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ABSTRACT
Despite the many attempts and approaches for anomaly de-
tection explored over the years, the automatic detection of
rare events in data communication networks remains a com-
plex problem. In this paper we introduce Net-GAN, a novel
approach to network anomaly detection in time-series, using
recurrent neural networks (RNNs) and generative adversar-
ial networks (GAN). Different from the state of the art, which
traditionally focuses on univariate measurements, Net-GAN
detects anomalies in multivariate time-series, exploiting tem-
poral dependencies through RNNs. Net-GAN discovers the
underlying distribution of the baseline, multivariate data,
without making any assumptions on its nature, offering a
powerful approach to detect anomalies in complex, difficult
to model network monitoring data. We further exploit the
concepts behind generative models to conceive Net-VAE, a
complementary approach to Net-GAN for network anom-
aly detection, based on variational auto-encoders (VAE). We
evaluate Net-GAN and Net-VAE in different monitoring sce-
narios, including anomaly detection in IoT sensor data, and
intrusion detection in network measurements. Generative
models represent a promising approach for network anom-
aly detection, especially when considering the complexity
and ever-growing number of time-series to monitor in oper-
ational networks.
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1 INTRODUCTION
Network monitoring data generally consists of hundreds or
thousands of counters periodically collected in the form of
time-series, resulting in a complex-to-analyze multivariate
time-series process (MTS). In particular, detecting anomalies
in such multivariate, temporal data is challenging. With-
out loss of generality, we refer to the MTS as a set of n,

non-iid time series sampled at the same rate, referred to as
xt = {xt (1),xt (2), . . . ,xt (n)} ∈ IRn . Current approaches to
anomaly detection tackle this challenge by either focusing
on univariate time-series analysis – running an independent
detector for each time-series xt (i), or by considering multi-
dimensional input data x ∈ IRn at each time t , neglecting the
temporal aspects of the MTS. To improve the state of affairs
we propose Net-GAN, a novel unsupervised approach to
anomaly detection in MTS data, based on Recurrent Neural
Networks (RNNs), trained through a Generative Adversarial
Networks framework (GAN) [1].

The usage of generative models for semi-supervised anom-
aly detection helps to solve two major problems faced in this
specific field: the high imbalance between normal opera-
tion and anomaly instances, as well as the lack of labeled
instances for learning and validation purposes. Generative
models such as Variational Auto-Encoders (VAEs) or Genera-
tive Adversarial Networks (GANs) are powerful approaches
to learn the underlying distributions of data samples, in a
purely data-driven, model-agnostic manner. Such models
can be used in the practice to construct better baselines (i.e.,
profiles for normal operation) for the anomaly detection task,
improving the identification of instances which deviate from
this baseline. Most of previous work in this direction treats
data as temporally independent samples, neglecting the in-
formation provided by causality and temporal correlation.
To capture the temporal correlations characterizing an

MTS, we adapt the original GAN model proposed in [1],
replacing the multilayer perceptrons by recursive, LSTM
networks for both generator and discriminator models. The
input data is therefore sequences of multi-dimensional mea-
surements, of length T : {xt−T , ...,xt }. In a similar direction,
we also explore the performance of other powerful genera-
tive models for anomaly detection, using in particular VAEs.
Variational auto-encoders are a generative version of clas-
sical auto-encoders, but different from GANs, they make
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Figure 1: Net-GAN architecture and its application.

strong assumptions on the generative distribution they try
to estimate. We refer to this flavor of Net-GAN as Net-VAE.
The reminder of the paper is organized as follows: Sec-

tion 2 briefly overviews the related work; in Section 3, we
describe the Net-GAN and Net-VAE approaches; Section
4 reports the preliminary evaluation results obtained with
Net-GAN/Net-VAE models in the detection of anomalies in
different datasets. Finally, Section 5 concludes the paper.

2 RELATEDWORK
Generally speaking, operational network monitoring sys-
tems rely on rules and fingerprints to detect anomalous
behaviors. There are nevertheless multiple extensive sur-
veys on general domain anomaly detection techniques [5]
as well as on network anomaly detection [6, 7], including
machine learning-based approaches. There is a particularly
extensive literature in the application of learning-based ap-
proaches for automatic traffic monitoring and analysis [4],
including detection. Their main limitation as compared to
our work is their (generally) supervised nature, which re-
quires ground-truth data for learning. There is also a vast
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Figure 2: Net-VAE architecture.

literature on clustering–based approaches for unsupervised
network anomaly detection and analysis, mostly targeting
the security domain [9–11].
When it comes to the application of generative models

for anomaly detection, there are recent papers on GANs
for time-series synthesizing and anomaly detection [8, 12,
13]. Examples of GANs for anomaly detection, as well as
VAEs for anomaly detection, are presented in [2] and [3],
respectively. A particularly interesting model for anomaly
detection using GANs is BiGAN [14], which extends the
original GAN architecture by adding the learning of the
inverse mapping which maps the data back to the latent
representation.

