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Secretion is an energy consuming process that plays a relevant role in cell communication

and adaptation to the environment. Among others, endocrine cells producing hormones,

immune cells producing cytokines or antibodies, neurons releasing neurotransmitters

at synapsis, and more recently acknowledged, senescent cells synthesizing and

secretingmultiple cytokines, growth factors and proteases, require energy to successfully

accomplish the different stages of the secretion process. Calcium ions (Ca2+) act

as second messengers regulating secretion in many of these cases. In this setting,

mitochondria appear as key players providing ATP by oxidative phosphorylation, buffering

Ca2+ concentrations and acting as structural platforms. These tasks also require the

concerted actions of the mitochondrial dynamics machinery. These proteins mediate

mitochondrial fusion and fission, and are also required for transport and tethering of

mitochondria to cellular organelles where the different steps of the secretion process

take place. Herein we present a brief overview of mitochondrial energy metabolism,

mitochondrial dynamics, and the different steps of the secretion processes, along

with evidence of the interaction between these pathways. We also analyze the role of

mitochondria in secretion by different cell types in physiological and pathological settings.

Keywords: mitochondria, secretion, bioenergetics, ATP, calcium, dynamics, endoplasmic reticulum, exocytosis

INTRODUCTION

About 20% of the proteins synthesized by eukaryotic cells are secreted to the extracellular space
either as soluble or membrane bound proteins (1). The secretory pathway in eukaryotic cells is
responsible for biogenesis and proper distribution of a wide range of extracellular proteins, as well
as complex carbohydrates and lipids. This pathway is highly dynamic and responsive to specific
cellular demands and stimuli (2). Eukaryotic cells also secrete many amino acids and amino acid
derivatives, such as neurotransmitters, that play key roles in intercellular communication (3).

As many other complex cellular processes secretion of proteins consumes energy, therefore
requires the support of functional mitochondria. In the conventional pathway proteins are
transported into the endoplasmic reticulum (ER), and folding and quality control of proteins in
the ER (4–8) consumes ATP. Likewise the assembly, transport and fusion of the vesicles carrying
proteins from the ER to the Golgi and to the plasma membrane requires the hydrolysis of ATP,
as well as GTP (2, 9, 10). Besides, several steps in the secretion process depend on calcium ion
(Ca2+) as a cofactor or signaling molecule (11, 12). Calcium pumps are required to maintain the
appropriate concentrations of Ca2+ inside the ER and near the sites of exocytosis, andmitochondria
play a relevant role providing energy to transport Ca2+ against its concentration gradient (13, 14).
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Mitochondria also modulate Ca2+ concentrations in the cytosol,
sequestering the ion in the mitochondrial matrix (14, 15).
Secretion of proteins by unconventional pathways also depends
on mitochondria, not only as a source of ATP, but also of
activation signals such as mitochondrial reactive oxygen species
(ROS) and oxidized mtDNA (16, 17), as well as a structural
platform for the assembly of inflammasomes (17, 18).

Work by others and us shows that impairment of
mitochondrial catabolism and dynamics affects the secretion
processes (6, 7, 19–26) and can underlie pathology in endocrine
and neurodegenerative diseases (27–30). Relevant roles for
mitochondria in protein secretion by immune and senescent
cells have been recently described as well (19–21, 24–26, 31),
underscoring the relevance of these interactions. This prompted
us to explore the existing literature onmitochondrial interactions
with the secretion machinery.

While extensive literature can be found regarding both
secretion and mitochondrial bioenergetics and dynamics, the
connection between these processes and the organelles involved
are still largely unexplored. In this manuscript secretion
pathways, mitochondrial metabolism and dynamics per se have
not been extensively reviewed. We have relied on reviews by
others to present an overview, and centered our efforts in
exploring the requirement for mitochondrial ATP and fusion
and fission proteins to sustain secretion in metazoans, excluding
the events linked to ER stress. We expand on three main
roles of mitochondria: (1) providing ATP for multiple steps of
the secretion process; (2) buffering Ca2+ concentrations; (3)
providing signals and structural scaffold for the activation of the
inflammasome (Figure 1).

OVERVIEW OF THE SECRETION
PATHWAYS AND THEIR ENERGY
DEMANDS

Secreted proteins can reach the extracellular media through the
conventional (classic) pathway or through unconventional
pathways (32). In the conventional pathway proteins
are transported into the ER, either cotranslationally or

Abbreviations: ARF, ADP-ribosylation factor; BiP, ER chaperone BiP; Ca2+,
calcium; COPI, coat protein complex I; COPII, coat protein complex II; DRP1,
GTPase dynamin related protein 1; EDEM, ER degradation-enhancing alpha-
mannosidase-like proteins; ER, endoplasmic reticulum; ERAD, endoplasmic
reticulum- associated degradation; ERES, ER exit sites; ERGIC, ER-Golgi
intermediate compartment; ERMCs, ER–mitochondrial contact sites; ETC,
electron transport chain; FIS1, fission 1 protein; GRP, glucose regulated protein;
GSIS, glucose-stimulated insulin secretion; GT, UDP-glucose:glycoprotein
glucosyltransferase; IL-1β, interleukin-1β; IMM, inner mitochondrial membrane;
IP3, inositol-1,4,5-trisphosphate; IP3R, inositol-1,4,5-trisphosphate- sensitive
channel or receptor; MCU, mitochondrial calcium uniporter; MICOS,
mitochondrial contact site and cristae-organizing system; MICU, MCU regulator
and mitochondrial calcium uptake; MFN1, mitofusin 1; MFN2, mitofusin 2;
MIRO, mitochondrial Rho GTPase; NLRP3, Nod-like receptor family, pyrin
domain containing 3; OMM, outer mitochondrial membrane; OPA1, optic
atrophy protein 1; ROS, reactive oxygen species; SAR1, secretion associated Ras
related 1 GTPAse; SASP, senescence-associated secretory phenotype; SERCA,
sarcoplasmic/endoplasmic reticulum calcium ATPase; SRP, signal recognition
particle; TNF, tumor necrosis factor, VDAC, voltage-dependent anion channel.

FIGURE 1 | Main roles for mitochondria in secretory processes. (1)

Mitochondria provide ATP, obtained by oxidative phosphorylation, for: protein

synthesis, translocation to the ER, folding and quality control, vesicle

transport, vesicle fusion and exocytosis, Ca2+ pumping across plasma and ER

membranes; and inflammasome activation. (2) Mitochondria can uptake Ca2+,

modulating Ca2+ concentration and therefore vesicle exocytosis. (3)

Mitochondria provide a structural scaffold for the assembly of the NLRP3

inflammasome.

postranslationally; then travel from the ER to the Golgi
complex, from which they then migrate to the trans-Golgi
network and finally to the plasma membrane (33, 34). Transport
from one compartment to another takes place by sequential
budding and fusion of vesicles (35) and the microtubule and
actin cytoskeleton plays a relevant role in vesicle transport
(33, 36) (Figure 2). Unconventional secretion pathways, on
the other hand, include proteins that do not present a leader
sequence and proteins that by-pass the Golgi apparatus while
traveling to the plasma membrane (32).

