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Abstract

The Steiner Tree Problem is an umbrella of combinatorial optimization problems in
graphs, most of them NP-Hard, within which, the Steiner Tree Problem in graphs (STP) is
perhaps one of the most famous and widely studied. The STP consists in optimally intercon-
nect a given set of terminal or mandatory nodes within a graph with edges of positive weights,
eventually using other optional nodes. It has a wide range of applications from circuit layouts
to network design, so plenty of models to find its exact solutions have been crafted. Tradition-
ally, due to its intrinsic complexity, heuristic approaches have been used to find good quality
solutions to the STP. Currently, the outstanding computing power resulting from combining
developments in hardware and software capabilities makes it possible to rely upon exact
formulations and generic algorithms to solve complex instances of the problem. This work
introduces a flow-based mixed-integer problem formulation (MIP) for the STP using the
SteinLib, a reference test-set repository. Later on, that MIP formulation is modified to solve
the Quality of Service Multicast Tree problem (QoSTP). To the best of our knowledge, there
is no previous MIP formulation. While existing approaches go all the way of approximation
algorithms to find solutions, this MIP formulation shows promising experimental results.
Optimal solutions are found for several instances, while low feasible-to-optimal gaps were
obtained for most of the remaining ones.

Keywords: Flow-based model, flexible model, effective optimization, linealization, mixed-
integer problem formulation, Ford-Fulkerson algorithm, Steiner Tree Problem, Quality of
Service Multicast Tree Problem .





Table of contents

1 Introduction 1

2 An exact model to solve Steiner Tree Problem 7
2.1 Steiner Tree Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Testing the Model’s Performance . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 A new model for Quality of Service Multicast Tree Problem 23
3.1 Quality of Service Multicast Tree Problem . . . . . . . . . . . . . . . . . . 23
3.2 Model’s Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Testing the Model’s Performance . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Conclusions 39

References 43





Chapter 1

Introduction

During the last decades, Information and Communication Technologies have been evolved
and progressively merged in most of our daily tasks, up to a point where modern human
and economic activities are hardly imaginable without the support of them. This process is
developed at multiple levels of abstraction and functionality. It is out of the question that the
Internet is the de facto global means to connect end-users with information. Furthermore,
humanity is on the brink of the second generation of application changes due to the expansion
of Artificial Intelligence. Within such an enormous and dynamic ecosystem, this work
focuses on Content Delivery Networks (CDN). Before going into technical details, it is
worth revising some of the changes telecommunications have been enduring over the last
twenty years. Considering the radio or the telephone as the original milestone, modern
telecommunications exist since the late 19th century. Later, other communications services
were added to the offer, such as television, telex (an old messaging system), cable-TV,
satellite-TV, mobile telephony, etc. A subtle but crucial aspect of that arrangement of
services is the fact they were independent. That is, there were technological standards,
regulations, and technologies specific to each niche market. Thus, separate infrastructure
was necessary to support different services. The stiffness of the whole package conspired
against the diversification and evolution of those services. The massification of the Internet
began in the late ’90s. It was designed from scratch to be application unaware and it also
supported to be deployed over legacy infrastructure. Many of us still have in mind those times
when dial-up modems used the public switched telephone network as a means for accessing
the Internet. The flexibility of the Internet promoted the development of new end-to-end
applications, which would not need now huge investments in public infrastructure to come
to life. Later, legacy services (telephone, messaging, video content) moved over this new
immense infrastructure as residual traffic, at a pace so intense that in only twenty years, the
infrastructure that supported legacy services is on its way to becoming obsolete.
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Nowadays, massive content is sustained over Content Delivery Networks (CDNs). They
are the result of the fusion of information platforms, i.g. clusters of servers that reside at
data centers worldwide distributed and the vast Internet’s telecommunications infrastructure.
Precisely, this work aims upon the efficient design of such kind of networks. Most popular
public content such as that of Netflix, Facebook and Youtube are conveyed over CDN owned
by these corporations. Other popular content regularly accessed by many users is that of
software updates. For instance, Apple Inc. and Microsoft Corporation use a third-party CDN
(Akamai Technologies) to keep update packages worldwide distributed. An objective of
a CDN is to keep content as close to the end-users as possible, ideally in the nearest data
center, so the user can attain the best Quality of Experience (QoE). Consequently, lowering
the global volume of information traversing the Internet. For such a goal, the nodes of a
CDN (servers clusters within a data center) keep copies of the content. Whenever a user
is trying to access some content of a CDN (e.g. a Youtube’s video), the user is redirected
towards the nearest node in the world. If that node already has a copy of the required
information, the data is utterly sent to the requester. Whether the node does not have that
copy, it solicits the content to the nearest nodes for them to feed it. The resources these
copies consume while being relayed over the Internet depends on the CDN’s topology, that
is, of which nodes are to be used and what adjacencies are to be set among them. How to
design a CDN to use the minimum expected number of bandwidth resources is the object of
this work. Network design and planning are a traditional area of active research in applied
mathematics. In particular, designing telecommunication networks are highly complex and
frequently time-consuming tasks, then network design usually pertains to the category of
NP-Hard problems. That means that no algorithm of polynomial time complexity (in the
size of the input instance) is known to find solutions for them. For example purposes, we
mention problems related to the design of optical networks, where the Minimum Weight
Two Connected Spanning Network (MW2CSN, [Monma 1990], [Bienstock 1990] ) and the
Steiner Two-Node-Survivable Network Problem (STNSNP, [Baïou 1996] ) are two reference
cases. Those examples aim at designing resilient physical infrastructure (optical fibers and
the subterranean conduits to deploy them), over which telecommunication networks are
assembled. Essentially, they intend to find the minimum-cost network that connects some of
its nodes with at least two physically independent paths. That guarantees that services can
recover after a single failure of a node or link in the network. A CDN, on the other hand, is
not a physical but logical network, deployed through connections over the Internet, so we
reasonably assume that connections resiliency is provided by the Internet itself. As we see
later on, in spite of the previous fact, the intrinsic complexity of designing an optimal CDN
also falls into the NP-Hard category.
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A fundamental premise this work relies upon one of the main features of the Internet.
Indeed, as we previously mentioned, optical networks are historically designed to be resilient,
which in that context means that, they count at least two physically independent paths
between nodes in their backbones. The number is usually greater than two, except for a
group of second priority stub nodes. The second level of abstraction within the Internet stack
is the set of routers and links that compound the present Internet, which use optical networks
to get connected. Any ISP around the world is aware of that characteristic, so they hire
optical capacity between their nodes seeking for a certain level of physical independence,
which guarantees that most connections in its network are immune to such simple failures.
Besides, dynamic routing control protocols identify these malfunctions and then reconfigure
the traffic routes of the clients so that it is not affected. So, communications over the Internet
are highly resilient because they inherit the Internet’s resiliency itself. The other type of
component in a CDN is the content servers. A cluster of servers within a data center conforms
to a node of the CDN. By design, the cluster functions as a whole, where active servers
share the load. Whenever a server fails, it is simply removed from the cluster until its
operability is restored. Regarding the services that data centers offer, every service in a
mid-grade data center is duplicated. Telecommunications are highly resilient even beyond
the regular Internet standard. In a data center, power supply between electricity providers
and servers is bypassed with Uninterruptible Power Sources (UPS), which are complemented
with Emergency/Backup Generators. Besides, high-grade data centers connect with at least
two independent electricity providers. The remaining complementary services, like air
conditioning, are also duplicated. The main consequence of that underlying resiliency is that
we do not have to concern with it during our design. The simplest and yet realistic optimal
structure for a CDN is a minimal spanning tree, i.e., a set of nodes to be connected with the
minimum cost. It is a well known theoretical result that the minimal network to connect
a set of nodes is a tree. In this work, we aim at a tree not only minimal but of minimum
cost. Stated so, we might think that the goal is to span a preselected set of nodes, where
the problem reduces to Minimum Spanning Tree. The MST is known to be of polynomial
complexity since there are at least two famous algorithms [Kruskal 1956] and [Prim 1957] of
polynomial time complexity capable of finding solutions. Later, [Minoux 1990] introduced
an algorithm able to solve accurately the MST problem of a graph G given that of an (n−1)-
node G’s subgraph’s solution is known. As it runs in O(n) time, Minoux’s algorithm
is computationally more efficient than Kruskal and Prim’s ones. Thus, when heuristics
intended to solve SPG 1 are based on Minoux, execution times are dramatically reduced. See
[Martins 2000], [Ribeiro 2002], [Kruskal 1956] and [Prim 1957].

