# UNIVERSIDAD DE LA REPUBLICA FACULTAD DE AGRONOMIA

# EFECTO DEL CONTENIDO DE DEOXINIVALENOL (DON) Y DE UN ADSORBENTE COMERCIAL EN EL CONCENTRADO DE VACAS LECHERAS EN LACTANCIA TEMPRANA

Por

Ignacio Nicolás GAUDIN ISBARBO Pablo Ignacio LLUBERAS RIVOIR Alejandro Francisco MENDOZA AGUIAR

> Tesis presentada como uno de los requisitos para obtener el título de Ingeniero Agrónomo.

MONTEVIDEO URUGUAY 2003

| Tesis aprobada por: |                                                                |
|---------------------|----------------------------------------------------------------|
| Director:           | Ing. Agr. MSc. YAMANDU M. ACOSTA  Nombre comple to y firma     |
|                     | Ing. Agr. MSc. JUAN MIERES  Nombre completo y firma            |
|                     | Ing. Agr. MSc. PhD. LAURA ASTIGARRAGA  Nombre completo y firma |
|                     | Ing. Agr. MSc. ANA BIANCO  Nombre completo y firma             |
| Fecha:              | 10 de setiembre de 2003                                        |
| Autores:            | Ignacio Nicolás GAUDIN ISBARBO  Nombre completo y firma        |
|                     | Pablo Ignacio LLUBERAS RIVOIR  Nombre completo y firma         |

Alejandro Francisco MENDOZA AGUIAR Nombre completo y firma

#### **AGRADECIMIENTOS**

Agradecemos a todos aquellos que de alguna forma u otra permitieron que todo esto fuese posible.

Agradecemos muy especialmente a Esteban "Lobo" López y a su familia, así como al resto del personal de la Unidad de Lechería de INIA - La Estanzuela.

Agradecemos a los funcionarios de la biblioteca de INIA - La Estanzuela y de Facultad de Agronomía, y a los funcionarios de los laboratorios de Calidad de Leche y de Nutrición, de INIA - La Estanzuela.

Agradecemos al Ing. Agr. Yamandú Acosta, nuestro director de tesis por su incondicional apoyo, y por ayudarnos a crecer como futuros profesionales.

A todos ellos... ¡¡¡muchas gracias !!!

# TABLA DE CONTENIDOS

|                                                                                         | Página         |
|-----------------------------------------------------------------------------------------|----------------|
| PÁGINA DE APROBACIÓN                                                                    | I              |
| AGRADECIMIENTOS                                                                         | $\mathbf{III}$ |
| TABLA DE CONTENIDOS                                                                     | IV             |
| LISTA DE CUADROS E ILUSTRACIONES                                                        | VII            |
|                                                                                         |                |
| 1. <u>INTRODUCCIÓN</u>                                                                  | 1              |
| 2. <u>REVISIÓN BIBLIOGRÁFICA</u>                                                        | 3              |
| 2.1. CONSUMO                                                                            | 3              |
| 2.1.1. <u>Introducción</u>                                                              | 3              |
| 2.1.2. Factores asociados al animal                                                     | 4              |
| 2.1.2.1. Producción de leche                                                            | 4              |
| 2.1.2.2. Tamaño del animal                                                              | 5              |
| 2.1.2.3. Estado fisiológico                                                             | 5              |
| 2.1.2.4. Estado corporal                                                                | 7              |
| 2.1.2.5. Crecimiento                                                                    | 7              |
| 2.1.3. Factores asociados con la dieta.                                                 | 7              |
| 2.1.4. Consumo en pastoreo.                                                             | 10             |
| 2.1.5. Efectos de la suplementación sobre el consumo                                    | 12             |
| 2.1.6. Factores ambientales.                                                            | 16             |
| 2.2. ALIMENTACIÓN Y COMPOSICIÓN DE LA LECHE                                             | 16             |
| 2.2.1. <u>Energía</u>                                                                   | 16             |
| 2.2.2. Proteína.                                                                        | 18             |
| 2.2.3. Composición de la leche.                                                         | 18             |
| 2.3. MICOTOXINAS EN ALIMENTOS PARA ANIMALES                                             | 25             |
| 2.3.1. Biología de hongos.                                                              | 25             |
| 2.3.1.1. Aspectos generales de los hongos                                               | 25             |
| 2.3.1.2. Biología de <i>Fusarium graminearum</i> (forma imperfecta de <i>Gibberella</i> |                |
| Zeae)                                                                                   | 28             |
| 2.3.2. Caracterización de la problemática de las micotoxinas                            | 31             |
| 2.3.2.1. Principales grupos de micotoxinas                                              | 34             |
| 2.3.2.1.a. Zearalenona.                                                                 | 36             |
| 2.3.2.1.b. Fumonisina.                                                                  | 37             |
| 2.3.2.1 c. Ocratoxina A                                                                 | 37             |
| 2.3.2.1.d. Aflatoxinas.                                                                 | 38             |
| 2.3.2.1.e. Tricotecenos.                                                                | 39             |
| 2.3.2.2. Presencia de hongos y micotoxinas en alimentos                                 | 41             |
| 2.3.2.2.a. Forrajes                                                                     | 42             |
| 2.3.2.2.b. Ensilajes                                                                    | 42             |
| 2.3.2.2.c. Henos                                                                        | 42             |
|                                                                                         | 43             |
| 2.3.2.2.d. Granos                                                                       | 43<br>44       |
| 2.3.3. <u>Toxicología del DON</u> .                                                     | 44             |

| 2.3.3.1. Caracterización química del DON                                      | 46  |
|-------------------------------------------------------------------------------|-----|
| 2.3.3.2. Efectos sobre la producción y el consumo                             | 46  |
| 2.3.3.3. Efectos reproductivos                                                | 50  |
| 2.3.3.4. Efectos metabólicos                                                  | 50  |
| 2.3.3.4.a. Efectos sobre la síntesis de biomoléculas                          | 51  |
| 2.3.3.4.b. Efectos sobre las membranas celulares y el metabolismo energético. | 52  |
| 2.3.3.5. Efectos patológicos                                                  | 53  |
| 2.3.3.5.a. Efectos sobre el consumo voluntario                                | 53  |
| 2.3.3.5.b. Efectos sobre el sistema inmunológico                              | 54  |
| 2.3.3.6. Destino de la molécula del DON en el organismo animal                | 55  |
| 2.3.3.6.a. Detoxificación en el organismo animal                              | 55  |
| 2.3.3.6.b. Vías de eliminación de las micotoxinas en el organismo animal      | 57  |
| 2.3.4. Métodos para reducir el impacto negativo de las micotoxinas en los     |     |
| animales v sus productos.                                                     | 58  |
| 2.3.4.1. Control de desarrollo de hongos                                      | 58  |
| 2.3.4.2. Tratamientos que limitan los efectos de las micotoxinas              | 59  |
| 2.3.4.2.a. Métodos microbiológicos                                            | 59  |
| 2.3.4.2.b. Métodos químicos                                                   | 60  |
| 2.3.4.2.c. Métodos físicos                                                    | 60  |
| 2.3.4.3. Empleo de adsorbentes para reducir el impacto de las micotoxinas     | 61  |
| 3. MATERIALES Y MÉTODOS.                                                      | 63  |
| 3.1. LOCALIZACIÓN Y DURACIÓN                                                  | 63  |
| 3.2. SELECCIÓN DE ANIMALES                                                    | 63  |
| 3.3. TRATAMIENTOS                                                             | 64  |
| 3.4. DISEÑO EXPERIMENTAL                                                      | 64  |
| 3.5. ALIMENTOS                                                                | 65  |
| 3.6. MANEJO                                                                   | .66 |
| 3.7. DETERMINACIONES                                                          | 67  |
| 3.7.1. En los alimentos.                                                      | 67  |
| 3.7.1.1. Pastura                                                              | 67  |
| 3.7.1.1.a. Disponibilidad y composición                                       | 67  |
| 3.7.1.1.b. Valor nutritivo                                                    | 68  |
| 3.7.1.2. Ensilaje                                                             | 70  |
| 3.7.1.2.a. Disponibilidad y composición                                       | 70  |
| 3.7.1.2.b. Valor nutritivo                                                    | 70  |
| 3.7.1.3. Concentrados                                                         | 71  |
| 3.7.1.3.a. Consumo                                                            | 71  |
| 3.7.1.3.b. Valor nutritivo                                                    | 71  |
| 3.7.2. <u>En los animales</u>                                                 | 71  |
| 3.7.2.1. Producción de leche                                                  | 72  |
| 3.7.2.2. Componentes de la leche                                              | 72  |
| 3.7.2.3. Peso vivo y condición corporal                                       | 73  |
| 3.7.2.4. Enzimas vinculadas al funcionamiento hepático                        | 73  |

| 75           |
|--------------|
| 75           |
| 75           |
| 30           |
| 36           |
| 36           |
| 91           |
| 92           |
| 93           |
| 94           |
| 99           |
| 105          |
| 107          |
| 109          |
| 111          |
| 123          |
|              |
| 123          |
|              |
| 140          |
| 173          |
| 179          |
| 773339991111 |

# LISTA DE CUADROS Y FIGURAS

|                                                                                                  | Página |
|--------------------------------------------------------------------------------------------------|--------|
| Cuadro Nº1. Concentración media más probable de los minerales en la leche                        | 21     |
| Cuadro N°2. Micotoxinas comúnmente encontradas en alimentos y su impacto en la producción animal | 35     |
| Cuadro N°3. Incidencia y concentración de micotoxinas en muestras de alimentos                   |        |
| analizadas de productores de Carolina del Norte desde 1989 a 1997                                | 45     |
| Cuadro Nº4. Resultados de análisis de DON en muestras de trigo en la zafra 2001                  |        |
| - 2002                                                                                           | 45     |
| Cuadro Nº5. Resumen de los trabajos de suplementación de vacas lecheras con                      |        |
| alimentos contaminados con DON                                                                   | 49     |
| Cuadro N°6. Residuos de DON en la leche de animales que recibían alimentos                       |        |
| contaminados.                                                                                    | 58     |
| Cuadro N°7. Capacidad de los glucomananos de Saccharomyces cerevisiae de ligar                   |        |
| las micotoxinas.                                                                                 | 62     |
| Cuadro N°8. Promedio de las variables medidas en las 32 vacas utilizadas                         | 64     |
| Cuadro N°9. Componentes de los concentrados utilizados                                           | 66     |
| Cuadro N°10. Composició n porcentual de las dietas ofrecidas                                     | 77     |
| Cuadro N°11. Composición de las dietas ofrecidas                                                 | 78     |
| Cuadro N°12. Composición porcentual de las dietas consumidas                                     | 81     |
| Cuadro N°13. Composición de las dietas consumidas                                                | 82     |
| Cuadro Nº14. Resultados de producción y composición de la leche según tratamiento                | 87     |
| Cuadro Nº15. Eficiencia de utilización de los nutrientes para producir un litro de               |        |
| leche según tratamiento                                                                          | 92     |
| Cuadro N°16. Diferencia de peso y de condición corporal para los animales de los                 |        |
| distintos tratamientos                                                                           | 93     |
| Cuadro Nº17. Resultados de análisis de enzimas hepáticas para los distintos                      |        |
| tratamientos                                                                                     | 93     |
| Cuadro N°18. Funciones de respuesta de las diferentes variables de producción animal             |        |
| al contenido de DON en el concentrado                                                            | 94     |
|                                                                                                  |        |

| Figura N°2. Esquema convencional de partición de la energía                          | 17  |
|--------------------------------------------------------------------------------------|-----|
| Figura N°3. Ciclo básico de una infección causada por hongos                         | 28  |
| Figura N°4. Esquema de la molécula de deoxinivalenol                                 | 46  |
| Figura N°5. Principales sitios de acción de las micotoxinas                          | 51  |
| Figura N°6. Respuesta en LCG al nivel de DON                                         | 95  |
| Figura N°7. Respuesta en porcentaje de grasa al nivel de DON                         | 95  |
| Figura N°8. Respuesta en kg. de grasa al nivel de DON                                | 96  |
| Figura N°9. Respuesta en kg. de lactosa al nivel de DON                              | 96  |
| Figura N°10. Respuesta en kg. de sólidos no grasos al nivel de DON                   | 96  |
| Figura Nº11. Respuesta en porcentaje de sólidos totales al nivel de DON              | 97  |
| Figura Nº12. Respuesta en kg. de sólidos totales al nivel de DON                     | 97  |
| Figura N°13. Respuesta en recuento de células somáticas al nivel de DON              | 98  |
| Figura Nº14. Evolución semanal de la producción de leche en litros por día para los  |     |
| cuatro tratamientos para todo el período experimental                                | 99  |
| Figura Nº15. Evolución semanal del porcentaje de grasa, para los cuatro tratamientos |     |
| para todo el período experimental                                                    | 101 |
| Figura Nº16. Evolución semanal de la producción de grasa, para los cuatro            |     |
| tratamientos para todo el período experimental                                       | 101 |
| Figura Nº17. Evolución semanal del porcentaje de proteína, para los cuatro           |     |
| tratamientos para todo el período experimental                                       | 102 |
| Figura Nº18. Evolución semanal de la producción de proteína, para los cuatro         |     |
| tratamientos para todo el período experimental                                       | 102 |
| Figura Nº19. Evolución semanal del porcentaje de sólidos totales, para los cuatro    |     |
| tratamientos para todo el período experimental                                       | 103 |
| Figura N°20. Evolución de la producción de sólidos totales, para los cuatro          |     |
| tratamientos para todo el período experimental                                       | 103 |
| Figura Nº21. Evolución del recuento de células somáticas, para los cuatro            |     |
| tratamientos para todo el período experimental                                       | 104 |

## 1. INTRODUCCIÓN

Las micotoxinas son un grupo diverso de moléculas producidas como metabolitos secundarios por hongos durante situaciones de estrés. El consumo de las mismas puede ocasionar trastornos en el metabolismo normal de los nutrientes y en los sistemas inmunitario, endócrino y nervioso, tanto en humanos como en animales.

En este grupo de hongos se encuentran varias especies del género Fusarium. Uno de éstos es *Fusarium graminearum* (forma perfecta: *Giberella zeae*) que causa la enfermedad de la fusariosis en trigo, cebada, maíz, sorgo, entre otros. Este puede producir muchos tipos de micotoxinas, siendo las más comunes las del grupo de los tricotecenos, entre las que se destaca el *deoxinivalenol* o *vomitoxina* (DON), el *diacetoxiscirpenol* (DAS), T-2 y la *zearalenona* (ZEA). En general los animales monogástricos son más susceptibles que los rumiantes a los efectos adversos de las micotoxinas.

Con relación al DON, algunos estudios indican que su presencia en los alimentos destinados al ganado lechero estaría asociada a una disminución en el consumo, reducción en la producción de leche y/o ganancia de peso, y depresión en el sistema inmunológico; esto último podría incrementar la susceptibilidad a diversas enfermedades y a nivel de calidad de leche, ocasionar un aumento en el recuento de células somáticas. Sin embargo, en muchas ocasiones resulta difícil establecer una relación de causalidad directa entre la presencia de DON en los alimentos y las afecciones antes mencionadas, debido entre otras cosas, a la naturaleza inespecífica y/o subaguda de los síntomas asociados a las micotoxicosis, a las interacciones entre distintas micotoxinas que pueden enmascarar los efectos individuales de cada una, y a que la alteración del sistema inmunológico puede predisponer al animal a enfermedades debidas a agentes oportunísticos secundarios, los cuales son los causantes de los síntomas observables.

Dado que en la producción lechera uruguaya la utilización de granos y subproductos susceptibles de ser atacados por *Fusarium graminearum* es muy relevante, y debido al incremento en la frecuencia de la fusariosis en nuestro país en las últimas décadas, sería deseable poder identificar niveles críticos a partir de los cuales se vería resentida la producción y salud de los animales, para nuestros sistemas de producción. Por otra parte, sería también de interés conocer la capacidad de ciertos productos adsorbentes de ligar micotoxinas, con la consecuente reducción de los efectos negativos de estas.

El objetivo de este trabajo es evaluar el efecto de tres concentrados contrastantes en contenido de DON y el de un adsorbente comercial en términos de producción de leche, composición de leche, variación de peso vivo, status sanitario y función hepática de vacas lecheras durante la lactancia temprana.

## 2. REVISION BIBLIOGRÁFICA

#### **2.1. CONSUMO**

#### 2.1.1. Introducción

La cantidad de alimento que un animal puede consumir es el factor más importante en la determinación de la performance animal. La productividad de un animal dada cierta dieta, depende en más de un 70% de la cantidad de alimento que pueda consumir y en menor proporción de la eficiencia con que digiera y metabolice los nutrientes consumidos (Waldo, 1986).

Muchos autores coinciden en señalar que la cantidad de alimentos consumidos principalmente antes que se alcance el pico de producción de leche, es un factor crítico y determinante para alcanzar el máximo rendimiento en vacas de alta producción (Broster, 1972; Wagnsness, 1981).

Un mayor conocimiento de los factores que determinan el nivel de consumo voluntario a través del ciclo de lactancia permitiría el uso más eficiente de los alimentos y una explotación adecuada del nivel genético de vacas de altos rendimientos.

Los factores que influyen sobre el consumo voluntario pueden agruparse en:

- 1) Factores asociados al animal.
- 2) Factores asociados con la dieta.
- 3) Factores "ambientales"

Por otra parte, el consumo en pastoreo es regulado por un equilibrio entre la demanda del animal la cual está determinada por factores propios del mismo como peso, raza, estado fisiológico, y por otro lado la digestión e ingestión. Los factores relacionados a la ingestión son los que afectan el comportamiento ingestivo de los animales, a saber: tamaño de bocado, tasa de bocado y tiempo de pastoreo; por otra parte, la digestión está relacionada a la calidad y composición de la dieta.

Según Arnold, (1981, 1970) y Raymond, (1969); la selección de la dieta está influenciada por:

- a) Características del animal (especie, raza, edad, estado fisiológico).
- b) Atributos de las pasturas.

#### 2.1.2. Factores asociados al animal

#### 2.1.2.1. Producción de leche

La producción actúa como uno de los factores que directamente afecta el consumo, ya que al aumentar la producción de leche aumenta la demanda del animal, por lo cual existe un incremento en el consumo (Mertens, 1994).

Journet (1976) encontró que en general existe un incremento de consumo por el aumento en la producción de leche, siendo éste aproximadamente de 0,28 kg. MS/kg. de LCG. Sin embargo, es necesario considerar el efecto de los distintos tipos de dietas sobre el consumo (Journet, 1976; Mertens, 1994).

#### 2.1.2.2. Tamaño del animal

El tamaño del animal determina el volumen de la cavidad abdominal, y por lo tanto la capacidad de expansión del rumen. La importancia de este factor disminuye a medida que aumenta la concentración energética de la dieta.

Para dietas de alta concentración energética, la variación en el consumo debido al tamaño del animal sería minimizada con la utilización del peso metabólico (kg. /PV <sup>0,75</sup>/d) debido a que la demanda de energía esta expresada en esta misma base y ésta es quien regula el consumo (Mertens, 1994). En cambio, si la dieta consta de una gran proporción de forrajes, donde los mecanismos físicos son de mayor importancia en la regulación, resulta apropiado expresar el consumo en función del peso vivo, por la relación existente entre el tamaño del animal con el volumen de la cavidad abdominal (Mertens, 1994; Bines, 1976). Sin embargo, existen trabajos que indican una baja correlación entre tamaño corporal y volumen ruminal (Sniffen et al., 1993).

En general, aumentos de peso vivo incrementan el consumo de materia seca pero en diferentes proporciones. Para vacas entre 350 – 650 kg. de PV, con dietas ricas en energía y digestibilidad entre 67% y 79% existe un incremento en el consumo de 2,2 kg. MS cada 100 kg. de incremento de PV (Bines, 1976).

#### 2.1.2.3. Estado fisiológico

La preñez posee efectos diferentes según el momento en que se lo considere. A inicios de ésta existe un aumento del apetito debido a posibles aumentos de los requerimientos debidos al desarrollo del feto o a balances hormonales (Bines, 1976).

Existe variación en el nivel de consumo según la etapa de la lactancia en que se encuentre la vaca (Journet, 1976). A partir de la segunda a cuarta semana previa a la parición ocurre un descenso en el consumo que varía en su magnitud dependiendo de la dieta; este efecto se ve acentuado cuatro o cinco días antes del parto. Luego del parto la producción de leche se incrementa rápidamente llegando a su máximo a los 35 – 50 días postparto, no así el consumo, el cual se alcanza cuatro a ocho semanas más tarde (dependiendo de la edad de la vaca), por lo cual esto frecuentemente lleva a un déficit energético que puede alcanzar gran magnitud. Por este motivo las vacas pueden perder peso de forma importante para mantener la producción de leche, pero esta energía es usada con menor eficiencia que la proveniente de la dieta (50 % vs 60 %) (Van Es, 1983). Este retraso entre capacidad de producción y capacidad de consumir alimento puede ser explicada por más de un factor, como cambios de metabolitos en la sangre; estos pueden estar asociados a cambios hormonales que afecten el centro de consumo, por ejemplo vía prostaglandinas (Bines, 1976).

Otras explicaciones de este retraso estarían dadas por el lento aumento en el volumen abdominal luego de la expulsión del feto, los tejidos asociados y a la movilización de la grasa abdominal que se da en el postparto (Bines, 1976; Bines, 1982; Journet, 1976). También se plantean como posibles mecanismos, una hipertrofia gradual acompañada de un aumento de la tasa metabólica del rumen y de los tejidos actuantes en el metabolismo de nutrientes en ese período (Bines, 1976; Bines, 1982).

La lactación produce un incremento del consumo de alrededor de 30 – 40 % más que las no lactantes; este efecto depende fundamentalmente de la composición de la dieta (Bines, 1976).

#### 2.1.2.4. Estado corporal

El consumo voluntario de animales gordos es inferior al de los flacos. Una de las hipótesis que explicarían esto, es la existencia de una restricción del volumen de la cavidad abdominal por la acumulación de tejido adiposo que limita la expansión ruminal (Bines, 1976). También existen limitaciones de origen metabólico debido al mayor nivel de ácidos grasos existentes en sangres de vacas gordas, por lo cual estos actúan con una menor tasa de absorción de AGV desde el rumen y por consiguiente, una menor tasa de digestión, lo que limita el consumo (Bines, 1976).

#### 2.1.2.5. Crecimiento

Por lo general se considera que las vacas no alcanzan su tamaño adulto hasta los seis o siete años de edad, por lo que si la nutrición es adecuada, existiría cierto crecimiento hasta la tercera o cuarta lactancia (Bines, 1976). También se ha comprobado que al aumentar el número de lactancias del animal, el consumo se incrementa, disminuyendo la diferencia entre vacas y vaquillonas a medida que aumenta la proporción de concentrados en la dieta, pasando de 25 % para dietas con 40 % de concentrado, a 11% con dietas de 90 % de concentrado (Bines, 1976).

