
PR
EP

RIN
T

Two Level Demand Response Planning
for Retail Multi-Tenant Datacenters

Jonathan Muraña, Sergio Nesmachnow, Santiago Iturriaga,
Sebastián Montes de Oca, Gonzalo Belcredi, Pablo Monzón

Universidad de la República
Uruguay

{jmurana,sergion,siturria,smontes,gbelcredi,monzon}@fing.edu.uy

Andrei Tchernykh
CICESE Research Center, Ensenada, Mexico

South Ural State University, Chelyabinsk, Russia
Ivannikov Institute for System Programming, Moscow, Russia

chernykh@cicese.mx

Abstract—This article presents a two level planning approach
for the participation of datacenters in the electricity market,
by providing appropriate actions to demand response events,
a relevant issue to contribute to the smart grid paradigm. A
planning strategy is proposed for retail collocation datacenters,
considering their heterogeneity. A negotiation is applied at the
datacenter level and scheduling heuristics are used at the tenants
level. Three heuristics are evaluated, accounting for different
features of tasks submitted for execution. The proposed approach
is evaluated considering realistic infrastructures (servers and air
conditioning system) and workloads. The main results suggest
that the proposed approach provides appropriate plannings for
demand response events, significantly improving over Business-
as-Usual operation and when there is not electricity load shed-
ding. The Nash+PL heuristic computed the best results regarding
cost while accounting for appropriate quality of service.

Keywords—demand response, computational intelligence, plan-
ning, datacenters

I. INTRODUCTION

Within the modern smart grid paradigm [1], a large con-
sumer with flexible power utilization can participate in the
electricity market under different modalities. This participation
is encouraged by grid operators as one of the main concepts
for implementing strategies oriented to provide services in
modern smart electric networks [2]. A large consumer can
participate by adapting his electricity utilization to the needs
of the grid, e.g., reducing consumption in peak periods to help
flatten the demand curve of the electrical system or even save
the grid from suffering a blackout. It can also provide ancillary
services associated with specific events. Demand response
events trigger a change in power consumption to better match
the demand for power with the supply.

To account for proper active participation in the electricity
market by executing effective actions to demand response
events, a large consumer must plan his activities in a satis-
factory manner. Thus, appropriate planning methods that take
into consideration the dynamic situation of the market should
be applied. Datacenters and high performance computing facil-
ities are examples of plannable systems for which the proposed
approach can be successfully applied. Datacenters have several
methods for adjusting power consumption to help the electric
network in demand response events, including consuming an
available surplus of energy, deferring tasks execution, and
regulating the utilization of thermal/cooling infrastructures.

The suggested planning approach is valuable for multi-
tenant or colocation datacenters, usually operated by a com-
pany that provides services to multiple enterprise tenants.
This article focuses on the retail multi-tenants model, which
typically serves a relatively large number of tenants (in oppo-
sition to wholesale datacenters). Each tenant applies its own
business model (regarding QoS offered to clients, reputation,
etc.). Retail multi-tenants datacenters account for about 75%
of the colocation market [3].

Tenants in a retail collocation datacenter are responsible
for deploying and keeping full control of servers to provide
services to clients. Clients are heterogeneous, and submitted
workloads reflect that heterogeneity, including tasks that vary
from being critical to best-effort. Non-critical tasks have
flexibility for execution, and this fact can be exploited to adjust
the power profile of colocation datacenters to attend demand
response events. Furthermore, since multi-tenant datacenters
usually consume significantly more energy than ad-hoc dat-
acenters [4], developing and applying effective energy-aware
planning techniques provides an improved operation model.

In this line of work, this article presents a two level approach
for demand response planning to be used in retail multi-
tenant datacenters. Two levels are considered: energy-aware
scheduling at the tenants level and negotiation on the data-
center operator level. Three sources are considered to attain a
specific energy consumption reduction requested by the elec-
tricity market: consolidating and/or deferring non-critical tasks
(tenants), lowering the energy required for Heating, Ventilation
and Air Conditioning (HVAC) according to the executed tasks,
and on-site generation (operator). Two heuristics are proposed
and compared with a Business as Usual (BaU) operation over
realistic problem instances from real datacenters and using an
empirical energy consumption model. Results demonstrate the
effectiveness of the proposed approach, computing solutions
that improve up to 60.7% over the BaU operation.

