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Abstract—This paper presents those methodological, theoret-
ical and computational tools used to plan the performance of
the Electric Route in Uruguay for recharging of electric vehicles.
The study focuses on service times analysis of charge points over
periods of intense vehicular traffic and for prospective scenarios
of high penetration of electric vehicles. The first goal is to quantify
performance limits for the current recharging infrastructure
and vehicles capabilities under stressful contexts, but at the
same time realistic, considering existing data of traffic flows
and prospective studies for possible electric vehicles penetration
scenarios. Queueing Theory is the underlying framework to
tack this part of the analysis. The second part of the study
uses Markov Chains, whilst assumes a near future with greater
driving range of electric vehicles and seeks to estimate how many
additional charge points are required to provide a satisfactory
level of service. Main results show that the current infrastructure
is capable of fulfill near future needs, but for some growth
scenarios of the electric vehicles fleet, that infrastructure should
be updated to sustain mid to long-term recharging needs.

Index Terms—Electrical vehicles, charging infrastructure,
stochastic system design, queueing theory

I. INTRODUCTION

The increasing use of electric vehicles is currently being

observed in the transport sector, representing a growing al-

ternative to the use of fossil fuels. These changes are having

repercussions on the automotive and the electricity market, the

environment, as well as on the replacement of oil derivatives

for the transport sector as it is known today. This replacement

may have a tremendous impact on those countries, such as

Uruguay, with no local oil production and with renewable

surpluses from the electricity sector. According to [1], between

2014 and 2018, the number of electric vehicles in the global

market has been increasing at an annual rate of 60%, reaching

a total amount of 5.500.000 in 2018. In the same year, the total

sales of electric vehicles reached 2.000.000, which represents

2.1% of the total car sales market. According to a survey

published by the UK Department of Transport [2], the main

barrier to the adoption of an electric vehicle by buyers is

the availability of chargers on public roads (45%), followed

by vehicle driving range (39%) and the initial investment

(28%). Other causes raised by respondents in the study were

lack of knowledge (13%), unproven technology (11%), among

other reasons. As a result, having a public charging network

for electric vehicles is of fundamental importance to break

down certain barriers and to drive the growth of the electric

automotive market. Countries such as China, USA, Norway

or UK, spurring the penetration of electric vehicles in their

markets [3], have deployed a wide charging infrastructure

network. From these countries, Norway, which may be com-

pared to Uruguay in terms of population density and human

development index, has reached 11.45% (i.e. 312.376 vehicles)

penetration of BEV (Battery Electric Vehicles) and PHEV

(Plugged Hybrid Electric Vehicles) [4]. The amount of public

recharge points in Norway deployed along the territory (which

is approximately 1.8 times Uruguay size) is currently more

than 12.000, which combine different types, AC or DC for

slow, standard, rapid and ultra rapid charging. In the case

of Uruguay, current penetration of electric vehicles is below

250, which represents less than 0.05% of the automotive park.

From this amount 67% corresponds to the electric utility fleet

of UTE (the National Electricity Company), 27% are taxis,

and only 6% are private [5]. In order to promote the use of

electric vehicles, UTE has launched the Electric Route, which

currently has 64 points for charging, all in AC with different

capacities (e.g. 7.4 kW, 22 kW and 43 kW) [6]. This measure

was implemented as part of a larger public plan of electric

mobility promotion, which also includes taxes reductions and

subsidies. UTE has also created a task force on electric

mobility which is working on various projects. In addition,

an agreement between UTE and the School of Engineering

from UDELAR (the University these authors belong to) was

signed to assess different problems related to electric vehicles.

This paper presents some of the results from that work,

related to the charging infrastructure, in order to evaluate the

performance of the Electric Route for different scenarios of

electric vehicle penetration and also to assess possible design

approaches. Although this work focuses upon a concrete and

particularly simple application case, these techniques can be

extended to more general instances. This study focuses on the

Electric Route from Colonia to Chuy, using existing data of

vehicles traffic. Two different approaches are used. The first

assumes that the driving range is determined by the car, and it

seeks to evaluate the useful life limits for the current charging

infrastructure over prospective scenarios of electric vehicles

penetration. The second approach lays upon the hypothesis

of technological improvements, which move the driving range



from cars to drivers. For this approach we look for a long-term

solution for the charging infrastructure.

