators as
it cause power flow fluctuation and even generating peaks due
to fix time-of-use tariffs. To ensure the stability of the power
system, plug-in charging should be coordinated against the
bulk power system, including the base load in the distribution
system, the stability of the transmission and distribution grid,
and the power generation costs. Nevertheless, is unthinkable
that each end-user, through its EMS, coordinate with the
grid operator the scheduling of their electrical appliances,
and also the efficiency of the wholesale market would be
affected. Is in this sense where the natural solution is the
aggregation of several end-user working in a coordinated
manner. Aggregation could be defined as the act of grouping
distinct agents in a power system (i.e. consumers, prosumers,
or any mix thereof) to act as a single entity when engaging in
power system markets (both wholesale and retail) or selling
services to the system or grid operators [7].

In this article, we provide a proof of concept realization of
the proposed demand response scheme described in [1], mod-
elling an EV-aggregator offering smart charging coordination
services to several EVs. In [1], we describe a demand side
management (DSM) scheme formulated as an optimal power
flow (OPF) problem with several energy retail companies
exchanging dynamic information (e.g. power profiles and
dynamic prices) with their customers and the grid operator.
Particularly, in this work we propose a sparsity-promoting and
distributed charging control model coordination. We show that
the ADMM [14] provides an effective tool for the design of
sparse distributed charge profiles for the EV fleet. This method
alternates between promoting the sparsity of the charging pro-
file and optimizing energy costs. The main advantage of this
alternating mechanism is twofold. First, it provides a flexible
framework for incorporation of different penalty functions
that promote sparsity or block sparsity. Second, it allows us
to exploit the separability of the sparsity-promoting penalty
functions and to decompose the corresponding optimization
problems into sub-problems that can be solved distributed.

We assume a decentralized communication between the
participants of the optimization problem, exchanging adequate
signal prices and power profiles.

The rest of the paper is organized as follow. We introduce
the system model in Section II and propose the smart charge
control in Section III. Simulation results and discussion are
presented in IV and final conclusion in Section V.

II. PROBLEM FORMULATION AND SYSTEM MODEL

This section describes the problem formulation of the smart
charging service provided by the EV-aggregator. We give an

overview of the EV’s and the aggregator model. The dis-
tributed DSM scheme use a discrete-time model with a finite
horizon that describes the next twenty four operating hours.
Each operational day is divided in T periods of equal duration,
indexed by t ∈ T = {1, .., T}. The program considered retails
companies only participating in day-ahead market; it does not
cover real-time balancing market or auxiliary services such as
regulation or reserves.

The l1 norm is widely used as a proxy for cardinality
minimization: in applied statistics in: sparse signal processing,
machine learning, controls community, etc; see [9], [10], [13],
[15]. By gradually increasing the weight on the sparsity-
promoting penalty terms, the optimal charging profile moves
along a parameterized solution path from the centralized to
the sparse profile of interest. This weight is increased until the
desired balance between performance and sparsity is achieved.

A. Electric Vehicle Model

Charging behavior can affect key battery characteristics,
such as the state of health, the cycle life and the resistance
impedance growth [12], [13]. Furthermore, intermittent charg-
ing will shorten the battery lifespan [11]. Therefore, how to
decrease the number of charging to maintain battery health is
important. On the other hand, a long waiting time to complete
a charging task or/and frequent interruptions in the process
of charging is unacceptable [13]. Both of them potentially
make EV owners discomfort. Recent work [13] shown that
consumer’s satisfaction is usually characterized by the sparsity
of optimal solutions through sparse optimization technique.