The article is organized as follows. Section II presents
the demand response planning problem for datacenters and
a review of related works. Section III describes the proposed
two-level planning approach to solve the problem. Section IV
reports the experimental analysis of the developed model and
heuristics. Finally, conclusions and future work are formulated
in Section V.
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II. DEMAND RESPONSE PLANNING PROBLEM FOR
DATACENTERS

This section describes the problem of energy-aware remand
response planning for datacenters and reviews related works.

A. Problem model
The problem addressed in this article is to plan energy

utilization of datacenters to attend demand response events
from the electricity market. The planning procedure starts as
a response to an energy reduction requested by the smart
grid. Then, the datacenter operator initiates a negotiation with
its tenants: monetary incentives are offered to each tenant
to lower their energy consumption. Tenants apply a local
energy-aware scheduling heuristic to determine the attainable
energy consumption reduction for the proposed monetary
incentive, considering QoS offered to clients. In turn, in view
of the energy consumed by tenants, the datacenter operator
determines the possible reduction by lowering or switching
off the HVAC system, and finally determines if the on-site
generation unit must be used to provide enough power to
achieve the committed energy reduction. A conceptual diagram
of the problem model is presented in Fig. 1, identifying the
three agents in the model (market, datacenter operator, and
tenants) and their interactions.

On-site
generator

Energy reduction
requests

Electric market

Servers

...
HVAC
system

Low-level planning

...

Tenants

Datacenter
Operator

Negotiation

Cooling

Fig. 1: Schema of the proposed model for demand response
planning in retail multi-tenant datacenters

B. Problem formulation
The underlying optimization problem proposes minimizing

the total operation cost for the datacenter to attend a demand
response event, considering the following components: the
total monetary incentive rewarded to tenants, the cost of using
the HVAC system, and the cost of using the on-site generator
in order meet the reduction target.

The problem formulation is as follows. Consider:
• A set of discrete timesteps t in the planning interval t ∈

[0, T ].
• A target reduction ρ, requested by the electric market, to

be attained at every timestep of the planning interval (the
reference energy consumption is the BaU operation).

• A set of tenants C = {c1, ..., c|C|} and a monetary
incentive RIj offered to tenant cj for each energy unit
reduced.

• A workload of tasks Wj for each tenant cj , Wj =

{w1
j , ..., w

|W |
j }. Each task wi

j demands a certain number
of operations lij (the length of the task, expressed in
millions of instructions). Each task wi

j has an arrival date
ADi

j and also a due date or deadline DDi
j .

• Function Φj(RIj) determines a workload schedule sj
for each client cj . FT i

j is the finishing time of task wi
j

for schedule sj . s0j=Φj(0) is the workload schedule for
tenant cj when no monetary incentives are offered (BaU
operation). P t

j is the servers’ power requirement and Ht
j

is the HVAC power requirement at each time t of each
workload schedule sj .

• The violated deadline variable is VDi
j = 0 if FT i

j ≤ DDi
j

for schedule sj , otherwise VDi
j = 1.

• Function Φj determines a new schedule ŝj with a power
requirement P̂ t

j and a new HVAC power requirement Ĥt
j

for tenant cj given incentive RIj , Φj(RIj) = ŝj . Two
functions are defined to measure the reduction between
ŝj with respect to schedule s0j : the energy requirement
reduction is ∆P (ŝj) = min

∀t∈T
(P t

j − P̂ t
j ), and the HVAC

requirement reduction is ∆H(ŝj) = min
∀t∈T

(Ht
j − Ĥt

j).

• Let GP t be the power generated using the on-site gen-
erator at time t, and α be the monetary cost per unit of
energy of using the on-site generator.

• Let ϕ be the monetary cost per unit of energy used by
the HVAC.

The problem proposes the optimization of the objective
function defined in Eq. 1.

min
∑

j=1...|C|

(
∆P (Φj(RIj))×RI−

∆H(Φj(RIj))× ϕ
)

+
∑
t∈T

GP t × α (1a)

subject to:

ρ ≤
∑

j=1...|C|

(
∆P (Φj(RIj)) + ∆H(Φj(RIj))

)
+

∑
t∈T

GP t (1b)

The objective (1a) is to minimize cost for the datacenter
operator: terms in the sum correspond to the money paid to
tenants, the cost of using the HVAC, and the cost of using
the on-site generator in order meet the reduction target ρ.
Constraint (1b) states the total energy reduction must be at
least ρ per timestep.

