
Detection and quantification of nitric oxide– derived oxidants
in biological systems
Published, Papers in Press, August 12, 2019, DOI 10.1074/jbc.REV119.006136
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The free radical nitric oxide (NO�) exerts biological effects
through the direct and reversible interaction with specific tar-
gets (e.g. soluble guanylate cyclase) or through the generation of
secondary species, many of which can oxidize, nitrosate or
nitrate biomolecules. The NO�-derived reactive species are typ-
ically short-lived, and their preferential fates depend on kinetic
and compartmentalization aspects. Their detection and quanti-
fication are technically challenging. In general, the strategies
employed are based either on the detection of relatively stable
end products or on the use of synthetic probes, and they are not
always selective for a particular species. In this study, we
describe the biologically relevant characteristics of the reactive
species formed downstream from NO�, and we discuss the
approaches currently available for the analysis of NO�, nitrogen
dioxide (NO2

�), dinitrogen trioxide (N2O3), nitroxyl (HNO), and
peroxynitrite (ONOO�/ONOOH), as well as peroxynitrite-de-
rived hydroxyl (HO�) and carbonate anion (CO3

��) radicals. We
also discuss the biological origins of and analytical tools for
detecting nitrite (NO2

�), nitrate (NO3
�), nitrosyl–metal com-

plexes, S-nitrosothiols, and 3-nitrotyrosine. Moreover, we
highlight state– of–the–art methods, alert readers to caveats
of widely used techniques, and encourage retirement of
approaches that have been supplanted by more reliable and
selective tools for detecting and measuring NO�-derived oxi-
dants. We emphasize that the use of appropriate analytical
methods needs to be strongly grounded in a chemical and
biochemical understanding of the species and mechanistic
pathways involved.

Soon after the discovery of nitric oxide (NO�) as a physiolog-
ical mediator in the vascular, nervous, and immune systems, it
became evident that this moderately-reactive free radical can

give rise to secondary species, many of which are oxidizing,
nitrosating, or nitrating agents toward biomolecules (1–4).

The species formed downstream from NO� (i.e. NO�-derived oxi-
dants) include nitrogen dioxide (NO2

�), dinitrogen trioxide (N2O3),
nitroxyl (HNO), and peroxynitrite (ONOO�/ONOOH), as well as
hydroxyl (HO�) and carbonate anion (CO3

��) radicals formed
from peroxynitrite (Fig. 1). These species are short-lived (half-
lives are typically in the millisecond to microsecond range) and
are frequently referred to in general as “reactive nitrogen spe-
cies.” However, this term should be used with caution because
in a similar way as “reactive oxygen species,” with which NO�-
derived species are usually grouped, this term may give the
inaccurate idea that there exists only one ill-defined species that
has a particular type of reactivity and targets all biomolecules (5,
6). In contrast, the different species have unique reactivities
and, depending on the particular properties of each, they may
lead to oxidation, nitrosation, or nitration. As a further argu-
ment against the use of the term “reactive nitrogen species,”
some of the species formed downstream from NO� (e.g. CO3

��)
do not contain nitrogen. Finally, researchers in the nitrogen
fixation field might argue that the reactive nitrogen species are
those formed in the activation of nitrogen in the nitrogenase-
catalyzed process of ammonia formation. Thus, in line with
proposals in the free radical research field (5, 6), we suggest that
the name of the identified species should be used whenever
possible. When the species that are being referred to are
unknown, we suggest using the term “NO�-derived oxidants.”

The preferential targets of NO�-derived oxidants in biologi-
cal systems are typically located in close proximity (in the
micrometer distance range) and determined by a combination
of factors, including kinetic aspects of rate constants multiplied
by target concentration, compartmentalization, and membrane
permeability. Some of the NO�-derived oxidants are good one-
electron oxidants that start oxygen-dependent chain reactions
in both aqueous and lipidic compartments, which may amplify
the effects (1, 7).

In many cases, the formation of NO�-derived oxidants is
linked to the presence of partially-reduced oxygen species, as
exemplified by peroxynitrite, which is formed from the reaction
of NO� with the superoxide radical (O2

��). Thus, the formation
of NO�-derived oxidants is frequently related to inflammation,
in which increased formation of NO� through the inducible
nitric-oxide synthase converges with increased formation of
O2

�� and other oxidants. In fact, the high reactivity of some of
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the species derived from NO� make them part of the weaponry
that immune cells use in their battles against microorganisms
(8). In addition to their cell-damaging activity, they can have
signaling roles. The recognition that hydrogen peroxide (H2O2)
can act as second messenger (9) and that signaling actions can
be extended to species derived from NO� (10) have expanded
the traditional view of oxidative stress as a misbalance between
oxidant formation and antioxidant action to include the view of
a disruption in regulatory pathways.

Because of their high reactivity, the species derived from NO�

have relatively short half-lives that impede their detection in
biological systems through direct spectroscopic techniques.
Thus, the analytical strategies used to demonstrate the forma-
tion of a certain species in a particular biological context are
based either on the measurement of downstream stable prod-
ucts or on the use of probes that react with the species. Because
these strategies are not always specific for a certain species, the
modulation of the formation or decay pathways of precursors
and products provides complementary evidence. For example,
the modulation of NO� and O2

�� formation, which are the
precursors of peroxynitrite, should accompany the results
obtained through the detection of the stable product 3-nitroty-
rosine or through the use of peroxynitrite probes. The modu-
lation of NO� formation can be carried out using nitric oxide
synthase inhibitors, among other strategies.

In the following sections, we briefly describe the reactive
species derived from NO� in a biological milieu and NO�

itself, as well as some of the stable end products (Fig. 1). We
examine methodologies used for their detection and quanti-

fication, focusing on strategies aimed at assessing their
involvement in biological processes.

Nitric oxide

The discovery of nitric oxide, a free radical, as an endoge-
nously generated effector molecule, was a paradigm shift in
biological signaling. Nitric oxide (NO�, IUPAC names nitrogen
monoxide, oxidonitrogen(�), or oxoazanyl) is a diatomic free
radical produced in animals mainly by the enzymes nitric oxide
synthases (NOS)3. Nitric oxide has a low dipole moment (0.159
D (11)), so it has weak intermolecular interactions and it is a gas
at 1 atm and 25 °C. It is only sparingly soluble in water (1.94 �
0.03 mM (12)) but is about 10 times more soluble in organic
solvents (13). The partition coefficient in membrane models
and human low-density lipoprotein is 4.4 –3.4 at 25 °C (14). The
diffusion through cell membranes is very rapid (14 –17). The
permeability coefficients of lipid membranes to NO� range from
18 to 73 cm s�1 (15, 17), similar to that of an equally thick layer
of water.

Unlike several other free radical species, NO� is not a one-
electron oxidant (E0� (NO�, H�/HNO) ��0.55 V at pH 7) (18,
19). It does not abstract hydrogen atoms, and it does not add to
unsaturated bonds. Importantly, NO� does not react directly
with thiols (RSH). Among the main targets of NO� in biological
systems are metal centers. Coordination to the ferrous heme in
soluble guanylate cyclase is responsible for many physiological
effects of NO� (20 –23). Reaction with oxyhemoglobin to form
NO3

� is an important sink of NO� (24, 25). Other relevant tar-
gets of NO� are other free radical species, in particular O2

�� (1).
Nitric oxide can also react with oxygen, and this is analyzed in
the next section on autoxidation.

The effects of NO� are exerted either via direct reactions with
biological targets or indirectly via NO�-derived oxidants. Dys-
regulation of NO� homeostasis has been linked to neurode-
generation, cardiovascular disease, cancer, and inflammation.
Therefore, the detection and quantification of NO� and its
derived oxidants in vitro and in vivo are relevant to understand-
ing the molecular bases of physiological as well as pathological
processes.

Nitric oxide autoxidation

The reaction of NO� with oxygen (O2), termed autoxidation,
is a complex process that gives different products and interme-
diates relevant to the detection of NO� and several of its derived
species. This process is considered to be too slow to be of rele-

3 The abbreviations used are: NOS, nitric oxide synthase; EPR, electron paramag-
netic resonance; GC, gas chromatography; LC, liquid chromatography; MS,
mass spectrometry; MALDI, matrix-assisted laser desorption/ionization; DCF,
2�,7�-dichlorofluorescein; DCFH2, 2�,7�-dichlorodihydrofluorescein; CBA, cou-
marin boronic acid; CBE, coumarin boronic ester; Fl-B, fluorescein-boronate;
FlAmBE, fluorescein-dimethylamide boronate; FBBE, 4-(pinacol boronate)-
benzyl-derivative of fluorescein methyl ester; DNIC, dinitrosyl iron
complex; DAN, diaminonaphthalene; DAF, diaminofluorescein; DAF-FM,
4-amino-5-methylamino-2�,7�-difluorofluorescein; DAF-2–DA, 4,5-diamino-
fluorescein diacetate; PTIO, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-
yloxyl-3-oxide; Fe(DETC)2, iron diethyldithiocarbamate; ICAT, isotope-
coded affinity tag; SILAC, stable isotope labeling by amino acids in cell
culture; TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl; Fl, fluores-
cein; ABTS, 2,2�-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid);
COH, 7-hydroxycoumarin; DMPO, 5,5-dimethyl-1-pyrroline-N-oxide.

Figure 1. Nitric oxide and its biologically relevant derivatives. Nitric oxide
can give rise to several species. Reaction with superoxide (O2

��) generates
peroxynitrite (ONOO�); with oxyhemoglobin (HbO2), nitrate (NO3

�); with oxy-
gen (O2), nitrogen dioxide (NO2

�); with strong one-electron reductants,
nitroxyl (HNO); with liganded iron(II) (Fe(II)L2), dinitrosyl iron complexes
(DNICs); with thiyl radical (RS�), S-nitrosothiol (RSNO); and with NO2

�, dinitro-
gen trioxide (N2O3). Many of these products are reactive and yield further
products. Peroxynitrite at neutral pH will protonate and generate NO3

�, as
well as NO2

� and hydroxyl radicals (HO�) in 30% yield. In the presence of car-
bon dioxide (CO2), peroxynitrite will generate NO3

�, as well as NO2
� and car-

bonate anion radical (CO3
��) in 33% yield. In the presence of reductants, per-

oxynitrite will be reduced to nitrite (NO2
�) or NO2

�. Nitrogen dioxide can react
with tyrosyl radicals (Tyr�) to generate 3-nitrotyrosine (NO2–Tyr) or with a
reductant to form NO2

�. Dinitrogen trioxide can be rapidly hydrolyzed to
NO2

�, it can be formed by NO2
� in acidic pH, and it can react with thiols (RSH) to

generate RSNO. In this figure, stoichiometries are not always strict, and pro-
tons are sometimes omitted for simplicity.
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vance under most physiological conditions. In the first step, two
molecules of NO� and one molecule of O2 give two molecules of
NO2

� (Equation 1). Next, NO2
� reacts with NO� reversibly to

give N2O3 (Equation 2) (26, 27). In water, in the absence of
other targets, N2O3 is subsequently hydrolyzed to two mole-
cules of NO2

� (Equation 3).

2 NO� � O2 ¡ 2 NO2
� (Eq. 1)

NO2
� � NO�º N2O3 (Eq. 2)

N2O3 � H2O ¡ 2 NO2
� � 2 H� (Eq. 3)

The rate of decomposition of NO� is second order in NO� and
first order in O2 concentrations, and in water the final stoichi-
ometry is four molecules of NO� per O2, so that the rate equa-
tion is expressed as in Equation 4.

�d[NO�]

dt
� 4k[NO�]2[O2] (Eq. 4)

The limiting reaction in the autoxidation of NO� is the reac-
tion with O2 (Equation 1); trapping subsequent products has no
effect on the overall rate (27). The rate constant of the process is
third order (k �2 � 106 M�2 s�1 (27, 28)). In aqueous solutions,
the forward reaction of N2O3 formation (Equation 2) is very fast
(k � 1.1 � 109 M�1 s�1), and the dissociation has a rate constant
k � 8 � 104 s�1 (29). The hydrolysis of N2O3 is also rapid in
water and can be further accelerated by salts such as phosphate
and bicarbonate (27, 30, 31).