We describes the EV’s charging constraints based on a
piecewise linear function which describes the dynamics of
the state of charge (SOC) of the EV’s battery. The model is
mathematically described as follow [13]:

Sn,t+1 = Sn,t +
%+nxn,t
Bn

∆t− en,t

%−nBn
∆t

Sminn ≤ Sn,t ≤ Smaxn

where %−n and %+n ∈ (0, 1] are the efficiency of
charge/discharge of EV n and Bn the maximum capacity
of the battery. To prolong the lifespan of the batteries, it is
recommended that the values Sminn and Smaxn are 15%, and
90%, respectively. After a re-arrange of the previous equation
we obtain:

Bn

%+n∆t
(Sminn − Sinitn ) +

%−n
%+n

t∑
τ=1

en,τ ≤
t∑

τ=1

xn,τ

≤ Bn

%+n∆t
(Smaxn − Sinitn ) +

%−n
%+n

t∑
τ=1

en,τ (1)

being Sinitn the initial SOC of the battery in t = 0. We denote
In,t = 1 if EV n is charged at time t, otherwise 0. In practice,
we impose the following conservative constraint (see [1], [13])
where every EV n reaches at least the final SOC value, Sfinaln
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, at the end of the finite time horizon T . Thus, the following
constraints should be satisfied:

xminn,t ≤ xn,t ≤ xmaxn,t (2)

(1− In,t)xn,t = 0 (3)
t∑

τ=1

xn,τ ≥
Bn

%+n∆t
(Sfinaln − Sinitn ) +

%−n
%+n

t∑
τ=1

en,τ (4)

For notational simplicity, we define the feasible set of EV n
as:

Xn := {xn | xn satisfy (1− 4), n = {1..NEV }} (5)

where the operational parameters xmin/maxn , S
min/max
n and

S
init/final
n are assumed to be private for each EV and pre-

determined by external factors such as vehicle type and driving
style. Note that the set Xn defined in (5) is a local constraint,
which temporally couples the charging schedules across all the
time slots for EV n.

The EMS of the EV would promote sparse solution mini-
mizing interruptions. This is achieve by incorporating sparsity
promoting penalty function in the utility function of the
EV, where the added sparsity-promoting terms penalize the
number of non zero charging slots. In the absence of sparse-
promoting terms, the solution of the minimal energy cost
subject to the constraints results in dense charging solution.
We used the convex relaxaction of the cardinality function
‖β‖0 =

∑
T 1βi 6=0. The convex relaxation of this norm is the

l1 and the sparse-penalty function is describe as follow:

Gn(xn) = λ ‖xn‖1 = λ

T∑
t

|xn,t| . (6)

As a results, the EMS incorporated in each EV would min-
imize the energy cost of charging its battery but minimizing
non-zeros charging slots.

B. EV-Aggregator Model

Aggregation is defined here as the act of grouping distinct
agents in a power system (i.e. consumers, producers, pro-
sumers, or any mix thereof) to act as a single entity when
engaging in power system markets (both wholesale and retail)
or selling services to the system operator(s). In the context of
this paper and in [1], “an aggregator is a company who acts as
an intermediary between electricity end-users or EV owners
and the power system participants (other energy suppliers and
the grid operator) who wish to serve these end-users or exploit
the services provided by these EVs” [?]. Although several
differences exist in the details of the proposed EV-aggregator
concepts, they are assumed to achieve the same goals in this
study, regardless the ownership of the charging equipment.
Some of these goals are:
• Guarantee driving needs of the EV owners with optimal

management of EV charging, promoting spars power
profile for the EV;

• link retail market with wholesale market minimizing
operational costs;

• Provide demand response to the power system operators
with optimal allocation of EV fleet re-sources.

In this sense, as in [1] the EV aggregator has to decide
how much power to procure in the wholesale market for
each consumption period t of the operating day. Lets Pev :=
(Pev(t); t ∈ T = {1; ...;T}) be a non-negative vector variable
representing power scheduled or reserved by the aggregator
in the wholesale market. Schedule Pev incurs a cost to the
aggregator of Cev(Pev; t). The dynamic prices set by the
retail company to their customers are a direct consequence
of Cev(Pev; t). This function summarizes the cost to at least
recover the running costs of supplying aggregate demand,
including the payment of the wholesale market. Furthermore,
the EV-aggregator must assure the supply to their customers.
This is modeled with the following constraint:

Pev(t) ≥
∑
Nev

xn,t

The main objective of the EV-aggregator is to minimize
operational cost, supply their customers and also promote the
coordination achieving sparse charging profile for the next 24
hours.