Function Φj(RIj) is computed via simulations, considering
realistic settings for each tenant, including how likely is he
willing to admit deadline violations for tasks in its workloads
and the monetary penalty each tenant must pay to his clients
for violated tasks. A specific power consumption model based
on empirical analysis of real applications is used [5], [6].
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C. Related work

A common approach for the demand response planning
problem is considering theoretical supply functions that as-
sume an explicit mathematical relationship between the main
features of the proposed model (e.g., energy reduction re-
quested by the market and prices to offer to tenants [7], [8]).
Supply functions result in a competition problem between
tenants to meet the requested demand reduction [9],. Chen
et al. [10] solved the problem using game-theory and a simple
aggregation approach for cost of the datacenter operator and
tenants, considering an on-site energy generation source and
no thermal conditioning. After that, Tran et al. [11] proposed
a method for promoting tenants to participate in demand
response programs, based on economic rewards and bidding
games and Wang et al. [12] studied a distributed cloud-based
infrastructure with shared virtual machines between tenants.
Several assumptions were applied in these proposals, e.g.,
requests are not explicitly modeled, but queuing theory is
applied; very short tasks are considered; servers are turned-
off; and synthetic scenarios were solved. Later, Bahramiet
et al. [13] proposed an algorithm to respond to demands
in deregulated electricity markets, where the datacenter ad-
ministrator can choose the best energy supplier to fit its
needs. Probabilistic models were used to describe the relation
between workload, energy consumption, and QoS degradation
(i.e. supply functions).

The approach using (parameterized) supply functions does
not capture specific features of real datacenter operation, e.g.,
Service Level Agreement degradation, real energy consump-
tion of nowadays server and processors, and cooling.

This article contributes by extending our previous works
about holistic energy-aware planning of datacenters [14]–
[18] applying computational intelligence [19]. Specifically, our
previous research [20] is enhanced by including a market
mechanism for the active participation of tenants [21], a
realistic evaluation of power consumption of computing re-
sources [6], and a simple thermal model for energy reductions
of the HVAC operation.

III. THE PROPOSED APPROACH FOR DEMAND RESPONSE
PLANNING

This section describes the proposed approach for demand
response planning in retail multi-tenant datacenters.

A. Overall description

A two level planning approach is proposed [22]. On the
lower level, each tenant schedules the workloads submitted by
its clients applying energy-aware heuristic methods accounting
for the main attributed of tasks: length, priority, and deadline.
On the upper level a negotiation is performed between the
operator and the tenants that use the datacenter, applying a
game-theory algorithm. Considering the energy consumed by
tenants according to the negotiated monetary incentive, the
datacenter operator takes two relevant decisions to reduce
energy consumption: lowering or switching off the HVAC
system, and using the on-site generation unit. Finally, the cost

of the three sources of energy reduction is evaluated, to achieve
the committed energy reduction at the lowest possible cost.

The energy required by the HVAC system for cooling
the datacenter at time t (Ht) is calculated using a simple
formulation that takes into account the area of the servers
room (R), the energy consumed by the servers of tenant j
(P t

j ), and the coefficient of performance of the HVAC system
(COP ). The thermal balance must be maintained to keep the
temperature of the server room. Hence, the HVAC system must
deal with the thermal energy produced by the servers and the
thermal energy required to cool the server room. Almost all
the energy consumed by servers is dissipated as heat, so P t

j

is an accurate measure of the thermal energy introduced by
servers of tenant j. According to the U.S. Department Of
Energy “an air conditioner generally needs 20 British Thermal
Units (BTU) for each square foot of living space” [23].
Finally, considering that COP is the ratio of thermal energy
to energy consumed of a cooling or heating device, higher
values of COP indicate lower energy consumption. Hence,
each instant the thermal balance must be maintained, according
to Ht

j × COP = P t
j +R× 20, and Ht =

∑
j H

t
j

B. Proposed heuristics

The proposed planning methods for tenants (lower-level)
and datacenter operator (higher-level) are described next.

a) Scheduling heuristics for tenants: Three simple
heuristics are proposed and evaluated for scheduling on the
tenants level. They are based on applying a greedy approach,
which takes locally optimal decisions to determine a tasks-
to-processor assignment, considering different criteria that
accounts for relevant properties of submitted tasks. The criteria
are used to sort the list of non-executed tasks in each timestep
of the planning period:
• Penalty/Length (PL): the list of non-executed tasks is

sorted by the ratio of monetary penalty (MP i
j ) and length

(lij). The rationale behind this method is to schedule first
those short tasks that impact the most on the planning
cost, increasing both the throughput and the revenue.