#### 2.1.3. Factores asociados con la dieta

Según Mertens (1994), los mecanismos de regulación del consumo pueden subdividirse en tres:

- a) Regulación fisiológica.
- b) Limitación física.
- c) Modulación fisiogénica.

La regulación fisiológica se basa en el principio de la homeostasis para mantener el equilibrio fisiológico. El mecanismo fisiológico actúa cuando el animal consume dietas con alta concentración de energía, con alimentos muy palatables y rápidamente digestibles. En los casos en que la concentración energética de la dieta es muy baja, el animal no logra compensar sus necesidades con el aumento de consumo por lo que utiliza su capacidad de compensar reduciendo las salidas de energía, bajando la productividad o consumiendo reservas (Mertens, 1994).

En segundo lugar, la limitación física del retículo – rumen es generalmente aceptada como el factor más limitante en el consumo de forrajes y dietas de alta fibra (Mertens, 1994). También es probable que la distensión requerida para satisfacer la demanda (performance potencial) varíe con el estado fisiológico. Existe una relación entre el contenido ruminal y el consumo, aumentando este último a medida que aumenta la remoción de material del rumen. En general cuando el potencial productivo es alto y el animal consume solo forraje, la limitación por llenado restringe el consumo, siendo en estas condiciones de alta demanda donde se mide el consumo potencial por no tener limitación en la demanda energética.

En tercer lugar la modulación fisiogénica esta regulada por el comportamiento. Actúa estimulando o inhibiendo los factores de consumo por medio del ambiente y no por el consumo de energía. Dentro de esta regulación del consumo la palatabilidad tiene un efecto importante, la cual incluye características que estimulan o inhiben el consumo.

Con relación al forraje, la limitación física del consumo del mismo está relacionada directamente con el contenido de pared celular que constituye la fracción verdaderamente estructural del forraje (Van Soest, 1965). Resultados de Van Soest (1965) indican una relación curvilínea entre el consumo y el contenido de pared celular, con una disminución creciente de aquel ante el aumento del contenido de pared celular.

El nivel crítico de nitrógeno (N) en rumen por debajo del cual se afecta el consumo en general se encuentra en valores equivalentes a 6 – 8 % de PC en dieta total; por debajo de este, el aporte de N a microorganismos ruminales está limitando la tasa de digestión y por consiguiente el consumo sería inferior al esperado de acuerdo al contenido de pared celular (Durán, 1981; Minson, 1994; Orcasberro, 1991). Del mismo modo que con el nitrógeno, la deficiencia en algún nutriente en el alimento, por ejemplo minerales, puede reducir el consumo.

Arnold (1970) señala que la ingestión de agua en el forraje ha sido correlacionada con el consumo de materia seca pero que no se ha establecido una relación causal entre ellos. Journet (1976) indica que el bajo contenido de materia seca del forraje reduce el consumo en aproximadamente 1 kg. MS por cada disminución de 4 puntos en el contenido de materia seca.

Cuando los animales no tienen acceso continuo al alimento, el aumento en la frecuencia de alimentación generalmente incrementa el consumo de un alimento muy digestible comparado con uno de digestibilidad menor; el molido tiene un efecto opuesto.

El manejo del consumo al principio de la lactancia para reducir el período que tarda en producirse el pico de consumo respecto al pico de lactación puede mejorar el comportamiento en toda la lactancia.

Diversos agentes antinutricionales también pueden afectar el consumo animal. Un ejemplo de estos son las micotoxinas, las cuales son metabolitos producidos por hongos. Algunas poseen propiedades eméticas y pueden causar reducciones en el consumo de alimento por parte de los animales (Jouany, 2001). La depresión en el consumo también puede ser explicada por la alteración de las defensas inmunológicas

por parte de algunas micotoxinas, que pueden predisponer al animal a enfermedades infecciosas, las cuales son en última instancia las causantes de la mencionada depresión.

#### 2.1.4. Consumo en pastoreo

En condiciones de pastoreo el consumo puede ser expresado como el producto de la tasa de consumo (g/minuto) y el tiempo de pastoreo efectivo (minutos). La tasa de consumo a su vez puede ser descompuesta como el producto entre la tasa de bocado (bocados/minutos) y peso de bocado individual (g/bocado).

El peso de cada bocado se compone del volumen de forraje cosechado por el animal y la densidad del horizonte de pastoreo. El volumen cosechado en un bocado individual va a ser resultado de la profundidad de pastoreo (plano vertical) y del área que el animal es capaz de cubrir con al lengua.

Una serie de trabajos de investigación han identificado al peso de bocado como el componente determinante de la tasa de consumo instantánea en animales en pastoreo (Hodgson, 1990).

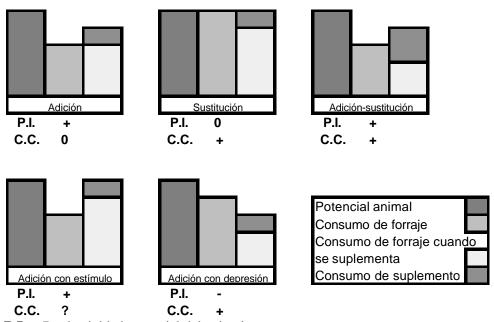
La descripción de la estructura de la pastura (altura, densidad, altura de las vainas) resulta imprescindible para comprender y cuantificar la ingestión de forraje por los animales en pastoreo. Actualmente se considera la altura del forraje disponible como la variable de la pastura más directamente asociada al tamaño de bocado y a las tasas de consumo instantáneo. En general, a medida que la altura y/o la masa de forraje disponible para los animales disminuyen, el peso de cada bocado individual declina y puede ser compensado, dentro de ciertos límites, por un aumento en el tiempo de pastoreo y en la tasa de bocado.

Además de la altura de forraje disponible, otros factores como la densidad de la pastura, la presencia de barreras físicas a la cosecha del forraje y el contenido de materia seca del forraje, deberían ser considerados como determinantes del consumo de este por parte del animal en pastoreo.

En términos generales pasturas más densas permiten mayores tasas de consumo como consecuencia de mayores pesos de bocado.

La presencia de cantidades crecientes de vainas de la hoja en el horizonte de pastoreo constituye una restricción a la cosecha de forraje por parte de los animales (Hodgson, 1990). Ello implica un gasto extra de energía para el animal, y explica conjuntamente con otros factores por qué la demanda de energía de animales en pastoreo es considerablemente mayor a la de animales estabulados (Osuji, 1974).

El tiempo de pastoreo parece ser el mayor mecanismo de compensación por el cual los animales pueden incrementar su consumo diario. Por ejemplo el mayor consumo de materia seca de vacas en lactación respecto a vacas secas es mediado básicamente por un mayor tiempo de pastoreo (Demment et al., 1995).


Las evidencias indican que cuando la presión de pastoreo es suficientemente baja como para que la selectividad animal se manifieste, el ganado selecciona e ingiere mayores cantidades de material verde, más nutritivo y produce más. Cuando la presión de pastoreo es alta, se reduce la selectividad, se deteriora la producción individual y se puede aumentar la producción por hectárea, al lograrse una mayor eficiencia de utilización (Raymond, 1969).

#### 2.1.5. Efectos de la suplementación sobre el consumo

Los objetivos de la suplementación son los siguientes: aumentar el nivel de producción individual, aumentar la capacidad de carga, balancear los nutrientes y con esto mejorar la eficiencia de utilización del alimento, y evitar sobre y subpastoreos (Lange, 1980; Leaver, 1985; Orcasberro, 1991).

Al suplementar animales en pastoreo, pueden haber varias modificaciones en el consumo total, en la cantidad de forraje que el animal obtiene de la pastura, y la capacidad de carga de esta (Lange, 1980). El mismo autor clasificó los efectos de la suplementación de la siguiente manera:

Figura Nº1. Esquema de las diferentes respuestas a la suplementación



P.I.: Productividad potencial del animal

**C.C.:** Capacidad de carga

El efecto de la suplementación con concentrados energéticos sobre el consumo depende de la cantidad y calidad de la pastura ofrecida, el tipo, nivel y momento de suministro del concentrado y el potencial del animal. En general, la tasa de sustitución aumenta con la cantidad y calidad de pastura disponible por animal, con la cantidad de concentrado suministrado y es mayor cuando se suministra concentrados almidonosos frente a concentrados energéticos fibrosos (Rearte, 1992; Orcasberro, 1992; Mattiauda, 1997; Van Vuuren, 1986). Con alta sustitución la consecuencia directa de la suplementación sería un aumento de la capacidad de carga del sistema (Gagliostro et al., 1986).

La reducción del consumo de forraje (sustitución) por efecto del consumo de concentrado puede deberse a la modificación de la conducta del animal; dedica menos tiempo al pastoreo al ser más accesible y más palatable el concentrado (Orcasberro, 1992), por el incremento en el grado de llenado por el consumo del concentrado, y por la interferencia que tenga el concentrado con la digestión de la fibra a nivel ruminal (Rearte, 1992; Orcasberro, 1992).

El tiempo de pastoreo es el componente ingestivo más afectado por la suplementación (Sarker, 1974; Jennings, 1984), observándose disminuciones de 22 a 28 minutos de pastoreo por kg. de concentrado ofrecido (Sarker, 1974).

En condiciones donde la pastura no es limitante, ni en cantidad ni en calidad, sobre vacas de potencial medio se dan altas tasas de sustitución (Leaver, 1985; Rearte, 1992).

Vacas consumiendo pasturas templadas de alta calidad y sin restricciones en el consumo, en general no presentan respuesta a la suplementación proteica; pero si la suplementación se hace con proteínas de baja degradabilidad ruminal (sobrepasante), se

obtiene respuestas en la performance individual y principalmente en aquellas vacas de alto potencial genético (Rearte, 1992).

Las principales características nutritivas de los concentrados proteicos están dadas por la degradabilidad, la digestibilidad y la composición de su proteína, ya que junto a las características proteicas de la pastura influyen en la disponibilidad de amoníaco en el rumen y de aminoácidos dietarios en el intestino (Orcasberro, 1992).

El NRC (1989) establece que la deficiencia de aminoácidos a nivel postruminal puede deprimir el consumo de energía y la eficiencia de uso de la proteína, por lo cual se dice que el nivel proteico constituye el primer factor que afecta el consumo de energía y su utilización.

Existen situaciones en las que hay respuesta a bajos suministros de concentrados proteicos; es el caso del pastoreo de forrajes de baja calidad, que presentan bajas concentraciones de proteína cruda (6 - 8 %), en el que el consumo de forraje puede verse incrementado con la suplementación (Orcasberro, 1992).

La respuesta a la suplementación con ensilajes, al igual que para los concentrados, dependerá de la disponibilidad y calidad de la pasturas y ensilaje ofrecidos (Rearte, 1992). En general se citan tasas de sustitución mayores para ensilajes que para concentrados y en especial para altos niveles de suplementación (Leaver, 1985; Phillips, 1988).

Si se suplementan pasturas ofrecidas ad libitum se provocan situaciones de sustitución con depresión del consumo (1.17 kg. MS de pastura por kg. MS de ensilaje), debido a la menor calidad de forraje conservado (Phillips, 1988; Leaver, 1985).

Generalmente al reducirse el forraje fresco se incrementa el consumo de ensilaje, por lo tanto se reduce la calidad promedio de la dieta total, lo que conlleva a que se vea perjudicado el comportamiento individual de los animales (Acosta, 1991).

En ocasiones se da sustitución con adición y generalmente están explicadas por la limitante de un nutriente en uno de los alimentos (Rearte, 1992).

Cuando la suplementación se da sobre pasturas restringidas también hay sustitución, pero el consumo total se ve incrementado (Rearte, 1992, Phillips, 1988). Para esta situación, Phillips (1985), encontró que la tasa de sustitución promedio era de 0.31, disminuyendo al aumentar el grado de restricción.

De lo anterior se puede inferir que cuando se utilizan pasturas verdes en forma restringida y dietas con altas proporciones de forrajes conservados permite plantear esquemas de producción con altas cargas animales. Si bien es cierto que en estas situaciones el comportamiento individual se ve resentido, también es cierto que es en estas condiciones donde se han registrado las respuestas más altas a la suplementación con concentrados debido a menores tasas de sustitución de este por forraje conservado.

De lo anterior se puede deducir que la suplementación con ensilajes es una herramienta para aumentar la carga del sistema (Phillips, 1988; Acosta, 1991), ya que al darse altas tasas de sustitución, es necesario aumentar la presión de pastoreo para lograr efectos aditivos, lo cual permite el aumento de carga (Phillips, 1998; Acosta, 1991; Leaver, 1985).

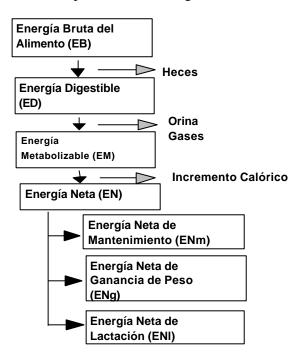
La adición de pequeñas cantidades de voluminosos como henos incrementará el consumo de una ración a base de concentrados. El agregado de concentrados a una ración a base de voluminosos aumentará el consumo cuando la cantidad de concentrados es pequeña, pero cuando la cantidad suministrada de concentrados es elevada, se

reducirá el consumo de voluminosos, en especial cuando el voluminoso es de buena calidad. La estimulación del consumo de voluminosos de baja calidad debido al agregado de pequeñas cantidades de concentrado quizás se deba al nitrógeno adicional del concentrado, mientras que la depresión del consumo de voluminosos, al incluir más concentrados, se debe a la inhibición de la celulosis de los microorganismos ruminales por el bajo ph ruminal observado cuando las raciones contiene muchos concentrados (Campling, 1966).

#### 2.1.6. <u>Factores ambientales</u>

Las temperaturas elevadas, o las lluvias, reducen el consumo del ganado; las bajas temperaturas pueden llegar a aumentarlo (Bailey, 1974). Por otra parte, restricciones en el consumo de agua lo disminuyen (Utley et al., 1970).

#### 2.2. ALIMENTACION Y COMPOSICIÓN DE LA LECHE


#### 2.2.1. <u>Energía</u>

En el ganado lechero las deficiencias de energía no presentan signos específicos, sino que se manifiestan en disminución del rendimiento de leche, pérdida de peso de los animales y deterioro del comportamiento reproductivo (Acosta, 1994).

La energía de un alimento puede considerarse como el combustible que el animal utiliza para cumplir con los requerimientos de mantenimiento, ciclos vitales y productivos, como crecimiento, gestación, lactación y engorde.

Al igual que todo proceso transformador durante el mismo se consume energía por lo cual no es 100% eficiente. Hay fugas de energía en alimentos para transformarlos en "productos orgánicos del animal".

Figura Nº2. Esquema convencional de partición de la energía



La energía bruta es la energía liberada como calor cuando una sustancia orgánica es oxidada totalmente a dióxido de carbono y agua. La energía digestible, por otra parte, representa la energía bruta del alimento consumido que no es excretada en las heces; para su cuantificación se debe conocer la energía bruta del alimento y el coeficiente de digestibilidad de la energía.

La energía metabolizable de un alimento cuantifica, además de la energía perdida en heces, la eliminada como gases y la energía eliminada en al orina. La energía neta es la porción de la energía metabolizable que es retenida por el animal como productos (came, leche, etc.) y utilizada en las funciones relacionadas al mantenimiento del organismo animal.

La energía neta para mantenimiento es la fracción de la energía neta total destinada a mantener el equilibrio energético del animal y engloba la energía del metabolismo basal, de la termorregulación y de la actividad voluntaria del animal. La energía neta para lactación es la fracción de la energía neta contenida en la leche mientras que la energía neta para ganancia de peso es la fracción contenida en el tejido muscular y/o adiposo integrado o perdido en las variaciones de peso de los animales.

#### 2.2.2. Proteína

La proteína es requerida en la vaca para mantenimiento, crecimiento, preñez y producción de leche (Chalupa, 1991; Owens, 1988). Es el constituyente principal del tejido plástico del organismo (músculo, órganos, etc.). Los constituyentes básicos de ésta, los aminoácidos, pueden ser utilizados como fuente de energía, vía oxidación o como fuente de carbono neoglucogénico, contribuyendo generalmente entre el 5 y 7% de la glucosa sintetizada normalmente en el organismo (Rearte, 1992; Chalupa, 1991).

El rumiante puede utilizar nitrógeno no proteico proveniente de la dieta y transformarlo en proteína cruda microbiana proveniente de la síntesis que naturalmente ocurre a nivel ruminal y que luego es digerida intestinalmente por el animal huésped, siendo complementada además por la proteína dietaria que escapa a la degradación del rumen (Broderick, 1994; Owens, 1988).

#### 2.2.3. Composición de la leche

Minerales y lactosa son los componentes más estables y sus concentraciones se modifican solo en casos de subnutrición aguda a muy bajos niveles de glucosa en sangre 40 mg/100ml. El componente que más varía es la grasa, siguiendo luego la proteína. Modificaciones en la dieta pueden ocasionar cambios en la cantidad sintetizada de estas

fracciones, y también su composición específica. A continuación se presentan datos de la composición de la leche en los sistemas básicamente pastoriles (Rearte, 1992):

| ?? | Minerales | 0,7%     |
|----|-----------|----------|
| ?? | Lactosa   | 4,6%     |
| ?? | Proteína  | 2,9%     |
| ?? | Grasa     | 3,2-3,3% |

La proteína de la leche del ganado Holando esta constituida en más de un 80% por caseínas (Rearte, 1992). Pero en los sistemas pastoriles esta fracción de la proteína de la leche esta en el orden del 70 - 75%; esto es de suma importancia para la industria quesera pues las albúminas y globulinas junto con el nitrógeno no proteico (NNP) se pierden con el suero.

La grasa butirosa (GB) producida en los sistemas pastoriles tiene una mayor proporción de ácidos grasos de cadena larga no saturados, en detrimento de los de cadena corta saturados (Jensen et al., 1991).

Ambiente ruminal de bovinos en los sistemas pastoriles (Santini, 1985):

| ?? | ph      | 5,9-6,2         |
|----|---------|-----------------|
| ?? | NH3     | 6 - 30 mg/100ml |
| ?? | AGV     | 80-120mmol/l    |
| ?? | Ac/Prop | 2 - 2,5         |

La grasa es sin duda, el principal contribuyente a la variación en el contenido de sólidos totales de la leche causada por cambios en la dieta. Esta constituida casi totalmente por triacilglicéridos sintetizados por las células secretoras (Rearte, 1992; Bath et al., 1982), siendo la mitad de los ácidos grasos componentes de cadena corta y el resto

de cadena larga; característicamente, una alta proporción de estos ácidos grasos son saturados.

La producción de grasa depende no solo del suministro de precursores desde el tracto digestivo sino que también de una síntesis o movilización de ácidos grasos almacenados dentro del cuerpo del animal (Oldham et al., 1983).

En lo referente al contenido proteico de la leche, es también menor comparado con los sistemas estabulados. La proteína de la leche es sintetizada en la glándula mamaria, y dependerá para ello de la energía disponible y de los aminoácidos absorbidos en el intestino delgado. La proteína que llega al intestino delgado es de un 40 a 60 % de origen bacteriano, siendo el resto proteína no degradable en el rumen. Las pasturas templadas de alta calidad utilizadas en la alimentación del rodeo lechero, tienen un alto contenido proteico, pero de alta degradabilidad ruminal. Dietas proteicas altamente degradables más un ambiente ruminal subóptimo para el crecimiento bacteriano, podrían generar insuficientes niveles de proteína metabolizable disponible para el animal, lo que limitaría la síntesis de proteína de la leche en la glándula mamaria. El NH3 producido en la hidrólisis de la proteína podrá ser utilizado por las bacterias del rumen para sintetizar su propia proteína, siempre y cuando tengan suficiente energía. Pero si durante la fermentación ruminal se producen picos excesivos de NH<sub>5</sub>, este no es aprovechado por la microflora ruminal, y los excesos son excretados a través de la orina y heces con gasto de energía por parte del animal, además de aumentar el contenido de NNP en la leche y en la sangre (debido a la relación osmótica que existe entre ambos), llegando a niveles superiores a lo normal.

La lactosa es el principal componente osmóticamente activo de la leche y es la que le da el sabor ligeramente dulce a la leche (Bath et al., 1982; Sutton, 1989). Esta es sintetizada a partir de una molécula de glucosa y una de galactosa, siendo secretada en vesículas al lumen alveolar (Rearte, 1992; Sutton, 1989; Bath et al., 1982).

Al ser osmóticamente activa y no difundir a través de la membrana, su concentración en la leche es relativamente constante, siendo la responsable principal en determinar el volumen total de leche producida (Bath et al., 1982; Oldham et al., 1983). La concentración de lactosa en leche es de aproximadamente 5 % (4.8 – 5.2 %) siendo similar para todas las razas lecheras y difícilmente alterada a través de la dieta (Wattiaux, 1996).

Desde el punto de vista nutritivo la concentración de lactosa sólo puede ser modificada por consumos extremadamente bajos que afectan la concentración de glucosa en sangre y especialmente efectos pronunciados en etapas tardías de la lactancia (Sutton, 1989).

Los principales minerales encontrados en la leche son: Ca, P, K, Cl, Na, Mg y S. Estos derivan del torrente sanguíneo a través de mecanismos de transporte activos y pasivos (Rearte, 1992; Bath et al., 1982). Su concentración en la leche se puede observar en el siguiente cuadro.

Cuadro Nº1. Concentración media más probable de los minerales en la leche.

| Minerales        | Concentración (mg/100ml) |
|------------------|--------------------------|
| Potasio (K)      | 136                      |
| Calcio (Ca)      | 125                      |
| Cloro (Cl)       | 103                      |
| Fósforo (P)      | 96                       |
| Sodio(Na)        | 58                       |
| Azufre(S)        | 30                       |
| Magnesio (Mg)    | 12                       |
| Minerales traza* | + 0,1                    |

<sup>(\*)</sup> Incluye cobalto, cobre, hierro, manganeso, molibdeno, zinc, selenio, yodo y otros.

Fuente: Adaptado de Wattiaux, 1996.

El Na, K y Cl, junto con la lactosa, tienden a mantener el equilibrio osmótico de la leche (Bath et al, 1982; Rearte, 1992). Existe una relación inversa entre el contenido de lactosa y la concentraciones de Na, K y Cl en la leche (Bath et al., 1982).