The autoxidation of NO� is slow in vivo because the rate of
NO� decay is second order in NO� concentration, which is
expected to be in the nanomolar range under normal condi-
tions. This reaction can be accelerated in hydrophobic environ-
ments such as lipid membranes, lipoproteins, and proteins (32–
34) due to the increase in concentration of both NO� and O2
because of their hydrophobicity (14, 35). This so-called “lens
effect” may be of relevance where NO� concentrations are sig-
nificantly increased, especially in sites of inflammation.

Detection of nitric oxide

Nitric oxide is difficult to measure in vivo because of its short
half-life (typically in the range of 0.1–10 s), reactivity, and low
steady-state concentration (i.e. nanomolar to micromolar).
Nonetheless, several strategies have been developed to measure
NO� or its derived species in vitro or in vivo that involve the use
of absorbance, fluorescence, electron paramagnetic reso-
nance (EPR), and electrochemistry (Fig. 2). Furthermore,
NO� can be measured by chemiluminescence, a methodology
that can be adapted to also measure other species. These
methods are described in the following sections.

Oxyhemoglobin oxidation

The identification of the endothelial-derived relaxing factor
as NO� back in 1987 (36) was in part made by the change in the
UV-visible spectrum of deoxyhemoglobin to form nitrosyl
hemoglobin, with a corresponding shift of the Soret band from
433 to 406 nm. Nonetheless, the reaction mostly used to quan-
tify NO� in vitro is with oxyhemoglobin, which is stable in air.

Oxyhemoglobin (Fe(II)(Hb)O2) is oxidized by NO� to yield
NO3

� and methemoglobin (Fe(III)(Hb)), which can be mea-
sured spectrophotometrically (Fig. 2A). The absorption of the
Soret band is strong; thus the sensitivity of this method is
relatively high (submicromolar). The maximum absorbance
changes are observed at 401 (increased by reaction with NO�)
and 421 nm (decreased), with an isosbestic point at 411 nm. If
multiple wavelengths can be measured, the reaction can be fol-
lowed by the absorbance difference of 401–421 nm (	�401–421 �
77 mM�1 cm�1) (37). If there is interference at these wavelengths,
the absorbance at 577 nm can be used (	�577 � 10 mM�1 cm�1) or
even both absorbances at 577 and 630 nm to calculate oxy- and
methemoglobin concentrations before and after addition of NO�

(38). Due to the fast reaction with NO� (k�3.7�107 M�1 s�1) (39),
oxyhemoglobin is also often used as NO� scavenger. Nitrite can
also oxidize oxy- to methemoglobin but at much lower rates
(although autocatalytically), so when high concentrations of NO2

�

are expected, like with the use of NO� donors for long-time peri-
ods, the contribution of NO2

� to hemoglobin oxidation should be
considered. Peroxynitrite can also oxidize oxyhemoglobin; thus,
addition of superoxide dismutase is recommended as a control to
prevent peroxynitrite formation from NO� and O2

�� so that the
methemoglobin formed can be associated with NO�. In addition, a
potential O2

��-dependent redox cycling of hemoglobin can be
avoided.

Electrochemical sensor

Electrodes specific for NO� are commercially available, but
many research laboratories make their own. Typically, they
consist of a filament made of carbon or platinum and a coating
to provide specificity that either attracts NO� (40) or excludes
other oxidizable species (41). At the anode, NO� is oxidized by
one-electron to nitrosonium cation (NO�), which is converted
to NO2

� (Fig. 2B). The current generated from NO� oxidation is
directly proportional to NO� concentration with a 10 nM detec-
tion limit (a calibration curve should be run with each experi-
ment). The electrode is covered with a gas-permeable mem-
brane that allows diffusion of NO� but not NO2

� or other
charged species. Temperature should be kept constant consid-
ering that solubility of NO� gas is very temperature-sensitive.
Microelectrodes have been designed (
1 mm) that allow direct
detection in cells in real time (42).

Electron paramagnetic resonance (EPR)

Although NO� is a free radical, i.e. it has an unpaired electron,
it is difficult to detect directly by EPR, and spin-trapping tech-
niques have to be used. Nitronyl nitroxides (with nitrone and
nitroxide functional groups) are used as NO� probes (43). They
react with NO� to give an iminonitroxide (Fig. 2C) with a dra-
matic change in the EPR spectrum that can be followed in a
continuous and quantitative way. For example, 2-phenyl-
4,4,5,5-tetramethylimidazoline-1-yloxyl-3-oxide (PTIO) or its
water-soluble analogue carboxy-PTIO react with NO� with sec-
ond-order rates constants of 104 M�1 s�1 and a change in the
EPR spectrum from five to seven lines (44, 45).

Due to its fast reaction with NO�, carboxy-PTIO is often
used as a scavenger of NO�; however, care should be taken
because NO2

� is a product of the reaction and has its own
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Figure 2. Detection of nitric oxide. A, oxidation of oxyhemoglobin. Methemoglobin can be detected spectrophotometrically. B, electrochemical sensor. NO�

is oxidized to nitrosonium cation (NO�), which is converted to nitrite (NO2
�). The current is directly proportional to NO� concentration. C, reaction of NO� with

2-phenyl-4,4,5,5-tetramethylimidazoline-1-yloxyl-3-oxide (PTIO) to yield NO2
� and PTI, the conversion can be followed by EPR. D, fluorogenic probes for

NO�-derived species. The 4,5-diaminofluorescein diacetate (DAF-2–DA) is cell-membrane–permeable, and the acetyl groups are removed by intracellular
esterases to yield the nonfluorescent DAF-2 that then reacts with NO�-derived species to yield the fluorescent triazole derivative DAF-2 T. At right are shown
related fluorescent probes diaminonaphthalene (DAN) and 4-amino-5-methylamino-2�,7�-difluorofluorescein (DAF-FM). The mechanisms of triazole forma-
tion from diamino-fluorogenic probes involve two possible routes: one is the direct nitrosation by N2O3 to give an intermediary N-nitrosamine that then
diazotizes and reacts with the second amine to yield the triazole; the other mechanism requires the oxidation of the diamino probe by NO�-derived and other
one-electron oxidants, followed by the reaction of the radical with NO� to form the N-nitrosamine. Either of these pathways implicate NO� but with different
stoichiometries. E, ozone-based chemiluminescence. F, reaction catalyzed by nitric oxide synthase to generate NO�. L-Arginine is first hydroxylated to N�-hy-
droxy-L-arginine with O2 and NADPH as cosubstrates. In the second step, this intermediate is oxidized by a second O2 and 0.5 eq of NADPH to give L-citrulline
and NO�. G, bioassays to measure downstream physiological actions of NO�.
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reactivities. In addition, biological reductants like thiols,
ascorbate, or O2

�� can nonspecifically reduce the nitroxides.
Encapsulation of PTIO in liposomes has been used to avoid
reduction (46).

Hydrophobic and hydrophilic nitroxides are available that
allow detection of NO� at different depths of a biological mem-
brane. Collisions of NO� with spin labels located in water or in
membranes alter both the linewidth and the spin-lattice relax-
ation time that can be used to qualitatively and quantitatively
measure NO� (17, 47).

Colloid iron diethyldithiocarbamate (Fe(DETC)2) or N-
methyl-D-glucamine dithiocarbamate are reliable spin traps
for NO� detection. They form iron nitrosyl complexes with
characteristic three-line EPR spectra (gav � 2.04; aN � 1.27 mT)
at room temperature that are stable in the presence of
oxygen (48). Dinitrosyl iron complexes (DNIC) with thiol-con-
taining ligands have been detected in animal and bacterial cells
by EPR. These complexes are formed in vivo in the paramag-
netic (EPR-active) mononuclear as well as diamagnetic (EPR-
silent) binuclear forms. The amount of NO� can calculated from
the EPR amplitude signal because the linewidth of the NO-
Fe(DETC)2 EPR spectrum may vary considerably with varia-
tions in the amount of Fe(DETC)2 in membrane lipids and the
amount of Fe(III) present (48, 49).

In addition, deoxyhemoglobin or other hemeproteins in the
reduced Fe(II) form react with NO� to form nitrosyl– heme
complexes that besides having characteristic UV-visible spectra
are paramagnetic and can be followed by EPR. However,
because of the instability of the complexes, the EPR spectra
should be run at low temperatures (77 K) (50 –53).

Fluorogenic probes

Fluorogenic probes have been developed that specifically
react with NO�-derived species (i.e. N2O3) to yield fluorescent
products, such as diaminonaphthalene (DAN) and diamino-
fluorescein (DAF) derivatives (Fig. 3D). The most popular of
this kind is 4,5-diaminofluorescein (DAF-2), where nitrosation
results in the highly-fluorescent triazole DAF-2 T (�exc � 495
nm, �em � 515 nm). The esterified diacetate derivative (DAF-
2-DA) is also commercially available. It is highly membrane-
permeable and detects intracellular nitrosation of the probe.

The pH should be carefully controlled because DAF-2 T
fluorescence is pH-sensitive (54). Other potential artifacts are
divalent cations, in particular calcium, which was reported to
significantly increase the fluorescent signal from DAF-2, as well
as the incident light (55). Multiple and long exposures to exci-
tation light, instead of causing photobleaching of the dye,
potentiate the fluorescence response. Thus, minimum periods
of light exposure are recommended. The use of 4-amino-5-
methylamino-2�,7�-difluorofluorescein (DAF-FM) is favored
because of its increased photostability, stability to pH, and reac-
tivity toward NO�-derived species (54). The sensitivity of
DAF-FM is 1.4 times higher than that of DAF-2. This increase
of sensitivity is thought to result from the higher rate of the
reaction with nitrosating NO� equivalents due to the electron-
donating effect of the methyl group (43).

The proposed mechanism of triazole formation involves
N2O3 reacting with an amine to form an intermediate N-nitros-

amine that at neutral pH can diazotize and then react with the
second amine to yield the triazole (Fig. 3D) (56, 57). Alterna-
tively, a radical intermediate of the diamino-probe is formed by
NO2

� or other strong oxidants (e.g. radicals derived from per-
oxynitrite or peroxidases/H2O2) that then react with NO� (Fig.
3D) (58). These probes show some specificity issues, in that the
triazole is not an exclusive product of NO�, and fluorescent
products can be derived from peroxynitrite, nitroxyl (HNO),
and ascorbic acid, complicating the interpretation of results
(59, 60). Nonetheless, the role of NO� can be confirmed in cells
using NOS inhibitors, NO� scavengers, and also by HPLC to
isolate DAF-triazole (60 –62).

Novel genetically-encoded fluorescent NO� biosensors have
been developed (63). For example, one sensor has a fusion
between a fluorescent protein and a bacteria-derived NO�

domain that selectively binds NO� via a nonheme Fe(II) center.
Once NO� binds, the domain gets closer to the fluorescent pro-
tein and quenches its emission (64).

Ozone-based chemiluminescence detection of nitric oxide and
related species

The chemiluminescence detection of NO� and several other
related species presents very good sensitivity and reproducibil-

Figure 3. Chemiluminescence detection of nitric oxide and derived spe-
cies. This sensitive method allows the determination of NO� and several
related species in gas or liquid phase. The system includes a purge vessel
where the sample is injected. An inert gas transports NO� from the purge
vessel to a detector where ozone (O3) reacts with NO� yielding NO2

� in the
excited state, which decays to the basal state emitting light. Different re-
agents can be used in the purge vessel to selectively convert certain analytes
into NO�. A neutral buffer is used if NO� as such is to be measured. A triiodide/
acid solution reduces most derivatives to NO�, and thus it is useful for total
quantitation. The sample can be pretreated with reagents that will trap spe-
cific species. Thus, the amount of NO2

� in a complex sample is obtained by the
difference between untreated sample and sample pretreated with sulfanila-
mide and acid to trap NO2

�. RSNO can be removed by pretreatment with
Hg(II), sulfanilamide, and acid. DNICs are sensitive to the same treatment but
differently from RSNO; they decay over time (10 –12 h). The remaining signal
after treatment with Hg(II), sulfanilamide, and acid derives mostly from N-ni-
trosamines, and to a lesser degree from nitrosyl– heme. Alternatively, the
purge vessel can contain Cu(II) and cysteine, which does not reduce NO2

� to
NO� but effectively reduces RSNO to NO�, and it also releases NO� from
nitrosyl-hemoglobin and N-nitrosamines. When analyzing nitrosation of
hemoglobin or other heme-proteins, carbon monoxide (CO) is added to
avoid reaction of NO� with heme-proteins.

