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Abstract
We present an implementation of the PACO-DCT inpainting algorithm. This method is based
on maximizing the likelihood of image patches in terms of their DCT coefficients, while requiring
consensus on the overlapping patches. The resulting problem is solved as an instance of the
PACO framework.
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Source Code
The source code for the presented algorithm is available at the associated web page1.

Supplementary Material
Supplementary material can be found at the project home page2.

1 Introduction

This paper showcases the application of the Patch Consensus (paco) framework [12] to the problem
of image inpainting. paco belongs to the recent family of algorithms [4, 8, 10, 17] which aims
at reducing undesired blur in the output of patch-based image processing algorithms by seeking
solutions where the patches agree at their intersections. Similarly to [4, 8], rather than promoting,
paco imposes agreement as a hard constraint in the optimization problem. Contrary to [4, 8], paco
is not restricted to linear and/or sparse patch models. In fact, any energy defined in terms of the
patches can be plugged into the paco framework. Besides its generality, the hard constraint imbued
in paco defines a one-to-one mapping between image and patch spaces, thus allowing for further
problem constraints to be defined in either one of these spaces.

The inpainting algorithm described in this work is made up of three building blocks: a weighted
`1 cost function over the dct transform of patches; the requirement that estimated patches coincide
where they overlap in the image (patch consensus); and the inpainting constraint, that is, that the
estimated image coincides exactly with the known samples of the input image. As we will see next,
the algorithm is easy to implement, fast, and effective on scratches and holes of moderate size.

This document is organized as follows. Section 2 describes the notation and the main math-
ematical concepts used thereafter. Section 3 introduces the general paco framework and its gen-
eral solution. Section 4 deals with the paco-dct problem and the resulting inpainting algorithm.
Section 5 provides technical details relevant to understanding the accompanying implementation.
Experimental results are shown and discussed in Section 6. The paper is concluded in Section 7.

1https://doi.org/10.5201/ipol.2021.286
2http://iie.fing.edu.uy/~ihounie/paco/
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2 Patch Extraction, Patch Stitching and the Consensus Set

Given a 1D signal x of length N , the extraction operation is determined by a set R = {R1, . . . ,Rn}
of linear operators Rj : RN → Rmj . Each Rj maps a patch from x to a vector yj of size mj, so that
the total number of patches extracted is n. The operator Rj can be expressed as yj = Rjx, where
each row of Rj ∈ Rmj×N corresponds to a vector ei of the canonical basis of RN . The concatenated
output of all operators, y ∈ R

∑
j mj , can be written as y = Rx, where Rᵀ = [ Rᵀ

1 | R
ᵀ
2 | · · · | Rᵀ

n ].
In the common case where mj = m for all j, the patches vector y ∈ Rmn can be written as a patches
matrix Y ∈ Rm×n, where each of its columns corresponds to a patch; in this case, we will use both
forms interchangeably. In any case, we will denote the space of all possible patches matrices/vectors
as Rmn.

The operator R defines a linear isomorphism between RN and linear subspace C ⊂ Rmn which
we call the consensus set.

By stitching we refer to the operation that maps a patches vector ŷ ∈ Rmn onto a signal x̂ (the
hat is used to denote estimation hereafter). This operation should coincide with the inverse mapping
of R when applied to C. If we extend the domain of the stitching operator to all patch matrices
in Rmn, including those outside of C, its definition is not unique. A common choice is to seek for
the signal estimate x̂ whose patches, when extracted, are as close as possible to the individually
estimated ones in ŷ. Using the `2 norm to measure this distance leads to the least squares estimation

x̂ls = arg min
x
‖Rx− ŷ‖2 =

(∑
j

Rᵀ
jRj

)−1∑
j

Rᵀ
j ŷj = (RᵀR)−1Rᵀŷ. (1)

Equation (1) is interpreted as follows: it is easy to verify that Rᵀ
j ŷj puts back the patch ŷj in its

corresponding place in x̂ls; thus, Rᵀŷ produces a vector of length N where the i-th element contains
the sum of all the elements of ŷ that are mapped there by one or more Rj. On the other hand
Rᵀ
jRj is a diagonal matrix with m ones, and so RᵀR =

∑
j R

ᵀ
jRj is a diagonal matrix whose (i, i)-th

element counts how many Rjs have mapped some element of ŷ to the sample i. Thus, the i-th entry
of the right hand side of (1) is the average of all the different estimates of the i-th sample in ŷ. We
refer to the operator defined in (1) as the average stitching operator and denote it by S : Rmn → RN ,
x̂ls = S(ŷ).