Conventional Pathway for Protein
Secretion
Most of the secreted proteins in the conventional pathway are
translocated to the rough ER during translation by the ribosome
(37). Proteins are targeted to the ER by a hydrophobic signal
peptide located in the N-terminus, which is later cleaved by a
signal peptidase present in the ER lumen. The signal peptide
is recognized by the signal recognition particle (SRP) that
then binds to the SRP receptor (SR) (33, 38). Both SRP and
SR are GTPases and the docking and release of SRP at the ER
membrane requires GTP (37, 39). Docking is followed by the
translocation of the nascent protein to the ER lumen through
the translocon, a pore that in mammals is composed of Sec61
proteins, and associated proteins including BiP, Sec63, Sec62,
translocating-chain-associated protein (TRAM), translocon-
associated protein (TRAP), and ribosome-associated membrane
protein (RAMP) (37, 40, 41). BiP plays a dual role during protein
translocation, it seals de pore and provides the driving force to
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FIGURE 2 | Mitochondria and the conventional secretion machinery. To support the energy requirements of the secretion process mitochondria interact with

organelles and components of the cytoskeleton and supply ATP for: (1) Protein synthesis, translocation to the ER and folding. (2) Protein quality control in particular for

the energy consuming ERAD. (3) Vesicle fusion with target membranes in the ER, ERGIC, Golgi, and plasma membrane. (4) Vesicle and mitochondrial transport along

microtubules and actin filaments. (5) Exocytosis. In the panel below the figure are a series of molecules and complexes that play relevant roles in these events.

transfer of the nascent protein into the ER (4, 40). This protein
is an ATP-dependent chaperone that belongs to the heat shock
protein 70 (Hsp70) family. During protein translocation BiP
interacts with co-chaperones Sec63 and RAMP, these ER-resident
J-domain proteins (ERdjs) stimulate BiP binding to the nascent
protein and ribosomes as well as ATP hydrolysis (4, 41). BiP also
interacts with the nucleotide exchange factors GRP170 and Sil1
that promote the exchange of ADP for ATP (41, 42). Though
ATP hydrolysis by BiP is the main driving force for translocation,
GTP hydrolysis during the elongation stage of protein

synthesis may also contribute to the process (4, 40) (Table 1
and Figure 2).

In the ER, the oligosaccharyl transferase complex (OGT)
catalyzes the transfer of the oligosaccharide (Glc3Man9GlcNAc2)
from dolichol phosphate to an asparagine residue in the protein
(52, 53). Exoglucosidases I and II then catalyze the removal of
two terminal glucose moieties producing a monoglucosylated
structure (Glc1Man9GlcNAc2) that is recognized and bound by
lectin chaperones calnexin and calreticulin. These chaperones,
in collaboration with BiP, GRP-94 and protein disulfide
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TABLE 1 | The conventional pathway for protein secretion and its energy

requirements.

Process Associated proteins References

Protein

synthesis

Aminoacyl-tRNA synthetases, initiation

factors, elongation factors, termination

factors, ribosomes

(43)

Protein

translocation

SRP, SRP receptor, SEC61, SEC62,

SEC63, BiP, GRP170, SIL1, TRAM, TRAP

(4, 40)

Protein folding OGT, exoglucosidases I and II, calnexin,

calreticulin, GT, PDIA3, BiP, GRP-94

(41, 44)

Protein quality

control

ER α1,2-mannosidase, EDEMs 1/2/3, BiP,

PDIs, OS-9, XTP-3B, SEL1L, ubiquitin

activating enzyme (E1), ubiquitin

conjugating enzyme (E2), ubiquitin ligase

(E3, HRD1), SEC61, derlins, ATPase

VCP/p97, 26S proteasome

(41, 45, 46)

COPII and

COPI

vesicle

assembly

SAR1, ARF, SEC12, SEC16, SEC23,

SEC24, SEC13, SEC31, COPI subunits,

GEFs, GAPs

(47, 48)

Vesicle fusion Receptors, Rab GTPases, Rab effectors

SNARE proteins, SM proteins, SNAP, NSF

(2)

Vesicle

transport

Kinesin, dynein, myosins (9, 49)

Exocytosis Rab GTPases, Rab effectors SNARE

proteins, SM proteins, SNAP, NSF, actin,

myosins

(50, 51)

Relevant molecules involved in the different steps of the conventional secretion pathway

are listed. Proteins that catalyze ATP hydrolysis are highlighted in bold letters.

isomerase A3 (PDIA3, Erp57), help the protein acquire its
native conformation (8, 38). Removal of the remaining glucose
moiety by exoglucosidase II prevents further binding of the
glycoprotein to calnexin and calreticulin, allowing it exit to
the ER. However, if the native structure is not achieved
the protein undergoes reglucosylation catalyzed by UDP-
glucose:glycoprotein glucosyltransferase (GT), an enzyme that
preferentially acts on incompletely folded glycoproteins. Thereby
favoring a new cycle of interactions with calnexin and calreticulin
and the other components of the folding machinery (8, 54, 55).
Protein folding requires ATP, since chaperones BiP and GRP-
94 hydrolyze ATP during their catalytic cycles (41, 44). Besides,
calnexin and calreticulin bind ATP though they do not hydrolize
it (56). Calnexin and calreticulin also bind Ca2+, therefore Ca2+

homeostasis must be maintained in the ER lumen (56). The
sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA)
is responsible of coupling ATP hydrolysis to Ca2+ transport from
the cytosol to the ER (4, 57) (Figure 2).

In the ER proteins undergo quality control pathways for
the detection, remotion, and degradation of misfolded proteins
that did not attain their native structures. Degradation by the
proteasome takes place in the cytosol in a pathway known as
ER-associated degradation (ERAD) (8, 45). The first step in
this pathway is the recognition of the misfolded protein and
several luminal and cytoplamatic factors are involved in this
process (46). Among them we find ER mannosidases (ER α1,2-
mannosidase and EDEMs, 1, 2, and 3) that trim the mannose

residues from glycoproteins, preventing glucosylation by GT and
therefore withdrawing the protein from the quality control cycle
(8, 58). Mannose trimmed glycoproteins bind OS-9 and XTP-3B
and associate with SEL1L that channels the misfolded protein to
the dislocon where proteins are retrotranslocated to the cytosol
(45). Though the dislocon is not well-characterized it is thought
to include Sec61, the E3 ligase HRD1, Derlins 1-3, and ATPase
VCP/p97, which converts the energy released by ATP hydrolysis
into mechanical force for the extraction process (4, 45). BiP
and PDIs (ERdj5 and ERp90), also play a role, at this stage,
binding and oxidizing the proteins to be transported (41, 59).
In the cytosol, ubiquitin activating enzymes (E1), conjugating
enzymes (E2), and E3 ligases (primarly HRD1 and AMFR)
transfer ubiquitin to the protein in an ATP-dependent process
(46). Finally, ubiquitinated proteins are degraded by the 26S
proteasome in a pathway that also consumes ATP (45, 46).
Overall the ERAD is an extremely costly process that consumes
ATP during the extraction, ubiquitination and degradation of
misfolded proteins (4, 41, 45) (Table 1 and Figure 2).