3 THE NET-GAN/VAE APPROACH
GANs are a framework for the estimation of generative mod-
els via an adversarial process in which two models, a dis-
criminator D and a generator G, are trained simultaneously,
in an adversarial manner. The generator G aim is to capture
the – unknown and potentially complex, data distribution,
while the discriminator D estimates the probability that a
sample came from the training data rather than G. To learn
a generative distribution pд over the learning data x , the
generator builds a mapping from a prior noise distribution
pz to a data space asG(z). The discriminator outputs a single
scalar D(x) representing the probability that input x came
from real data rather than from pд .
Fig. 1 depicts the Net-GAN architecture and both the

model training and anomaly detection procedures. In the
training phase (top), the generatorG draws synthetic sam-
ple sequencesG(z) from Gaussian noise – the latent space Z ,
with the objective of deceiving the discriminator D, which
in turn learns to determine whether training samples are
real or derived from the generative distribution. The classi-
fication result proposed by D is additionally fed back to G,
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Figure 3: Net-GAN: synthetically generated time-
series.

serving as a reinforcement loop to guide the generation pro-
cess. As bothG and D compete to achieve their adversarial
tasks, synthetic samples become more and more “realistic”,
and the discriminator becomes robust to noise, improving
the detection of non-conforming (i.e., out of the baseline)
samples.
In the application phase (down), the trained discrimi-

nator D∗ acts naturally as an anomaly detector, detecting
deviations from the baseline, through a discrimination loss
function. The trained generator G∗ is also used to improve
detection performance, serving as baseline generation; by
doing an inverse search in the latent space – for example,
constructing an inverse model for the generator [3, 14], we
find the sample z ∈ Z which generates the closest sample
x̂ to the tested one x , producing a residual loss. This step
also be approximated by randomly sampling the latent space,
and keeping the sample x̂ which better approximates x . Both
the discrimination and the residual loss functions can be
combined into an anomaly score, which is compared to a
calibrated threshold to take the final decision.
As we mentioned before, one of the salient features of

Net-GAN is that we use LSTM networks for both G and D,
instead of the traditionally used multilayer perceptrons or
convolutional neural networks. Being recursive by concep-
tion, LSTMs can capture temporal dependencies in the data,
which feed-forward networks fail to do. This is paramount
when it comes to time-series analysis. In Section 4 we test
separately the detection performance provided by the trained
discriminatorD∗ and the trained generatorG∗, using random
sampling as reverse-search technique.
In the case of VAE, the architecture is composed of the

standard encoder and decoder functions which form the
auto-encoder. An auto-encoder is a type of neural network
used to learn both efficient representations of the input data,
typically for dimensionality reduction – the Encoder, along
with (re)generation models, which generate representations
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(a) Detection performance with Net-GAN-D.
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Figure 4: Detection of anomalies in CPS data.

from the reduced encoding latent space as close as possible
to its original input – the Decoder. Fig. 2 depicts the Net-VAE
architecture, which is composed of two data alignment and
reconstruction layers – to pre-process the time-series and
post-process the auto-encoded samples, and two three-layer,
feed-forward neural networks, representing the encoder and
the decoder, respectively. The detection with Net-VAE is
simply done through the residual loss obtained by applying
the trained VAE to the input testing sample x ; if the difference
between the input x and its reconstruction x̂ is greater than
a detection threshold, an anomaly is declared.
In terms of time-series preparation and processing, both

Net-GAN and Net-VAE operate through a sliding window of
T samples – using a unitary step. At each new step of the
analysis, a matrix consisting of n chunks of T consecutive
samples each is fed to the models, see Fig. 2. Finally, distance
among time-series chunks is computed at a per-sample basis,
and an anomaly is declared as soon as one or more of the
samples deviate from the baseline by more than a detection
threshold. To avoid false alarm due to spurious variations in
the time-series, each sample T generally represents a tempo-
ral aggregation of measurements, e.g., a moving average.