2.1 Patch Re-projection and the Stitching Trick

The extraction operator R is given by y = R(x) = Rx. If we compose this with the stitching
operator S defined earlier we obtain

R[S(ŷ)] = R(RᵀR)−1Rᵀŷ = ΠC(ŷ), (2)

where ΠC(ŷ) is the orthogonal projection of ŷ ∈ Rmn onto C. Thus, we conclude that the projector
operator (2) from Rmn onto C can be written as the composition of the extraction operator with its
corresponding average stitching operator. Although (2) is a well known result, to the best of our
knowledge, its straightforward implementation as the aforementioned composition has not been fully
exploited in the literature. Rather, works such as [4, 8] compute the orthogonal projection matrix
R(RᵀR)−1Rᵀ explicitly, something that quickly becomes unwieldy as the signal size increases even
if the structure of such matrix is exploited (e.g., block sparsity).

Note that the aforementioned result does not impose any particular requirement on the extraction
operator R. In particular, it does not require equally-sized patches.

The preceding discussion generalizes to signals x of any dimension by vectorizing x prior to
extraction: yj = Rjvec(x). Here vec(·) arranges its argument into a vector by traversing its elements
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in some predefined order. In our case, for 2D signals of size M×N , we follow a row-major ordering,
that is, the output vector is the concatenation of the M input rows. The inverse of vec(·) is called
the matrification operator and is denoted by mat(·).

3 PACO: The PAtch COnsensus Problem

Given a patch extraction operator R : RN → Rmn, a cost function f(Y) : Rmn → R, and a constraint
set Ω ⊆ Rmn, the paco problem is stated as follows

Ŷ = arg min
Y

f(Y) s.t. Y ∈ Ω ∩ C. (3)

In [12] we show that the problem of patch consensus is a particular case of the General Consensus
Problem when Ω = C (see [11, Chapter 5]). We will see later how to treat the general case Ω 6= C.
At this point, we shall remind the reader that C is isomorphic to RN , so that the constraint set
can be defined in either RN or C. For example, in order to clip the resulting samples to the range
[0 − 255] we could define Ω = {Y ∈ Rmn : S(Y) ∈ [0, 255]N}. The inpainting constraint that we
describe later in Section 4 falls into this category.

3.1 Problem Formulation

We now define the convex indicator function associated to the paco constraint set C ∩ Ω, g(·) :
Rmn → R ∪ {+∞},

g(Y) =

{
0 , Y ∈ C ∩ Ω
+∞ , Y /∈ C ∩ Ω

. (4)

This allows us to transform the paco problem into an unconstrained one,

Ŷ = arg min
Y

f(Y) + g(Y). (5)

The problem (5) will be convex if the function f(·) and the set Ω are also convex. This allows for
convex restoration problems to be defined under consensus constraints. This being said, the paco
framework (5) is not limited to convex problems.

3.2 General Algorithm

The following method is based on the proximal operator form [11] of the popular Alternating Direc-
tions Method of Multipliers (admm) [6]. The proximal operator of a function f(·) with parameter λ
is given by,

proxλf (y) := arg min f(x) +
1

2λ
‖y − x‖2. (6)

The proximal operator has many interesting properties (see [11] and references therein). Among
them, if g(·) is the indicator function of a set A we have that

proxλg (·) = ΠA(·).