Secretory proteins that achieve the correct folded and
assembled conformation are then transported from the ER to
the Golgi complex in coat protein complex II (COPII) carrier
vesicles (47). Vesicles for anterograde (forward) transport are
formed in ER exit sites (ERES) and key proteins involved in
their assembly include SEC12, SEC16, secretion-associated Ras-
related 1 (SAR1) GTPase and the two major coat subunits
SEC23- SEC24 and SEC13- SEC31 (47, 60). Proteins enter the
vesicles by diffusion (bulk-flow), or undergo selective uptake
(cargo capture) by SEC24, and other receptors (2, 48, 61). Upon
leaving the ERES COPII vesicles shed their SEC13- SEC31 coats
in a process that involves the hydrolysis of GTP bound to
SAR1 (62), and fuse with one another or with the ER-Golgi
intermediate compartments (ERGIC) (2, 47). Rab-family small
GTPases and Rab effectors are involved in vesicle tethering to
the membranes. After tethering vesicles fuse with the acceptor
compartment delivering the cargo to the Golgi (2, 48). Retrieval
of misplaced ER luminal proteins from the ERGIC or from
the Golgi is achieved by retrograde transport in coat protein
complex I (COPI) carrier vesicles. Formation of COPI vesicles
involves the ADP-ribosylation factor 1 (ARF) GTPase, that
recruits the coatomer subunits to the membrane (48). Vesicle
formation, coat shedding and tethering to target membranes are
energy consuming processes that consume GTP (2). SAR1 and
ARF GTPases switch between inactive GDP-bound and active
GTP-bound forms. Guanine nucleotide exchange factors (GEFs)
catalyze the release of GDP (allowing the union of a new GTP
molecule); while GTPase-activating proteins (GAPs) promote
the hydrolysis of bound GTP, regulating enzyme activity and
therefore vesicle trafficking (2, 63) (Table 1).

From the cis-Golgi compartment proteins are transported
via cisternal maturation to the trans-Golgi network (48), where
proteins to be secreted are sorted in secretory vesicles and
delivered to the plasma membrane, to the endosomal system or
to immature secretory granules (33, 48). Motor proteins, kinesin,
and dynein transport the cargo vesicles along microtubules.
Kinesins transport secretory vesicles from the organelles where
they arise to the cortical region, while dynein mediates their
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transport in the opposite direction (49, 64). Myosin V and II are
responsible for the movement of vesicles along actin filaments
in the cortical area (49, 50). The cortical actin network, at the
cell borders, acts as a diffusion barrier that prevents the access
of granules to secretory sites until the arrival of the triggering
stimuli (50). Motor proteins, kinesin, dynein and myosin use the
energy released during ATP hydrolysis to move vesicles along
microtubules and actin filaments (9) (Table 1 and Figure 2).

Upon arrival to the plasma membrane secretory proteins are
released to the extracellular space by exocytosis. Constitutive
exocytosis occurs in all cell types to release extracellular proteins
and maintain plasma membrane homeostasis and cell polarity.
While regulated exocytosis occurs in specialized secretory cells
and is triggered by secretion signals (13), such as increases in
Ca2+ concentrations (65). Calcium ions bind sensor molecules
and promote the fusion of vesicles with the plasma membrane
(65). Upon the arrival of the secretion stimuli myosin II drives
the movement of vesicles to the fusion sites where they dock
to the plasma membrane (66). SNARE complexes (formed
by syntaxin, SNP-25, and VAMP), and SM proteins (such as
Munc18-1), are in charge of the fusion of vesicles with the
plasma membrane (10, 13, 51), while the actin and myosin
network contributes to the release of vesicle contents in an ATP-
dependent manner (50, 66, 67). Fusion of vesicles with target
membranes also consumes ATP. SNARE proteins localized in
vesicles and target membranes interact forming a complex that
pulls the two membranes together, exerting the force required
for fusion. The dissociation of the SNARE complex involves
soluble NSF attachment protein (SNAP) and the ATPase N-
ethylmaleimide-sensitive fusion protein (NSF) that hydrolyses
ATP (10, 51) (Table 1 and Figure 2).

Overall the concerted action of many cellular components
is required to ensure the selective and efficient secretion of
proteins. Many of these steps require energy and mitochondria
play a relevant role, fulfilling the ATP requirements of the
pathway (Figures 1, 2). Besides, mitochondria help to modulate
the intracellular concentrations of Ca2+ (13, 14), an essential
cofactor in the folding process and a potent trigger of exocytosis
(65) (Figure 1).

Unconventional Pathways for Protein
Secretion
Though the conventional protein secretion pathway was
considered for a long time as the only mechanism for protein
secretion, we now know that many proteins use alternative
pathways. These include the secretion of cytosolic proteins
that do not have a signal peptide (leaderless proteins) or a
transmembrane domain; and proteins that contain a signal
peptide or a transmembrane domain and enter the ER but are
not transferred to the Golgi complex (68).

Proteins without a leader sequence are secreted along three
different pathways: Type I pathways involve the translocation
from the cytoplasm to the extracellular space through a pore in
the plasma membrane. In Type II secretion processes the ATP-
binding cassette transporter is responsible for the secretion of
the protein present in the cytoplasm while in Type III secretion

the proteins use autophagosomes and endosomes to reach the
extracellular space. The Golgi-bypassing route is also known as
Type IV secretion pathway (68). Some proteins are constitutively
secreted through unconventional pathways, however these
pathways are usually induced in stressful conditions, such as
nutrient starvation, inflammation, and mechanical or ER stress
(32, 68).

One of the most studied proteins secreted by the
unconventional pathways is interleukin-1β (IL-1β) (68, 69).
During inflammation IL-1β is produced as an immature and
inactive form that is cleaved by caspase 1 upon recruitment
and activation by the Nod-like receptor family pyrin domain
containing 3 (NLRP3) inflammasome (70), in a process that
will be discussed below in detail. The assembly and activation
of the complex is an energetically costly event that requires the
hydrolysis of ATP by NLRP3 (71). The posterior secretion of
mature IL-1β involves the formation of a pore that increases the
permeability of the plasma membrane (69) or occurs through the
autophagosome/endosmal pathway (68).

Secretion Pathway of Neurotransmitters
Many neurotransmitter molecules are amino acids or amino acid
derivatives and their secretion occurs through exocytosis. The
pathway starts with the synthesis of the neurotransmitters by
enzymes, followed by their loading into of synaptic vesicles. The
loading process involves transporters in the vesicle membrane
and happens at the expense of an electrochemical proton
gradient, generated by the vacuolar H+-ATPase. This pump uses
the energy released by ATP hydrolysis to transport protons into
the vesicle lumen (72). Loaded vesicles can then be sequestered in
a reserve pool or travel to specialized release sites, known as active
zones, at the presynaptic terminal where vesicles become docked
at the plasma membrane. Increases in Ca2+ concentrations
promote the fusion of the vesicle with the plasma membrane
and discharge their content into the synaptic cleft (73). Calcium
sensing, vesicle docking and exocytosis follow the same steps
described for the conventional secretion pathway of proteins
(51). These steps are followed by the recovery of the synaptic
vesicle membranes that are recycled for refilling in preparation
for the next cycle of exocytosis (74).

OVERVIEW OF MITOCHONDRIAL
STRUCTURE, FUNCTION AND DYNAMICS

Mitochondrial Bioenergetics
Mitochondria are cell organelles defined by a double membrane,
the outer mitochondrial membrane (OMM) and the inner
mitochondrial membrane (IMM). The OMM separates the
mitochondria from the cytosol, however the voltage-dependent
anion channel (VDAC or porin) allows the passage of metabolites
and ions. In the OMM are also located proteins involved
in apoptosis, mitochondrial dynamics, and tethering to other
organelles. In the IMM, two functional and structurally different
regions are described: the inner boundary membrane and
the cristae, where electron transport and ATP synthesis take
place in a process known as oxidative phosphorylation (75).
In the cristae we find the electron transport chain (ETC)
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complexes: NADH-ubiquinone oxidoreductase (complex I),
succinate-ubiquinone oxidoreductase (complex II), ubiquinol-
cytochrome c oxidoreductase (complex III), and cytochrome
c oxidase (complex IV), as well as the FoF1-ATP synthase
(ATP synthase or complex V) and two mobile electron carriers,
ubiquinone and cytochrome c (75).