1 Steiner Problem in Graphs



4 Introduction

However, no approach can assume that all definite nodes are known for sure in advance.
In addition to the mandatory nodes, the solution may include some optional nodes if they
contribute to decreasing the cumulative cost. The previous problem formulation is closely
related to the well-known Steiner Tree Problem. The Steiner Tree Problem is an umbrella
of many related problems, whose summary can be found in [Hauptmann 2013]. This work
regards two problems of that list. The first of them is the general Steiner Tree Problem
in graphs or STP, which is stated as follows. Given an undirected graph G = (V,E), with
edge costs c : E → R+ and a set of terminal nodes T ⊆ V , the goal is on finding a tree
subgraph of G spanning to all terminal nodes, whose cost is minimum. Formally, we are
seeking for a cost-optimal connected subgraph GT = (VT ,ET ), such that T ⊆ VT ⊆ V and
ET ⊆ E. The Steiner Tree Problem in graphs can be effectively solved for some families
of instances. For example, the all terminal nodes case (V = T ) is the Minimal Spanning
Tree (MST), whose exact solution can be obtained in time O(|E|+ |V |log(|V |)). When T
equals two, the solution is the shortest path between those two terminals, which is a problem
of time complexity O(|E|+ |V |log(|V |)). Although there are a few more exceptions, as a
general rule the Steiner Tree Problem in graphs is an NP-Hard problem [Karp 1972], even for
grid graphs [Garey 1977]. The solution of Steiner tree problems has received considerable
and strongly growing attention in the last thirty years, spanning from exact methods (see
[Goemans 1993]) to heuristic ones (see [Duin 1994]). Complementarily, the problem of
finding good quality lower and upper bounds for the optimal cost (i.e. relaxations) has been
widely studied too. [Borradaile 2009] is a good example of approximation algorithms bounds.
We strongly recommend [Polzin 2003] as a complete survey for problem variants, reductions,
and efficient algorithms. Excellent surveys are given in [Winter 1987], [Maculan 1987],
[Hwang 1992] and [Hwang 1992]. To solve the STP, [Aneja 1980] introduces a row genera-
tion algorithm based on an undirected formulation, [Dreyfus 1971] and [Lawler 1976] use
dynamic programming techniques, [Beasley 1984] and [Beasley 1989] present a Lagrangean
relaxation approach, [Wong 1984] describes a dual ascent method, [Lucena 1993] combines
Lagrangean and polyhedral methods, while [Chopra 1992] develop a branch-and-cut algo-
rithm. Also, [Thorsten 1998] presents the implementation of a branch-and-cut algorithm
for solving Steiner tree problems in graphs to optimality. In particular, polyhedral methods
have turned out to be quite powerful in finding optimal solutions for various Steiner tree
problems thanks to an improvement in the understanding of the associated polyhedra, the
availability of fast and robust LP solvers, and the experience gained about turning the theory
into an algorithmic tool. Some interesting exact formulations for the SGP are presented by
[Stanojevic 2006] [Diané 2006] and [Wang 2006] in his Ph.D. dissertation.



5

Recently, [Siebert 2018] introduced a set of integer programs (IPs) for the Steiner tree
problem, when the number of terminals is fixed. Almost simultaneously, [Hua 2018] pro-
posed a different set of integer programs (IPs) for the Steiner tree problem based on regular
sparse grids. Previously, [Leggieri 2014] proposed an exact solution approach for the Tree
Problem with Delays (STPD). As a generalized version of the Steiner tree problem applied to
multicast routing, it uses SteinLib’s instances with sparse graphs to get experimental results.
This work introduces an innovative mixed-integer programming (MIP) model to solve the
STP. The model is based upon a flow problem formulation detailed in [Goemans 1993], over
which, we will elaborate in detail later on this document. In a nutshell, if we ask flow-balance
for every node in a graph G = (V, E) and inject a unit of traffic from every terminal node in
T but one (R), a path must exist from all remaining terminal nodes to the given node R to
drain that unit of flow injected by each one, so the result must be connected. If the set of
edges used to course those flows is of minimum cost, the solution is connected and minimal,
and it is, therefore, a tree. When [Goemans 1993] was published, the scale of problems
solvable with standard solvers was quite limited. Nowadays, the advancement in computing
power coming from hardware, combined with the improvement of more efficient algorithms,
makes it possible to solve many real-world size instances. To sustain the last claim, we
used IBM CPLEX to solve several instances of a standard test set instances, the SteinLib
Testdata Library2 . The SteinLib is a historical and up-to-date repository of STP instances,
see [Koch 2001].
The second problem this work regards is the construction of an optimal tree for a CDN.
Also known as QoSMT, Quality of Service Multicast Tree is listed in [Hauptmann 2013],
where is reported as follows: “Approximable within 1.960 for the case of two non-zero rates.
Approximable within 3.802 for the case of the unbounded number of rates. For the case of
three non-zero rates, the problem admits a 1.522 approximation algorithm”. Later on, we
describe the details of the QoSMT. By now, we mention that besides the terminal (T ) and
optional nodes (V\T ) with positive-cost edges of the STP, the QoSMT contains a predefined
root node t0 ∈ T . This root could be considered as the central node of the would-be planned
CDN, where all available media to be shared reside. Each other terminal ti node has a known
rate ri, which represents the importance of that terminal node as a content client. The higher
the rate, the higher the number of different copies to be sent to that node from the root. Thus,
the cost of the immediate link upwards in the way to the root of the multicast tree should be
multiplied by ri to be accounted for. Furthermore, subsequent links in the path to the root
must be penalized with the maximum of those rates underneath them. Finally, optional nodes
can be used to improve the quality of the solution.

2http://steinlib.zib.de/steinlib.php
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QoSMT is harder than STP. We might think of STP as a particular case of QoSMT where
all rates are equal to 1. Existing solutions to QoSMT instances come from approximation
algorithms, whose ratios are above 3/2. This work introduces a novel MIP formulation to
the problem and modifies the SteinLib test-set to prove that standard solvers are capable of
finding solutions to real-world size instances. The remaining of this document is organized as
follows: Chapter-2 revises a flow-based MIP formulation for the Steiner Problem in graphs
and presents experimental results for a significant test-set of SteinLib’s instances; Chapter-3
introduces a novel MIP formulation for the Quality of Service Multicast Tree, which derives
from the former flow one and uses a derivative test-set from the previous chapter; while
Chapter-4 summarizes the central conclusions and lines of future work.



Chapter 2

An exact model to solve Steiner Tree
Problem

In this chapter, we will present briefly the Steiner Tree Problem and then our proposal,
a flow-based model; afterward, we will take some steps to keep model’s features as much
simple as possible aiming to ease solver’s computing; consequently reducing execution
times. Then, we will show the model’s validation, which is based on instances gotten from
Steinlib Testdata Library using the solver CPLEX1 . Finally, we will draw some conclusions
from our model’s performance.

Fig. 2.1 We will use IBM’s CPLEX as solver.

1Thanks to IBM’s Academic Initiative. See https://developer.ibm.com for further information of this
tremendous tool.



8 An exact model to solve Steiner Tree Problem

2.1 Steiner Tree Problem

Formally, the Steiner Tree Problem can be stated as follows: Let G be an undirected graph
G = (V,E,c) with a function c : E → R+ representing the cost of each edge, and T ⊆V be
a set of nodes, their nodes are referred to as terminals. STP asks for a tree subgraph
of G of minimum cost GT = (VT ,ET ), such that T ⊆VT ⊆V and ET ⊆ E spanning from a
given terminal node -called the root R- and all the terminals. In other words, GT contains a
path from each node v to the root R for all v ∈ T , but it may include some of the Steiner nodes.

2.2 Model Description

To get the minimum cost tree subgraph from a given graph we have decided to apply
a flow-problem approach. It is based on a basic premise: if there is flow going through
an edge, this edge will belong to the solution. As we will see soon, that course of action
brings the advantage that connectivity between the terminal nodes and the root is guaranteed.
Furthermore, thank for applying Ford-Fulkerson’s algorithm some integrality constraints,
which would have increased the computational demands, are allowed to be removed. Firstly,
before moving forward, we come up with the flow’s peculiarities.
Definition: A flow in G is a function f : V xV → R that satisfies these properties:

• Capacity’s constraint: f (v,w)≤ Capacity (v,w), ∀v,w ∈ G.
The flow going through an edge from one vertex to another one must not exceed the
edge’s capacity.

• Anti symmetric’s property: f (v,w) =− f (w,v), ∀v,w ∈ G.
The flow going through an edge from one vertex to another one is the opposite to the
flow going in the opposite direction.

• Flow conservation: ∑v∈V f (v,w) = 0, ∀u ∈V −{S,R} .
The total amount of flow coming into at each vertex must be equal to the total amount
of flow going out of it.

Having presented some of the flow’s characteristics, we could use them to describe why
connectivity is assured by our model. For the sake of clarity, let graph G be like the one that
Figure 2.2 exhibits, where every node behaves according to flow conservation’s property,
except for the root R. In that case, the graph’s root acts as a sink draining as much flow as it
can receive.