Vacas con mastitis o sobre el final de la lactancia presentan disminuciones en las cantidades de lactosa y K en la leche y elevados niveles de Cl y Na, que son los que explican el sabor salado de la leche de vacas en estados avanzados de la lactancia (Bath et al., 1982).

Los únicos minerales de la leche que se pueden afectar apreciablemente a través de la dieta son el I y el Fe (Bath et al., 1982).

Los efectos de la suplementación con concentrados sobre la composición de la leche, dependerán de la cantidad suplementada, del tipo de concentrado utilizado, de la forma de suministro y de las características de la dieta a suplementar.

La suplementación con granos afectará la composición de la leche, principalmente su tenor graso, cuando se le suministre a niveles superiores al 40% de la dieta total.

A medida que aumentan los niveles de concentrado en la dieta, baja la relación forraje/concentrado, afectándose la fermentación ruminal. Los efectos son principalmente una disminución del pH en liquido ruminal y un cambio en el tipo de fermentación, favoreciéndose la producción de ácido propiónico en detrimento de los ácidos acético y butírico. Dado que los ácidos acético y butírico son precursores de la grasa butirosa esto explica la disminución del tenor graso de la leche cuando se suplementa con altas cantidades de concentrado.

La contribución del forraje al mantenimiento del porcentaje de grasa butirosa de la leche, reside en su contenido de fibra. El efecto mejorador de la fibra sobre la síntesis de grasa butirosa se debe a su composición química, una mezcla de hemicelulosa y celulosa como principal sustrato fermentescible y su estructura física.

Un factor importante en la suplementación que afecta la composición de la leche es el tipo de CHO contenido en el grano. La depresión en la síntesis de grasa es mayor cuando se suministran CHO fácilmente fermentescibles en rumen como el caso de grano de trigo y cebada, que cuando se suplemente con granos menos fermentescibles como maíz o sorgo.

La inclusión de una fuente de energía de alta degradabilidad y bajo contenido de fibra incrementa los riesgos de deprimir la digestibilidad de la fibra al disminuir el pH del líquido ruminal, producto de la concentración de AGV y disminución de la producción de saliva. Una menor tasa de digestión de la fibra puede derivar en reducciones en el consumo de materia seca y/o en el tenor graso de la leche por otro. Entonces, la caída de la grasa de la leche estaría asociada al incremento de precursores glucogénicos en la forma de ácido propiónico en rumen (caso de la cebada) o de almidón en duodeno (caso del maíz) y un descenso en los precursores lipogénicos, entiéndase ácido butírico y acético en el rumen.

La suplementación con fibras de alta digestibilidad previene depresiones en el contenido graso de la leche tal como ha sido observado en la suplementación en base a almidón (Valk et al., 1990; Mattiauda et al., 1997).

Una alta producción de propionato favorecería la producción de glucosa en hígado a partir de dicho metabolito, disminuyendo la captación de aminoácidos por el hígado para sintetizar glucosa, quedando estos disponibles en mayor cantidad para ser utilizados en la glándula mamaria en la síntesis de proteína de la leche. El aumento de la

síntesis de glucosa y la disponibilidad de aminoácidos favorecen también la síntesis de lactosa, con el consiguiente aumento de la producción de leche (Annison, 1983).

En lo que hace al tenor proteico de la leche, se han obtenido respuestas importantes con el suministro de grandes cantidades de concentrado cuando la base de estos lo constituye el maíz (Yousef et al., 1970). Con concentrados basados en granos fermentescibles en rumen como la cebada o trigo, no habría aumentos en el porcentaje de proteína de la leche, por el mayor consumo de concentrado una vez superado el 50 – 60% de concentrado en la dieta, pero sí existiría una respuesta al incremento en el consumo de concentrado cuando se suplementa por debajo de dichos niveles.

La respuesta a la suplementación proteica en los sistemas pastoriles dependerá del contenido y digestibilidad de la proteína de las pasturas, de la cantidad de concentrado suplementado y del porcentaje de degradabilidad de la proteína contenida en el concentrado.

La suplementación proteica no tiene efectos definidos en la concentración de proteína en la leche. Se ha visto que déficits severos en el consumo de proteínas, provocan una reducción en la producción de este componente en la leche, pero aumentar sus niveles por encima de los recomendados tiene poco o ningún efecto en su concentración (Sutton, 1989; Rearte, 1992; Bath, et al., 1982).

Sin embargo el incremento en cantidad de proteína de baja degradabilidad en la dieta que pueda llegar al duodeno, podría tener efectos positivos sobre la producción, si los requerimientos animales fueran altos, el consumo de energía adecuado y si el perfil de los aminoácidos absorbidos fuesen los esperados para la producción específica.

La suplementación con lípidos afecta la fermentación de la fibra en el rumen y puede llegar a deprimir el consumo y el tenor graso. La concentración de proteína en

leche generalmente también disminuye, lo que podría estar explicado por una disminución en la producción de proteína microbiana, debido a interferencias de los lípidos con los microorganismos ruminales (Oldham et al., 1983).

#### 2.3. MICOTOXINAS EN ALIMENTOS PARA ANIMALES

#### 2.3.1. Biología de hongos

#### 2.3.1.1. Aspectos generales de los hongos

Los hongos son pequeños organismos productores de esporas, generalmente microscópicos, eucarióticos, ramificados, a menudo filamentosos, que carecen de clorofila, y que tienen paredes celulares que contienen quitina, celulosa, o ambos componentes. La mayoría de las especies de hongos son estrictamente saprófitas y viven sobre la materia orgánica muerta, pudiendo reproducirse tanto sexual como asexualmente. Otras especies producen enfermedades en el hombre y casi el mismo número ocasiona enfermedades en los animales (Agrios, 1995).

Todas las especies de plantas son atacadas por algún tipo de hongo, y cada uno de los hongos parásitos ataca a uno o más tipos de plantas. Algunos hongos crecen y se reproducen solo cuando establecen una cierta asociación con las plantas que les sirven de hospedante; durante todo su ciclo de vida, estos hongos se conocen como parásitos obligados o biótrofos. Otros requieren de una planta hospedante durante una cierta etapa de su ciclo de vida, el cual lo pueden concluir desarrollándose en materia orgánica muerta, o bien creciendo y reproduciéndose tanto en materia orgánica muerta como en plantas vivas (como por ejemplo los parásitos no obligados o necrotróficos) (Agrios, 1995).

La mayoría de los hongos tienen un soma vegetativo similar al de las plantas que consta de filamentos microscópicos continuos más o menos alargados y ramificados, que tiene paredes celulares definidas. Al soma del hongo se lo denomina micelio, y a las bifurcaciones individuales o filamentos del micelio se les llama hifas. En algunos hongos, el micelio está constituido por células que contienen uno o dos núcleos en cada una de ellas. En otros, el micelio es cenocítico, es decir, contiene muchos núcleos y está integrado por una célula multinucleada, continua y tubular, que puede o no ramificarse; o bien puede ser dividido por varias paredes transversales (septos), de ahí que cada segmento represente una hifa multinucleada (Agrios, 1995).

Los hongos se reproducen principalmente mediante esporas. Las esporas son estructuras reproductivas especializadas para la propagación del hongo, que constan de una o varias células. Estas estructuras pueden formarse asexualmente (mediante la producción, por el micelio del hongo, de células individuales especializadas, las esporas, sin intervención de cariogamia o meiosis), o ser el resultado de un proceso sexual. En la mayoría de los hongos los gametos masculino y femenino se forman en un mismo micelio (como es el caso de los hongos hermafroditas). Cuando los gametos masculinos fecundan a los femeninos del mismo micelio, el hongo se le denomina homotálico. Sin embargo, en la mayoría de los casos, los gametos masculinos fecundan únicamente a los gametos femeninos de otro micelio sexualmente compatible, por lo que se dice que el hongo es heterotálico (Agrios, 1995).

La mayoría de los hongos fitopatógenos pasan parte de su ciclo de vida en las plantas que les sirven de hospedante, y otra parte de él en el suelo o en residuos vegetales depositados sobre este. Algunos hongos pasan todo su ciclo de vida sobre el hospedante y solo sus esporas alcanzan el suelo donde permanecen en reposo hasta que son llevadas a un hospedero en el que germinan y se reproducen. Otros hongos deben pasar parte de su ciclo de vida como parásitos de su hospedante y parte de él como saprófitos sobre los tejidos muertos depositados en el suelo, a fin de poder concluir su

ciclo de vida en la naturaleza. Un tercer grupo de hongos viven como parásitos de sus hospedantes, pero continúan viviendo, desarrollándose y reproduciéndose en los tejidos muertos de sus hospedantes una vez que han muerto, e incluso pueden abandonar esos tejidos y depositarse en el suelo u otros órganos vegetales en proceso de descomposición, en los que se desarrollan y reproducen como saprófitos obligados (Agrios, 1995).

Algunos hongos se desarrollan sobre la superficie de la planta a la que infectan, pero envían sus órganos de alimentación (haustorios) hacia el interior de las células epidérmicas de la planta, mientras que otros solo se desarrollan entre la cutícula y las células epidérmicas. Algunos de ellos se desarrollan entre las células de su hospedante (a nivel de los espacios intercelulares) y pueden o no enviar sus haustorios al interior de ellas. Más aún, otros hongos se desarrollan indistintamente entre las células de su hospedante y a través de ellas. Los parásitos obligados (biótrofos) solo se desarrollan cuando se asocian a las células vivas de sus hospedantes y son incapaces de nutrirse de células muertas. Por otra parte, el micelio de algunos hongos parásitos no obligados nunca llega a entrar en contacto con las células vivas de las plantas, debido a que sus enzimas maceran y destruyen a las células vegetales (Agrios, 1995).

La supervivencia y función de la mayoría de los hongos fitopatógenos dependen ampliamente de las condiciones predominantes de temperatura y humedad, o de la presencia de agua en su medio. Un micelio libre solo sobrevive dentro de un cierto intervalo de temperatura (que va desde -5 a 45° C) y cuando entra en contacto con superficies húmedas, ya sea que se localicen en el exterior o el interior de una planta hospedante. Sin embargo, la mayoría de las esporas resisten intervalos bastante amplios de temperatura y humedad y permite que el hongo sobreviva a los días cálidos del verano y a las bajas temperaturas del invierno. Por otra parte, las esporas de los hongos requieren también humedad y temperaturas adecuadas para poder germinar. Gran parte de estos precisan de agentes como el viento, agua, aves, insectos, otros animales y del

hombre para poder diseminarse de una planta a otra, e incluso en las distintas partes de una misma planta (Agrios, 1995).

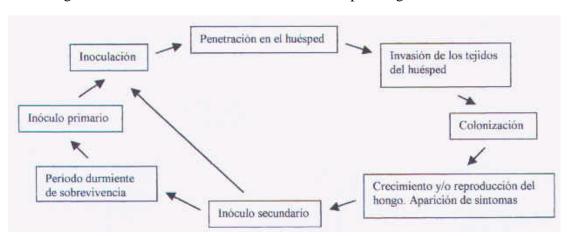



Figura Nº3. Ciclo básico de una infección causada por hongos.

Las características más importantes de los hongos que se utilizan para su identificación son sus esporas y cuerpos fructíferos (o estructuras portadoras de las esporas) y, hasta cierto punto, las características de su micelio. La forma, color, tamaño y manera en que se disponen las esporas sobre los esporóforos o cuerpos fructíferos, así como la forma, color y tamaño de las estructuras reproductivas son características suficientes para sugerir la clase, orden, familia y género al cual pertenece un determinado hongo (Agrios, 1995).

#### 2.3.1.2. Biología de Fusarium graminearum (forma imperfecta de Gibberella zeae)

Fusarium graminearum es una especie de hongo superior, que pertenece a la subdivisión Deuteromycotina (hongos que carecen de estructuras o reproducción sexual) y a la clase Hyphomycetes (en los que las esporas asexuales se forman sobre las hifas y se encuentran expuestas a la atmósfera); su forma sexual es Giberella zeae, perteneciente a la subdivisión Ascomycotina (hongos productores de esporas sexuales,

las ascosporas, dentro de sacos denominados ascas) y dentro de esta, a la clase de los Pyrenomycetes (las ascas se forman en cleistotecios o peritecios) (Agrios, 1995).

Este hongo puede causar enfermedades de importancia en muchos cultivos de interés para el hombre, como por ejemplo trigo, cebada, maíz, sorgo, centeno y triticale, entre otros (Ireta et al, 1994). En nuestro país se ha encontrado en maíz, sorgo, trigo, cebada y *Cynodon dactylon*. En trigo y cebada este hongo causa el golpe blanco de la espiga mientras que en maíz ocasiona la pudrición del tallo y de la mazorca (Díaz, 1996; Díaz et al., 2002).

Los estudios de frecuencia de la enfermedad en trigo para una serie histórica de 63 años (1915-1977) indicaron la ocurrencia de un año en 16; estudios posteriores para una serie histórica de 79 años (1914-1993) mostraron una ocurrencia de una año en 11. Finalmente si analizamos la última década (1990-2001), tanto en trigo, como en cebada vemos que la enfermedad ha sido importante en cinco años, lo que la convierte en una enfermedad de frecuencia creciente (Díaz et al., 2002).

Los residuos de cultivo juegan un papel importante en la preservación de *Fusarium graminearum*, pues este sobrevive en forma de micelio o peritecios inmaduros en las espiguillas infectadas del trigo o restos de mazorcas de maíz, o sobre rastrojos del maíz o del trigo. Otra importante fuente de inóculo son los granos de trigo infectados que quedan sobre el suelo después de la cosecha; ya que durante esta la mayoría de las semillas infectadas son eliminadas por la trilladora, se considera que *F. graminearum* no es un patógeno de semillas muy importante; sin embargo, los granos infectados que caen al suelo y se mantienen en la superficie del mismo pueden ser fuente de inóculo para el cultivo del año siguiente (Ireta et al., 1994).

El proceso de infección se puede iniciar con diferentes tipos de inóculo: 1) ascosporas producidas en el interior de los peritecios de *Gibberella zeae*, siendo éste el

tipo más frecuente para las condiciones del Uruguay; 2) macroconidios producidos sobre esporodoquios o en forma individual; 3) clamidosporas que persisten en el suelo o sobre los residuos, aunque este tipo de inóculo es menos frecuente; y 4) el micelio que sobrevive sobre los restos de maíz o trigo (Ireta et al., 1994).

Las condiciones apropiadas para la producción del inóculo son humedad relativa elevada y una temperatura requerida para la formación de macroconidios de 16° a 36° C, con un óptimo de 32° C. Las ascosporas se pueden producir con temperaturas de 13° a 33° C, con un óptimo de 25 – 28° C (Ireta et al., 1994).

El inóculo principal, que como ya se ha dicho está constituido por las ascosporas, o macroconidios, son diseminados por la lluvia y el viento respectivamente. Se ha observado que las primeras infecciones de *F. graminearum* ocurren sobre las anteras que han salido de la flor después de la antesis, es decir que se trata de una infección floral. Una temperatura de 10° C a 30° C y humedad relativa nayor a 95% durante 40 a 60 horas, son suficiente para que la infección con macroconidios de las espigas tenga éxito (Ireta et al., 1994).

La enfermedad se evidencia en las espigas de los cultivos afectados. En trigo, los síntomas son una decoloración prematura de las espiguillas infectadas, pudiendo llegar a tomar toda la espiga. Los síntomas en cebada aparecen como granos discretos, pardos, pardo-anaranjados, marrones, chuzos, distribuidos en forma discontinua en la espiga. En ambos cultivos si las espiguillas han sido infectadas tempranamente, se desarrollan masas de esporas de color rosado-salmón y eventualmente estructuras oscuras (peritecios) al momento de la cosecha (Díaz et al., 2002).

Los granos infectados luego de cosechados se muestran más o menos chuzos, con una coloración blanco-rosada a pardo-clara, llegando a ser pardo-oscura en cebada. Las infecciones que ocurren más tempranamente generalmente matan las flores, el grano no se desarrolla, mientras que aquellas infectadas más tardíamente contendrán granos arrugados o chuzos. Si la infección ocurre luego del llenado del grano, el desarrollo del mismo no es afectado, pero el hongo está presente y si hubiese existido producción de algún tipo de toxina, los niveles de esta podrían llegar a ser importantes (Díaz et al., 2002).

Las toxinas producidas por hongos, denominadas micotoxinas, junto con otras sustancias producidas por estos, son metabolitos secundarios, debido a que no son esenciales para el desarrollo del hongo; éste las produce como una forma de defensa, o ante una situación de estrés, causada por las condiciones ambientales que lo rodean. *F. graminearum* puede producir una gran variedad de micotoxinas, siendo algunas de las más importantes, el deoxinivalenol, la toxina T-2 y la zearalenona.

#### 2.3.2. Caracterización de la problemática de las micotoxinas

Las micotoxinas son un grupo de diversas moléculas producidas como metabolitos secundarios por hongos que crecen bajo condiciones propicias ya sea en el campo, durante el transporte o el almacenamiento de los alimentos, y que pueden ser dañinas tanto para animales como para humanos cuando son consumidas en cantidades suficientes (Jouany, 2001). Los metabolitos secundarios comprenden un amplio grupo de sustancias entre las que, además de las micotoxinas, se encuentran, los alcaloides y los flavonoides entre otros, que no son esenciales para la economía del organismo, y que son producidos en el metabolismo secundario. Este, involucra todas aquellas reacciones que no son esenciales para el organismo y que generalmente se encuentran restringidas a formas de vida inferiores (Jacobsen et al., 1993).

Los síndromes patológicos resultantes del consumo de alimentos contaminados con micotoxinas son conocidos como micotoxicosis. De acuerdo con Osweiler (1990), el diagnóstico de una micotoxicosis puede ser confirmado si al dar la ración sospechosa de

estar contaminada con micotoxinas a animales sanos de la misma especie, la enfermedad se reproduce; esta no debe ser contagiosa, es decir que no se transmite de animal a animal. También se confirma si una micotoxina conocida es encontrada en el alimento o en los tejidos animales en cantidades suficientes como para causar un problema. Se debe conocer además que esas micotoxinas aisladas produzcan enfermedades con los signos clínicos presentados.

Según Osweiler, (1990), los factores que interfieren en diagnosticar y manejar las enfermedades relacionadas con micotoxinas son:

- Las micotoxinas son esporádicamente producidas por los hongos y solo bajo ciertas condiciones.
- 2) Los síntomas asociados a problemas con micotoxinas generalmente son inespecíficos, vagos, subagudos o crónicos.
- 3) El importante principio toxicológico de "dosis y repuesta" ha sido difícil de aplicar en el diagnóstico de enfermedades causadas por micotoxinas, debido a la naturaleza crónica de estas, su ocurrencia esporádica y la posible interacción con otras toxinas o factores de manejo.
- 4) El muestreo y el análisis de micotoxinas en alimentos no siempre refleja el real estado toxicológico de los mismos debido a la desigual distribución de aquellas.
- 5) La interacción entre micotoxinas no se ha estudiado en profundidad aunque se reconoce su existencia. Tampoco hay una buena correlación definida entre los efectos negativos que producen las micotoxinas naturalmente producidas y aquellas creadas y purificadas en el laboratorio.
- 6) Los análisis para verificar la presencia de micotoxinas son caros y complejos.
- 7) Dado que las micotoxinas pueden interaccionar con el sistema inmune y por tanto con enfermedades infecciosas, puede confundirse la causa de una patología dada.

Los efectos dañinos de las micotoxinas sobre la salud humana y animal se conocen desde hace 80 años (Taubenhaus, 1920). Sin embargo, el estudio de las micotoxinas y de las enfermedades por ellas producidas comenzó mas recientemente cuando en la década del 60 una molécula tóxica fue extraída de *Aspergillus flavus*; este compuesto que resultó ser una aflatoxina, fue identificado y caracterizado como un muy potente agente capaz de producir toxicosis, aún cuando fuera consumido en concentraciones tan bajas como unos pocos ?g/kg. (ppb) de alimento (Jouany, 2001).

Las micotoxinas tienen un impacto económico y comercial significativo en el mundo. Cada año se estima que el 25% de las cosechas están infectadas por algún tipo de micotoxinas (CAST, 1989). La productividad de las plantas es disminuida por la presencia de hongos, que pueden ser considerados como parásitos. Adicionalmente, el valor nutritivo de los cereales y forrajes infectados, es afectado. En ganado lechero, de carne, cerdos y aves, las micotoxinas ocasionan efectos negativos sobre la producción, la tasa reproductiva, la eficiencia de conversión y las defensas inmunológicas.

Las micotoxinas ejercen sus efectos a través de tres mecanismos principales (Whitlow et al., 2001):

1) Reducción de la cantidad de elementos nutritivos para el animal. Este efecto es el fruto de un proceso multifactorial. En primer lugar, se puede producir una alteración de la concentración de nutrientes en los alimentos debido al proceso de enmohecimiento. La proliferación de hongos puede reducir a su vez el contenido de algunos elementos nutritivos tales como las vitaminas y algunos aminoácidos como la lisina (Kao, 1972); de este modo es que generalmente los hongos tienen por efecto reducir el valor energético del alimento para el animal. En segundo lugar, ciertas micotoxinas disminuyen el consumo alimentario y por consiguiente, el aporte de nutrientes. Un tercer aspecto es que la irritación del aparato digestivo inducido por las micotoxinas

puede reducir la absorción de elementos nutritivos; y por último ciertas micotoxinas distorsionan el metabolismo normal de distintos nutrientes: tal es el caso de la inhibición de la síntesis de proteínas por la T-2.

- 2) Efectos sobre el sistema endócrino y las glándulas exócrinas. El efecto de la zearalenona sobre la performance reproductiva a causa de su acción estrogénica es un buen ejemplo. Los efectos estrogénicos de la zearalenona resultan de la afinidad de esta micotoxina y de sus derivados por los receptores de estrógeno del animal (Klang et al., 1978).
- 3) Inmunosupresión. Las micotoxinas pueden presentar un efecto negativo sobre las defensas inmunitarias (Sharma, 1993). Los tricotecenos, como el DON y la T2, reducen la inmunidad por la inhibición de la síntesis proteica y también de la proliferación celular. Ciertas micotoxinas ejercen una acción citotóxica sobre los linfocitos in vitro. Los corticoesteroides producidos como reacción ante un estrés también afectan la función inmunitaria.

## 2.3.2.1. Principales grupos de micotoxinas

Actualmente se conocen alrededor de 400 a 500 moléculas que se pueden denominar micotoxinas. Sin embargo no todas revisten la misma importancia, ya sea debido a su diferente toxicidad y/o distribución. Las micotoxinas más importantes según las características antes mencionadas se presentan en el siguiente cuadro.