The ETC complexes are assembled forming supercomplexes
that optimize electron transport and proton shuttling through
the IMM (76, 77). ATP synthase localizes on the edges of
cristae forming dimers, which optimize ATP production (78).
At the cristae junctions we find the mitochondrial contact
site and cristae-organizing system (MICOS), a large oligomeric
complex that interacts with both the IMM and OMM (79).
Cristae structure influences the ETC, complex and supercomplex
formation, and can present different morphologies depending on
the metabolic state of the cell (80).

Mitochondria are the main source of ATP in most cells, since
many catabolic pathways converge in this organelle and result
in the production of ATP by oxidative phosphorylation. The
catabolism of metabolites such as glucose, proteins, and fatty
acids produces acetyl-CoA, which is in turn oxidized in the
tricarboxylic acid cycle generating the reduced electron donors
nicotinamide adenine dinucleotide (NADH) and flavin adenine
dinucleotide (FADH2). Electrons are then transferred to the
ETC and flow through the complexes to molecular oxygen (O2).
This thermodynamically favorable electron transport releases
energy, which is used to pump protons from the matrix to
the intermembrane space, at complexes I, III, and IV, creating
an electrochemical gradient (81). The energy released by the
dissipation of the electrochemical proton gradient is then coupled
to the synthesis ATP fromADP and Pi, catalyzed byATP synthase
(82, 83).

Reactive Oxygen Species in Mitochondria
Mitochondrial catabolism of nutrients and electron transport in
the respiratory chain involves many redox reactions that have
as by-products reactive oxygen species (ROS) (84). In particular,
superoxide anion radical is formed by several flavoproteins and
at complex I and III of the respiratory chain, and its dismutation
gives rise to hydrogen peroxide (85). These mildly oxidant
species can result in the formation of higher oxidant species
such as peroxynitrite, formed in the reaction between superoxide
and nitric oxide, oxo-metal complexes, nitrogen dioxide, and
hydroxyl radical (86).

Under physiological conditions mitochondria produce
controlled levels of oxidants, many of which participate in
signaling processes. However, ROS formation can increase
during cellular stress or in pathological conditions. Although
mitochondrial oxidants can be detoxified by enzymatic and non-
enzymatic antioxidants (87, 88), an imbalance in mitochondrial
redox status may lead to mitochondrial damage (84, 89, 90). In
fact, oxidants impair the activity of enzymes of the tricarboxylic
acid cycle, the ETC, and ATP synthase (84, 90).

Mitochondrial Dynamics
Mitochondrial dynamics consists of fusion and fission events
driven mainly by dynamin-related GTPases (91). Optic atrophy

protein 1 (OPA1) and mitofusins 1 and 2 (MFN1 and MFN2)
are involved in mitochondrial fusion. The long OPA1 isoform
is anchored to the inner membrane, where it promotes IMM
fusion. The soluble and short OPA1 isoform, found in the
intermembrane space, maintains mitochondrial cristae structure
(92). MFN1 and MFN2 participate in tethering and fusion of
the outer membranes of two different mitochondria through
the formation of homo and heteroligomeric complexes (93, 94).
Phospatidic acid, a fusogenic lipid formed in a reaction catalyzed
by mitochondrial phospholipase D, is also required for OMM
fusion (95).

In turn, mitochondrial fission is carried out by the GTPase
dynamin related protein 1 (DRP1), a cytosolic protein that
is recruited to the OMM (96) by receptor proteins, such
as mitochondria fission factor (97), mitochondrial dynamics
protein of 49 and 51 kDa (98) and fission 1 protein (FIS1)
(99). DRP1 oligomerizes around mitochondria into a ring-
like structure constricting the organelle (96). ER-mitochondrial
contacts play a role in mitochondrial fission, determining the
position of the fission events (100) and ER tubules wrap
around mitochondria and constrict them (100). Components
of the cytoskeleton such as actin, myosin II and septin 2 are
required for mitochondrial fission (101–104), as well as the ER
protein inverted formin 2 (105) and a mitochondrial Spire1
isoform (103). The latter two cooperate to induce localized actin
polymerization at the constriction sites (103). Both fusion and
fission are highly regulated processes, and changes in protein
levels, GTPase activity and post-translational modifications of
proteins involved in mitochondrial dynamics affect not only
mitochondrial morphology but also cellular bioenergetics and
homeostasis (106).

Multiple studies linking mitochondrial morphology and
bioenergetics can be found in the literature (107–109). At the
molecular level several reports support that MFN2 is required
for correct mitochondrial function (110); since its silencing
results in an impairment of oxidative phosphorylation, while
overexpression enhances mitochondrial metabolism (19, 111–
113). Less evidence supports a role for MFN1. Although there are
reports on MFN1 silencing decreasing mitochondrial respiration
(114) this does not seem to be the case in all models (19).
OPA1 deletion also affects mitochondrial membrane potential,
respiration and cristae structure and reduces assembly, and
stability of supercomplexes (80, 114–117).

In order to face increases in energy demands, such as those
imposed by secretion, mitochondria also modify their cellular
distribution. Motor proteins, kinesin, and dynein, transport
mitochondria over long distances along microtubules toward the
cell periphery or the cell center, respectively (49). While myosin
19, mediates short-range movement along the actin filaments
near the cell periphery (49, 118). The mitochondrial Rho
GTPase (MIRO) and the adaptor proteins trafficking kinesin-
binding proteins 1 and 2 (TRAK1 and 2) support bidirectional
mitochondrial movement along microtubules by binding kinesin
and dynein (119–121) (Figure 2). MIRO proteins also engage
myosin 19, linking mitochondria to actin filaments (122) and
interact with components of the MICOS complex, linking
the transport machinery to cristae organization and ensuring
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the appropriate provision of energy to the regions where
mitochondria are delivered (123).

ER-Mitochondria Contact Sites (ERMCs)
Mitochondria can interact with several cellular compartments,
including organelles involved in protein secretion such as the
Golgi complex and ER (124–126). In particular, mitochondrial
interactions with the ER have been extensively studied and many
components and functions of the ER–mitochondrial contact sites
(ERMCs)1 have been identified. ERMCs are crucial sites for the
synthesis and exchange of lipids, Ca2+ transport, mitochondrial
fission and inflammasome formation (4, 125, 127).

Among the proteins found in ERMCs is MFN2, and though
some controversy exists (128, 129), this protein is proposed to
link the ERmembrane tomitochondria through interactions with
MFN1 and MFN2 in the OMM (130, 131). The mitochondrial
proteins MITOL and mitostatin, as well as the ER protein
presenilin 2 modulate these MFN2-dependent interactions
between organelles (132–134). Other relevant proteins linking
mitochondria to the ER are VDAC, the OMM chaperone
GRP-75 and the inositol-1,4,5-trisphosphate-sensitive channel
or receptor (IP3R) in the ER. Another tethering complex is
formed between the ER protein vesicle-associated membrane
protein- associated protein B (VAPB) and the OMM protein
tyrosine phosphatase-interacting protein 51(PTPIP51) (135–
137) (Figure 2).