This is particularly useful within the paco framework, as ΠC(·) can be computed efficiently using
the stitching trick described in Section 2.1, Equation (2). However, in general, this trick cannot
be applied directly to (5). In order to do that, we need to reformulate (5) so that projecting onto
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the constraint set, and minimizing the target cost function f(·), can be done separately. One such
reformulation is the so called splitting,

(Ŷ, Ẑ) = arg min
Y,Z

f(Y) + g(Z) +
1

2λ
‖Y − Z‖2

F s.t. Y = Z, (7)

where ‖ · ‖F is the Frobenius norm of a matrix. The admm provides a general way to obtain a
solution to (7) which is guaranteed to be global if the problem is convex, and local otherwise. The
particular admm steps for this case are described in Algorithm 1.

Algorithm 1: General PACO ADMM algorithm

input : Y(0), Z(0), λ(0), step reduction factor 0 < κ ≤ 1, convergence criteria
output: Y∗, Z∗

1 t← 0, U(0) ← 0 ;
2 repeat
3 Y(t+1) ← proxλf

(
Z(t) −U(t)

)
; // problem dependent:f

4 Z(t+1) ← ΠC∩Ω

(
Y(t+1) + U(t)

)
; // problem dependent:Ω

5 U(t+1) ← U(t) + Y(t+1) − Z(t+1); // trivial, problem independent

6 λ(t+1) ← κλ(t) ;
7 t← t+ 1 ;

8 until convergence criteria are met ;

Steps 3 and 4 of Algorithm 1 are problem dependent. In particular, if Ω = Rmn then g = ΠC(·)
and 4 can be solved using the stitching trick (2),

Z(t+1) = R
[
S
(
Y(t+1) + U(t)

)]
.

If Ω ⊂ C then ΠΩ∩C(·) = ΠΩ[ΠC(·)]. If Ω 6= C, a general solution to step 4 can be obtained iteratively
using Dykstra’s Algorithm 2. Step 3 depends on f(·). In fact, any restoration method which can

Algorithm 2: Dykstra’s algorithm for computing the projection of a point α onto the inter-
section of two sets A and B
input : point α, sets A and B
output: β = ΠA∩B(α)

1 t← 0, α(0) ← α ;

2 p(0) ← 0, q(0) ← 0 ;
3 repeat
4 β(t) ← ΠB(α(t) + p(t)) ;

5 p(t+1) ← α(t) + p(t) − β(t) ;

6 α(t+1) ← ΠA(β(t) + q(t)) ;

7 q(t+1) ← β(t) + q(t) − α(t+1) ;
8 t← t+ 1 ;

9 until convergence;

be formulated as the minimization of a function defined in patch space f : (Y) : Rmn → R can
be accommodated into the paco framework by plugging its corresponding proximal operator into
Step 3.

4
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We will leave the convergence criteria undefined for now, as its choice depends on the particular
application and practical implementation decisions.

Finally, the admm parameter λ is (optionally) decreased at each iteration. While this is not
necessary for convergence and is not part of the standard admm algorithm, a good choice of κ can
improve the practical convergence rate significantly.

The next section describes the implementation of Steps 3 and 4 of Algorithm 1 for the paco-dct
algorithm implemented in this work.

4 PACO-DCT Inpainting

We now describe the application of the paco framework to the problem of filling in missing samples in
signals, where such missing samples appear as contiguous, large regions. This problem is commonly
known as inpainting in the image/video processing literature. Our method seeks to minimize the
weighted `1 norm of the Discrete Cosine Transform (dct) coefficients of the estimated signal patches
Ŷ while keeping up with the consensus constraint and with the known samples of the signal. As
shown later in Section 6, the method appears to be effective on a number of interesting scenarios.

4.1 Inpainting Constraint Set

In the following discussion we will be dealing with sets of signal and patch indexes; here [N ] will be
shorthand for {1, . . . , N}. We denote the set of observed samples as

O = {i ∈ [N ] : xi 6=?},

where the symbol “?” represents an unknown sample value. The inpainting task is to infer the
unknown sample values {xi : i ∈ Oc} from the known samples {xi : i ∈ O}. The sets O and Oc are
typically specified using a binary mask of the same size as the input signal, where a 1 at position i
indicates that xi is unknown. The masks used in this work are shown in Figure 2.