Cuadro  $N^{\circ}2$ . Micotoxinas comúnmente encontradas en alimentos y su impacto en la producción animal.

| Grupo de    | Micotoxina     | Cultivos     | Efectos                        | Especies     |
|-------------|----------------|--------------|--------------------------------|--------------|
| hongos      |                | afectados    | ectados                        |              |
|             |                |              |                                | afectadas    |
|             |                | Maíz,        | Hepatotoxicosis,               | Cerdos,      |
| Aspergillus | Aflatoxinas    | maní,        | carcinogénesis hepática,       | aves,        |
| risperginus | 7 MidtoAffids  | algodón y    | reducido crecimiento, pobre    | bovinos y    |
|             |                | sorgo.       | conversión alimenticia         | perros       |
| Aspergillus |                | Maíz, trigo, | Nefrotoxicosis, polidípsia y   | Cerdos, aves |
| y           | Ocratoxina A   | maní y       | poliuria.                      | y perros.    |
| Penicillium |                | arroz.       |                                |              |
|             |                | Cereales,    | Vómitos, pérdida de apetito,   | Cerdos,      |
| Fusarium    | Deoxinivalenol | maíz.        | reducción del consumo,         | bovinos      |
|             |                |              | inmunosupresión                |              |
|             |                | Cereales,    | Reducción del consumo en       | Cerdos,      |
| Fusarium    | Toxina T-2     | oleaginosas  | cerdos y aves,                 | bovinos y    |
| T distalli  | 10/11114 1 2   |              | inmunosupresión,               | aves         |
|             |                |              | gastroenteritis en bovinos     |              |
|             |                | Maíz,        | Estrogénicos, infertilidad y   | Cerdos y     |
| <b>.</b>    | 7 1            | sorgo y      | anestro en cerdas adultas,     | bovinos.     |
| Fusarium    | Zearalenona    | trigo.       | muerte embrionaria             |              |
|             |                |              | temprana en cerdos y           |              |
|             |                | 7.7.4        | bovinos                        | G 1 11       |
|             |                | Maíz.        | Caballos:                      | Caballos y   |
| <b>.</b>    |                |              | leucoencéfalomalacia,          | cerdos.      |
| Fusarium    | Fumonisina     |              | hepatosis, depresión y ataxia. |              |
|             |                |              | Cerdos: edema pulmonar,        |              |
|             |                | C 1          | disnea aguda y abortos.        | G 1          |
| Clariana    | Emotamina      | Cereales.    | Gangrena en extremidades,      | Cerdos,      |
| Claviceps   | Ergotamina     |              | convulsiones, temblores,       | bovinos y    |
|             |                | Trui         | ataxia y agalaxia en cerdos.   | aves.        |
| Dominilling | Citainin       | Trigo,       | Similares a ocratoxina.        | Cerdos y     |
| Penicillium | Citrinina      | centeno,     |                                | perros.      |
|             |                | avena y      |                                |              |
|             |                | cebada       |                                |              |

Fuente: Adaptado de Osweiler, 1990 y Jacobsen et al., 1993.

#### 2.3.2.1.a. Zearalenona

Es una toxina de efecto estrogénico producido casi exclusivamente por especies de Fusarium, como por ejemplo *F. graminearum, F. culmorum y F. crookwellence*. En maíz, una condición indispensable para que se produzca un incremento de las concentraciones de Zearalenona (ZEA) es una humedad relativa mínima de 22 a 25% (Abbas et al., 1988).

Los cerdos son particularmente sensibles a la ZEA (Diekman, 1992). Se pueden observar edemas de la vulva que puede evolucionar en un prolapso vaginal o rectal, así como también casos de hipertrofia o deformación interna del útero, y atrofia de ovarios (Friend et al, 1990). La prolificidad también puede verse reducida. La hiperestrogenicidad puede sobrevenir con concentraciones de ZEA en alimentos tan bajas como 0,1 ppm (Mirocha et al., 1977). Las aves en general son resistentes aún cuando la ZEA esté en concentraciones muy elevadas en los alimentos (Christensen et al., 1988).

La ZEA parece ser mucho menos tóxica en rumiantes que en monogástricos probablemente debido a que la ZEA es rápidamente detoxificada en el rumen. La degradación ruminal de ZEA ha sido estimada en 30% en 48 horas, lo cual sugeriría que algo de los compuestos parentales pasarían intactos al rumen (Whitlow et al., 2000). La información disponible indica que ZEA no presenta efectos sobre consumo de materia seca en rumiantes (Smith et al., 1998).

Hay indicios que los efectos más drásticos sobre la fertilidad del ganado observada en condiciones naturales son debidos a la ZEA en combinación con otras micotoxinas (Coppock et al., 1990).

#### **2.3.2.1.b.** Fumonisina

Esta micotoxina es producida por ciertas especies de Fusarium como por ejemplo *F. moniliforme*, un hongo que es comúnmente encontrado en maíz, y *F. proliferatum*. Hasta la fecha se han identificado y caracterizado seis diferentes tipos de fumonisinas (Bezuidenhout et al., 1988; Cawood, 1991; Gelderbloom et al., 1988).

En equinos, a partir de 5 a 10 ppm, la fumonisina causa un trastorno neurotóxico denominado leucoencefalomalacia; en suinos el umbral de seguridad es de 10 a 20 ppm, por encima del cual las menores dosis de la fumonisina FB1 resultan en una progresiva necrosis hepática, mientras que las mayores dosis determinan edema pulmonar agudo coincidentemente con toxicidad hepática (Haschek et al., 1992).

Los rumiantes parecen ser menos sensibles a los efectos de esta micotoxina que los monogástricos (Seglar, 2001).

#### 2.3.2.1.c. Ocratoxina A

La ocratoxina A es una micotoxina producida básicamente por miembros del grupo *Aspergillus ochraceus* y un número de especies de *Penicillium*, especialmente *P. viridicatum*. Frecuentemente la citrinina, que es otra micotoxina, se produce simultáneamente con aquella (Jacobsen et al., 1993).

En condiciones de campo los daños por intoxicación por ocratoxina se han restringido a aves y cerdos; algunos síntomas de esta micotoxicosis son diarrea, temblores y anormalidades neurales. En suinos los daños de la ocratoxina A en los riñones son muy característicos y causan la llamada necropatía porcina. Otros aspectos del envenenamiento con ocratoxina A son incrementos en el consumo de agua y de la

producción de orina (poliuria), por daño renal, reducción de la conversión alimenticia y reducción de la tasa de crecimiento (Jacobsen et al., 1993).

La ocratoxina A ha sido reportada afectando a rumiantes, pero se ha demostrado que es rápidamente degradada en el rumen (Kiessling et al., 1984) y por lo tanto no sería muy dañina a menos que fuese consumida por animales jóvenes. En algunos casos la ocratoxina A se ha detectado en la leche de las vacas, sugiriendo que parte de la misma puede escapar al rumen sin degradarse (Jacobsen et al., 1993).

## 2.3.2.1.d. Aflatoxinas

Las aflatoxinas son una familia de compuestos extremadamente tóxicos, mutagénicos y cancerígenos producidos por *Aspergillus flavus* y *A. parasiticus* (Deiner et al., 1987), que son muy resistentes a la degradación por altas temperaturas. La temperatura óptima para la producción de aflatoxinas es de 27 a 30° C, con un rango de 12 a 42° C.

Niveles de aflatoxinas de entre 300 a 700 ppb son considerados tóxicos para ganado de carne, reduciendo las ganancias de peso del mismo. En ganado lechero, concentraciones mayores a 100 ppb producen numerosos síntomas, incluyendo una disminución de la eficiencia reproductiva, nacimiento de terneros pequeños y débiles y una disminución en la producción de leche (Whitlow et al., 2000). La aflatoxina B1 es excretada en la leche de vacas lecheras como aflatoxina M1, lo cual puede representar un peligro potencial para la salud pública (Van Egmond, 1989).

Las aves y suinos parecen ser más susceptibles a las aflatoxicosis que el ganado maduro. En aves, los síntomas son: hígado graso, desórdenes renales, problemas en patas y huesos. También las aflatoxinas pueden suprimir la inmunidad natural a las

infecciones, incrementando la susceptibilidad de las aves a las enfermedades (Jacobsen et al., 1993).

El consumo regular de aflatoxinas por cerdos en concentraciones mayores a 100 ppb ocasionan disminución del consumo de alimento, baja conversión alimenticia, daño hepático, hemorragias en los músculos o en cavidades corporales y supresión de la inmunidad natural contra parásitos y patógenos. Una vez que el daño se ha constatado los animales no se recuperan completamente aún cuando vuelvan a consumir raciones libres de toxinas (Jacobsen et al., 1993).

#### 2.3.2.1.e. Tricotecenos

Los tricotecenos constituyen una familia de 200 a 300 compuestos que ejercen su toxicidad por la inhibición de la síntesis proteica a nivel de los ribosomas, y que son producidos por muchas especies de Fusarium y de géneros emparentados (Whitlow et al., 2001).

Los efectos tóxicos de los tricotecenos comprenden alteraciones gastrointestinales tales como inflamación intestinal, diarrea y vómitos. Otros efectos también frecuentes son: anemia, leucopenia, irritación cutánea, rechazo a alimentarse y abortos. Los tricotecenos son además potentes agentes inmunosupresores (Sharma, 1993).

#### 1) Toxina T-2

La toxina T-2 (T-2) es producida principalmente por *Fusarium sporotrichioides* y *F. poae*, aunque también por otras especies de Fusarium (Jacobsen, 1993). Las condiciones predisponentes para la producción de estas micotoxinas incluyen rangos de

temperatura de entre 8 y 25° C con una producción máxima a temperaturas por debajo de 15° C.

En los cerdos un síntoma particular de la micotoxicosis causada por T-2 es una infertilidad acompañada de lesiones uterinas y ováricas, hemorragia, rechazo del alimento y vómitos. Estos síntomas pueden presentarse con concentraciones de T-2 en el alimento de 1 a 2 ppm. En aves los síntomas son una disminución de la producción de huevos (cuando las concentraciones de T-2 superan las 20 ppm), un plumaje anormal y lesiones bucales.

En ganado lechero la toxina T-2 se asocia con pérdida de apetito, disminución de la producción de leche, pérdida de peso severa, gastroenteritis, hemorragia intestinal y eventualmente la muerte (Gamba et al., 2000). Concentraciones de T-2 en los alimentos tan bajas como 300 a 500 ppb pueden ocasionar alguno de los anteriores síntomas (Whitlow, 2001).

El diacetoxiscirpenol (DAS) es otra micotoxina producida por hongos del género Fusarium que generalmente ocurre junto a T-2, causando similares síntomas de toxicidad.

#### 2) Deoxinivalenol

El deoxinivalenol (DON) es una micotoxina mayoritariamente producida por *Fusarium graminearum*, aunque también por *Fusarium culmorum* (Jacobsen, 1993).

Una de las condiciones ambientales necesarias para que ocurra acumulación de DON en granos es que exista una humedad relativa de al menos 22 a 25 %.

En cerdos, el consumo de alimentos contaminados con DON se ha asociado a: rechazo al consumo de los mismos, diarrea, emésis, fallas reproductivas y en casos extremos la muerte (Whitlow et al., 2000).

Las aves no parecen mostrar ningún efecto negativo por el consumo de alimentos conteniendo hasta 18 ppm de DON, siendo más resistentes que otros monogástricos al mismo (Meronuck et al., 1999).

En estudios controlados con ganado lechero, el DON ha sido asociado con reducción en el consumo de alimento, menor ganancia de peso, menor producción de leche corregida por grasa, aunque estadísticamente no se ha detectado menor producción de leche (Whitlow et al., 2000). Estudios realizados por la Universidad de Carolina del Norte, EEUU, han arrojado asociaciones significativas entre la reducción en la producción de leche y el consumo de DON. Sin embargo, otros trabajos han fallado en mostrar efectos del DON sobre el ganado lechero consumiendo 14 ppm en un corto período. Por otra parte, el ganado de carne y las ovejas parecen tolerar relativamente altas concentraciones de DON en alimentos (hasta 20 ppm) sin mostrar ningún síntoma deletéreo (Whitlow et al., 2000).

#### 2.3.2.2. Presencia de hongos y micotoxinas en alimentos

Durante el procesamiento de los alimentos para el ganado se corre el riesgo de que estos sean infectados en el campo o durante el almacenamiento por diferentes hongos, algunos de los cuales pueden producir micotoxinas; esto puede llevar a que el riesgo de contaminación por estas sustancias pueda ser transferido a lo largo de toda la cadena alimentaria.

#### **2.3.2.2.a.** Forrajes

Las toxicosis en animales pueden resultar del consumo de forrajes infectados por toxinas producidas por hongos, bacterias y nemátodos (Meronuck et al., 1999). En EUA, la más importante toxicosis relacionada con forrajes es la festucosis causada por alcaloides endofíticos (Bacon, 1995); otras toxicosis de origen fúngico son: eczema facial, causado por esporas conteniendo el tóxico del hongo *Phytomices chartarum*, con efecto de reducción en la eficiencia reproductiva y en el crecimiento (Cheeke, 1995).

### **2.3.2.2.b.** Ensilajes

Los factores principales que limitan la proliferación de hongos en ensilajes son, el pH y la anaerobiosis. Si el ensilaje presenta un alto porcentaje de materia seca o si no está suficientemente bien tapado la infiltración de aire puede permitir la actividad microbiana, la que degrada los ácidos del ensilaje (ácido láctico) lo que ocasiona un aumento del pH y la consecuente proliferación de hongos, especialmente de aquellos denominados de almacenamiento (mohos y verdines) como los del género *Penicillium* y *Aspergillus* (Whitlow et al., 2001). Si por el contrario, las condiciones en las que se conserva el ensilaje son anaerobias y si el oxígeno es exitosamente excluido, es improbable que más hongos se desarrollen y/o produzcan micotoxinas. Además, estas condiciones tienden a reducir los niveles de algunas micotoxinas que ya se encontraban presentes en el material a ensilar. Hay que señalar que si bien la mayoría de las especies de *Fusarium* asociadas al maíz y a los forrajes en el campo son aeróbicas y por lo tanto incapaces de crecer en un buen ensilaje (Scudamore et al., 1998), otras especies de otros géneros son anaerobias facultativas, por lo que aún si el oxígeno es excluido son capaces de desarrollarse.

#### 2.3.2.2.c. Henos

En el campo, las pasturas son el hábitat de un amplio rango de microorganismos. Ambientes húmedos durante el ciclo del cultivo y el secado de la gavilla, pueden favorecer el crecimiento de hongos como los del género *Fusarium*, *Alternaria* y *Cladosporium* (Christensen et al., 1965). Luego del corte, estos hongos de campo gradualmente mueren y pueden ser sustituidos por hongos de almacenamiento como *Aspergillus* y *Penicillium*, los que pueden colonizar el heno si no está suficientemente seco (Scudamore et al., 1998). Las especies de *Fusarium* son colonizadoras del forraje antes del corte pero no parecen ser contaminantes importantes durante el almacenamiento (Burmeister et al., 1972).

#### 2.3.2.2.d. Granos

Se estima que el 25 % de las cosechas mundiales están infectadas por micotoxinas, lo que se traduce en pérdidas por varios miles de millones de dólares cada año (CAST, 1989).

Los tricotecenos tales como el DON, DAS, T2 y HT-2 producidos por *Fusarium* pueden estar presentes en la mayor parte de los cereales desde la cosecha hasta el pre almacenamiento. El ácido fusárico acompaña frecuentemente a los tricotecenos y amplifica su toxicidad (Smith et al., 1997). La ZEA está presente en el maíz principalmente, pero también en trigo, cebada, avena y sorgo. Las fumonisinas están asociadas principalmente al maíz. Dado que las toxinas no se distribuyen homogéneamente en el grano, siendo su concentración mayor en la cascara, los afrechillos, descartes y cuartas, granos vanos, presentan normalmente valores que duplican o más a los valores del lote original (Mieres et al., 2002).

La contaminación de oleaginosas comúnmente usadas en alimentación animal es debida principalmente a tres géneros de hongos: *Aspergillus*, *Fusarium* y *Penicillium*. Sin embargo, las micotoxinas producidas por estos hongos son generalmente destruidos durante el proceso de extracción de aceites y el tratamiento industrial (Yiannikouris, 2002).

## 2.3.3. Toxicología del DON

La importancia del DON, radica en que si bien no es de las micotoxinas que presentan mayor efecto tóxico, es una de las micotoxinas más ampliamente difundida a lo largo del mundo, y por lo tanto representa un peligro potencial tanto para la salud animal como para la humana (Jouany, 2001).

En un estudio realizado por Pittet (1988), de 27.853 muestras de ingredientes utilizados en la alimentación humana y animal., el DON estuvo presente en el 75% de éstas, siendo la micotoxina más frecuentemente encontrada; por otra parte fue la que presentó los valores de concentración individual más altos de entre todas las otras micotoxinas evaluadas (la concentración más alta encontrada para el DON fue de 62,0 ppm).

A resultados similares arribaron Whitlow et al., (1998), quienes realizaron una recopilación de la incidencia y las concentraciones de varias micotoxinas, entre ellas el DON, durante un período de nueve años, en Carolina del Norte, EEUU. Los datos obtenidos se muestran a continuación.

Cuadro N°3. Incidencia y concentración de micotoxinas en muestras de alimento analizadas de productores de Carolina del Norte desde 1989 a 1997.

|                | Porcentaje<br>positi | de muestras<br>vas <sup>a</sup> . | Concentración media de micotoxina (ppb). |          |  |
|----------------|----------------------|-----------------------------------|------------------------------------------|----------|--|
|                | Concentrados         | Forrajes                          | Concentrados                             | Forrajes |  |
| Aflatoxina     | 6,5                  | 3,9                               | 99                                       | 59       |  |
| Deoxinivalenol | 59,4                 | 44,4                              | 1903                                     | 1466     |  |
| Toxina T-2     | 7,1                  | 8,6                               | 509                                      | 471      |  |
| Zearalenona    | 22,3 18,6            |                                   | 491                                      | 365      |  |

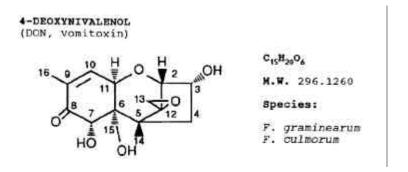
<sup>(</sup>a) El mínimo nivel considerado positivo fue para aflatoxina 10 ppb, para DON 50 ppb, toxina T-2 50 ppb y para ZEA 70 ppb.

En el Uruguay se realizó por parte del Laboratorio de la División de Protección de Alimentos Vegetales del Ministerio de Ganadería, Agricultura y Pesca, un análisis de la toxina DON en muestras de grano de trigo provenientes de la zafra 2001-2002, que registró una alta incidencia del hongo *Fusarium graminearum*.

De las 118 muestras de trigo nacional analizadas, los resultados fueron los que se presentan a continuación.

Cuadro N°4. Resultados de análisis de DON en muestras de trigo de la zafra 2001 - 2002.

| Rango de DON (ppm) | Porcentaje de las muestras |
|--------------------|----------------------------|
| 1 – 1,9            | 2,5                        |
| 2 – 4,9            | 24,6                       |
| 5 – 10             | 49,2                       |
| + 10               | 23,7                       |


Fuente: Ximeno, 2002.

#### 2.3.3.1. Caracterización química del DON

El DON es un tricoteceno que se caracteriza por presentar un grupo cetona en el carbono 8 de su molécula. La toxina fue aislada y caracterizada en cebada contaminada con *Fusarium graminearum* por Yoshizawa et al (1973). Subsecuentemente se encontró que era idéntica al factor emético aislado de maíz, en los EUA por Vesonder et al. (1973).

Según Sato et al. (1977), la toxicidad que ejerce el DON y los demás tricotecenos estaría explicada principalmente por la presencia de un grupo epóxido en las posiciones 12, 13 de su estructura molecular.

Figura Nº4. Esquema de la molécula de deoxinivalenol.



#### 2.3.3.2. Efectos sobre la producción y el consumo

Uno de los primeros trabajos de la bibliografía internacional que hace referencia a la problemática de las micotoxicosis causadas por el DON en ganado lechero debido al consumo de alimentos contaminados con *F. graminearum* fue el realizado por Noller et al., (1979). En este trabajo estos autores encontraron que las vacas que consumieron maíz infectado con *F. graminearum* vieron reducido su consumo total en relación a

aquellas vacas alimentadas en base a maíz limpio o aquellas alimentadas con una mezcla constituida por 50% de maíz infectado y 50% de maíz limpio. A su vez estas últimas mostraron un ligero menor consumo que las alimentadas en base a maíz limpio. Hay que señalar que el análisis estadístico del consumo de alimentos no fue realizado en este trabajo.

La reducción en el consumo de alimento verificada en el tratamiento que consumía 100% de maíz infectado no tuvo, sin embargo, efecto en la concentración de grasa, ni en producción de leche real, ni en producción de leche corregida por grasa.

Por otra parte las vacas del tratamiento con mayor contenido de *Fusarium* experimentaron menores ganancias de peso que aquellas que consumían maíz normal. A juicio de los autores estas diferencias podrían deberse al menor valor nutricional de los granos de maíz infectados. Dado que los períodos experimentales eran breves, estas diferencias en ganancia de peso no revestirían de significación.

Hay que remarcar que el maíz contaminado que fue ofrecido a las vacas lecheras no fue analizado para DON, por lo que no es posible incriminar a este compuesto como la causa de la ligera menor aceptabilidad de este maíz por las vacas; sin embargo maíz cosechado en el mismo campo y posteriormente analizado en otro experimento contenían de 12 a 13 ppm de DON.

La reducción en el consumo a causa del DON, fue puesto en evidencia en un trabajo realizado por Trenholm et al. (1984), trabajando con vacas secas. Los datos obtenidos por estos autores señalarían que el cambio en la alimentación de los animales de un concentrado de baja carga de DON (1,5 ppm) a una de alta carga (6,4 ppm), estaría asociado a un menor consumo total. Sin embargo no varió el peso, ni cuando las vacas consumían la dieta alta en DON ni cuando retornaban a la dieta con bajo DON.

Por otra parte, en una censo llevada a cabo en granjas de Carolina del Norte, se encontró que la producción de leche disminuía en los rodeos en la medida en que la concentración de DON en la dieta se incrementaba (Whitlow et al., 1986). A un nivel dietario de 0,8 ppm de DON, la producción de leche fue reducida tanto como 2 litros por día. Los propios autores señalaron, sin embargo, que este trabajo consistió básicamente en asociar datos de alimentos contaminados utilizados por los productores, con registros productivos, por lo que no implica la existencia de una relación causa – efecto.