2.2 Model Description 9

Now let add a node S -called the source- to that graph, where each terminal node is
linked up to this source using a unit-capacity edge. As Figure 2.3 displays, neither Steiner
nodes nor root R accepts any new link, thus they are not connected directly to the source.
Finally, let that S pushes flow into terminal nodes throughout these new edges.

Fig. 2.2 Graph G: Black-solid nodes are permanent nodes while white ones are Steiner’s

Fig. 2.3 Source S injecting flows in each terminal node of the original G, but R.
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Resulting from the conservation’s property, nodes are not allowed to hold any flow
coming to them. Thus, injected flows must keep flowing from node to node until, eventually,
they somehow reach out to a draining node. As a result, each inoculated flow determines a
pathway going from each terminal node to the root R. However, as we noticed previously,
those paths may differ from the optimal one as Figures 2.5 and 2.4 show. As there may be
various feasible solutions, optimization is needed to get the optimal one.

Fig. 2.4 Flow 1 going through a graph

Fig. 2.5 Flow 2 going through a graph
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The optimal solution must be a minimum spanning tree. This statement can be proved
using reductio ad absurdum guessing there is a solution, which is not a minimum spanning
tree. Let us suppose there is a solution, which would have at least -without loss of generality-
one loop. Subsequently, removing one of these loop’s edges would not change terminal
nodes’ connectivity with the root. Thus, this resulting graph would be also a solution, but
with fewer edges than the optimal solution. In such a circumstance, we would obtain a
solution, whose cost is lower than the optimal one. That constitutes an absurd. Because of
that, minimizing the cost of all the flows injected into the terminal nodes will return a tree
spanning from each one of them to the root R.

Model’s variables

This subsection is aiming to find a set of variables, which models the cost of flows going
through a graph. First of all, let equation 2.1 compute the cost of a solution F .

ΦST P(F) = ∑
i j∈EF

ci j (2.1)

While ci j was previously defined, EF is the solution’s set of edges. Second, let yi j be a
Boolean variable that says whether an edge from the set E belongs to the feasible solution.
Then, yi j converts equation 2.1 into the expression 2.2:

ΦST P(F) = ∑
i j∈E

ci j ∗ yi j, where yi j ∈ {0,1} (2.2)

Having already defined yi j as a Boolean variable, there is a couple of issues to be
engaged. The first one is related to the variable’s integrality. As is known, any mixed-integer
programming’s model can be resolved by using a branch-and-bound algorithm, which may
lead to exponential time complexities. Thus, the more integer variables there is the more
time it takes to solve the model. Since adding any other integer variable would transform the
model into a sluggish one, we resort to another algorithm to overcome that, Ford-Fulkerson.
It computes the maximum flow in a network using unitary capacity augmenting paths. Hence,
it is straightforward that a graph with integer capacities will have an integer value for the
maximum flow going through it. Therefore, emanating from the construction of the edges
connected to the source S, see Figure 2.3, it can be said that the maximum flow in our model
will be an integer. Taking it for granted, we are allowed to define xi j as a real variable. This
variable is expected to toggle yi j: if there is flow passing throughout the edge i j, yi j goes up.
Otherwise, it goes down. As a result of lifting integrality restriction for xi j, the search for the
optimal solution will be computationally far less challenging.
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As we said, the second issue comes from the handling of undirected graphs. This kind
of graphs seems to need a couple of variables to determine both the flow’s direction and
magnitude, as 2.6 shows. Nevertheless, as not keeping the number of variables restrained

Fig. 2.6 Two flows going through the same edge, but different direction.

may degrade performance, it is desirable if the model could cope with both kinds of graphs,
directed or undirected ones, adding just one variable. This issue will be checked by converting
any undirected graph into a directed one. Figure 2.7 shows how this transformation takes
place, as the graph G from Figure 2.2 becomes in G′ = (V,E ′). It is accomplished by
duplicating every link of the graph, but those linked to R and S. In other words, no edge
enters the source -which only pushes flow into the terminal nodes- nor leaves the root -which
just receives the various flows-. Therefore, in the case of undirected graphs, there is no need
to define any other variable to handle flow than xi j. Because of the abovementioned, any
mathematical sentence will refer to E ′ from now on.

In conclusion, our model requires just a couple of non-negative variables per edge:

• A Boolean variable yi j, which registers whether the edge i j belongs to the feasible
solution.

• A non-negative real variable xi j, which indicates the maximum flow going through the
edge i j.
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Fig. 2.7 Bidirectional graph G′

Building the model

Having defined the variables, we are ready to see the equations that will build the model.

• First of all, we already have discussed in Subsection 2.2 how to computing the feasible
solution’s cost, but Equation 2.3 includes the transformed graph E ′.

ΦST P(F) = ∑
i j∈E ′

ci j ∗ yi j (2.3)

• Second, keeping in mind the construction of the links connected to the source S
described in Section 2.2, it is unswerving that the flow through any edge is bounded by
the total flow infused by S. The fact that no edge can receive more flow than the total
one injected is expressed in Equation 2.4. The total flow could be calculated thanks
to the cut showed in Figure 2.8. Note that if there is flow going through an edge, xi j

is positive and yi j must go up. In other words, the flow defines whether the edge i j
belongs to the feasible solution F .

xi j ≤ (| T | −1)∗ yi j, ∀(i j) ∈ E ′ (2.4)
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Fig. 2.8 Computing the total flow

• Third, the flow conservation property will help us to get the last two equations required
to build our model. One of them says that no Steiner node receives flow from the
source S. Another one is derived from the fact that the source S pushes flow into the
terminal nodes throughout unitary capacity edges, so the balance constraint must be
unitary for all of them, but the root R.

∑
(i j)∈I+(i)

xi j − ∑
(ki)∈I−(i)

xki = 0, ∀i ∈ (V\T ) (2.5)

∑
(i j)∈I+(i)

xi j − ∑
(ki)∈I−(i)

xki = 1, ∀i ∈ T\{R} (2.6)
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Having described the model’s expressions, we ask the solver to find GT = (VT ,ET ) as
the solution of the following problem.

Minimize x,y ΦST P(F) = ∑i, j∈E ′ ci j ∗ yi j

subject to:

• yi j ∈ {0,1}, ∀(i j) ∈ E ′

• xi j ≥ 0, ∀(i j) ∈ E ′

• xi j ≤ (| T | −1)∗ yi j, ∀(i j) ∈ E ′

• ∑(i j)∈I+(i) xi j −∑(ki)∈I−(i) xki = 0, ∀i ∈ (V\T )

• ∑(i j)∈I+(i) xi j −∑(ki)∈I−(i) xki = 1, ∀i ∈ T\{R}
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2.3 Testing the Model’s Performance

Throughout this work, we relied upon IBM ILOG CPLEX(R) Interactive Optimizer
12.6.3 as the optimization solver. The server was an HP ProLiant DL385 G7, with 24 AMD
Opteron(tm) Processor 6172 with 64GB of RAM. The results shown in tables 2.1 to 2.7 come
from testing instances from Steinlib2 Testdata Library’s Class B and Class I080. In each
one of them the first column contains the names of the instance and the entries from left
to right are:

• the number of nodes in the graph |V |,

• the number of terminal |T |,

• the number of undirected edges in the graph |E|,

• the optimal value for the instance according to Steinlib Opt (Steinlib),

• the gap of the solution with regard to the Steinlib value Gap,

• the number of variables associated with the solution #Vars,

• the number of constraints involved in the solution #Constraints,

• the time in seconds elapsed until the solver finds the solution TF , and

• the time in seconds elapsed until the solver confirms the solution was found TC.

Note: Although the solver uses a gap of 0.01% to stop the minimum search, we set 6
hours as a limit on the maximum amount of time dedicated to calculating the output.