In general, it is desirable that the estimation x̂ coincides with the signal x in those places indexed
by O. This inpainting constraint set is naturally defined in signal space as

Γ = {x̂ ∈ RN : x̂i = xi, i ∈ O}. (8)

The corresponding constraint set in patch space is given by,

Ω = {Ŷ ∈ Rmn : S(Ŷ)i = xi, i ∈ O}. (9)

Given O and R, we also define the set J ∈ [n] of the incomplete patches as

J = { j ∈ [n] : ∃ i ∈ [m] | (yj)i = ? }.

The complete patches are those whose patch indexes do not belong to J . These sets, along with
other index sets of practical interest, are depicted in Figure 1.

4.2 Cost Function

Given an image patch yj ∈ Rm, and a matrix D ∈ Rm×m whose columns correspond to the basis
elements of the (inverse) orthogonal dct type II, the corresponding dct coefficients vector is given
by

aj = D−1yj.
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Figure 1: Example of precomputed index sets; linear indexes begin at 1, and image indexes at (1, 1). Left: sample
9×9 image decomposed into 3×3 patches separated by a stride s = 2, leading to 16 different patches. There is one
unknown sample at position (4, 5); the corresponding set of missing sample linear indices is Oc = {32}. There are two
incomplete patches whose upper-left corners are at image coordinates (3, 3) and (3, 5), so that their linear indexes are
J = {21, 23}. The set A indexes all the pixels contained in the incomplete patches yj , j ∈ J . In this example we have
A = {21, . . . , 25, 30, . . . , 34, 39, . . . , 43}. The index set of projected samples P is given by A \O = {1, . . . , 31, 33, . . . , 81}.

The dct has long been used as an energy-concentrating transform for images and image patches. It is
well known that dct coefficients of natural images exhibit a heavy-tailed, Laplacian-like distribution
(see e.g. [14] for a detailed discussion). Under this model, the joint distribution of the coefficients
vector aj = D−1yj is characterized by the following multivariate Laplacian density function

p(aj) =
m∏
i=1

2

ωi
e−ωi|ai,j |, (10)

where the scale parameters ωi, i = 1, . . . ,m typically vary significantly with i. In order to produce
a signal estimate, we seek to minimize the negative log-likelihood of (10) summed over all patches
aj, j ∈ [n]. After discarding constant additive terms, we obtain the following cost function defined
over the dct coefficients

f ′(A) =
n∑
j=1

m∑
i=1

ωi|ai,j|. (11)

The corresponding cost function over the patches matrix Y is f(Y) = f ′(D−1Y). Of course,
many priors which are more expressive and accurate than the Laplacian dct exist: Non-Local [3, 7],
Sparse Models [2], Gaussian Mixture Models [16], Bayesian [1], or Patch Manifolds [13], to name a
few. Our choice is based on two aspects of the dct. First, being an orthogonal transform, it allows
for a much simpler and faster solution of the resulting optimization problem (more on this later).
Second, it is very fast to compute, with specialized, high performance libraries such as the fftw3

3http://fftw.org/.

6

http://fftw.org/


Image Inpainting using Patch Consensus and DCT Priors

readily available on many platforms and languages. To fix ideas, computing the dct of an 8×8
grayscale patch is about two orders of magnitude faster than a matrix-vector product for a matrix
of size 64×64.

The weights {ωi : i ∈ [m]} are not known a priori. Our implementation computes the Maximum
Likelihood Estimator (mle) of each ωi, i ∈ [m] given the coefficients of the patches ai,j, j /∈ J .
We then scale the resulting mle estimators so that mini∈[m]{ωi} = 1; this improves the numerical
stability of the method. The resulting weights are given by

ωi =
mini∈m{ŵi}

ŵi
, ŵi =

∑
j /∈J

|ai,j| , aj = D−1yj. (12)

4.3 Inpainting Algorithm

According to the cost function and constraint sets defined before, the paco-dct inpainting problem
(splitting included) is given by,

Ŷ = arg min
Y

∑
i,j

ωi
∣∣(D−1yj)i

∣∣+ g(Z), s.t. Y = Z (13)