III. DEMAND SIDE MANAGEMENT MODEL

We used the proposed dual decomposition method saw in [1]
to decouple the couple the power balance constraints in the
distribution network as follow:

DSM as an OPF problem

min
(Pz,p,y,r,q,x)

T∑
t=1

CDSO(x(t)) +
∑
z∈Z

CDRz(Pz; t)+CAgg(Pev; t)

−
∑
h∈H

[ ∑
a∈Ah

Uha(yha) + Dh(rh)

]
−
Nev∑
n=1

Gn(xn; t) (7)

s.t Residential end-user constraints
DSO-OPF constraints, ∀t ∈ T

Residential energy service provider constraints
Xn := {xn | xn satisfy 1− 4, n = {1..NEV }}∑

h∈Hz

ph ≤ Pz,∀z ∈ Z∑
n∈Nev

xn ≤ Pev EV-aggregator supply constraint

pi = pgi −
∑
h∈Hi

ph+
∑
n∈Hi

xn,∀i ∈ N \ {0} (8)

qi = qgi −
∑
h∈Hz

qh+
∑
n∈Hi

qn,∀i ∈ N \ {0} (9)∑
h∈H

ph+
∑
n∈Nev

xn =
∑
z∈Z

Pz+Pev −
∑

(i,j)∈E

rij lij (10)

Constraints (8-10) are the coupling constraints in problem (7),
we use a Lagrange relaxaction to obtain the following op-
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timization problem for each agent participating in the DSM
program (see [1] for more details).

min
∑
z∈Z

Lcomz
(·; ·) + LDSO(·; ·) +

∑
h∈H

Lh(·; ·)

+ LEV+Agg(Pev, xn;σ, µi)

s.t (16), Individual agents constraints

where LEV+Agg(Pev, xn;σ, µi) is the scheduling problem
which the EV-aggregator needs to solve and σ and µi are the
marginal energy cost and the locational cost in bus i imposed
by the grid operator. In this case, the aggregator seeks to
minimize its operational cost (cost of energy) while improving
the satisfaction of their customers, subject to the constraints
of each EV charging.

In principle, three types of control strategies can be used
by an EV-aggregator when aiming at the objectives mentioned
above, namely centralized control, decentralized control con-
sidering the distinctive market-based/transactive control and
price control, respectively. In this context, it seems almost un-
thinkable to solved this coordination problem with a centralize
control strategy because of the poor scalability of the problem
and the private information involved. As a result, we developed
a distributed algorithm using the alternating direction method
of multiplayer where each EV minimize its energy cost and
schedule its sparse charging profile based on the dynamic
prices sent by the aggregator and its mobility constraints.

A. Distributed smart charge scheduling promoting sparse so-
lutions

The social welfare problem (7) can be decouple into sev-
eral sub-problem to be resolve by each energy supplier but
coordinated by the grid operator. As a result, EV-aggregator
scheduling problem is defined as:

LEV+Agg(Pev, xn;σ, µi) = CAgg(Pev; t)−
Nev∑
n=1

Gn(xn; t)

−σT · (PAgg −
∑
ev

xn) +
∑
ev

µTi · xn + λTi · qn (11)

s.t.

EVs constraints - Lineal
Agg Constraints - Lineal∑
ev

xev ≤ PAgg ←− Coupling Const(εev)

being Gn(xn; t) = −λ ‖xn‖1 the utility function of each
EV. We apply ADMM and a dual decomposition method to
decouple the problem of the aggregator and each EV and also
distribute the problem of finding a sparse solution for each
EV [13], [15].

Lets define:
• X = {x1; ...; xn;PEV } ∈ R(NEV +1)×T

• Xn+1 := {xn+1 | xn+1 := Pev ≥ 0}
• X = X1 × ...×Xn ×Xn+1

• I(1)(X) =

{
0, if X ∈ X
+∞, if other option

• I(2)(X) =

{
0, if

∑NEV

1 xn = xn+1

+∞, if other option
• F (X) := CAgg(Pev; t)− (σT + εev) · (Pev −

∑
ev xn)

+
∑
ev µ

t
i · xn + I(1)(X) + I(2)(X)

