T—— -

o e™: UNIVERSIDAD
JN(, (£ DE LA REPUBLICA
1Imina : URUGUAY

FACULTAD DE

Modelacién y analisis de oleaje:
desarrollos metodolégicos y su aplicacion al

caso de Uruguay

Rodrigo Alonso Hauser

Programa de Posgrado en Ingenieria en Mecanica de los Fluidos Aplicada
Facultad de Ingenieria
Universidad de la Reptblica

Montevideo — Uruguay
Setiembre 2020

hd g ® ¢
lm a FACULTAD D'_.

UNIVERSIDAD
DE LAREPUBLICA
URUGUAY

NGENIERIA

=



Modelacién y analisis de oleaje:
desarrollos metodolégicos y su aplicacion al
caso de Uruguay

Rodrigo Alonso Hauser

Tesis de Doctorado presentada al Programa
de Posgrado en Ingenieria en Mecanica de los Fluidos
Aplicada, Facultad de Ingenieria de la Universidad de
la Reptblica, como parte de los requisitos necesarios
para la obtencién del titulo de Doctor en Ingenieria

en Mecéanica de los Fluidos Aplicada.

Tutor:
Dr. Ing. Sebastian Solari.

Montevideo — Uruguay
Setiembre 2020



Alonso Hauser, Rodrigo

Modelaciéon vy andlisis de oleaje: desarrollos
metodolégicos y su aplicacion al caso de Uruguay / Rodrigo
Alonso Hauser — Montevideo: Universidad de la Repiblica,
Facultad de Ingenieria, 2020

137 p. 29.7 cm.

Director:

Sebastian Solari

Programa en Ingenieria en Mecanica de los Fluidos

Aplicada, 2020.
Referencias bibliograficas: p 110-123

1. Oleaje, 2. WAVEWATCH III, 3. Hindcast, 4. Rio de
la Plata, 5. Costa Atlantica de Uruguay, 6.
Climatologia, 7. Sistemas de oleaje, 8. Métodos
Bayesianos, 9. Cadenas de Markov Montecarlo
(MCMC), 10. Error espectral, 11. Analisis de
incertidumbre.

I. Solari, Sebastian, et al. II. Universidad de la
Republica, Programa de Posgrado Doctorado en Ingenieria
en Mecanica de los Fluidos Aplicada. II. Modelacion y
analisis de oleaje: desarrollos metodolégicos v su aplicacion

al caso de Uruguay.




RESUMEN

Este trabajo se plantea como una contribucién a las tareas de modelaciéon y
analisis necesarias para proveer informacién de oleaje a las actividades de ingenieria
y ciencia que se desarrollan en la zona costera y el espacio maritimo.
Especificamente, se trabajé con la generacion de datos de oleaje a partir de
simulaciones en modo hindcast y la sintesis e interpretacion de los mismos en

términos climatologicos.

Los problemas abordados derivan de: i) modelar oleaje en ambientes
complejos a los efectos de realizar un hindcast de alta resolucién y alta calidad; ii)
reducir la escala de un hindcast desde aguas profundas a un sitio costero
cuantificando la incertidumbre asociada a este procedimiento; y iii) maximizar el
aprovechamiento de los espectros de oleaje para caracterizar y comprender la
climatologia del oleaje a lo largo de la costa. En este sentido, se propusieron
desarrollos metodolégicos que aportan en estos tres items y cuya aplicacién permitid
mejorar tanto cualitativamente como cuantitativamente la informacién de oleaje
disponible para Uruguay

En primer lugar se realizé un hindcast de oleaje para Uruguay con foco en el
Rio de la Plata, el cual se complement6 con el analisis de la distribucion espacial
del peso relativo de los distintos procesos involucrados en la transformacion del
oleaje en la zona. El Rio de la Plata es un ambiente estuarino cuyas particularidades
complejizan la modelacién. Estas dificultades estan asociadas a factores como la
incidencia de la hidrodinamica del estuario en la transformaciéon del oleaje que se
propaga en él, la relevancia que adquieren los procesos de interaccién con el fondo
debido a la poca profundidad, y la relevancia del proceso de generacion del oleaje
en zonas de predomino del oleaje local. Para afrontarlas, se incorporaron campos
de corrientes y niveles de mar no estacionarios en la modelacién, y se contemplé al
proceso de disipacion de energia por interaccién con el fondo en la etapa de
calibracién.

Posteriormente, a partir del modelo calibrado se realizaron experimentos
numeéricos para analizar la importancia relativa que tienen distintos procesos en la
transformacion del oleaje en la zona de estudio. Este tipo de experimento consiste
en desactivar el proceso a analizar, dejando todo el resto tal como fue utilizado en
el hindcast. Luego, para cada punto de grilla, se contrastan los resultados obtenidos
con los del hindcast (i.e. resultados de referencia), lo cual posibilita la visualizacién
de la distribucién espacial del impacto en los resultados del modelo de no considerar
un determinado proceso. Esto permitié observar la relevancia de la disipacién por
friccion de fondo en todo el Rio de la Plata medio e interior, mostr6 que la influencia
de la disipacién por rotura inducida por el fondo estd limitada a los alrededores de
los grandes bancos de arena del estuario, permitié ver que la influencia de las
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corrientes se extiende a la plataforma continental en las zonas donde hay
concentracién de flujo, asi como apreciar el alcance del mar de fondo dentro del
estuario.

A partir de las series temporales de espectros bidimensionales de oleaje
generadas en el hindcast en nodos equidistantes entre ellos y proximos a la costa,
se realizd un andlisis climatolégico en base a un abordaje que combina el analisis
de parametros integrales, espectros promediados y sistemas de oleaje. Este analisis
permitié explicar la transicion gradual del clima de olas entre dos ambientes
significativamente distintos como los que conforman los dos extremos de la costa
uruguaya. Por un lado, una costa abierta al océano, y por otro una costa en la zona

interior de un estuario.

Al centrarse en el area costera y con el propoésito de brindar un insumo para
la gestién de la misma, se presté particular atencién al flujo medio de energia del
oleaje por su contribucién a explicar la dindmica costera en escalas de mediano y
largo plazo. Este pardmetro fue calculado a partir del espectro, incluyéndose su
magnitud y direccién dentro del conjunto de pardmetros descriptores del oleaje en
los que se analizd la variabilidad intra- e inter-anual asi como las tendencias de
largo plazo.

La distincion entre sistemas de oleaje de largo plazo, permitié esclarecer y
profundizar en el clima de olas, pero también relacionarlo con aspectos climaticos
de mayor escala. En este sentido, los sistemas se utilizaron para explorar el vinculo
con patrones climaticos de reconocida influencia en la zona, y se delimitaron las
zonas del océano Atlantico involucradas con la generacién del oleaje que conforma
cada sistema.

Por ultimo se implementé un método basado en inferencia Bayesiana, para
ser utilizado en la reduccién de escala de un hindcast de oleaje a un sitio donde se
dispone de una serie de mediciones de corto plazo. El algoritmo propuesto permite
calibrar automaticamente los pardmetros del modelo de propagacién utilizado en
la reduccién de escala del hindcast. A su vez, este tipo de algoritmos consideran la
incertidumbre asociada al desconocimiento del valor de los pardmetros del modelo
como una variable aleatoria, y los caracterizan con una funcién de distribuciéon de
probabilidad, la cual ajustan en funciéon de las observaciones disponibles. La
caracterizacion de los pardmetros en estos términos, permite a posteriori estimar

directamente la incertidumbre en los resultados del modelo.

El método propuesto incluye aspectos novedosos orientados: a hacerlo mas
eficiente; a incluir el tratamiento de la incertidumbre asociada a los forzantes; y a
la consideracion de los espectros en la evaluacién de la performance del modelo.
Dado que el algoritmo empleado recurre a simulaciones de Monte Carlo, para
viabilizar su aplicacion en el contexto de un proyecto de ingenieria, la metodologia



propuesta incluyé etapas tendientes a reducir el costo computacional de cada
simulacién individual asi como a disminuir la cantidad necesaria de simulaciones
totales, sin que esto afecte los resultados finales. En lo que refiere a los forzantes,
se identific6 que sus errores son una fuente de incertidumbre en los resultados del
modelo, con similar o mayor peso que la asociada a la eleccién de los valores de los
parametros del modelo. En este sentido, se propuso incluir el tratamiento de ambas
fuentes de incertidumbre en un mismo marco de referencia. Para ello, se definié un
modelo de correccién del forzante cuyos parametros reciben, por parte del algoritmo
de calibraciéon, el mismo tratamiento que los parametros del modelo. Finalmente,
se defini6 un error espectral para cuantificar las diferencias entre modelo y
observacién, el cual fue incluido en la funcién objetivo del algoritmo de calibracion
para orientarlo en la busqueda de una configuracion del modelo que mejore

integralmente su performance.

La metodologia propuesta se aplicé a un caso de estudio en la costa Atlantica
de Uruguay, donde se cuenta con una serie de varios meses de mediciones de oleaje.
Demostrandose su uso para llevar al sitio costero de interés, los datos del hindcast
global ERA-Interim.

Palabras claves:

Hindcast de oleaje; Rio de la Plata; WAVEWATCH III; Clima de olas;
Particién espectral; Sistemas de oleaje de largo plazo; Métodos Bayesianos; Cadenas
de Markov Monte Carlo; Calibracién automatica; Caracterizacion de incertidumbre
en modelos; FError espectral
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Capitulo I

Introduccion

Motivacion

Las oscilaciones en la superficie de un cuerpo de agua producto de la accién
del viento (agente generador) y de la gravedad (agente restaurador), cuyos periodos
tipicos estan comprendidos entre 1 y 30 segundos, es a lo que se denomina oleaje.
Estas oscilaciones propagan energia mecénica y cantidad de movimiento incidiendo
significativamente en todo lo que se le interponga. En este sentido, el oleaje
constituye la principal solicitacién a la que se expone la infraestructura maritima
v costera, siendo la caracterizaciéon de los eventos extremos un requisito béasico para
el diseno estructural de las mismas (Battjes, 1984). A su vez, el disefio y
planificacién operativa de actividades maritimas (ej. puerto, boya petrolera, ruta
de navegacion, etc.) demandan informacién sobre la diversidad de condiciones de
oleaje posibles de ocurrir en su emplazamiento (Schirmann et al., 2020).

El principal destinatario de la energia y cantidad de movimiento
transportada en el oleaje es la zona costera. Si bien otros agentes, como descargas
fluviales, mareas o la accién directa del viento, inciden en la dinamica de esta zona,
la importancia del oleaje es de primer orden (Dean & Dalrymple, 2001). El oleaje
en la costa induce corrientes, genera la sobreelevacién del nivel medio y genera
fenémenos locales de gran turbulencia asociados a su rotura. Esta dindmica, al
ocurrir sobre un lecho de sedimentos susceptibles a ser movilizados, tiene
implicancias morfologicas, las cuales pueden conllevar a problemas de erosién o
sedimentacién. Actuar sobre estos problemas requiere comprender los procesos
morfodinamicos que hay detrds y por ende se hace imprescindible conocer las
caracteristicas del oleaje incidente (Kamphuis, 2000). Estos procesos pueden ser de
corto plazo, asociados a una tormenta, estando el interés en los oleajes extremos
(Lemke & Miller, 2020); o bien de mediano o largo plazo, asociado al efecto
acumulado de distintas condiciones de oleaje que se suceden y conducen a cambios
morfolégicos cuyas escalas temporales tipicas estin comprendidas en el rango de



10-1 — 10 anos (Hanson, 1989). En este tltimo caso el interés esté en la climatologia
del oleaje incidente, con particular énfasis en las direcciones desde la cual incide.
Aparte de estos problemas de origen morfodindmico, la importancia del oleaje en
la costa también radica en su incidencia en procesos fundamentalmente
hidrodindmicos como los relacionados con las inundaciones costeras (Wandres et
al. 2020; Wu et al., 2018) o con la seguridad de los banistas (Castelle et al., 2020),
asi como para su aprovechamiento en actividades recreativas y practicas deportivas
(Arroyo et al. 2020).

Fuera de la zona costera, considerando una escala mas amplia, el oleaje
desempeiia un rol importante en la interaccién entre el océano y la atmosfera,
condicionando la transferencia de cantidad de movimiento e intercambio de gases
entre ambos (Cavaleri et al. 2012; Hemer et al. 2012). A su vez, otro papel
trascendente lo tiene en ambientes estuarinos y zonas de plataforma continental
donde la profundidad es tal que el oleaje involucra a toda la columna de agua y su
interaccion con el fondo constituye el principal factor de resuspensién de sedimentos
(Chen et al., 2015). Esta influencia en las circulaciones oceédnica y atmosférica, asi
como en las concentraciones de sustancias y sedimentos en suspensién en los
cuerpos de agua, hacen que mayor conocimiento e informacion sobre el oleaje se
demande desde disciplinas como la oceanografia, ciencias de la atmosfera y ecologia

marina.

Desde el punto de vista energético el oleaje representa una fuente de energia
renovable de gran potencial, aun escasamente explotado pero con perspectivas de
crecimiento que se plasman en el incremento sostenido de las iniciativas de
investigacién y desarrollo que vienen surgiendo al respecto. La caracterizacion del
oleaje como recurso energético, es una tarea fundamental que acompasa estos
desarrollos, los cuales necesitan conocer tanto las caracteristicas de los oleajes més
frecuentes a los efectos del disefio operativo de los dispositivos, asi como de los
oleajes extremos que condicionan su supervivencia (Barstow et al., 2007; Guillou
et al. 2020).

Lo hasta aqui expuesto, sin pretender abarcar todas las posibles demandas
sobre mas y mejor informacion sobre oleaje, es suficiente para poner de manifiesto
la diversidad e importancia de las mismas. En pos de satisfacerlas, desde la
investigaciéon aplicada al oleaje se trabaja en el desarrollo de herramientas de
modelacién numérica para la realizacion de prondsticos o bien para la generacion
de informacién histérica a partir de simulaciones en modo hindcast. A su vez, se
trabaja en el desarrollo de técnicas experimentales para la realizacién de mediciones
in-situ o de forma remota, que permitan proveer informacién de base con la cual
contrastar los resultados de los modelos, asi como en el desarrollo de herramientas
estadisticas con las cuales abordar la climatologia y sintetizar la informaciéon en

esos términos.
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El estado del arte de la disciplina permite hoy contar con hindcast globales
(e.g. Chawla et al. 2013, Dee et al. 2011, Perez et al. 2017, Rascle et al. 2013) que
proporcionan datos fiables de altura de ola significativa (H,), periodos y direcciones
medias, que resultan satisfactorios para la mayoria de las aplicaciones que se
desarrollan en aguas profundas. Sin embargo, al aproximarnos a la costa o
adentrarnos en cuerpos de agua semi-cerrados y de poca profundidad, la necesidad
de aumentar la resolucion y contemplar procesos que inciden en la transformacion
del oleaje y no son relevantes en aguas profundas, tornan necesaria la realizacién
de hindcast locales que provean informacion de calidad equiparable a la disponible
en aguas profundas. En este sentido, distintos paises han llevado adelante esta tarea
(ej. Beya et al. 2017, Kumar et al. 2018, Li et al. 2016, Mentaschi et al. 2015,
Morim et al. 2016, O’Reilly et al. 2016, Reistad et al. 2011, Silva et al. 2018, Tuomi
et al. 2011).

Modelar el oleaje en zonas costeras y cuerpos de agua semi-cerrados de poca
profundidad presenta mayores desafios que en aguas profundas. Esto se debe a que
adquieren relevancia procesos asociados a la interaccién con el fondo y a la presencia
de corrientes; y se tiene la influencia de la geometria y orografia del contorno del
cuerpo de agua (Cavaleri et al., 2018). La capacidad de modelar estos procesos atin
no presenta el grado de madurez con la que se resuelve los procesos dominantes en
aguas profundas, y por otro lado la relevancia de estos procesos es fuertemente
dependiente de las caracteristicas de cada sitio, requiriendo estudios locales.

Por méas que se cuente con un hindcast local, la resolucion del mismo esta
limitada y puede no ser suficiente para la necesidad de un proyecto en un sitio en
particular. Ante esta circunstancia, en Ingenieria de Costa se recurre a bajar la
escala del hindcast disponible, incorporando como insumo las mediciones que se
puedan realizar en el emplazamiento del proyecto. Estas campafias de medicién
estaran acotadas a algunos meses de forma de que no comprometan los plazos del
proyecto. Si la bajada de escala se hace tanto con un modelo dindmico o estadistico,
este modelo tiene parametros que se deben calibrar procurando el mejor ajuste con
las mediciones realizadas. Utilizar para esta tarea, un algoritmo que ejecute la
calibracién de forma automaética permite ganar en confiabilidad, ya que por un lado
se elimina la subjetividad inherente a una calibracién manual, mientras que por
otro lado se incrementa la capacidad de explorar el espacio de pardmetros.

Por otra parte, los enfoques probabilisticos acordes a las buenas practicas
de disefio (Reeve, 2003), requieren de la caracterizaciéon de la incertidumbre
asociada a los datos que se utilizan. Es decir, no solo es necesario contar en el sitio
de proyecto con una serie de oleaje de largo plazo, sino que también es importante

conocer la incertidumbre inherente a dichos datos.
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Los métodos Bayesianos brindan un marco de referencia apropiado para
abordar el doble objetivo de calibrar automéaticamente un modelo y cuantificar la
incertidumbre asociada a su uso. Si bien el uso de estos métodos estd ampliamente
extendida en varias disciplinas, las experiencias en Ingenieria de Costa estin
acotadas a unos pocos casos, en su mayoria recientes (Ruessnik 2005 y 2006;
Simmonds et al. 2017 y 2019; y Kroon et al. 2020) y en particular, hasta este
trabajo, nunca habian sido utilizados en el problema de bajar de escala un hindcast
de oleaje.

Por su parte, en lo que refiere a sintetizar la informacién de un hindcast en
términos climatologicos. Los enfoques tradicionales se basan en los parametros
integrales: H;, periodo medio (Twoi) v direccién media (D). Sin embargo, en los
dltimos anos han surgido enfoques que procuran sacar mas provecho de la
informacién disponible en los espectros, a los efectos de generar una descripcion
climética més completa. En este sentido, Shimura & Mori (2019) incorporaron los
espectros promedio en el anélisis climatolégico del oleaje en la costa de Japén, y en
Portilla et al. (2015) se pone de manifiesto los beneficios de considerar sistemas de
oleaje definidos a partir de la particién de los espectros.

Los distintos desarrollos propuestos en este trabajo de tesis abordan los
problemas planteados en los pérrafos precedentes. Esto es: la realizaciéon de un
hindcast local, un analisis climatologico del oleaje costero a partir de datos
espectrales y la implementaciéon de un algoritmo Bayesiano para bajar la escala de
un hindcast. La aplicacion de estos desarrollos se realizd con el interés de mejorar
tanto cualitativamente como cuantitativamente la informacion de oleaje disponible
para Uruguay; pais cuyo territorio maritimo supera en superficie al continental y
en cuyo espacio costero reside mas de la mitad de la poblacién, se desarrollan
actividades claves de la economia nacional y tienen lugar ecosistemas de alto valor
para la conservacién.

Este espacio maritimo, con una parte en el Rio de la Plata y otra en el
océano Atlantico, contiene rutas de navegacién que conectan la hidrovia Parané-
Paraguay-Uruguay con el océano Atlantico. En este contexto, el sistema portuario
de Uruguay constituye un nodo logistico importante para la regién. Ademés de la
actividad portuaria, otra actividad econémica relevante que merece destacarse por
su estrecho vinculo con la zona costera y por ende por la importancia que tiene el
oleaje para la misma, es el turismo. La costa de Uruguay, mayormente conformada
por playas arenosas, atrae el 90% de los ingresos derivados de esta actividad (Defeo
et al. 2008). A futuro, se vislumbra a las energias renovables como otra actividad
demandante de conocimiento e informacién sobre el oleaje en la zona. Este sector
ha tenido un fuerte desarrollo en el pais y en base a la disponibilidad de recursos
energéticos marinos, fundamentalmente edlica off-shore y undimotriz, es de esperar

que avance hacia el mar.



Los estudios antecedentes sobre oleaje a escala de Uruguay son
esencialmente dos. Por un lado, el capitulo sobre oleaje de la publicacién
“Conservacién y Mejora de Playas” MTOP/PNUD-UNESCO (1979), y més
recientemente la evaluaciéon del potencial undimotriz presentada en Alonso et al.
(2015).

En el primero, el estudio se abordé con una campana de medicién en la que
se recolectaron datos de altura de ola y periodo con un instrumento fondeado
préximo a la isla de Lobos sobre la isobata de 30 m, el cual reportd 1872 registros
entre los afios 1976 y 1978. Estos datos se complementaron con observaciones
visuales, con estimaciones a partir de datos de mediciones de viento utilizando las
expresiones empiricas para condiciones idealizadas de Bretchneider (1958), y con la
aplicacién de la teoria de rayos sobre las cartas batimétricas con el proposito de
identificar zonas de concentracién de la energia del oleaje en la costa.

Por su parte, la evaluacién del potencial undimotriz se llevé adelante
mediante un hindcast en el cual se utilizé el modelo WAVEWATCH III version
3.14, con la parametrizacién ST3 (Tolman, 2009) y el viento CFSR (Saha et al.
2010) de 0.5° de resolucién espacial y paso temporal de 6 h como forzante. No se
consideraron corrientes y el nivel de mar se lo considerd fijo en su valor promedio.
El modelo se lo calibré ajustando la estimacién de la energia disipada por
whitecapping procurando minimizar los errores en H; en la plataforma continental
Atléantica. Si bien el Rio de la Plata estd incluido, el hindcast en esta zona es menos
fiable, observandose una subestimacién de Hs.