JBC REVIEWS: Analysis of NO�-derived oxidants

14780 J. Biol. Chem. (2019) 294(40) 14776 –14802



ity and has become the gold standard method for quantification
(62, 65–68). The sensitivity is in the nanomolar range. The
method can be used with any type of gas or liquid sample,
including cell lysates and tissue homogenates (68, 69).

The sample is injected into a purge vessel containing a given
reactant such as triiodide. This vessel has fritted glass at the
base and is purged at a constant flow rate with nitrogen or
helium gas. The NO� that was injected (or generated) in the
vessel is carried by this inert gas to the detector (65, 68). The
NO� in the carrier gas passes first through a reaction cell where
ozone is constantly introduced. The reaction with ozone (O3)
generates NO2

� in the excited state (NO2
�*) that is then carried

by the inert gas flow to the detection cell where red and near IR
light emission from NO2

�* decay to the basal state is measured
(68, 70). The intensity of emission is directly proportional to the
amount of NO� (Fig. 2E).

This method is not only useful to the study of NO� but also of
other oxidation products that can be converted to NO� through
different methods, such as NO2

�, NO2
�, S-nitrosothiols,

nitrosyl–metal complexes, and N-nitrosamines (62, 65, 66, 68).
The reactant used in the purge vessel determines what species
can be quantified (Fig. 3). If buffer at neutral pH is used, only
NO� as such will give a signal (69). One of the most popular
reactants for chemiluminescent detection of NO� and its deriv-
atives is an acidic triiodide solution (65). It consists of iodine
plus iodide and acetic acid (65, 68, 71). The triiodide that forms
in this solution can convert NO2

�, S-nitrosothiols, N-nitro-
samines, and nitrosyl–metal complexes to NO� (65, 66). In the
case of a biological sample that contains a mixture of these
species, several tubes are prepared that include the parent sam-
ple, then one with acidic sulfanilamide to trap NO2

�, and
another that also includes HgCl2 to decompose S-nitrosothiols
(65, 66). The difference in the measured NO� with the different
treatments indicate how much NO2

� and S-nitrosothiol were in
the sample.

Additional methods for more selective chemical reduction of
S-nitrosothiols include copper-based assays where the reactant
in the purge vessel consists of a buffer at neutral pH and Cu(II)
plus an excess of cysteine (66, 71). In this case the copper is
reduced to Cu(I) by cysteine, which then reduces S-nitrosothi-
ols to NO� and thiol. The use of Hg(II) is recommended to
discriminate the signal from N-nitrosamines (66). For applica-
tions in blood, a modification of the method that includes car-
bon monoxide has been developed that prevents capture of NO�

by hemoglobin (72).

Nitric oxide synthase activity

The NOS enzymes catalyze the oxidation of arginine to NO�

and stoichiometric amounts of citrulline (Fig. 2F) (73). There-
fore, the rate of NO� formation can be estimated from the rate of
citrulline formation from arginine and saturating concentra-
tions of NOS cofactors (NADPH, FAD, FMN, tetrahydrobiop-
terin, and calcium/calmodulin). Radiolabeled arginine is used,
and the reaction is stopped with EDTA, which binds calcium
and inactivates the enzyme. The radiolabeled citrulline product
is separated from arginine by cation-exchange chromatography
(cationic arginine is retarded and zwitterionic citrulline is
eluted) and measured in a liquid scintillation counter (74).

Because citrulline in the cell could be derived from non-NOS
pathways, controls should be performed with addition of a NOS
inhibitor as well as omission of NADPH.

There are commercially available kits to follow NOS activity
indirectly, by measuring the time course of NO2

� formation
spectrophotometrically using the Griess reaction described
below.

Bioassays for nitric oxide

The production of NO� in mammalian cells can be detected
indirectly by measuring its biological activities like vasodilation,
platelet aggregation, and guanylate cyclase activation (Fig. 2G).

Cyclic GMP—In the cellular context, cyclic GMP (cGMP) is
formed not only by guanylate cyclases stimulated by NO�

(NO-GC or soluble GC) but also by the membrane natriuretic
peptide receptor-coupled guanylate cyclases (GC-A and
GC-B). Therefore, to measure levels of cGMP as an indirect
measurement of NO�, controls with inhibitors of NOS should
be included. The different methods used to determine cGMP
have been recently reviewed in Ref. 75 and include radiolabeled
[�-32P]GTP (76), a cGMP antibody in a commercially available
enzyme-linked immunosorbent assay (ELISA), and fluores-
cence-based cGMP indicators (77).

Vessel relaxation—The seminal studies that introduced NO�

to the biological scenario as a critical regulator of blood flow
were related to its identification as an endothelium-derived
relaxing factor (36, 67). This function is explained by the for-
mation of NO� from endothelial NOS, subsequent diffusion to
the underlying smooth muscle, and activation of soluble gua-
nylate cyclase, which initiates a signaling cascade that ulti-
mately leads to vasodilation and increased blood flow. Thus, a
method amply used by physiologists and pharmacologists to
detect production of NO� consists of measuring tension in iso-
lated vascular preparations treated with agonist and antago-
nists of NO�-dependent signaling (67, 78).

Inhibition of platelet aggregation—A way to test NO� produc-
tion is to follow inhibition of platelet aggregation after activa-
tion. It is a very simple, inexpensive method first described in
1962 (79). Washed human platelets are equilibrated at 37 °C in
a turbidometric platelet aggregometer in the absence and pres-
ence of a system that produces NO�. An activator like thrombin
is added to induce aggregation, and turbidimetry is followed
with time (80).

Nitrogen dioxide

Nitrogen dioxide (NO2
�) is a reddish-brown free radical gas

that forms part of air pollution. In biological systems, there are
different endogenous sources of NO2

�. These include: (a) NO�

autoxidation (see section above); (b) NO2
� oxidation, a reaction

that is catalyzed by different heme-dependent peroxidases
(Equations 5–7) and Cu,Zn-superoxide dismutase (81–83) or
performed nonenzymatically by strong one-electron oxidants
such as CO3

��, HO� or peroxyl radicals (ROO�) (84 –86); and (c)
homolysis of the peroxo bond of peroxynitrous acid (ONOOH)
or of short-lived adducts formed from the reaction of peroxyni-
trite (ONOO�) with carbon dioxide (CO2), with carbonyl-con-
taining compounds, or with metal centers (87–89).
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peroxidase-heme � H2O2 ¡ peroxidase-compound I � H2O

(Eq. 5)

peroxidase-compound I � NO2
� ¡ peroxidase-compound II

� NO2
� (Eq. 6)

peroxidase-compound II � NO2
� ¡ peroxidase-heme

� NO2
� (Eq. 7)

The solubility of NO2
� in water is low. The reported Henry

coefficient (�1.4 � 10�2 M atm�1 at 20 °C) (90, 91) is quite
uncertain due to its rapid (k � 4.5 � 108 M�1 s�1 (92)) dimeriza-
tion to dinitrogen tetroxide (N2O4). The latter has �100-fold
increased solubility in water (90) and rapidly hydrolyzes to
NO2

� and NO3
� (k � 1000 s�1) (90, 93). However, under most

physiological conditions where NO2
� concentrations are low

(
1 �M), dimerization, which is a reversible process with a
Keq � 7 � 104 M�1, is outcompeted by bimolecular reactions of
NO2

� with different targets, some of which are far more concen-
trated (93–95). The partition coefficients in organic solvents
indicate that NO2

� is slightly hydrophobic, although less than
NO�, which suggests a minor “lens effect” for NO2

� reaction
kinetics in membranes or other hydrophobic biological systems
(94, 96).

The reduction potential of the NO2
�/NO2

� pair is 0.99 V at
pH 7 (97). Thus, it is a good one-electron oxidant. According to
kinetic considerations, NO2

� is predicted to react mostly with
thiol-containing molecules (kRS� �108 M�1 s�1) (98) and
ascorbate (k � 1.8 –3.5 � 107 M�1 s�1 at pH 7.4) (99), whereas
urate (k � 2 � 107 M�1 s�1 at pH 7.4) is a main target in plasma
(98). In hydrophobic media, NO2

� can initiate lipid peroxida-
tion (100). Furthermore, it can add to alkene double bonds in a
fast and reversible process to form nitroalkyl radicals, which
eventually undergo cis-trans–isomerization (101) or form
nitro-derivatives. The biological formation, characteristics, and
relevance of nitrated fatty acids has been reviewed (93, 102–
105). Finally, NO2

� reacts at diffusion-controlled rates with
other radical species, such as tyrosyl radicals in proteins, to
form 3-nitrotyrosine (see section on 3-nitrotyrosine below).
The reversible reaction with NO� leads to the formation of the
nitrosating species N2O3 (Equation 2).

Detection of nitrogen dioxide

The UV-visible absorption spectrum of NO2
� shows a broad

band peak at �400 nm with an absorption coefficient of 200
M�1 cm�1 in aqueous solution (26). The low absorption coeffi-
cient, the low stability of the radical, and the need to make
corrections for N2O4 and NO2

� absorption limit the technique.
Nitrogen dioxide is frequently detected and quantified by
chemiluminescence methods, in which the intensity of the
emitted light is proportional to the concentration of NO2

�.
Some of these methods rely on the reaction of NO� with ozone
(see section above on ozone-based chemiluminescence detec-
tion of nitric oxide and related species) and therefore require
that NO2

� be reduced to NO� using particular catalytic convert-
ers. The latter are usually nonspecific due to reduction of other

nitrogen-containing compounds (106, 107). Nitrogen dioxide
can also be converted to NO� photolytically using UV-LED irra-
diation (108). In addition, luminol (5-amino-2,3-dihydro-1,4-
phthalazinedione) in alkaline solution reacts with NO2

� giving
rise to intense chemiluminescence, although other one-elec-
tron oxidants can also lead to light emission (109).

Detection of NO2
� in cells and tissues requires different

methodologies. Because NO2
� is a strong one-electron oxidant,

it can react with typical redox probes such as 2�,7�-dichlorodi-
hydrofluorescein (DCFH2). In experimental designs, addition
of NO2

� may be useful to convert other one-electron oxidants to
NO2

�.
One strategy depends on the ability of NO2

� to rapidly com-
bine with free or protein tyrosyl radicals to form 3-nitrotyrosine
(110). This is analyzed in the section below on 3-nitrotyrosine.
Furthermore, nitration of green fluorescent protein (GFP) leads
to a decrease in its intrinsic fluorescence and was used to eval-
uate NO2

� formation. Although the decrease in fluorescence
intensity is not specific for nitration, it can be utilized in com-
bination with pharmacological modulation of NO� levels to
indicate NO2

� formation (59).
Finally, because of the radical nature of NO2

�, EPR has been
utilized either by direct detection of NO2

� in salt matrices and
low temperatures or by using spin traps such as nitromethane at
alkaline pH or nitrone compounds (93, 111–113). Nitroso spin
traps do not trap NO2

� (113).
Due to the short half-life of NO2

� in aqueous solutions even in
the absence of other targets, as a result of dimerization and
hydrolysis of N2O4, the study of the kinetics of NO2

� reactions
requires the use of very fast methodologies that allow measure-
ments to be made in the microsecond time scale, such as pulse
radiolysis. Furthermore, the low absorption coefficient of NO2

�

limits its direct detection so that product monitoring or com-
petition kinetics need to be used. Competition with 2,2�-azino-
bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) oxidation
to ABTS� is frequently employed due to the high extinction
coefficient of the latter radical at 414 nm (3.6 � 104 M�1 cm�1)
(98, 114).

Dinitrogen trioxide and its detection

Dinitrogen trioxide (N2O3) can be formed from NO2
� reac-

tion with NO� (26, 27) and is considered an important interme-
diate in the autoxidation of NO� (27) (see section on autoxida-
tion above). It can also be formed from NO2

� at acidic pH, with
an equilibrium constant of 3 � 10�3 M�1 (Equation 8) (115).