• G(X) :=
∑Nev

n λn ‖xn‖1

B. ADMM distributed sparsity-promotion

Consider the following constrained optimization problem:

min F (X) +G(Y ) (12)
s.t. X − Y = 0 (Λ→ Variable Dual)

which is equivalent to the problem (11) using the definition
above. The augmented Lagrangian associated to the con-
strained problem (12) is given by:

Lρ = F (X) +G(Y ) + trace(Λt(X − Y )) +
ρ

2
‖X − Y ‖2F

where Λ is the dual variable (i.e., the Lagrange multiplier), ρ
a positive scalar, and ‖·‖F is the Frobenius norm. By intro-
ducing an additional variable and an additional constraint, we
have simplified the problem (11) by decoupling the objective
function into two parts that depend on two different variables,
X and Y . The scalar form of the ADMM problem is as follow:

Lρ = F (X) +G(Y ) +
ρ

2
‖X − Y + U‖2F −

ρ

2
‖U‖2F (13)

Where U = Λ/ρ is the scaled Lagrange multiplier.
In order to find a minimizer of the constrained problem (12),

the ADMM algorithm uses the following sequence of itera-
tions:

Xk+1 :=argminLρ(X,Y k, Uk) (14a)

Yk+1 :=argminLρ(Xk+1, G, Uk) (14b)

Uk+1 :=Uk +Xk+1 − Y k+1 (14c)

until
∥∥Xk+1 − Y k+1

∥∥
F
≤ εp and

∥∥Y k − Y k+1
∥∥
F
≤ εd.

The ADMM consist in a X-minimization step (14a), a Y -
minimization step (14b) and a dual variable update step (14c).

1) X-update step:

Xk+1 := argmin
X
Lρ(X,Y k, Uk)

:= argmin
X

F (X) +
ρ

2

∥∥X − V k∥∥2
F

:= min
X∈X

CAgg(Pev; t)− σT · Pev

+
∑
n=ev

(σ + µi)
T · xn +

ρ

2

∥∥X − V k∥∥2
F

(15)

s.t.

Nev∑
n=1

xn = xn+1 (16)

Since both F (X) and the square of the Frobenius norm can
be written as a summation of componentwise functions of a
matrix, we can decompose (15) into in (N + 1) sub-problems
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after decoupling (16) and expressed in terms of the individual
elements of X .

xl+1
n = min

xn∈R(1×T )
(pi + ε)T · xn +

ρ

2

∥∥xn − vkn∥∥22 (17)

s.t. xn ∈ Xn
xl+1
n+1 = min

Pev

CAgg(Pev; t)− (σ + ε)T · Pev

+
∥∥Pev − vkN+1

∥∥2
2

(18)

s.t. Pev ≥ 0

εl+1 = εl + αl(̇
∑
n

xn − Pev) (19)

where vk := yk + uk and pi := σ + µi. Equation (17) is the
optimization problem to be solved by the EMS installed in
each EV. The fist term in (17) minimize the energy cost for the
next day and the second order term search for solution closed
to a sparse solution found in the previous Y -minimization
step. Equation (18) is the optimization problem solved by the
aggregator and the dual variable (19) are the 24-shadow prices
or marginal prices imposed and updated by the aggregator. As
a result we obtain Xk+1 = [x∗1(ε∗), .., x∗n(ε∗), P ∗ev(ε

∗)] the
optimal scheduling profile in step k of the ADMM algorithm.

2) Y-update step:

Y k+1 := argminLρ(Xk+1, G, Uk)

:= G(Y ) +
ρ

2

∥∥Y − (Xk+1 + Uk)
∥∥2
F

:=
∑
n

λn · ‖yn‖1 +
ρ

2

∥∥Y −W k
∥∥2
F

(20)

where W k := (Xk+1 + Uk). The Y -update problem is
also separable in each element of Y resulting in (Nev + 1)
problems. We define:

yn = min
yn∈R(1×T )

λn · ‖yn‖1 +
ρ

2

∥∥yn − wkn∥∥22 (21)

yn+1 = xn+1 (22)

where the problem yn is solved by each EMS of the EVs. The
EMS solved a least square regularization similar to a Lasso
problem, finding a sparse solution of the power profile find
in the xn-update step.Nevertheless, is important to highlight
that the EMS in EV n send to the aggregator the charging
profile xk+1

n which is a feasible solution to the their charge
constraints. The y-update step try to find a sparse solution
as closed as possible to the feasible set. The parameter λ
represents the regularization parameter of the Lasso problem.