Physical tethering of mitochondria and the ER by mitofusins
(130, 131), VDAC/IP3R/GRP-75 (14, 138), and VAPB/ PTPIP51
(135) is required for efficient transport of Ca2+ between
organelles. Besides, several regulatory proteins modulate Ca2+

release from the ER and uptake by mitochondria, through
interactions with IP3R or VDAC (123, 138, 139). Of particular
interest is the chaperone calnexin, whose translocation to
different ER domains is regulated by palmitoylation of two
conserved cysteine residues (140) and interaction with regulatory
proteins (138). Calnexin migration to the ERMCs is required for
Ca2+ transfer from the ER to the mitochondria (141).

Calcium ion leaves the ER through the I3PR and enters the
mitochondria through VDAC and the mitochondrial calcium
uniporter (MCU) complex present in the OMM and IMM,
respectively (14, 138). The complex is formed by the MCU,
a pore that allows the passage of the ions through the lipid
membrane (142, 143), essential MCU regulator (ERMES) and
mitochondrial calcium uptake 1 and 2 proteins (MICU1 and 2)
that act as gatekeepers regulating Ca2+ uptake (144). Calcium
entry to mitochondria occurs at the expense of the H+ gradient
in the IMM (144). In the matrix, Ca2+ activates several
dehydrogenases (including enzymes of the tricarboxylic acid
cycle) and ATP synthase enhancing oxygen consumption rate
and ATP synthesis (15, 144). Thus, MERCs are extremely
important for mitochondrial function. On the other hand Ca2+

uptake by mitochondria prevents or “buffers” the increase of
Ca2+ concentrations near the mouth of the IP3R affecting its
activity as we will describe in detail in the next section (14).

1ERMCs are also known as MERCs or mitochondria-associated ER membranes
(MAMs).

In ERMCs we can also find SAR1 and ARF. These small
GTPases involved in COPII and COPI vesicle assembly are also
required to maintain mitochondrial morphology and function
(145, 146). SAR1 regulates the size of mitochondrial ER contact
sites by affecting the curvature of the membrane (146). While
ARF1 and its guanine nucleotide exchange factor (GBF1)
interact with mitochondrial protein MIRO, and their depletion
affects mitochondrial morphology, autophagy, positioning, and
movement within the cell (145, 147). These observations point to
an important role of secretory pathway components in dynamics
and physiology of mitochondria.

Overall, mitochondria are dynamic organelles whose function,
morphology, distribution, and contacts with other organelles
(49, 109, 148) undergo changes in response to intracellular energy
requirements, as well as other physiological and pathological
stimuli (109).

MITOCHONDRIA IN SECRETION

Fulfilling ATP Requirements of the
Secretion Process
As mentioned before, many of the steps in the conventional
secretion pathway demand energy (Table 1 and Figures 1, 2).
Chaperones involved in protein translocation to the ER and
protein folding consume ATP (5–7), as does protein quality
control by the ERAD (8), transport and fusion of vesicles with
target membranes (2, 9, 51). Calcium signaling during regulated
exocytosis also consumes ATP to maintain the levels of IP3
precursors and to pump calcium from the cytoplasm into the ER
or to the extracellular space (13, 14, 149). Overall, an increase in
secretion of proteins is bound to challenge the cell’s bioenergetics
capacity; and inhibition of ATP synthesis, using inhibitors or
uncouplers of oxidative phosphorylation, prevents the secretion
of many proteins (7, 150–152).

The mechanism for ATP transport into the ER in mammalian
cells was elusive for many years, and different possibilities,
ranging from the existence of specific transporters to non-specific
transport through anion channels or leakymembranes, have been
proposed (4). However, recently protein SLC35B1 was identified
as an ATP/ADP exchanger present in the ER membrane, and
named AXER (153). Silencing the expression of SLC35B1/AXER
reduced ATP levels in the ER of different cell lines and affected
BiP dependent protein import activity and Ca2+ levels inside
the ER (153, 154). A decrease in ATP in the ER was observed
upon inhibition of SERCA or exposure to high cytosolic Ca2+

concentrations, suggesting that a Ca2+ gradient across the ER
membrane is required for ATP transport into the ER (154).
Inhibitors and uncouplers of oxidative phosphorylation lead
to a decrease in ATP levels inside the ER as well, suggesting
mitochondria is a relevant source of ATP for the ER (154,
155). Interestingly, several components of the mitochondrial
ATP synthase complex immunoprecipitate with SLC35B1/AXER;
along with proteins involved in ER protein import and folding
such as BiP, calnexin, and Sec61 complex (153). Transfer of ATP
from mitochondria to the ER probably occurs at ERMCs, where
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both organelles are in close proximity, yet this is still to be
established (4).

Calcium Buffering by Mitochondria in
Exocytosis
As we mentioned above, Ca2+ signals for exocytosis in many
secretory cells. The increase in cytosolic Ca2+ concentration
triggers vesicle fusion with the plasma membrane leading to the
release of the cargo to the extracellular space. Calcium enters the
cytosol through channels in the plasma or the ER membranes
and several processes can affect the magnitude and duration
of the signal for exocytosis, among them is Ca2+ uptake by
mitochondria (13). Mitochondria are located in close proximity
to Ca2+ channels in the ER and plasma membrane and can take
up the ion through the VDAC and MCU channels in the OMM
and IMM, respectively (144). This process is known as Ca2+

buffering and is driven by the negative potential across the IMM
(144). Positioning of mitochondria near the sites of Ca2+ entry
to the cytosol is also a requirement for the efficient uptake of
the ion and effective Ca2+ signaling for exocytosis. This depends
on proteins involved in mitochondrial dynamics and movement,
such as MFN2, myosin, kinesin, TRAK, and MIRO (14, 156–
158). Of note, MIRO is both an adaptor protein, that links
mitochondria to TRAK and kinesin, and a Ca2+ sensor which
can regulate mitochondrial trafficking in response to changes in
Ca2+ concentrations (157).

Ca2+ buffering has different effects on exocytosis, depending
on the channel and cell type. Voltage-gated Ca2+ channels (Cav)
are present in the plasma membrane. These are activated by
membrane depolarization and mediate Ca2+ influx in response
to action potentials and other depolarizing signals (159). The
increase in cytosolic Ca2+ stimulates exocytosis by binding
syaptogamins that promote SNARE mediated vesicle fusion with
the membrane (65). Mitochondria can be found in the cell cortex
regions, near the sites of exocytosis and in this setting Ca2+

sequestering by mitochondria reduces vesicle release (157, 160,
161).

In the plasmamembrane we also find store-operated channels,
known as Ca2+ release-activated (CRAC) channels. These
are composed by Orai pore proteins, present in the plasma
membrane, and STIM proteins from the ER and are activated
by depletion of calcium stores in the ER (13, 149, 158). When
Ca2+ levels fall in the ER STIM proteins migrate to ER-plasma
membrane junctions where they activate Orai channels, allowing
the entry of Ca2+ into the cytosol. In turn, high cytosolic Ca2+

concentrations result in the closure of the pore and both a rapid
and a slow Ca2+-dependent inactivation have been described
(158). Mitochondrial translocation to the plasma membrane is
essential to sustain Ca2+ influx through CRAC channels (162),
since it prevents the slow inactivation of the CRAC channel
without affecting the fast Ca2+-dependent inactivation (158).
Inhibitors and uncouplers of electron transport and oxidative
phosphorylation that dissipate the proton gradient prevent Ca2+

uptake by mitochondria and promote channel inactivation (163).
Inhibition of kinesin- dependent transport of mitochondria to
the plasma membrane also results in channel inactivation (162).