Otros trabajos han sido llevados a cabo con el fin de evaluar los efectos del DON sobre producción de leche y composición, el consumo de alimento y la ganancia de peso de los animales. En estos trabajos la duración del período experimental varió de 5 días a 10 semanas, y los alimentos contaminados con DON fueron: cebada, trigo, maíz, avena y triticale. Las concentraciones de DON en estos alimentos ofrecidos a los animales variaron entre 3,6 y 66 mg/kg. de concentrado (en algunos experimentos existía un testigo en que el concentrado estaba libre de DON).

Coté et al. (1986), Mc Queen et al. (1991), Charmley et al. (1993) e Ingalls et al. (1996), no encontraron diferencias significativas en consumo de alimentos cuando se compararon tratamientos que incluían dietas libres de DON y dietas contaminadas con DON.

En lo que refiere a producción de leche real y producción de leche corregida por grasa tampoco estos trabajos mostraron que fuera influenciada por la oferta de DON en el alimento, a excepción del experimento de Charmley et al. (1993). En este trabajo (en el que los concentrados contenían 0, 6 y 12 ppm de DON) se encontró que hubo una respuesta cuadrática entre la leche corregida al 4 % de grasa y la concentración de esta toxina, obteniéndose los menores valores con el concentrado de 6 ppm de DON. Esto probablemente se deba a la reducción del tenor graso de la leche verificado en el citado tratamiento. Sin embargo, este efecto probablemente no es debido a la concentración de

DON en la dieta, ya que la relación entre ésta y el porcentaje de grasa en la leche no fue lineal.

En lo que atañe a la composición de leche, a excepción del ya citado trabajo de Charmley et al. (1993), ningún otro trabajo mostró diferencias significativas en porcentaje de grasa, proteína, lactosa o sólidos totales entre tratamientos que incluían dietas libres de DON y tratamientos que ofrecían dietas contaminadas con DON.

Con respecto a la ganancia de peso de los animales, la mayoría de los experimentos no denotaron una asociación con el contenido de DON; solamente en el trabajo de Charmley et al. (1993), se encontró que los animales ganaban menos peso cuando consumían dietas libres de DON. En el trabajo de M<sup>c</sup>Queen et al. (1991), la menor ganancia de peso observada cuando los animales consumían alimento contaminado con DON no necesariamente se debe al mismo, ya que los tratamientos no estaban diseñados para evaluar el efecto del DON sobre la performance animal.

Cuadro Nº5. Resumen de los trabajos de suplementación de vacas lecheras con alimentos contaminados con DON.

| Autor    | Año  | Nº  | Duración | Kg.   | Kg.  | %     | %     | %     | %    | CMS  | GPD  | DON    | DON en     |
|----------|------|-----|----------|-------|------|-------|-------|-------|------|------|------|--------|------------|
|          |      | an. |          | leche | LCG  | grasa | prot. | Lact. | SNG  |      |      | max.   | concentrad |
|          |      |     |          |       |      |       |       |       |      |      |      | (mg/d) | o (rangos) |
| Ingalls  | 1996 | 8   | 3 sem.   | N.S.  | N.S. | N.S.  | N.S.  | N.S.  | N.S. | N.S. | N.S. | 195.0  | 0 - 14,6   |
| Charmley | 1993 | 18  | 10 sem.  | N.S.  | N.S. | *     | N.S.  | N.S.  | N.S. | N.S. | *    | 104,2  | 0 - 12,0   |
| McQueen  | 1991 | 21  | 11 sem.  | N.S.  | N.S. | s/d   | s/d   | s/d   | s/d  | N.S. | **   | 34,0   | 4,1        |
| Coté     | 1986 | 3   | 5 días   | N.S.  | s/d  | s/d   | s/d   | s/d   | s/d  | s/d  | s/d  | 390,0  | 66,0       |
| Trenholm | 1984 | 10  | 10 sem.  | s/d   | s/d  | s/d   | s/d   | s/d   | s/d  | ***  | N.S. | 43,0   | 6,4        |
| Noller   | 1979 | 54  | 3 sem.   | N.S.  | N.S. | N.S.  | s/d   | s/d   | s/d  | **** | **** | s/d    | s/d        |

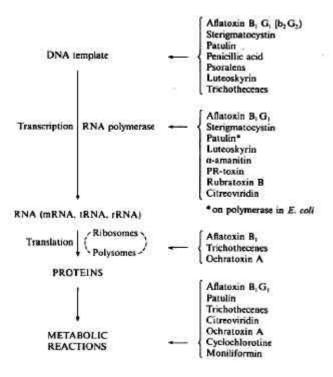
<sup>(\*)</sup> En grasa hubo más porcentaje en los tratamientos extremos; en ganancia de peso diaria (GPD), ganaron menos los animales del tratamiento testigo.

<sup>(\*\*)</sup> Las vacas ganaron menos peso en el tratamiento con más DON.

<sup>(\*\*\*)</sup> En tratamiento con alto DON disminuyó el consumo (CMS) de ración y heno

<sup>(\*\*\*\*)</sup> El CMS y la GDP disminuyeron cuando la proporción de maíz contaminado en la dieta se incrementó.

#### 2.3.3.3. Efectos reproductivos


De acuerdo con Seglar (2001), el DON *per se* no estaría asociado a una disminución de la actividad reproductiva en ganado lechero, si bien algunos investigadores y técnicos han sugerido que potencialmente podría inducir fallas en la misma (Osweiler, 1990). En este sentido, el DON interactuando con la ZEA, podría amplificar los efectos negativos que tiene esta última sobre la performance reproductiva. Esto explicaría por que el DON purificado ha mostrado ser menos tóxico para los animales que el DON presente en alimentos naturalmente contaminados, cuando cantidades equivalentes son consumidas, e incluso cuando las concentraciones en los alimentos son bajas (menores a 2 ppm) (Friend et al., 1986).

#### 2.3.3.4. Efectos metabólicos

Las principales áreas de la bioquímica celular donde las micotoxinas ejercen sus efectos son los siguientes: interacciones con membranas celulares, interferencias con el metabolismo energético, interacciones con ADN o moléculas proteicas, inhibición de la replicación de las moléculas de ADN, inhibición de la transcripción (síntesis de ARN), inhibición de la traducción (síntesis de proteínas), e interferencia con el metabolismo de las purinas; en muchas ocasiones lo que puede ser observado es una combinación de efectos de distintas micotoxinas sobre el metabolismo celular (Betina 1989).

De acuerdo con Kiessling (1986), el primer mecanismo de acción de una micotoxina sería la modificación del ADN para afectar el proceso de transcripción, o inhibir el proceso de traducción en la síntesis de proteínas. Todos estos eventos primarios pueden ocasionar efectos secundarios, en términos de modificar la actividad enzimática y por consiguiente, alterar la actividad metabólica y su regulación.

Figura Nº5. Principales sitios de acción de las micotoxinas.



Fuente: Kiessling (1986).

A continuación se hará una revisión de los principales efectos que tienen los tricotecenos, y particularmente el DON, sobre el metabolismo celular.

## 2.3.3.4.a. Efectos s obre la síntesis de biomoléculas

El principal proceso metabólico de síntesis de macromoléculas es la transferencia de información genética que comprende la replicación del ADN, la transcripción (síntesis de ARN) y la traducción (síntesis proteica). La biosíntesis de estos tres tipos de biopolímeros es precedida por la biosíntesis de sus unidades componentes (fosfonucleótidos en el caso del ADN y ARN, y aminoácidos ligados a sus respectivos ARNt en el caso de proteínas). Los procesos de síntesis de ácidos nucleicos y de proteínas tienen dos aspectos en común: (i) las macromoléculas se forman a partir de las

unidades componentes a través de procesos de polimerización, en los cuales (ii) se pueden reconocer tres pasos, que pueden denominarse: iniciación, elongación y terminación.

Muchas micotoxinas conocidas, entre ellas los tricotecenos pueden afectar severamente los procesos de síntesis de proteínas y de ácidos nucleicos, en diferentes etapas de los mismos.

Los tricotecenos son conocidos por inhibir la síntesis proteica en los ribosomas de células eucariotas. Algunos de ellos bloquean la etapa de iniciación, mientras que otros, como el DON, inhiben la misma a nivel de la elongación. Esta etapa comienza por la unión de un complejo aminoácido-ARNt, especificado para el "siguiente" triplete codificante en el ARNm, con el complejo ribosómico 80s; luego se forma un enlace peptídico entre este nuevo aminoácido y la cadena polipeptídica en formación, en una reacción catalizada por la enzima peptidil-transferasa. Esto ocurre repetidamente hasta que la cadena se completa. Es esta etapa la que es inhibida por el DON (entre otros tricotecenos), probablemente por una interacción con la enzima peptidil-transferasa que impide la formación del enlace peptídico (Kiessling et al., 1986).

Por otra parte, varios tricotecenos pueden inducir lesiones en la estructura del ADN en los órganos linfáticos, aunque se ha comprobado su reversibilidad (Lafarge-Frayssinet et al., 1981).

#### 2.3.3.4.b. Efectos sobre las membranas celulares y el metabolismo energético

El metabolismo de los lípidos puede ser afectado por algunos tricotecenos, la mayoría de los cuales causa una acumulación de lípidos a nivel del hígado, lo cual se conoce como el "síntoma del hígado graso". En ratones también se ha observado una inhibición del transporte de triglicéridos (Kiessling et al., 1986).

#### 2.3.3.5. Efectos patológicos

#### 2.3.3.5.a. Efectos sobre el consumo voluntario

Muchas de las patologías asociadas a las micotoxicosis causadas por tricotecenos (entre ellos el DON) se deben a la inhibición que estos ejercen, en distintos grados, sobre la síntesis proteica hepática (Smith et al., 1998). Se ha observado que esta alteración del metabolismo proteico conduce a una hiperaminoacidemia (Wannemacher et al., 1983). Esto puede determinar una elevación de los niveles de triptófano en sangre, lo que a su vez resulta en un incremento en la concentración de este aminoácido en el cerebro. El triptófano es el precursor del neurotransmisor serotonina, y se cree que las neuronas serotonérgicas son importantes mediadores del comportamiento como el apetito, la coordinación muscular y el sueño (Smith et al., 1998).

La alteración de la actividad serotonérgica a nivel del sistema nervioso central (SNC) o vía acciones periféricas sobre los receptores de serotonina estaría asociada a una pérdida del apetito, a la inducción del vómito y del sueño (Rotter et al., 1996).

Dado que la síntesis de serotonina es pobremente regulada y puede ser promovida por un incremento en la concentración de triptófano (Leathwood, 1987), y debido a que los tricotecenos tienen como efecto secundario la elevación de la concentración de triptófano, se ha propuesto este mecanismo como la explicación para la pérdida del apetito que se observa en muchas micotoxicosis causadas por tricotecenos (Rossi-Fanelli et al., 1991). En este sentido, Chung et al. (1991) reportó en cerdos que un exceso de triptófano dietario causó vómitos.

Los efectos neuroquímicos del DON fueron examinados por Prelusky et al. (1992), quien reportó que alimentar cerdos con esta micotoxina produjo una elevación de la concentración cerebral de serotonina y de ácido 5-hidroxiindolacético (5-HIAA).

Este último compuesto es un metabolito de la serotonina y usualmente se usa como evidencia del aumento de la actividad de las neuronas serotonérgicas. Prelusky (1993) subsecuentemente demostró que incluso bajas dosis de DON causaron incrementos en los niveles cerebrales de 5-HIAA en cerdos.

La depresión en el consumo también puede ser explicada por la alteración de las defensas inmunológicas que pueden predisponer al animal a ciertas enfermedades infecciosas, las cuales son en última instancia las causantes de la depresión en el consumo.

#### 2.3.3.5.b. Efectos sobre el sistema inmunológico

Cuando un tóxico o alguno de sus metabolitos altera el balance del sistema inmunológico, los efectos adversos resultantes pueden ser de dos tipos. Uno de ellos ocurre cuando un químico suprime una o más funciones del sistema inmunológico, y el resultado neto es un incremento de la susceptibilidad a las infecciones (neoplasia). Otro puede ocurrir cuando el químico estimula la función inmunológica, y el resultado es una hipersensibilidad o un desorden de autoinmunocompetencia. Hay evidencia sustancial de que las micotoxinas pueden ejercer una función inmunológica pudiendo predisponer a los animales a enfermedades infecciosas, lo que puede resultar en un rechazo del alimento y una disminución de la productividad (Pestka et al., 1994).

La capacidad de los tricotecenos para ser potentes inhibidores de la síntesis proteica e interactuar con la membrana celular es lo que contribuiría aparentemente a su potencial para modular la función inmune. La exposición aguda a los tricotecenos resulta en severos daños a las células que se dividen activamente en tejidos tales como la médula ósea, los nódulos linfáticos, el bazo, el timo y la mucosa intestinal. Por otra parte, utilizando bajas dosis, se han reportado efectos sobre la función de las células

inmunocompetentes, sobre la resistencia del huesped y la producción de inmunoglobulinas (Otokawa 1983; Thurston et al., 1986; Vidal 1990).

Los tricotecenos ejercerían un efecto tóxico sobre las células inmunocompetentes, a través de la inhibición de la proliferación de linfocitos. Esta ha sido observada por Tryphonas et al., (1986) al exponer animales a dietas conteniendo 2 ppm de DON, durante cinco semanas. Robbana-Barnat et al., (1988) también observó esta respuesta utilizando dietas con 5 ppm de DON durante una semana.

Los tricotecenos pueden también causar tanto supresión como estimulación de la producción de inmunoglobulinas. El DON dietario causa una marcada elevación de la IgA sérica en ratones, y por otra parte, una reducción de la IgM y la IgG (Forsell et al., 1986). Conjuntamente con la elevación de la IgA sérica ocurren efectos inmunopatológicos que incluyen: incremento de la IgA polimérica y de los inmunocomplejos IgA, acumulación de la IgA a nivel renal y hematuria; estos efectos son persistentes (Dong et al., 1993).

## 2.3.3.6. Destino de la molécula del DON en el organismo animal

#### 2.3.3.6.a. Detoxificación en el organismo animal

Una de las causas por las cuales los rumiantes son más resistentes que los monogástricos a los efectos de las micotoxinas es debido probablemente al importante rol que juega la fermentación ruminal en el proceso de detoxificación de los metabolitos tóxicos (Yiannikouris, 2002).

En el caso concreto del DON, King et al. (1984), Coté et al., 1986 y Swanson et al. (1987) encontraron que la transformación de éste por los microorganismos del rumen involucra la apertura de la función epóxido para formar un dieno denominado

deepoxinivalenol (DOM-1) (Coté et al., 1986). Es probable que una enzima epóxidoreductasa específica esté involucrada en esta transfomación. Debido a que el grupo epóxido es lo que explica la actividad citotóxica y la inducción del vómito (Sato et al., 1977), su bioconversión a una función dieno es la principal razón de la menor toxicidad del DON en rumiantes (Jouany et al., 2001).

En el experimento realizado por King et al. (1984), se reportó que la transformación del DON fue esencialmente completada en 24 horas, cuando las concentraciones de este en los alimentos no superaba las 10 ppm; para concentraciones mayores de DON, el porcentaje perdido de toxina fue menor que en los casos anteriores.

Por otra parte, Kiessling et al. (1984) y Westlake et al., (1989) mostraron que la fracción protozoaria del rumen fue más activa que la bacteriana en detoxificar el DON; sin embargo, estos autores indicaron que la mayor actividad de los protozoarios contra esta micotoxina es contrabalanceada por la mayor sensibilidad de estos a las micotoxinas. Esta aparente contradicción puede ser explicada por el hecho de que la mayor tasa de degradación de las micotoxinas por parte de la fracción protozoaria es muy importante en las primeras tres horas de incubación en el rumen, para luego decaer abruptamente, en la medida en que se reduce el número de protozoarios como resultado de la inhibición ejercida por las micotoxinas.

Las micotoxinas también pueden ser metabolizadas en el hígado de los animales. En este órgano el citocromo P450 oxidasa generalmente metaboliza xenobióticos en compuestos más polares que pueden ser más fácilmente eliminados vía bilis y orina, y que son teóricamente menos tóxicos (Galtier, 1998). Sin embargo, algunas reacciones oxidativas que involucran al citocromo P450 pueden llegar a generar metabolitos más tóxicos aún que la molécula parental, como derivados hidroxilados o epoxilados (Jouany, 2001). En el caso particular del DON no se han constatado aún estos últimos tipos de transformaciones.

No hay mucha información disponible acerca del efecto de las micotoxinas sobre la actividad del rumen y la disponibilidad de nutrientes para el animal. Mientras que a bajas concentraciones probablemente no existiría un impacto importante sobre la digestión ruminal, la presencia de grandes cantidades de micotoxinas y la existencia de un posible efecto sinérgico entre diversas toxinas sí podría tener un efecto negativo sobre aquella (Jouany, 2001).

#### 2.3.3.6.b. Vías de eliminación de las micotoxinas en el organismo animal

En función de la eficacia de la absorción gastrointestinal y del metabolismo hepático, las micotoxinas y sus metabolitos son excretadas preferentemente por la vía fecal o urinaria. La excreción urinaria es más eficiente en el caso de micotoxinas altamente absorbidas y metabolizadas por el organismo (Yiannikouris et al., 2002)

La excreción fecal resulta de una reducida absorción por el tracto gastrointestinal, o bien de una gran eficacia en la eliminación de las toxinas o sus metabolitos por el sistema biliar. El DON es una micotoxina que es principalmente exportada por vía biliar y que es débilmente absorbida por el intestino, eliminándose principalmente en las heces (54 a 75 %), mientras que en la orina solo aparece como trazas (1 a 3 %) (Yiannikouris et al., 2002).

La excreción láctea de las toxinas y sus metabolitos representan otra vía de eliminación por el animal, y se puede efectuar por filtración intercelular, difusión pasiva transmembrana o transporte activo (Yiannikouris et al., 2002); sin embargo, las cantidades de DON o sus metabolitos que se han encontrado en leche han sido relativamente bajas, aunque el peligro potencial que pueden representar para el consumidor no ha podido ser establecido aún. En el cuadro siguiente se muestran los experimentos en los que se ha constatado la presencia de DON en leche.

Cuadro Nº6. Residuos de DON en la leche de animales que recibían alimentos contaminados.

| Dosis     | Duración de la    | Formas excretadas | Concentración en | Referencia             |
|-----------|-------------------|-------------------|------------------|------------------------|
|           | exposición (días) | en la leche       | la leche (ppb)   |                        |
| 1.8 mg/kg | 1                 | DON               | 4                | Prelusky et al. (1984) |
| 66 ppm    | 5                 | DOM-1             | 30               | Coté et al. (1986)     |
| 880 ppm   | 3                 | DOM-1 conjugado   | 220              | Prelusky et al. (1987) |

Las dosis se expresan en mg/kg. de masa corporal o en concentración en el régimen alimenticio.

# 2.3.4. <u>Métodos para reducir el impacto negativo de las micotoxinas en los animales v sus productos</u>

Debido a que las micotoxinas constituyen una amenaza potencial para la salud animal y humana, se han propuesto diversas estrategias para limitar su posible impacto.

Dentro de estas se pueden distinguir aquellas que tratan de reducir la producción de micotoxinas a través del control de los hongos en los cultivos en el campo, y las que actúan durante el almacenamiento de los cultivos una vez que son cosechados, que buscan evitar la producción de micotoxinas y por otra parte, disminuir la concentración de aquellas que ya pudiesen estar presentes.

#### 2.3.4.1. Control del desarrollo de los hongos

El control del crecimiento de los hongos pasa por el mantenimiento de la integridad física de los granos de cereales con el objetivo de limitar el acceso a los nutrientes que ellos contienen, y por el mantenimiento estricto de las condiciones ambientales tales como: humedad relativa, temperatura, presión de oxigeno, etc.. La cosecha constituye una etapa esencial de la conservación de los alimentos secos y el logro de la anaerobiosis es primordial en el caso de alimentos conservados en forma

húmeda. El uso de agentes antifúngicos puede aportar una garantía complementaria si existiese un riesgo potencial. En este sentido, el ácido propiónico inhibe el desarrollo de hongos al disminuir el pH y al reducir la formación de ATP por la vía de transporte de electrones, mientras que el cloruro de sodio juega sobre la presión osmótica de las células, disminuyendo la cantidad de agua libre sobre el forraje insuficientemente seco. El amoníaco destruye la flora global, aunque de forma temporaria. El control de la contaminación fúngica puede igualmente ser efectiva si se utilizan variedades de plantas resistentes a los diferentes tipos de hongos, aunque para algunos de ellos aún no se han conseguido (Yiannikouris et al., 2002; Meronuck et al., 1999).

#### 2.3.4.2. Tratamientos que limitan los efectos de las micotoxinas

#### 2.3.4.2.a. Métodos microbiológicos

Ciertas líneas de bacterias lácticas, de propionibacterias y de bifidobacterias poseen estructuras químicas capaces de ligarse a las micotoxinas (Ahokas et al., 1998). Flavobacterium aurantiacum puede fijar la aflatoxina B1 e inactivarla. Los microorganismos pueden igualmente metabolizar las micotoxinas (Corynebacterium rubrum) o bioconvertirlas (Rhizopius, Aspergillus, Eurotium) (Nakazato et al., 1990). De todas formas este fenómeno es generalmente lento y poco eficiente. Un nuevo acercamiento a esta temática ha sido llevado a cabo por Cotty et al., 1994, que consiste en aislar líneas no aflatoxicogénicas de Aspergillus flavus y A. Parasiticus e inocular las plantas con estas. Las mencionadas líneas ocupan el mismo nicho ecológico que las líneas tóxicas, reduciéndose por tanto la contaminación de las plantas por los hongos aflatoxicogénicos.

#### 2.3.4.2.b. Métodos químicos

Una variedad de agentes químicos tales como los ácidos, las bases (amoníaco, soda), los agentes oxidantes (peróxido de hidrógeno, ozono), los agentes reductores (bisulfitos), los agentes clorados y formaldehídos son utilizados para degradar o biotransformar las micotoxinas en general y particularmente las aflatoxinas (Scott, 1998).

#### 2.3.4.2.c. Métodos físicos

Los métodos denominados físicos tales como la eliminación de granos contaminados, la búsqueda por fluorescencia de la presencia de micotoxinas producidas por hongos, el lavado con agua o carbonato de sodio permiten reducir la concentración de toxinas de Fusarium. En maíz, la inactivación térmica a alta temperatura, la irradiación con rayos UV, X o microondas y la extracción de aflatoxinas con solventes, se encuentran entre los más utilizados actualmente (Scott, 1998). Otra posible forma de disminuir la concentración de micotoxinas en los alimentos es a través de la dilución de estos lotes con alimentos no contaminados, de forma de lograr concentraciones "seguras" para la salud animal (Mieres et al., 2002).