Debido a las limitaciones en las herramientas e informacién disponible en la
fecha en que se realizé el primero estudio, y el sesgo hacia la explotacién undimotriz
con foco en el Atlantico del segundo, se considerd pertinente continuar mejorando
la informacién y conocimiento sobre el oleaje en Uruguay, con particular énfasis en
el Rio de la Plata y toda la zona costera.

Objetivos

El objetivo de este trabajo es desarrollar abordajes metodolégicos que
contribuyan a la tarea de generar informacién de oleaje para su utilizacién en
aplicaciones de ciencia e ingenieria, y cuya aplicacién en Uruguay mejore la calidad
y nivel de detalle de la informacién de oleaje disponible en el pais.

Los desarrollos propuestos se enmarcaron en tres actividades: i) la
realizacion de un hindcast local ii) la caracterizacion del clima de oleaje costero y
iii) la bajada de escala de un hindcast de oleaje a un sitio costero para su uso en
un proyecto de ingenieria.
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A continuacién se enumeran los objetivos especificos perseguidos en cada

caso.
Hindcast local

. Generar un hindcast de oleaje para Uruguay que mejore
integralmente a su predecesor acompasando el avance del estado del arte en lo que
refiere modelacion de oleaje e informacién disponible.

. Identificar los procesos y forzantes mas relevantes en la
transformacion del oleaje en el Rio de la Plata y la plataforma continental Atlantica
de Uruguay, cuantificando su grado de relevancia.

Climatologia costera

. Caracterizar el clima de oleaje en la costa de Uruguay en términos
de los espectros de oleaje.

. Identificar las zonas de generacién del oleaje, en particular para el
mar de fondo, asi como la relacién entre el clima de oleaje en Uruguay y distintos
indices climaticos

. Establecer una regionalizacion de la costa uruguaya identificando
zonas de clima de oleaje homogéneo.

Bajada de escala de un hindcast

. Proponer e implementar una metodologia de calibracién y
cuantificacién de incertidumbre para modelos de propagacién de oleaje que mejore
los resultados de una reduccién de escala de un hindcast no solo en términos de los
parametros de oleaje sino también en términos del espectro de oleaje, contemplando
a su vez la posible correccién de las condiciones de contorno del modelo.

Estructura del documento

A la presente introduccién, le siguen tres capitulos, en los que cada uno
corresponde a un articulo que ha sido publicado o se encuentra en proceso de
publicacién. Estos articulos se presentan tal como se encuentran en su ultima
versibn a la fecha de compilacién de este documento, siendo las tnicas
modificaciones exclusivamente en materia de formato.

El orden en que se presentan respeta la cronologia en la que fueron
realizados, y si bien el articulo sobre climatologia (capitulo IIT) puede considerarse
como una continuacién del hindcast (capitulo II), cualquiera de los tres articulos
puede ser abordado individualmente sin la necesidad de la lectura previa de los

otros.
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Capitulo II: Improvement of the high-resolution wave hindcast of the
Uruguayan waters focusing on the Rio de la Plata Estuary’.

Se presentan los detalles de la realizaciéon de un hindcast de oleaje para
Uruguay y se analiza la distribuciéon espacial del peso relativo de distintos procesos

involucrados en la transformacién del oleaje en la zona.
Capitulo III: Comprehensive wave climate analysis of the Uruguayan coast®.

Se presenta un analisis climatolégico detallado del oleaje a lo largo de toda
la costa de Uruguay, realizado en base a un abordaje novedoso que combina el

analisis de parametros integrales, espectros promediados y sistemas de oleaje.

Capitulo IV: Bayesian inference applied to wave hindcast dynamical

douwnscaling’.

Se propone un método basado en inferencia Bayesiana, para ser utilizado
en la transferencia de datos de un hindcast de oleaje a un sitio donde se dispone de
una serie de mediciones de corto plazo v la resolucion del hindcast no es suficiente

como para extender la serie utilizando directamente sus resultados.

Finalmente en el capitulo V se presentan las conclusiones de este trabajo
discriminidndolas entre aportes metodoldgicos, resultados sobre el oleaje en Uruguay
y productos generados, a la vez que se sefialan las lineas de trabajo que quedan
abiertas. Posteriormente, se anexa el articulo titulado Automatic calibration of a
wave model with an evolutionary Bayesian method’. Se trata del antecedente directo
del articulo sobre el método Bayesiano, donde se valida, para el mismo caso de

estudio, el algoritmo utilizado.

! Publicado en Coastal Engineering (10.1016/]j.coastaleng.2020.103724).

2 En revision en Ocean Dynamics

3 En revision en Coastal Engineering

4 Presentado en la Conferencia Internacional de Ingenieria de Costa (ICCE, 2016) y
publicado en los anales de la misma (https://doi.org/10.9753 /icce.v35.waves.26)
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Capitulo 11

Improvement of the high-resolution
wave hindcast of the Uruguayan waters

focusing on the Rio de la Plata Estuary

Abstract

A new high-resolution wave hindcast for the Uruguayan waters is presented. This
improves to the previously available one in that: (i) the parametrizations of wave
generation and dissipation used by the wave model was updated to the state of the
art, (ii) the resolution of the forcing wind and local bathymetry were improved,
(iii) non-stationary water levels and currents were included and (iv) the time, space
and spectral resolution of the model were increased. These led to a better
performance of the hindcast, particularly in the Rio de la Plata estuary where a
systemic underestimation of significant wave heights was corrected.
Implementation, calibration, and validation of the wave model are presented and
discussed. Besides, the model is used to analyze the sensitivity of the results to the
several forcing and physical processes parameterizations, identifying the areas

where each one of them is more relevant.
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II.1 Introduction

A high-resolution wave hindcast covering the maritime zone of any country,
up to the coast, constitutes a valuable tool for supporting activities of engineers,
scientists, coastal managers, and the navy, among others. An improvement in wave
information generates multiple benefits associated with optimization of ports and
coastal infrastructures, better planning of activities carried on the sea and better
knowledge about coastal dynamics and marine environment. Based on these
reasons, different countries or regions developed local wave hindcast (e.g. Beyé et
al. 2017, Galagher et al. 2014 and 2016, Kumar et al. 2018, Li et al. 2016, Mentaschi
et al. 2015, Morim et al. 2016, O’Reilly et al. 2016, Reistad et al. 2011, Silva et al.
2018, Tuomi et al. 2011), or improving the resolution of the global ones (e.g. Chawla
et al. 2013, Dee et al. 2011, Perez et al. 2017, Rascle et al. 2013). In addition to an
increase in resolution, a local wave hindcast gains in quality since local information

is incorporated to feed and calibrate the wave models and to validate its results.

Uruguay is in the southeastern region of South America. Two maritime
areas can be differentiated along the Uruguayan waters: one corresponding to the
Rio de la Plata Estuary (RDP) and another corresponding to the Atlantic
continental shelf. The RDP drainage basin is the second largest in South America,
including parts of Bolivia, Paraguay, Brazil, Argentina, and Uruguay. Waves in
the RDP estuary play a major role in many aspects. On the one hand, there is
intense maritime traffic that is conditioned by the sea states; the estuary host
Buenos Aires and Montevideo harbors and is the connection to the sea of the
Parana-Paraguay waterway, connecting all the aforementioned countries. On the
other hand, waves significantly affect the sediment dynamics in the estuary, both
fine sediments, which are resuspended by waves and then advected by currents
(Fossati et al. 2014, Santoro et al. 2017), as well as sandy beaches, whose
morphology is controlled exclusively by waves (Teixeira et al. 2012). Along the
Uruguayan Atlantic coast, there are many beach resorts that attract a major
portion of the tourists arriving in the region. It has been shown that the
vulnerability of this stretch of coast is directly related to the along- and cross-shore
sediment transport produced by the waves (see e.g. Solari et al. 2018). Moreover,
this is the most promising area for the exploitation of maritime energy resources

along the Uruguayan coast (Alonso et al. 2017).

Alonso et al. (2015) introduced the first high-resolution wave hindcast
produced for the Uruguayan waters (Uru-Wave 1; UW1 hereinafter), based on the
WAVEWATCH III ® (WWIII) model version 3.14 (Tolman et al. 2009), forced
with winds from the atmospheric reanalysis CFSR (Saha et al. 2010, 2014) with
spatial resolution 0.5° and a time step of 6 h, and with no currents and sea-level
variations. UW1 was developed in the framework of a maritime energy project
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(Teixeira et al. 2016) that focus on the Atlantic region. Although the RDP was
also covered, large errors were observed in this region; in particular, the model

systematically underestimates significant wave heights (H;) in the RDP.

This work presents a new wave hindcast of the Uruguayan waters (UW2
hereinafter) whose main objective is to improve wave modelling in the RDP and,
to a lesser extent, achieve a general improvement of the results and an increase in
the spatial and temporal resolution in the whole domain. To this end, firstly
currents and water level variations, which a priori are considered relevant in the
RDP and to some extent also in the continental shelf (Ardhuin et al. 2017), are
included in the model. For this, a high-resolution hindcast of water levels and
currents is used (Santoro et al., in preparation). Secondly, several elements of the
model are updated, namely: wave model is updated to WWIII version 5.16
(WWDG, 2016) and, in particular, new parametrizations are used (e.g. Rascle &
Ardhuin 2013 and Ardhuin et al. 2010); resolution of forcing winds is increased to
approx. 0.3° in space and 1 h time step; and high-resolution bathymetric charts
from local hydrographic service are combined with global bathymetries. Thirdly,
the spectral, spatial and temporal resolution of the wave model were increased, and
spectral partitioning wave parameters (see e.g. Portilla et al. 2009) are saved along
with the usual whole spectra parameters. Lastly, the calibrated model is used to
analyze the sensitivity of the results to several of the involved physical processes
and their parameterizations (e.g.: the effect of water levels and currents, the effect
of bottom friction, etc.), identifying the areas where each one of them is more

relevant.

The remainder of the paper is organized as follows. In section I1.2 the study
area is introduced. In section I1.3, the wave observations used in this work (I1.3.1),
both altimetry and in-situ, and the different inputs of the wave model (I1.3.2) are
described; then the wave model configuration (II.3.3), the strategy followed to
calibrate the model (II.3.4) and the methodology to assess the relevance of different
processes and inputs (I1.3.5) are presented. Section II.4, where results are
introduced and discussed, is organized in four sub-sections: I1.4.1 shows the
comparison between CFSR, and altimetric winds, in 11.4.2 and I1.4.3 wave model
calibration and final results are introduced, respectively, and II.4.4 shows the
results of the sensitivity analysis. Finally, conclusions are outlined in section II.5.

I1.2 Study Area

This study focuses on the area comprised between latitudes 38°S and 32°S
and longitudes 59°W and 52°W (Figure II.1). This domain contains the maritime
area of Uruguay, which includes territories in the RDP estuary and the Atlantic
Ocean. Even though the wave model is run worldwide to avoid imposing boundary
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condition (see section II.3.3), finest grids and validation and calibration efforts are
limited to the aforementioned domain. In order to validate the forcing winds, as
well as to calibrate and validate the wave model, the sub-regions delimited in
Figure II.1.b were considered. The RDP was divided into two zones separated by
the imaginary line which connects Montevideo (Uruguay) with Punta Piedras
(Argentina): the outer zone (outer RDP) and the intermediate and inner zone (I&I
RDP); the Atlantic region was divided into squares of approx. 1°x1°, conforming
to the coast when needed.
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Figure II.1: Location of the study area, bathymetry and geographical references (1.a),
sub-regions considered for comparison with altimetry (1.b).

The RDP estuary is formed by the confluence of the Parand and Uruguay
rivers. Its drainage basin is the second largest of South America, discharging
approx. 25.000 m®s*. Tides in the Uruguayan coast are semidiurnal with diurnal
inequalities and asymmetric, with an amplitude about 40 cm (Wells and Daborn,
1997). Meteorological residuals (positive and negative surges) are of the same order
of magnitude as the tides; they are mainly generated in the Argentinean continental
shelf and then propagate northward up to the estuary (Santoro et al., 2013). The
estuary is 290 km long and has an NW-SE orientation. It has a funnel shape and
is 220 km wide at its mouth, narrowing upstream up to 20 km. The Outer RDP is
wide (19pprox.. 200 km) and deep (10 to 20 m), and both sandy and muddy
bottoms can be found; the 1&I RDP is narrow (19pprox.. 50 km), shallow (5 to 10
m, with shallower shoals and deeper channels), and the bottom is mostly comprised
by fine sediments (Moreira et al. 2016).

Wave data in the RDP is scarce. There was a Datawell directional waverider
buoy located close to its mouth (35°40’S — 55°50'W, see Figure I1.3, point 2).
Anchutz (2000) and Dragani and Romero (2004) used these data to show that most
frequent wave direction is southeast, that swell has an average Hs of 0.8 m with
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peak period around 10 s and that sea has an average H; of 1.2 m and peak period
around 5 s; Dragani et al. (2013) showed that most extreme events are mostly
associated to extra-tropical cyclones but some are associated with the occurrence
of post-frontal anticyclones and low-pressure systems in the Southwestern Atlantic
Ocean. Mosquera et al. (2012) analyzed the register of an Acoustic Doppler Current
Profiler (ADCP) located close to Montevideo (34°58’S — 56°10°W, see Figure I1.3,
point 5) and showed that swells greatly decay when going into the estuary, where
sea predominates. The only wave data measured in situ in the 1&I RDP are on its

outer limit, near Montevideo (see Figure 11.3, point 5, 6 and 7).

The Uruguayan Atlantic coast is around 200 km long and the continental
shelf is around 150 km wide. The isobaths at depths larger than 50 m are straight
and parallel and are oriented perpendicularly to 120° (meteorological convention).
Between the isobaths 50 m and 20 m, the bathymetry is irregular. The orientation
of the coastline has a breaking point between sub-region Atl 3, oriented
perpendicularly to 135°, and Atl 2 oriented perpendicularly to 113° (see Figure
II.1.b). Wave measurements in the Atlantic coast are also scarce and located
nearshore (see Figure I1.3, points 3 and 4). Wave characteristics in the Atlantic
coast of Uruguay and southern Brazil were analyzed by Pianca et al. (2010), Alonso
et al. (2015), Romeu et al. (2015) and Pereira et al. (2017). It was shown that
different wave systems frequently coexist, which is reflected in multimodal wave
spectrum. Most sea waves come from the E-S quadrant, while those coming from
S-W quadrant tend to be more energetic. Swells come from N-E and E-S quadrant;
the former are more frequent in summer and are associated with the South Atlantic
semi-permanent anticyclone, while the latter are more energetic and more frequent
during cold seasons, and mostly associated with the cyclogenesis of the South
Atlantic. As in the RDP, most extreme events are produced by extra-tropical

cyclones.

I1.3 Materials and Methods

11.3.1 Wave and wind measurements
Altimetry

A multi-mission database processed by IFREMER (Queffeulou & Croizé-
Fillon, 2013) was used. It covers the period 1991-2013 providing observations of H
and wind velocity at 10 m height. Figure II1.2 shows the spatial and temporal
distribution of the altimetry data in the study area. These data were used as the
ground-truth for validation of the wind reanalysis and for calibration and validation

of the wave model.
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Table II.1 shows the number of observations per year for the four sub-
regions which are more relevant in this study, namely: 1&I RDP, Outer RDP, Atl.
2 and Atl. 3 (see Figure II.1). It is noted that 2002 is the year with more data, so
it was used for the calibration of the wave model.
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Figure II.2.: Location of the altimetry data differentiating between satellite mission
(2.a), amount of altimetry data per sub-region (2.b) and amount of altimetry data in the
whole study area per year and per satellite mission (2.c). This bar plot use the color
reference indicated on 2.a.

Table IL.1: Amount of altimetry data (all the missions) per year and per sub-region of
greater interest for the study.

1991 92 93 94 95 96 97 98 99 2000 01 02 03 04 05 06 07 08 09 10 11 12 13

]

0 292 670 686 915 887 688 703 709 795 847 |1133| 973 871 891 746 871 1085 942 698 722 1113 177

0 626 1192 1052 1703 1633 1258 1292 1219 1543 1793|2147 (2290 1669 1986 1416 1387 1612 1656 1592 1609 2024 310

88 1186 857 1547 1137 1024 814 752 821 871 988 | 1389|1405 1166 1196 1041 1091 1252 1058 978 897 1470 315

19 892 1460 1689 1672 1691 1440 1536 1470 1998 2113|2925 |2357 2202 2330 2069 1907 2437 1830 1826 1840 2272 286

Total

107 2996 4179 4974 5427 5235 4200 4283 4219 5207 5741|7594 | 7025 5908 6403 5272 5256 6386 5486 5094 5068 6879 1088

In-situ data

The location and some information about the in-situ measurements that are
available for this work are shown in Figure I1.3. Most of the points are nearshore
and not well distributed in space (e.g. three of them are concentrated next to
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Montevideo); in addition, some time series are short (few months). Then, these in-
situ observations were used only for validation of the wave model.
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Figure I1.3: Location and information about the in-situ measurements. It is noted that
the period covered refer to the datasets to which the authors have had access.

11.3.2  Wave model inputs
CFSR winds

The wind data used to force the wave model were obtained from the NCEP
Climate Forecast System Reanalysis (CFSR, Saha et al. 2010) and its extension
the NCEP Climate Forecast System Version 2 (CFSv2, Saha et al. 2014). The
products used are global grids with the highest spatial and temporal resolutions
available: ~0.312° for CFSR and ~0.205° for CFSv2 with 1 h time step in both

cases.

CFSR winds were validated for the study area by comparison with the
altimetry data. For this, each altimetry data was paired with a CFSR one. To
obtain a CFSR value for a specific location and time, tri-lineal interpolation in
space and time was used. A set of error metrics composed by BIAS, correlation
coefficient I, root mean square error (RMSE) and scatter index (SI) were
considered.

BIAS =~ Y=V (E; — 0) (IL.1)

YN (E~E)(0,-0)

"= ; (IL. 2)
Jzii’f(Ei—EVJz;z;V(oi—é)z
RMSE = \/%25211\’(51' —0;)% and (IL. 3)
rE-n-o-or
SI= 3 , (IL. 4)
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where E and O stand for estimation and observation respectively, the
overbar means average value and N is the number of data. These statistics of error
were calculated for all the sub-regions defined in Figure II.1.b. In addition, for the
sub-regions of the RDP (i.e. I&I RDP and Outer RDP) and the ones of the
Uruguayan Atlantic coast (i.e. Atl 3 and Atl 2) g-q plots with 18 quantiles equally
spaced on a Gumbel scale were estimated and superimposed on scatter diagrams
colored according to the frequency of occurrence of the data. This validation is also
performed using the two in situ measured datasets (points 8 and 9 in Figure 11.3).

Chawla et al. (2013) reported an inconsistency in time for CFSR winds in
Southern Hemisphere with a transition in 1993-1994, associated to the introduction
of Special Sensor Microwave Imager derived ocean surface wind observations in
CFSR. The impact on the wave model results obtained with CFSR winds can be
observed in Figure II,3 of Ardhuin et al. (2011). These maps show that the major
impact is on the Southern Ocean, while in the western part of the South Atlantic
where this work focuses, the impact seems negligible.

Bathymetry and shoreline

The 17 resolution bathymetry ETOPO1 (Amante and Eatkins, 2009) was
used for most of the domain, except for the area between 58.5°W and 51.5°W
longitudes and between 39°S and 33.5°S latitudes, where a high-resolution of
0.0002° (~20 m) bathymetry was generated from the nautical charts provided by
the hydrographic service of the Uruguayan Navy. Similarly, global data set GSHHG
(Wessel and Smith, 1996) was used for defining the shoreline of the low-resolution
grids and the shoreline obtained from the Uruguayan nautical charts was used for
the high-resolution grids.

Non-stationary water levels and currents

A high-resolution water-level and currents hindcast was developed in the
framework of the project supporting this study (see Santoro et al., in preparation).
The hindcast was obtained with the TELEMAC 2D model (Hervouet, 2007),
implemented for the RDP and the Atlantic continental shelf, taking into account
fluvial discharges of Parand and Uruguay rivers, tides and storm surges at the
oceanic boundaries and wind and sea level pressure from the CFSR reanalysis. The
model was calibrated and validated using in situ water levels data measured along
the Uruguayan coast. This hindcast covers the period 1985-2016, so this is the time
span used for the wave hindcast in what follows.

Water levels and depth-averaged currents were introduced in the wave
model as regular grids with 2’ spatial resolution and 1 h time step in the area
comprised between 59°W and 51.5°W longitudes and 36.5°S and 33.5°S latitudes.
Currents and water level variations were considered only for the two highest
resolution grids (see section I1.3.3 and Figure I1.4).
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I1.3.3 Wave model configuration
Background theory

The third-generation models that numerically solve the Wave Action
Balance equation (WAE) are the state of the art tool for hindcast and forecast
wind waves. These models are phase-averaged, so waves are described solely by
their spectrum, which evolves according to the WAE. The fact that this evolution
is not restricted to a predetermined shape is what differentiates the third generation
models from their predecessors. A schematic expression of the WAE is

DN@xy.t.fr0) _ S _ (Satm+SoctShott+Sni)
Dt A fr ’ (IL.5)

where NV is the wave action density defined as the division of the energy spectrum
density F(xytf£,68) by the frequency of each wave component relative to the
background current (f.). The left term is the total derivative of N which represents
wave propagation, while the right side source term S includes many processes
related to the interchange of energy between waves and the atmosphere (Sim), the
water column (S,c), the bottom (Spo) as well as transfer of energy between different
wave components (Sy). Two additional equations interrelating f., f, (absolute
frequency), and k (wave number) are necessary to solve the propagation term of
WAE. These are a Doppler-type equation (Eq. 6) and the dispersion equation
obtained from the linear wave theory (Eq. 7).

fo=fr+k.U, (IL.6)

f.2 = 2m. g. k. tanh(k.d), (IL. 7)

where U is the depth-averaged horizontal current and dis the water depth.
For a description of third-generation phase-averaged numerical wave models and
the theory behind them see e.g. Holthuisjen (2007) or Ardhuin (2018).