2 HNO2º N2O3 � H2O (Eq. 8)

As discussed in the section on autoxidation, N2O3 is rapidly
hydrolyzed to NO2

� (Equation 3), and this reaction is acceler-
ated by certain salts, such as phosphate and bicarbonate (27, 30,
31). Therefore, the first approach to measure the production of
N2O3 is by monitoring NO2

� (see section below on nitrite and
nitrate).

N2O3 is considered an important nitrosating species in vitro
because it reacts rapidly with thiolates and amines to give the
corresponding nitrosated species (116, 117), but its role in bio-
logical nitrosation is uncertain because of the slow kinetics of
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NO� autoxidation (116, 118). Because both NO2
� and NO� are

slightly hydrophobic (94, 96), it was suggested that N2O3 for-
mation should be accelerated in hydrophobic regions. How-
ever, the nitrosation of thiols buried in the hydrophobic regions
actually decreases because the dissociation to the more reactive
thiolate is disfavored (119). Anyway, the formation of S-nitro-
sothiols is not specific to N2O3, and other mechanisms may be
more relevant (116, 118), so that S-nitrosothiols are not neces-
sarily good indicators of N2O3 formation (see section below on
S-nitrosothiols).

Besides measuring NO2
� and S-nitrosothiols, another

method to detect N2O3 is to use fluorogenic probes such as
diaminonaphthalene (DAN) and diaminofluorescein (DAF),
which were discussed in the section on detection of nitric oxide
and suffer from the same issues as S-nitrosothiols.

Nitrosyl–metal complexes and their detection

Intracellular dinitrosyl iron complexes (DNICs) are formed
from NO�, a ligand such as GSH, and loosely bound iron, also
called labile or chelatable iron pool (120). Recent studies have
shown that the exposure of cells to NO�, either exogenous or
endogenous, leads to the formation of more DNICs than S-ni-
trosothiols, in a 4:1 ratio (69). DNICs have been proposed to be
relevant precursors in the nitrosation of thiols (121).

The most selective technique to measure DNICs is through
EPR (120, 122). Mononuclear DNICs show a characteristic EPR
spectrum (48, 122). EPR has several advantages such as the abil-
ity to measure signals in optically opaque samples, a good sen-
sitivity (200 nM), and the capacity to distinguish enzymatically
generated NO� by the change in the spectrum using [15N]argi-
nine (122).

DNICs made with GSH can also be analyzed by UV-visible
spectrophotometry, provided there is a separation step such as
HPLC. They show a spectrum with maximum absorbance
below 200 nm and characteristic peaks at 310, 360, and 680 nm
(� � 9200, 7400, and 200 M�1 cm�1, respectively) for the dia-
magnetic binuclear form, or 390 nm (� � 3900 M�1 cm�1) for
the paramagnetic mononuclear form (48).

Cellular DNICs can also be quantified through ozone-based
chemiluminescence, using the triiodide method. Care should
be taken in quantification because the signal is time-sensitive
and decays within hours, and also because DNICs are sensitive
to HgCl2, analogously to S-nitrosothiols (69). To distinguish
between signals from S-nitrosothiols and DNICs, it was pro-
posed to stabilize S-nitrosothiols in the cell lysate using a buffer
containing diethylenetriaminepentaacetic acid and N-ethylma-
leimide and to analyze the sample immediately after extraction
and 20 h later to ensure the full decay of DNICs (69).

Formation of protein nitrosyl–metal complexes is particu-
larly relevant in red blood cells, because NO� can react with
deoxyhemoglobin to yield nitrosyl-hemoglobin. The detection
of this product predominates at low oxygen tensions (123)
because deoxyhemoglobin will be more abundant and because
oxyhemoglobin will rapidly decompose NO� to NO3

� (24).
Nitrosyl-hemoglobin can be quantified in vitro through UV-
visible spectrophotometry and shows absorption maxima at
403 and 575 nm (36). In red blood cells, nitrosyl-hemoglobin is
difficult to quantify by spectrophotometry where there is a mix-

ture of different forms of hemoglobin absorbing at the same
wavelength. EPR, in contrast, is specific for nitrosyl-hemoglo-
bin and allows its quantification in packed red blood cells. The
limit of quantification was calculated to be 200 nM. Under nor-
mal conditions, the amount of nitrosyl-hemoglobin in human
blood is below the detection limit. However, patients exposed
to 80 ppm NO� inhalation treatment increased its nitrosyl-he-
moglobin levels up to 2 �M (124).

S-Nitrosothiols

The formation of S-nitrosothiols is undoubtedly linked to the
formation of NO� in biological systems. Nevertheless, the exact
chemistry is still under debate. In fact, thiols or rather thiolates
can be nitrosated by the products of NO� autoxidation (see sec-
tion above on autoxidation) in a direct mechanism by N2O3 or
stepwise by NO2

� and NO� (Equation 9-11) (116, 125).

RS� � N2O3 ¡ RSNO � NO2
� (Eq. 9)

RS� � NO2
� ¡ RS� � NO2

� (Eq. 10)

RS� � NO� ¡ RSNO (Eq. 11)

Although the formation of NO2
� and N2O3 can be acceler-

ated by hydrophobic regions in lipid membranes and even pro-
teins (32–34), autoxidation is still too slow to be biologically
significant (118). Furthermore, in cells, oxygen inhibits rather
than increases thiol nitrosation, arguing against a significant
role for NO� autoxidation in biological thiol nitrosation (118).

Regarding the mechanisms of biological thiol nitrosation,
there is evidence supporting the intermediacy of nitrosyl–iron
complexes (DNICs) (69, 121), as well as the intermediacy of
cytochrome c (126).

S-Nitrosothiols undergo further reactions with other thiols,
such as trans-nitrosation, where the nitroso moiety is trans-
ferred regenerating the original thiol (127). For instance, the
trans-nitrosation from S-nitrosoglutathione to cysteine occurs
with k � 140 M�1 s�1 (127). Thioredoxin catalyzes both trans-
nitrosation and denitrosation (128). Alcohol dehydrogenase
class III catalyzes the reduction of S-nitrosoglutathione effi-
ciently and has therefore been called S-nitrosoglutathione
reductase (129).

Detection of S-nitrosothiols

Several methods have been developed to quantify total S-ni-
trosothiols and also to identify proteins that are nitrosated.
S-Nitrosothiols show a UV spectrum with a maximum at 335
nm. The absorptivity for S-nitrosoglutathione at 335 nm is 922
M�1 cm�1; therefore, the sensitivity of the spectrophotometric
analysis is low (above 50 �M) and depends on having a purified
sample or on chromatographic or capillary electrophoresis sep-
aration (130).

Another historically important method for S-nitrosothiols is
by Saville (131). In this method the S-nitrosothiol is treated with
Hg(II). Tight binding to the thiolate releases NO� that is rap-
idly hydrolyzed to NO2

� (131). The released NO2
� is then mea-

sured by the Griess method. This method has micromolar sen-
sitivity (see section below on detection of nitrite).
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Antibodies against S-nitrosocysteine have been used in
immunohistochemical assays, Western blotting, and immuno-
precipitation. However, specificity issues and the advent of bio-
tin switch techniques that also allow mapping the modified cys-
teine within a protein have discouraged their use (66).

The gold standard method to quantify S-nitrosothiols is
ozone-based chemiluminescence that provides nanomolar sen-
sitivity and is appropriate for most biological applications (Fig.
3). As discussed in the section on chemiluminescence, S-nitro-
sothiols can be quantified using the triiodide reaction and also
using copper ions and reductants (66).

It was early observed that several proteins could be S-nitro-
sated (132) but unbiased approaches to the S-nitrosoproteome
were only possible after the introduction of the “biotin switch”
method in 2001 (133). The original method involved blocking
free thiols in S-nitrosated proteins with methyl methanethio-
sulfonate, then specifically reducing the nitrosated thiols with
ascorbate, followed by reaction of these thiols with N-[6-(bioti-
namido)hexyl]-3�-(2�-pyridyldithio)-propionamide. The bioti-
nylated proteins could then be selectively captured by using the
specific binding to immobilized streptavidin (133). Some issues
with this method have been pointed out, namely that it is very
difficult to ensure that all free thiols are effectively blocked in
the first step, that ascorbate does not reduce S-nitrosothiols
directly but through the intermediacy of metals in solution
(134), and that no chemical trace is left to indicate that the thiol
was effectively nitrosated.

Relative quantification of protein S-nitrosation can be
achieved through different means, including isotope-coded
affinity tags (ICAT) and stable isotope labeling by amino acids
in cell culture (SILAC). Both methods are based on using a light
and a heavy isotope-containing tag. In ICAT, samples to com-
pare are processed in parallel and tagged with biotin derivatives
that include either light or heavy isotope linkers, and then
mixed and further processed (135). SILAC involves adding
either light or heavy isotope-containing arginine and lysine to
control or stimulated cell cultures (136). The cell lysates from
both cell cultures can then be mixed and processed as in the
biotin switch method. If the same peptide is enriched from both
control and treated samples, it will elute at the same time in the
LC-MS analysis, but the mass spectra will differ by a known
number of Da, and the relative amounts can be calculated from
the intensities in the MS peaks (136).

Other approaches to identify S-nitrosated proteins and the
location of the modification include the use of organomercurial
compounds to either trap or tag S-nitrosothiols, after blocking
free thiols (137) or the selective reaction of S-nitrosothiols with
derivatized phosphines to tag S-nitrosated peptides in one step
through reductive ligation (138).

Nitrite and nitrate

Nitrite (NO2
�, IUPAC name dioxidonitrate(1�)) and nitrate

(NO3
�, IUPAC name trioxidonitrate(1�)) were considered for a

long time to be rather inert products of NO� oxidation. The
concentration of NO3

� in plasma of fasting individuals is 20 – 40
�M, and it is considered to derive mostly from the reaction
between NO� and oxyhemoglobin, but also from the diet (139).
The concentration of NO2

� in plasma is significantly lower (50 –
300 nM) because there are several processes by which it can be
converted to NO� or further oxidized to NO3

� (140). Nitrate is
concentrated in saliva and can be converted to NO2

� by bacteria
in the oral cavity (139). Xanthine oxidase has also been shown
to reduce NO3

� to NO2
�, but it seems to be a minor contribution

compared with the oral microbiome (140).
Nitrite can be reduced to NO� by different proteins, including

deoxyhemoglobin, deoxymyoglobin, xanthine oxidase, and
aldehyde oxidase (141). The reduction by deoxyhemoglobin is
thought to be quantitatively the most important pathway for
the generation of NO� from NO2

� and responsible for the NO�-
like effects of NO2

� infusion in the presence of red blood cells
(141). The NO2

� reductase activity of deoxyhemoglobin leads to
the formation of NO� and methemoglobin (Equation 12).

NO2
� � Fe(II)(Hb) � H� ¡ NO� � Fe(III)(Hb) � OH�

(Eq. 12)

Detection of nitrite and nitrate

There are several methods to detect NO2
� in biological sam-

ples. The simplest method to measure NO2
� is the Griess

method, which sensitivity is in the micromolar range. The
method is based on the diazotization of sulfanilamide by NO2

�

in acidic pH and the subsequent reaction with N-(1-naph-
thyl)ethylenediamine to yield an intensely pink-colored prod-
uct with absorption maximum at 540 nm (Fig. 4) (142). The
measurement of NO3

� is usually done by first converting it to

Figure 4. Detection of nitrite and nitrate with the Griess method. Sulfanilamide reacts with NO2
� in acidic pH to yield a diazonium intermediate that

subsequently reacts with N-(1-naphthyl)ethylenediamine to yield the intensely colored Griess product with absorption maximum at 540 nm. NO3
� can be

converted to NO2
� with vanadium chloride or NO3

� reductase to allow both NO3
� and NO2

� to be measured.
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NO2
�, either by using vanadium chloride or the enzyme NO3

�

reductase (142). The analysis can readily be automated to mea-
sure NO2

� and NO3
� (143). Lower concentrations of NO2

�

(down to 20 nM) can be quantified by the formation of the
fluorescent triazole derivative of DAN (see section above on
fluorescent detection). In this case, the reaction of NO2

� with
DAN is done at acidic pH (Fig. 3), and then the fluorescence of
the product is measured at alkaline pH (144).