• Penalty/Deadline (PD): the list of non-executed tasks
is sorted by the ratio of monetary penalty (MP i

j ) and
deadline (DDi

j). This method gives priority for execution
to those tasks with larger monetary penalty and tighter
deadline, increasing the revenue and the QoS provided to
clients.

• Deadline/Length (DL): the list of non-executed tasks is
sorted by the ratio of deadline (DDi

j) and length (lij). The
main idea of this method is to schedule first those short
tasks with lower due dates, increasing the throughput and
the QoS provided to clients.

The three proposed low-level heuristics follow an online
scheduling approach, i.e. scheduling decisions are taken during
the system execution, as soon as new tasks arrive. This
approach provides a more realistic view of the datacenter
operation than applying a static offline approach. Furthermore,
it does not require additional information or estimations about
tasks features.
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b) Negotiation mechanism for datacenter operator: On
the upper level, the datacenter operator applies the negotiation
based on Nash equilibrium of the related non-cooperative
game, proposed in our previous work [20]. To achieve the
requested energy reduction target ρ, a base supply function is
used for the negotiation (defined in Eq. 2), where ∆P (Φj) is
the power reduction for tenant j, ∆H(Φj(RIj)) is the power
reduction for the HVAC according to the power reduction
∆P (Φj), bj is the tenant offer (bidding) for reducing the
power consumption by ∆P (Φj) and p is the market clearing
price determined by the operator.

∆P (Φj(RIj)) + ∆H(Φj(RIj)) = ρ− bj
p

(2)

The negotiation is an iterative process that aims at attaining
the Nash equilibrium for the non-cooperative game between
the operator and the tenants. Four steps are involved in the
negotiation: i) the operator broadcasts the supply function to
the tenants; ii) each tenant places its bid bj for reducing its
energy consumption ∆P (Φj(RIj)) units, taking into account
the monetary incentive and the QoS provided to its users; iii)
the operator determines the market clearing price p, the HVAC
power reduction ∆H(Φj(RIj)), and the energy to generate
on-site, in order to minimize the total cost, as proposed by
the problem formulation (1a); and iv) the supply function
is updated and the process repeats until convergence. When
convergence is reached (considering an error threshold ε due
to the iterative dynamic of the proposed negotiation), the more
convenient of the latest two bids for the datacenter operator
are accepted as agreed values for RIj , tenants commit to the
resulting energy reduction and accept to pay the penalty for
deferred tasks to their clients.

The main difference with approaches previously proposed in
the literature is that tenants obtain all the required information
for the negotiation process via explicit simulations, consider-
ing a realistic energy consumption model [6] and the possible
energy reductions by HVAC operation.

IV. EXPERIMENTAL ANALYSIS

This section reports the experimental analysis of the pro-
posed approach for demand response planning of datacenters.

A. Methodology

a) Problem instances: The problem instances used in
the experimental evaluation extend the ones introduced in
our previous work [24] to consider parameters regarding the
cooling system: the datacenter area (R), the thermal ratio of
HVAC (COP), and the operation cost of HVAC.

A total number of 36 problem instances are considered,
classified by size and heterogeneity. The classification by size
considers the number of tenants of the problem instance;
small instances have 5 tenants, medium instances have 10
tenants, and large instances have 30 tenants. Two dimensions
are considered for the classification by heterogeneity: tenants
size and tenants tolerance. Tenants size is homogeneous if all

tenants of the instance have the same size (i.e. equal servers
number and workload size), and it is heterogeneous otherwise.

The four combinations of size heterogeneity and tenants het-
erogeneity generate four types of instances (size heterogeneity-
tenants heterogeneity): HM-HM, HM-HT, HT-HM, and HT-
HT. HM means homogeneous and HT means heterogeneous.

Workloads (publicly available at https://www.fing.edu.uy/
inco/grupos/cecal/hpc/DRAS/) were built considering realistic
data from HPC datacenters. Modern servers are considered
too. The energy consumption model corresponds to HP Pro-
liantDL380 G9 servers with 2 Intel Xeon E5-2643v3, 24 cores.

Regarding the HVAC system, it is assumed an operation in
three levels: a maximum operation level accounting for 70%
of the total capacity of the available computing resources, a
medium level between 50-70%, and below 50%.