In this work, the third-generation wave model WAVEWATCH III ® version
5.16 (WWDG, 2016) was used on its multi-grid mode. Different aspects of the
implementation are described below.

Parametrizations of the WAE source term

Stopa et al. (2016) compared the performance of the WWIII model when
using the different parametrizations available for the source terms, namely ST2,
ST3, ST4, and ST6. According to their results, ST4 is the parametrization best
performing in the South Atlantic Ocean. This is in agreement with the results
obtained by Campos et al. (2018) and Pereira et al. (2017) when using ST4 for
modelling waves in the South Atlantic.



Based on the aforementioned studies, here the ST4 parametrization is used.
It incorporates the latest results of the physics of energy input by wind and
whitecapping dissipation (Sin+Sds), that are discussed in Ardhuin et al. (2010),
Leckler et al. (2013) and Rascle and Ardhuin (2013). It also includes a swell
dissipation parametrization (Ardhuin et al. 2009) and the wave-turbulence
interaction term of Teixeira and Belcher (2002) and Ardhuin and Jenkins (2006).

In addition to ST4, the discrete interaction approximation (DIA,
Hasselmann et al., 1985) was used to model the nonlinear quadruplet wave-wave
interaction (Su), Battjes and Jansen (1978) to model dissipation by depth-induced
breaking (Sa,) and the empirical linear JONSWAP parametrization (Hasselmann
et al., 1973) to model dissipation by bottom friction (Su.).

Numerical grids

Five grids were used on a multi-grid two-way nesting mode (Tolman, 2008).
Starting with a coarse global grid (Grid 1) and reaching the Uruguayan coast and
the I&I RDP (Grid 5) with a 40”’resolution (~1 km). The area covered by each grid
can be appreciated in Figure I1.4, while information about the grids is presented in
Table I1.2. For each grid, the bathymetry file, the masking file informing on the
land, sea or boundary status of the nodes and the obstructions file were generated
following Chawla and Tolman (2007).

The spectral discretization was the same for all grids. The spectrum was
discretized in 36 uniformly distributed directions and 25 frequencies starting at
0.0418 Hz and increasing exponentially with a 1.1 factor (i.e. fi, = 1.1xfi).
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Figure I1.4: Grid domains. Grid 1 (Global), Grid 2 (South Atlantic), Grid 3 (10%), Grid
4 (yellow) and Grid 5 (green). Since grids are regular and defined on a rectangular
domain, the irregular shape of grids 4 (yellow) and 5 (green) is obtained defining inactive
nodes (only active nodes are colored).
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Table II.2: Information of the grids. The different time steps correspond to the
fractional step method used by WWIII to evolve the system. At, is the global time step,
Atyy is the time step for spatial propagation, Atie is the time step for intra-spectral

propagation and At is the time step for the integration of the source term.

Range of Range of Alon x Alat | # Active | Time  steps  (seconds)
longitudes latitudes Points Atg/ Aty / Atice/ Ats
Grid 1 180°W / 180°E | 78°S / 78°N | 1.25°x1° | 29085 3600,/1800/1800/30
Grid 2 70°W / 20°E 78°S / 10°N 0.5° x 0.5° 23304 1800/900/900/30
Grid 3 66°W / 42°W 42°S / 22°S 10’ x 10° 7828 900,/300/450/20
Grid 4 59° W/ 51.5°W | 36.5°/33.5°S 2x2 5692 300/100/150/10
Grid 5 59° W/ 51.5°W | 36.5°/33.5°S 40”7 x 407 14548 150/50/75/5

11.3.4 Calibration and validation

Calibration is performed by comparing significant wave height values
obtained with the model with the altimetry H; measured in the four sub-regions of
greatest interest for the study, namely: I&I RDP, Outer RDP, Atl. 2 and Atl. 3
(see Figure I.1.a). The year 2002 was chosen for calibration because is the one
with the most altimetry data (see Table II.1) and also has more extreme values
than an average year. On the other hand, for validation, all available observations
were used, considering both the altimetry database and the available in—situ
measurements. Error metrics used are as described in section 11.3.2.

Buax of the ST4 S, parametrization and ' of the JONSWAP Sy
parametrization were chosen as the calibration parameters. The former is a
dimensionless parameter that multiplies the source term related to the transfer of
energy from the wind to the waves. Increasing Buax increase the energy of waves
generated by a specific wind. I', on the other hand, is the product of a roughness
coefficient and the bottom orbital wave velocity; increasing I' increase the energy
dissipated by bottom friction with the consequent decrease in wave height. The
performance of the model using different combinations of Bua.x and I" on grids 3, 4
and 5 was assessed. First, nine simulations of the whole 2002 combining Bu.. equal
to 1.43 (default), 1.55 and 1.66, and I" equal to -0.067m?s™ (default), -0.03m’s™® and
0 m’*® (no bottom friction) were performed. The aim was to reduce the absolute
value of the Hy BIAS, as well as H SI, as much as possible. Since for the RDP the
model results were much more sensitive to I" than to Buax, the final step was to
fine-tune I.
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I1.3.5 Sensitivity analysis to processes and inputs

The sensitivity of the model to different parametrizations and forcings was
analyzed by performing the six experiments described in Table II.3. For each
experiment, the year 2002 is simulated and results are compared with those
obtained from the hindcast, based on the following statistics: BIAS, RMSE,
Normalized BIAS (NBIAS), the maximum positive difference (MPD) and the
maximum negative difference (MND). BIAS and RMSE were calculated following
Eg. 1 and Eq. 3, where E and O stand for experiment and hindcast results
respectively. To normalize the BIAS the mean value of the hindcast for each node
and output (only considering the year 2002) was used. Finally, MPD and MND are
the maximum positive difference and the maximum negative difference between

the experiment and the hindcast for each node.

Table I1.3: Experiments carried out to analyze the sensitivity of the model to different
processes and forcings.

Name Description

Experiment E1 Sensitivity to local winds. Wind input is deactivated in grids 4 and 5.

L . Non-stationary  water level input is
. . Sensitivity to non-stationary X X .
Experiment E2 substituted by a stationary one defined as
water level

the time-average water level at each node.

Experiment E3 Sensitivity to currents Currents are not considered in the model.

Sensitivity to dissipation by

. Stot is turned off.
bottom friction (Se.). o

Experiment E4

Sensitivity to depth-induced .
Experiment E5 SIMVILY P Sav is turned off.

breaking (Sab).

Sensitivity to triad nonlinear | Swis activated; the LTA model of Eldeberky

E i t E6
Xperimen interaction (Suw) (1996) is used.

I1.4 Results and Discussion

II.4.1 Assessment of CFSR winds in the study area

Figure I1.5 shows the spatial distribution of the different error metrics
obtained from the comparison of the CFSR. winds with altimetry data. Figure I1.6
shows the corresponding scatter plots for regions 1&I RDP, Outer RDP, Atl.3 and
Atl.2. Lastly, Figure I1.7 shows a comparison of CFSR winds with two in-situ
registers, one in the Atlantic coast (La Paloma, see Figure I1.3 point 8) and the
other in the RDP (Piloten Norden, see Figure I1.3 point 9).

From the comparison with the altimetry data, it is noted that CFSR winds
perform well in the whole study area, with small BIAS, RMSE around 2 m/s,
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correlation coefficients between 0.75 and 0.85, and SI between 24 and 32. This
agreement between CFSR, wind and altimetry extends up to the highest quantiles
(see Figure I1.6). The scatter of the data is larger in the RDP than in the Atlantic;
this might be related with the presence of meso- and micro-scale features affected
by land/sea interface, whose scales are smaller than the ones that CFSR could
solve properly (Cavaleri et al. 2018). The comparison with in-situ data (see Figure
I1.7) confirms the aforementioned results: reliability of CFSR winds is better in the
Atlantic than in the RDP, where error metrics tend to worsen. Nevertheless, the
observed differences, even in the RDP, are considered to remain at an acceptable
level for the purposes of forcing the wave model.

BIAS (m/s) RMSE (m/s)
32°8 3208
0.8
33°S - 33°8
34°8 64 34°S
35°S 0.2 35°S
36°S 0 36°S
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Figure I1.5: Wind velocity at 10m height. CFSR vs Altimetry. Spatial distribution of
BIAS, RMSE, r and SIL
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11.4.2 Wave model calibration

Table I1.4 shows BIAS and SI of H;, obtained with different combinations
of Bumax and I'. It is noted that results in the RDP are more sensitive to I' than to
Buax, evidencing the relevance of wave-bottom interaction processes in the zone. On
the other hand, better performance is achieved in the Atlantic regions, with fewer
variations and similar sensitivity to both parameters. Given these results, and in
agreement with Pereira et al. (2018) and Campos et al. (2018), Buax equal to 1.55
is chosen, and fine-tuning is made by varying I', obtaining the best agreement with

3

the altimetry data with I equal to -0.012 m?s®. The Figure I1.8 shows scatter plots
comparing altimetry data with the results obtained with the calibrated model for
the calibration period (i.e. the year 2002). As pointed out by Cavaleri et al. (2018),
altimetry wave data is unreliable for mild conditions; given that in the &I RDP
mild conditions are quite frequent, it was decided to exclude all “mild conditions”
from the analysis in the cases of the [&I RDP. For what follows, “mild conditions”
are defined as H, under 30 c¢m, either in the hindcast or in the altimetry data. It is
noted that H, under 30 em are not excluded from the hindcast but only from

comparison with altimetry data during calibration and only for the I&I RDP area.

Table I1.4: Model calibration based on H; results. BIAS (m) /SI for different
combinations of By.x and I'. The results obtained with the default configuration (i.e. Buax
=1.43 and I'=0.067m?%3) are highlighted with gray background color. The black borders

indicate the best results in each sub-region.

1&I RDP
Buuax 1.43 1.55 1.6
T (m?s?)
0 0.24 / 46.8 0.26 / 47.5 0.27 / 48.7
-0.03 -0.22 / 28.8 -0.20 / 29.9 -0.18 / 30.9
-0.067 -0.32 / 20.2 0.29 / 21.6 -0.27 / 21.2
Outer RDP
0 0.13 / 40.8 0.16 / 41.4 0.18 / 42.1
-0.03 -0.17 / 32.3 -0.15 / 32.9 -0.12 / 33.5
-0.067 -0.29 / 32.8 -0.27 / 33.2 -0.25 / 33.7
Atl 3
0 0.02 / 15.8 0.06 /16.5 0.1/17.2
-0.03 -0.07 /151 -0.02 / 15.7 0.01 / 16.4
-0.067 -0.15 / 15.3 -0.11 / 15.9 -0.07 / 16.5
Atl 2
0 -0.01 / 15.7 0.02 / 16 0.06 / 16.3
-0.03 -0.14 / 15.2 -0.11 / 15.3 -0.08 / 15.6
-0.067 0.27 / 16 0.23 /16 0.20 / 16.2

30



g8 & RDP oy Outer RDP

NObs= 825 NObs= 2147
3}  Mean Obs/Mod =0.79/0.75 3|  Mean Obs/Mod =0.91/092 «
Std Obs/Mod =0.29/0.36 Std Obs/Mod =0.44/8.46" * & .
' ’
BIAS =-0.05 BIAS=-0.005  * . ¢
251  RMSE =0.28 251 RMSE=0.34° ,.* o’
- - SI=366 « % Y.0u., °
E 2| E =072 - ~RoUi
© © 2,
%5l s
= & =
1 L
05
(8.a) (8.b)
oL : : :
0 1 2 3 3
Altimetry (m) Altimetry (m)
& Atl 3 ] . Atl 2
NObs= 2237 &/ NObs= 2925
Mean Obs/Mod =1.77/1.83 bo' Mean Obs/Mod =1.65/1.68
51  Std Obs/Mod =0.72/0.68 ¢ . 57  Std Obs/Mod =0.637/0.602 &./
BIAS =0.06 o 0! BIAS =0.03
,| RMSE=033 -*5'.5 5 ,| RMSE=03 -
N Sl=18.4 i N SI=18.1 :
£ r=0.89 o . E .
g 3 g 3
o Q
= =
2t 2t
1t 11
(8.c) (8.d)
oL 0
0 2 4 6 0 2 4 6
Altimetry (m) Altimetry (m)

Figure II.8: H, (m). Calibrated model (I'=-0.012m2s-3 and Pmax=1.55) vs Altimetry.
Dispersion diagram superimposed with a q-q plot for the sub-regions corresponding to the
RDP and the Uruguayan Atlantic coast.

11.4.3 Wave model validation

Figure I1.9 shows maps with the performance metrics obtained by
comparing H, from the hindcast (1985-2016) with altimetry data. Figure II1.10
shows corresponding scatter plots for the whole area and the sub-zones 1&1 RDP,
Outer RDP, Atl. 3 and Atl. 2. For sub-zone 1&I RDP the scatter plot of the original
UWT1 data (Alonso et al. 2015) is also included for comparison purposes. On the
other hand, Figure II.11 shows scatter plots of hindcast H; and in-situ
measurement, while Table II.5 summarizes performance metrics obtained from

comparison with in-situ measurement for several mean and peak variables.

In general terms, fairly good performance of the hindcast is observed. On
the Atlantic, the performance is roughly spatially homogeneous, with BIAS smaller
than 0.1 m, correlation coefficients around 0.9 and scatter indexes around 20. On
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the Rio de la Plata the dispersion of the differences with altimetry increases, with
correlation coefficients 0.77 and 0.64, and SI 36.8 and 40.8 for the Outer RDP and
I&I RDP, respectively. However, as appreciated in Figure I1.12, the objective of
correcting the negative bias is achieved, improving early results obtained with
UWIL.

For the 1&I RDP zone it is noted that the g-q plot changes its slope for H;
approx. larger than 1.25 m (see Figure 11.10). This behavior was observed for all
tested combinations of Bu.x and I' (results not shown) and could not be corrected
just by tuning these parameters. Then, while the calibrated model can properly
reproduce moderate and more frequent waves, obtaining a low BIAS, it tends to
overestimate largest waves.

Regarding comparison with in-situ measurement (Figure II.11), it is noted
that good performance is obtained for offshore locations (points 1 and 2), in
agreement with what was observed when comparing with altimetry data, giving
confidence in the modeled waves that enter both the Atlantic shelf and the RDP.
However, the performance of the hindcast seems to worsen in coastal areas and on
the I&I RDP. For coastal Atlantic points (points 3 and 4) higher BIAS of H, than
expected from the comparison with altimetry data is observed, increasing the
overestimation as increasing the wave height. In addition, a positive bias is also
observed for the mean periods. For the coastal RDP points (points 5, 6 and 7), all
close to Montevideo, in between &I RDP and Outer RDP, H; shows a similar
performance than observed when comparing with altimetry data on the 1&I RDP,
that is unbiased results for the most frequent waves and an overestimation of the
highest waves; also, large positive bias and dispersion are observed for mean and
peak periods in these points (see Table IL.5).

Altogether, by analyzing the performance of the hindcast obtained from
comparison with altimetric and in-situ data, it follows that performance worsens
toward the coast and towards the inner part of the RDP estuary; this worsening of
performance could be related to the bottom friction term, as discussed below.

The calibration of the friction parameter I' focused mainly on reducing the
BIAS in the RDP, resulting in a value of I' that is lower than the value usually
considered as representative of sandy bottoms. In this regard, and taking into
account that the bottom in the RDP is mostly composed by fine sediments (Moreira
et al. 2016), this value is interpreted as the fine sediments bottom being smoother
than the sandy bottom for the propagation of the waves. However, by using a
uniform I' for the whole spatial domain, it seems that wave dissipation by bottom
friction is being underestimated in shallow areas dominated by sandy materials.
This would explain: (a) that for the Atlantic coast the BIAS obtained from in-situ
(coastal) data is twice the BIAS from altimetric (non-coastal or off-shore) data (see



figures I1.10 and II.11), and (b) the errors observed for wave periods close to
Montevideo, as swell might be under-dissipated in the sandy areas of the Outer
RDP. In order to test the aforementioned hypothesis, the period 2013-2016, for
which in-situ measurements at both the Atlantic coast (point 4) and RDP coast
(points 6 and 7 ) are available, is modeled changing the value of T' to one
representative of sandy bottoms (i.e. I'=-0.038m’s™). Figure I1.12 and Table II.6
show the obtained results and its comparison with results previously obtained with
the calibrated model. It is noted that the BIAS of H; in the Atlantic coast and the
errors of wave periods in the RDP close to Montevideo are corrected. However, in
return a negative BIAS is observed for H; in the RDP.

On the other hand, the overestimation of Hy on the I&I RDP for the larger
waves is not properly explained by the previous reasoning, as it persists for all
tested values of I'. In this case, it seems to be a change in the dissipation rate for
larger waves that is not captured by the JONSWAP parametrization. This could
be related to a change in the mud behavior under large waves, requiring a different
modeling approach as described by Dalrymple and Liu (1978) and Ng (2000).

In summary, the underperformance of the model in the coastal areas and
the estuary seems to be explained by bottom friction. While some improvement
might be achieved by using a non-uniform friction parameter, some issues might
require resorting to more specific bottom friction parametrizations, depending on
the characteristics of the bottom.
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Figure II1.9: H; (m). UW2 hindcast vs Atlimetry. Spatial distribution of BIAS, RMSE, r
and SI.
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Table I1.5: UW2 Hindcast vs in-situ measurements. Errors obtained for Hs, mean
periods Ty and Ty, peak period (T, ), peak direction (D,) and mean direction (D,,) on
the points described on Figure II.3 and Table II.3 are presented. The (—) mean that the
parameter was not available on the registers so the errors could not be calculated.
Nautical convention was used for directions.

#FL |\ F#2 | #3 | #4 | #5 | F#6 | #T
BIAS (m) | 0.06 | 0.03 | 0.09 | 0.22 | 0.18 | 0.09 | 0.05
RMSE (m) | 0.37 | 0.28 | 0.3 | 0.36 | 0.32 | 0.24 | 0.22
- SI 17.2 | 237 | 21.1 | 23.1 | 51.1 | 40.7 | 57.8
r 09 | 0.87 | 0.87 | 0.86 | 0.76 | 0.85 | 0.73
BIAS (s) 05 | 0.2 1.1 0.7 | 41 4.2 3.2
RMSE (s) 2 2.9 26 | 25 5.1 5.6 5.2
T SI 21.5 | 36.3 | 26.6 | 27.1 | 68.5 | 84.5 | 73.2
T 0.62 | 0.54 | 0.58 | 045 | 0.27 | 0.1 0.29
BIAS (s) - - - -0.02 | 0.5 2.3 2.1
RMSE (s) - - - 094 | 26 | 28 3.6
Tmot
SI - - - 13.6 | 494 | 51.2 | 729
r - - - 0.72 | 0.42 | -0.17 | 0.21
BIAS (s) - -0.04 | 0.8 - 0.7 1.8 -
RMSE (s) - 0.8 1.3 - 1.7 | 2.3 -
T'mo2
SI - 176 | 174 - 36 48 -
r - 0.59 | 0.75 - 0.37 | -0.2 -
BIAS (%) - -14.3 5 14.1 | -6.3 | -182 | -1.9
D, | RMSE (°) - 62 | 244 339 | 48 | 31.2 | 359
r - 0.5 [ 067 ] 064 | 0.54 | 0.53 | 0.365
BIAS (%) 2.8 - 2.2 | 14.2 - -183 | -3.9
Dm | RMSE (°) | 30.1 - 12.8 | 33.2 - 54.5 | 344
T 0.85 - 0.89 | 0.58 - 0.46 | 0.32
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Figure I1.12: H, (m). UW2 Hindcast vs in-situ measurements (graphics of the left,
i.e.12.a, 12.c and 12.e). UW2 Hindcast modified vs in-situ measurements (graphics of the
right, i.e. 12.b, 12.d and 12.f). The modification was the use of I'=-0.038m%. The

numeration of the points correspond to the ones presented on Figure II.3.
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Table I1.6: UW2 Hindcast vs in-situ measurements and UW2 Hindcast modified vs in-
situ measurements. The modification was the use of I'=-0.038m?%3. Error statistics
obtained for H, mean periods Tyo and Tues, peak period (T, ), peak direction (D,) and
mean direction (D,,) are presented. The numeration of the points correspond to the ones
presented on Figure I1.3. The (—) mean that the parameter was not available on the
registers so the errors could not be calculated. Nautical convention was used for

directions.
44 | #4 Modified | #6 | #6 Modified | #7 | #7 Modified

BIAS (m) | 0.22 0.07 0.09 0.12 0.05 0.15
RMSE (m) | 0.36 0.26 0.24 0.22 0.22 0.23
Sl e 23.1 19.8 0.7 33 57.8 18.7
r 0.86 0.88 0.85 0.88 0.73 0.78
BIAS (s) | 0.7 0.4 4.2 1.4 3.2 0.2
RMSE (s) | 25 2.3 5.5 3.6 5.2 3.7
R 27.1 26 84.5 76.5 73.2 73.1
" 0.45 0.5 0.1 0.13 0.29 0.15
BIAS (s) | -0.02 0.4 2.3 0.8 2.1 0.2
RMSE (s) | 0.94 1.0 2.8 1.3 3.6 2.7
R 13.6 13.1 51.2 31.2 72.9 68.7
r 0.72 0.73 017 0 0.21 0.17
BIAS (s) - - 1.8 0.6 - -
RMSE (s) | - - 2.3 1.0 - -

Tmo2
SI - - 48 28.2 - i
r - - 0.2 0 - -
BIAS (°) | 14.1 13.4 182 7.7 1.9 -30.6
D, | RMSE (°) | 339 33.7 31.2 56.2 35.9 79.9
" 0.64 0.64 0.53 0.52 0.37 0.18
BIAS (°) | 14.2 13.6 [18.3 16,3 3.9 311
Dm | RMSE () | 33.2 32 54.5 52.6 34.4 78.9
r | 0.58 0.62 0.46 0.53 0.32 0.2

I1.4.4 Sensitivity analysis to processes and inputs

As described in the methodology, BIAS, NBIAS, RMSE, MPD, and MND
were analyzed for every experiment. For the sake of clarity and briefness, only the
most significant results are introduced and discussed here.
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Figure I1.13 presents H; BIAS and RMSE obtained in the six experiments.
The largest differences are observed when local winds (experiment E1) and bottom
friction (experiment E4) are turned off. While for the latter experiment (E4) the
largest differences are limited to the RDP, those related to the former experiment
(E1) extend throughout the domain. On the other hand, experiments E2, E3, E5
and E6 present differences of lesser magnitude.