It is easier to define the problem directly in terms of the corresponding dct coefficients,

Â = arg min
A

∑
i,j

ωi|ai,j|+ g′(B). (14)

where B = D−1Z and g′(B) = g(DB). The proximal operator of f ′(A) =
∑

i,j ωi|ai,j| is known as
the soft-thresholding operator and is given by (15),

Tλwi
(a) = min{a+ λwi,max{0, a− λwi}}. (15)

As for g′(·), it is easy to show that proxλg′ (·) = D−1proxλg (D·) when D is orthogonal (the
non-orthogonal case is treated in detail in [12]). In our case, proxλg (·) = ΠC∩Ω(·).

From (8) and (9) it is clear that Γ = S(Ω). As R and S define a linear isomorphism between RN

and Rmn, we then have that Ω ∩ C is the preimage of Γ under S. Thus, we can project a patches
matrix Y ∈ Rmn onto Ω ∩ C by first applying S(Ŷ), then projecting the resulting signal x̂ onto Γ,
and then inverting the mapping using R,

proxλg (Z) = ΠC∩Ω(Z) = R{ΠΓ [S(Z)]} . (16)

Combining (16) with the aforementioned property of the proximal operator of an orthogonal trans-
formation we obtain the following expression for the proximal operator defined in terms of the dct
coefficients

proxλg′ (B) = D−1proxλg (DB) = D−1 (R{ΠΓ [S(DB)]}) . (17)

Algorithm 3 describes the pseudo-code which implements the proximal operator of g′(·) as given
by (17). Algorithm 4 provides the complete pseudo-code of paco-dct, with Algorithm 3 inlined in
steps 4–6.

5 Implementation Details

5.1 Image Padding and Patch Indexation

Absolute pixel coordinates with respect to the whole image start at (0, 0) for the upper-left corner
of the image. Pixel coordinates within a patch are relative to the upper-left pixel of the patch (this

7
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Algorithm 3: Proximal operator for the indicator function g′(·).
input : dct coefficients matrix B, observed signal x, known sample indices set O
output: Projection of B onto the inpainting constraint set, ΠC∩Ω(B)

1 Z← DB; // Convert dct coefficients to patch samples

2 v← S(Z); // Stitch patches in signal space

3 vi ← xi, ∀ i ∈ O; // overwrite estimated samples to known values in x; this is ΠΓ

4 Z← R(v); // Go back to patch space

5 ΠC∩Ω(B)← D−1Z; // Get dct coefficients from samples

Algorithm 4: Complete paco-dct algorithm (in dct space).

input : signal x, initial estimation x̂(0), observed sample indices set O, initial stepsize λ(0),
step reduction factor 0 < κ ≤ 1, convergence criteria

output: inpainted signal x̂

1 B(0) ← DR(x̂(0)); U(0) ← 0 ;
2 repeat

3 a
(t+1)
i,j ← Tλωi,j

(b
(t)
i,j − u

(t)
i,j ), ∀ i, j; // Soft thresholding

4 x̂(t+1) ← S[D(A(t+1) + U(t) ) ]; // Convert to patch space and stitch

5 x̂
(t+1)
i ← x

(t+1)
i , ∀ i ∈ O; // Project onto Γ.

6 B(t+1) ← D−1R(x̂(t+1)); // Extract patches and convert them to DCT space

7 U(t+1) ← U(t) + A(t+1) −B(t+1); // Update multiplier

8 λ(t+1) ← κλ(t);
9 t← t+ 1 ;

10 until convergence criteria are met ;

deviates from the de-facto standard of using the center of the patch as the origin of the relative pixel
coordinates, but simplifies some technicalities in our discussion). Depending on the size of the image,
the patch size, and the stride, padding might be required to the right and/or bottom of the image,
in which case we reflect the borders. If N is the dimension of the original signal and N ′ that of the
padded one, we define xN+k = xN+1−k, 1 ≤ k ≤ N ′−N . For simplicity, we will assume that N = N ′

in the rest of the document.