El añadido en la ración de adsorbentes capaces de fijar las micotoxinas permiten reducir su biodisponibilidad dentro del organismo animal y limitan los riesgos relacionados a la presencia de residuos en los productos animales destinados al consumo humano (Yiannikouris et al., 2002). Los aluminosilicatos sódico-cálcicos hidratados (HSCAS), así como los filosilicatos derivados de zeolitas naturales presentan gran afinidad *in vitro* e *in vivo* por la aflatoxina B1 (Díaz et al., 1999), aunque otros estudios han mostrado su ineficacia en la adsorción de otras micotoxinas. Las bentonitas son eficaces en ligar la AFB1 y la T-2 pero no para la ZEA o el nivalenol (Ramos et al., 1996). Los carbonos activos son sustancias obtenidas por activación de compuestos

orgánicos que pueden ligarse a micotoxinas según estudios realizados por Galvano et al., (1996).

La búsqueda está actualmente orientada a desarrollar nuevas clases de ligantes naturales de micotoxinas. Así, los glucomananos extraídos de la parte externa de la pared de la levadura *Saccharomyces cerevisiae* son capaces de ligar *in vitro* ciertas micotoxinas (AF, ZEA, fumonisinas y diversos tricotecenos). Su alta capacidad de adsorción es debida a su gran superficie de intercambio (500gr de glucomananos tiene la misma capacidad adsorbente que 8 kg. de arcilla (Devegowda, 2000)).

#### 2.3.4.3. Empleo de adsorbentes para reducir el impacto de las micotoxinas

Una estrategia útil para el tratamiento dietético de las micotoxicosis ha sido el desarrollo de aditivos especiales para alimentos, que al ser añadidos a estos ligan selectivamente las micotoxinas (si las hubiese) en el tracto digestivo, permitiendo que las mismas pasen a través del animal sin causar efectos negativos (Jouany, 2001). Dentro de estos aditivos se pueden encontrar diversos tipos de arcillas, carbonos activados, aluminosilicatos y productos naturales derivados de la pared celular de ciertos hongos.

Debido a la relativa ineficiencia de las arcillas en ligar otras micotoxinas que no sean aflatoxinas, un producto natural hecho de la pared celular modificada de una levadura ha sido propuesto como adsorbente (Devegowda et al., 1998; Evans et al., 2000).

Cuadro N°7. Capacidad de los glucomananos de *Saccharomyces cerevisiae* de ligar las micotoxinas.

| Micotoxinas         | % de<br>micotoxinas<br>ligadas |
|---------------------|--------------------------------|
| Aflatoxinas totales | 95,0                           |
| ZEA                 | 77.0                           |
| Fumonisinas         | 67,0                           |
| Toxina T-2          | 33,4                           |
| Citrinina           | 18,4                           |
| DAS                 | 12,7                           |
| DON                 | 12,6                           |
| Ocratoxina          | 12,5                           |
| Nivalenol           | 8,2                            |

Fuente: Devegowda, 2000.

La levadura es un hongo unicelular muy explotado comercialmente en diversas industrias. Los glucanos son complejos de carbohidratos naturales ampliamente distribuidos en la naturaleza. En las levaduras se encuentran generalmente en la capa interna de la pared celular (25% del peso seco de la célula). Además de los glucanos otro componente mayoritario de la pared celular de las levaduras son los mananos; estos son un polímero complejo de manosa que se presenta principalmente en las capas exteriores de la pared celular (Gomez-Basauri, 2001).

Uno de los ejemplos de los polímeros orgánicos más sofisticados usados como agentes antimicotoxinas es el glucomanano esterificado extraído enzimáticamente de la pared celular del *Saccharomyces cerevisiae* 1026, el cual es termoestable y no fermentable en todo el tracto digestivo. Esta es la base del producto Mycosorb® de Alltech.

## 3. MATERIALES Y MÉTODOS

#### 3.1. LOCALIZACION Y DURACION

El ensayo fue realizado en la Unidad de Lechería del Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, localizada en el paraje Semillero del Depto. de Colonia, en la República Oriental del Uruguay.

El trabajo comenzó el 17 de junio de 2002 y finalizó el 27 de agosto del mismo año. A su vez este período puede subdividirse en tres etapas: La primera de ocho días (17/6/02 al 24/6/02), previo a la aplicación de las dietas experimentales donde fueron colectados los datos con el manejo habitual de las vacas para determinar su nivel de partida, con el fin de utilizar esta información como covariable de los resultados del ensayo; la segunda o de adaptación de 14 días (25/6/02 al 8/7/02) con las vacas seleccionadas y la dieta experimental a la que cada una fue asignada y por último 51 días de experimento propiamente dicho (9/7/02 al 27/8/02).

#### 3.2. SELECCION DE ANIMALES

Del rodeo general de la Unidad de Lechería de INIA La Estanzuela, se preseleccionaron 40 vacas de parición de otoño, bloqueadas por: nivel de producción previo al inicio del experimento, número de lactancias, fecha de parto. Luego de monitoreadas en la semana anterior al comienzo del ensayo fueron seleccionadas 32 vacas, descartándose las restantes a partir de un análisis de sangre y por recuento de células somáticas.

El promedio general para las características utilizadas al bloquear los animales se presenta en el cuadro siguiente.

Cuadro Nº8. Promedio de las variables medidas en las 32 vacas utilizadas.

| Característica                | Media |
|-------------------------------|-------|
| Producción de leche (l/v/día) | 27.05 |
| Días post parto               | 80.31 |
| Número de lactancias          | 3.16  |

#### 3.3. TRATAMIENTOS

El ensayo constó de cuatro tratamientos con ocho repeticiones, describiéndose los mismos a continuación:

Tratamiento 1 (T1): Concentrado con 0.0 mg de DON/kg.

Tratamiento 2 (T2): Concentrado con 2.5 mg de DON/kg.

Tratamiento 3 (T3): Concentrado con 5.0 mg de DON/kg.

Tratamiento 4 (T4): Concentrado con 5.0 mg de DON/kg. y un adsorbente comercial

Las dietas experimentales constaron de la asignación de un único nivel de pasturas mezcla de gramíneas y leguminosas de segundo año utilizadas bajo pastoreo directo entre él ordeñe matutino y vespertino (10 kg MS por vaca y por día). Los concentrados fueron suministrados a razón de 6 kg. (base fresca) por vaca y por día, ofrecidos en cantidades iguales en cada ordeñe. Luego del ordeñe vespertino las vacas fueron conducidas a cuatro comederos colectivos, donde se alojaron las ocho vacas de cada tratamiento, y se les ofreció 25 kg de ensilaje de maíz (base fresca) a cada animal, sales minerales y agua ad libitum.

#### 3.4. DISEÑO EXPERIMENTAL

Para el análisis de los efectos de los cuatro concentrados experimentales sobre variables de producción se utilizó un diseño experimental de bloques completos al azar

con ocho repeticiones. El modelo lineal aditivo para el análisis de los efectos de los tratamientos es el siguiente:

$$Yij = ?????N-doni + Bj + ?ij$$

Donde:

Yij : Observación asociada al concentrado con el nivel i de DON, del

bloque j.

? : Media poblacional.

N-doni: Efecto del nivel i de DON en el concentrado.

Bj : Efecto del bloque j.

?ij : Error aleatorio asociado a la observación ij.

Se destaca que el diseño experimental con utilización de medias estructuradas (tratamientos con 0; 2,5 y 5,0 mg de DON/kg. de concentrado) permitirá estimar las funciones de respuesta de las variables de producción animal en el efecto mayor estudiado, mediante la estimación de los polinomios ortogonales correspondientes, y de esta forma identificar los umbrales de seguridad de inclusión de materiales contaminados con DON en dietas de vacas lecheras en lactancia temprana.

#### 3.5. ALIM ENTOS

Para el ensayo se asignaron los potreros D1, D2, D3, D4, D5 y D8 que presentaban una mezcla de festuca y leguminosas (trébol blanco, lotus y alfalfa), todas de segundo año y provenientes de un trigo consociado sembrado en 2001.

Los concentrados utilizados durante el ensayo se caracterizaron por ser isoenergéticos e isoproteicos, difiriendo solamente en la carga de DON.

Cuadro Nº9. Componentes de los concentrados utilizados.

|                                | Nivel de DON (ppm) |        |        |        |  |  |
|--------------------------------|--------------------|--------|--------|--------|--|--|
| Tratamiento                    | 1                  | 2      | 3      | 4      |  |  |
| Contenido teórico de DON mg/kg | 0                  | 2.5    | 5      | 5 +Ads |  |  |
| Afrechillo arroz desgrasado    |                    |        | 55.8   | 55.7   |  |  |
| Afrechillo trigo               |                    | 19.6   | 177.8  | 177.6  |  |  |
| Carbonato calcio               | 1.0                | 8.3    | 6.3    | 6.3    |  |  |
| Dolomita calcinada             | 17.0               | 12.4   | 13.7   | 13.7   |  |  |
| Fosfato bicálcico              | 6.3                |        | 1.4    | 1.4    |  |  |
| Expeller girasol               | 284.2              | 179.3  | 75.4   | 75.3   |  |  |
| Grano de maíz molido           | 623.7              | 425.7  | 517.2  | 516.7  |  |  |
| Harina plumas hidrolizadas     | 44.7               | 44.7   | 62.2   | 62.2   |  |  |
| Cebada subproducto             |                    | 280.2  | 59.3   | 59.2   |  |  |
| Sal (NaCl)                     | 12.5               | 12.4   | 12.2   | 12.2   |  |  |
| Urea                           | 10.6               | 16.6   | 16.4   | 16.4   |  |  |
| Yeso (CaSO4)                   | 0.1                | 0.8    | 2.2    | 2.2    |  |  |
| MYCOSORB ®                     |                    |        |        | 1.0    |  |  |
| Total                          | 1000.0             | 1000.0 | 1000.0 | 1000.0 |  |  |

Todos los ingredientes están expresados en Kg. en base fresca.

Dicho concentrado fue suministrado en bolsas de tres quilos a cada vaca por ordeñe.

El ensilaje de maíz utilizado durante el experimento fue elaborado a partir del cultivar "Alazán", cosechado en estado de grano pastoso - duro con una cosechadora de micropicado.

### **3.6. MANEJO**

Las vacas eran ordeñadas dos veces al día 6:30 y 16:00 horas siendo la duración de este de 45 minutos. El concentrado se pesaba en bolsas de polietileno y se suministraba en mitades iguales en cada ordeñe según el tratamiento; se esperaba que los animales dejaran de comer voluntariamente antes de ser liberados.

Luego del ordeñe matutino las vacas eran conducidas en grupo de ocho (todos pertenecientes al mismo tratamiento) hasta la parcela sorteada al azar (con igual disponibilidad de forraje para todos los tratamientos), donde permanecían hasta el ordeñe vespertino. Basándose en los datos de disponibilidad se asignaban franjas de tres y cuatro días de duración, limitadas por alambre electrificado; a su vez la franja de cuatro días se dividió a la mitad con el fin de promover un consumo más uniforme.

Se ofreció agua ad-libitum durante el encierre nocturno y a la salida de los ordeñes, no teniendo acceso a ésta durante el pastoreo.

Luego del ordeñe vespertino las vacas pertenecientes a cada tratamiento eran conducidas a un patio de alimentación predesignado, de 17 por 21 m, en cada uno de los cuales se suministraba el ensilaje. En estos "dormitorios" se ofrecía una sal mineral mezcla para consumo de ésta ad-libitum.

#### 3.7. DETERMINACIONES

# 3.7.1. En los alimentos

#### 3.7.1.1. Pastura

#### 3.7.1.1.a. Disponibilidad y composición

La disponibilidad fue estimada sobre la base del muestreo del área que posteriormente se pastorearía por tres días, para lo cual se realizaron diez cortes al azar con cuadros de 0,2 x 0,5 mt con tijera de aro y a ras del suelo. Tres cuadros elegidos al azar de los diez, se utilizaron para la determinación de componentes botánicos de la pastura; estos se separaban en cuatro fracciones: leguminosas, gramíneas, malezas y restos secos. Luego cada una de las muestras enteras y fracciones botánicas fueron

pesadas en fresco en bandejas individuales para posteriormente ser llevadas a estufa de aire forzado a 65° C hasta alcanzar peso constante (aproximado 72 horas), para la determinación de materia seca parcial.

Con el dato de disponibilidad, se dimensionaban las franjas de tres y cuatro días, correspondientes a cada oferta de pasturas. Luego de pastoreada la franja de tres días y sobre cada una de las parcelas correspondientes a cada tratamiento se realizaba la determinación de la disponibilidad del rechazo, para la cual se cortaban diez cuadros, nuevamente de 0,2 x 0,5 mt con tijera de aro y a ras del suelo, en cada parcela con tratamiento diferente (4 parcelas). De los diez cuadros cortados nuevamente se seleccionaban al azar tres cuadros de cada tratamiento con los cuales se determinaba la composición botánica residual, determinando las mismas fracciones que en el ofrecido.

Los muestreos se realizaron para el cálculo de la franja de tres días, siendo la de cuatro días estimada suponiendo una oferta de forraje igual a las anteriores.

#### 3.7.1.1.b. Valor Nutritivo

Las muestras secas fueron molidas en un molino para pasturas *Wiley* equipado con una malla de un milímetro, las cuales se mezclaron y cuartearon por separado: oferta, rechazo T1, rechazo T2, rechazo T3 y rechazo T4. Luego fueron remitidas al Laboratorio de Nutrición del INIA LE para la determinación de: materia seca absoluta (MS), proteína cruda (PC), residuo insoluble en detergente ácido (FDA), residuo insoluble en detergente neutro (FDN), extracto etéreo (EE) y cenizas (CEN). La metodología para el análisis de los nutrientes fueron las siguientes:

- a) Materia seca absoluta según el A.O.A.C.,1984.
- b) Cenizas según el A.O.A.C.,1984.

- c) Fibra detergente neutro según el método de H. K. Goering y P. J. Van Soest, 1970.
- d) Fibra detergente ácido según el método de H. K. Goering y P. J. Van Soest, 1970.
- e) Nitrógeno y proteína cruda según el A.O.A.C.,1984 utilizándose para la determinación un equipo marca *KJELTEK AUTO DISTILLATION Modelo* 2200, fabricado por *FOSS TECATOR*, Suecia.
- f) Extracto etéreo según el método de extracción por solvente, adaptado por E.V. Hemida (1952), con modificaciones realizadas en el laboratorio de calidad de granos de INIA La Estanzuela.
- g) Calcio (Ca) según el método de digestión vía seca y absorción atómica.
- h) Fósforo (P) según el método de digestión sulfúrica y colorimetría con molibdato de amonio.

Las muestras fueron enviadas al Laboratorio de Calidad de Granos de INIA LE para la determinación de EE mientras que las determinaciones de P y Ca fueron realizadas en el Laboratorio de Análisis de Suelos, Plantas y Agua, localizado en la misma estación experimental.

Para la estimación de la Energía Neta de Lactación (ENL) de las pasturas se utilizó la siguiente ecuación:

 $ENL (Mcal/kg.MS) = 2,398 - (0,028 \times \%FDA), Acosta, 1994.$ 

#### **3.7.1.2.** Ensilaje

# 3.7.1.2.a. Disponibilidad

El ensilaje de maíz era ofrecido en comederos colectivos correspondientes a las ocho vacas de cada tratamiento las cuales permanecían allí entre le ordeñe vespertino y matutino. En cada semana y durante tres días consecutivos se pesó el ofrecido y el rechazo, para determinar el desaparecido de ensilaje de cada tratamiento.

#### 3.7.1.2.b. Valor nutritivo

Las determinaciones de valor nutritivo se realizaban en el segundo día de la franja control en la cual se tomaba una muestra representativa del ofrecido y del rechazo cuando este existía. Las muestras eran acondicionadas en una bolsa de nylon de forma hermética y conservadas a –18 ° C, hasta ser colocadas en la estufa de aire forzado a 65 ° C hasta peso constante. Luego estas fueron molidas con malla de 1 mm y remitidas al Laboratorio de Forrajes y Concentrados de INIA para las mismas determinaciones que las pasturas.

La estimación de ENL del ensilaje fue realizada a través de su FDA mediante la siguiente ecuación:

ENL (Mcal/kg. de MS) = 2.301 - (0.0273 \* % de FDA), Acosta, 1994.

#### 3.7.1.3. Concentrados

#### 3.7.1.3.a. Consumo

Los concentrados eran ofrecidos dentro de la sala de ordeñe en su único nivel de 3 kg. por vaca y por ordeñe.

En ambos ordeñes correspondientes a cada día de la franja de tres días se colectaban los rechazos individuales de concentrado, los que eran luego pesados de forma de poder estimar el concentrado desaparecido por vaca. Finalmente, se formaba una muestra compuesta con los mismos la cual era pesada y luego puesta a secar en estufa de aire forzado a 65 °C, hasta alcanzar peso constante.

#### 3.7.1.3.b. Valor nutritivo

Al igual que el ensilaje, en el segundo día de la franja de pasturas de tres días de duración, se tomó una muestra de cada concentrado ofertado. Con relación a los rechazos, cuando estos existían, luego de su secado eran enviados al Laboratorio para la determinación de los mismos componentes que en el concentrado ofrecido.

Para la estimación de ENL de los concentrados fue utilizada la siguiente ecuación:

ENL (Mcal/Kg. de MS) = 1.909 - (0.015\* % FDA), Acosta, 1994.

# 3.7.2. En los animales

Antes del comienzo del ensayo, en la semana previa a la aplicación de las dietas experimentales y durante seis ordeñes, se registró la producción de leche individual de

las 40 vacas seleccionadas antes de comenzar el ensayo, consumiendo éstas la misma dieta que el rodeo general. En cada uno de esos seis ordeñes se colectaron muestras individuales de leche que fueron enviadas al Laboratorio de Calidad de Leche de INIA La Estanzuela. En tres ocasiones dentro de esta semana se registró el peso vivo (PV) de esas vacas, así como su condición corporal (CC). Esta información se utilizó como covariable de los resultados obtenidos en el período experimental subsiguiente. También en esta semana se realizó una extracción de sangre a cada uno de los 40 animales. Estas muestras fueron enviada al laboratorio DILAVE "Miguel C. Rubino", para medir la concentración de enzimas vinculadas con el funcionamiento hepático, y que se explicará con detalle más adelante.

#### 3.7.2.1. Producción de leche

Se midió la producción de leche individual de los animales durante seis ordeñes seguidos correspondientes a los tres días de la franja en la pastura. El rendimiento de leche es expresado en l/v/día tanto para leche sin corregir como para leche corregida por grasa al 4% (LCG) la cual se calculó según la ecuación:

$$LCG = Kg. de leche * (0.4 + 0.15 * % grasa)$$

#### 3.7.2.2. Componentes de la leche

Durante cada semana se obtuvieron tres muestras diarias de leche de cada animal. Cada muestra diaria se remitió al Laboratorio de Calidad de Leche de INIA La Estanzuela para la determinación de: grasa, proteína, lactosa, sólidos no grasos y recuento de células somáticas (CCS).

Durante los seis ordeñes en que se registró la producción de leche por vaca se tomó una muestra individual de leche en un recipiente de plástico de 50 ml; la mitad de

esa muestra era colectada durante el ordeñe vespertino y la otra durante el ordeñe siguiente (matutino), obteniéndose por tanto, tres muestras semanales por animal.

Para la determinación de los componentes de la leche se utilizó un equipo Bentley 2000 de Bentley Instruments USA. Los sólidos no grasos se determinaron por la suma de los valores de proteína, lactosa y un valor fijo (0.69) correspondiente al contenido de minerales previamente establecido para el mes del análisis. El método utilizado es el establecido en el IDF Standart 141 A: 1990 de FIL-IDF. El recuento de células somáticas fue realizado en un equipo Somacount 500 de Bentley Instruments USA.

## 3.7.2.3. Peso vivo y Condición Corporal

Una vez a la semana, el primer día de la franja de tres días, las vacas fueron pesadas individualmente en una balanza electrónica marca *Ruddweigh*, sin ayuno previo, luego del ordeñe matutino. A la salida de la balanza se registraba la condición corporal de las vacas, por apreciación visual utilizando la escala de valores de seis puntos (donde 0 corresponde a un animal emaciado y 5 uno muy engrasado) según la metodología propuesta por García Paloma, 1990.

#### 3.7.2.4. Enzimas vinculadas al funcionamiento hepático

La medida de la concentración de enzimas aminotransferasas como la Aspartato Amino Transferasa (AST) y Gama Glutamil Transpeptidasa (GGT) en el suero sanguíneo constituye un procedimiento diagnóstico importante en medicina humana y animal como indicador de diversas condiciones patológicas, y para comprobar la recuperación de las mismas. Si los animales son expuestos o ingieren sustancias tóxicas, disolventes u otros compuestos nocivos, puede ocurrir una degeneración del tejido hepático, con el consiguiente pasaje a la sangre de diversas enzimas de los hepatocitos

dañados. Las aminotransferasas como la AST y GGT, debido a que son muy activas en el hígado, y a que su actividad se puede determinar en muy bajas concentraciones, pueden brindar información diagnóstica útil acerca de la extensión de la lesión (Lehninger et al., 1995).

Durante el ensayo realizado se extrajeron muestras de sangre a cada animal en dos oportunidades, al inicio y al final del mismo. Las muestras fueron enviadas al Laboratorio DILAVE "Miguel C. Rubino" y analizadas para determinar la concentración de AST y GGT, según el procedimiento de test de ELISA.

# 4. <u>RESULTADOS Y DISCUSIÓN</u>

# 4.1. DESCRIPCIÓN DE LAS DIETAS EXPERIMENTALES

La información presentada a continuación representa el total de la dieta ofrecida y consumida por los animales en los diferentes tratamientos, así como la composición de los mismos en cuanto a los macronutrientes.

Los valores presentados corresponden a la media de cada uno de los tratamientos para las semanas de ensayo consideradas, siendo necesaria la aclaración de que estas medias no son medias aritméticas sino que son medias mínimo cuadráticas calculados a partir del programa "SAS ®", razón por la cual la suma de las medias de las dietas no es igual al total.

En los cuadros, las letras en la misma fila separan medias estadísticamente con un 10 % de probabilidad.

## 4.1.1. Dieta ofrecida

El objetivo del análisis de las dietas ofrecidas fue determinar si las mismas eran isoenergéticas e isoproteicas, a fin de eliminar estas posibles fuentes de variación como la causa de las respuestas en las variables de producción animal.