Main contributions of this work are: i) the decomposition

of aggregated vehicular traffic statistics into specific traffic-

flows, which capture design goals combined with capabilities

of cars and drivers; ii) the application of stochastic modeling

to craft long-term infrastructure planning based on quantitative

analysis of the problem of fulfilling needs of those flows, for

current traffic data as well as for prospective scenarios; and

iii) the real-world application case this paper elaborates on.

The remaining of this article is organized as follows.

Section II introduces the problem, describes the case study

of the Electric Route in Uruguay and envisioned data for

electric vehicles penetration scenarios, as well as the two

reference models used to quantify the system performance.

Section III presents actual statistical traffic information for

peak traffic at this route at different points, which is broken

down into vehicular flows according to each of the problem

versions to tackle. When analytical solutions are not available

for some problem instance, simulation algorithms are used

instead. Finally, Section IV presents the conclusions and lines

of future work.

II. PROBLEM DEFINITION AND CASES OF STUDY

A. The Electric Route of Uruguay

Electric Vehicle Supply Equipments (EVSEs) allow electric

vehicles to be safely connected to the power grid. EVSEs

comprise three main kind of components. The power block

(through which the energy of the load circulates) contains

those conductors and protections necessary to carry out the

load safely. The communications block is responsible of deter-

mining what charging protocol/scheme is to be used between

the EVSE and the electric vehicle. This communication is

determined by the type of connector that the EVSE has. There

are also chargers that have more than one connector as it may

be seen in Figure 1 [7].

Fig. 1. Public charging with three different connectors [EVSE]

The managment block, which is the one where communica-

tions are established between the EVSE and external servers.

This is the block responsible for authorizing and registering

the charging session. There is a protocol called OCPP (Open

Charge Point Protocol) which allows to standardize the com-

munication between the EVSE and some servers, being able to

implement functions such as accounting the energy consumed,

billing and EVSE booking, among others.

After adopting some of the connector types, national au-

thorities need a plan to install these EVSEs. The scheme

of the electric load infrastructure in Uruguay was guided by

firstly covering the route with the higher flow of vehicles;

allowing then the movement of electric vehicles alongside

the south coast of the country (departments of Colonia, San

José, Montevideo, Canelones, Maldonado and Rocha), which

coincides with the largest influx of tourists along the year.

After this first step (2017-2018), other locations of the country

were covered, adding up today to 64 AC charging points, half

of them of 43 kW, and nearly the other half with 22 kW,

plus a very few of 7.4 kW capacity [8]. This paper focuses

on the first stage of the Electrical Route, i.e. the south area

from Colonia del Sacramento to Chuy, which is highlighted

in Figure 2. Most of these stations count only one EVSE.

Fig. 2. Public charging infrastructure in Uruguay [Electric Route highlighted]

B. Scenarios of penetration of electric vehicles

The relative share of electric and Hybrid Vehicles (HV) in

the Uruguayan sales market has been growing in recent years,

although not at a great pace, as presented in table I [5].

Year 2014 2015 2016 2017 2018

Total vehicles 53.429 49.438 45.633 54.522 43.807

Total HV 2 2 38 99 839

% participation HV 0,004% 0,004% 0,083% 0,182% 1,915%

Total EV 30 72 10 27 63

% participation EV 0,056% 0,146% 0,022% 0,050% 0,144%
TABLE I

PERCENTAGE OF HYBRID AND ELECTRIC VEHICLES IN URUGUAY.

Scenarios were taken from the 2018 National Energy Demand

Prospective Report prepared every year by the National Energy

Directorate (DNE) of the Ministry of Industry, Energy and

Mining (MIEM) of Uruguay [9], where 4 scenarios were es-

tablished growth in demand depending on the policies applied.