2http://steinlib.zib.de/steinlib.php
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Instance |V | |T | |E| Opt (Steinlib) Gap # Vars # Constraints TF TC

b01 50 9 63 82 0.00% 424 472 0.51s 0.51s
b02 50 13 63 83 0.00% 418 464 0.60s 0.60s
b03 50 25 63 138 0.00% 421 468 0.49s 0.49s
b04 50 9 100 59 0.00% 640 686 7.36s 38.81s
b05 50 13 100 61 0.00% 634 678 0.67s 0.67s
b06 50 25 100 122 0.00% 634 678 20.99s 29.10s
b07 75 13 94 111 0.00% 635 708 0.63s 0.63s
b08 75 19 94 104 0.00% 632 704 0.64s 0.64s
b09 75 38 94 220 0.00% 623 692 0.95s 0.95s
b10 75 13 150 86 0.00% 959 1028 15.67s 43.88s
b11 75 19 150 88 0.00% 965 1036 108.84s 2464.84s
b12 75 38 150 174 0.00% 962 1032 16.74s 72.33s
b13 100 17 125 165 0.00% 840 936 45.49s 69.92s
b14 100 25 125 235 0.00% 843 940 13.57s 63.98s
b15 100 50 125 318 0.00% 837 932 0.99s 0.99s
b16 100 17 200 127 0.00% 792 495 3.25s 3.25s
b17 100 25 200 131 0.00% 792 495 2.47s 2.47s
b18 100 50 200 218 0.01% 1281 1374 76.85s 76.85s

Table 2.1 Steinlib’s Testset B from b01 to b18

Instance |V | |T | |E| Opt (Steinlib) Gap # Vars # Constraints TF TC

i080-001 80 6 120 1787 0.00% 778 850 10.56s 66.61s
i080-002 80 6 120 1607 0.00% 787 862 6.82s 6.82s
i080-003 80 6 120 1713 0.00% 775 846 0.61s 6.71s
i080-004 80 6 120 1866 0.00% 781 854 8.04s 22.57s
i080-005 80 6 120 1790 0.00% 790 866 28.40s 48.58s
i080-011 80 6 350 1479 0.00% 1368 763 7.48s 7.48s
i080-012 80 6 350 1484 0.00% 1378 768 10.19s 10.19s
i080-013 80 6 350 1381 0.00% 1386 772 2.63s 2.63s

Table 2.2 Steinlib’s Testset I080 from i080−001 to i080−013
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Instance |V | |T | |E| Opt (Steinlib) Gap # Vars # Constraints TF TC

i080-014 80 6 350 1397 0.00% 1376 767 2.41s 2.41s
i080-015 80 6 350 1495 0.00% 1386 772 6.72s 6.72s
i080-021 80 6 3160 1175 0.00% 12482 6320 26.22s 26.22s
i080-022 80 6 3160 1178 0.00% 12482 6320 29.63s 29.63s
i080-023 80 6 3160 1174 0.00% 12482 6320 28.87s 28.87s
i080-024 80 6 3160 1161 0.00% 12482 6320 14.91s 14.91s
i080-025 80 6 3160 1162 0.00% 12482 6320 18.07s 18.07s
i080-031 80 6 160 1570 0.00% 620 389 1.18s 1.18s
i080-032 80 6 160 2088 0.00% 630 394 3.97s 3.97s
i080-033 80 6 160 1794 0.00% 620 389 2.13s 2.13s
i080-034 80 6 160 1688 0.00% 626 392 6.58s 6.58s
i080-035 80 6 160 1862 0.00% 632 395 1.74s 1.74s
i080-041 80 6 632 1276 0.00% 2486 1322 7.27s 7.27s
i080-042 80 6 632 1287 0.00% 2478 1318 6.22s 6.22s
i080-043 80 6 632 1295 0.00% 2490 1324 5.45s 5.45s
i080-044 80 6 632 1366 0.00% 2498 1328 7.65s 7.65s
i080-045 80 6 632 1310 0.00% 2494 1326 8.11s 8.11s

Table 2.3 Steinlib’s Testset I080 from i080−001 to i080− i045
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i080-101 80 8 120 2608 0.00% 466 312 1.09s 1.09s
i080-102 80 8 120 2403 0.00% 470 314 1.75s 1.75s
i080-103 80 8 120 2603 0.00% 468 313 1.81s 1.81s
i080-104 80 8 120 2486 0.00% 472 315 2.01s 2.01s
i080-105 80 8 120 2203 0.00% 474 316 0.98s 0.98s
i080-111 80 8 350 2051 0.15% 2146 2214 20858.73s Time Out
i080-112 80 8 350 1885 0.00% 2122 2182 2580.28s 21582.07s
i080-113 80 8 350 1884 0.00% 2125 2186 35.33s 21561.64s
i080-114 80 8 350 1895 0.00% 2146 2214 30.84s 16712.61s
i080-115 80 8 350 1868 0.00% 2149 2218 35.46s 21041.72 s
i080-121 80 8 3160 1561 0.00% 12482 6320 34.83s 34.83s
i080-122 80 8 3160 1561 0.00% 12482 6320 23.17s 27.51s
i080-123 80 8 3160 1569 0.00% 12482 6320 32.19s 51.84s
i080-124 80 8 3160 1555 0.00% 12482 6320 19.85s 24.23s
i080-125 80 8 3160 1572 0.00% 12482 6320 27.48s 57.90s
i080-131 80 8 160 2284 0.00% 620 389 3.08s 3.08s
i080-132 80 8 160 2180 0.00% 622 390 4.20s 4.20s
i080-133 80 8 160 2261 0.00% 626 392 2.84s 2.84s
i080-134 80 8 160 2070 0.00% 628 393 4.82s 4.82s
i080-135 80 8 160 2102 0.00% 622 390 2.30s 2.30s
i080-141 80 8 632 1788 0.00% 2488 1323 11.18s 11.18s
i080-142 80 8 632 1708 0.00% 2488 1323 6.73s 6.73s
i080-143 80 8 632 1767 0.00% 2476 1317 12.48s 18.49s
i080-144 80 8 632 1772 0.00% 2504 1331 8.55s 8.55s
i080-145 80 8 632 1762 0.00% 2494 1326 7.55s 7.55s

Table 2.4 Steinlib’s Testset I080 from i080−101 to i080−145
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Instance |V | |T | |E| Opt Gap # Vars # Consts TF TC

i080-201 80 16 120 4760 0.00% 470 314 1.69s 1.69s
i080-202 80 16 120 4650 0.00% 464 311 2.73s 2.73s
i080-203 80 16 120 4599 0.00% 466 312 2.44s 2.44s
i080-204 80 16 120 4492 0.00% 470 314 3.26s 3.26s
i080-205 80 16 120 4564 0.00% 470 314 1.88s 1.88s
i080-211 80 16 350 3631 0.00% 1378 768 9.64s 9.64s
i080-212 80 16 350 3677 0.00% 1380 769 17.21s 17.21s
i080-213 80 16 350 3678 0.00% 1366 762 29.30s 29.30s
i080-214 80 16 350 3734 0.00% 1378 768 22.74s 34.87s
i080-215 80 16 350 3681 0.00% 1382 770 19.11s 25.45s
i080-221 80 16 3160 3158 0.00% 12482 6320 52.48s 447.24s
i080-222 80 16 3160 3141 0.00% 12482 6320 179.72s 179.72s
i080-223 80 16 3160 3156 0.00% 12482 6320 610.39s 665.89s
i080-224 80 16 3160 3159 0.00% 12482 6320 356.81s 356.81s
i080-225 80 16 3160 3150 0.00% 12482 6320 60.45s 298.49s
i080-231 80 16 160 4354 0.00% 634 396 5.22s 5.22s
i080-232 80 16 160 4199 0.00% 628 393 2.64s 2.64s
i080-233 80 16 160 4118 0.00% 616 387 4.15s 4.15s
i080-234 80 16 160 4274 0.00% 634 396 3.79s 3.79s
i080-235 80 16 160 4487 0.00% 626 392 5.25s 5.25s
i080-241 80 16 632 3538 0.00% 2490 1324 71.57s 231.33s
i080-242 80 16 632 3458 0.00% 2500 1329 33.85s 36.21s
i080-243 80 16 632 3474 0.00% 2486 1322 35.93s 48.34s
i080-244 80 16 632 3466 0.00% 2498 1328 57.28s 57.28s
i080-245 80 16 632 3467 0.00% 2498 1328 35.96s 39.19s

Table 2.5 Steinlib’s Testset I080 from i080−201 to i080− i245
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Instance |V | |T | |E| Opt Gap # Vars # Consts TF TC
i080-301 80 20 120 5519 0.00% 466 312 1.39s 1.39s
i080-302 80 20 120 5944 0.00% 470 314 3.29s 3.29s
i080-303 80 20 120 5777 0.00% 466 312 2.18s 2.18s
i080-304 80 20 120 5586 0.00% 466 312 1.74s 1.74s
i080-305 80 20 120 5932 0.00% 472 315 1.86s 1.86s
i080-311 80 20 350 4554 0.00% 1372 765 17.26s 17.26s
i080-312 80 20 350 4534 0.00% 1368 763 15.37s 15.37s
i080-313 80 20 350 4509 0.00% 1374 766 9.41s 12.83s
i080-314 80 20 350 4515 0.00% 1382 770 9.34s 18.75s
i080-315 80 20 350 4459 0.00% 1374 766 7.02s 7.02s
i080-321 80 20 3160 3932 0.00% 12482 6320 139.27s 370.82s
i080-322 80 20 3160 3937 0.00% 12482 6320 247.88s 247.88s
i080-323 80 20 3160 3946 0.00% 12482 6320 247.49s 464.73s
i080-324 80 20 3160 3932 0.00% 12482 6320 66.94s 276.77s
i080-325 80 20 3160 3924 0.00% 12482 6320 110.79s 283.94s

Table 2.6 Steinlib’s Testset I080 from i080−201 to i080−325

Clase Instancia |V | |T | |E| Archivo Óptimo
Instance |V | |T | |E| Opt Gap # Vars # Consts TF TC

i080-331 80 20 160 5226 0.00% 620 389 5.22s 5.22s
i080-332 80 20 160 5362 0.00% 626 392 4.86s 4.86s
i080-333 80 20 160 5381 0.00% 616 387 7.84s 7.84s
i080-334 80 20 160 5264 0.00% 628 393 4.43s 4.43s
i080-335 80 20 160 4953 0.00% 632 395 4.51s 4.51s
i080-341 80 20 632 4236 0.00% 2486 1322 13.85s 20.62s
i080-342 80 20 632 4337 0.00% 2486 1322 56.84s 56.84s
i080-343 80 20 632 4246 0.00% 2472 1315 19.79s 48.71s
i080-344 80 20 632 4310 0.00% 2488 1323 22.69s 26.13s
i080-345 80 20 632 4341 0.00% 2482 1320 186.43s 186.43s

Table 2.7 Steinlib’s Testset I080 from i080−301 to i080−345
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2.4 Conclusion

Our STP model has been tested with instances from Steinlib’s classes B and I080. The
solver achieved the accurate value in each of the 120 instances, but one. Even in that case, the
gap was just 0.15% due to running out of time. Note that the optimum was founded within
a minute in almost 9 of 10 instances, while that value was confirmed within 10 minutes in
more than 90% of the cases.