5.2 Pre-computation of Indexes and Normalization Factors

To begin with, any patches that are already complete can be ignored altogether. Thus, the opti-
mization works only on the incomplete patches (indexed by J ⊂ [n]) and their respective samples.
Additional computational savings can be obtained if we pre-compute the indexes of the samples
involved in the optimization, namely those which belong to any incomplete patch yj, j ∈ J ; we call
this the affected indexes set A. The set A can then be subdivided into two: the subset of A which
corresponds to known samples, that is P = A ∩ O, and the set of missing samples, Oc. Finally, we
can speed up the stitching operation if we pre-compute the normalization factors

c = diag(RᵀR)−1 ∈ R|A|.

Algorithm 5 shows a method for computing the sets J , A, P and the normalization factors vector c.
Figure 1 illustrates these sets on a toy example.

8
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Algorithm 5: Pre-computation of indexes and normalization factors. Below we show the
simplified algorithm for patches of same size m on a regular grid over a 1D signal.

input : known samples indexes O, extraction operator R = {Rj, j = 1, . . . , n}.
output: Incomplete patch indexes J ⊂ [n], affected samples indexes A ⊂ [N ]
output: Projected samples indexes P ⊂ [N ], normalization factors c.

1 J ← ∅, A← ∅, P ← ∅ ;
2 h = 0N ; hi ← 1, ∀ i /∈ O; // Pseudo-signal: missing samples mask.

3 s = 0N ; // Pseudo-signal: pixel occurrence counter.

4 for j ← 1 to n do
5 zj ← Rjh; // Extract j-th pseudo-patch from the missing samples mask.

6 if zj 6= 0N then // There is at least one missing sample in the pseudo-patch

7 J ← J ∪ j ; // Thus, the j-th patch is incomplete.

8 s← s + Rᵀ
j1m; // Increment s where the j-th patch falls.

9 end

10 end
11 A← {i ∈ [N ] : si > 0}; // Zeroes in s correspond to non-affected samples.

12 P ← A ∩O; // P is the set of affected and observed samples.

13 c← {1/si : i ∈ A}; // Normalization factor: inverse of counter.

5.3 Color Representation

Color images are first converted to the yuv color space, each channel is processed as a grayscale
image, and the final result is mapped back to rgb.

5.4 Initialization

If available, the user may explicitly provide an existing image as the initial signal estimate. Otherwise,
the initial values of x̂(0) at the unknown places are filled with the average values of the known places,
that is

x̂i = x̄ , ∀i ∈ Oc , x̄ =
1

|O|
∑
r∈O

xr.

5.5 Convergence Criteria

The algorithm will stop if a number of maximum iterations is reached or the relative change between
iterations of f ′(B), |f ′(B(t+1))− f ′(B(t))|/|f ′(B(t+1)| < ε for 0 < ε� 1.

6 Results and Discussion

The experiments in this section address three important questions about the proposed paco-dct
method: i) how good is the convergence of the numerical optimization algorithm? ii) how do the
problem and algorithm parameters affect the quality of the result? iii) overall, is the method com-
petitive compared to the state of the art?

9
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6.1 Experimental Setup

Tests were performed on the Kodak image dataset 4. This dataset contains 24 portrait (512×768) and
landscape (768×512) color images. These images are sharp, high quality, and losslessly compressed;
some examples are shown in Figure 2. We apply four different missing pixels masks to each one of
these images (also shown in Figure 2).

Figure 2: Inpainting masks 1 to 4 and four sample images from the Kodak dataset. Masks 2 and 4 are more challenging
due to the size of the erasures.

We evaluate the quality of the results in terms of two measures: the usual Root Mean Squared
Error (rmse), and the more recent Multiscale Structural Similarity Index Measure (ms-ssim) [15].
These metrics are computed only for the missing pixels, not on the whole images, as the known pixels
are always perfectly recovered. This makes the results more sensitive to the actual performance of
the algorithms at the unknown pixels, and less dependent on the number of missing pixels of each
different mask.