The cost of the fuel for on-site generation is assumed to be
four monetary units (e.g., 4 USD) per Watt. The cost of the
HVAC is assumed to be 0.4 monetary units per Watt.

b) Computational platform and software: Simulations
were performed in a custom simulator built by extending the
jMetal framework for optimization [24]. Specific modifications
were included to account for the thermal balance calculation
to compute ∆H , according to the description in the previous
section. All experiments were performed in the high perfor-
mance computing infrastructure of National Supercomputing
Center, Uruguay [16].

c) Metrics and evaluation: The evaluation considers the
datacenter operator cost as the main metric for the comparison
of the results. Contribution of the main elements in the pro-
posed model (monetary incentives to tenants, cost of the on-
site generation, and cost of the HVAC system) are logged and
reported. Additionally, two metrics related to the QoS offered
to clients are reported and evaluated: number of postponed
tasks and the total monetary penalty for violated tasks of all
tenants.

A comparative analysis of the three studied scheduling
heuristics for tenants is reported. In turn, results of the
proposed approach are compared with a BaU operation. Other
reference values are considered too, such as the cost when
using the on-site generation without electricity load shedding
(thus, achieving the best possible QoS levels).

B. Experimental results

The analysis is focused on analyzing the cost values for the
datacenter operator, but QoS-realted metrics are also studied.
Regarding operation costs, Fig. 2 presents a representative
example of the three relevant components of the problem
model: energy reduction by tenants (red), energy consumption
of the HVAC system (blue), and on-site generation (orange).
All these energy consumption sources have an associated cost
for the datacenter operation to attend a demand response event.
The interesting values for the reduction incentive are between
0.5 and 3.0 monetary units, where the financial equation for
tenants allows increasing the energy consumption reduction
and both HVAC and on-site generation reduce accordingly.

https://www.fing.edu.uy/inco/grupos/cecal/hpc/DRAS/
https://www.fing.edu.uy/inco/grupos/cecal/hpc/DRAS/
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Fig. 2: Example of energy reduction by tenants (red), HVAC
consumption (blue), and on-site generation (orange) for dif-
ferent RI values, for a representative problem instance

Table I reports the cost and QoS results of the compared
heuristics for the studied problem instances. Values reported
correspond to the average total cost and the relative standard
deviation for the datacenter operator, as defined by Eq. 1a.
In turn, several metrics related to the QoS are reported: the
average number of tasks deferred for execution outside of the
planning period (DT ), the percentage they represent over the
total number of tasks in the corresponding workloads (%D),
the average penalty cost that tenants must pay to users for
deferred tasks (MP), and the sum of the average penalty costs
weighted by the tenants reputation (CR).

Finally, to establish a baseline for the comparative analysis
of the obtained results, two relative values are also reported in
Table I: the average cost improvement over a BaU operation,
where tenants do not consider any planning for tasks execution
and all tasks are executed following a First-Come-First-Served
approach (∆BAU ), and the average cost improvement over a
planning without load shedding (∆NS).

Results in Table I indicate that heuristics including the
penalty values in the ratio considered as sorting criteria allow
computing the better results. Nash+PL and Nash+PD achieved
significant improvements over the BaU operation: Nash+PL
computed the best cost values and Nash+PD was the second
best option. In turn, the heuristic considering deadline and
length was ineffective to compute accurate cost values, but
it can be useful in specific scenarios when QoS metrics have
more importance. Nash+PL scaled properly with the size of the
instances, improvements over Nash+PD increased from 2.09%
in small instances to 8.65% in large instances. Large values
of standard deviation indicate that a wide range of problem
instances were considered in each dimension.

The comparison with the BaU operation indicates that sig-
nificant cost reductions are obtained when properly planning
in the lower level; improvements ranged from 54.3% in small
instances to 57.4% in large instances. The cost improvement
over a datacenter planning without load shedding (∆NS) are
significant too. Improvements of up to 62.0% were computed
by Nash+PL, demonstrating the usefulness of the proposed
approach as business model for a datacenter participating in
the electricity market. Finally, QoS values were reasonable
for the proposed approach, especially in small and medium
instances; large instances, associated to a more critical demand
response event, require deferring a larger number of tasks.