To conclude with the chapter, Table 2.8 shows a summary of computational results. In
each one of them the first column contains the names of the instance and the entries from left
to right are:

• The number of instances NI

• the range of the selected instances in terms of number of nodes Nodes,

• the maximum size of the selected instances in terms of number of edges Edges,

• the number of instances where the optimum was not obtained before reaching the
threshold time of 6 hours NOPT ,

• the percentage of instances, whose optimum was obtained within 1 minute by the
solver PF ,

• the percentage of instances, whose optimum was verified within 10 minutes by the
solver PF ,

• and the average gap Average.

Testset NI Nodes Edges NOPT PF PC Average
Steinlib’s B 18 50-100 Up to 200 0 88.89% 94.44% 0.0006%

Steinlib’s I080 100 80 Up to 3160 1 87.00% 94.00% 0.0015%

Table 2.8 Results with STP’s model



Chapter 3

A new model for Quality of Service
Multicast Tree Problem

In this chapter, we propose a model able to solve accurately the Quality of Service
Multicast Tree problem1 introduced by [Karpinski 2005]. While that work proffered an
approximation algorithm, it did not submit any test set. Thus, unlike the Steiner tree problem,
there is no available database yet -as far as we know- to perform benchmarking of the
QoSMT problem attacked in this work. To get around that limiting factor and draw some
conclusions from our model, we decided to produce instances derived from the Steinlib’s
Library. Following a similar structure to the previous chapter, we will present the QoSMT
problem and describe in detail our proposal to cope with it.

3.1 Quality of Service Multicast Tree Problem

Formally, the Quality of Service Multicast Problem can be stated as follows.
Let G = (V,E, l,r) be an undirected graph with two functions, l : E → R+ representing the
length of each edge, and ri : V →R+ the rate of each node. The QoSMT problem2 asks for a
minimum cost subtree F = (VF ,EF) of G spanning from a given root R and a set of terminal
nodes. Additionally, zero-rate nodes are called Steiner’s, and likewise STP, they are not
required to be connected to the root. The cost of an edge e in F is: cost(e) = l(e) ∗ re.
The second term in the equation, called rate of edge, is the maximum rate ri in the component
of F −{e} that does not contain R.

1It is also known as QoSMT.
2See [Karpinski 2005] and [Charikar 2004]
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3.2 Model’s Description

Given that QoSMT problem is a generalization of the STP, it should not be unexpected
that the model developed for the Steiner Tree Problem is the start point of this analysis.
A slightly modified version of the flow-based model developed in Chapter 2 will be enough
to cope with the more demanding requirements of QoSMT. Fortunately, that course of action
brings the same advantages than STP’s model enjoys, i.e. guaranteed connectivity between
the terminal nodes from scratch, a reduced set of integer variables and the ability to handle
with directed and undirected graphs. Due to the reasons mentioned above, Section 2.2
will be followed from here on. It includes that any mathematical sentence will refer to the
transformed graph G = (V ′,E ′) showed in Figure 3.1.

Fig. 3.1 Bidirectional graph G′

Concerning the connectivity, we resort over to the remarkable peculiarity of any flow-
based model: if there is flow going into an edge, this edge will belong to the solution. To
illustrate the approach already used in the previous chapter, let S be an outward node to the
graph G that infuses flows to the terminal nodes.So, each flow continues flowing from the
initial terminal node to their neighbors’ nodes until, anyhow, it reaches out to the draining
node, the root R. Furthermore, based on the deductive reasoning described in Subsection 2.2,
the optimal solution for the QoSMT problem will be a tree.
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Model’s variables

As the key difference between the Steiner Problem and QoSMT is the node’s rate feature,
we will consider a couple of items to establish the variables to be used. The first one is the
survey of the variables used in Chapter 2 to be recovered for QoSMT’s model. The second one
implies the analysis of how many others are wanted. As we will see, our proposal requires
just one extra variable. To begin with, given the definition of the cost of an edge presented in
section 3.1, the solution’s cost will be:

ΦQoSMT (F) = ∑
e∈EF

le ∗ re (3.1)

As any flow-based model entails two variables per edge, let xuv and yuv be them.
The first one, xuv, is associated with the crossing of flow into an edge, while yuv is a Boolean
variable indicating whether an edge from E ′ belongs to the solution. Finally, a variable zv per
node is compelled to deal with the rate of edge. There is no compulsion to force xuv nor zv to
be an integer. Consequently, they change the cost expression into Equation 3.2.

ΦQoSMT (F) = ∑
uv∈E ′

yuv ∗ luv ∗ zv (3.2)

Note that nonlinearity is inherent to the QoSMT . Therefore, an auxiliary variable ηuv to
linearize ΦQoSMT (F) is wanted. In conclusion, our model requires:

• An integer variable ye, which indicates whether the edge e belongs to the solution.

• A non-negative real variable xe, which registers the maximum flow going through the
edge e.

• A non-negative real variable zv, which indicates the rate of edge of the node v.

• A non-negative real variable ηe, which combines the variables ye and zv.
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Building the model

Given the defined variables in Subsection 3.2, we are placing those expressions to
establish up the model. As minimization is one of the two paramount features of this work,
expressions are represented as a system of inequalities.

• First of all, the expression to be minimized is the solution’s cost given in Equation 3.2.

• Second, expression 3.3 states that no edge receives more flow than the total injected in
each terminal node. Moreover, it shows how xuv commands yuv. Note that if there is
flow going through an edge, xuv non-negative and yuv must go up.

xuv ≤ (| T | −1)∗ yuv, ∀(uv) ∈ E ′ (3.3)

• Third, likewise Steiner Tree problem, two equations are inferred from the flow’s
conservation property. The first one indicates that no Steiner node receives flow from
the source S. Accordingly, the balance constraint is naught for all of them. The other
equation asserts that the source pushes flow into the terminal nodes throughout unitary
capacity edges. Then, the balance constraint is unitary for each of them, except the root.
See Equations 3.4 and 3.5, respectively.

∑
(ut)∈I+(u)

xut − ∑
(wu)∈I−(u)

xwu = 0, ∀u ∈ (V\T ) (3.4)

∑
(ut)∈I+(u)

xut − ∑
(wu)∈I−(u)

xwu = 1, ∀u ∈ T\{R} (3.5)

• Fourth, it is time to tackle the rate of edge, which is the trademark of this problem. In
the opening, each node assigns its rv to zv, which controls the node rate. According
to the definition given in Section 3.1, each solution’s non-leaf node v receives the
maximum downstream rate. If that value is higher than its original value, zv takes it.
Figures 3.2 shows the downstream’s nodes affected in the assignment of zv.
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Fig. 3.2 Definition of re.

The quest for which edge belongs to the solution remains. Therefore, we resort to yuv

to discern them as expression 3.7 shows, where C = max {rv : v ∈ T\{R}}.

zv ≥ rv, ∀v ∈V\{R} (3.6)

zv ≥ zu +C ∗ (yuv −1), ∀v ∈V\{R}, (uv) ∈ E ′ (3.7)

To analyze it, let v be a non-leaf node, while u0, u1, and u2 are all its neighbors.
As Figure 3.3 shows, all of them belong to the solution, but u1. As we will show
hereafter, u0 and u2 may affect the value of zv, while u1 might not.

– On one hand, let expression 3.7 be evaluated at those nodes that belong to the
solution. When it is assessed at u0 (y0 = 0) and u2 (y2 = 0), it becomes the
expressions 3.8 and 3.9, respectively.

zv ≥ zu0 (3.8)

zv ≥ zu2 (3.9)

Consequently, expression 3.7 drives zv to choose the higher value from down-
stream’s node belonging to the solution.
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Fig. 3.3 Node rate’s assignment analysis.