6.2 Problem and Algorithm Parameters

The paco-dct problem depends on two parameters: the size of the patches m, and the stride s
between positions in the patches grid. The computational complexity of each iteration of the paco-

4This is a dataset originally released on a CD by Kodak which was later released to the public. Many sites host a
copy of this dataset. We provide our own link at http://iie.fing.edu.uy/~nacho/data/images/kodak_color.7z

and our grayscale versions at http://iie.fing.edu.uy/~nacho/data/images/kodak_gray.7z.
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Figure 3: Convergence analysis of the admm method (Kodak #19, mask #2, width 16, stride 8). The left figure
shows the value of the cost function f (t), constraint violation ‖A(t) − B(t)‖2 (scaled by 1/(mn)), cost function change
|f(B(t)) − f(B(t−1))|/|f(B(t+1))|, and relative argument change ‖B(t) − B(t−1)‖2/‖B(t)‖2. The right figure shows the
image quality metrics across iterations.

Figure 4: Inpainting results on artificial test image using fully overlapped patches of size 10×10. Left to right: input image;
result after first iteration; result after 16 iterations; after 256 iterations. The first iteration is the result of estimating each
patch by minimizing our dct-based cost function once, followed by a plain patch averaging step, that is, with no consensus
imposed.

dct algorithm is linear in the number of patches, n, which in turn decreases quadratically with s. For
fixed n, the complexity grows with the (linear) size of the patch m as O(m log2m), or as O(w2 log2w)
for square patches of size m = w×w, where w is the width of the patch. The convergence of the
optimization algorithm further depends on three additional parameters: the initial stepsize λ, the
stepsize scaling factor κ, and the minimum allowed change in the cost function ε.

Numerical optimization parameters The two main parameters that affect convergence are the
initial value of λ and the diminishing factor κ. For the results in this section we used λ0 = 10 and
κ = 0.95. Figure 3 shows the convergence of various magnitudes of interest using these parameters
on the test example shown in Figure 4. The convergence is essentially linear (with the exception of
the abrupt fall in the cost function just before iteration 20).

Problem parameters Intuitively, higher quality results should be obtained with larger patches,
smaller strides and more iterations. As mentioned before, this comes at a price in computational
speed. Figure 5 shows this trade-off. The good news is that the quality of the resulting images using
both the objective (rmse) and subjective (ssim) metric do not seem to deteriorate significantly even
at s = m/2, that is, 50% overlap, while being significantly faster to compute (about an order of
magnitude). However, there is no single best choice for the patch size: higher patch sizes lead to
better ssim scores but worse rmse, whereas smaller patches have the opposite effect. This being
said, in our opinion, it is better to rely on ssim for real world applications.
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Figure 5: Quality-Time trade-off. BOTTOM: median rmse and ssim vs. the median execution time in seconds for mask
#2. Optimization parameters used: λ = 10, κ = 0.95, max. iterations 512, min. change ε = 1e−5. The outer circle size
corresponds to the patch width w = 8, 16, 24 and the inner circle indicates the relative overlap (smallest is 1/4, largest is
7/8). For any fixed patch size, as expected, the execution time decreases quickly with the overlap. However, the quality
does not decrease significantly up to an overlap of 1/2! Interestingly, the patch size affects the rmse and ssim metrics
in complementary ways: larger patches improve the visual quality (ssim) but increase the overall rmse. TOP: left: best
rmse (width 8 overlap 7/8); right: best ssim (width 24 overlap 7/8); notice that, accordingly with the metrics, textures
are better recovered in the best ssim case.
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metric → rmse ssim