Nitrite and nitrate can also be quantified by HPLC, capillary
electrophoresis, and GC-MS (145, 146). For low concentrations
such as those often encountered in biological samples, the
ozone-based chemiluminescence method (see section on
chemiluminescence and Fig. 3) offers the required nanomolar
sensitivity. In this case, the purge vessel needs to be filled with
the triiodide acidic solution that converts NO2

� to NO� that is
then carried to the detection cell by the carrier gas. Nitrate is
measured by first reducing it chemically or enzymatically to
NO2

�. The contribution of other species such as S-nitrosothiols
to the signal is controlled by running samples treated with
acidic sulfanilamide to trap all free NO2

�.

Nitroxyl

The product of the one-electron reduction of NO� is HNO
(nitroxyl, azanone, nitrosyl hydride, and hydrogen oxonitrate).
The reduction potential of this process, E0� (NO�, H�/HNO)
��0.55 V at pH 7 (18, 19), is quite low, but high enough to
make endogenous HNO formation a possibility. Biological
studies are usually performed using nitroxyl donors (e.g.
Angeli’s salt). The ground state of HNO is a singlet in which all
the electrons are spin-paired, whereas that of NO� (nitroxyl
anion, oxonitrate (1�)) is a triplet with two unpaired electrons
(18, 19). Thus, deprotonation is spin-forbidden and slow, and
the pKa of HNO is 11.4 (147).

Nitroxyl can react with soft electrophiles (18). In vivo, the
preferential reactions of HNO are with thiols and metal centers.
For example, the reaction between HNO and GSH, which is
present in millimolar concentrations inside cells, has a rate con-
stant of 3.1 � 106 M�1 s�1 (148). In addition, HNO can dimerize
yielding nitrous oxide (N2O) and water (k � 8 � 106 M�1 s�1)
(147). Nitroxyl can also react with oxygen to form peroxynitrite
with a rate constant of 1.8 –2 � 104 M�1 s�1 at pH 7.4 (148), but
this process is relatively slow under biological conditions and
has low relevance. More information on the biochemistry of
HNO can be found in Refs. 149 –152.

Detection of nitroxyl

Nitroxyl can be detected by observing the dimerization prod-
uct, N2O, by gas chromatography (GC) (152). It can also be
detected by membrane inlet MS, in which HNO traverses a
membrane before reaching the mass spectrometer (153) (Fig. 5,
A and B).

Iron(III) porphyrins react with HNO forming nitrosyl–
iron(II) porphyrins (154). The products can be detected both
spectrophotometrically and by the typical three-line EPR signal
of a ferrous nitrosyl complex under anaerobic conditions (155).
Manganese(III) porphyrins also react with HNO leading to a
large shift in the UV-visible Soret band, which can be used for
colorimetric detection of HNO (Fig. 5C) (156).

Cobalt(III) porphyrins react with HNO and constitute the
basis of an amperometric electrochemical sensor for HNO (Fig.
5D). In the resting state, the polarized electrode (0.8 V) contains
Co(III) porphyrin. When the porphyrin reacts with HNO it
forms a Co(III)–NO� complex that is oxidized releasing NO�

and the Co(III) porphyrin, ready for another cycle. The current
intensity is proportional to HNO, and the sensitivity is in the
nanomolar range. The success of the electrode is based on the
fact that HNO reacts with Co(III) and not with Co(II) porphy-
rins, whereas NO� reacts with Co(II) and not with Co(III). This
is an advantage of Co(III) over Fe(III) porphyrins, which react
both with NO� and HNO (149, 157, 158).

Nitroxyl can reduce Cu(II) to Cu(I) and NO�. This is the basis
of a group of fluorogenic probes in which the reduction of the
metal ion is concomitant with the release of fluorescence
quenching (Fig. 5E). The probes should be used with caution for
the potential reduction by other reductants, as well as interfer-
ence from hydrogen sulfide (H2S), S-nitrosothiols and oxygen
(159 –161).

Nitroxyl reacts with stable nitroxide free radicals such as
(2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO) with
rate constants of 104–105 M�1 s�1 forming the hydroxylamine
and NO� (Fig. 5F) (162, 163). Fluorogenic TEMPO derivatives
have been prepared in which the nitroxide group quenches the
fluorescence, which is released when the nitroxide is converted
to the hydroxylamine (160, 164). Due to the complex chemistry
and to the potential to react with other reductants and oxidants,
the use of the nitroxide probes in biological systems is limited.

Nitroxyl reacts fast with thiols. The formation of GSH sulfi-
namide (GS(O)NH2) from the reaction of GSH with HNO can
be used as footprint for HNO. An N-hydroxysulfenamide is
formed as an intermediate, and the final sulfinamide can be
separated and detected by HPLC or MS (Equation 13) (165,
166).

RSH � HNO ¡ RSNHOH ¡ RS(O)NH2 (Eq. 13)

A probe has been developed that consists of an ester of
2-mercapto-2-methylpropionic acid and a fluorescent com-
pound. The reaction of HNO with the thiol forms an N-hy-
droxysulfenamide intermediate that cyclizes releasing the fluo-
rophore (Fig. 5G) (160, 167).

Nitroxyl reacts fast with arylphosphines to yield phosphine
oxides and azaylides (Equation 14). The rate constants are in
the order of 106 M�1 s�1 (168, 169). The azaylides are indicative
of the formation of HNO and can be detected by NMR and MS,
although, depending on the phosphine used, they may hydro-
lyze to the corresponding phosphine oxide. Although arylphos-
phines are resistant to reductants, possible interference by S-ni-
trosothiols is a potential concern (170).

2 R3P � HNO ¡ R3PA O � R3PA NH (Eq. 14)

The azaylides are nucleophilic and can react with an adjacent
electrophilic group such as an ester or a carbamate. When the
azaylide attacks the carbonyl, alcohol is released, and a unique
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amide phosphine oxide product is formed (Fig. 5H). This prod-
uct, as well as the alcohol, can serve as reporters for HNO. The
hydrolysis of the probe should be controlled as well as possible
interference from S-nitrosothiols (160, 169–171).

Despite the progress in the development of methods to measure
HNO, the potential limitations should be carefully addressed.
More than one method should be used, preferentially in combina-
tion with HPLC or MS detection of HNO-specific products (160).

Figure 5. Detection of nitroxyl. A, detection based on the HNO dimerization product N2O by GC. B, membrane inlet MS for the detection of HNO and its decay
products. C, reaction with metalloporphyrins for spectrophotometric detection. D, electrochemical sensor based on the reaction of HNO with a cobalt(III)
porphyrin. E, fluorogenic probe based on the reaction of copper(II) to copper(I). F, reaction between HNO and a nitroxide TEMPO derivative to form NO� and a
hydroxylamine which, appropriately derivatized, is fluorescent. G, reaction between HNO and a 2-mercapto-2-methylpropionic acid fluorogenic derivative. H,
reaction of HNO with an ester of 2-(diphenylphosphino)benzoic acid to give a benzamide phosphine oxide and an alcohol that, appropriately derivatized, is
fluorescent. Some protons are omitted for simplicity.
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Peroxynitrite
Peroxynitrite (ONOO�) and peroxynitrous acid (ONOOH)

are formed through the diffusion-controlled reaction between
O2

�� and NO� (Equation 15). IUPAC names for ONOO� and
ONOOH are (dioxido)oxidonitrate(1�) and (hydridodioxi-
do)oxidonitrogen, respectively. In this text, the term peroxyni-
trite is used for the mixture of ONOO� and ONOOH, unless
specified.

NO� � O2
�� ¡ ONOO� (Eq. 15)

Peroxynitrite is a powerful one- and two-electron oxidant;
the reduction potentials are E0� (ONOOH, H�/NO2

�, H2O) �
1.6 V and E0� (ONOOH, H�/NO2

�, H2O) � 1.3 V (172). Per-
oxynitrous acid can traverse membranes through simple diffu-
sion, whereas ONOO� can use anion channels. The anion is a
good nucleophile, and ONOOH can act as an electrophile. In
buffer, ONOOH (pKa 6.8, Equation 16) can decay to nitric acid
(HNO3) plus a 30% fraction of HO� and NO2

� radicals (Equation
17), but this process (k � 0.9 s�1 at pH 7.4 and 37 °C) is rela-
tively slow and has limited physiological significance. The most
relevant biological targets for peroxynitrite are peroxiredoxins,
GSH peroxidases, CO2, and metal centers (1, 7, 86). The perox-
iredoxins are thiol-dependent peroxidases that constitute the
most efficient peroxynitrite scavengers known to date, with rate
constants of �0.1–10 � 107 M�1 s�1 and high concentrations in
different cellular compartments (173). In addition, peroxyni-
trite can react fast (k �104 M�1 s�1 at pH 7.4) (174) with CO2,
which is abundant in tissues (1.2 mM), leading to the formation
of secondary radicals, CO3

�� and NO2
�, in 33% yield (Equation

18) (89).

ONOO� � H�º ONOOH (Eq. 16)

ONOOH ¡ 0.7 HNO3 � 0.3 NO2
� � 0.3 HO� (Eq. 17)

ONOO� � CO2 ¡ [ONOOCO2
�] ¡ 0.67 NO3

�

� 0.33 NO2
� � 0.33 CO3

�� (Eq. 18)

The reactions with metal centers are diverse. Peroxynitrite
can be reduced by one electron yielding NO2

� as the metal cen-
ter is oxidized, or by two electrons yielding NO2

�. In addition,
some hemeproteins (e.g. methemoglobin) catalyze peroxyni-
trite isomerization to NO3

�, whereas others (e.g. Fe(III) cyto-
chrome c) do not react at all (1, 7).

Peroxynitrite detection

Because of its short life in cells and tissues (�1 ms) (7), per-
oxynitrite cannot be detected in biological samples through
direct spectroscopic techniques. Nevertheless, the UV absor-
bance of ONOO� (�302 � 1700 M�1 cm�1) (175) has proven to
be very useful for the quantification of stock solutions in the
laboratory at alkaline pH, as well as for following ONOO�

decay in stopped-flow kinetic experiments.
One analytical approach for the detection of peroxynitrite is

the use of probes that react with peroxynitrite itself or with its
downstream radicals (NO2

�, CO3
��, and HO�). Because the

specificity of the probes is not always straightforward, particu-
larly for the latter, the modulation of O2

�� and NO� formations,

which are the precursors of peroxynitrite, should accompany
the results obtained with probes. Another analytical approach
to evidence the involvement of peroxynitrite in a certain bio-
logical process is the detection of nitrotyrosine, a stable product
formed from the reaction of radicals derived from peroxynitrite
with tyrosine residues. As in the case of the probes, confirma-
tory evidence is required. These approaches are described in
the next sections.

A growing number of small fluorogenic organic molecules
designed and synthesized to detect peroxynitrite are reported
constantly, having different selectivity and sensitivity toward
this oxidant. The basic common characteristic is to have weak
basal fluorescence, which is largely increased upon oxidation
(176 –178). In terms of the reaction mechanism, fluorogenic
probes can be divided in two main groups: 1) probes that react
with the radicals derived from peroxynitrite and yield a fluores-
cent end product by a radical mechanism; and 2) probes that
react directly through a nucleophilic attack by peroxynitrite
anion (ONOO�) to a particular functional group of the electro-
philic probe, releasing masked fluorescence. The probes that
react directly with ONOO� are potentially more straightfor-
ward, specific, and quantitative. They must react fast (�105–
106 M�1 s�1) and outcompete other routes of decay. Besides,
genetically-encoded fluorescent protein sensors for peroxyni-
trite have been described recently (179, 180). They use similar
principles as some of the chemical probes that lead to direct
detection of this oxidant (i.e. boronate-based compounds, see
below).

Importantly, detection methods based on probes reveal only
a minor fraction of total peroxynitrite, because a large propor-
tion reacts with other targets in the cell. Moreover, the fraction
trapped by the probe may vary with cell type or metabolic state
according to the abundance of alternative targets (181). For a
full review of chemical probes for peroxynitrite detection, see
Refs. 176, 181.