Figure II.14 shows the differences of H, obtained when turning off local
winds (experiment E1) in terms of NBIAS and MND. As seen in Figure I1.14.a,
there is a clear increase of the locally generated waves towards the inner RDP: west
of 57.5°W the NBIAS is approx. -1, i.e. the incidence of waves generated outside of
grids 4 and 5 is practically negligible there. On the other hand, in the Atlantic
NBIAS is at most -0.15, i.e. only 15% of H, in the area is attributable to local
winds. However, for largest waves, local wind importance is non-negligible in the
Atlantic zone, as from Figure II.14.b it is seen that underestimation of Hs; when
ignoring local winds can exceed 2 m.

Figure II1.15 shows the RMSE of H; obtained when water level variations
are suppressed and replaced by the mean water level (Experiment E2; this is similar
to Figure 11.13.d but using a color scale that better fits the results of this particular
experiment). The 1&I RDP and around the sandbanks of the Outer RDP are
identified as the areas where water level variations affect the wave model results.
On the contrary, on the Outer RDP outside the influence of sandbanks, and on the
Atlantic, the wave model results seems to be non-sensitive to water level variations.
The observed differences in H; results in the zone of influence of water level
variations are both positive and negative, and its average is close to zero (i.e. zero
BIAS; see Figure 11.13.c). As an example, on Figure II.15.a, two events of high
winds are highlighted, one in which a positive difference was observed and the other
where the difference is negative.

Figure 11.16 shows the RMSE of H; obtained when turning off currents
(Experiment E3; again, as in Figure I1.13.d but using a different color scale for this
experiment). It is observed that, although currents effect is smaller than that of
water levels, they affect the whole domain, with the largest differences in areas
where the flow is concentrated.

Figure 11.17 shows BIAS and MPD of H, obtained when Sy is deactivated
(panels a and c¢) and when Sa, is deactivated (panels b and d). Consistent with
what was observed in the calibration, the influence of Sy in the 1&I RDP is quite
significant. In all the region the results of H, are very sensitive to this process, for
both the most frequent waves (reflected on BIAS) and the extreme waves (reflected
on MPD). Concerning Sa, its influence is limited to the largest waves and especially
around sandbanks.

39



Finally, Figure I1.18 presents the BIAS and RMSE of Ty obtained in the
six experiments. The largest differences were observed in the I&I RDP when Sy is
turned off (panels g and h): when swell is not dissipated, the wave spectra in this
region gain energy on low frequencies, increasing T between 1 and 3 s on average.
Turning off wind in the local grids also has a large impact on Ty results (first
row): as wind energy input enters the spectrum at high frequencies, its suppression
produces an increase of Tyo; even though this is observed in the whole study area,
BIAS and RMSE are larger in the 1&I RDP. Turning off the currents or activate
St also produce some impact on T results (third and sixth rows), but to a lesser
extent than the aforementioned processes. On the contrary, the sensitivity of Twn
to water level variations and depth-induced breaking is negligible (second and fifth
TOWS).
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Figure I1.13: Bias and RMSE of H; (relative to hindcast results) obtained with the
different experiments.
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Figure I1.14: Experiment E1. Normalized Bias of H, (14.a) and maximum negative
difference of Hy (14.b). NBIAS and MND are relative to hindcast results.
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Figure II1.15: Experiment E2. RMSE of H (15.b) and time series of H; at 57.67W-34.51S
(15.a).
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Figure I1.16: Experiment E3. RMSE (relative to hindcast results) of Hs.
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Figure I1.17: Bias and MPD of H; (relative to hindcast results) obtained on
Experiment E4 (17.a and 17.c) and E5 (17.b and 17.d).
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Figure I1.18: Bias and RMSE of T, (relative to hindcast results) obtained with the

different experiments.

I1.5 Conclusions

The new wave hindcast of the Uruguayan waters introduced in this work
differs from the previously available one (Alonso et al. 2015) in that: (i) the
parametrization of the wave generation and dissipation processes was updated to
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the state of the art, (ii) the resolution of the forcing wind and local bathymetry
were improved, (iii) non-stationary water levels and currents were used as inputs
and (iv) the time, space and spectral resolution of the wave model were increased.

This hindcast is in good agreement with altimetric data, with better
performance in the Atlantic and Outer RDP regions than in the 1&I RDP region.
However, when compared with nearshore in-situ measurements the hindcast shows
larger errors, as the tuned friction parameter underestimates dissipation in areas

with a sandy bottom.

Regarding the RDP, unbiased H; series are obtained, significantly improving
the Alonso et al. (2015) hindcast, but highest waves tend to be overestimated. This
could not be corrected by reducing the friction as it results in an underestimation
of the bulk of the data (i.e. a negative bias). Hence, the observed behavior is
attributed to a change in bottom dissipation conditions with varying wave energy
due to the presence of mud, but this end remains to be explored.

The sensitivity analysis allowed identifying the areas where different
processes and forcing are more relevant. Non-stationary water levels are important
in the RDP but not in the Atlantic region, but the inclusion of currents affects the
entire study area, notably where the flow is concentrated. Local winds and wave-
bottom interaction processes were shown to be particularly relevant in the &I
RDP. Lastly, no considering the nonlinear interaction by triads in the model had
a negligible effect on the results.

Lastly, CFSR winds used for forcing the model showed good performance
when compared with altimetry and in-situ measurements, with the best
performance in the Atlantic area and degrading into the I&I RDP. In this sense,
and taking into account that in the latter only locally generated waves were
observed, it would be possible to achieve some improvement in the hindcast in the
I&I RDP region by improving local winds.
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Capitulo III

Comprehensive wave climate analysis

of the Uruguayan coast

Abstract

A detailed analysis of how the wave climate gradually varies from the
Atlantic coast to the Rio de la Plata (RDP) estuary coast of Uruguay is undertaken,
exploiting a recently developed high-resolution wave hindcast. As a better
knowledge and understanding of the wave climate along the coast is a valuable tool
for coastal scientist and managers for analyzing and interpreting its dynamics, a
comprehensive approach is taken in this work, exploring not only the behavior of
integral wave parameters but also average wave spectra and wave systems obtained
from spectra partitioning. Moreover, as the focus is made on coastal areas, the
magnitude and direction of the wave energy flux are analyzed as well. It is found
that the analysis of the wave climate sustains the division of the Uruguayan coast
in three main regions, namely: Atlantic, Outer RDP, and Intermediate and Inner
RDP. In the Atlantic coast, two swell systems and a wind sea system are identified,
and spatial changes in the wave climate are driven mainly by changes on coastal
orientation, where La Paloma was identified as a breaking point; in the RDP swell
systems strongly refracts and dissipates, resulting in a wave climate characterized
by one to none swell systems and a wind sea system, with bathymetry and geometry
of the estuary playing a major role in the spatial changes of the wave climate. The
analysis allowed not only to identify several characteristics of each of the regions
but also to better understand how different wave systems (sea and swells) explain
these characteristics in the different regions.
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I1I.1 Introduction

The Uruguayan coast is approximately 700 km long, from the mouth of the
Uruguay and Parand Rivers in the Rio de la Plata Estuary (RDP) in the West to
the border with Brazil in the Atlantic Ocean in the East (Figure III.1). Despite its
heterogeneity, a common element is the presence of sandy beaches along the whole
coast, whose dynamic is mainly driven by waves (Solari et al. 2018, Teixeira et al.
2012).

Previous works, focused on specific areas, evidenced that there are
considerable differences in the wave climate along the Uruguayan coast. On one
hand, the eastern part of the coast is open to the Atlantic Ocean, exposed to swells
from different directions that frequently coexist (see e.g. Pianca et al. 2010, Alonso
et al. 2015, Romeu et al. 2015 and Pereira et al. 2017). On the other hand, the
upper Rio de la Plata Estuary has a wave climate that is dominated by short-
fetched sea waves (see e.g. Dragani & Romero, 2004). However, the unavailability
of a high-resolution wave hindcast that properly incorporates sea level and current
variation in the RDP has prevented the systematic and coherent study of the wave
climate all along the Uruguayan coast. The recent development of a wave (and sea-
level) hindcast of such characteristics (Alonso & Solari, in press), made it possible
to undertake a detail analysis on how the wave climate gradually varies from the
Atlantic coast to the RDP coast. To the best of our knowledge, this is the first
detailed wave climate characterization of the Uruguayan coast and, as such, a
significant contribution to the understanding and management of the coast in the
region.

A better knowledge and understanding of the wave climate along the coast
is a valuable tool for analyzing and interpreting its dynamics, as it is for coastal
management in general. More traditional wave climate characterizations are based
on integral wave parameters, as significant wave height (H;), mean period (Tuwm)
and mean direction (D.). However, in recent years other approaches took
advantage of the availability of spectral data in order to provide a more complete
description of the wave climate, looking either at average spectra (Shimura & Mori,
2019) or at its partitions (Portilla et al., 2015). In this work, all the three
approaches are explored and, in some cases, expanded. In particular, as the focus
of the work is in coastal areas, the magnitude and direction of the wave energy flux
(WEF) is analyzed along with the usual integral parameters, as they provide a
better idea on how the wave climate would affect the coastal morphology (see e.g.
Elshinnawy et al. 2017, Menstachi et al. 2017, Almar et al. 2015, Splinter et al.
2012, Chowdhury and Ranjan, 2017).

The remainder of the article is organized as follows. Materials and methods
are introduced in section III.2: the used datasets are presented in section II1.2.1;
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wave parameters and sample statistics that are used all along the work are defined
in section III.2.2; lastly, section III.2.3 describes methodology used for wave
partition and for determining long term wave systems (LTWS). Obtained results
are presented in section III.3, which is organized in three parts: II1.3.1 presents the
wave climate in terms of integral parameters, in I1[.3.2 the average spectra are
presented and I11.3.3 shows results related with the wave systems. Then, results
are discussed together in section I11.4 and conclusions are outlined in section III.5.

IT11.2 Materials and Methods

II1.2.1 Data

Figure II1.1 shows the location of the 65 nodes of the wave hindcast (Alonso
& Solari, in press) considered for this work. They are distributed equi-spaced along
the coast, at about 5 km from the coast and about 10 km between each other. It is
observed that despite maintaining an almost constant distance from the coast, the
depth at the nodes is variable. In the Atlantic coast, it varies in the range of 20 -
30 m between Punta del Este and La Paloma, and in the range of 15 -25 m to the
east of La Paloma. On the other hand, in the RDP it decreases from 25 m to 2.5
m, following the bathymetry trend of the estuary. Throughout the article, detailed
results are presented for the nine nodes highlighted on Figure II1.1. Three of them
correspond to the Atlantic coast (A1, A2 and A3), three are in the outer RDP (O1,
02 and O3) and three in the intermediate and inner RDP (I1, I2 and I3). Their
location and average depth are shown in Table III.1.

Depth

mean

(m)
3

Brazil

33°30"S

34°8

34°30"S

35°S -

Argentina

35°30"S 1 L
58°W 57°W 56°W 55°W 54°W 53°W

Figure III.1: Nodes of the wave hindcast used in this work. Since the wave hindcast

considered non-stationary water levels, the mean depth is mapped.
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Table III.1: Location and mean depth at selected nodes where detailed results are
presented.

Al A2 A3 01 02 03 11 12 13

Coordin-
OO 53 63W; | 53.91W: | 54.5W; | 55.1W; | 55.73W; | 56.18W; | 56.8TW; | 57.48W; | 58.09W;

34.2S 34.52S 34.845 34.955 34.84S 34.995 34.72S 34.495 34.24S

ates

Mean
Depth

(m) 14.8 20.9 27.6 20.6 11 9.5 7.7 4 2.7
m

The wave spectra time series span the 1985-2016 period with 1 h time step.
The spectra are discretized in 36 uniformly distributed directions and 25 frequencies
starting at 0.0418 Hz and increasing exponentially with a 1.1 factor (i.e. fi1 =
11Xf1)

The wind data used to separate wind sea from swells and to identify the
generation zones of swells, were the same that force the wave hindcast: the NCEP
Climate Forecast System Reanalysis (CFSR, Saha et al. 2010) and its extension
the NCEP Climate Forecast System Version 2 (CFSv2, Saha et al. 2014).

Some climate indexes were used to analyze to what extent the wave climate
variability in the study area can be related to patterns of recognized influence on
the region. One is the Antarctic Oscillation index (AAQO), defined by Gong and
Wang (1999). It is an indicator of the Southern Annular Mode, which is the
dominant pattern of large-scale atmospheric variability in the extratropical
Southern Hemisphere (Marshall, 2003). The other climate index considered is the
Southern Oscillation Index (SOI) defined by Walker and Bliss (1932 and 1937). It
is an indicator of El Nifio Southern Oscillation (ENSO) whose associated effects
occur all over the world (Collins et al. 2010), including the southern Atlantic (e.g.
Pisciottano et al. 1994, Martin-Gomez et al. 2020). Monthly values of AAO index
and SOI for the period 1985-2016 were obtained from the Physical Science
Laboratory of NOAA®

I11.2.2 Wave parameters and sample statistics
Wave parameters

The parameters used to summarize spectral information are: significant
wave height (H,), mean period Tuon, mean direction (D..), peak period (T)), peak

direction (D,) and wave energy flux (WEF). They are calculated by integrating
the spectral energy density (S(f,68) as follows:

Hg = [ [ S(f,0)dfd6 , (IIL.1)

> https://psl.noaa.gov/data/climateindices/list/ (last visited on March 31th 2020)
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Tmor = |Jy" Jy* SCF.0)dfde |/[f;" ;" S(f.0)fdfde |, (II.2)
/b

D,, = tan™! (E)'

witha = [2" [ cos(6) S(f,0)dfd6 and b= [" [”sin(6) S(f,0)dfd6 (IIL3)

Spline interpolation was used to provide a more precise estimation of the
peak parameters T, and D,. Regarding to WEF, its magnitude (||WEF]||) and
direction (Bver) were calculated as follows:

_ 1 (WEF, .
IWEF|| = \/WEFXZ + WEF,?, Oypr =tan™? (WEFZ), with

27 oo

WEszf jcos(Q)S(f,G).Cg(f,h)dfdQ and
0 0

WEF, foz” Jy sin(8) S(f,0).Cg(f, hydfdo ; (I1L.4)

with Cg the group velocity calculated from frequency (f) and water depth
(h) using linear theory.

Average wave parameters were also estimated by means of [1-3] but using
the average 2D spectrum S™(f, 6 (H., Tun™ and D,*). For the peak parameters
of the average spectrum, the peak parameters of the 2D average spectrum (T, and
D,*) were distinguished from the peak of the 1D average frequency spectrum (T,**)
and the peak of the 1D average directional spectrum (D,**).

Sample statistics

Mean and standard deviation are used to report central tendency and
dispersion of the data and the 99" percentile is used as a reference value for
extremes. In the case of directions the median (Dws) and the difference between
the 75™ and 25™ percentile (Durs25) are used instead of the mean and the standard
deviation, while the difference between the 99" and 1% percentile (Dygo1) provides
a reference of the amplitude of the complete arc from which the waves arrive. In
some cases, coefficient of variation (COV), defined as the mean over the standard
deviation is used to present dispersion of the data instead of the standard deviation.
COV was also estimated in annual scale to analyze inter-annual variability, in this
case calculated from the time series of annual mean values. In the case of directions,
the inter-annual variability was measured as the difference between the 75" and
25" percentile calculated from the time series of annual median values (Annual
Duurs25).

Regarding the correlations performed, it is necessary to provide some
details. The maximum correlation (Corrm.) is defined as the maximum absolute
value of the linear correlation that is obtained between two time series by varying
the time lag between them. This statistic is used to measure: (a) the correlation
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between H; of swells system at the node Al and the wind speed at several locations,
projected on the great circle that links each location with the node Al (following
Jiang and Mu, 2019), and (b) to estimate spatial correlation between wave systems
at different locations. Finally, monthly series were used to correlate with climate
indexes. This series were obtained averaging over time to have monthly means and
averaging in space in regions with high spatial correlation. Therefore, these are
series of monthly averages of H, by wave systems, representative of areas where the
system presents a strong spatial correlation.

I11.2.3  Identification of wave systems

Following Portilla et al. (2015), the wave spectra time series were used to
identify several long-term wave systems (LTWS); for each location, a wind sea
system and one or two swell systems were identified. To this end, the next steps
were followed: (i) partition of the spectra; (ii) identification of spectral partitions
corresponding to wind seas and swells; (iii) determination of the LTWS at each
node and (iv) regroup some of the LTWS to avoid discontinuities in the
characterization of LTWS in adjacent locations. While steps (i-iii) follows Portilla
et al. (2015), whose methodology was originally proposed for deep waters, step (iv)
was required in this case to adapt the methodology for the behavior observed in
shallow waters.

For spectral partition, the watershed algorithm (Meyer, 1994) was used.
The partitions whose H; are less than 0.25 m were discarded to reduce noise in the
posterior T-D bivariate distribution.

Wind seas were identified using the wave age criterion proposed by Hanson
& Phillips (2001),

Cp < 1.5Uyinq cOs 6, (IIL.5)

where C,, is the phase velocity of the waves calculated from the peak period
of the wave partition and the water depth, Ui is the 10 m elevation wind velocity
and &is the angle between the wind and the peak direction of the wave partition.
The spatial resolution of CFSR reanalysis is often not sufficient to properly
represent wind changes on sea-land transition, usually leading to an
underestimation of wind velocity in the nearshore. To avoid this affecting the
Hanson & Phillips criterion, Uyina was estimated at each location from its closest
CFSR node that is completely on water (i.e. a node on water with all its neighboring
nodes also on water). Further corrections were necessary to also take into account
potential refraction of the wind sea in the continental shelf. As refraction in the
nearshore can deviate direction of the wind sea from that of the wind, increasing &
and therefore decreasing the right term of [5] causing a wave partition to not be
classified as wind sea when in fact it is. To address this issue the following criteria
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was adopted for conditions with Uy higher than 2 m/s blowing from the sea: if a
wave partition is classified as sea by [5], no further correction is made; if no
partition is classified as sea by [5] but the wave direction of the partition is closer
to the perpendicular to the coast than the wind direction, then [5] is revisited but
imposing 6=0; lastly, if more than one individual wave partition is classified as wind
sea, only the one with the larger steepness is considered and the other(s) is(are)

classified as swell.

Then, long-term wave systems, as defined by Portilla et al. (2015), were
determined at each node considering only those partitions classified as swell.
Several nodes in the Atlantic and part of the outer RDP coast present two clearly
differentiated LTWS (see Figure II1.2a and I11.2b); these were named Eastern swells
(singled out in cyan in Figure III.2) and Southern swells (singled out in red),
according to their main directions. However, for some nodes these systems split in
more than two LTWS; in these cases, the LTWS were grouped to rebuild the
Eastern and Southern swells systems (see Figure III.2c and II1.2d), according to
the following criteria: if the peak of the LTWS is between the perpendicular to the
coast and the SW, it was assigned to the Southern swell system, while it was
assigned to the Eastern swell system if it is between the perpendicular to the coast
and the NE. In this way, swells were grouped in two systems along the entire
Atlantic coast and part of the outer RDP (Southern and Eastern swells), up to a
point where both systems merged, and it was not possible to differentiate them.
From that point, all swells are approximately aligned to the SE and were grouped
into a single system named RDP swells (singled out in yellow in Figure III.2e and
I1.2f). Lastly, there were some systems corresponding to wave partitions that, even
thought they were not identified as wind seas, they can hardly be associated with
swell conditions; these systems (singled out in black in Figure I11.2) are associated
with partitions coming from fetch limited directions that remain after a change of

wind direction. Consequently, these systems are relabeled as wind seas.
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Figure II1.2: Examples of delimitation of Southern swells system (in red), Eastern swell
system (in cyan) and RDP swell system (in yellow) based on partitioning the T,-Dp
bivariate distribution of swells.

ITI1.3 Results

Results are presented in this section differentiating among those resulting
from the analysis of integral wave parameters (section III.3.1; Figures II.3 to
II1.12), average spectra (section I11.3.2; Figures II1.13 to II1.17) and wave systems
(section II1.3.3; Figures III.18 to II1.35). Discussion of these results is presented
afterwards, in section III.4.