– On the other hand, if the expression 3.7 is evaluated at a node that does not belong
to the solution, as u1, it transforms firstly into zv ≥ zu +C ∗ (−1). As C is higher
than any value of zu, the right side of that inequality is non-positive. Given the
variables’ definition seen in Subsection 3.2, eventually,the evaluation becomes
into expression 3.10. Hence, it is noteworthy that inequality 3.7 secures that no
outside node contributes to zv.

zv ≥ 0, ∀v ∈V\{R} (3.10)

In summation, expression 3.6 imposes a fundamental requirement for zv. Also, the
inequality 3.7 gets the maximum of downstream’s nodes connected to the node v, while
ignores the contribution of other edges that do not belong to the solution.

For illustrative purposes, let the tree shown in Figure 3.4 be a solution, where solid black
dots represent terminal nodes with its associated rate. Note that each non-leaf terminal node
receives the maximum from the solution’s downstream.
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Fig. 3.4 Rate’s assignment.

Linealization of the model

Given that the solution cost obtained in Equation 3.2 is non-linear, an assisting variable
is wanted to linearize the equation ΦQoSMT (F) = ∑uv∈E ′ yuv ∗ luv ∗ zv. Thanks to variable η ,
that equation is transformed into the following linear expression.

ΦQoSMT (F) = ∑
uv∈E ′

luv ∗ηuv (3.11)

Note that several of the previous equations and inequalities may be required to keep the
consistency of the problem.



30 A new model for Quality of Service Multicast Tree Problem

Having described the model’s system of inequalities, we ask the solver to find GT =

(VT ,ET ) as solution of the following problem:

Minimize x,y,z,η ΦQoSMT (F) = ∑uv∈E ′ luv ∗ηuv

subject to:

• xuv ≥ 0, ∀(uv) ∈ E ′

• yuv ∈ {0,1}, ∀(uv) ∈ E ′

• zv ≥ 0, ∀v ∈V\{R}

• zv ≥ rv, ∀v ∈V\{R}

• ηuv ≥ 0, ∀(uv) ∈ E ′

• (| T | −1)∗ yuv ≥ xuv, ∀(uv) ∈ E ′

• ∑(ut)∈I+(u) xut −∑(wu)∈I−(u) xwu = 1, ∀u ∈ T\{R}

• ∑(ut)∈I+(u) xut −∑(wu)∈I−(u) xwu = 0, ∀u ∈ (V\T )

• zv ≥ zu +C ∗ (yuv −1), ∀v ∈V\{R}, (uv) ∈ E ′

• ηuv ≥ zu +C ∗ (yuv −1), ∀u ∈V\{R}, (uv) ∈ E ′
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3.3 Testing the Model’s Performance

As we pointed out previously, throughout this work, we relied upon IBM ILOG CPLEX(R)
Interactive Optimizer 12.6.3 as the optimization solver. The server was an HP ProLiant
DL385 G7, with 24 AMD Opteron(tm) Processor 6172 with 64GB of RAM. Regarding the
instances, to the best of our knowledge, there is no test data available to validate this model.
The primary cause is that there have not been studies taking on Quality of Service Multicast
Tree Problem recently, but [Karpinski 2005]. Even they did not generate any database at all.
Trying to face this stricture and draw some conclusions, we built a database. The test data
was constructed by taking the instances from Steinlib Testdata Library’s Class B and Class
I080 and using random values between 1 and 100 for the nodes’ rate. The results are shown
in tables 3.1 to 3.5 come from testing the abovementioned modified instances 3. In each
one of them, the first column contains the names of the instance and the entries from left
to right are:

• the number of nodes in the graph |V |,

• the number of terminal |T |,

• the number of undirected edges in the graph |E|,

• the optimal value for the instance according to Steinlib Opt (Steinlib),

• the gap of the solution with regard to the Steinlib value Gap,

• the number of variables associated with the solution #Vars,

• the number of constraints involved in the solution #Constraints,

• the time in seconds elapsed until the solver finds the solution TF , and

• the time in seconds elapsed until the solver confirms the solution was found TC.

3The reader can access them in the URL www. f ing.edu.uy/∼ f robledo/QoSMT _Modi f ied_Instances.
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Instance |V | |T | |E| Opt Gap # Vars # Constraints TF TC

modified b01 50 9 63 6080 0.01% 424 472 0.59s 0.59s
modified b02 50 13 63 5770 0.01% 418 464 0.50s 0.50s
modified b03 50 25 63 7925 0.01% 421 468 0.71s 0.71s
modified b04 50 9 100 3883 0.01% 640 686 13.39s 145.86s
modified b05 50 13 100 3146 0.01% 634 678 10.06s 41.84s
modified b06 50 25 100 7820 5.96% 634 678 9476.51s Time Out
modified b07 75 13 94 7616 0.01% 635 708 10.11s 10.11s
modified b08 75 19 94 7364 0.01% 632 704 11.12s 29.35s
modified b09 75 38 94 15877 0.01% 623 692 18.08s 18.08s
modified b10 75 13 150 5096 0.01% 959 1028 15.67s 3667.31s
modified b11 75 19 150 6718 11.78% 965 1036 4600.61s Time Out
modified b12 75 38 150 10716 0.01% 962 1032 1988.57s 3276.68s
modified b13 100 17 125 12076 0.01% 840 936 32.19s 797.12s
modified b14 100 25 125 15159 3.61% 843 940 18.54s Time Out
modified b15 100 50 125 20599 0.01% 837 932 33.56s 118.26s
modified b16 100 17 200 5288 11.12% 1287 1382 56.34s Time Out
modified b17 100 25 200 6807 15.67% 1287 1382 19499.50s Time Out
modified b18 100 50 200 9884 0.01% 1296 1394 19513.19s 21588.79s

Table 3.1 Modified Steinlib’s Testset B from b01 to b18

Note: Although the solver uses a gap of 0.01% to stop the minimum search, we set 6
hours as a limit on the maximum amount of time dedicated to calculating the output.
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Instance |V | |T | |E| Opt Gap # Vars # Constraints TF TC

modified i080-001 80 6 120 114943 0.01% 778 850 17.67s 24.72s
modified i080-002 80 6 120 103965 0.01% 787 862 6.83s 15.24s
modified i080-003 80 6 120 89109 0.01% 775 846 8.00s 8.00s
modified i080-004 80 6 120 68624 0.01% 781 854 69.44s 69.44s
modified i080-005 80 6 120 105221 0.01% 790 866 39.47s 599.39ss
modified i080-011 80 6 350 99490 6.49% 2131 2194 19757.94s Time Out
modified i080-012 80 6 350 103884 25.35% 2146 2214 7.35s Time Out
modified i080-013 80 6 350 84759 25.73% 2158 2230 13662.17s Time Out
modified i080-014 80 6 350 94408 23.87% 2143 2210 28.73s Time Out
modified i080-015 80 6 350 65988 27.51% 2158 2230 19835.44s Time Out
modified i080-021 80 6 3160 64730 39.36% 18802 18802 19501.97s Time Out
modified i080-022 80 6 3160 63278 25.35% 18802 18802 452.78s Time Out
modified i080-023 80 6 3160 88478 22.03% 18802 18802 382.26s Time Out
modified i080-024 80 6 3160 53022 20.52% 18802 18802 661.30s Time Out
modified i080-025 80 6 3160 43997 59.04% 18802 18802 992.75s Time Out
modified i080-031 80 6 160 60478 0.01% 1009 1078 19.28s 7007.92s
modified i080-032 80 6 160 96560 2.49% 1024 1078 6.74s Time Out
modified i080-033 80 6 160 111186 4.41% 1009 1078 2449.32s Time Out
modified i080-034 80 6 160 83697 0.01% 1018 1090 502.78s 3573.91s
modified i080-035 80 6 160 91836 1.06% 1027 1102 7.16s Time Out
modified i080-041 80 6 632 65550 17.96% 3808 3866 42.59s Time Out
modified i080-042 80 6 632 109276 15.66% 3796 3850 17.65s Time Out
modified i080-043 80 6 632 87213 16.01% 3814 3874 1169.27s Time Out
modified i080-044 80 6 632 77182 24.07% 3826 3890 20767.52s Time Out
modified i080-045 80 6 632 72863 21.58% 3820 3882 47.86s Time Out