Probes that react with the radicals derived from peroxynitrite

Probes frequently used for oxidant detection in biological
systems are reduced dyes like 2�,7�-dichlorodihydrofluorescein
(DCFH2) and dihydrorhodamine (DHR-123). Although exten-
sively used, they present a series of limitations and caveats (5).
The general reaction mechanism is a one-electron oxidation by
potent one-electron oxidants such as those derived from per-
oxynitrite (NO2

�, CO3
��, and HO�) (182) yielding a radical inter-

mediate (DCF��), which is afterward oxidized to highly reso-
nant moieties responsible for the increase in fluorescence
emission (DCF) (Fig. 6A). These probes do not react directly
with peroxynitrite (178, 183). Neither NO� nor O2

�� are able
to oxidize either probe at significant yields; however, these
radicals may react with the radical intermediate (DCF��) in
termination reactions giving nonfluorescent products (184). In
addition to peroxynitrite-derived radicals, other potent one-
electron oxidants such as those produced from heme peroxi-
dases and other metalloproteins in the presence of H2O2 can
generate fluorescent DCF (177). Thiyl radicals (RS�) derived
from the oxidation of GSH can also oxidize DCFH2 with a sig-
nificantly high rate constant of �107 M�1 s�1 at pH 7.4 (185).
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Moreover, DCF-dependent fluorescence can be self-amplified
by redox-cycling of the one-electron oxidized dye (5).

Luminol chemiluminescence can also be used to detect the
radicals derived from peroxynitrite (NO2

�, CO3
��, and HO�) as

well as other strong one-electron oxidants. The mechanism
involves the one-electron oxidation of luminol to initiate the
reactions that lead to light emission. Chemiluminescence is
increased in the presence of CO2 and inhibited by thiols, urate,
and NO� (176, 184, 186).

The lack of specificity of these probes constitutes an impor-
tant limitation. DCFH2, DHR, and luminol are not specific for
peroxynitrite and cannot be used as unique tools. These probes
may be useful to detect an overall increase in oxidant genera-
tion in cells, but they do not allow us to identify the particular
species involved. Their use for the detection of peroxynitrite or
any other particular oxidant is ambiguous and inconclusive and
should be avoided unless complemented with other more spe-
cific methods.

Figure 6. Detection of peroxynitrite. A, mechanism of 2�,7�-dichlorodihydrofluorescein (DCFH2) oxidation. The reduced probe (DCFH2) is oxidized by
peroxynitrite-derived radicals and other one-electron oxidants yielding a radical intermediate (DCF��) that is oxidized by oxygen to yield fluorescent DCF. Thin
arrows show alternative reactions and redox cycles. AH� stands for ascorbate. B, boronate oxidation by peroxynitrite. The major pathway (�85%, above)
consists of heterolytic cleavage of the peroxyl bond leading to phenol which, appropriately derivatized, is fluorescent. The minor radical pathway (below)
involves homolytic cleavage of the peroxyl bond giving NO2

� and a phenyl-type radical that yields the nitro-derivative (201). C, structures of boronate-derived
probes. CBA and CBE indicate a boronic acid or a boronic pinacolate ester attached to a coumarin scaffold, respectively (193). Fl-B (194), FlAmBE (192), and FBBE
(205) are boronic pinacolate ester derivatives linked to a fluorescein scaffold with structural modifications as shown. D, genetically-encoded boronate-based
GFP for the detection of peroxynitrite. Nucleophilic attack by the peroxynitrite anion to the phenylalanine boron moiety results in the formation of tyrosine and
fluorescence. Modified from Ref. 176.
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Probes that react directly with peroxynitrite anion

Another mechanistic possibility for the detection of per-
oxynitrite involves a nucleophilic attack by the oxidant to an
electrophilic functional group supported on the probe, leading
to fluorescence. Different functional groups have been pro-
posed as electrophilic centers, like activated ketones (187–189),
�-ketoamides (190, 191), and boronates (boronic acids or
boronic esters) (192–194).

A group of probes named HKGreen (HK is Hong Kong)
numbered 1– 4, in which the electrophilic center is an activated
ketone, has been reported for peroxynitrite detection. Structur-
ally, HKGreen-1 holds a trifluoro-ketone linked to a dichloro-
fluorescein scaffold through an aryl ether linkage (187);
HKGreen-2 holds a trifluoro-ketone linked to BODIPY
through phenol (188); and HKGreen-3 holds a trifluoro-ketone
linked to a rhodol scaffold (189). All of them can react with
peroxynitrite by a mechanism where the ketone generates a
dioxirane intermediate upon reaction with the oxidant, which
oxidizes the phenyl ring and releases the fluorescent molecule.
The poor yields of the reactions of HKGreen-1–3 with per-
oxynitrite (187–189) limit their utility in biological systems.

Another possible electrophilic functional group is �-ketoam-
ide. DCM-KA, an �-ketoamine moiety attached to dicyanom-
ethylene-4H-pyran, was recently proposed (191). Although it
selectively responds to peroxynitrite with fluorescence emis-
sion in the near-IR region (�em �600 nm), the probe has a slow
response (90 s), although complete kinetic analyses are lacking
(191).

The arrival of organoborane compounds to the redox biology
field over the last decade represented a major breakthrough.
Boronate-based probes are successfully applied to the assess-
ment of peroxynitrite in biological systems (192, 194). Even
though they were originally conceived for hydrogen peroxide
detection (195, 196), it was later demonstrated that boronate
derivatives react considerably faster with peroxynitrite than
with hydrogen peroxide (192–194) (see below). These com-
pounds are particularly promising due to the simplicity of their
reaction with peroxynitrite and are arising as the most suitable
probes for detecting and even quantifying this oxidant. They
can also be directed to compartments (e.g. mitochondria) (197).

Structurally, boronic acids are trivalent boron-containing
organic compounds that hold one alkyl or aryl substituent and
two hydroxyl groups to fill the remaining valences on the boron
atom (RB(OH)2). Replacement of the hydroxyl groups of
boronic acids by alkoxy or aryloxy groups gives boronic esters
(RB(OR�)2). The sp2-hybridized boron atom possesses a vacant
p orbital due to the deficiency of two electrons and contains
only six valence electrons, thus making boronic acids and
boronic esters electrophilic centers and mild Lewis acids (198).
Therefore, several nucleophiles like peroxynitrite (ONOO�),
ionized hydrogen peroxide (HOO�), peroxymonocarbonate
(HCO4

�), amino acid hydroperoxides (ROO�), or hypochlorite
(ClO�) are prone to react with the electrophilic center of boro-
nates (Equation 19). The rate constant of the reaction with
ONOO� is several orders of magnitude higher (kONOO� �106,
kClO� 102, kHCO4� 170, kROO� �20, and kH2O2 �1–2 M�1 s�1)
at physiological pH (193, 194, 199, 200).

ArB(OR)2 � ONOO� ¡ ArOH � NO2
� � HO-B(OR)2

(Eq. 19)

The reaction mechanism with peroxynitrite, similar to that
with H2O2, involves a nucleophilic addition of ONOO� (or
HOO�) to the electrophilic boron atom generating an anionic
quaternary intermediate that suffers a subsequent heterolytic
cleavage at the peroxyl bond and hydrolysis giving phenol as the
major nonradical end product (�85–99% yield) (194, 201). The
phenol, appropriately derivatized, is fluorescent. In addition,
the reaction with ONOO� typically involves a minor pathway
where homolytic cleavage of the peroxyl bond gives radical
intermediates, NO2

� and a phenyl-type radical, that combine to
form a nitrobenzene-type product. This product is a peroxyni-
trite footprint, because the major phenol product is common
for all ROO� or ClO� (Fig. 6B) (201). The mechanism of oxi-
dation of boronates by ONOO� has been studied, both exper-
imentally and theoretically, using density functional theory cal-
culations (193, 201). Moreover, work using isotope-labeling
studies is ongoing to track the origin of oxygen atoms in the
oxidation products of the redox probes.

Although the high rate constant predicts preferential reac-
tion of boronate probes with peroxynitrite versus other oxi-
dants, confirmation of peroxynitrite involvement in a certain
process should be provided by the detection of the products of
the minor radicalar pathway of reaction, as well as by modula-
tion of the formation and decay of peroxynitrite precursors.

Several boronic acids or boronic esters attached to different
fluorescent scaffolds (coumarin-derivatives (202–204), fluores-
cein-derivatives (192, 194, 205), or BODIPY-derivatives (206,
207)) are described as fluorogenic probes, where the reaction
with the oxidant releases the oxidized fluorescent product
(Fig. 6C).

Fluorescein-dimethylamide boronate (FlAmBE) (192), fluo-
rescein-boronate (Fl-B) (194), and 4-(pinacol boronate)benzyl-
derivative fluorescein methyl ester (FBBE) (205) were recently
reported as fluorogenic probes derived from modified fluores-
cein attached to a pinacol boronic ester for monitoring per-
oxynitrite in biological systems. Unlike Fl-B or FlAmBE, where
there is a straight reaction mechanism with peroxynitrite as
described above, the oxidative conversion of FBBE to the fluo-
rescent product (fluorescein methyl ester) is a two-step reac-
tion (205). The reaction of an oxidant (ROO� or ClO�) toward
the boronate group leading to the corresponding phenol is the
first step of this process. The second step is a slow p-methide
quinone elimination leading to the formation of fluorescein
methyl ester. Although the rate constant for the reaction of
FBBE with ONOO� is high (�105 M�1 s�1), the buildup of the
fluorescent product is slow (k � 0.09 s�1), due to a gradual
p-quinone methide elimination (205).

An improvement of boronate probes derived from fluores-
cein scaffolds with respect to coumarin scaffolds is that the
spectroscopic properties of the former (FlAmBE: �ex � 485 nm
and �em � 535 nm (192); Fl-B: �ex � 492 nm and �em � 515 nm
(194); and FBBE: �ex � 494 nm and �em � 518 nm (205)) allow
their use in common laboratory equipment for cellular assays,
such as flow cytometry and epi-fluorescence microscopy. In
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contrast, other reported probes such as coumarin-7-boronic
acid (CBA) (202) and/or coumarin-7-boronic acid pinacolate
ester (CBE) (�ex � 332 nm and �em � 470 nm) present limita-
tions for those techniques. Moreover, although coumarin-de-
rived and fluorescein-derived boronic probes react with com-
parable kinetic rate constants toward peroxynitrite (k �1 � 106

M�1 s�1), Fl is a more efficient fluorophore than 7-hydroxycou-
marin (COH), and it has a higher molar absorption coefficient
(�Fl, 490 nm � 76,900 M�1 cm�1; �COH, 323 nm � 11,200 M�1

cm�1) and higher quantum yield (�F, Fl � 0.93; �F, COH � 0.15)
(208, 209). Therefore, Fl-B is more sensitive than CBA.
Recently, Fl-B enabled the detection of basal rates of peroxyni-
trite generation in vascular endothelial cells dependent on
endothelial NOS activation, secondary to ionomycin-induced
calcium ion influx (194).

Curiously, a boronate-derived probe named GSH-ABAH, sup-
ported on 4-amino-2-(benzo[d]thiazol-2-yl)phenol (ABAH) and
with a thiol-reactive maleimide substituting the amino group, is
proposed to simultaneously detect ONOO� and biological thi-
ols by a combination of excited state intramolecular proton
transfer and photoinduced electron transfer, giving an increase
in fluorescence emission when both analytes are present (210).
This unusual strategy may need an extensive characterization
of the reaction and independent validation under biologically-
relevant conditions.

Recently, a novel genetically-encoded boronate-based GFP
was reported for the detection of peroxynitrite in mammalian
cells (179, 180). GFP fluorescence requires the presence of a key
tyrosine residue (Tyr-66) that together with Ser-65 and Gly-67
participate in a cyclized structure inside a protein barrel that
constitutes the actual fluorophore (211). Modern synthetic
biology techniques allow the incorporation of unnatural amino
acids during protein translation, by which Tyr-66 is substituted
by phenylalanine boronic acid (p-B(OH)2Phe), resulting in a
nonfluorescent version of GFP. Upon exposure to peroxyni-
trite, the boronate-modified Phe is converted to Tyr generating
the actual GFP fluorophore (Fig. 6D). It is interesting to point
out that GFP had been previously proposed as a way to follow
the formation of peroxynitrite and other nitrating species (59).
However, in this early report, the critical Tyr-66 became
nitrated to 3-nitrotyrosine, which resulted in a decrease of fluo-
rescence intensity.