The rate of electric vehicles (in the global automotive park)

varies from less than 1% in the most pessimistic scenario

to nearly 7% in the most optimistic one, for the period

2020-2035. Premisses these scenarios are based on are: 1)

Trend is the scenario where no public policy is applied; 2)

Energy Efficiency Policy is built on the basis of the Trend

scenario, assuming that certain measures are applied, such as

energy efficiency labeling, promotion of efficient technologies,

improvement in the use of energy and renewable energies,

among others; 3) Unconditional NDC (National Determined



Contribution): is carried out based on Energy Efficiency Policy

scenario, but assuming that no external support is received for

the achievement of goals. It is assumed, however, that those

goals related to measures that are already being implemented

are achieved; 4) Conditional NDC also derives from Energy

Efficiency Policy, improving specific goals and modifying the

moment in which the measures begin to have an impact and

conditional on receiving funds for their application. In addi-

tion, specific hypotheses are incorporated for the penetration

of electric vehicles in fleets of specific companies (captive

fleets). EVs penetration scenarios used in this work are based

upon optimistic projections, mainly in the Conditional NDC

scenario, whose figures are presented in Table II.

Year Total No EV’s %

2020 814.145 770 0,09%
2025 997.574 33.524 3,36%
2030 1.160.591 62.489 5,38%
2035 1.292.104 87.378 6,76%

TABLE II
MARKET SHARE PROJECTION IN URUGUAY UNTIL 2035, CONDITIONAL

NDC(NATIONAL DETERMINED CONTRIBUTION) SCENARIO.

HV commercialized in Uruguay are (generally) not plugged-

hybrid vehicles, what explains why that kind of vehicles (HV)

are not considered in this study in terms of its incidence in

the charging infrastructure of the country.

C. A queuing system approach for a charging station

A first concern in this analysis aims upon quantifying

useful life limits for the current charging infrastructure over

prospective scenarios of electric vehicles penetration. Actual

data shows that this infrastructure is up to ongoing require-

ments, and that it is updated according to the state-of-the-art

technology. However, how much longer that infrastructure is

going to fulfill demand needs is a main concern.

In this section, we are modeling the problem with the goal

of assessing lifetime limits for the charging points, and not

with the aim of rescaling that infrastructure. Electric vehicles

technology is rapidly evolving, so long-term infrastructure

charging planning cannot be bounded by current limitations.

Nowadays, recharging times of electric vehicles are too long

when compared with refills in gasoline ones. Additionally, the

maximum travel distance range of affordable electric vehicles

is still quite under that of internal combustion powered cars.

Since electric cars do not have the choice but the imperative

to charge during a long trip, and servicing times are expected

to be long, in this section, we have decided to model a power-

station to serve cars charging as a classical queueing system.

A classical queueing system framework is that described

by the Kendall-Lee notation, which characterizes a single-

queue system by six parameters, three of whom are mandatory.

These parameters are: i) the arrival process; ii) the service

process; iii) the number of parallel servers; iv) the queue

discipline; v) the capacity of the system; and vi) the size

of the origin population. Classical examples of arrival and

service processes are Poisson distribution (represented as M ,

by markovian) and Deterministic times (represented with D).

Regarding the queue discipline, typical cases are FCFS (first

come, first served) and LCFS (last come, first served). For

instance, an M/D/2/FIFO/10/∞ Kendall-Lee notation for

some system means that: the arrival time between any two

customers has exponential distribution; the service time of

each customer at each of the two available servers is fixed;

customers are attended in the order they arrive; and there

is a limit of 10 customers in the whole system, accounting

those in-line as well as those being attended. Whenever any

or the last three parameters are omitted, they are assumed to

be FIFO/∞/∞. For further information about the general

framework of queueing theory, we recommend [10] and [11].

An M/M/./././. system allows a fully analytical resolu-

tion, because it is assimilable to a Birth-Death Process, which

in turn is a Continuous Time Markov Chain. Unfortunately,

the queueing system that better matches current cars-to-station

interaction is an M/D/s since: inter-arrival times are indepen-

dent and there is no reason to assume that a new arrival affects

the time of the next one (memoryless property of exponential

distribution); cars limited autonomy forces a car to arrive with

minimal charge in its batteries (no matter how many cars are

previously in the queue), so it has to stop and wait for a full-

recharge, which is constant over a reference uniform fleet.

A first concern of any stochastic system is its stability, which

corresponds to the long-term asymptotic behaviour. Long-term

expected service times in an unstable system are unbounded.