La cantidad y calidad de la MS de pastura y de ensilaje ofrecido a los animales durante el experimento fue la misma para todos los tratamientos. Con respecto al concentrado, si bien se ofreció la misma cantidad en base fresca a los animales de los cuatro tratamientos, las diferencias en la calidad de los mismos determina que, cuando las ofertas de concentrado se expresan en kg. de MS no sean exactamente iguales. Por lo

tanto toda variación en la calidad de las dietas ofrecidas entre los distintos tratamientos, debe ser atribuida a las diferencias de la calidad de los distintos concentrados.

A continuación se presentan dos cuadros que resumen información de las dietas ofrecidas para los cuatro tratamientos. En el primer cuadro se indican los valores de calidad de cada dieta (como porcentaje de la MS, y en el caso de la ENL, como Mcal/kgMS), total y discriminados por componentes de la misma (pastura, ensilaje y concentrado). El segundo cuadro es similar al primero, pero los datos que en él se muestran están expresados en cantidades absolutas (kg. o Mcal).

Cuadro Nº10. Composición porcentual de las dietas ofrecidas.

|            |             | T1      | <b>T2</b> | T3      | T4      | E.E.M. | Signif. |
|------------|-------------|---------|-----------|---------|---------|--------|---------|
|            | Pastura**   | 14,18   | 14,18     | 14,18   | 14,18   |        |         |
| PC         | Ensilaje**  | 8,44    | 8,44      | 8,44    | 8,44    |        |         |
| (%)        | Concentrado | 20,97   | 22,96     | 18,79   | 19,46   | 1,8639 | N.S.    |
|            | Ofrecido    | 13,27   | 13,69     | 12,75   | 12,93   | 0,4223 | N.S.    |
|            | Pastura**   | 45,99   | 45,99     | 45,99   | 45,99   |        |         |
| <b>FDA</b> | Ensilaje**  | 30,86   | 30,86     | 30,86   | 30,86   |        |         |
| <b>(%)</b> | Concentrado | 16,57 a | 17,16 a   | 12,52 c | 14,45 b | 0,4839 | 0,10    |
| (, ,       | Ofrecido    | 33,28 a | 33,46 a   | 32,43 с | 32,87 b | 0,1031 | 0,10    |
|            | Pastura**   | 56,00   | 56,00     | 56,00   | 56,00   |        |         |
| <b>FDN</b> | Ensilaje**  | 43,81   | 43,81     | 43,81   | 43,81   |        |         |
| <b>(%)</b> | Concentrado | 21,49   | 24,98     | 21,45   | 27,45   | 2,6749 | N.S.    |
| (, 0)      | Ofrecido    | 44,98   | 45,80     | 45,03   | 46,32   | 0,5456 | N.S.    |
|            | Pastura**   | 11,86   | 11,86     | 11,86   | 11,86   |        |         |
| CEN        | Ensilaje**  | 6,81    | 6,81      | 6,81    | 6,81    |        |         |
| <b>(%)</b> | Concentrado | 6,90    | 6,06      | 7,38    | 5,94    | 0,6380 | N.S.    |
|            | Ofrecido    | 8,72    | 8,55      | 8,83    | 8,53    | 0,1395 | N.S.    |
|            | Pastura**   | 1,76    | 1,76      | 1,76    | 1,76    |        |         |
| EE         | Ensilaje**  | 3,64    | 3,64      | 3,64    | 3,64    |        |         |
| <b>(%)</b> | Concentrado | 3,21    | 2,53      | 3,52    | 3,52    | 0,3244 | N.S.    |
|            | Ofrecido    | 2,74    | 2,59      | 2,81    | 2,80    | 0,0672 | N.S.    |
|            | Pastura**   | 0,90    | 0,90      | 0,90    | 0,90    |        |         |
| Ca         | Ensilaje**  | 0,35    | 0,35      | 0,35    | 0,35    |        |         |
| <b>(%)</b> | Concentrado | 1,14 a  | 0,78 b    | 1,11 a  | 0,68 b  | 0,1347 | 0,10    |
|            | Ofrecido    | 0,65 a  | 0,57 b    | 0,65 a  | 0,55 b  | 0,0299 | 0,10    |
|            | Pastura**   | 0,30    | 0,30      | 0,30    | 0,30    |        |         |
| D (0/)     | Ensilaje**  | 0,21    | 0,21      | 0,21    | 0,21    |        |         |
| P (%)      | Concentrado | 0,41    | 0,35      | 0,54    | 0,70    | 0,1072 | N.S.    |
|            | Ofrecido    | 0,27    | 0,26      | 0,30    | 0,34    | 0,0248 | N.S.    |
| ENL        | Pastura**   | 1,11    | 1,11      | 1,11    | 1,11    |        |         |
| (Mcal/     | Ensilaje**  | 1,46    | 1,46      | 1,46    | 1,46    |        |         |
| kg         | Concentrado | 1,66 c  | 1,65 c    | 1,72 a  | 1,69 b  | 0,0082 | 0,10    |
| MS)        | Ofrecido*   | 1,377 с | 1,374 c   | 1,389 a | 1,383 b |        | 0,10    |

<sup>(\*)</sup> Se detectaron diferencias significativas debido a un reducido EEM; a los efectos prácticos se considera que los valores en la fila no son distintos.

<sup>(\*\*)</sup> Las diferencias se deben a que el EEM es igual a cero debido a que no hay variación en los datos.

Cuadro Nº11. Composición de las dietas ofrecidas.

|            |             | <b>T1</b> | <b>T2</b>      | Т3       | <b>T4</b> | E.E.M. | Signif. |
|------------|-------------|-----------|----------------|----------|-----------|--------|---------|
|            | Pastura**   | 10,000    | 10,000         | 10,000   | 10,000    |        |         |
| Kg.        | Ensilaje**  | 8,776     | 8,776          | 8,776    | 8,776     |        |         |
| MS         | Concentrado | 5,309     | 5,235          | 5,244    | 5,232     | 0,0000 | N.S.    |
|            | Ofrecido**  | 24,085    | 24,011         | 24,020   | 24,008    | 0,0000 | N.S.    |
|            | Pastura**   | 1,418     | 1,418          | 1,418    | 1,418     |        |         |
| Kg.        | Ensilaje**  | 0,741     | 0,741          | 0,741    | 0,741     |        |         |
| PC         | Concentrado | 1,113     | 1,202          | 0,985    | 1,018     | 0,0977 | N.S.    |
|            | Ofrecido    | 3,187     | 3,276          | 3,059    | 3,092     | 0,0977 | N.S.    |
|            | Pastura**   | 4,599     | 4,599          | 4,599    | 4,599     |        |         |
| Kg.        | Ensilaje**  | 2,708     | 2,708          | 2,708    | 2,708     |        |         |
| <b>FDA</b> | Concentrado | 0,879 a   | 0,898 a        | 0,656 c  | 0,756 b   | 0,0253 | 0,10    |
|            | Ofrecido    | 7,974 a   | <b>7,993</b> a | 7,751 c  | 7,850 b   | 0,0253 | 0,10    |
|            | Pastura**   | 5,600     | 5,600          | 5,600    | 5,600     |        |         |
| Kg.        | Ensilaje**  | 3,844     | 3,844          | 3,844    | 3,844     |        |         |
| <b>FDN</b> | Concentrado | 1,141     | 1,308          | 1,124    | 1,436     | 0,1401 | N.S.    |
|            | Ofrecido    | 10,789    | 10,956         | 10,772   | 11,084    | 0,1401 | N.S.    |
|            | Pastura**   | 1,186     | 1,186          | 1,186    | 1,186     |        |         |
| Kg.        | Ensilaje**  | 0,598     | 0,598          | 0,598    | 0,598     |        |         |
| CEN        | Concentrado | 0,366     | 0,317          | 0,387    | 0,311     | 0,0334 | N.S.    |
|            | Ofrecido    | 2,085     | 2,036          | 2,106    | 2,030     | 0,0334 | N.S.    |
|            | Pastura**   | 0,176     | 0,176          | 0,176    | 0,176     |        |         |
| Kg.        | Ensilaje**  | 0,319     | 0,319          | 0,319    | 0,319     |        |         |
| EE         | Concentrado | 0,170     | 0,132          | 0,184    | 0,184     | 0,0170 | N.S.    |
|            | Ofrecido    | 0,660     | 0,622          | 0,674    | 0,673     | 0,0170 | N.S.    |
|            | Pastura**   | 0,090     | 0,090          | 0,090    | 0,090     |        |         |
| Kg. Ca     | Ensilaje**  | 0,031     | 0,031          | 0,031    | 0,031     |        |         |
| ng. ca     | Concentrado | 0,060 a   | 0,040 b        | 0,058 a  | 0,035 b   | 0,0071 | 0,10    |
|            | Ofrecido    | 0,157 a   | 0,137 b        | 0,155 a  | 0,132 b   | 0,0071 | 0,10    |
|            | Pastura**   | 0,030     | 0,030          | 0,030    | 0,030     |        |         |
| Kg. P      | Ensilaje**  | 0,018     | 0,018          | 0,018    | 0,018     |        |         |
| ixg. i     | Concentrado | 0,022     | 0,018          | 0,028    | 0,036     | 0,0056 | N.S.    |
|            | Ofrecido    | 0,066     | 0,063          | 0,073    | 0,081     | 0,0056 | N.S.    |
|            | Pastura**   | 11,10     | 11,10          | 11,10    | 11,10     |        |         |
| Mcal       | Ensilaje**  | 12,81     | 12,81          | 12,81    | 12,81     |        |         |
| ENL        | Concentrado | 8,813 b   | 8,638 c        | 9,018 a  | 8,840 b   | 0,0428 | 0,10    |
|            | Ofrecido*   | 33,104    | 32,929 c       | 33,309 a | 33,132    | 0,0428 | 0,10    |
|            |             | b         |                |          | b         |        |         |

- (\*) Se detectaron diferencias significativas debido a un reducido EEM; a los efectos prácticos se considera que los valores en la fila no son distintos.
- (\*\*) Las diferencias se deben a que el EEM es igual a cero debido a que no hay variación en los datos.

En relación a la PC, si bien hubo una tendencia a ofrecer una mayor cantidad en la dieta del T2, explicado por un mayor porcentaje de PC en el concentrado de este, las diferencias no fueron significativas entre tratamientos, tanto para porcentaje en la dieta completa como para la oferta en kilos.

En lo referente a FDA existieron diferencias en los kg. ofrecidos para cada tratamiento, observándose una menor oferta en el T3; esto se debió a que el porcentaje de FDA del concentrado fue menor en este tratamiento que en los restantes. Esto condujo a que el porcentaje de FDA de la dieta ofrecida variase según el tratamiento.

Con respecto a FDN, no se encontraron diferencias en kg. ofrecidos entre distintos tratamientos. Lo que se encontró fue una tendencia a que la oferta total de FDN fuera mayor en el T4, debido básicamente al mayor porcentaje de FDN en el concentrado ofrecido.

Para el caso de CEN, EE y P no existieron diferencias para las cantidades ofrecidas entre los distintos tratamientos.

Se encontró que para el Ca hubo diferencias en la oferta total entre tratamientos, debido a que la concentración de este nutriente fue mayor en los concentrados de los T1 y T3. Esto se tradujo en que el aporte de Ca en los concentrados de los T1 y T3 fuese significativamente mayor que en los dos restantes, y a que la oferta total de Ca también fuera mayor que la de los T2 y T4.

La oferta total de ENL fue significativamente distinta entre tratamientos. Sin embargo, dado que la diferencia entre el mayor y el menor aporte resultó ser muy pequeña, a los efectos prácticos se puede considera que la oferta de ENL fue similar para las dietas de los cuatro tratamientos. Es de señalar la tendencia de una mayor concentración energética del concentrado de la dieta del T3, producto de su menor concentración de FDA, que llevó a que el aporte de energía del concentrado de esta dieta fuese ligeramente superior al de los restantes tratamientos.

Como corolario de lo discutido hasta este momento, se puede confirmar que las dietas ofrecidas para los cuatro tratamientos no difierieron en su oferta de proteína ni de energía (con la salvedad ya señalada en lo que tiene que ver con la energía).

#### 4.1.2. Dieta consumida

El objetivo del análisis de las dietas consumidas fue establecer si hubo algún efecto de los tratamientos experimentales sobre el consumo de MS total, discriminando por componentes, y por otra parte sobre el consumo de los principales macronutrientes.

La calidad del ensilaje y concentrado consumido, debido a la poca oportunidad de selección que tienen los animales, determina que las mismas sean muy similares a la calidad de ensilaje y concentrado ofrecido para cada tratamiento.

A continuación se presentan dos cuadros que resumen información de las dietas consumidas para los cuatro tratamientos. En el primer cuadro se indican los valores de calidad de cada dieta (como porcentaje de la MS, y en el caso de la ENL, como Mcal/kgMS), total y discriminados por componentes de la misma (pastura, ensilaje y concentrado). El segundo cuadro es similar al primero, pero los datos que en el se muestran están expresados en cantidades absolutas (kg. o Mcal).

Cuadro Nº12. Composición porcentual de las dietas consumidas.

|            |             | <b>T1</b> | <b>T2</b> | T3       | T4       | E.E.M.               | Signif. |
|------------|-------------|-----------|-----------|----------|----------|----------------------|---------|
|            | Pastura     | 15.99     | 16.50     | 17.32    | 16.93    | 1,4191               | N.S.    |
| PC         | Ensilaje    | 8.44      | 8.44      | 8.44     | 8.44     | 0,0038               | N.S.    |
| (%)        | Concentrado | 20.97     | 22.96     | 18.79    | 19.46    | 1,8633               | N.S.    |
|            | Consumido   | 13.73     | 14.69     | 13.09    | 13.26    | 0,7494               | N.S.    |
|            | Pastura     | 44.18     | 43.23     | 41.83    | 44.30    | 4,6039               | N.S.    |
| <b>FDA</b> | Ensilaje*   | 30.857 a  | 30.856 ab | 30.854 b | 30.858 a | 0,0024               | 0,10    |
| (%)        | Concentrado | 16.56 a   | 17.16 a   | 12.52 c  | 14.44 b  | 0,4818               | 0,10    |
| ( )        | Consumido   | 29.44     | 27.59     | 27.01    | 29.05    | 2,0976               | N.S.    |
|            | Pastura     | 51.61     | 51.02     | 49.08    | 48.22    | 5,0383               | N.S.    |
| <b>FDN</b> | Ensilaje    | 43.81     | 43.81     | 43.81    | 43.81    | 0,0032               | N.S.    |
| (%)        | Concentrado | 21.48     | 24.98     | 21.45    | 27.45    | 2,6672               | N.S.    |
|            | Consumido   | 41.43     | 39.88     | 40.08    | 42.30    | 1,7437               | N.S.    |
|            | Pastura     | 9.52      | 8.53      | 8.30     | 8.37     | 1,4053               | N.S.    |
| CEN        | Ensilaje    | 6.81      | 6.81      | 6.81     | 6.81     | 0,0033               | N.S.    |
| (%)        | Concentrado | 6.89      | 6.06      | 7.38     | 5.94     | 0,6380               | N.S.    |
|            | Consumido   | 6.80      | 6.56      | 6.93     | 6.12     | 0,2050               | N.S.    |
|            | Pastura     | 2.38      | 2.46      | 2.86     | 2.58     | 0,5280               | N.S.    |
| EE         | Ensilaje    | 3.63      | 3.63      | 3.63     | 3.63     | 0,0032               | N.S.    |
| (%)        | Concentrado | 3.21      | 2.52      | 3.52     | 3.51     | 0,3284               | N.S.    |
|            | Consumido   | 3.08      | 3.10      | 3.35     | 3.19     | 0,1983               | N.S.    |
|            | Pastura     | 0.93      | 0.92      | 1.05     | 0.97     | 0,1184               | N.S.    |
| Ca         | Ensilaje    | 0.35      | 0.35      | 0.35     | 0.35     | 0,0032               | N.S.    |
| (%)        | Concentrado | 1.13 a    | 0.77 b    | 1.11 a   | 0.67 b   | 0,1319               | 0,10    |
|            | Consumido   | 0.64      | 0.53      | 0.63     | 0.52     | 0,0544               | N.S.    |
|            | Pastura     | 0.33      | 0.35      | 0.36     | 0.38     | 0,0667               | N.S.    |
| P (%)      | Ensilaje    | 0.20      | 0.20      | 0.20     | 0.20     | 0,0029               | N.S.    |
| 1 (70)     | Concentrado | 0.41      | 0.35      | 0.53     | 0.70     | 0,1125               | N.S.    |
|            | Consumido   | 0.26      | 0.25      | 0.30     | 0.35     | 0,0344               | N.S.    |
| ENL        | Pastura     | 1.16      | 1.19      | 1.23     | 1.16     | 0,1289               | N.S.    |
| (Mcal/     | Ensilaje*   | 1.4585 b  | 1.4586 ab | 1.4587 a | 1.4585 b | $6,5 \times 10^{-5}$ | 0,10    |
| kg         | Concentrado | 1.66 c    | 1.65 c    | 1.72 a   | 1.69 b   | 0,0072               | 0,10    |
| MS)        | Consumido   | 1.46      | 1.51      | 1.51     | 1.47     | 0,0492               | N.S.    |

<sup>(\*)</sup> Se detectaron diferencias significativas debido a un reducido EEM; a los efectos prácticos se considera que los valores en la fila no son distintos.

Cuadro Nº13. Composición de las dietas consumidas.

|            |              | <b>T1</b> | <b>T2</b>      | Т3            | <b>T4</b> | E.E.M. | Signif. |
|------------|--------------|-----------|----------------|---------------|-----------|--------|---------|
|            | Pastura      | 5,501     | 5,253          | 4,558         | 4,881     | 0,9836 | N.S.    |
| Kg.        | Ensilaje     | 8,577     | 8,688          | 8,595         | 8,671     | 0,1751 | N.S.    |
| MS         | Concentrado  | 5,236 a   | 5,100 c        | 5,150 b       | 5,153 b   | 0,0509 | 0,10    |
|            | Consumido    | 19,315    | 19,040         | 18,302        | 18,705    | 0,9822 | N.S.    |
|            | Pastura      | 0.880     | 0.852          | 0.782         | 0.822     | 0,1318 | N.S.    |
| Kg.        | Ensilaje     | 0.702     | 0.714          | 0.705         | 0.715     | 0,0187 | N.S.    |
| PC         | Concentrado  | 1.112     | 1.201          | 0.985         | 1.018     | 0,0975 | N.S.    |
|            | Consumido    | 2.626     | 2.639          | 2.467         | 2.581     | 0,2225 | N.S.    |
|            | Pastura      | 2.428     | 2.330          | 1.981         | 2.180     | 0,5234 | N.S.    |
| Kg.        | Ensilaje     | 2.564     | 2.608          | 2.570         | 2.611     | 0,0659 | N.S.    |
| <b>FDA</b> | Concentrado  | 0.879 a   | 0.898 a        | 0.656 c       | 0.755 b   | 0,0252 | 0,10    |
|            | Consumido    | 5.642     | 5.038          | 5.127         | 5.164     | 0,6544 | N.S.    |
|            | Pastura      | 2.845     | 2.705          | 2.298         | 2.410     | 0,6365 | N.S.    |
| Kg.        | Ensilaje     | 3.668     | 3.728          | 3.676         | 3.731     | 0,0894 | N.S.    |
| <b>FDN</b> | Concentrado  | 1.140     | 1.307          | 1.124         | 1.436     | 0,1399 | N.S.    |
|            | Consumido    | 7.947     | 7.286          | <b>7.</b> 577 | 8.255     | 0,6589 | N.S.    |
|            | Pastura      | 0.518     | 0.485          | 0.438         | 0.389     | 0,1314 | N.S.    |
| Kg.        | Ensilaje     | 0.566     | 0.575          | 0.567         | 0.575     | 0,0139 | N.S.    |
| CEN        | Concentrado  | 0.366     | 0.317          | 0.387         | 0.311     | 0,0333 | N.S.    |
|            | Consumido    | 1.315     | 1.259          | 1.408         | 1.202     | 0,0270 | N.S.    |
|            | Pastura      | 0.129     | 0.124          | 0.120         | 0.121     | 0,0111 | N.S.    |
| Kg.        | Ensilaje     | 0.309     | 0.314          | 0.310         | 0.314     | 0,0070 | N.S.    |
| EE         | Concentrado  | 0.170     | 0.132          | 0.185         | 0.184     | 0,0172 | N.S.    |
|            | Consumido*   | 0.593 b   | <b>0.561</b> c | 0.626 a       | 0.624 a   | 0,0074 | 0,10    |
|            | Pastura      | 0.053     | 0.049          | 0.048         | 0.048     | 0,0093 | N.S.    |
| Kg.        | Ensilaje     | 0.028     | 0.028          | 0.028         | 0.029     | 0,0008 | N.S.    |
| Ca         | Concentrado  | 0.060 a   | 0.041 b        | 0.058 a       | 0.035 b   | 0,0069 | 0,10    |
|            | Consumido    | 0.121     | 0.096          | 0.117         | 0.100     | 0,0150 | N.S.    |
|            | Pastura      | 0.018     | 0.018          | 0.015         | 0.018     | 0,0031 | N.S.    |
| Ka D       | Ensilaje     | 0.017     | 0.018          | 0.017         | 0.018     | 0,0005 | N.S.    |
| Kg. P      | Concentrado  | 0.022     | 0.019          | 0.028         | 0.037     | 0,0059 | N.S.    |
|            | Consumido    | 0.051     | 0.047          | 0.058         | 0.068     | 0,0089 | N.S.    |
|            | Pastura      | 6.398     | 6.069          | 5.382         | 5.601     | 0,8715 | N.S.    |
| Mcal       | Ensilaje     | 12.424    | 12.620         | 12.465        | 12.633    | 0,2789 | N.S.    |
| ENL        | Concentrado* | 8.808 b   | 8.641 c        | 9.019 a       | 8.850 b   | 0,0374 | 0,10    |
|            | Consumido    | 28.165    | 27.307         | 28.338        | 28.702    | 0,8283 | N.S.    |

<sup>(\*)</sup> Se detectaron diferencias significativas debido a un reducido EEM; a los efectos prácticos se considera que los valores en la fila no son distintos.

No se detectaron diferencias significativas en el consumo de MS total entre los distintos tratamientos, aunque se encontró una tendencia a que el T3 consumiera menos MS que los restantes. Luego de analizar cada componente individual de la dieta de cada tratamiento, se puede atribuir las tendencias señaladas anteriormente en consumo total, a variaciones en el consumo de MS de la pastura. Si bien se detectaron diferencias estadísticas en consumo de concentrado entre diferentes tratamientos, esto es debido básicamente a la muy escasa variación existente en el conjunto de estos datos (a los efectos prácticos, las escasas diferencias en consumo de MS del concentrado no son las responsables de las variaciones detectadas en el consumo total). Por otra parte, no se detectaron diferencias en consumo de MS de ensilaje entre tratamientos.