Because the available methodologies for peroxynitrite detec-
tion have a series of limitations, there are several practical
aspects that must be taken into consideration. When studying

peroxynitrite generation in biological systems, the pharmaco-
logical modulation is mandatory to confirm the identity of the
radical precursors and oxidants that are being generated. For
instance, the use of enzyme inhibitors is useful for unequivo-
cally identifying peroxynitrite formation (i.e. modulation by
NOS inhibitors or by suppression of O2

�� formation). For a full
discussion on practical considerations when assessing per-
oxynitrite in cells using fluorogenic probes, see Refs. 176, 181.

3-Nitrotyrosine

Peroxynitrite can lead to the nitration of free and protein-
bound tyrosines. The mechanism of tyrosine nitration is free
radical-dependent and does not directly involve peroxynitrite.
Instead, it involves a strong one-electron oxidant and NO2

�.
The initial one-electron oxidant can be CO3

��, NO2
�, oxometal

complexes such as Compounds I and II of hemeperoxidases,
HO�, and lipid peroxyl radicals (LOO�), among others (Fig. 7).
Tryptophan, nucleic acid bases, and polyunsaturated fatty acids
can also become nitrated, but the better studied is tyrosine (1).

Due to the radical nature of the mechanism of tyrosine nitra-
tion, other sources of one-electron oxidants and NO2

� that do
not involve peroxynitrite can give rise to 3-nitrotyrosine. This is
the case of hemeperoxidases in the presence of hydrogen per-
oxide and NO2

� (82). In addition, tyrosine can also become
nitrated by the reaction of tyrosyl radicals with NO� followed by
two oxidation steps (212). Nitrating species can also be gener-
ated by NO2

� under acidic conditions (213). Thus, the detection
of 3-nitrotyrosine alone cannot be considered a specific foot-
print of peroxynitrite unless in the light of additional confirm-
atory evidence.

Nitration modifies the properties of the tyrosine. First, the
acidity of the phenolic group is increased (pKa of 3-nitroty-
rosine 7.5), generating an extra negative charge in the protein at
neutral pH. This is useful for separative strategies based on
isoelectric focusing of nitrated proteins (214, 215). Second, the
274 nm absorbance maximum shifts to 360 nm at acidic pH
(�360 � 2790 M�1 cm�1) or 440 nm at alkaline pH (�440 � 4400
M�1 cm�1) (184). Although this red shift is useful for chromato-
graphic separations with UV-visible detection and for the
quantification of 3-nitrotyrosine standards, it can lead to pho-
tochemical decomposition in MALDI-based MS approaches
with 337 nm lasers. Finally, the hydrophobicity of a 3-nitroty-
rosine-containing peptide increases with respect to the unmod-
ified one. 3-Nitrotyrosine is considered a relatively stable end
product. Putative 3-nitrotyrosine denitrase and reductase

Figure 7. Free radical-mediated formation of nitrotyrosine. Strong one-electron oxidants oxidize tyrosine to tyrosyl radical, which combines with NO2
�

forming 3-nitrotyrosine. Some protons are omitted for simplicity.
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activities that catalyze the removal of the nitro group or its
reduction to amino in 3-nitrotyrosine-containing proteins,
respectively, have been reported in mammalian tissues and in
bacteria. The enzymes responsible have not yet been identified
(216 –218).

Tyrosine nitration is a low-yield process. For instance, per-
oxynitrite-dependent tyrosine nitration in phosphate buffer
ranges from �6 to �18% of the peroxynitrite added in the
absence or presence of bicarbonate, respectively, and much less
in the presence of competing biomolecules (174, 219). In cells
and tissues, a relatively small number of proteins is found sig-
nificantly nitrated and in only a few tyrosine residues. This
introduces challenges in the analytical strategies, because the
detection of about one 3-nitrotyrosine within one million
tyrosines is required (1, 4, 220–222).

Another challenge is the artifactual formation of 3-nitroty-
rosine during sample processing, for example, from residual
NO2

� under acidic conditions. This is a major methodological
concern that has contributed to the thousand-fold scattering of
3-nitrotyrosine values in biological samples (222–225). Separa-
tion of 3-nitrotyrosine from its precursors (226) or reduction to
3-aminotyrosine by sodium dithionite (227), early in sample
preparation protocols, is useful in preventing artifactual nitra-
tion. In MS-based procedures, tyrosine labeled with stable iso-
topes can be added to the sample to control for artifactual nitra-
tion, in addition to serving as internal standard for tyrosine
measurement (224, 228).

The analytical challenges increase even further if the aim is to
detect a nitrated peptide or protein rather than free 3-nitroty-
rosine, because there is the need to extract, separate, and enrich
modified proteins and to hydrolyze them into peptides or
amino acids.

Several approaches have been developed for the qualitative
and quantitative assessment of free or protein-bound 3-nitro-
tyrosine. These methods include immunoassays, HPLC with
various detection methods, and gas or liquid chromatography
coupled to MS. Due to the potential for sensitivity and selectiv-
ity, strategies based on MS have become the gold standard of
3-nitrotyrosine determination and have started to yield refer-
ence values. For example, the concentration of 3-nitrotyrosine
in plasma is subnanomolar (222). A thorough discussion of the
method of validation applied to 3-nitrotyrosine analysis can be
found in Refs. 221, 222. In the following sections, a brief
description of available methods is provided.

Antibody-based methods for 3-nitrotyrosine detection

Nitration changes the immunogenicity of a protein through
the generation of new epitopes. This has biomedical conse-
quences in the triggering of immune reactions and in the gen-
eration of autoimmune responses (229, 230). In addition, this is
the basis of procedures for the detection of 3-nitrotyrosine
rooted on the use of antibodies. Poly- and monoclonal antibod-
ies have been raised and are now commercially available.
Immunohistochemical methods, immunoblotting techniques,
and ELISAs have been developed and applied to the study of
biological samples (184, 231–234). The typical readout of anti-
body-based methods is the difference in immunoreactivity in
samples versus controls. However, procedures are subject to

wide variations, particularly regarding the selectivity of the
antibody, and unless validated, they lead to qualitative or at best
semi-quantitative results (223). Recently, a highly-sensitive
electrochemiluminescence-based ELISA was introduced for
the assessment of biological samples and validated with MS
(235).

Analysis of free 3-nitrotyrosine by HPLC-based methods

HPLC with UV-visible detection (236) or fluorescence detec-
tion (following derivatization with fluorogenic compounds)
(237) has been employed to measure 3-nitrotyrosine. However,
these approaches are not sensitive or selective enough for their
application to biological samples. Reduction to 3-aminoty-
rosine followed by HPLC with electrochemical detection pres-
ents improved sensitivity (225), but it cannot match the selec-
tivity provided by MS-based approaches (222, 223).

Analysis of free 3-nitrotyrosine by GC-MS, GC-MS/MS,
and LC-MS/MS

Strategies based on GC for the separation of the analytes
must follow the conversion of 3-nitrotyrosine to a volatile form,
either by reduction to 3-aminotyrosine and/or derivatization.
Particularly useful is the incorporation of fluorine atoms in the
derivative through the use of fluorinated reagents in the case of
MS procedures based on negative ion electron capture detec-
tion (226, 238–240). The perfluorinated derivatives undergo
electron capture and dissociation to yield a single intense anion
that can be monitored by selected ion monitoring (GC-MS
analysis). Subsequent analysis by selected reaction monitoring
after collision-induced dissociation (GC-MS/MS) increases
selectivity.

The use of LC instead of GC presents the advantage that no
derivatization steps are needed. Positive electrospray ionization
mode is usually used. LC-MS is not selective enough, but colli-
sion-induced dissociation of 3-nitrotyrosine in LC-MS/MS
analysis produces a few characteristic ions that can be used for
quantification. Specifically, protonated unlabeled 3-nitroty-
rosine (m/z 227) yields species with m/z 181 and m/z 90.

In both GC and LC-based MS methods, quantitative data can
be obtained by comparison with the signals produced by an
internal standard, which allows corrections for variability, sam-
ple losses, and matrix effects. The internal standard for MS
consists of 3-nitrotyrosine labeled with the stable isotopes 13C
or 15N. These isotopic homologues behave identically to non-
labeled 3-nitrotyrosine in extraction, chromatography and ion-
ization steps but provide ions with increased m/z. Some of these
standards are commercially available. In a typical procedure,
labeled 3-nitrotyrosine is added to the samples and the calibra-
tion standards in known amounts. The area or height of the
desired peak is related to that of the internal standard in the
samples and is compared with the calibration data. The inclu-
sion of labeled tyrosine in addition to labeled 3-nitrotyrosine
allows the quantification of total tyrosine and the control of
artifactual nitration (224, 228). For example, in a typical proce-
dure 3-[13C6]nitrotyrosine is added in a known amount to a
sample as internal standard for 3-nitrotyrosine quantification;
[13C9

15N1]tyrosine is added as internal standard for total tyro-
sine quantification, and [13C6]tyrosine is added to control for
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potential artifactual generation of 3-nitrotyrosine during sam-
ple processing (241).

Analysis of 3-nitrotyrosine in proteins

Quantitative data on the amount of 3-nitrotyrosine in a pro-
tein-containing sample can be obtained by extraction of total
proteins followed by hydrolysis by chemical or enzymatic
methods and, finally, analysis of free 3-nitrotyrosine by the pro-
cedures described above. The extraction step, typically with an
organic solvent, is useful for NO2

� elimination as well as protein
precipitation. Total hydrolysis can be achieved with 6 M hydro-
chloric acid at 116 °C in vacuo, following NO2

� removal (225,
228). Alkaline hydrolysis has also been tried (239). Alterna-
tively, a mixture of proteolytic enzymes (Pronase) can be used,
but the former is preferred, because enzymatic hydrolysis is not
always complete, and the enzymes themselves can contribute to
the values of tyrosine and 3-nitrotyrosine measured.

If information on a particular protein instead of a whole mix-
ture is required, separation or enrichment steps can be
included. These steps include mono- or two-dimensional elec-
trophoresis and chromatographic or immunoaffinity proce-
dures. A useful aspect to take into account in the design of
separation steps is the increase in acidity of tyrosine residues
upon nitration, which leads to a decrease in the pI of the protein
(214, 215).

To reveal the sites of nitration in the proteins, peptide map-
ping can be performed by hydrolysis with trypsin to obtain the
tryptic fragments followed by LC-MS/MS to separate the pep-
tides and analyze them. The modified peptides are then identi-
fied by search algorithms. Importantly, the results should be
confirmed through targeted MS/MS approaches, in which
prior knowledge of the modification site allows for selected/
multiple reaction monitoring and parallel reaction monitoring
(221, 241, 242).

In MALDI-based procedures for peptide and protein analy-
sis, 3-nitrotyrosine residues absorb the light of typical lasers
(337 nm) and produce a characteristic pattern of ions in which
the m/z is decreased by 16 and 30. The unique triplet signal
enables to further identify the nitrated peptides (243, 244). Nev-
ertheless, methods based on electrospray ionization present the
advantages that photochemical decomposition is avoided and
that the typical ion with m/z 181 can be detected and serve as a
footprint for 3-nitrotyrosine (221).

A typical proteomics approach for the detection of nitrated
proteins in complex samples would involve two-dimensional
separation, immunoblotting, manual removal of selected spots,
in-gel digestion, and MS/MS identification, with confirmation
by targeted approaches (220 –222, 245–247). A critical discus-
sion of caveats in nitroproteomics can be found in Refs.
220 –222.

Carbonate anion radical

Carbonate anion radical (CO3
��, IUPAC name trioxocar-

bonate(�1)) is a strong one-electron oxidant with a standard
reduction potential (E0� (CO3

��, H�/HCO3
�)) of �1.77 V (248).

In biological systems, it can be generated by the homolysis of
the initial adduct formed by the reaction of ONOO� and
CO2, ONOOCO2

�. Although some debate exists in relation

to the lifetime of the adduct and the yields of the CO3
�� and

NO2
� radicals (249), it is now accepted that the adduct has a

very short half-life (
1 �s) that precludes its participation in
bimolecular reactions and that it homolyzes to CO3

�� and
NO2

� in �33% yields. The experimental and theoretical evi-
dence in support of the radical model has been recently
reviewed (89).