Let 1/λ be the mean interarrival time between any two cars,

and 1/µ be a representative full-charge time for a vehicle.

A general result of queueing theory establishes that such a

system is stable when λ < sµ, in a station with s chargers. A

stable system usually reaches its stationary distribution rapidly.

Once in it, performance metrics are well defined; two of

which are of primordial interest in this work. They are n:

the average number of vehicles at some station, and ts: the

average end-to-end service time, which includes waiting-in-

line and charging times. A result of Pollaczek y Khinchin

[12] allows an analytical expression for the first of them when

s = 1, which is:

n =
λ(2µ− λ)

2µ(µ− λ)
, λ < µ (1)

Besides, under stability conditions, Little Equations [11] allow

to compute ts up from n by the following expression: ts =
n/λ, being λ the expected arrival rate, which matches λ in this

case. Recall that as seen in Section II-A, a number of s = 1
servers is characteristic along stations in the current Electric

Route in Uruguay, so we will use previous formulations to

compute service metrics under the existence of steady state

conditions. When those conditions are not met, we utilize

simulation as a mean to estimate metrics for conditions as

onto the peak-traffic window.

D. No-waiting charging station model

There are two underlying premisses of the previous model

that are expected to change with technology improvements.

One of them is related to charging times, which involves

updates in both batteries and chargers. However, in the context



of our application case, the most important change is expected

to come from extended ranges in travel distances. This is based

on several facts: the country is relatively small and the Electric

Route is even smaller; cars abandon home to go on vacations

with a full-charge in their batteries, so most of them can reach

coast resorts without charging at all, specially considering that

the main source of tourists (Montevideo and its Metropolitan

Area) is half the way along that route. Therefore, in this

second model, we are assuming that the driving range is not

determined by the car but by the driver itself.

We suppose then that after traveling for some known

distance, the driver will voluntarily stop at a station to stretch

its legs and/or to have some meal, and in the meanwhile, car

batteries will be charged (swiftly). We assume that the stop-

time is long enough to substantially recharge cars batteries.

Since this is an option for the driver (not an imperative),

we also assume that in the event of blocking (all chargers

busy), the driver will continue the travel until getting to the

following station on the road. Observe that in this scheme there

is no queue, which simplifies the model. Conversely, since we

are now planning the long-term solution, we must consider

multiple per-station chargers.

Hence, the model for a station consists of: i) a fixed number

of chargers s; ii) a Poisson arrival process of per-time rate

λ; iii) some per-customer service time of known mean 1/µ,

which being variable and uncertain we assume as independent

and exponential aleatory variables with parameter µ. The goal

is to find the minimum number of servers/EVSEs (N ), such

that the probability of customers intending to stop at the station

that effectively do, to be over some threshold (1 − T ). The

remaining of this article refers to this target-threshold as the

Effectiveness, which is a global goal for the whole system.

Because of the uncertainty of arrival and service processes,

the system should be stochastically analyzed. Since both inter-

arrival and service times are random variables, it can be

modeled with a Continuous Time Markov Process; in fact,

with a Birth-Death Process as in Figure 3.

0 1 2 . . . . . . N

λ

µ

λ

2µ

λ

3µ

λ

Nµ

Fig. 3. Reference birth-death process for the no-waiting model.

Let πj(t) be the probability of finding the system with j
chargers busy at time t. In steady state condition (t → ∞), it

must hold that πj(t) → πj and πj =
λ
jµ
πj−1, for 1 ≤ j ≤ N .

Besides, since π values assign probabilities, they add up to 1.