In the ER membrane the IP3R and ryanodine-sensitive
receptors are the channels responsible for Ca2+ release to the
cytosol (13, 14). IP3R is activated by IP3, a second messenger
formed by hydrolysis of phosphatidylinositol 2,5-biphosphate
by phospholipase C. While ryanodine- sensitive receptors in
secretory processes are activated by Ca2+ to release Ca2+

stored in the ER, in a process known as Ca2+ induced Ca2+

release that amplifies Ca2+ signaling (149). For both channels
the response to cytosolic Ca2+ concentrations is bell shaped,
since Ca2+ can act both as a positive or negative regulator
of the channel depending on the concentration of the ion
(14, 164). Thus, high concentrations of cytosolic Ca2+ result
in a decrease in the activity of both I3PR and ryanodine
sensitive receptors (14, 164). Uptake of Ca2+ by mitochondria
prevents its accumulation precluding channel inhibition by high
concentrations of Ca2+ (14).

From what we just described it is clear that mitochondria
contribute to the regulation of intracellular Ca2+ concentrations,
and therefore impact on the regulated exocytosis of many
proteins and other signaling molecules such as neurotransmitters
(Figure 1).

Mitochondria in the Activation of NLRP3
Inflammasome
The NLRP3 inflammasome is a multiprotein complex that
participates in innate immunity. It is activated by multiple signals
of infection, cellular damage, or stress, to produce inflammatory
cytokines that trigger innate immune responses (71, 165). The
sensor molecule NLRP3, the adaptor protein ASC and the
effector caspase-1 form the complex, and recently the NIMA-
related kinase 7 was identified as a fourth component. Upon
stimulation, NLRP3 oligomerizes and recruits ASC that in turn
recruits caspase 1. The assembly of the NLRP3 inflammasome
leads to the activation of caspase 1 that then cleaves pro-
IL-1β and pro-IL-18, producing the mature cytokines IL-1β
and IL-18 (71). As mentioned above the assembly of the
NLRP3 inflammasome requires energy that is obtained from
ATP hydrolysis catalyzed by NLRP3 NACHT domain (71).
Mitochondria supplies ATP for this process but contributes also
in other ways to the activation of the inflammasome.

NLRP3 inflammasome activation occurs in two steps, priming
and NLRP3 activation. Priming involves the recognition of
pathogen-associated molecular patterns (PAMPs, such as LPS)
by pattern recognition receptors or binding of cytokines to
receptors. These events lead to the activation of NF-κB and
consequent upregulation of NLRP3, caspase 1 and IL-1β and
IL-18 gene expression (71). The second step is the activation
of NLRP3 by PAMPs or damage-associated molecular patterns
(DAMPs, such as ATP); which involves multiple signaling events
that result in the assembly of the complex [for exhaustive reviews
see (71, 165)]. Mitochondrial ROS and oxidized mtDNA released
into the cytosol can trigger NLRP3 activation (16, 17).

Moreover, mitochondria are required for the assembly of the
inflammasome. In absence of stimuli the NLRP3 is found in the
cytoplasm associated with the ER, while its activation results in
an association with mitochondria and enrichment in ERMCs
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(17). ASC and caspase 1 also migrate to mitochondria upon
activation and are enriched at ERMCs (17, 18). In a recent report
Elliot et al. suggest that priming results in NLRP3 and capase
1 linkage to the OMM, by association with the phospholipid
cardiolipin, and mtROS are proposed to mediate cardiolipin
transfer from the IMM to the OMM. Instead the association of
ASCwithmitochondria occurs in the activation step and does not
require cardiolipin, but is dependent on NLRP3 and regulated by
cytosolic Ca2+ (18). Interestingly in absence of VDAC, a relevant
OMM channel and tether molecule in mitochondria-ER contact
sites, activation is not observed (17).

Other mitochondrial proteins that are required for NLRP3
inflammasome activation are mitochondrial antiviral signaling
proteins (MAVS). These proteins form aggregates in the
OMM, associate with NLRP3 and promote its oligomerization,
and activation of the inflammasome during RNA virus
infections (166). The fusion protein MFN2 also participates
in inflammasome activation and its silencing reduces IL-1β
secretion in response to viral infection (167). Finally, dynein
dependent transport of mitochondria along microtubules,
toward the ER, is required for the activation of the
inflammasome (168). Acetylation and deacetylation of tubulin by
acetyltransferase MEC17 and the NAD+ dependent deacetylase
sirtuin 2 regulate microtubule transport of mitochondria to the
ER and inflammasome activation (168).

In sum, mitochondria provide energy, signaling molecules
and a structural scaffold for the assembly and activation of the
NLRP3 inflammasome (Figure 1).

BIOENERGETIC FAILURE AND
SECRETORY DEFECTS IN DISEASE

Considering the relevant roles of mitochondria in secretion it
is not surprising that mitochondrial dysfunction underlies the
pathogenesis of certain diseases. Herein we discuss the role of this
organelle in some relevant physiological secretion processes, and
present evidence linking bioenergetic failure to the development
of disease.

Insulin Secretion by Pancreatic β-Cells in
Diabetes Mellitus
Pancreatic β-cells are secretory cells located in the islets of
Langerhans in the pancreas. Their main function is to synthesize
and secrete insulin, a peptidic hormone responsible for regulating
levels of glucose in the blood. Upon the increase in glucose
concentrations in plasma, β-cells secrete insulin stored in the
secretory granules and increase the synthesis of the hormone
(169, 170).

Mitochondria play a key role in glucose-stimulated insulin
secretion (GSIS) in pancreatic β-cells. In these cells glucose is
metabolized in the glycolytic pathway and tricarboxylic acid
cycle and results in ATP synthesis by oxidative phosphorylation.
ATP promotes the closure of ATP-sensitive potassium channels
and depolarization of the plasma membrane, leading to the
opening of voltage-gated Ca2+ channels. Calcium influx then
triggers the exocytosis of insulin granules (170). This process

is termed KATP- dependent GSIS. A KATP- independent GSIS
that depends on mitochondrial GTP and phosphoenolpyruvate
metabolism has also been described (171, 172). Therefore, GSIS is
extremely sensitive to genetic interventions and pharmacological
agents that affect mitochondrial metabolism (22). This is clearly
exemplified by the work of Kennedy et al. showing that
depletion of mitochondria in the INS-1 insulin-secreting cell
line precludes insulin secretion upon exposure to glucose (173).
Likewise impairment of autophagy in pancreatic β-cells affects
both mitochondrial respiration and GSIS, affecting glucose
metabolism in vivo (174). As does inhibition of Ca2+ uptake by
mitochondria after silencing of MCU orMICU1 gene expression,
that also reduces ATP synthesis and insulin secretion (175).

Pancreatic β-cells present an active mitochondrial network
wheremitochondria constantly undergo fusion and fission events
(176); and functional mitochondrial dynamics are required for
GSIS in INS-1 cells and primary β-cells (23). Overexpression
of FIS1 in human pancreatic β-cells resulted in fragmentation
and clustering of the mitochondrial network in the perinuclear
area, a decrease in mitochondrial membrane potential and ATP
synthesis, along with impairment of GSIS (177). Similar results
where observed upon silencing of FIS1 expression that affected
respiration rates and insulin secretion (178), overexpression of
a dominant negative form of fission protein DRP1 and DRP1
silencing (178, 179). Alteration in the fusion machinery also
affected insulin secretion. Overexpression of MFN1 resulted
in hyperfusion and aggregation of mitochondria, reduced ATP
levels and GSIS (177); while OPA1 ablation impaired glucose-
stimulated oxygen consumption rate, ATP production and
insulin secretion (116).