4 PRELIMINARY EVALUATION RESULTS
We evaluate Net-GAN’s detection performance on two dif-
ferent publicly available datasets, here referred to as CPS
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Figure 5: Detection of attacks in SYN-NET data, using
Net-GAN-D as underlying detection model.

[13] and SYN-NET [15]. The CPS dataset consists of synthet-
ically generated attacks targeting industrial control systems,
in particular a safe water treatment plant. It includes IoT
sensor measurements for 51 different physical properties
related to the plant and the water treatment process. In total,
946.722 samples are collected with a 1-second resolution,
over 11 days. The SYN-NET dataset is a synthetically gen-
erated dataset for network intrusion detection, including
normal operation traffic generated by a group of 25 users
(e.g., HTTP/HTTPS browsing, FTP file transfer, SSH andmail,
etc.), with controlled attacks over-imposed, of very differ-
ent nature. In particular, we test Net-GAN for the detection
of botnet traffic (0.2% of total flows), DDoS attacks (4.3%),
port scan activity (16.6%), and infiltration activity (only 36
flows). SYN-NET consists of more than a million flows –
83%/17% benign/malign traffic. For the sake of completeness
and performance-benchmarking, we also evaluate Net-VAE
on the CPS dataset.

To show the generation capabilities of Net-GAN, Fig. 3 de-
picts some of the (min-max normalized) time series generated
by the trained generatorG∗, along with the corresponding
real time-series. To reduce noise, samples are aggregated in
time-windows of 10’. Time-series of higher magnitude are
better reconstructed (TS1 and TS2), whereas noisy ones –
such as TS3, are more difficult to track.

Fig. 4 reports the detection performance achieved by Net-
GAN and Net-VAE in the CPS dataset, in the form of ROC

curves. Fig. 4(a) reports the obtained results when using Net-
GAN’s discriminator D∗ as detector (Net-GAN-D), Fig. 4(b)
uses Net-GAN’s generator G∗ as detector, and Fig. 4(c) uses
Net-VAE.

While results are preliminary and depend on the size and
quality of the analyzed datasets – we are currently work-
ing with bigger network measurement datasets, Net-GAN-D
detects 56% of the attacks with a FPR below 1%, whereas
both Net-GAN-G and Net-VAE detect close to 70% of the
attacks without false alarms. This shows that the generative
capabilities of both approaches are extremely useful when it
comes to detecting deviations. Still, the overall performance
is rather poor for this scenario, which we believe is linked to
the quality of the data. As reference, detection performance
obtained in previous work [13] for the same dataset is aligned
with our results.

To conclude the paper, and to showcase the performance of
Net-GAN in a different dataset, Fig. 5 reports the detection
performance of Net-GAN-D in the SYN-NET dataset, for
the four considered network attacks. About 93%, 100%, 89%,
and 78% of the attacks are detected with a FPR below 1%,
for botnet, infiltration, port scan, and DDoS, respectively,
showing promising results in this specific scenario.

5 CONCLUDING REMARKS
In this paper, we have explored the application of modern
generative models to the detection of anomalies in multivari-
ate time-series. We have presented and evaluated Net-GAN,
a novel approach to network anomaly detection in time-
series, using RNNs and GANs. Different from the state of the
art, which traditionally focuses on univariate measurements,
Net-GAN detects anomalies in multivariate time-series, ex-
ploiting temporal dependencies through RNNs. Net-GAN
discovers the underlying distribution of the baseline, multi-
variate data, without making any assumptions on its nature,
offering a powerful approach to detect anomalies in com-
plex, difficult to model network monitoring data. We com-
plemented Net-GAN with an alternative approach based on
variational auto-encoders, which also represent a powerful
and appealing model for the specific task.
The evaluation of both detection approaches in two dif-

ferent monitoring scenarios, including anomaly detection in
IoT sensor data, and intrusion detection in network measure-
ments, shows promising results. Besides the specific perfor-
mance attained in terms of detection properties and genera-
tion of false alarms, generative-based models for anomaly
detection might prove extremely useful when confronted
with the monitoring of complex and highly-dimensional sys-
tems – such as modern networks, where traditional modeling
approaches would fall short to capture the underlying (joint)
distributions of the data. A deeper and more comprehensive
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evaluation of Net-GAN and Net-VAE in real networking data
at large scale is part of our ongoing work.
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