Carbonate anion radical can also be formed in biological sys-
tems by the one-electron oxidation of bicarbonate or its conju-
gate base, carbonate anion (CO3

2�), by strong enough one-elec-
tron oxidants such as HO� (E0� � �2.31 V at pH 7) (250, 251).
This route is expected to be of relevance inside the phagosomes
of activated immune cells, where bicarbonate is considered to
be a main target for HO� (252). Compounds I and II of heme
peroxidases cannot oxidize HCO3

� (93). In contrast, CO2/
HCO3

� enhances the peroxidatic activity of Cu,Zn-superoxide
dismutase (253, 254), and although the mechanism is contro-
versial, it leads to CO3

�� formation through an enzyme-bound
intermediate (199, 255, 256). Xanthine oxidase can also lead to
CO3

�� (257–259).
The pKa of HCO3

� is 
0, indicating that the radical only exists
in its anionic form in biological systems (260, 261). Accord-
ingly, it cannot diffuse through membranes (262), and it is con-
fined to water-soluble compartments. It can react both by elec-
tron transfer or hydrogen abstraction mechanisms (259). It can
also participate in oxygen transfer reactions, particularly when
reacting with itself or with other free radicals. Furthermore,
although some examples of CO3

�� addition reactions have been
proposed, the products formed are usually unstable, which
makes their detection difficult.

The main intracellular targets of CO3
�� are thiol-containing

moieties, particularly GSH due to its high cellular abundance
(k � 5.3 � 106 M�1 s�1 at pH 7) (93, 263), solvent-exposed
sulfur-containing residues (k � 4.5 � 107 and 3.6 � 107 M�1 s�1

at pH 7 for Cys and Met, respectively), as well as aromatic res-
idues in proteins (k � 4.6 � 107 and 7 � 108 M�1 s�1 at pH 7 for
Tyr and Trp, respectively), ascorbate (k �109 M�1 s�1 at pH
11.4), guanine bases in nucleic acids (k �108 M�1 s�1), and
particularly in plasma, urate (kurate estimated to be �108 M�1

s�1) (86, 264). Carbonate anion radical promotes protein–
protein (particularly ditryptophan) or DNA–DNA cross-
links (265, 266). It also rapidly reacts with transition metal
centers or organic cofactors (267–269). Interestingly, bicar-
bonate enhanced the susceptibility of bacterial suspensions
to ionizing radiation, which implies extracellular HO� (252).
The higher toxicity caused by extracellular CO3

�� compared
with HO� is a consequence of the higher diffusion distances
of the former, derived from its lower reactivity and longer
lifetime.

Detection of carbonate anion radical

The lack of specific biomarkers for CO3
�� complicates its

detection, both in vitro or in vivo. Carbonate anion radical has a
characteristic light absorption spectrum with a peak at 600 nm
(�600 � 1930 M�1 cm�1) (260, 270). This has been utilized for
measuring the kinetics of the reaction of the radical with differ-
ent compounds by pulse radiolysis techniques (263, 264, 268).
Time-resolved resonance Raman spectroscopy has also been
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used to characterize CO3
��, which shows a strong polarized and

intense band at 1062 cm�1 (261). Furthermore, CO3
�� can be

directly detected by fast-flow EPR where it shows a singlet band
at g � 2.0113 (89, 271). Due to the short half-life of the radical,
which is in the microsecond range, direct detection requires
rapid or fast flow methodologies, which are not always available
or require high reactant amounts (259). Alternatively, spin-
trapping EPR methodologies have also been utilized. Indeed,
the reaction of CO3

�� with DMPO yields an initial unstable
adduct, which has been proposed as the O-centered radical
DMPO-OCO2

� , that then decays to DMPO-OH� (272, 273). Car-
bonate anion radical can also be detected by means of chemilu-
minescence. Spontaneous chemiluminescence has been pro-
posed to rely on radical dimerization to an excited species
(CO2)2* that decays to the ground state with light emission at
�440 nm (Equations 20 and 21) (274 –277).

2CO3
�� ¡ (CO2)2

* � O2 (Eq. 20)

(CO2)2
* ¡ 2CO2 �hv (Eq. 21)

Additionally, the presence of bicarbonate enhanced the yield
of luminol chemiluminescence caused either by hydrogen per-
oxide plus catalyzers or by peroxynitrite, which can be ascribed
to CO3

�� formation (186, 257). This is in accordance with
CO3

�� oxidation of aromatic and heterocyclic molecules with
second-order rate constants ranging from 5 � 105 to 5 � I07

M�1 s�1 at pH 7 (263, 278).

Hydroxyl radical and its detection

The extremely reactive hydroxyl radical (HO�) can be formed
from the homolysis of peroxynitrous acid, which gives NO2

�

and HO� in 30% yield, while the rest decays to nitric acid (Equa-
tion 16-18). This spontaneous decay has a relatively slow rate
constant (0.9 s�1 at pH 7.4 and 37 °C) and will be outcompeted
by direct reactions with targets such as thiol or selenoproteins,
metal centers, or CO2, minimizing the relevance of peroxyni-
trous acid homolysis in biological HO� generation (1). Never-
theless, it is possible that a very small amount of peroxynitrite-
derived HO� initiates oxygen-dependent chain reactions in
which oxidation events are amplified, particularly in lipid-rich
compartments (279). Undoubtedly, the formation of HO� is rel-
evant in in vitro systems in the absence of alternative targets
that react directly with peroxynitrite. In fact, the detection of
HO� formation from peroxynitrite contributed to build the con-
cept that NO� can be the precursor of strong oxidants (280). In
biological systems, HO� is mainly generated through the Fenton
reaction, i.e. through the reduction of hydrogen peroxide to
HO� and H2O by reduced metal ions, Fe(II) or Cu(I). It can also
be formed from photochemical processes (e.g. photolysis of
hydrogen peroxide) and through the radiolysis of water. With a
reduction potential of �2.31 V at pH 7 (250), HO� is so oxidiz-
ing that it can react with most biomolecules. In addition, the
rate constants are close to the diffusion limit, with values of
109–1010 M�1 s�1. The mechanisms of HO� reactions include
one-electron abstraction, hydrogen atom abstraction, and
addition to double bonds or aromatic rings.

The detection of HO� can be carried out by different
approaches that include laser-induced fluorescence and EPR
associated with spin trapping (281). The kinetics of HO� reac-
tions have been studied by pulse radiolysis combined with com-
petition kinetics. Hydroxyl radical can also be detected with the
use of probes. Due to the very high reactivity of HO� with
biomolecules, very high probe loading is required, which can
raise concerns. Because HO� adds to aromatic rings, classical
methods involve the hydroxylation of salicylic acid or phenyla-
lanine (to m-tyrosine) (282). Often, the hydroxylation reaction
can be followed by fluorescence. Various coumarins and many
other probes have been developed recently and are reviewed in
Refs. 177, 281, 283.

Some reflections on the detection of nitric
oxide– derived oxidants

The fate of a certain species is determined by kinetics (i.e. rate
constant multiplied by target concentration) as well as by com-
partmentalization. Detection methods based on probes reveal
only a fraction of the total species, because a large fraction
reacts with targets and remains undetected. Knowledge of the
rate constants and concentrations of probe and targets can help
estimate the actual amount of oxidant produced from the
amount detected. For example, the rate of peroxynitrite forma-
tion that was detected in endothelial cells with a boronate probe
was �0.01 �M s�1, but it translated into a total of �0.1 �M s�1

when the scavenging by other targets was taken into account
(194).

Given the loose specificity of some of the methodologies for
the detection of NO�-derived oxidants, modulation of NO� for-
mation is mandatory. This can be pharmacologically achieved
through the use of NOS inhibitors such as N-nitro-L-arginine
methyl ester or NG-monomethyl-L-arginine. Nitric oxide
donors may be used to recapitulate the actions of NO�-derived
oxidants following NOS inhibition. Alternatively, genetically
engineered cell lines or animals in which NOS are knocked out
or overexpressed can be used (284). Complementary evidence
can be achieved with inhibitors of the formation of other pre-
cursors. For example, the levels of the peroxynitrite precursor,
O2

��, can be turned down with NADPH oxidase inhibition or
superoxide dismutase overexpression. The role of NO� in a cer-
tain process can also be probed using a scavenger such as oxy-
hemoglobin, which reacts fast with NO� forming NO3

�. In this
regard, the heterologous expression in mammalian cells of bac-
terial enzymes with strong NO� dioxygenase activity has been
proposed as a tool for NO� depletion (285).

Finally, when a certain NO�-derived oxidant or downstream
product is detected in the context of a pathophysiological pro-
cess, it is tempting to conclude that the relation is causative and
that the NO�-derived oxidant or downstream product partici-
pates in the development of the pathology. However, the rela-
tion may be only associative; the NO�-derived oxidant or down-
stream product may constitute, at best, a biomarker. Further
evidence involving pharmacological or genetic modulation of
NO�-dependent pathways and their impact on biological out-
come is needed to reveal causality.
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Concluding remarks

Three decades of research have contributed to building the
concept that NO� can exert biological effects both through the
direct and usually reversible interaction with specific targets or
through the generation of secondary species, many of which
can oxidize, nitrosate, or nitrate biomolecules. The reactive
species derived from NO� are typically short-lived, and their
preferential targets depend on kinetic and compartmentaliza-
tion aspects. Their elusive character imposes technical chal-
lenges in their detection and quantification. In general terms,
the strategies are based either on the detection of stable end
products or on the use of synthetic probes. These methods are
summarized in Table 1. Rigorous use of these strategies
requires understanding of the mechanistic pathways involved.
In many cases, probes are able to react with several species, and
efforts are under way to expand the toolset with probes of suitable
selectivity. The evidence about the role of a particular species in a
certain pathophysiological process should combine data obtained
through more than one analytical or immunochemical procedure
as well as complementary evidence coming from the modulation
of the formation or decay pathways of the species. A better identi-
fication and quantification of NO�-derived oxidants and of their
relevant molecular targets, strongly grounded in chemical and bio-
chemical knowledge, will assist to expand rational applications of
the NO� field to biology and medicine.
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14. Möller, M., Botti, H., Batthyany, C., Rubbo, H., Radi, R., and Denicola, A.
(2005) Direct measurement of nitric oxide and oxygen partitioning into
liposomes and low density lipoprotein. J. Biol. Chem. 280, 8850 – 8854
CrossRef Medline

15. Denicola, A., Souza, J. M., Radi, R., and Lissi, E. (1996) Nitric oxide dif-
fusion in membranes determined by fluorescence quenching. Arch.
Biochem. Biophys. 328, 208 –212 CrossRef Medline
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Wójcik, T., Michalski, R., Jakubowska, M., Selmi, A., Smulik, R., Pi-
otrowski, L�., Adamus, J., Marcinek, A., Chlopicki, S., and Sikora, A.
(2016) Characterization of fluorescein-based monoboronate probe and
its application to the detection of peroxynitrite in endothelial cells
treated with doxorubicin. Chem. Res. Toxicol. 29, 735–746 CrossRef
Medline

206. Purdey, M. S., McLennan, H. J., Sutton-McDowall, M. L., Drumm, D. W.,
Zhang, X., Capon, P. K., Heng, S., Thompson, J. G., and Abell, A. D.
(2018) Biological hydrogen peroxide detection with aryl boronate and
benzil BODIPY-based fluorescent probes. Sensors and Actuators B:
Chemical 262, 750 –757 CrossRef

207. Xu, J., Li, Q., Yue, Y., Guo, Y., and Shao, S. (2014) A water-soluble
BODIPY derivative as a highly selective “Turn-On” fluorescent sensor
for H2O2 sensing in vivo. Biosens. Bioelectron. 56, 58 – 63 CrossRef
Medline
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246. Kanski, J., and Schöneich, C. (2005) Protein nitration in biological aging:
proteomic and tandem mass spectrometric characterization of nitrated
sites. Methods Enzymol. 396, 160 –171 CrossRef Medline

247. Peng, F., Li, J., Guo, T., Yang, H., Li, M., Sang, S., Li, X., Desiderio, D. M.,
and Zhan, X. (2015) Nitroproteins in human astrocytomas discovered by
gel electrophoresis and tandem mass spectrometry. J. Am. Soc. Mass
Spectrom. 26, 2062–2076 CrossRef Medline

248. Armstrong, D. A., Huie, R. E., Koppenol, W. H., Lymar, S. V., Merényi, G.,
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