TABLE I: Cost and QoS results for the studied problem instances, averaged by size

Heuristic cost QoS
∆BAU ∆NS

avg. std. DT %D MP CR

small instances

Nash+PL 4625.7 0.4 4744.9 2.8% 10280.7 6745.7 54.3% 60.4%
Nash+PD 4724.2 0.4 4803.4 2.8% 10338.4 6793.9 53.3% 59.5%
Nash+DL 10103.4 0.4 761.8 0.4% 6296.8 4426.7 0.1% 13.4%
BaU 10118.3 0.4 772.9 0.4% 6431.6 4503.3 - -

medium instances

Nash+PL 14176.8 0.3 15608.0 9.0% 33859.7 23266.1 55.2% 59.5%
Nash+PD 15018.2 0.3 15992.1 9.3% 34212.3 23608.4 52.5% 57.1%
Nash+DL 31803.1 0.2 2418.1 1.4% 20978.7 15237.4 -0.6% 9.1%
BaU 31616.7 0.2 2501.2 1.4% 21636.9 15690.0 - -

large instances

Nash+PL 39426.0 0.3 46011.6 26.7% 115149.8 80272.6 57.4% 62.0%
Nash+PD 43159.4 0.2 50143.8 29.1% 119314.3 83034.4 53.3% 58.4%
Nash+DL 92852.4 0.2 9268.1 5.4% 79344.5 58301.8 -0.4% 10.4%
BaU 92491.7 0.2 9453.2 5.5% 80880.6 59303.7 - -
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Fig. 3: Statistical analysis of cost and QoS results for Nash+PL and Nash+PD, averaged by scenario size

Boxplots in Fig. 3 compare cost and QoS results for
Nash+PL and Nash+PD, the best two heuristics among the
studied. Results demonstrate that both heuristics are equally
accurate when addressing small- and medium-sized instances.
However, Nash+PL is more accurate than Nash+PD for cost
and DT when addressing large-sized instances. Nash+PL
computes 8.7% lower costs and 8.2% lower DT values than
Nash+PD, on average.

A relevant issue to analyze is how heterogeneity is ac-
counted in the problem model, since hosting heterogeneous
tenants is one of the main features of the business model
in retail multi-tenant datacenters. Table II reports the cost
and QoS results of the compared heuristics for different
heterogeneity levels for both size of the computing resources
and tolerance of tenants.

Results in Table II indicate that high heterogeneity problem
instances are harder to solve, mainly because they pose differ-
ent conditions for low-level scheduling. Nash+PL computed
the best results regarding the heterogeneity classification,

but differences with Nash+PD reduced in high heterogeneity
instances. Nash+PL outperformed Nash+PD in 6.8% regarding
the ∆BAU metric in HM-HM instances, but the difference
reduced to just 2.1% in HT-HT instances. Regarding QoS,
the monetary penalty paid by tenants is not significantly
affected by the heterogeneity levels, but when considering
the reputation, values of the CR metric significantly reduced
for heterogeneous scenarios, indicating that both Nash+PL
and Nash+PD are able to properly plan the tasks execution
considering heterogeneity, accounting for accurate plannings
from the point of view of tenants.

Fig. 4 graphically compares the results of Nash+PL, the best
planning heuristic studied, for the four heterogeneity classes
in the workloads. Results show the impact of heterogeneity
in the results, with high tenants heterogeneity reducing the
cost improvements over BaU from 60.7% to 54.8%, and size
heterogeneity significantly impacting in QoS related metrics
(e.g., improving in up to 22% in MP and 27% in CR metrics
when comparing HM-HM and HM-HT instances).
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TABLE II: Cost and QoS analysis according to heterogeneity classes

Heuristic cost
QoS

∆BAU ∆NS Heuristic cost
QoS

∆BAU ∆NS

%D MP CR %D MP CR

HM-HM instances HT-HM instances

Nash+PL 19824.8 13.5% 58772.6 42473.7 60.7% 64.6% Nash+PL 19637.8 11.4% 45902.1 30777.6 57.7% 70.3%
Nash+PD 23258.7 15.1% 61622.2 45013.4 53.9% 58.5% Nash+PD 17628.2 11.6% 46342.6 31207.0 55.1% 68.5%
Nash+DL 50612.0 2.8% 40949.8 29925.8 -0.4% 9.6% Nash+DL 39456.8 2.0% 30242.0 20235.6 -0.6% 29.5%
BaU 50402.0 2.9% 41843.3 30510.4 - 10.0% BaU 39228.0 2.1% 30762.2 20515.6 - 30.0%