3) U-update step:

Uk+1 := Uk +Xk+1 − Y k+1

which is also a separable problem in each component and
updated by each EMS d the EVs. Figure 1 shows how and who
update each variable and the information exchange between
agents. On iteration k, in the X-update step the aggregator
coordinates via signal prices the scheduling problem for the
EVs. Once this step converge, each EV seeks in the Y -update
step for the closed sparse solution to the power profile find

in (15). Furthermore, this distributed algorithm preserves the
integrity of the private information and converge to an optimal
and sparse power profile [14].

Figure 1: Information Exchange between agents

IV. SIMULATIONS AND RESULTS ANALYSIS

We use the same scenario presented in [1] but simulating
also the presence of an aggregator providing smart charging
strategies to a set of EVs. We consider a scheduling horizon
of twenty-four periods of one-hour, starting at 1 A.M. until
12 P.M.. We consider 150 residential end-users and small
commercial clients attended by two retail companies and 20
EVs distributed over the grid and coordinated by an aggregator.
Residential end-users are not at home during office hours
chosen randomly from (07-09) in the morning to (17-20) in
the evening. Commercial clients are open from (07-09) in
the morning to (18-21) in the evening. We use the IEEE 13-
node test feeder as the power distribution system. We assume
at least 10 household are connected to each load bus. We
assume that each EVs has Incorporated one EMS, which has
the information of the mobility constraints and the set of times
the EV is plugged to the grid. The maximum power account
for each EV is 7kWh. In Figure (2a) we can see in red a cost

(a) ToU tariff proposed by the
Aggregator

(b) Aggregated demand in node
root

Figure 2: Aggregated demand scheduled in the system for the
operation day

function of the aggregataor, simulating a ToU tariff for the EVs
which promotes valley-filling in the aggregated demand of the
system. In (2b) we see in blue the aggregated demand of the
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residential users and in red the aggregated demand of the EVs.
We can appreciate how this cost functions promotes valley
filling, maximizing grid performance. In Figure (4), we show

Figure 3: Dynamic of EV #2

(a) Dynamic of EV #15 (b) Dynamic of EV #8

Figure 4: x − update (in color) and y − update (in red) for
different EVs plugged along the distribution grid.

the x-update step and the y-update step iteration for different
EVs. The x-update in triangles (each time slot is shown in
different colors) is the feasible solution to the EV’s mobility
constraints while the y-update (in red color) is the regularize
sparse solution closed to the charging profile found in x-update
step. We can appreciate how after a few iterations the x-update
reduce the number of charging slots, accomplishing a sparse
charging profile in the feasible set. In Figure (5) we can see the

(a) Updates xk (blue) and yk (red) (b) Different profile charging

Figure 5: Dynamic of EV #18 and charge profiles

performance of EV #18. In (5a) we appreciate the dynamics
of the x (in blue) and y-update (in red), similar to the previous
figure. We can see that at the beginning of the algorithm we
obtain a dense solution in the feasible set. Nevertheless, after
a few step and through the coordination of the aggregator, the

EV promotes the concentration of the energy in a small set of
time slots. This can be more clearly in (5b) where we show
in blue a dense solution in the first step of the algorithm and
in red line the sparse solution after the algorithm converge.

V. CONCLUSION

We model an EV-aggregator offering smart charging co-
ordination services to several EVs under the demand side
management framework described in [1]. The model promotes
a distributed smart charge coordination of the EVs considering
their battery health constraints, mobility constraints and the set
of time the EV is plugged to the grid.The sparsity charging
profile is identified using the ADMM algorithm which also
distribute the problem preserving the private information of
each active agent: the first one find a solution for the charging
profile of the EV, minimizing energy costs subject to mobility
constraints; the second one promote the sparsity of the solution
find in step one.

Acknowledgment: The work was partially supported by
Agencia Nacional de Investigación e Innovación (POS-NAC-
2018-1-151825).
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