IT1.3.1 Integral Parameters

The spatial distribution of the sample statistics used to measure central
tendency, dispersion and extreme values can be seen in Figures I11.3 to II1.5. Figures
I11.3 and III.4 contain maps of the mean, COV and 99" percentile of H, and Ty,
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respectively. Figure III.5 presents maps for D,, with the median, the difference
between 75™ and 25™ percentiles and the difference between 99™ and 1* percentiles.

The intra-annual variability of Hs, Two1 and D,, is presented in Figure I11.6
through their corresponding annual cycles at the nine selected nodes (see Figure
III.1). For H, and T the monthly average is considered while for D, it is replaced
by the monthly median.

The inter-annual variability of these parameters is presented in Figures I11.7
and II1.8. Figure III.7 presents the maps of the COV at annual scale for the three
parameters (Annual Dyyzsosin the case of Dy,), while Figure II1.8 presents the time
series of their annual mean (median in the case of Dy,) at the nine selected nodes.

Results regarding the wave energy flux are presented in Figures II1.9 to
ITI.12. Figure II1.9 shows maps with the mean magnitude and median direction of
the WEF, while Figures II1.10 present their annual cycle. Figures I11.11 and II1.12
present inter-annual variability results.
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Figure III.3:-Spatial distribution of H; statistics: a) mean, b) COV and c¢) 99"
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I11.3.2 Average spectra

Figure I11.13 shows average spectra for three of the selected nodes, one from
the Atlantic (A2), one from the outer RDP (O2) and one from the inner RDP (12).
In all cases, the two-dimensional average spectrum (central panels) is accompanied
by two one-dimensional average spectra, one integrated into directions that
presents the average energy distributed in frequencies (right panels), and the other
integrated into frequencies presenting the average energy distributed in directions
(left panels). All spectra are complemented with the values of integral and peak
parameters obtained from them, i.e. T,™®, Huo™, Twor™, Dw®, T, Dy, Dpi®, Dy .
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Also, average spectra at the selected nodes were normalized by their significant
wave height and superimposed in Figure III1.14.

Inter-annual variations in terms of average spectrum are presented in
Figures 1I1.15 to III.17 for nodes A2, O2 and 12, respectively. Four seasons were
considered, grouping January, February and March (JFM) for summer; April, May,
and June (AMJ) for fall; July, August and September (JAS) for winter; and
October, November and December (OND) for spring.
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IT1.3.3. Wave systems

First, Figures II1.18 and III.19 present results regarding the frequency of
occurrence of different wave partitions and LTWS. Figure III.18 presents the
spatial distribution of the average number of partitions that make up a sea state
at each node (i.e. the total number of wave spectral partitions over the number of
sea states at each node). As described in section II1.2.3, four LTWS were considered
for grouping the wave partitions: wind waves, southern swells, eastern swells, and
RDP swells. The relative frequency of these systems along the coast is presented
in Figure II1.19; this frequency was calculated as the ratio between the amount of
individual partitions classified as one LTWS and the total amount of partitions

counted.

Then, Figures II1.20 to III.27 present results summarizing the average
behavior of each LTWS at each node. Figures I11.20 to 111.22 show mean of H, and
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T, and median of D, for each LTWS, respectively, while Figures I11.23 to II1.25
show the average spectra of the three LTWS for nodes A2, O2 and 12. Figure I11.26
presents the spatial distribution of the relative contribution of each LTWS to the
total WEF; complementarily, Figure II1.27 shows the vector decomposition of the
WEF at the nine selected nodes.

Results related with the intra-annual and inter-annual variability of the
LTWS are presented in Figures II1.28 to I11.32. Figures II1.28 to II1.30 show mean
annual cycle for each analyzed variable (i.e. percentage of occurrence, H, T, D,,
WEF magnitude and direction) and LTWS at nodes A2, O2 and 12, respectively,
while Figures II1.29 to II1.30 show time series of mean annual values for the same
variables at the same locations.

Lastly, the maps of maximum correlation between H of the swell LTWS
and wind velocity in the Atlantic Ocean are presented in Figure I11.34, matrices of
spatial correlation for the different systems at different nodes are shown in Figure
IT1.35, and correlation between H; of the different LTWS and several climate
indexes is shown in Table III.2.
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Figure II1.28: Annual cycles of different wave systems parameters at A2. The
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flux (e and f, magnitude and direction respectively).
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Figure II1.31: Inter-annual variation of wave systems parameters at A2. The parameters
are: frequency of occurrence (a), Hs (b), Tp(c), Dy(d), and mean wave energy flux (e and

f, magnitude and direction respectively).
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projection on the azimuth (a) and between H; of eastern swells and wind projection on

the azimuth (b).
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Figure II1.35: Maximum correlation of H, of the same system at different nodes. Wind

seas (a), Southern swells prolonged with RDP swells (b) and Eastern swells prolonged
with RDP swells (c).
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Table ITI.2: Linear correlation between monthly mean H, per system and climate
indexes. An average of the Atlantic nodes (1-25) was considered for the eastern and
southern swells, an average of nodes 30 to 49 was considered for RDP swells, and average
of the nodes indicated in the names were considered for wind seas. Only those correlation
statistically significant at 90 % are shown. The correlations statistically significant at 95%
are highlighted in bold.

Eastern Southern RDP swell | Wind seas | Wind seas | Wind seas | Wind seas
swell swell 1-14 15-25 26-38 39-59
AAO 0.14 -0.18 - 0.16 0.10 0.11 0.11
SOI - - - - - - -

I1I.4 Discussion

Obtained results are in agreement with and reinforce what was suggested
by previous works in terms of the distinction made between the wave climate at
the Atlantic coast, the outer RDP coast, and the intermediate and inner RDP
coast. On the one hand, in the Atlantic coast around 80% of the wave partitions
are classified as swells (Figure II1.19), accounting for almost 75% of the incident
WEF (Figure II1.26); moreover, multimodality of the spectrum is a distinctive
feature of this zone: a sea state is composed on average of 2.3 wave partitions
(Figure ITI1.18). On the other hand, to the west of Montevideo (the intermediate
and inner RDP) most of the sea states are unimodal (Figure I11.18) and the wave
climate is dominated by wind seas, both in terms of frequency of occurrence (Figure
II1.19) and incident WEF (Figure I11.26). The zone in between these two (the outer
RDP) is characterized by a smooth transition between the two wave climates, with
the number of wave partition decreasing from over two to one (Figure II1.18), and
with swells converging in the direction of the estuary’s axis (approx. 125% Figure
I11.22) and dissipating due to decreasing depths (Figure I11.26).

Regarding the Atlantic coast, a distinctive feature of its wave climate is
bimodality. Average spectra show two peaks, one associated with south directions
and the other with east directions (Figures III.13 to III.15); both swells and wind
seas present this bimodality (Figure II1.23). Swells were grouped in accordance to
these two modes and analyzed separately. Southern swells are the most frequent,
accounting for almost half of the wave partitions (Figure III.19), occurring
throughout the Atlantic coast with mean H; of 0.85 m, mean T, of 10.5s and median
D, around 165° (Figures II1.20 to II1.22); eastern swells on the other hand are less
frequent (approx. 35 % of the wave partitions; Figure II11.19) and less energetic,
with mean H, around 0.75 m (0.65 m) to the east (west) of La Paloma, mean T,
around 8.2 s and median D, around 85° (Figures II1.20 to II1.22). This is the area
with the highest wind seas, and as was the case with eastern swells, they show
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different behavior on both sides of La Paloma: to the east mean H; is approx. 1.25
m, while to the west it decreases down to 1 m in Punta del Este (Figure III.20).
This change in La Paloma is also observed when looking at wind sea directions,
which have a median D, of around 95° (115°) to the east (west) of La Paloma
(Figure II1.22), and is confirmed by the analysis of the spatial correlation of the
wind seas (Figure III.35). This change in the wave climate at La Paloma is
attributed to the change in the orientation of the coast; to the west of La Paloma
the coast is more southward oriented, while to the east it is more eastward oriented,
being more exposed to eastern swells and wind seas coming from the east. When
looking at the integral wave parameters, this translates into higher waves and a
counterclockwise rotation of the waves eastward of La Paloma, in agreement with
Alonso et al. (2015): east (west) of La Paloma mean H; is around 1.55 m (1.4 m),
median D, around 128° (138°), WEF magnitude around 10 kW /m (8kW/m) and
WEF direction around 140° (150°) (Figures I11.3, II1.5 and III1.9, respectively).

The outer RDP is characterized by the decay of the wave energy along its
coast. This is explained mainly by swell dissipation and, to a lesser extent, by the
decreasing depth affecting the development of wind seas, as it appears from
analyzing the decomposition diagrams of the WEF at points O1 to O3 (Figure
IT1.27): while the energy of wind seas at O3 is half of that at O1, energy of swells
at O3 is about eight times lower than at O1. The different contribution of the two
processes is also evidenced by how the parameters of the LTWS evolve between
Punta del Este and Montevideo (Figure I11.20): while wind seas mean H, decreases
from 1 m to 0.85 m, swells mean H, reduction is larger, from about 0.72 m (adding
southern and eastern swells) to 0.4 m. Taken together, the decline in both swells
and wind seas results in that mean H, (i.e. integral parameter) decreases from
around 1.2 m to 0.75 m (Figure II1.3), and mean WEF decreases from 6 kW /m to
1.7 kW/m (Figure I1I1.9). Moreover, as swells decay is larger than that of wind
seas the periods are also affected, with mean Two: decreasing by almost 1.5s (Figure
II.4), and T, decreasing from 10.5 s to 6 s (Figure II.13 and III.14). Beyond
energy decay, wave climate in this area is also significantly affected by refraction:
as evidenced by the swells directional average spectrum, swells tends to align with
the axis of the estuary (135° Figure II1.24), completely loosing any trace of
bimodality (compare Figure I11.23.e with Figure I11.24.d). In comparison, wind seas
show little variation in terms of median D, (Figure II1.22.a) between Punta del
Este and Montevideo, so the rotation observed in the median D, (integral
parameter; Figure IIL.5) is mainly attributed to swell refraction. Regarding wind
seas, a distinctive feature in this area is its strong spatial correlation (Figure I11.35)
and the increase of the relative importance of the waves from the S-W quadrant
(Figures II1.13, II1.14 and II1.24), product of the change in the alignment of the
coast.
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The wave climate in the intermediate and inner RDP is governed by wind
seas that show a strong spatial correlation in the area (Figure I11.35), and whose
energy gradually decrease to the west of Montevideo (Figures II1.20 and II1.27).
There are two factors explaining this pattern. On the one hand, there is water
depths decreasing towards the inner part of the estuary: as wave generation in the
area is depth-limited, a decrease in depth results in lower and shorter waves. On
the other hand, as the estuary has a NW — SE orientation and a funnel shape,
fetches corresponding to the S-W quadrant also decrease towards the inner RDP.

With regards to severe conditions, it is noted that the difference between
Atlantic and RDP coasts is lower for the H, 99" percentile than for mean H, (Figure
I11.3), probably because extreme conditions are wind seas, sharing the same forcing
at both environments, with differences coming from depths and fetches.

Regarding variability (as measure by COV), it is noted that for H, and Ty
i« is larger in the RDP than in the Atlantic, increasing towards the inner RDP
(Figures III.3 and IIL.4). This is in agreement with the increase in the relative
importance of wind seas in the RDP, since the short-term variability of local winds
is translated directly to the wave climate; in the areas where swells are more
relevant the variability is reduced. On the other hand, due to bimodality of the
wave climate in the Atlantic, wave directions present a larger variability there than
in the RDP (Figure IIL.5). From Figure II1.6 it follows that variability in wave
directions is mostly related with its annual cycle; its range in the Atlantic is approx.
30°, with a clockwise rotation (more southern waves) during cold seasons (AM.J
and JAS) and counterclockwise rotation (more eastern waves) during warm seasons
(OND and JFM); this same pattern is also observed in the RDP but with smaller
amplitude. When looking at the LTWS, it is clear that the annual cycle of the
wave direction has a twofold explanation (Figures I11.28 to I111.30): on the one hand,
there is a pronounced annual cycle in wind seas directions all along the coast; on
the other hand, at the Atlantic coast there is a change in the relative frequency of
the two swell systems along the year, with the southern (eastern) swells being more
frequent during cold (warm) seasons (Figure II1.28). In addition, southern swells
are longer and more energetic during cold seasons in the Atlantic (Figure II11.28 b
and c), a pattern that is also observed in swells in the outer RDP (Figure II1.29
and II1.30). So, between April and September, southern swells and swells in the
RDP are more frequent and show larger periods than their annual average, which
in turns translates into the annual cycle of mean periods shown in Figure II1.6 (c
and d). Unlike the southern swells, the annual cycle of eastern swells is
asymmetrical, with a spike during austral spring in both H, and T, (Figure I11.28);
this in turns affects the annual cycle of the WEF, that during these months show
a counterclockwise rotation (Figure II1.10). Moreover, September is an atypical
month, with a clear spike in the energy of both wind seas and southern and RDP
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swells (Figures II1.28 to II1.30), resulting in a clear peak in total H, (Figure IIL.6).
Lastly, there is a decrease in the wave energy during winter at some locations in
the RDP particularly in June (Figure II1.6), that is produced by a clockwise
rotation of the wind (and wind seas; Figures II1.29 and II1.30), with winds coming
from the S-W quadrant, resulting in a reduced fetch.

Difference between the Atlantic and the RDP coast are also evident from
the inter-annual variability. The H,, Tun and ||[WEF|| COVaumu are larger in the
RDP than in the Atlantic, while the annual Durs05 are larger in the Atlantic than
in the RDP (Figures II1.7 and III.11). When looking the time series of mean (or
median) annual parameters (Figures II1.8 and III.12) two features stand out: first,
a cycle of roughly 20 years for Tyo in the Atlantic and outer RDP; secondly, a
positive trend for both wave and WEF directions (a clockwise rotation). The former
is attributable to the southern swells (Figure II1.31), while the latter comes from a
trend in the direction of wind seas (Figures II1.31 to III.33).

The delimitation of the ocean areas where the two swell systems are
generated (Figure II1.34) shows that higher correlation values are found for
locations relative close to the Uruguayan coast, somehow explaining the similarity
between wind seas and swells climate observed in the Atlantic (Figure II1.23). On
the other hand, the area of highest correlation with the southern swells is further
away from the Uruguayan coast than that of the eastern swells, resulting in
southern swells having larger wave periods (Figure II1.21). Moreover, the area of
high correlation is larger for southern swells than for eastern swells and
encompasses latitudes of high storminess. Conversely, the area of high correlation
of the eastern swell falls within the influence zone of the South Atlantic semi-
permanent High (Sun et al. 2017), in agreement with results showing southern
swells being more energetic than eastern swells (Figure 111.26).

Lastly, from the analysis of the climate indexes (Table III.2), it results that
the climate index with the highest correlation with the wave climate in the
Uruguayan coast is the Antarctic Oscillation index (AAOQO), in agreement with
previous results presented in Alonso et al. (2015), and also with previous results of
studies performed at a larger scale (Stopa et al. 2013 and Marshall et al. 2018). Its
correlation with both swell systems has an opposite sign, positive with the eastern
swells and negative with the southern ones; as both systems contribute to the RDP
swells, the opposite correlations appear to neutralize each other and no significant
correlation is found between AAO and RDP swells. Regarding to wind seas, the
correlation with AAQ is significant and positive for the entire coast. The separation
between LTWS allowed perceiving more clearly the influence of the AAO, which
would be largely hidden if we correlated with H; (i.e. integral parameter) as it can
be seen in Stopa et al. (2013) and Reguero et al. (2016). Regarding to SOI, no
significant correlation was found with any LTWS.

76



I1I.5 Conclusions

Starting from the somehow standard integral parameters, but then
expanding the analysis to include wave spectra and LTWS, this work analyzed and
discussed in detail the wave climate of the Uruguayan coast. Although the analysis
considers from the first moment the usual division of the Uruguayan coast into
Atlantic, Outer RDP and Intermediate and Inner RDP, the obtained results sustain
this regionalization in terms of wave climate, providing the distinctive
characteristics of each region.

It was found that the wave climate changes gradually from one extreme to
the other of the Uruguayan coast. In the Atlantic coast the change is driven mainly
by changes on coastal orientation, where La Paloma was identified as a breaking
point, while in the RDP the effect of the bathymetry and the geometry of the
estuary (fetches) play a major role, with a noticeable difference between annual
cycles of H; and WEF to the east and to the west of Montevideo. A common feature
observed in the wave climate all along the coast is a peak in wave energy (H,and
WEF) during September, with contributions from all LTWS. In terms of inter-
annual variability it was found that AAQO is the climate index that most affects
wave climate in the area and that there exist a trend to clockwise rotation of the
WEF, something that could have profound impacts on coastal morphology.

Regarding the methodology, it was shown that the combination of Hanson
and Phillips (2001) method to separate swells and wind seas with the long-term
wave system approach of Portilla et al. (2015), modified to include an ad hoc
posterior re-grouping step that considered the orientation of the coast, allowed to
define wave systems that were coherently identified all along the coast. The
decomposition of the wave climate in these LTWS provided a better interpretation
of different patterns observed, in particular those related to annual cycles and inter-
annual variability; for example the influence of the AAO would have been largely
hidden if only correlation with H, would had been used.

Lastly, the distinction between wave systems used here might be useful to
improve wave modeling in the study area, as it would facilitate assessing the
performance of the model separating by wave systems, allowing the identification
of specific problems of each one and guiding future met-ocean research in the region.
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Capitulo IV

Bayesian inference applied to wave

hindcast dynamical downscaling

Abstract

Bayesian inference provides a framework to automatically calibrate models
and predict uncertainties associated with their use. Successfully applied in other
areas, its use in coastal engineering is not yet widespread. This paper proposes the
use of a Bayesian MCMC algorithm for the calibration of a wave model, in the
framework of the dynamical downscaling of off-shore waves to a nearshore project
site, where a set of wave measurements is available. A spectral error was defined
and used for the definition of the likelihood function used by the algorithm; this
allows for improvements in terms of the wave spectra and not only in terms of a
restricted set of wave parameter. In addition to the calibration of the wave model
parameters, the proposed methodology also addresses errors coming from boundary
conditions; to this end it distinguishes between different wave systems and a set of
parameters are defined for the correction of each wave system, reducing the errors
introduced into the model by the boundary conditions. A case study in the
Uruguayan Atlantic coast showed the ability of the proposed methodology to
provide a calibration of the model resulting in simulations that properly fit the
available measurement, while providing an estimation of the uncertainties
associated with the obtained results that can be straightforwardly used for
probabilistic analysis in the coastal environment

78



IV.1 Introduction

Waves are responsible for the highest loads on coastal structures, are the
main forcing of sediment transport in beaches and condition any activity developed
on coastal waters. Therefore, long-term and good quality wave data series are
essential for any coastal engineering project. At the same time, as probabilistic
approaches become standard practice in many coastal engineering applications, it
is not enough to obtain reliable long-term wave data series, but it is also necessary
to have an estimation of their uncertainty.

Despite its relevance, reliable coastal wave data is only available in some
areas, where long-term wave measurements are available and have been used for
calibration and validation of high-quality and high-resolution wave hindcasts (e.g.
O'Reilly et al. 2016 for the coast of California). For most regions, typically in
developing countries, engineers commonly resort to global wave hindcasts (e.g.
ERA-Interim, Dee et al. 2011), ideally in combination with a short-term (i.e. a few
months) in-situ measured series obtained for the particular project with the aim of
calibration or validation of the hindcasts.

The most recent global wave hindcasts (Chawla et al. 2013, Rascle &
Arduhin, 2013, Perez et al. 2017), based on the multigrid two-way nesting
configuration of WAVEWATCH III® (Tolman, 2008), provide more accurate
results on coastal regions than its predecessors that were focus exclusively on
oceanic deep waters (e.g. Cox & Swail 2001, Sterl & Caires 2005, Reguero et al.
2012). However, the resolution of the coastal grids is still not fine enough to capture
small-scale variability in the nearshore, they do not consider local bathymetric
information and are validated almost exclusively using deep waters altimetry data.
Therefore, recent global wave hindcasts provide better quality and closer to site
boundary conditions but, as stated by Perez et al. (2017), they still must be
downscaled to be used on a coastal engineering project.

Downscaling can be done with statistical methods (e.g. Hegermiller et al.
2017, Camus et al. 2014) or, more commonly, through the use of numerical models
that solve the set of equations that mathematically model the physics of the waves
propagating to the coast (e.g. Rusu et al. 2008), known as physical or dynamical
downscaling. Methodologies that combines dynamical and statistical downscaling
technics are called hybrid downscaling (e.g. Camus et al. 2011).

Four sources of errors, that ultimately introduce uncertainty in the model
results, can be distinguished when dynamically downscaling waves, namely (see
Figure IV.1): forcing errors, model structural errors, model parameter errors and
measurement errors. Forcing errors, particularly those related to boundary
conditions, have a major impact on the downscaling results. Although global
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hindcasts have been significantly improved through better parametrizations of
physical processes (see e.g. Filipot & Arduhin 2012 and Zieger et al. 2015) and
through the use of better wind data from the most recent atmospheric reanalysis
(e.g. Saha et al. 2014), errors are still expected, particularly related with swell far
fields and high-order spectrum moments (Stopa et al. 2016). Model structural and
parameter errors are interrelated. Third-generation models based on the wave
action balance equation are the state of the art for dynamically downscaling waves
(e.g. SWAN, Booij et al. 1999), as the use of more accurate phase-resolving models
is unfeasible given the time and spatial scales normally involved in the downscaling.
However, for many of the physical processes involved in the sources and sink terms
of the wave action balance equation, there are several possible parametrizations,
the combination of which results in different model structures. Once a model
structure has been selected, there is a set of parameters that must be defined. Even
though there is prior knowledge on the range of values these parameters may take,
and in some cases default values are proposed in the numerical models, many of
the parameters would be case-specific and must be defined through calibration.
Lastly, measurement errors arise from limitations of the measurement instruments,
namely: accuracy, resolution and sampling frequency.