It is clear that mitochondria play relevant roles in pancreatic
β-cell secretion and a growing body of evidence links
mitochondrial dysfunction to impaired insulin release in diabetes
mellitus. Diabetes mellitus are a group of metabolic disorders
characterized by hyperglycemia, resulting from defects in insulin
secretion, insulin sensitivity, or both (180). In type 1 diabetes the
cause is a total deficiency of insulin secretion, while in type 2
diabetes the cause is a combination of resistance to insulin action
of the liver, skeletal muscle, and adipose tissue and an inadequate
compensatory insulin secretory response (180, 181).

To start with, diabetes mellitus (type 1 and 2) is frequently
observed in patients with inherited mitochondrial diseases,
which are caused by defects in mtDNA or in nuclear genes
encoding mitochondrial proteins that affect mitochondrial ATP
synthesis (27). Several point mutations as well as deletions and
rearrangements in mtDNA are strongly associated with the onset
of diabetes (27, 182). As are mutations in nuclear genes encoding
proteins involved in maintenance of the mitochondrial genome
(27). The most common defect is the mutation m.3243A>G in
MT-TL1, which encodes a mitochondrial tRNA for leucine (183)
and can lead to maternally inherited mitochondrial diabetes and
deafness (MIDD) (27). Other point mutations in mitochondrial
tRNA genes MT-TL1, MT-TK, MT-TS2, MT-TE, and MT-TT
as well as in MT-ND6, a core subunit of complex I, have
also been associated with diabetes mellitus (27, 184). Patients,
carrying them.3243A>Gmutation presented reduced pancreatic
insulin secretion (185–187), yet increases in insulin resistance
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and alterations in glucose metabolism cannot be discarded as
causes of the disease (188).

Additionally profound changes in mitochondrial metabolism
have been observed in pancreatic islets of type 2 diabetes
patients and animal models. These include down regulation
of components of the tricarboxylic cycle, ETC, ATP synthase
and proteins involved in transport across the OMM and IMM
(29, 189); as well as a decrease in glucose oxidation and a
loss of glucose-stimulated increases in NADH, ATP, and oxygen
consumption (29, 190–192). Other authors have observed an
upregulation of uncoupling protein 2 (UCP-2), an IMM protein
that dissipates the proton gradient; in pancreatic islets in type
2 diabetes (190, 193, 194). Genetic deletion of UCP-2 in mice
enhances islet ATP generation and insulin secretion during
glucose stimulation and reduces hyperglycemia in the ob/ob
mice (a well-known diabetes type 2 mouse model), providing
further support for the role of UCP-2 in the pathogenesis of
the disease (194). Regardless of the mechanism, the impairment
in mitochondrial function in pancreatic β cells precludes the
glucose-induced increase in ATP levels. Lack of ATP will prevent
the closure of ATP-sensitive K+ channels (that is required to
activate insulin secretion), impair the steps of the secretion
pathway that require energy, resulting in lower levels of the
circulating hormone and hyperglycemia.

Neurotransmitter Release in Alzheimer’s
Disease
Neurons are excitable cells that communicate with other cells at
synapses. At the chemical synapse neurotransmitters are released
by pre-synaptic neurons and bind their receptor at the post-
synaptic terminal of target cells. Vesicle discharge at the synaptic
cleft occurs in response to an influx of Ca2+ ions through voltage-
gated Ca2+ channels, triggered by the action potential. Three
different pools of synaptic vesicles can be found in neurons
readily releasable pool, the recycling pool, and the reserve pool.
The vesicles in the readily releasable pool are released under
moderate or intense neuronal activity, while vesicles from the
reserve pool are recruited only upon intense stimulation. The
latter constitute the majority of vesicles in presynaptic terminals
(28, 160).

Maintaining the electrochemical gradients required for action
potentials, transporting, discharging, recycling, and refilling
synaptic vesicles, and regulating Ca2+ concentrations are energy
demanding processes, that require functional mitochondria (28,
195). Regarding secretion in particular, loading of vesicles with
neurotransmitters requires ATP to fuel the vacuole type H+-
ATPase (72). Besides, the mobilization of the reserve pool
requires mitochondrial ATP that is used by myosins to move the
vesicles along actin filaments (196). Additionally, Ca2+ signaling
for vesicle exocytosis requires a constant export of the ion from
the cytosol to the extracellular space, the ER and mitochondria.
Plasma membrane Ca2+ ATPase (PMCA) and SERCA at the ER
actively consumeATP (149).Mitochondria provide ATP for these
pumps and directly remove Ca2+ from the cytosol through the
MCU, as described previously (28, 196). Therefore, mitochondria
are very abundant in neurons, where they form a highly dynamic

network and their position and morphology change continually
(28). In particular we find a high number of mitochondria at
chemical synapses, where they provide ATP and buffer local
rises in Ca2+ concentrations (156, 160, 197). Since mitochondrial
biogenesis and elimination (by mitophagy) occurs mainly in the
neuronal soma, mitochondria travel between the axon terminals
and the cell body (156) via the microtubule network. Motor
proteins kinesin (anterograde) and dynein (retrograde), adaptor
proteins TRAK, MIRO, and syntabulin as well as fission protein
DRP1 are involved in mitochondrial trafficking (28, 156, 196).
Docking to microtubules, by syntaphilin, or to actin filaments
limits mitochondrial mobility, retaining these organelles near to
the sites where energy is required (156, 160).

Due to their high-energy demands, neurons are extremely
affected in mitochondrial diseases, caused by mutations in
mtDNA, and in other pathologies where mitochondrial function
is compromised (30, 198). An example of the latter is
Alzheimer’s disease (AD), a neurodegenerative disease that
involves progressive synaptic dysfunction and death of neurons
in cortical and subcortical regions. AD is characterized by the
accumulation of extracellular plaques of the peptide amyloid-
β (Aβ) and the formation of intracellular tangles of the
microtubule-associated protein tau (198, 199).

Alterations in energy metabolism can be found in patients
and animal models of AD. Reduced glucose metabolism
was observed in brain regions affected by AD and the
reduction correlated with cognitive decline in AD patients
(200, 201). Analysis of brain samples from patients with AD
showed abnormalities in mitochondrial cristae of hippocampal
neurons (202); and reduced activity of enzymes involved in
oxidative metabolism, namely pyruvate dehydrogenase (PDH),
α-ketoglutarate dehydrogenase and complex IV (203–205).
Studies of brain mitochondrial function in a transgenic AD
mouse model also revealed decreases in PDH, complex IV and
respiratory control ratios (RCR) and the decay in PDH and
neuronal mitochondrial function preceded plaque formation
(206). Moreover, in recent reports mitochondrial dysfunction
was detected in hippocampal synaptosomes from transgenic
AD rat model (207, 208). Decreased complex I activity, oxygen
consumption rate, and ATP synthesis, along with an increase
in hydrogen peroxide formation were measured, evidencing
bioenergetics defects as well as oxidative stress at the presynaptic
level (208). Alterations in mitochondrial dynamics and motility
have also been observed in transgenic animal models of AD,
and result in lower number of mitochondria at the presynapses
(28, 209, 210). Regarding the causes behind bioenergetic failure
in neurons, the Aβ peptide has been found to accumulate in
mitochondria (206, 211), where it directly impairs complex
IV activity and ATP synthesis, and increases ROS formation
(212). Aβ can also directly affect mitochondrial dynamics,
promoting mitochondrial fragmentation (213, 214). Defects
in Ca2+ handling by mitochondria have also been observed
in AD and Aβ can alter Ca2+ homeostasis at several levels
(28, 73). Hyperphosphorylated tau also affects mitochodrial
respiration and ATP synthesis, through the inhibition of complex
I, impairs mitochondrial trafficking and induces mitochondrial
fission (215). Overall in AD patients impaired mitochondrial
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energy metabolism, dynamics, Ca2+ homeostasis and oxidant
formation are affected in neurons, at presynaptic terminals where
neurotransmitter secretion takes place (28, 198).