HM-HT instances HT-HT instances

Nash+PL 23475.4 14.7% 60899.8 42790.4 53.2% 58.1% Nash+PL 17725.4 11.7% 46812.4 31004.1 54.8% 68.3%
Nash+PD 24465.9 16.1% 63222.0 43905.7 51.2% 56.3% Nash+PD 18516.4 12.0% 47299.8 31122.7 52.7% 66.9%
Nash+DL 50225.9 2.80% 40678.6 31441.7 -0.1% 10.3% Nash+DL 39383.9 2.0% 30289.8 22351.4 -0.5% 29.7%
BaU 50151.6 2.8% 41610.0 32117.5 - 10.4% BaU 39187.3 2.1% 31049.9 22852.5 - 30.0%
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Fig. 4: Analysis of the impact of heterogeneity for the
Nash+PL heuristic results

From a global point of view, the demand response planning
problem is an inherent multiobjective optimization problem,
regarding cost and QoS offered to users [24]. In this sense,
trade-off analysis between cost and QoS is relevant to under-
stand the dynamics of the underlying optimization problem.

The multiobjective nature of the datacenter planning prob-
lem is also a relevant issue to consider when the market
operates in the case of voluntary demand response events,
which are not usually associated to emergency situations but
to profitable load reduction according to given compensations
associated to a grid request. Then, both the datacenter operator
and the tenants have more elasticity to provide energy reduc-
tion and can take advantage of several other situations (e.g.,
priority events, renewable energy availability, etc.).

Fig. 5 presents a sample trade-off analysis between cost
and QoS for a representative problem instance with high
tenants heterogeneity (the instance includes five tenants, three
small tenants, one medium, and one large). Points C1,..., C5
in the graph represent the cost and QoS for each tenant
in the considered instance. QoS is evaluated by the inverse
of the cost-reputation metric (CR) in the y axis and the x
axis represents the datacenter operator cost. Cost values are
identical for all tenants of a given solution, since the problem
model assumes price-taking tenants and the same offer is
broadcasted to all tenants.
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Fig. 5: Sample trade-off analysis for a representative scenario
with high tenants heterogeneity

Results in Fig. 5 indicate that the studied heuristics provide
different trade-off values between datacenter operation cost
and the QoS evaluated by the inverse of the CR metric.
Nash+PL heuristics allowed computing the best plannings,
The heterogeneous nature of tenants allows them to provide
different contributions to energy reduction, as accounted for
the CR values.
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V. CONCLUSIONS AND FUTURE WORK

This article addressed the problem of demand response
planning for retail multi-tenant datacenters, a relevant issue to
contribute with the development of improved electric network
within the modern smart grid paradigm.

A two level planning approach was proposed for the partic-
ipation of datacenters in the electricity market, by providing
appropriate actions to demand response events. The planning
strategy considers the heterogeneity of retail collocation dat-
acenters to account for an improved execution plan to reduce
energy consumption as requested by the electricity market.

The two level approach applies a game theory negotiation
at the (upper) datacenter level and scheduling heuristics at the
(lower) tenants level. In the lower level, three heuristics are
evaluated, accounting for different features of tasks submitted
for execution (penalty, deadlines, and task length).

The experimental evaluation of the proposed approach is
performed over a set of realistic scenarios and problem in-
stances including the main features of nowadays datacenters
(computing infrastructure and air conditioning system) and
workloads build using real data. The main results indicate
that the proposed planning methods are able to compute
accurate solution to the problem. The heuristic applying the
ratio between priority and length to sort the list of non-
executed tasks (Nash+PL) was able to compute the best results
regarding cost, while accounting for appropriate quality of ser-
vice. Different trade-off levels are computed by the proposed
planing methods, which are a useful input for decision making
at the datacenter operator level.

Results suggest that the proposed approach provide ap-
propriate plannings for demand response events, significantly
improving over Business-as-Usual operation and the situation
where there is not load shedding. These results demonstrate
the viability of the proposed approach for demand response
planning in retail multi-tenant datacenters.

The main lines for future work are related to extend the
experimental evaluation of the proposed approach by consider-
ing different demand response events and even on-line actions
at micro temporal levels. A more realistic approach can be
applied to model the thermal control of a realistic datacenter
facility, possibly by applying computational intelligence tech-
niques to learn an empirical distribution of the temperature
values for different servers utilization levels. Finally, different
approaches using local and global information can be applied
at the datacenter operator level to propose more powerful
planning methods, e.g., using metaheuristic algorithms.
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