mask → 1 2 4a 4c 1 2 4a 4c

method ↓ percentile 25

paco 8.38 15.68 8.15 11.56 0.9886 0.9562 0.9879 0.9513

[7] 10.44 15.07 9.80 12.92 0.9868 0.9556 0.9863 0.9392

[9] 12.12 19.64 10.88 14.77 0.9825 0.9418 0.9826 0.9299

[5] 19.84 23.67 20.68 23.90 0.8791 0.8548 0.8628 0.8403

METHOD percentile 50

paco 10.48 17.32 10.05 14.09 0.9906 0.9615 0.9900 0.9567

[7] 12.46 16.31 12.08 15.94 0.9886 0.9607 0.9888 0.9508

[9] 14.75 22.48 13.91 17.96 0.9856 0.9463 0.9846 0.9389

[5] 24.15 29.25 26.21 29.23 0.9103 0.8854 0.9084 0.8777

METHOD percentile 75

paco 13.43 20.73 15.20 19.66 0.9931 0.9646 0.9918 0.9618

[7] 15.95 21.20 17.65 20.90 0.9914 0.9660 0.9910 0.9571

[9] 18.92 27.20 20.87 24.72 0.9887 0.9494 0.9886 0.9499

[5] 31.05 37.91 32.12 36.17 0.9414 0.9131 0.9378 0.9087

Table 1: Summary of inpainting results on the whole Kodak dataset (luminance channel) in terms of rmse (smaller is
better) and ssim (higher is better); best results are in bold blue.

6.3 Performance Comparison

We compare the results of paco-dct with those of [5, 7, 9]. Both [7, 9] are recent, state-of-the-
art methods based on the non-local patch-based estimations paradigm which produce high quality
results on large holes at a significant computational cost. On the other hand, [5] is a very fast, non
iterative method from the family of signal restoration based on partial differential equations which
is suitable for small regions over piecewise smooth signals; this should give us a comparison on the
other extreme of the quality-vs-speed spectrum.

According to the preceding section, we use the paco-dct problem parameters that yield the best
compromise between rmse and ssim: w = 16 (m = 256) and s = 2. The optimization parameters
are set to λ = 10, κ = 0.95 a maximum of 1024 iterations and a minimum allowable cost function
decrease of ε = 1e−5. When comparing to other algorithms, we set the parameters of such algorithms
to the defaults used in their publicly available implementations.

Table 1 summarizes the results of the four methods for the 24 Kodak images in terms of the
median, 25 and 75 percentiles of the rmse and ssim measures, again computed only over the missing
pixel locations. For simplicity, we only show the results on the Luminance channel of these images;
similar results are obtained for the other channels. Figure 6 shows the results obtained with these
four methods for a particular case, again on the Luminance channel. Figure 7 shows the color result
obtained on Kodak image #19 and mask #2.

Despite the simplicity of the dct prior, paco-dct compares favorably to the other methods in
most cases. Although Table 1 should not be considered a thorough comparative study of image
inpainting methods, which is clearly outside of the scope of this paper, it provides encouraging
evidence on the competitiveness of the proposed paco-dct inpainting method.
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Figure 6: Visual comparison of the four methods on Kodak #19 and mask #2. Top to bottom, left to right:
paco, [7], [9], [5]. All four methods perform well on narrow gaps. For wider gaps, the results of [7] and paco-dct
are similar, the major difference being the fence next to the life saver; [7] produces sharper results than paco, but also more
artifacts (e.g., large gap in fence or above the lighthouse window); [9] and [5] produce significant artifacts in these regions
(we recall the reader that [5] is not suited for such large gaps by design.)
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Figure 7: Color image inpainting: sample result for Kodak image #19 and mask #2. Left: overlay of original image and
missing pixels mask. Right: Result of applying paco-dct with patches of size 64×64 and a stride of 4 pixels (please zoom
in on digital document for details). According to Figure 5. Overall, the restored image is visually similar to the original in
most regions; the metric ssim =0.9678 is consistent with this. On the other hand, the result is not as good on regions
which exceed the patch size by a large margin; this explains the relatively high rmse = 19.85.
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7 Concluding Remarks

We have presented the paco-dct inpainting algorithm: a simple and efficient method based on
the paco framework which produces good results in a number of inpainting scenarios which are
of practical interest, for example the removal of small and medium-sized scratches and erasures in
pictures and film frames. The method is not well suited for very large inpainting areas; it remains
to be seen whether this problem can be alleviated by using more complex formulations (such as
multi-scale) or other (convex or non-convex) patch priors.

Image Credits

All the images used in the experiments come from the Kodak image dataset5.
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