Assuming there is as set of observations available at the project site, the
common practice is to fine-tune some of the model parameters in such a way that
model outputs approximate as closely and consistently as possible the observed
response of the system over the measured period. This approach assumes that
model parameters are deterministic and neglects model structural errors as well as
forcing and measurement errors. To the best of our knowledge, this calibration is
usually addressed with ad hoc approaches developed for each project. As third-
generation wave models have several parameters, the manual calibration of them

becomes labor-intensive and strongly dependent on the modeler.

More advanced approaches resort to automatic calibration methods and
would consider: (i) model parameters to be uncertain and to be handled as random
variables and (ii) a parametric model for the correction of the boundary conditions,
whose parameters are taken as part of the original model. These approaches allow
to calibrate the model, thus improving its performance, and at the same time give
an estimation of the uncertainty associated with its use. A variety of tools pursuing
this has been developed and successfully applied in other branches of civil
engineering, particularly in hydrology, using both formal (e.g. Vrugt et al. 2003,
2008 and 2016) and informal (e.g. Beven 1992, 2006 and 2014) statistical
approaches. Meanwhile, in coastal engineering, its application has been little
exploited. To the best of our knowledge, Ruessnik's pioneering works (2005 and
2006) have only been succeeded by recent works of Alonso and Solari (2017),
Simmonds et al. (2017 and 2019) and Kroon et al. (2020).
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The objective of this work is to propose and test a methodology for the
automatic calibration and uncertainty quantification of a wave propagation model,
when used for wave downscaling. To this end, the early work of Alonso and Solari
(2017) is taken as starting point and improved in order to achieve three specific
objectives: (i) that calibration improves model performance not only in terms of
wave heights, but in terms of direction and periods as well; (ii) that it considers

possible corrections of the boundary conditions; and (iii) that it runs faster.

The rest of the manuscript is organized as follows. First, section IV.2
deepens in some aspects of the background regarding model calibration and
uncertainties prediction, as well as prior applications in the coastal engineer field.
Then, the proposed methodology is presented in section IV.3, and the case study
used for its application is introduced in section IV:4. Section IV.5 presents and

discuss obtained results. Finally, conclusions are outlined in section IV.6.
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Figure IV.1: Schematic overview of the model calibration problem involved in a wave
reanalysis dynamical downscaling. After starting with the default parameter values of the
numerical model and input data without correction, the model parameters and input
correction parameters are iteratively adjusted seeking a better fit between outputs (solid
line) and observations (dotted line). Adapted from Vrugt (2016, Fig.1)

IV.2 Background

IV.2.1 Model parameter calibration and uncertainty analysis

Methods like the one used in Alonso and Solari (2017) and in this work
resort to Bayesian inference to estimate model parameters and to quantify the
uncertainty associated with the use of the model. The parameters are represented
with a probability density function (PDF), which does not means that the
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parameters are random variables but that our knowledge of parameter’s value is
uncertain and that this uncertainty can be represented using an appropriate PDF
(Hamada et al. 2008).

Markov chain Monte Carlo algorithms (MCMC) have allowed expanding
the application of these methods to diverse, complex, and multi-parametric
problems, by estimating the posterior PDF from a sample generated by the
algorithm. MCMC requires the choice of a proposal distribution to generate
transitions in the Markov chain. Starting with Vrugt et al. (2003), a set of efficient
search methods was developed by combining optimization and adaptive search
algorithms; the latest of these methods, the DREAM algorithm, has been shown to
simplify Bayesian inference and to significantly speed-up estimation of posterior
parameter distributions (Vrugt and Beven, 2018).

A fundamental assumption in the formal Bayesian inference methods is that
uncertainties can be satisfactorily described as aleatory in nature, which is
reasonable insofar as epistemic errors are not predominant. This allows defining a
likelihood function based on a structural model of the residuals, that links to the
posterior distribution of the parameters using Bayes rule, providing outcomes with
a formal probabilistic interpretation (Vrugt and Beven, 2018). When epistemic
uncertainties are significant and formal statistical likelihood functions are difficult
to justify, other (informal) approaches may be more appropriate (Beven, 2014).

The Generalized Likelihood Uncertainty Estimation (GLUE) methodology,
originally proposed by Beven and Binley (1992), constitutes an alternative
approach that originated in hydrology and was widely applied to many different
modeling problems in different fields. The GLUE methodology replaces the concern
to find an optimal representation of the model by the aims to find a set of model
representations (model inputs, model structures, model parameter sets, model
errors) that are behavioural in the sense of being acceptably consistent with the
(non-error-free) observations (Vrugt and Beven, 2018). This is the equifinality
thesis, which intends to focus attention on the fact that many acceptable
representations cannot be easily rejected and that should be considered in assessing
the uncertainty associated with predictions (Beven, 2006). Then, predictions are
made using this ensemble of behavioural models, weighted according to some
likelihood measure supporting a degree of belief (Vrugt and Beven, 2018). The term
likelihood here is used in a general sense as a measure of how well the model
conforms observations and not in the restricted sense of function developed under
specific assumptions, e.g. zero mean, normally distributed errors (Beven and
Binley, 1992).

Past applications of GLUE have commonly used brute- force random
sampling techniques across uniform prior distributions in order to explore the



parameters space, even though other, more efficient approaches could be used
within GLUE; when parameter space is high-dimensional, this approach is
inefficient and could result in a relatively poor exploration of the model (Vrugt and
Beven, 2018). Also, past application has relied on the informal likelihood being
defined as some goodness-of-fit measure, and uncertainty intervals obtained from
subjectively thresholding this goodness-of-fit; however, more recent works
advocates for the use of the Limits of Acceptability framework within GLUE
(Beven 2006, 2014), where the limits should be defined (preferably a priori) on the
basis of best available knowledge, resulting in a more objective and standard
approach (Vrugt and Beven, 2018).

Sadegh and Vrugt (2013) have shown that the GLUE - Limits of
Acceptability framework is similar to approximate Bayesian computation (ABC)
methods, particularly if each observation of the record is used as a summary
statistic, bridging the gap between formal and informal approaches.

IV.2.2 Applications in Coastal Engineering

Comparing with other areas, in coastal engineering the use of Bayesian
methods for model calibration and uncertainty estimation is not widespread. To
the best of the authors’ knowledge, it is limited to the pioneer works of Ruessnik
(2005 and 2006) and the recent works of Alonso and Solari (2017), Simmons et al.
(2017 and 2019) and Kroon et al. (2020), all of which use GLUE with an overall
model skill score as an informal measure of likelihood and exploring the parameter
space with Monte Carlo brute-force sampling techniques, except Alonso and Solari
(2017), that used a formal likelihood approach.

Ruessink uses GLUE to quantify the parameter-induced predictive
uncertainty of a cross-shore depth evolution model (Ruessink, 2005) and of a
longshore currents model (Ruessink, 2006). In both cases, a Nash-Sutcliffe skill
score (Nash and Sutcliffe, 1970) was used as an informal measure of likelihood, and
it was shown how its choice along with the selection of the threshold that
differentiate between behavioural and non-behavioural models, impacts on the
estimation of the uncertainty bands. In addition to this problem of subjectivity,
Ruessink (2006) pointed out the high computational cost of the method, resorting
to the use of a surrogate model based on Artificial Neural Network (ANN) in order
to speed-up the calibration. Simmons et al. (2017 and 2019) explore the use of the
original GLUE approach (as proposed in Beven and Binley, 1992) for the
calibration of beach profile morphodynamic models (XBeach and SBeach),
concluding that a better calibration and deeper insight on both the data and the
model are obtained by using an automatic calibration method instead of the “trial
and error” approach. Kroon et al. (2020) examine the relative importance of

intrinsic and epistemic uncertainty in coastline modeling of large-scale
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nourishment. A one-line model is used, and intrinsic uncertainty was associated to
wave climate while epistemic uncertainty is associated with the model and
quantified using GLUE. It is shown that for multi-year time scales, model
uncertainty becomes dominant, evidencing that this kind of approaches have much

to contribute to coastal engineering.

Alonso and Solari (2017) showed the ability of the Bayesian Markov chain
Monte Carlo (MCMC) algorithm entitled DREAM (Vrugt et al. 2008 and 2009) to
calibrate parameters of a third-generation wave model, using the error of the
significant wave height (H,) as the objective function. Tests performed for one and
two parameters showed the effectiveness of the method to find the optimum of the
target function; then, by including more parameters, the method was able to
improve model results in terms of H,. However, it did not improve model
performance in terms of other wave parameters that were not considered by the
target function (e.g. mean period and mean direction). Besides, the authors
concluded that forcing (i.e. boundary conditions) errors were relevant but not
addressed at that point.

IV.3 Methodology

The proposed methodology includes five steps. First, the selection of a
subset of data to calibrate the model, seeking to reduce the computational demand
without losing representativeness of the variety of conditions present in the
measured dataset. Second, the definition of a measure of how well the model fits
the observations, establishing its statistical properties from which to define the
likelihood function required for a formal approach. Third, the selection of the
parameters to be calibrated. Fourth, running of the calibration algorithm and
obtaining a best-fit set of parameters and their joint probability distribution.
Finally, the use of the best-fit set of parameters to downscale the wave hindcast,
along with the parameters’ joint distribution to assess the uncertainty of the
downscaling outcomes.

IV.3.1 Selection of the calibration data subset.

On the one hand, the amount of data used for calibration of the model
directly affects the computational cost of the calibration process. In the case of
automatic calibration methods, a high computational cost can make the method
unfeasible. However, it is not necessarily the length of the data what really matters,
but their variability (Yapo et al. 1996). On the other hand, it is advisable not to
use in the calibration data that might be misinformative (Beven et al., 2011), i.e.

events with a noticeable inconsistency between the input data and the observations
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at the site of interest, that may be caused by a lack of information in the input
data or the presence of spurious measurements.

The objective is to select a subset of data for calibration that contains as
much useful information as the entire dataset (i.e. a sufficient subset) and that do
not includes misinformative events. To this end, the following three steps are
proposed:

1) Run the model using default values for the parameters and input
data without any correction, quantify output errors (see 3.2) and flag the events
that have the largest errors as not suitable for calibration (in this work the 5% of
the data with the largest errors was discarded for calibration).

2) The information contained in a sea states can be fully described by
its spectrum or summarized by a set of sea state parameters; while the use of the
full spectrum for the definition of a subset with sufficient information might be
cumbersome, the use of integral wave parameters might overlook some relevant
processes. As a compromise, a vector of 3xN is used to represent each sea state,
consisting of values of H;, T, and D, for each of the N wave systems identified
following Portilla-Yandun et al. (2015).

3) Apply the maximum dissimilarity algorithm (MDA) to obtain a
representative subset of wave conditions to be used for model calibration, using the
(normalized) parameters of the wave systems to calculate the with the Euclidian
distance between sea states (MDA; see e.g. Camus et al. (2011 a,b)).

IV.3.2 Error measure and its probability model.

The most complete way to assess a wave model that works with spectra is
by contrasting model output spectra with observed spectra. It is expected that a
better match between the model and the observed spectra will result in a better

performance for any wave parameter.

It was defined an error that considers the whole spectrum. This spectral

error (SE) is defined as,
1/2
SE = (ffm-ax f027T||Smodel(f, 9) _ Sobserved(f’g)” dfd@) , (IV.l)
mn

where S(f, 8 ) refers to the variance density spectrum of waves. The absolute
value is introduced to avoid that energy overestimation in a portion of the spectrum
compensate underestimation in other parts. The dimension of SE is length. Since
both model and measure spectra are discrete, SE is calculated with (IV.2). The
same discretization (A6;;and Afi;) have to be used in both spectrum.

1/2

SE ~ (T Xj||sTedet — sgpserved|| a6, jaf ;) (Iv.2)
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Then, assuming that errors (SE) are independent, identically distributed
with a half-Normal distribution, the likelihood function is defined as:

loglikelihood = —= x N x log (¥, SE?). (IV.3)

Where N is the length of the subset used for the calibration and SEi is the
spectral error obtained for each sea state. For reasons of numerical stability and
algebraic simplicity, it is convenient to use the natural logarithm of the likelihood
function or log-likelihood (Vrugt 2016).

1V.3.3 Calibration parameters

There are two kinds of parameters involved in the calibration: model
parameters and input correction parameters (i.e. correcting boundary condition).
As the number of parameters to calibrate have a direct impact on the
computational cost and complicates the interpretation of the results, a sensitivity
analysis is performed before running the calibration algorithm, in order to
concentrate efforts on parameters that have the greater impact in improving the
model performance. The set of parameters considered for the calibration and the
sensitivity analysis are introduced next.

Model parameters

The dynamical model used to downscale waves is the third-generation wave
numerical model SWAN (Booij et al. 1999). As showed in Alonso and Solari (2017),
the source terms of the wave action balance equation that have a significant impact
on results at the point of interest are bottom friction (Sn) and whitecapping
dissipation (Sa). Hence, here the focus of the calibration remains on those two
terms.

The bottom friction parametrization used correspond to the empirical model
of JONSWAP (Hasselmann et al. 1973), and it is expressed in the following form:

0.2

Sbot(0,0) = =Cp 5o

E(a,0), (IV.4)

Where o, k and 6 are the frequency, wave number and direction of the wave
spectrum bin whose energy is E(o, ), g is the gravitational acceleration, Sy, (o, 0)
is the energy dissipated (negative value) by bottom friction on the spectrum bin
defined by o and 0, while C, is a dimensionless parameter that need to be calibrated.

The whitecapping dissipation parametrization used correspond to the pulse-
based model of Hasselmann (1974), reformulated in terms of wave number (the
WAMDI group, 1988). This expression is:

Sas(0,0) = —TGZE(0,6), (IV.5)

and the expression of I'is,
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r=—Co(1-8)+85)(2). (IV.6)

Spm
Where Si(o, 0) is the energy dissipated by whitecapping on the spectral
bin (o, 6), and o, l? and S are the mean frequency, the mean wave number and
the overall wave steepness respectively. Sp,, is the value of S for the Pierson
Moskowitz spectrum (1964). While Ci, 6 and p are tunable dimensionless

parameters.
Input correction parameters

It is proposed a set of parameters to correct the off-shore waves used as
boundary conditions, as well as wind fields. Subsequently, these correction
parameters are included in the calibration algorithm alongside the model

parameters.
Wind data is affected by the coefficient Cyia that multiplies wind velocity,
Vivina = Cwina X Viging- (IV.7)

In the case of off-shore waves used for boundary conditions, three types of
correction parameters are defined. One that affects the total amount of energy in
the spectrum (Cyave) and two that modify the distribution of the energy in the
frequency — direction domain. The one called Frequency Shift (F'S) translate the
spectrum on the frequency axis, maintaining the energy distribution in directions;
the other, called Direction Shift (DS), translates the spectrum on the directions
axis, maintaining the energy distribution in frequencies. Therefore the spectral
density corresponding to the pair (f, 8 ) is affected by the parameters Cyave, F'S and
DS as follows,

S™W(f,0) = Cyape X S°'4(f — FS,6 — DS). (IV.8)
The Figure IV.2 shows an example of how Cyawe, FS and DS affect a wave
spectrum.
-3
0.04 ; 3 x10 , . .
(2:3) Original (2.b) Original: Modified:
003} Modified | H-Lam i
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NE 0.02 NE Dm—221° Dm—2380
=
1+t
0.01
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Figure IV.2: Wave spectrum modified by Cyue=1.2, FS=0.05 Hz and DS=15°.
Distribution of the total variance of the sea surface elevation over frequencies (2.a) and
directions (2.b)
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Taking into account that error sources in reanalysis wave data may differ
between wave systems (Portilla and Cavalleri, 2015), a different set of correction
parameters (Cyave, F'S and DS) is considered for each wave systems. Therefore, if
M wave systems are considered (e.g. wind seas and M-1 different swells) there will
be 3xM correction parameters of the boundary condition. Default values for these
parameters are those that do not change the wind nor the wave spectrum at the
boundary: Cyima=1, Cyave=1, FS=0 and DS=0.

Sensitivity analysis.

For each parameter, Eq. (5) is evaluated with the parameter varying within
a reasonable range of values, while keeping the rest of the parameters equal to their
default value. Then, only those parameters that lead to a (qualitatively) significant
improvement of the log-likelihood function are considered for the calibration.

1V.3.4 Calibration and validation
Calibration

The Bayesian MCMC algorithm DREAM g is used for the calibration of
the model. The DREAM (DiffeRential Evolution Adaptative Metropolis)
algorithms, originally developed by Vrugt et al. (2008, 2009), are a family of
multiple chain methods that use differential evolution (Storn & Price, 1997) as a
genetic algorithm for population evolution, along with a Metropolis selection rule
to decide whether candidate point should replace its parents or not. The different
versions of DREAM have shown good performance on complex, multimodal search
problems; in particular, in DREAMzs) new proposals at each evolution step are
sampled from past states (Vrugt, 2016).

The configuration of DREAMzs) used here is summarized Table IV.1; the
likelihood function used in the algorithm is as given by Eq.(IV.3) and the data used
for calibration are the sea states selected by the MDA algorithm. The convergence
of the algorithm is monitored by means of the Gelman and Rubin (1992) R
statistics: when R<1.2 it is considered that the chain converged.

The result of the algorithm is a (large) sample of the parameters from which
the parameters’ posterior joint probability distribution is estimated. Then a best-
fit set of parameters is taken as the one corresponding to the mode of the joint

distribution.
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Table IV.1: Configuration of DREAM(s) used. The meaning of each
parameter can be found in Vrugt (2016)

Number of Markov chains (N) 3

Initial size of Z (mo). (d is the number of parameters that are calibrated) | 10 x d

Rate at which samples are appended to Z (k) 4
Number of chain pairs used to generate a jump 3
Crossover value 10
Probability of the snooker jump 0.1

Validation

For validation purposes the wave model is run using the best-fit parameters,
covering the entire period of measurements. Performance of the model is analyzed
not only in terms of the spectral error (SE) used in calibration, but also by looking
at errors in significant wave height (H,), mean and peak direction (D., and D),
mean period (Twon) and peak period (T}). A somehow standard set of error metrics
composed of BIAS, correlation coefficient (r) and root mean square error (RMSE)
were used:

BIAS = - ¥IZV(E; - 0) | (IV.9)

=N (E-E)(0;-0)

=T ; (IV.10)
[EEYE-pe 300y

RMSE = \/%Zﬁi’f(Ei —0,)? and (IV.11)
J%Z%Z’l"[(Ei—E)—(oi—é)]z

SI= 3 : (IV.12)

where E and O stand for estimation and observation respectively, the
overbar means the average value and N is the number of data.

IV.3.5 Uncertainty analysis and wave hindcast downscaling.

Finally, the downscaling and its uncertainty bands are obtained by running
the wave model 101 times, one run with the best-fit parameters and 100 runs with
different set of parameters randomly sampled from their posterior joint-probability
distribution, as obtained from the DREAMzs) algorithm. From these 100 runs, 90%
uncertainty bands are estimated for the wave parameters (i.e. H;, T, etc.).
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IV.4. Case Study

IV.4.1 Study zone.

The proposed methodology was applied to downscale the ERA-Interim
reanalysis in the Uruguayan Atlantic coast, where a few month wave measure data
series is available (Figure IV.3). Wave measurements were collected with an
acoustic Doppler current profiler (ADCP) installed on a water depth of 18 m;
measurements are 3-hourly for the period of October 2013 — April 2014. The ERA-
Interim node closest to the site is located about 100 km offshore, on a water depth
of 60 m (53°W-35°S); reanalysis data is 6-hourly (00, 06, 12, 18 UTC), starting in
1979 and continuing until August 2019. Wind data at 10 m height used as model
input was also obtained from ERA-Interim.

32°8

33°S

URUGUAY

34°S Atlantic Ocean

ADCP
35° |- ®RA-INTERIM NODE
36°S

- ARGENTINA Atlantic Ocean i

37°S .
58°W 56°W 54°W 52°W 50°W

Figure IV.3: Study zone. Locations of ADCP and the closest ERA-Interim node.

1V.4.2 Wave model.

Figure IV.4 shows the domain and computational grid used for running the
SWAN model. The rectangular (and regular) computational grid is 280 km long in
the alongshore direction with a mesh size (Ax) of 10 km, and 130 km long in the
cross-shore direction with a mesh size (Ay) of 5 km; mesh size is kept relatively
large in order to reduce computational cost, as many simulations are required
during calibration. All runs are performed in quasi-steady mode.
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Figure IV.4: Domain (4.a) and computational grid (4.b) of the wave model. The black
dots are the ADCP location and the ERA-Interim node.

1V.4.3 Wave systems.

Bimodality is a distinctive feature of the wave climate in the study zone
(see Figure IV.5). Alonso and Solari (under review) identified three long term wave
systems in the area, namely: sea waves, southern swells and eastern swells. Here,
each spectrum of the ERA-Interim node 53°W — 35°S was partitioned using the
watershed algorithm (Meyer, 1994). Then, the wave age criterion of Hanson and
Phillips (2001) was applied to classify spectral partitions as wind sea or swell.
Finally, a threshold in directions (116°, see Figure IV.5) was used to distinguish
between southern and eastern swells. As an example, Figure IV.6 shows two
multimodal spectra where the three wave systems are identified according to the
aforementioned steps.