Table 3.2 Modified Steinlib’s Testset I080 from i080−001 to i080− i045
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Instance |V | |T | |E| Opt Gap # Vars # Constraints TF TC

modified i080-101 80 8 120 100159 0.01% 778 850 10.31s 183.15s
modified i080-102 80 8 120 152735 0.01% 784 858 93.77s 2098.45s
modified i080-103 80 8 120 172107 0.01% 781 854 19.24ss 718.79s
modified i080-104 80 8 120 138697 0.01% 787 862 10.32s 359.61s
modified i080-105 80 8 120 117490 0.01% 790 866 7.65s 10.71s
modified i080-111 80 8 350 137090 14.03% 2146 2214 33.90s Time Out
modified i080-112 80 8 350 129134 17.06% 2122 2182 5174.81s Time Out
modified i080-113 80 8 350 108170 18.90% 2125 2186 19812.33s Time Out
modified i080-114 80 8 350 108003 3.93% 2146 2214 300.94s Time Out
modified i080-115 80 8 350 106514 3.77% 2149 2218 30.42s Time Out
modified i080-121 80 8 3160 76236 20.85% 18802 18802 5171.87s Time Out
modified i080-122 80 8 3160 117965 16.46% 18802 18802 19744.10s Time Out
modified i080-123 80 8 3160 100750 35.05% 18802 18802 19613.44s Time Out
modified i080-124 80 8 3160 120469 24.03% 18802 18802 0.44s Time Outs
modified i080-125 80 8 3160 97394 21.77% 18802 18802 19472.73s Time Out
modified i080-131 80 8 160 129510 0.01% 1009 1078 20.98s 19782.90s
modified i080-132 80 8 160 119161 4.66% 1012 1082 36.70s Time Out
modified i080-133 80 8 160 159670 0.11% 1018 1090 648.97s Time Out
modified i080-134 80 8 160 126998 0.01% 1021 1094 117.95s 906.16s
modified i080-135 80 8 160 119391 0.01% 1012 1082 2673.88s 14050.81s
modified i080-141 80 8 632 79623 26.88% 3811 3870 5582.23s Time Out
modified i080-142 80 8 632 126017 19.75% 3811 3870 63.72s Time Out
modified i080-143 80 8 632 87131 20.22% 3793 3846 58.63s Time Out
modified i080-144 80 8 632 91120 23.50% 3835 3902 79.99s Time Out
modified i080-145 80 8 632 66784 27.20% 3820 3882 53.30 Time Out

Table 3.3 Modified Steinlib’s Testset I080 from i080−101 to i080− i145
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Instance |V | |T | |E| Opt Gap # Vars # Constraints TF TC

modified i080-201 80 16 120 297680 0.01% 784 858 16.24s 1987.05s
modified i080-202 80 16 120 283062 0.01% 775 846 14.96s 32.16s
modified i080-203 80 16 120 277641 0.01% 778 850 308.64s 2086.20s
modified i080-204 80 16 120 303053 0.01% 784 858 22.86s 2300.16s
modified i080-205 80 16 120 256616 0.01% 784 858 15.22s 1614.07s
modified i080-211 80 16 350 211496 18.99% 2146 2214 19529.33s Time Out
modified i080-212 80 16 350 238695 13.68% 2149 2218 20741.75s Time Out
modified i080-213 80 16 350 226435 17.34% 2128 2190 758.77s Time Out
modified i080-214 80 16 350 205284 14.36% 2146 2214 19584.22s Time Out
modified i080-215 80 16 350 164053 12.89% 2152 2222 123.40s Time Out
modified i080-221 80 16 3160 123895 17.21% 18802 18802 19576.72s Time Out
modified i080-222 80 16 3160 140113 17.40% 18802 18802 19526.19s Time Out
modified i080-223 80 16 3160 169861 17.12% 18802 18802 21109.41s Time Out
modified i080-224 80 16 3160 197226 13.79% 18802 18802 19494.15s Time Out
modified i080-225 80 16 3160 139070 15.74% 18802 18802 19651.13s Time Out
modified i080-231 80 16 160 252533 7.34% 1030 1106 42.61s Time Out
modified i080-232 80 16 160 236170 9.31% 1021 1094 1249.45s Time Out
modified i080-233 80 16 160 230929 6.51% 1003 1070 811.98s Time Out
modified i080-234 80 16 160 207233 12.77% 1030 1106 360.77s Time Out
modified i080-235 80 16 160 304894 12.20% 1018 1090 13182.11s Time Out
modified i080-241 80 16 632 190376 21.22% 3814 3874 2773.10s Time Out
modified i080-242 80 16 632 205946 17.65% 3829 3894 108.54s Time Out
modified i080-243 80 16 632 197878 20.09% 3808 3866 19905.46s Time Out
modified i080-244 80 16 632 220403 15.99% 3826 3890 120.77s Time Out
modified i080-245 80 16 632 205865 20.21% 3826 3890 20474.30s Time Out

Table 3.4 Modified Steinlib’s Testset I080 from i080−201 to i080− i245
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Instance |V | |T | |E| Opt Gap # Vars # Constraints TF TC

modified i080-301 80 20 120 321694 0.01% 778 850 38.86s 498.53s
modified i080-302 80 20 120 399632 0.69% 784 858 760.97s Time Out
modified i080-303 80 20 120 393728 1.31% 778 850 35.23s Time Out
modified i080-304 80 20 120 319655 0.01% 778 850 33.73s 103.54s
modified i080-305 80 20 120 349572 3.37% 787 862 38.67s Time Out
modified i080-311 80 20 350 249873 12.73% 2137 2202 107.14s Time Out
modified i080-312 80 20 350 275934 14.43% 2131 2194 19939.97s Time Out
modified i080-313 80 20 350 314705 13.50% 2140 2206 45.46s Time Out
modified i080-314 80 20 350 227138 13.85% 2152 2222 15318.83s Time Out
modified i080-315 80 20 350 274733 10.30% 2140 2206 19559.47s Time Out
modified i080-321 80 20 3160 172325 13.71% 18802 18802 20111.31s Time Out
modified i080-322 80 20 3160 223253 12.20% 18802 18802 6878.48s Time Out
modified i080-323 80 20 3160 227635 11.20% 18802 18802 2958.93s Time Out
modified i080-324 80 20 3160 204185 13.70% 18802 18802 1433.57s Time Out
modified i080-325 80 20 3160 236926 12.01% 18802 18802 2935.38s Time Out
modified i080-331 80 20 160 285610 7.14% 1009 1078 19468.31s Time Out
modified i080-332 80 20 160 316045 3.47% 1018 1090 3942.14s Time Out
modified i080-333 80 20 160 329069 7.40% 1003 1070 23.93s Time Out
modified i080-334 80 20 160 292621 7.36% 1021 1094 26.51s Time Out
modified i080-335 80 20 160 286319 6.16% 1027 1102 32.42s Time Out
modified i080-341 80 20 632 210911 14.64% 3808 3866 3343.92s Time Out
modified i080-342 80 20 632 261191 16.98% 3808 3866 179.68s Time Out
modified i080-343 80 20 632 229186 16.36% 3787 3838 2849.52s Time Out
modified i080-344 80 20 632 202966 18.40% 3811 3870 6550.25s Time Out
modified i080-345 80 20 632 286760 16.91% 3802 3858 6513.35s Time Out

Table 3.5 Modified Steinlib’s Testset I080 from i080−301 to i080− i345
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3.4 Conclusion

The QoSMT’s model has been tested with a couple of sets of instances, which were
modifications of the Steinlib’s classes B and I080. As there is no database, we had to rely
on the solver and its tools to validate the value of the optimum and the eventual gap of each
instance. We consider this work the first step in the task of building a comprehensive test
data for the QoSMT problem. Given that it is more demanding computationally than STP, it
is unexpected that some instances reached the strict threshold time we set without getting the
optimum. To conclude with the chapter, Table 3.6 shows a summary of computational results.
In each one of them the first column contains the names of the instance and the entries from
left to right are:

• The number of instances NI

• the range of the selected instances in terms of number of nodes Nodes,

• the maximum size of the selected instances in terms of number of edges Edges,

• the number of instances where the optimum was not obtained before reaching the
threshold time of 6 hours NOPT ,

• the percentage of instances, whose optimum was obtained within 1 minute by the
solver PF ,

• the percentage of instances, whose optimum was verified within 10 minutes by the
solver PF ,

• and the average gap Average.

Testset NI Nodes Edges NOPT PF PC Average
Steinlib’s B (Modified) 18 50-100 Up to 200 5 83.33% 50.00% 2.68%

Steinlib’s I080 (Modified) 100 80 Up to 3160 88 38.00% 11.00% 12,65%

Table 3.6 Results with QoSMT’s model





Chapter 4

Conclusions

This work benchmarks the performance of a classic flow-based mixed-integer problem
formulation (MIP) for the STP using the SteinLib, a reference test-set repository. That MIP
formulation is modified to solve the Quality of Service Multicast Tree problem (QoSTP).
As for whom there is no MIP formulation previous to that presented here, existing approaches
go the way of approximation algorithms to find solutions. Experimental results with this
novel MIP formulation and standard optimization tools show very promising results when
used with the same test-set. Optimal solutions are found for many instances, while very low
feasible-to-optimal gaps were found for most of the remaining. Paraphrasing the saying A
picture is worth a thousand words, let Figures 4.1 and 4.2 show the solutions to the instance
b01 and b02 instances from the SteinLib’s class B. Finally, let Figure 4.3 despict the solution
to the QoSMT applied to the modified b01. Compare it with the b01 solution and note how
the weights1 affected both trees.