Therefore, those probabilities are:

πj =

1

j!
(λ
µ
)j

∑N

k=0

1

k!
(λ
µ
)k

, 0 ≤ j ≤ N (2)

Thus, we aim at finding N for a threshold 0<T<1 such that:

N = min{n : (
1

n!
(λ/µ)

n
) ≤ T ·

n∑

k=0

1

k!
(λ/µ)

k
} (3)

III. RESOLUTION AND EXPERIMENTAL EVALUATION

A. Breaking down traffic into flows

Some parameters of the problem are independent of the

placement of stations along the route. The service time for a

car as in the Section II-C model is determined by current

technological constraints. A vehicle with a 60kWh battery

that can be charged at a 43kW power level, can get a full-

charge in 2 hours whether that level is available, so its service

rate is µ43=0.5vh. A refill with a 22kW charger would take

almost twice longer, then the rate is slightly over the half

(i.e. µ22=0.256vh). Complementarily, this model is used to

estimate limits of current infrastructure, where most charging

stations only have one recharge point (s = 1). Hence, λ is

the only parameter left to determine to either compute Eq.-

1 or to simulate the performance. Unlike µ, this parameter

is highly variable and specific. It depends on the placement

of each station, but also from seasonal conditions. Moreover,

as we will see, λ also depends on the underlying model and

its goals. The reference traffic used during this study is that

registered along summer vacations, whose peaks are scattered

among late December and January weekends. As a reference of

how many vehicles circulate along the route at different points,

we use registers of ticket sales at toll booths in this route,

which are: Cufré, Barra de Santa Lucı́a, Arroyo Pando, Arroyo

Solı́s and Garzón. Toll booths are marked with red circles in

Figure 4, and the peek per-hour tickets sold is highlighted with

purple fonts. These tickets are complemented with traffic data

from other routes connecting with this one, and with statistics

of touristic preferences, which conclude that destination for

most tourists are placed after (at the right of) Arroyo Pando

toll booth. Charging stations are marked with blue circles in

that figure, so are estimations of the hourly number of cars

passing by these points, which are marked with grey fonts. For

example, Figure 4 indicates that the expected number of cars

passing aside San Luis charging station during peak summer

traffic is 1445 vehicles per hour.

In order to estimate the rate of vehicles arriving at each

station, we disaggregate those bulks figures into what we

called traffic flows. Traffic flows are groups of vehicles, whose

levels of battery charge boost them, or directly force them

to make a stop to recharge. Stopping is mandatory for the

approach of Section II-C. Besides, since we used a reference

battery capacity of 60kWh, with an estimated consumption

1kWh every 4.3km, we conclude that the average vehicles

range is 260km. Complementing that with official scenarios

for penetration of electric cars, we can determine how many

per-hour vehicle are expected to arrive at each station.

Table III shows the set of parameter estimations for different

time-horizons, used to craft instances data sets for the model

as in Section II-C. These figures are based on the optimistic

NDC-Conditional of Table II. The only stations with more

than one EVSE are in Montevideo and Punta del Este, so we

assume that s = 1 for all on-route stations. λyy indicates the

hourly expected number of vehicles arriving to charge at that

station during peaks in traffic for the summer of year 20yy.



Colonia
-177km
1Save
43kW

Rosario
-130km
1Save
22kW

Cufré
-107km

Pta. Valdez
-66km
1Save
22kW

Bra. S. Lucía
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Montevideo
10Save
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Shangrilá
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1Save
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San Luis
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1Save
22kW
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Rocha
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1Save
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Sta. Teresa
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1Save
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Chuy
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1Save
22kW
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47km 64km 66km 19km 45km 67km 75km 96km 24km

Fig. 4. Peak vehicular traffic along the Electric Route [red for toll booths / blue for charging stations; purple for per-hour tickets sold / grey for traffic].

So, Table III completes all the information necessary to either

use Eq.-1 or to run simulations.

STATION µ [vh] λ20[vh] λ25[vh] λ30[vh]

Colonia 0.500 0.13 6.13 11.43
Rosario 0.256 0.13 6.13 11.43
Punta de Valdez 0.256 0.20 9.30 17.33
San Luis 0.256 0.12 5.27 9.82
Rocha 0.500 0.16 7.20 13.42
Santa Teresa 0.500 0.03 1.44 2.68
Chuy 0.256 0.01 0.66 1.23

TABLE III
PARAMETERS FOR STATIONS IN ELECTRIC ROUTE (QUEUEING MODEL)

Regarding the model in Section II-D, there are several

adjustments to make. First of all, we must determine s, which

is a variable rather than a parameter in this case. Besides,

the per-vehicle average service time in the second model is

half an hour (i.e. µ=2vh), so it is considerably smaller than in

the queueing model as well as uniform among stations. Main

differences are in the computation of λ, for in this case, traffic-

flows are dependent of our target quality standards. Consider

a target success rate of 70% (1− T = 0.7), which means that

our goal is that at least 70% of the cars intending to charge at

every station to succeed in their attempt. Conversely, we might

think that up to 30% of potential customers of any station

might end up charging their cars in the following, or in the

next one if that second attempt also fails. So, the lower the

target effectiveness, the higher the rate of new arrivals along

subsequent stations on that route.