Frequency of occurrence (%) N m2/(Hz degr)

N
(5.2)
ned 0.015
w
sw
0.01
s
SE 0=116° 0=116°)
; e o N
NE
0 0
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
T(s) T(s)

Figure IV.5: Empirical distribution of frequency of occurrence of partitions peaks on
period-direction space (5.a). Average spectrum (5.b). Both graphics correspond to ERA-
Interim node 53°W-35°S and 1979-2016 period.
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Figure IV.6: Examples of wave systems identification. The parable represents the wave
age criterion while the dotted line is the direction threshold.

IV.5 Results and Discussion

Nine variables were used to define a sea state when applying the MDA,
namely: significant wave height (H), peak period (T,) and peak direction (D,), for
wind seas, southern swells and eastern swells. From the 665 sea states measured,
50 were selected with the MDA. Figure V.7 compares box plots obtained with the
whole set of measured sea states with those obtained from the 50 sea states selected
by the MDA. The similarity between the box plots demonstrate the ability of the
MDA to provide a representative subset of the data.

Figure IV.8 shows the results of the sensitivity analysis for the 14
parameters considered a priori for the calibration; only five of these lead to a
significantly better performance of the model when they move from the default
value: DSgs, Cyina, Cas, p and Cy. For the remaining nine parameters the default
value is very close to the optimum, so they were dismissed for calibration.

Parameters Cyia and Cgs deserve special attention. In Figure IV.8 both
parameters show similar behavior: likelihood increases when the parameters move
to values that result in greater mitigation of locally generated waves (i.e. low Cuyina
and large Cq, values). This is explained by looking at how wave energy is distributed
in frequencies when default parameters are used. In this case the total energy in
the spectra is well reproduced, however it is not well distributed in frequencies,
with an overestimation of the energy in high frequencies and an underestimation
in low frequencies. In terms of the SE this implies a double penalty effect, resulting
in SE reducing (likelihood increasing) when parameters Cyia and Cus are such that
no energy is input in high frequencies of, if inputted, it is dissipated. Then, in order
to prevent the calibration algorithm from killing all locally generated waves as
possible way of improving likelihood, these two parameters as dismiss for
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calibration, leaving the responsibility to improve the energy distribution on the

frequency domain exclusively to the parameter p.

In consequence, only DSss, p and Cy, were included in the calibration. These
three parameters are regarded as complementary: while Cy, affects the total amount
of energy in the spectra, DS¢s modify how the energy is distributed in directions
and p modify its distribution in frequencies.

Results obtained from the DREAMzs) algorithm are presented in figures
IV.9 to IV.11, showing for each parameter the evolution of the Markov chain, the
evolution of the R statistic used to monitor convergence and the posterior
distribution (as an histogram). It is seen that DREAMs) works as expected,
providing the posterior distribution of the calibrated parameters and leading to a
configuration of the model capable of reducing the spectral error.

Table IV.2 and figures IV.12 and IV.13 compares the performance of the
model when using the best-fit parameters (DSgs=-22.5°, p=0.35 and C,=0.058) and
the default parameters, limiting the comparison to the 50 sea states used for
calibration. The errors in terms of wave parameters and spectral error are presented
in Table IV.2 and Figure IV.12, respectively. Figure IV.13 presents the average
spectra obtained with both configurations along with the average measured spectra.

It is noted that the median of the spectral error was reduced by 20% (right
panel of Figure IV.12) and that directions and periods are improved with the
calibrated model (Table IV.2); however, a negative bias appears on H, (Table IV.2).
From Figure IV.13 it follows that, on average, the calibration moves the energy
peak of the southern swells to the correct bin and mitigates the energy at high
frequencies (low periods) that do not appear on the measurements.

The correction of the energy distribution along directions can only be
attributed to DSss. So, bias in directions in the default configuration is originated
by an error in boundary conditions that was effectively mitigated by the input
correction parameter DSgs. This error in the southern swell in the boundary
conditions might have its origin in the spatial resolution of the reanalysis, as it is
not fine enough properly solve the refraction of the southern swells along the
continental shelf (see Figure IV.3).

On the other hand, to improve the energy distribution in frequencies the
join action of p and C, seems to be required. Here a problem emerges as the
algorithm uses C,, to dissipate the excesses of energy in some regions of the
spectrum, turning the model more dissipative as a whole and explaining the
negative bias that is introduced in Hy: the cost of improving the energy distribution
along frequencies is an increase in the bias of the estimation of the total amount of
energy, something that was well solved with the default configuration of the model.
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Moreover, as follows from Figure IV.8, the input correction parameters FS are of

no help in this case.

The inability of the calibration methodology to properly reproduce both H;
(total energy) and T, (energy distribution in frequencies) at the same time, by
modifying the value of the parameters, evidences a structural problem of the wave
model: the default configuration prioritizes H;, so underestimation of mean periods
are reported in different case studies (e.g. Bottema et al. 2003, Rogers et al., 2003,
Dreier and Frohle, 2018). Moreover, wave modelling community have been working
on this problem (WISE group, 2007 and Cavaleri et al.2018), leading to new
parametrizations (Van der Westhuysen et al., 2007 and Zieger et al. 2015) now
available in SWAN that could alleviate the aforementioned problem. However,
exploring the potential of these more resent parameterizations in the framework of
the proposed calibration methodology is left as a future work line, and a simple
bias correction parameter is used for Hs in what follows, estimated as the bias
obtained from the calibration (Table IV.2).

Table IV.3 and figures IV.14 and IV.15 show the results of the validation,
accomplished by simulating the whole measured period using the best fit
parameters and the bias correction parameter introduced above. It is noted that
performance is similar to what was observed for calibration; results can be
summarized in an improvement of the energy distribution in the spectrum (Figure
IV.14), both in directions and frequencies (Figure IV.15), with some improvements
on wave parameters as well (Table IV.3). It is noted that the undesired decrease
in the total energy is successfully prevented by using the bias correction approach,
without affecting the rest of the improvements attained during calibration.

Finally, Figures IV.16 and IV.17 show 90% uncertainty bands obtained for
the wave parameters time series and probability density functions, respectively. It
is noted that the wave direction has narrower uncertainty bands than the other
parameters, especially in comparison with wave periods. This might be originated
in the previously discussed structural problems that affect wave periods estimates:
uncertainty associated with structural problems impacts on parameters
uncertainty, as the model is unable to properly accommodate the observations.
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Figure IV.7: Comparison of box plots obtained with all the events (Total) and with the
selected subset (MDA). Three wave parameters (H;, T}, and D,) and the three wave
systems (Sea, SS and ES) were considered
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Figure IV.9: Markov chain evolution (9.b), R-statistic evolution (9.a) and histogram of
parameter DSgs (9.c).
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Figure IV.10: Markov chain evolution (10.b), R-statistic evolution (10.a) and histogram
of parameter p (10.c).
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Table IV.2: Performance of the calibrated configuration of the model compared with the

default one. The simulation corresponds to the MDA events. The units of BIAS and

RMSE are the same as the wave parameter involved.

BIAS RMSE r

Calibrated -0.28 0.39 0.85

Hs (m)
Default -0.01 0.19 0.92
Calibrated 8.3 23.1 0.77

Dum (°)
Default 10.6 41.9 0.64
Calibrated 0.5 1.5 0.74

Tmor ()
Default -1.6 1.9 0.65
Calibrated 6 22.6 0.85

D, (°)
Default 18 49.6 0.52
Calibrated 0.5 1.5 0.78

Tp (s)
Default -0.2 1.8 0.71
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Figure IV.12: Spectral errors obtained with the calibrated and the default configuration
of the model. The simulations correspond to the MDA events.

2
Default i ADCP m*/(Hz degr)
N N Calibrated — ST
(13.a) (13.b) (13.c)
NWV | NW [t NV [ifit
0.01
W w w
0.008
SW SW SW
S S s 0.006
SE SE SE
0.004
E E E
0.002
NE NE T NE
I |
[II1T T [EEEE 0

2 4 6 81012141618202224 2 4 6 8 1012141618202224 2 4 6 8 1012141618202224
T(s) T(s) T(s)

Figure IV.13: Average spectrum obtained with the default configuration of the model
(13.a), the calibrated configuration of the model (13.b) and ADCP measurements (13.c).
The simulations correspond to the MDA events
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Table IV.3: Performance of the calibrated configuration of the model compared with the
default one. The simulation corresponds to the whole period. The units of BIAS and
RMSE are the same as the wave parameter involved.

BIAS RMSE r
Hs (m) Calibrated -0.09 0.30 0.8
Default -0.1 0.25 0.86
Dm (°) Calibrated 8.8 23 0.76
Default 7.4 34.5 0.65
Tmot (s) Calibrated 0.8 1.5 0.63
Default -1.3 1.6 0.61
D, (°) Calibrated 7.1 34.9 0.63
Default 9 41.5 0.59
Ty (s) Calibrated 0.3 2.1 0.63
Default -0.3 2.3 0.59
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Figure IV.19: Spectral errors obtained with the calibrated and the default configuration
of the model. The simulations correspond to the whole period.
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Figure IV.15: Average spectrum obtained with the default configuration of the
model (15.a), the calibrated configuration of the model (15.b) and ADCP measurements

(15.c). The simulations correspond to the whole period.
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Figure IV.16: 90 % confidence band of wave parameters temporal series obtained with
the model at the point of interest. For better visualization, only part of the simulated
period is shown. H; results are presented on the top panel (16.a), wave period Ty on the
center panel (16.b) and mean direction (nautical convention) on the lower panel (16.c). In
all three cases, the ADCP measures and the results obtained with the calibrated set of
parameters are superimposed.
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Figure IV.17: 90 % confidence band of the probability distribution function (pdf) of

different wave parameters obtained with the model at the point of interest. Hy (17.a),

wave period Tue (17.b) and mean direction in nautical convention (17.c). In all three
cases, the pdf corresponding to the calibrated set of parameters and H; bias correction is

superimposed using a dashed black line

IV.6 Conclusions

A comprehensive methodology, based in the DREAM(, algorithm, was
proposed and applied for automatic calibration and uncertainty estimation of a
wave model when it is used in the framework of a dynamical downscaling of off-
shore waves to a nearshore project site. Results showed the methodology ability to
reach a best-fit set of parameters for the wave model in an highly automatized way,
and to provide uncertainty bands for downscaled wave parameters that could be
useful when conducting probabilistic or risk studies in the coastal environment.

Since Monte Carlo simulation are involved, minimizing the number of sea
states used in the calibration is critical to maintain the computational effort at an
affordable level, while the representativeness of the sub-set of events used for
calibration is of the outmost importance. The MDA, applied in conjunction with
the long-term system identification approach, proved capable of fulfilling both
objectives, allowing for minimizing the number of sea states used for calibration
without losing representativeness of the complete measured period.

The model used for the correction of forcing errors, that considers the
independent correction of different wave systems, showed its ability to mitigate
errors that otherwise would have been inherited by the results. In this particular
case study, by considering the different wave systems independently it was possible
to correct only the southern swell, without affecting eastern swells or seas,

something that would not have been possible if it had not differentiated between
wave systems.

The target function based on the spectral error made it possible to obtain
wave spectra results that fit the measured spectra better than the results obtained
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with the default configuration of the model. This showed to have a positive effect
on results of wave periods and directions; however, it does not necessarily guarantee
an improvement in H; results. The inability of the calibration method to improve
both H; and wave periods at the same time was attributed to a structural problem
of the model; to test the calibration method changing the structure of the model
by using the most resent state of the art parameterizations could alleviate this
problem. However, the case study also evidenced that the spectral error leads to a
double penalty effect; having the correct amount of wave energy in the spectrum
but in the wrong frequency-direction bins of the spectrum is penalized twice, while
completely ignoring that energy is penalized only once. It is reasonable to expect
that there might be room to improve the results of the proposed method by looking
for new ways of measuring the spectral error.

103



Capitulo V

Conclusiones y Lineas Futuras de

Trabajo

Las propuestas metodolégicas desarrolladas en este trabajo de tesis
demostraron su capacidad de aporte al analisis del oleaje, a través de su aplicacién
en casos de estudio que permitieron mejorar el conocimiento del oleaje en la zona
donde se aplicaron, generando informacién de mejor calidad y mayor detalle en la

misma.

En este sentido, las contribuciones realizadas se pueden agrupar en: aportes
metodolégicos novedosos; nuevos resultados sobre el oleaje en Uruguay; v nuevos
productos que mejoran la informacién disponible.

Aportes metodoldgicos

Los aportes metodolégicos abarcan aspectos de modelacién, asi como de
andlisis climatolégico. En cuanto a modelacién, se destaca el método propuesto
para calibrar y caracterizar la incertidumbre de un modelo de oleaje que es utilizado
para extender los datos de un hindcast hacia un sitio en donde el hindcast no

proporciona datos fiables.

El nicleo de la propuesta para abordar la calibracién automatica y
caracterizacion de la incertidumbre asociada al uso de un modelo de oleaje para
transferir datos de un hindcast global a un punto costero, fue la incorporacion de
un algoritmo de inferencia Bayesiana. Los resultados obtenidos demostraron la
capacidad de este tipo de algoritmos para lograr satisfactoriamente el doble objetivo
del problema planteado.

La aplicacién del algoritmo incluyé otros elementos novedosos, entre los que
se destaca la definicién de un error espectral y de un modelo de correccién de los
espectros de oleaje utilizados como condicién de borde. Ambas propuestas coinciden
en ir més alla de los pardmetros integrales y considerar los espectros completos. A
su vez, es de destacar que el uso de ambas no estd limitado a esta aplicacién
concreta. El error espectral puede formar parte de cualquier anélisis de performance
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de un modelo de oleaje, mientras que el modelo de correcciéon se puede emplear
directamente para calibrar un hindcast. Concretamente en el problema analizado,
el uso del error espectral en la funcién objetivo se mostré como una opcién acertada
aunque perfectible, para orientar al algoritmo hacia una configuracién que mejore
integralmente las estimaciones del modelo de oleaje. Por su parte, el modelo de
correccion resulté indispensable para corregir errores en la direccion del oleaje y
permitié ampliar el andlisis de incertidumbre a la fuente de error asociada a los
datos de entrada al modelo.

En lo que respecta al andlisis climatoldgico, este estuvo centrado en la zona
costera. Se propuso un abordaje que combina enfoques basados en parametros
integrales, espectros promedios y sistemas de oleaje, el cual permitié una
descripcién detallada del clima de olas, donde claramente quedaron expuestas las
diferencias entre las distintas zonas de la costa, y permitié explicar los factores
involucrados en la transicién del clima de olas entre una zona y otra.

La identificacién de sistemas de oleaje implicé adaptar metodologias
desarrolladas para aguas profundas, contemplando que los sistemas puedan ser
identificados de forma consistente a lo largo de la costa. Si bien la adaptacién
propuesta contiene pasos ad hoc, siguiendo los criterios en los que se basa, puede
ser replicable en cualquier costa donde se disponga de series de espectros
distribuidos a lo largo de la misma. Las ventajas de distinguir entre sistemas de
oleaje en un anélisis climatologico costero quedaron de manifiesto en los resultados
obtenidos, muchos de los cuales hubieran quedado ocultos si el analisis se limitaba
a los pardmetros integrales. A su vez, permitié una mejor interpretaciéon de las

tendencias y ciclos observados en los pardmetros integrales.

Otro aspecto a destacar, es la inclusién del flujo medio de energia en el
andlisis climatologico. Dada su influencia directa en el transporte litoral, los
resultados obtenidos constituyen un insumo relevante para el abordaje de la
dindmica litoral. En particular, se resalta lo ilustrativo de la descomposicién del
flujo medio de energia en las componentes asociadas a los sistemas de oleaje.

Resultados sobre el oleaje en Uruguay

Los resultados obtenidos ponen de manifiesto la trascendencia de la
disipacién de energia por friccién de fondo en la dindmica del oleaje en el Rio de la
Plata. Este proceso desemperié un rol clave en la calibracion del modelo y los
resultados del experimento en el que fue desactivado fueron elocuentes al respecto.

La calibraciéon del modelo mostré que en el Rio de la Plata medio e interior,
la energia disipada por fricciéon de fondo es sensiblemente menor que la esperable
sobre un fondo de arena. Este resultado es consistente con la composicién
mayoritariamente de sedimento fino del lecho de esta zona del estuario, el cual
representa una superficie de menor rugosidad que la de un fondo de arena para la
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propagacién del oleaje. Por otro lado, en esta misma zona, a partir de cierto umbral
se observa un sesgo positivo en los resultados de H;. Ante esto, se plantea la
hipétesis de que superadas ciertas condiciones energéticas, el oleaje es capaz de
inducir la fluidificacién del lecho, desencadenandose un proceso de amortiguacién
del oleaje por su interaccién con el lecho fluido que no estd considerado en la

modelacion

En cuanto a los forzantes, la inclusion de un nivel de mar no estacionario
mostréd ser importante en el Rio de la Plata. Se concluye que su incidencia esta
principalmente asociada a como condiciona el proceso de disipaciéon por fondo. En
este sentido, si se considera el nivel de mar estacionario en su valor medio, se
sobreestima la energia disipada por friccidon de fondo cuando hay creciente en el
estuario, o por el contrario se la subestima si hay bajante.

Desde una perspectiva climatolbgica, quedaron expuestas las diferencias en
el clima de olas entre la costa Atlantica, la costa del Rio de la Plata exterior y la
costa del Rio de la Plata medio e interior; y quedaron identificados los factores que
controlan la variacién del clima de olas dentro de las mismas.

En la costa Atlantica se identificaron dos sistemas de mar de fondo, uno
asociado a la direccién Sur y el otro asociado a la direccion Este. Las zonas de
generacion de ambos sistemas quedaron delimitadas y para ambos se identificé una
correlacion estadisticamente significativa con la Oscilacién Antartica. Los signos de
esta correlacion son opuestos, lo que implica que cuando, asociado a la variabilidad
de la Oscilacion Antartica, un sistema tiende a fortalecerse el otro tiende a
debilitarse. Este desfasaje en la variabilidad entre un sistema y otro, también se
percibe y de forma maés elocuente en el ciclo anual. El sistema Sur es més intenso
en las estaciones frias y menos en las cédlidas, mientras practicamente lo inverso
sucede con el sistema Este. Estos desfasajes en la variabilidad inter- e intra-anual,
por un lado mitigan la variabilidad de los pardmetros integrales no direccionales
(ej. Hy, Twon) pero por otro amplifican la variabilidad de los parametros
direccionales. Esto ltimo podria tener una implicancia directa en la dinamica
litoral de este tramo de costa y constituye un aspecto distintivo del mismo.

El clima de oleaje local en la costa Atlantica también presenta bimodalidad,
con una moda asociada al Este y otra al Sur. Esta coincidencia entre las modas del
clima de oleaje local y del clima de mar de fondo, dan la pauta que los fenémenos
atmosféricos detras son compartidos. Es decir, los fenémenos atmosféricos
relevantes en la generacion de mar de fondo son los mismos que generan el oleaje
local, generandose uno u otro, segin se desarrollen en el entorno de Uruguay o a
mayor distancia. La proximidad a Uruguay de las zonas de generaciéon de los dos
sistemas de mar de fondo identificados, refuerzan esta hipdtesis.
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Se identific a la orientacion de la costa como el principal factor que explica
las variaciones del clima de olas en la costa Atlantica, identificAndose en La Paloma
un punto de quiebre. Al este de La Paloma el clima de olas es mas energético que
al oeste, debido a que por la orientacién general de la costa, el primero esta méas
expuesto al mar de fondo del Este y al oleaje local asociado a la componente Este
del viento. Ya en la costa del Rio de la Plata exterior, el principal factor que
controla las variaciones del clima de olas es la batimetria, la cual induce la
refraccion y disipacion del mar de fondo. La refraccién hace converger los dos
sistemas de mar de fondo identificados en el Atlantico, tornandose indistinguible
uno de otro. Por su parte, la friccion de fondo hace que el mar de fondo se disipe,
al punto que al oeste de Montevideo pasa a ser insignificante a los efectos de la
climatologia. En este tramo, el clima de olas estd dominado por el oleaje local, el
cual es limitado por fetch cuando esta asociado al viento del cuadrante S-W. En
este sentido, el factor que comienza a incidir en las variaciones del clima de olas en
el Rio de la Plata medio e interior es la geometria del estuario, ya que es la que
define el fetch. Por dltimo, otro resultado a resaltar en lo que refiere al oleaje local,
y debido a su potencial impacto en la morfologia de la costa, es la tendencia de
largo plazo de rotacién horaria del flujo medio de energia. Esta tendencia se aprecia
en toda la costa, siendo mayor en el Rio de la Plata por ser donde mayor peso tiene
el oleaje local.

Productos generados

Como resultado de la tesis queda disponible una base de datos que provee
series temporales de largo plazo de los principales parametros que describen al
oleaje con una resolucién espacial de 40” (~1 km) en toda la costa y fuera de la
misma en lo que corresponde al el Rio de la Plata medio e interior, mientras que el
Rio de la Plata exterior y la plataforma continental son cubiertos con una resolucién
de 2’ (~3 km). A su vez, se proveen espectros bidimensionales a lo largo de 65 nodos
que cubren toda la costa a una distancia de 5 km de la misma y equidistantes entre
ellos. Tanto las series de parametros como la de espectros abarcan el periodo 1985-
2016 con paso horario.

A su vez, la informacién contenida en los datos espectrales en nodos costeros
fue resumida en un conjunto de resultados que describen en detalle su climatologia.
Muchos de estos resultados se presentan en nodos particulares en el articulo que
aborda la climatologia, pero fueron sistematizados para los 65 nodos y también
quedan disponibles.