1The numbers inside the circles represent the weight of each node, while those in thick squares the terminal
node and the thin one, the Steiner nodes.
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Fig. 4.1 Optimal tree for instance Steinlib’s b01
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Fig. 4.2 Optimal tree for instance Steinlib’s b02
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Fig. 4.3 Optimal tree for the modified instance Steinlib’s b01



References

[Aneja 1980] Yash Aneja.
An Integer Programming Approach to the Steiner Problem in Graphs.
Networks, 10:167–178, 1980.

[Baïou 1996] Mourad Baïou.
Le Problème du Sus-graphe Steiner 2-arête Connexe: Approache Polyédrale.
PhD thesis, Université de Rennes 1, 1996.

[Beasley 1984] John Beasley.
An Algorithm for the Steiner Problem in Graphs.
Networks, 14:147 – 159., 1984.

[Beasley 1989] John Beasley.
A SST-based Algorithm for the Steiner Problem in Graphs.
Networks, 19:1 – 16, 1989.

[Bienstock 1990] Daniel Bienstock, Ernest F. Brickell and Clyde L. Monma.
On the Structure of Minimum-weight K-connected Spanning Networks.
SIAM J. Discret. Math., vol. 3, no. 3, pages 320–329, May 1990.

[Borradaile 2009] Borradaile, G., Klein, P., Mathieu, C., 2009.
An O(n log n) Approximation Scheme for Steiner Tree in Planar Graphs.
ACM Trans. Algorithms 5, 3, 31:1–31:31.

[Charikar 2004] Charikar, M., Naor, J.S., Schieber, B.
Resource Optimization in QoS Multicast Routing of Real-time Multimedia.
Journal IEEE/ACM Transactions on Networking (TON) archive Volume 12 Issue 2,
April 2004 Pages 340-348.

[Chopra 1992] Sunil Chopra, Edgar Gorres,M.R. Rao.
Solving a Steiner Tree Problem on a Graph using Branch and Cut.
ORSA Journal on Computing, 4:320 – 335, 1992.



44 References

[Diané 2006] Mamadi Diané, Ján Plesník.
An Integer Programming Formulation of the Steiner Problem in Graphs.
ZOR - Methods and Models of Operations Research 37:107-111.

[Dreyfus 1971] S. Dreyfus, R. Wagner.
The Steiner Problem in Graphs.
Networks, 1:195 – 207, 1980.

[Duin 1994] Duin, C., Voß, S., 1994.
Steiner Tree Heuristics: A Survey.
In Operations Research Proceedings 1993, Springer Berlin Heidelberg, Berlin, Heidel-
berg, pp. 485–496.

[Garey 1977] Michael Garey, David Johnson.
The Rectilinear Steiner Tree Problem is NP-Complete.
SIAM Journal on Applied Mathematics, 32:826 – 834, 1977.

[Goemans 1993] Goemans, M.X., Myung, Y.S., 1993.
A Catalog of Steiner Tree Formulations.
Networks 23, 1, 19–28. https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.
3230230104.

[Hauptmann 2013] Hauptmann, M., Karpinski, M., 2013.
A Compendium on Steiner Tree Problems.
Technical report, Department of Computer Science and Hausdorff Center for Mathe-
matics University of Bonn.

[Hua 2018] Hua, Hao. (2018).
A Flow Formulation for Steiner Tree Problem.
Preprint. DOI: 10.13140/RG.2.2.21163.75047.

[Hwang 1992] Frank Hwang, Dana Richards.
Steiner Tree Problems.
Networks, 22:55 – 89, 1992.

[Hwang 1992] Frank Hwang, Dana Richards, Pawel Winter.
The Steiner Tree Problem.
Annals of Discrete Mathematics 53, North-Holland, Amsterdam, 1992.

[Karp 1972] Richard Karp.
Reducibility among Combinatorial Problems.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230230104
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230230104


References 45

In Miller, R. E. and Thatcher, J. W., editors, Complexity of Computer Computations,
pages 85 – 103. Plenum Press, New York, 1972.

[Karpinski 2005] Karpinski, M., Mandoiu, I., Olshevsky, A. et al. Improved Approximation
Algorithms for the Quality of Service Multicast Tree Problem.
Algorithmica (2005) 42: 109. https://doi.org/10.1007/s00453-004-1133-y

[Koch 2001] Koch T., Martin A., Vos S., 2001.
An Updated Library on Steiner Tree Problems in Graphs.
Combinatorial Optimization book series 11. https://doi.org/10.1007/
978-1-4613-0255-1_9

[Kruskal 1956] Kruskal, Joseph B.
"On the shortest spanning subtree of a graph and the traveling salesman problem."
Proceedings of the American Mathematical society 7, no. 1 (1956): 48-50.

[Lawler 1976] Edward Lawler.
Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart and Winston, New York, 1976.

[Leggieri 2014] Valeria Leggieri, Mohamed Haouari, and Chefi Trikib.
The Steiner Tree Problem with Delays: A compact formulation and reduction proce-
dures.
Discrete Applied Mathematics, Vol. 164, No. 1, pages 178-190, February 2014.

[Lucena 1993] Abilio Lucena.
Tight Bounds for the Steiner Problem in Graphs.
Preprint, IRC for Process Systems Engineering, Imperial College, London, 1993.

[Maculan 1987] Nelson Maculan.
The Steiner Problem in Graphs.
Annals of Discrete Mathematics, 31:185 – 212, 1987.

[Martins 2000] S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P.M. Pardalos. A parallel
GRASP for the Steinertree problem in graphs using a hybrid local search strategy.
Journal of Global Optimization, 17:267–283, 2000.

[Minoux 1990] M. Minoux.
Efficient greedy heuristics for Steiner tree problems using reoptimization and super-
modularity.
INFOR, 28:221–233, 1990.

https://doi.org/10.1007/978-1-4613-0255-1_9
https://doi.org/10.1007/978-1-4613-0255-1_9


46 References

[Monma 1990] ClydeL. Monma, BethSpellman Munson and WilliamR Pulleyblank.
Minimum-weight Two-connected Spanning Networks.
Mathematical Programming, vol. 46, no. 1-3, pages 153–171, 1990.

[Prim 1957] Prim, Robert Clay.
Shortest connection networks and some generalizations.
The Bell System Technical Journal 36.6 (1957): 1389-1401.

[Polzin 2003] Polzin, T., 2003.
Algorithms for the Steiner Problem in Networks.
Ph.D. thesis, Saarland University.

[Ribeiro 2002] C.C. Ribeiro, E. Uchoa, and R.F. Werneck.
A hybrid GRASP with perturbations for the Steinerproblem in graphs.
INFORMS Journal on Computing, 14(3):228–246, 2002.

[Siebert 2018] Matías Siebert, Shabbir Ahmed, and George L. Nemhauser.
A Linear Programming Based Approach to the Steiner Tree Problem with a Fixed
Number of Terminals.
Published in ArXiv 2018. URL: https://arxiv.org/pdf/1812.02237.pdf.

[Stanojevic 2006] Milan Stanojevic and Mirko Vujoševic.
An Exact Algorithm for Steiner Tree Problem on Graphs.
International Journal of Computers, Communications & Control Vol. I (2006), No. 1,
pp. 41-46.

[Thorsten 1998] Thorsten Koch and Alexander Martin.
Solving Steiner Tree Problems in Graphs to Optimality.
An International Journal 32 (3), 207-232, 1998.

[Wang 2006] Xinhui Wang.
PhD Thesis. Exact Algorithms for the Steiner Tree Problem.
Department of Applied Mathema tics, Faculty of Electrical Engineering, Mathe-
matics and Computer Science of the University of Twente, the Netherlands. URL:
https://ris.utwente.nl/ws/portalfiles/portal/6039877.

[Winter 1987] Pawel Winter.
Steiner Problem in Networks: A survey.
Networks 17(2), 129–167, 1987.



References 47

[Wong 1984] Richard Wong.
A Dual Ascent Approach for Steiner Tree Problems on a Directed Graph.
Mathematical Programming, 28:271 – 287, 1984.




	Table of contents
	1 Introduction
	2 An exact model to solve Steiner Tree Problem
	2.1 Steiner Tree Problem
	2.2 Model Description 
	2.3 Testing the Model's Performance
	2.4 Conclusion

	3 A new model for Quality of Service Multicast Tree Problem 
	3.1 Quality of Service Multicast Tree Problem
	3.2 Model's Description
	3.3 Testing the Model's Performance
	3.4 Conclusion

	4 Conclusions
	References