STATION
Effectiveness 70% Effectiveness 90%

2% NDC-Co35 2% NDC-Co35

Colonia 4.64 15.69 4.64 15.69

Rosario 6.04 20.40 5.10 17.24

Punta de Valdez 8.89 30.03 7.53 25.46

Montevideo 9.70 32.80 7.77 26.26

Shangrilá 2.87 9.70 0.70 2.36

San Luis 0.44 1.48 0.08 0.27

Punta del Este 0.48 1.62 0.58 1.95

Rocha 1.06 3.57 1.59 5.39

Santa Teresa 0.46 1.55 0.48 1.62

Chuy 0.14 0.47 0.04 0.13
TABLE IV

PROJECTED ARRIVAL RATES FOR 2035 (70% AND 90% EFFECTIVENESS)
UNDER SCENARIOS OF EVS PENETRATION (2% AND NDC-CO35)

Table IV shows the estimated arrival rates (λ) at each station

along the peak hours of traffic projected for 2035, under

different scenarios of electric cars penetration and for different

thresholds of effectiveness. NDC-Co35 corresponds to the

NDC-Conditional of Table II, also used in Table III, though

now is for the year 2035. Columns labeled with 2% correspond

to a least optimistic scenario considered by authorities. Target

effectiveness are 70% (i.e. T=0.3, 30% of cars intending to

charge at stations that do not because of congestion) and 90%

(i.e. T=0.1). The driving range is now set to 300km. Recall

that that range is proper of the driver preferences and it does

not force a car to stop whether all EVSEs are busy.

B. Performance metrics for the queueing model

Table V shows the performance estimations for the two

electric vehicle penetration scenarios nearest in time a couple

of years ago (when this study was realized). All stations in the

table have only one EVSE. The information contained in this

table is as follows: i) the name of the station as in Figure 4;

ii) the estimated time for a full-charge time (expressed in

hours) according on the power of the corresponding EVSE;

iii) the expected number of electric vehicles at each point,

either waiting or charging; and iv) the expected service time

for each vehicle, adding waiting and charging times.

STATION CT[h]
NDC-Co20 NDC-Co25

n ts[h] n ts[h]

Colonia 2.00 0.32 2.37 57.60 112.60

Rosario 3.91 0.81 6.05 60.10 229.20

Punta de Valdez 3.91 2.33 11.46 91.88 353.30

San Luis 3.91 0.63 5.50 51.69 196.34

Rocha 2.00 0.39 2.46 68.78 134.85

Santa Teresa 2.00 0.07 2.07 10.98 20.14

Chuy 3.91 0.06 4.02 5.64 18.77
TABLE V

PERFORMANCE RESULTS FOR THE QUEUEING MODEL (CONDITIONAL

NDC-20 AND 25)

Observe that for the NDC-Co20 scenario, λ20 values in Ta-

ble III are always lower than the corresponding µ, so queueing

systems are all stable and Eq.-1 can be used to compute n. The

expected waiting time (ts) is derived from Little Equations.

Verify that the relative difference between minimal charging

times (column CT ) and expected ones (ts) are small, except

for Punta de Valdez and Rosario. These bottlenecks are caused

by a combination of high arrival rates (λ’s) with low service

ones (µ’s). Regarding the NDC-Co25 scenario, the situation

is quite the opposite. Rates λ25 are always higher than µ
ones, so systems are unstable. The figures in this case were

obtained up from 10.000 simulations along a time window of

10 hours around the instant of peak traffic. All simulations

were independent, starting from empty stations, with ramp-up

(linearly increasing λ) and ramp-down (linearly decreasing)

lapses of 2 hours each, and a sustained arrival rate period of 10

hours between ramps. The maximum number of cars waiting



as well as the maximum end-to-end service time are registered

at each simulation. Later on, the average of these figures is

calculated. Resulting worst-case averages are presented over

the rightmost of Table V (NDC-Co25). The expected service

times at all stations is significantly higher than in the previous

scenarios, and all of them are above the period for which those

parameters are meaningful (10hs), and they must be taken as

numerical evidence of the incapability to attend such demand.