Synapse loss is an early event in AD animal models
and patients, and exhibits a strong correlation with cognitive
deficits (73). Presynaptic release of neurotransmissors is affected
in AD, and Aβ can affect various steps of the secretion
process including SNARE mediated fusion, recovery of vesicle
membranes by endocytosis and Ca2+ homeostasis (73). The
decrese in mitochondrial ATP synthesis and Ca2+ buffering,
observed in AD at the presynaptic level, probably affects
neurotransmitter release as well, and should be considered in
the design of pharmacological strategies to target the disease
(215). Supporting this concept are results obtained in a transgenic
AD rat model, where treatment with a pharmacological inducer
of mitochondrial biogenesis helped to recover mitochondrial
function and protected against cognitive impairment (208).

MITOCHONDRIA AND SECRETION IN
OTHER PATHOLOGICAL SETTINGS

In this section we present two examples of mitochondrial
involvement in secretion processes that underlie pathology. This
is not an extensive list, but rather a couple of interesting examples
that support the idea that mitochondria might be interesting
targets in the design of drugs to modulate secretory processes.

Mast Cells Secretion in Atopic Dermatitis
Mast cells are cells of hematopoietic origin that participate
in host defense and immunity as well as tissue repair,
wound healing, angiogenesis and are also responsible for the
development of allergies (216). Mast cells can be activated
by foreign pathogens, toxins chemical agents and particles,
as well as by mediators of the immune response, such as
immunoglobulin E (IgE) and complement components (216,
217). Upon activation mast cells release pre-stored mediators,
and/or de novo synthesize and secrete a wide range of
biologically active molecules (216). Pre-stored mediators include
proteases, histamine, proteoglycans, and cytokines such as tumor
necrosis factor (TNF), these are released immediately upon
activation and are critical for initiating mast cell-mediated
innate immune responses. Differently from pre-storedmediators,
other molecules are synthesized de novo (i.e., lipids, cytokines,
chemokines, antimicrobial peptides, growth and angiogenic
factors) and play multiple roles in the immune response and
other physiological and pathological processes (216, 217).

Mast cell degranulation and TNF secretion requires Ca2+

and mitochondrial ATP (31, 218). Interestingly stimuli that
induce mast cell degranulation, promote the translocation of
mitochondria to sites of exocytosis, close to the cell surface; and
pharmacological or genetic inhibition of DRP1 inhibits both TNF
secretion and mitochondrial translocation, in a cell line derived
from human mast cell leukemia (24). In this report authors also
show that calcium is required for DRP1 activation, as well as
for mitochondrial translocation, and postulate that calcineurin
is involved in DRP1 recruitment to mitochondrial surface

(24). The relevance of this observation was further supported
by studies in human mast cells from patients with atopic
dermatitis where increased degranulation and mitochondrial
translocation was also observed, along with an increase in DRP1
and calcineurin expression (24). Mast cell degranulation also
results in the secretion of mitochondrial particles outside cells
including mtDNA, that in turn promote cytokine release from
other mast cells, keratinocytes, and endothelial cells promoting
inflammation (219).

Senescence Associated Secretory
Phenotype in Disease
Cellular senescence is triggered in response to stress stimuli.
Agents that damage DNA and strong mitogenic signals, such
as the expression of oncogenes or loss of tumor suppressors,
are strong senescence inducers (220–223). Senescent cells
are characterized by permanent proliferation arrest, activation
of the DNA damage response (DDR), increase in size
and β-galactosidase activity and acquisition of a secretory
phenotype (224, 225). The senescence-associated secretory
phenotype (SASP) includes numerous cytokines and chemokines
(e.g., IL-1α, IL-1β and IL-6, IL-8), growth factors and
extracellular proteases. These mediators can induce senescence
in neighboring cells, alter the extracellular matrix, contribute
to local inflammation, and recruit immune cells among other
effects (226–228); and contribute to several physiological and
pathological processes (229, 230). At the transcriptional level
most of the SASP components are regulated by NF-κB, C/EBPβ,
and NOTCH (231). IL-1β is a component of the SASP that is
secreted through unconventional pathways (32). However, many
of the SASP factors are most probably secreted through the
conventional pathway, though this is practically unexplored.

Several studies support that establishment of senescence
and the secretory phenotype is accompanied by metabolic
reprogramming including increases in mitochondrial oxygen
consumption rates, biogenesis and dynamics. In particular,
important alterations have been observed in oncogene and
therapy induced senescence (19–21, 232–235). Interestingly
replicative senescent cells that present mitochondrial dysfunction
(236, 237) secrete lower levels of cytokines and other mediators
than oncogene induced senescent cells (20, 224).

Moreover, mitochondria are required to sustain the SASP
and mitochondrial depletion down regulates the expression and
secretion of multiple cytokines and other factors in senescent
cells (21, 26). In oncogene induced senescence inhibition of
carnitine palmitoyl transferase I (CPTI), a key enzyme of
the mitochondrial fatty acid oxidation pathway, decreases the
secretion of several cytokines and growth factors, but not of
IL-1β (20). Similar results were obtained upon inhibition of
nicotinamide phosphoribosyltransferase (NAMPT), and enzyme
from the NAD+ synthesis pathway (25), or silencing of
mitochondrial sirtuin 3, known to impair mitochondrial electron
transport (26, 238). Silencing of mitochondrial fusion proteins,
MFN1 and 2 also impaired the secretion of IL-6 in senescent
cells (19). Since mitofusins participate in the tethering of the
mitochondria to the ER, these results suggest the association
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between these two organelles might be relevant in secretion
processes in senescence. Finally mitochondrial ROS formation
by the ETC (239, 240) and NADPH oxidase 4 (241, 242) are
increased in senescent cells, and contribute to the establishment
of senescence and the SASP [through the activation of NF-kB
(243) and the DDR (244–246)]. Taken together these results
point to a link between mitochondrial oxidative metabolism and
dynamics and the proinflammatory secretory phenotype.

Since the SASP has been implied in numerous diseases (229,
247), the search for senolytics (that will kill senescent cells)
or senomorphics (that will modulate the SASP) has become
an active area of research (248, 249). Mitochondria appear as
promising targets for the modulation of the SASP in pathological
settings were senescent cells are involved.

CONCLUDING REMARKS

Herein we present evidence that mitochondria are required
for the successful export of proteins to the extracellular space.
Mitochondrial dynamics, bioenergetics and distribution as well
as their interactions with other organelles, in particular with
the ER, can undergo profound changes in response to secretion
stimuli. Mitochondria contribute and support the secretion of
proteins providing ATP for energy requiring processes, buffering
Ca2+ concentrations and offering structural support and signals

for NLRP3 inflammasome activation. A better understanding,
at the molecular level, of the role of mitochondria in secretion
processes is required and will help in the development of
new genetic and pharmacological strategies to modulate protein
secretion in pathological contexts.
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