Actividades futuras

Con esta tesis quedan abiertas lineas de trabajo en las siguientes temaéticas:
dindmica de oleaje, climatologia del oleaje costero, y calibracién y estimacién de
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incertidumbre en el uso de modelos. A continuacién se esbozan los planes sobre
como proseguir en cada una de ellas.

Dindmica de oleaje

En cuanto a los procesos fisicos, los resultados obtenidos muestran el rol
clave de la interaccién del oleaje con el fondo en el Rio de la Plata medio e interior.
En este sentido, parte del trabajo futuro estara orientado a la incorporaciéon en la
modelacién del proceso de amortiguacién del oleaje al propagarse sobre un lecho
fluido.

Si bien se demostrd que los datos de viento utilizados son adecuados como
forzante de modelos de oleaje en la zona de estudio, es incuestionable que mejorar
los mismos es otra de las vias que permitiran continuar mejorando sus resultados.
Esto se torna mas relevante en zonas como el Rio de la Plata medio e interior donde
domina el oleaje local. El avance respecto al uso de vientos de reandlisis o
pronosticos globales, pasa por utilizar éstos como condicién de borde de un modelo
de circulacion atmosférica de mayor resolucién, que tenga en cuenta
particularidades locales como las transiciones agua-tierra que se dan en el estuario;
y por otro lado explorar un mayor aprovechamiento de las mediciones disponible

en estaciones costeras.

En paralelo, es imprescindible generar mas mediciones de campo. Las series
de espectros de oleaje medidos en la zona de estudio son escasas y en su mayoria
concentradas en torno a Montevideo. Campanas de medicién que provean
observaciones en puntos mejor distribuidos a lo largo del Rio de la Plata y la costa
Atlantica permitiria dar un nuevo salto de calidad en cuanto al conocimiento del
oleaje en la zona.

Climatologia del oleaje costero

Un camino alternativo al seguido en esta tesis, en el cual se procedié a
distinguir entre oleaje local y distintos sistemas de mar de fondo, pasa por agrupar
los sistemas de oleaje en funcién del fendmeno meteorolégico asociado al viento que
lo generd. Este abordaje de la climatologia en funcién de patrones climaticos
brindaria otra perspectiva de los resultados aqui expuestos, permitiendo un
abordaje posiblemente mas directo de aspectos que en este trabajo fueron
considerados con poca profundidad, o bien no considerados, como es el caso de
eventos extremos y cambio climatico.

Por otro lado, en lo que respecta a generar resultados que contribuyan al
andalisis de la dindmica costera, se plantea como siguiente paso incluir variables
morfodinamicas en el andlisis. Esto es particularmente relevante en la costa
Atlantica, donde dos sistemas de mar de fondo inducen un transporte potencial en
sentidos contrarios, presentando una variabilidad inter-anual desfasada entre ellos.
A su vez, en lo que respecta a toda la costa, es de interés plantear en términos
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morfodinamicos las implicancias de la tendencia de largo plazo detectada de
rotaciéon horaria del oleaje local.

Calibracion y estimacion de incertidumbre en el uso de modelos

En cuanto al problema abordado, se propone buscar alternativas, ya sea via
la adaptacion de la funcién objetivo, manteniendo su caricter espectral pero
procurando que no sea susceptible al problema de la doble penalidad; o ya sea via
el abordaje con métodos denominados informales como el método GLUE y sus
variantes.

Finalmente, dada la cantidad de parametros usualmente involucrados en los
modelos morfodinamicos costeros y lo particularmente relevante que resulta estimar
la incertidumbre asociada a su uso, se considera interesante la incorporacién de los
métodos Bayesianos en problemas donde se recurre a este tipo de modelos
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Anexo 1

Automatic calibration of a wave model

with an evolutionary Bayesian method

Introduction

Long-term and good quality wave data series are required for any coastal
engineering project. But reliable coastal wave data is only available in a few places,
where long-term wave measurements are available and have been used for
calibration and validation of high-quality and high-resolution wave hindcasts. For
most regions of the world, typically in developing countries, only global reanalysis
wave data is available (e.g. ERA-Interim), usually in combination with a short-
term (i.e. several month) in-situ measured series obtained for a particular project.

The spatial resolution of global wave reanalysis is not enough for coastal
applications; moreover, nearshore wave transformation processes are not properly
accounted for. Therefore, wave data from global reanalysis must be transferred to
the coast in a proper way before being used in coastal projects (i.e. data must be
downscaled). Some methodologies have been developed for efficiently downscale
wave data (e.g. Camus et al. 2011) that are based on the use of third generation
coastal wave models (e.g. SWAN; Booij et al. 1999). These methods are known as
physical downscaling, as opposed to statistical ones, and they have two basic steps:
1) the model calibration problem and 2) perform the long-term simulation with the
calibrated model.

While the use of third generation wave models with off-shore global wave
reanalysis data as boundary condition, is widespread in coastal applications, there
is no consensus about how these models should be calibrated. To the best of our
knowledge, these issues are addressed with ad hoc approaches developed for each
project. As a model like SWAN has numerous parameters, almost one for each
source term of the wave action balance equation, the manual adjustment of them
becomes labor-intensive and strongly dependent on the modeler. For that reasons,
an automatic calibration method seems to be very helpful.
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In addition to automatic calibration, methods to assess the uncertainty
introduced by the assignation of values to model parameters are also necessary.
This is one of the main sources of uncertainty of model outputs, so it should be
assessed in order to be included on the probabilistic design methods that coastal
engineering projects requires. For that reason, it is considered important to search
for new methodologies that could provide more accurate and complete estimations

of uncertainties.

In this paper, we propose the use of Bayesian methodologies to deal with
the calibration of a third generation wave model. This kind of methods allow to
efficiently handle a large number of parameters in the calibration, also providing
an estimation of the joint probability distribution of these parameters, allowing to
quantify the uncertainty of the model that is related with these parameters. At the
same time, they have many positive precedents addressing similar problems as the
described before but in other areas (e.g. Vrugt et al. 2003, 2008 and 2016)

The method is applied to a case study in the Uruguayan Atlantic coast
where a few month wave measure data series is available and needs to be extended
in order to be used on an engineering project. The wave model used is SWAN
(Booij et al. 1999) and waves in deep waters and the wind data were obtained from
the ERA-Interim reanalysis (Dee et al. 2011). At first, the method was tested with
one and two parameters, since in these cases it is possible to compare the obtained
results with a plot of likelihood estimation vs. parameters values (i.e. target
function used to calibrate). Finally the proposed method was used to calibrate four
parameters of the wave model and assess the uncertainty introduced by the
selection of the obtained set of parameters.

The paper is organized as follows. The first section after introduction,
briefly describe the theoretical framework necessary to understand the method.
Basic ideas of Bayesian inference are followed by a general description of the
Markov chain Monte Carlo algorithms (MCMC) and particularly the one that was
used which name is Differential Evolution Adaptative Metropolis (DREAM) and
was developed by Vrugt et al. (2008, 2009). Then the application to the calibration
problem involved in the wave reanalysis downscaling to a coastal site of Uruguay
is presented, to end summarizing the main conclusions and exposing future steps
planned to go ahead exploring the potential of Bayesian inference on coastal
engineering applications.
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Theoretical Framework

Bayesian Inference

Bayesian inference is a method of statistical inference in which Bayes
theorem is used to update the probability for a hypothesis as more evidence
becomes available. In the case of a model calibration problem, the hypothesis is a
set of values of model parameters and the evidence are measures that could be
compared with model outputs.

In the Bayesian approach parameters are represented with a probability
density function (PDF). It does not mean that we believe that values of unknown
parameters are random; it only means that our knowledge of a parameter’s value
is uncertain, and that our uncertainty about this value can be represented using
an appropriate pdf (Hamada et al. 2008).

If 6 and y are the parameter and observation vectors respectively, Bayes
theorem is applied as follows, involving four pdf’s,

p(y/6).p(0)

p(o/y) =
p(y) (A1.1)

where p(6/y) is called the posterior distribution and it is what we are
looking for, while p(6) is the prior distribution and reflects our belief before
observed data are analyzed. On the other hand, p(y/0) is the likelihood function
that could be estimated assuming certain behavior of the model errors (e.g.
Gaussian distributed) and p(y) is the marginal distribution of the observations. In
practice, p(y) is not required for posterior estimation as all statistical inferences
about p(€ y) can be made from the unnormalized density,

posterior a likelihood x prior (A1.2)

The reality is that for most of the real-world problems the posterior
distribution cannot be obtained by analytical approximation. For that reason,
Bayesian approach was not widely used before the popularization of computational
methods. But while computer became more powerful algorithms like Markov chain
Monte Carlo (MCMC) allowed to extend its applications to diverse, complex and
multi-parametric problems, by estimating the posterior pdf from a sample
generated by the algorithm.

MCMC algorithms

MCMC algorithms are a general class of computational methods used to
generate samples from posterior distributions. The desired summary of the
posterior distribution is then obtained from the sample. The posterior distribution,
also referred to as the target distribution is often high-dimensional. Since their
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introduction in the 1990’s, they have been successfully applied to thousands of
applications (Hamada et al. 2008).

MCMC algorithms produce random walks over a probability distribution.
By taking a sufficient number of steps in this random walk, the MCMC simulation
algorithm visits various regions of the parameter space in proportion to their
posterior probabilities. In other words, it is a stochastic simulation that successively
visits solutions in the parameter space with stable frequencies stemming from a
fixed probability distribution.

MCMC algorithms are classified in two categories: Metropolis-Hastings
algorithms and Gibbs samplers. The algorithm used in the present work belongs to
the first group. These kinds of algorithms have three basic steps. The first is the
generation of a candidate point 8*. This requires a sampler or proposal distribution.
The second step is the computation of the acceptance probability r,

r= min{l, Lé:l)} (A1.3)
p(@™)

Where 6" is the actual state of the chain and p(6"') denotes the probability
to find the system there. In the same way, p(6°) is the probability to find the
system at the candidate point. Finally, r is compared with a random variable u,
uniformly distributed between 0 and 1 (u ~ /[0 1]). If r is equal or greater than u,

the sequence moves from 0 to # ". Otherwise the sequence is kept in 6!

MCMC requires the choice of a proposal distribution to generate transitions
in the Markov chain. This choice is therefore crucial and determines the practical
applicability of MCMC in many fields of study (Owen and Tribble, 2005). To
improve the search efficiency of MCMC samplers it seems natural to tune the
proposal distribution during the evolution to the posterior target distribution, using
information inferred from the sampling history induced by the transitions of the
Markov chain (Vrugt et al 2003). In the past decade many adaptive samplers were
proposed in order to improve MCMC simulations, one of those that has given
satisfactory results in various applications, and has the support of a mathematical
proof of convergence, is the DREAM algorithm. It is the one used in this work and
it is briefly described in the next sub-section.

DREAM algorithm

Its name comes from DiffeRential Evolution Adaptative Metropolis
(DREAM). It was developed by Vrugt et al. (2008 and 2009). It is a multiple chain
method that uses differential evolution as genetic algorithm for population
evolution with a Metropolis selection rule to decide whether candidate points
should replace their parents or not.
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This multi-chain MCMC algorithm automatically tunes the scale and
orientation of the proposal distribution en route to the target distribution.
Maintaining detailed balance and ergodicity. It has showed excellent performance
on complex, multimodal search problems. Its proof of convergence to the posterior
distribution in ter Braak and Vrugt (2008).

Since its appearance, different variants have been proposed, forming the
DREAM family of algorithms. Vrugt (2016) presents the distinctive features of
each one. The one used in this work is DREAM ).

Application

Study zone

The DREAM(s) algorithm was applied to a case study in the Uruguayan
Atlantic coast where a few month wave measure data series is available and needs
to be extended in order to be used on an engineering project. To obtain the long-
term wave data series, a physical downscaling of the reanalysis ER A-Interim to the
coastal site was planned. The algorithm was applied to calibrate, using measured
data, the parameters of the wave model implemented to downscale reanalysis data
and to assess the uncertainty introduced by model parameters

Observations were collected with an acoustic Doppler current profiler
(ADCP) installed on a water depth of 18 m in the site indicated in Figure A1.1. In
that figure is also appreciated the closest ERA Interim node (-53W -35S), located
100 km offshore, on a water depth of 60 m. The observation series has data every
3 h, covering the period October 2013 — April 2014. While Reanalysis data has a
time step of 6 h (00, 06, 12, 18 UTC) starting on 1979 and continuing until present.
Wind data at 10 m height used as model input was also obtained from ERA-

Interim.
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Figure A1l.1: Study zone. Locations of ADCP and the closest ERA-Interim node.

Wave model

Wave simulations were performed with the third generation wave numerical
model SWAN (Booij et al. 1999). It is a numerical model widely used by the coastal
engineering community. It solves the wave action balance equations allowing wave
spectra to evolve without restrictions.

The domain and computational grid are shown in Figure A1.2. The
rectangular and regular computational grid is 279.2 km long in the alongshore
direction with a mesh size (Ax) of 10 km, while in the cross-shore direction it is
127.1 km long with a with a mesh size (Ay) of 5 km. The grid width was defined
wide enough so that boundary conditions at lateral borders did not affect model
outputs at the point of interest. Regarding to mesh sizes and taking into account
that Monte Carlo algorithms requires many simulations, they were defined in such
a way that the simulations became as fast as possible without affecting the results
at the point of interest. In the same way, quasi-steady runs were performed so for
the scale of the problem, model results do not differ with those of unsteady
simulations and quasi-steady runs are much faster.
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X 105
Figure A1.2: Domain (left) and computational grid (right) of the wave model. The
black dots are the ADCP location and the ERA-Interim node.

Calibration parameters

Initially sensitivity analysis of significant wave height (H,) model results at
the ADCP point to each source were performed. It was observed that the source
terms that have significant impact on H; results at ADCP point are bottom friction
(Sher) and whitecapping dissipation (Sg). This is shown in the graphs of Figure
A1.3.

Hs(m)

Hs(m)

C,=0
C,, default
2xC,, default

Cgs=0

C 4 default
2xCy default
® ADCP

Figure A1.3: Sensitivity analysis of Hy model results at ADCP point to whitecapping

dissipation (left) and bottom friction (right). H; in meters at ADCP are in the y axis,

while the number of the event is in the x axis. (50 consecutives events were simulated
with a quasi-steady run).

Based on this results, we opted to focus the calibration on the parameters
involved in the parametrization of these terms. The bottom friction
parametrization correspond to the empirical model of JONSWAP (Hasselmann et
al. 1973), and it is expressed in the following form:

2
(o2

Soot(0,0) =Cp ————
g“(sinh(kd))

E(o,0) (A1.4)

Where o, k and @ are the frequency, wave number and direction of the wave
spectrum bin whose energy is E(o, 0), g is the gravitational acceleration, Sy.(o, 0)
is energy dissipated (negative value) by bottom friction on the spectrum bin defined
by o and 6, while C, is a dimensionless parameter that need to be calibrated.
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The whitecapping dissipation parametrization correspond to the pulse-
based model of Hasselmann (1974), reformulated in terms of wave number (the
WAMDI group, 1988). This expression is:

S (0',19):—F5%E(0',9) (A1.5)
and the expression of I'is,
kK| 5
F:_Cds (1—5)4'5? o (Alﬁ)
k PM

Sis(o, 6) is energy dissipated by whitecapping on the spectral bin (o, ), &
, kand S are the mean frequency, the mean wave number and the overall wave
steepness respectively. §PM is the value of S for the Pierson Moskowitz spectrum

(1964). While Cy, 6 and p are tuneable dimensionless parameters.

At first, DREAMzg) algorithm was tested with one () and two parameters:
Cyand Cy. Since in these cases it is possible to compare the obtained results with
a plot of likelihood estimation vs. parameters values. Then the proposed method
was used to calibrate the four parameters: Cj, Cu, 6 and p.

Results.

The target function used in all cases is an error measurement of the
significant wave height. It was estimated assuming that errors are independent and
identically distributed with a =zero mean normal distribution. With these

assumptions the expressions is as follows:

- 1 N 2
loglikelihood= rh N x Iog(Z(HS"dd — H;’fi’s) j (A1.7)
i=1
Where N is the amount of data compared, Hs/% and Hs" correspond to
the significant wave heights estimated and measured respectively.

For application of DREAM (z5) in all presented cases 3 chains were
considered, while 4000 evolutions were allowed for each chain, monitoring
convergence with the R-statistics of Gelman and Rubin (1992).

1 Parameter. DREAM (z5) was initially applied to calibrate only the
parameter of the bottom friction parametrization (Cj). Figure Al.4 shows the
sample obtained with the Markov chain, the posterior distribution of C,
summarized as a histogram, and the evolution of the R statistcs used to monitor
convergence. In the later is observed that the simulation converge rapidly. In
addition Figure A1.5 shows a comparison between the results obtained with the
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method, summarized on the mean value, percentile 5% and 95%, with a plot of
likelihood estimation (See eq. Al.7) vs. C,. In this figure it is appreciated the
effectiveness of the method to find the optimum of the target function.

R-statistic of Gelman & Rubin

13 16 . . . . . .
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Figure A1.4: Test with one parameter. Markov chain evolution (lower and left), R~
statistic evolution (upper and left) and histogram of C) (right). Observation: cfjon is the
same as Cj defined in the text.
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Figure A1.5: Comparison between the posterior distribution of Cjobtained with the
method and the plot likelihood vs. Cj (or cfjon).

It is also remarkable the proximity with the optimum that presents the
SWAN default value of C, ((,=0.038).
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2 Parameters. DREAM (z5y was applied to calibrate two parameters
together: C, and Cys. Figure A1.6 shows the comparison between the obtained
sample of parameters values and the surface plot of likelihood vs parameters values.
It is observed again the ability of the algorithm to find the optimum of the target
function. And SWAN default values of parameters (C,=0.038, C3,=2.36x107) are
again very close to the optimum.

log-likelihood

Cds2

0.05 0.06 0.07 0.08 0.09 0.1
cfijon

Figure A1.6: Comparison between the Markov chain and the surface plot: likelihood vs

parameters values.

4 Parameters. Finally the method was applied to calibrate the four
parameters: Cy, Cgs, 6 and p. figures A1.7 to A1.10 shows the Markov chain and
posterior distribution summarized by a histogram for each of the parameters. While
tables A1.1 to A1.3 shows the model performance with the calibrated parameters
values (i.e the mean of the obtained sample) and with the default SWAN
parameters values. The error metric considered are: root mean square error
(RMSE), BIAS, correlation coefficient ( r ) and Scatter Index (SI). While the wave
parameters shown are H, (Table Al.1), period Tun (Table Al.2) and mean
direction D, (Table A1.3).
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R-statistic of Gelman & Rubin
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Figure A1.7: Markov chain evolution (lower and left), R-statistic evolution (upper and
left) and histogram of Cj (right).
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Figure A1.8: Markov chain evolution (lower and left), R-statistic evolution (upper and
left) and histogram of Cy (right).
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Figure A1.9: Markov chain evolution (lower and left), R-statistic evolution (upper and

left) and histogram of p (right).
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Figure A1.10: Markov chain evolution (lower and left), R-statistic evolution (upper and
left) and histogram of 6 (right).

All the graphics of the evolutions of R statistics denote a rapidly
convergence of the simulation. The obtained histograms have a reasonable form,

with small variance for the case of C), Cy and p, while § seems to adjust to a

uniform pdf, which would imply that its value has minor incidence in the analyzed

model results, so it could not have been considered in the calibration.
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Table A1.1: Performance of the model with default and calibrated parameter values. H;

€errors.
BIAS(m) | RMSE (m) | r S
Default 0.1 0.25 0.86 18.9
Calibrateds | -0.03 0.23 0.87 18.6

Table A1.2: Performance of the model with default and calibrated parameter values.
Ty errors.

BIAS (s) RMSE (s) | r S
Default 13 16 0.62 15.8
Calibrateds | -1.8 2.0 0.61 15.0

Table A1.3: Performance of the model with default and calibrated parameter values. Dy,

errors.
BIAS (°) RMSE () | Sl

Default 7.4 34.5 0.65 28.3

Calibrateds 6.8 34.8 0.64 28.7

It is observed that the calibrated parameter values improves the H; model
results but that not happens with the other wave parameter that were not
considered in the target function.

Conclusions and Future Work

A first experience of Bayesian inference applied to coastal engineering
problems was realized and exposed in this paper. In this first experiment we worked
with the model calibration problem involved in the physical downscaling of wave
reanalysis data towards a coastal site.

The tests performed for one and two parameters showed the effectiveness
of the method to find the optimum of the target function. It is worth mentioning
the proximity with this optimum that presents the SWAN default values for these
parameters.

The method applied to four parameters also shows a good performance,
improving the model results of H at the point of interest. However it did not allow
to improve the models results of others wave parameter that were not considered
by the target function (e.g. mean period and mean direction). Since measures of
the whole spectra are available, it is proposed to apply the method including the
whole spectrum in the target function. We expect that this change will allow an
integral improvement of the model results and not only for the estimation of Hs.
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Although model parameters is one of the main uncertainty source in the
outputs of a model of a nature process, it is not the unique. There are also others
such as those related with measure errors of the system response, those related to
structural problems of the model and those related with input errors. Precisely the
latter seems to be relevant to the problem discussed in this paper. Because large
errors in reanalysis data are not possible to correct tuning model parameters. But
we think that the proposed method provides the possibility of addressing this
problem. The idea in which we are working seeks to introduce corrections
parameters of the boundary conditions (reanalysis data) that will be calibrated
together with model parameters using the proposed method-

This first auspicious experience encourage the exploration of new
applications of Bayesian inference on coastal engineering problems (e.g. coastal
morphodynamics, surge tides modeling, etc.). At the same time, set the challenge
of develop new algorithms or variations in order to better adapt to the peculiarities
of this class of problems.
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