C. Optimized update for the no-waiting version

Unlike the previous experimentation and model, which

aimed at the estimation of useful life-limits of current in-

frastructure, this model seeks to estimate how many techno-

logically updated EVSEs will be necessary in the mid-term,

in order to satisfy VEs charging needs. Another difference

is that we do not longer have stability issues, because in

this case cars simply do not enter to stations if there is no

free charging point. Conversely, some basic quality of service

standards are to be set. In this case, it is the percentage of

drivers intending to enter into some station that succeed in

their goal. Table VI shows the minimum number of EVSEs at

each station, necessary to attain the desired effectiveness when

those stations are receiving potential customers at rates as in

Table IV. These figures are the result of solving Eq.-3 for a

Poisson arrival process with λ’s of Table IV and independent

aleatory exponential service times with mean of 30 minutes.

STATION
Effectiveness 70% Effectiveness 90%

2% NDC-Co35 2% NDC-Co35

Colonia 3 7 5 11

Rosario 4 9 5 12

Punta de Valdez 5 13 7 16

Montevideo 5 14 7 16

Shangrilá 2 5 2 3

San Luis 1 2 1 2

Punta del Este 1 2 2 3

Rocha 2 3 3 5

Santa Teresa 1 2 2 3

Chuy 1 1 1 1
TABLE VI

PROJECTED NUMBER OF EVSES AT EACH STATION NECESSARY TO MEET

2035 SCENARIOS FOR DIFFERENT EFFECTIVENESS GOALS

Observe that the optimal number of EVSEs per station is

always under ten for the 2% penetration scenario. For the

NDC-Co35 scenario there are three stations that need more

than ten EVSEs, they are: Colonia, Rosario and Punta de

Valdez, the last being also the bottleneck for the previous

model. which actually counts many charging stations.

IV. CONCLUSIONS AND FUTURE WORK

This work shows the application of quantitative methods

for the planning of the Electric Route in Uruguay. Two models

were considered. The first with the aim of assessing life limits

for the current charging infrastructure, while the second seeks

to estimate how many additional EVSEs would be necessary

along the one and a half decade to come.

Considering the existing traffic flow data and prospective

studies for possible penetration scenarios (2020/2025/2035) of

electric vehicles and also taking into account the capabilities

of vehicles in stressful contexts, it is possible to conclude that

the current charging infrastructure is suitable for the number of

electric vehicles at the present, but it would not be enough in

the near future for the studied scenarios. Taking into account

an overall driving range of 300 km per-driver, an upgrade

to the number of charging points at every station will be

required in order to attain the desired effectiveness. However,

estimations regarding the additional number of EVSEs are

mostly under ten, which is reasonably attainable.

We also remark that although higher, the additional number

of necessary EVSEs does not change significantly with the

target effectiveness. Usually, the outcome to such kind of

problems shows that the number of resources to attain much

higher grades of service are unaffordable. Conversely, results

of this study show that additional expenditures to move from

70% to 90% of effectiveness are relatively low, between 24%

and 40% of extra EVSEs, depending on the scenario. An

explanation to this particular behavior is that lower effec-

tiveness increase rebounds of cars, which merely moves the

dimensioning problem to following stations along the route.

This study took into account the existing charging infras-

tructure in the country, which only has AC chargers, and

only considerar a reference model of EV. However, additional

car/chargers combinations can be captured by breaking down

traffic into additional traffic-flows, what makes possible to

use this studio methodology under scenarios with greater

complexity; for instance, when there is a combination of fast

chargers (AC) with superchargers (DC), where charging times

are substantially different. Superchargers are expected to begin

in Uruguay in 2021. As the main line of future work, we

identify the problem of applying such techniques to whole

network of routes in the country, which incorporates not only

topological issues but also inter-seasonal ones.
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