Como se señaló anteriormente, lo que más influyó en el consumo de MS total fueron las variaciones observadas en consumo de pasturas. En el caso particular del T3, este consumió aproximadamente un 20 % menos de MS de pastura por animal respecto del T1. La bibliografía recabada menciona que cuando se suministra a los animales alimentos contaminados con deoxinivalenol, estos pueden experimentar una reducción en el consumo voluntario, a través de un mecanismo vinculado probablemente con la alteración de los niveles de serotonina en sangre (Rotter et al., 1996; Rossi-Fanelli et al., 1991). Esta puede ser la causa del aparente menos consumo de MS de pastura observada en el T3. También ese menor consumo podría ser explicado por la alteración de las defensas inmunológicas que pueden predisponer al animal a ciertas enfermedades infecciosas, las cuales son en última instancia las causantes de la depresión en el consumo (Betina, 1989).

En relación a la calidad de las dietas consumidas, se observa para todos los tratamientos, que la misma era mayor que la de las dietas ofrecidas, debido al efecto de selección que en mayor o menor medida, ejercen los animales al momento de consumir alimentos, particularmente en relación a la pastura. (Arnold, 1981).

Con respecto a la PC de las dietas consumidas, se encontró que no existen diferencias ni en el porcentaje ni en la cantidad consumida entre los distintos tratamientos. En el caso del T3, el consumo de PC de la pastura tendió a ser levemente inferior al de los restantes tratamientos, debido a la tendencia presentada por este tratamiento en relación al consumo de MS de la pastura. Esto se vió parcialmente compensado por una mayor (aunque no significativa) concentración de PC de la pastura consumida, lo que puede sugerir una menor actividad de pastoreo por parte de los animales, los cuales consumirían estratos de forraje más elevados que los de otros tratamientos (si bien estos aspectos no fueron evaluados específicamente en el experimento). A pesar de la mayor calidad de la pastura consumida en el T3, el relativamente menor porcentaje de PC en el concentrado de este tratamiento en relación a los restantes, es lo que ocasiona que no se detecten diferencias estadísticas entre los tratamientos experimentales.

En lo que atañe a la FDA no se detectaron diferencias en la cantidad consumida total entre los distintos tratamientos, a pesar de que el T3 tendió a consumir menos cantidad de FDA de la pastura, debido a la menor concentración en la misma; como se había mencionado antes, este tratamiento aparentemente tendió a seleccionar más en la pastura, lo que causó que el material consumido fuese de mayor calidad. Por otra parte, el concentrado utilizado en el T3 tenía una concentración de FDA significativamente menor que la de los demás tratamientos, y como el consumo de concentrado prácticamente no varió entre estos, resulta que el consumo de FDA del concentrado es inferior en el T3 en relación a los otros.

Lo mencionado en el caso de la FDA es aplicable en buena medida a FDN, en el sentido de que el consumo de esta última fracción no difirió entre tratamientos. Como en el caso anterior, el consumo de FDN de la pastura tendió a ser inferior en el T3 pero en este caso, la explicación reside en el menor consumo de pastura, ya que el porcentaje de FDN en la MS de pastura consumida en este tratamiento era básicamente similar al de

los otros. También se observa una tendencia a que el T4 consuma más FDN que los otros, pero este debido más que nada a la mayor concentración en el concentrado consumido con relación a los otros. Vale la pena recordar que para un tratamiento dado, las características nutricionales del concentrado consumido son básicamente iguales a las del concentrado ofrecido; esto mismo es aplicable al ensilaje.

Si bien no se detectaron diferencias significativas en el consumo total de CEN entre los distintos tratamientos, se encontró una tendencia a que el T3 consumiese una mayor cantidad y el T4 la menor. En el caso del T3, la causa se debe a que el concentrado utilizado en este, presentaba un contenido de CEN ligeramente mayor (aunque no significativamente distinto) a la de los otros tratamientos. Con referencia al T4, el aparente menor consumo de CEN se explica por una menor concentración en el concentrado.

En el caso del EE, las diferencias encontradas en el consumo total, a los efectos prácticos no serán consideradas como tales. Existiría una tendencia a que el T2 consumiese menos EE, debido a un menor consumo de esta fracción nutritiva con el concentrado, producto de una concentración de EE ligeramente (aunque no significativamente) inferior a la de los otros tratamientos.

Con respecto al Ca, no se encontró que los consumos de este nutriente entre los distintos tratamientos fuesen diferentes estadísticamente (ni tampoco el porcentaje de Ca en las dietas consumidas), aún cuando el consumo de Ca del concentrado sí lo fue. Estas diferencias son debidas a la distinta composición de los concentrados utilizados en el experimento, y solo sirven para mostrar la tendencia de que el consumo de Ca en los T1 y T3 fue ligeramente superior al de los restantes.

Con relación al P, no se encontraron diferencias ni para porcentaje ni para cantidad de P en la dieta completa consumida. Sin embargo, se observa que el T4 tiende

a consumir mayor cantidad de P (casi un 45% más que el T2), lo cual se debe exclusivamente a la concentración de P consumido en el concentrado, que ocasiona un aporte diferencial de este nutriente, y que en última instancia ocasiona la tendencia ya mencionada.

No se detectaron diferencias significativas en el aporte total de ENL entre las distintas dietas consumidas, si bien se observaron tendencias a nivel del aporte energético que hacen algunos de los componentes de cada dieta. Tal es el caso de la pastura; en el T3, aún cuando el porcentaje de FDA de la pastura era ligeramente inferior al de los otros tratamientos, el consumo de ENL de la pastura fue un 16 % menor (aunque no fue estadísticamente significativo) al del T1 (el de mayor aporte de ENL de la pastura consumida) debido básicamente a la menor ingesta de MS de pastura (que como ya se ha señalado no era significativamente diferente de los otros). Este aparente menor consumo de ENL de la pastura en el T3 se vió compensado por el uso de un concentrado levemente (aunque significativamente) más energético que el de otros tratamientos (debido al menor contenido de FDA del mismo), por lo que el mayor aporte de ENL en el concentrado de este tratamiento conduce a que la ingesta total de ENL no difiera significativamente de la de los restantes tratamientos.

## 4.2. RESULTADOS DE PRODUCCIÓN ANIMAL

#### 4.2.1. <u>Producción, composición y calidad de leche</u>

En esta sección se hará referencia al modo en que cada uno de los tratamientos del experimento afectó las variables de producción animal evaluadas. Hay que indicar que para el caso de la variable células somáticas, el diseño estadístico utilizado fue el de parcelas completamente al azar, dado que no fue utilizada como variable para bloquear los animales antes del experimento

En el cuadro que se muestra a continuación se resumen los datos productivos de los distintos tratamientos.

Cuadro Nº 14. Resultados de producción y composición de leche según tratamiento.

|                | <b>T1</b> | T2       | Т3       | T4       | E.E.M.   | Pr>F    |
|----------------|-----------|----------|----------|----------|----------|---------|
| Leche (l/v/d)  | 23,221    | 23,059   | 21,988   | 23,719   | 1,9537   | N.S.    |
| LCG (l/v/d)    | 21,850 a  | 22,213 a | 19,589 b | 21,604 a | 1,9640   | 0,10    |
| Grasa (%)      | 3,63 ab   | 3,77 a   | 3,28 c   | 3,43 bc  | 0,3801   | 0,10    |
| Grasa (kg.)    | 0,827 ab  | 0,841 a  | 0,746 b  | 0,816 ab | 0,0928   | 0,10    |
| Proteína (%)   | 3,19 b    | 3,15 b   | 3,27 a   | 3,21 ab  | 0,0854   | 0,10    |
| Proteína (kg.) | 0,742     | 0,756    | 0,705    | 0,735    | 0,0616   | N.S.    |
| Lactosa (%)    | 4,72 ab   | 4,78 a   | 4,72 ab  | 4,70 b   | 0,0727   | 0,05    |
| Lactosa (kg.)  | 1,105     | 1,086    | 1,058    | 1,098    | 0,0881   | N.S.    |
| <b>SNG</b> (%) | 8,60      | 8,64     | 8,69     | 8,61     | 0,1232   | N.S.    |
| SNG (kg.)      | 2,014     | 2,022    | 1,885    | 2,007    | 0,1580   | N.S.(*) |
| ST (%)         | 12,31 ab  | 12,55 a  | 11,87 b  | 11,91 b  | 0,5737   | 0,05    |
| ST (kg.)       | 2,851 a   | 2,888 a  | 2,605 b  | 2,815 a  | 0,2295   | 0,10    |
| CCS (x 1000)   | 142,3 b   | 89,5 b   | 354,6 a  | 50,5 b   | 198,2737 | 0,05    |

<sup>(\*)</sup> El modelo fue significativo, pero no se detectaron diferencias entre medias de tratamiento al 10 %.

No se detectaron diferencias significativas en producción de leche entre los tratamientos en que solo variaba la concentración de DON (T1, T2 y T3), lo cual es coincidente con lo mencionado en la bibliografía, aunque se observó una tendencia a que disminuyera la producción en el T3 debido a la carga de DON,. Por otra parte, se encontró que el T4 tampoco fue significativamente diferente de los demás tratamientos, aunque mostró una tendencia a producir más litros de leche que los demás. Esto indicaría que a pesar de la baja afinidad del adsorbente utilizado por el DON, según datos mostrados por Devegowda (2000), la información de este experimento mostró que la inclusión del mismo en dietas contaminadas con esta toxina podría evitar depresiones en la producción de leche. Debido a que la cantidad de energía y proteína consumida por los animales fue similar para los cuatro tratamientos del experimento, se puede sugerir que la tendencia del T3 a producir menos leche que los demás se debió básicamente a una menor eficiencia en el uso de estos nutrientes, ya sea a nivel de la absorción

intestinal o a nivel del metabolismo normal de los mismos (Whitlow et al., 2001). Por otra parte, el adsorbente utilizado, al ligar la micotoxina, pudo haber evitado o minimizado dichos efectos.

Hay que señalar que en el caso del T3, el consumo de energía fue similar al de los demás tratamientos debido a que el concentrado utilizado en el mismo tenía una concentración energética significativamente mayor que la de los demás, lo que compensó el aparente menor consumo de energía proveniente de la pastura. De haber sido los concentrados estrictamente isoenergéticos, los resultados en producción de leche podrían haber sido peores para el T3.

Con respecto al porcentaje de grasa, se encontró que el T3 fue significativamente menor que T1 y T2. Si bien Kiessling et al. (1986) cita alteraciones en el metabolismo lipídico debido al consumo de tricotecenos, esta es la primera vez que se constata que dietas contaminadas con DON (equivalentes a un consumo de 30 mg por animal y por día) afecten negativamente la síntesis de grasa de vacas lecheras. Una hipótesis que podría explicar este fenómeno es la menor disponibilidad de precursores de grasa en el T3, debido por una parte, a una relativa menor ingesta de fibra efectiva de pastura, y por otra parte, a una disminución de la absorción de esos precursores a nivel del tracto digestivo, por efecto del DON (Whitlow, 2001). Otra explicación del menor tenor graso de la leche del T3 puede ser atribuida a un posible efecto del DON a nivel de la síntesis de grasa que se lle va a cabo en la glándula mamaria. Dado que aproximadamente el 50 % de los ácidos grasos de la leche son sintetizados en la glándula mamaria (Rearte, 1992), es explicable que si la misma es afectada por el DON, se verá resentida la síntesis de grasa y disminuirá el tenor en la leche.

Con respecto al T4, el porcentaje de grasa no difirió del T3, lo cual podría indicar que si bien el adsorbente previno disminuciones en el volumen de leche producido, no impidió que la síntesis de grasa se viese resentida; de hecho, el porcentaje de grasa del

T4 fue significativamente menor que el T2, y mostró una tendencia a ser inferior al del T1. Esto puede ser explicado por las hipótesis mencionadas para el caso del T3. Se podría señalar que dado que el adsorbente pudo tener un efecto positivo sobre la absorción de nutrientes a nivel del tracto digestivo (debido al efecto de ligado del DON), la hipótesis que explicaría la menor síntesis de grasa por una menor absorción de precursores no sería la más plausible. Lo más probable es que sean las otras dos hipótesis las que expliquen el menor tenor graso ya señalado.

Cuando se analizaron los rendimientos de grasa, se observó que estos siguieron la misma tendencia que los porcentajes de grasa. El T3 tendió a producir la menor cantidad de grasa debido no solo al efecto de la reducción en el porcentaje de grasa, sino a la menor producción de leche en comparación a los otros tratamientos.

Esto conduce a que los kg. de LCG obtenidos en el T3 fueran significativamente menores a los de producidos en los demás tratamientos. En el caso del T4, si bien el porcentaje de grasa no difirió estadísticamente del T3, es el mayor volumen de leche producido lo que condujo a que la cantidad de LCG fuese superior a la del T3. Esto es contrastante con lo señalado en la bibliografía consultada, la cual no reporta diferencias en producción de LCG a causa del DON.

En el caso del porcentaje de proteína, se encontró que hubo diferencias estadísticas entre los T1 y T2, con el T3, siendo mayor en este último. La bibliografía consultada no muestra experimentos en los cuales se haya visto afectado el porcentaje de proteína en leche a causa de la ingestión de DON. Sin embargo, está establecido que el DON puede afectar la síntesis proteica, y causar una hiperaminoacidemia (Wannemacher et al., 1983); la mayor cantidad de aminoácidos precursores de proteína láctea en sangre, podría explicar el mayor porcentaje obtenido en el T3 en comparación con los restantes. Es posible que conjuntamente con lo anterior, haya actuado un efecto de concentración de la proteína debido al menor volumen de leche producida.

En lo que atañe al rendimiento de proteína en leche, no se detectaron diferencias estadísticas entre tratamientos. En el caso del T3, el menor volumen de leche en comparación con los otros tratamientos fue compensado por el mayor porcentaje de proteína en la misma.

Se hallaron diferencias significativas en porcentaje de lactosa en leche entre los distintos tratamientos. Concretamente, se encontró que el porcentaje del T4 fue menor al del T2. Con respecto a esto no es posible encontrar una explicación coherente, máxime cuando la bibliografía recabada no menciona que este parámetro pueda ser modificado por efecto del DON. En cuanto al rendimiento de lactosa, este tuvo una relación directa con la producción de leche, debido a que es uno de los principales componentes osmóticos de la leche (Bath, 1983; Sutton, 1989). A pesar de no encontrarse diferencias estadísticas entre tratamientos, el rendimiento tendió a ser algo menor en el T3.

No se detectaron diferencias significativas ni en el porcentaje ni el rendimiento de SNG en leche. Al igual que con la lactosa, se observó un paralelismo entre la producción de leche y el rendimiento del componente en cuestión, en este caso los SNG.

Con respecto al porcentaje de ST, se encontró que fue significativamente menor en el T3 y T4 en relación al T1 y T2. Esto se debe más que nada al tenor graso de la leche, que como ya se mencionara fue significativamente menor en el T3 y éste a su vez no difirió del T4. No hay referencias bibliográficas relacionadas con efectos negativos del DON sobre el mencionado parámetro.

Cuando se analizan los rendimientos de ST, se observó que el T3 fue el único que difirió significativamente de los demás; concretamente, rindió un 10 % menos de ST que el T2, que en el experimento fue el que presentó el mayor rinde de kg. de ST. En el caso del T4 el rendimiento en ST fue superior al del T3, ya que el volumen de leche producido había tendido a ser superior al de aquél.

Con relación al CCS, se encontró que hubo diferencias entre tratamientos en los cuales solo varió el contenido de DON en el concentrado. Específicamente, el T3 presentó un CCS superior al de los T1 y T2. La explicación de este fenómeno puede residir en el efecto negativo que puede presentar el DON sobre el sistema inmunológico, que lleva a que los animales tengan una menor capacidad de defensa contra agentes infecciosos externos. La bibliografía señala que la capacidad de los tricotecenos de ser potentes inhibidores de la síntesis proteica es lo que contribuiría aparentemente a su potencial para alterar la función inmune (Otokawa, 1983; Thurston et al., 1986; Vidal., 1990). Por otra parte, el T4 difirió significativamente del T3 pero no del T1 ni del T2; esto puede indicar que el adsorbente utilizado, a través del ligado de la toxina, podría evitar la alteración del sistema inmunológico que normalmente se atribuye a los tricotecenos.

Hay que señalar que durante el experimento se detectó mastitis clínica en dos animales, razón por la cual debieron ser tratados con antibióticos; estos dos animales pertenecían al tratamiento con mayor carga de deoxinivalenol en la ración (T3). Si bien no fue evaluado objetivamente en el experimento, este hecho contribuiría a sostener la hipótesis de que esta micotoxina, al afectar el sistema inmunológico del animal, puede predisponerlo a la acción de distintos agentes patológicos.

#### 4.2.2. Eficiencia de producción y utilización de nutrientes

A continuación se mostrará en el siguiente cuadro las eficiencias obtenidas para producción de leche.

Cuadro Nº15. Eficiencia de utilización de los nutrientes para producir un litro de leche según tratamiento.

|              | T1    | T2    | Т3    | T4    |
|--------------|-------|-------|-------|-------|
| Kg. MS/I     | 0,831 | 0,826 | 0,832 | 0,789 |
| Kg. MS/I LCG | 0,884 | 0,857 | 0,934 | 0,866 |
| Kg. PC/l     | 0,113 | 0,114 | 0,112 | 0,109 |
| Mcal. ENL/l  | 1,213 | 1,184 | 1,289 | 1,210 |

Cuando se hace un análisis de la eficiencia de producción y uso de nutrientes, se observa que el T3 requiere un 9 % más de kg. de MS por cada l de LCG producida y un 8,9 % más de Mcal de ENL por litro de leche producida, que el T2; en ambos casos este último tratamiento resultó ser el más eficiente y fue el tratamiento utilizado como patrón de comparación con el T3. La disminución de las eficiencias antes señaladas podría indicar un efecto adverso del DON, al menos cuando el consumo de esta toxina supera los 15 mg diarios, sobre la utilización de los nutrientes consumidos y su posterior transformación en cantidad de producto vendible (leche). Como ya ha sido señalado, esa disminución de la eficiencia puede ser debida a la menor absorción de nutrientes desde el tracto digestivo, o por una interferencia a nivel del metabolismo de los nutrientes. En relación a las eficiencias kg. PC y kg. de MS por litro de leche producido, no se aprecian variaciones de importancia entre tratamientos.

# 4.2.3. Ganancia de peso y condición corporal

A continuación se presenta información relativa a la respuesta de los animales en términos de variación de peso (DP) y condición corporal (DCC), a los diferentes tratamientos evaluados.

Cuadro Nº16. Diferencia de peso y de condición corporal para los animales de los distintos tratamientos.

|               | T1    | <b>T2</b> | Т3    | <b>T4</b> | E.E.M.  | Signif. |
|---------------|-------|-----------|-------|-----------|---------|---------|
| <b>DP</b> (*) | 5,500 | 3,625     | 6,500 | 13,000    | 924,591 | N.S.    |
| DCC (**)      | 0,250 | 0,250     | 0,375 | 0,250     | 0,2039  | N.S.    |

(\*): en Kg.

(\*\*): en grados de condición corporal

La variación de peso de los animales entre la primera y la última semana del experimento no resultó significativa al análisis estadístico para los distintos tratamientos. Tampoco se encontró una tendencia clara que pueda ser atribuida al consumo de DON.

Con respecto a la variación de la condición corporal, no se hallaron diferencias significativas entre tratamientos. Lo señalado al hacer referencia a la variación de peso es aplicable también a esta variable.

#### 4.2.3. Funcionamiento hepático

Cuadro N°17. Resultados de análisis de enzimas hepáticas para los diferentes tratamientos.

|           | T1    | <b>T2</b> | T3   | <b>T4</b> | E.E.M. | Pr>F |
|-----------|-------|-----------|------|-----------|--------|------|
| AST (U/L) | 102,1 | 90,6      | 99,6 | 90,5      | 11,8   | N.S. |
| GGT (U/L) | 29,0  | 27,3      | 27,5 | 33,5      | 11,3   | N.S. |

El análisis estadístico de las enzimas hepáticas evaluadas en este experimento no muestra diferencias entre tratamientos ni para AST ni GGT. Esto indicaría que no hubo disfuncionalidad hepática asociada con el contenido de DON de los tratamientos, y que los efectos nocivos de esta micotoxina que fueron detectados en el experimento no necesariamente están vinculados con la alteración del metabolismo hepático.

#### 4.3. FUNCIONES DE RESPUESTA

En esta sección se presentará información relacionada a los modelos obtenidos mediante regresiones polinomiales que mejor explican los resultados de producción y composición de leche. El diseño experimental con utilización de medias estructuradas permitió estimar funciones de respuesta para las variables de producción animal; la disponibilidad de dos grados de libertad para efecto del nivel de DON permitió estimar modelos lineales y cuadráticos.

En la determinación de los modelos de regresión no fue considerado el T4 ya que no es posible ajustar los resultados de este tratamiento en el marco de un modelo que se basa en el uso de medias estructuradas.

Cuadro Nº18. Funciones de respuesta de las diferentes variables de producción animal al contenido de DON en el concentrado.

| Variable       | ? 0    | ? 1     | ? 2     | $\mathbb{R}^2$ | E.E.R.  | Pr >F  | Modelo |
|----------------|--------|---------|---------|----------------|---------|--------|--------|
| Leche          |        |         |         |                |         |        | NS     |
| LCG            | 21,850 | 0,743   | -0,239  | 0,6348         | 1,735   | 0,0464 | S      |
| Grasa (%)      | 3,625  | 0,186   | -0,051  | 0,5941         | 0,344   | 0,0811 | S      |
| Grasa (Kg.)    | 0,8375 | 0,0455  | -0,0138 | 0,5947         | 0,087   | 0,0805 | S      |
| Proteina (%)   |        |         |         |                |         |        | NS     |
| Proteina (Kg.) |        |         |         |                |         |        | NS     |
| Lactosa (%)    |        |         |         |                |         |        | NS     |
| Lactosa (Kg.)  | 1,120  | -0,0165 |         | 0,6289         | 0,092   | 0,10*  | S      |
| <b>SNG</b> (%) |        |         |         |                |         |        | NS     |
| SNG (Kg.)      | 2,038  | -0,026  |         | 0,5703         | 0,145   | 0,10*  | S      |
| ST (%)         | 12,31  | 0,282   | -0,074  | 0,5992         | 0,515   | 0,0759 | S      |
| ST (Kg.)       | 2,851  | 0,078   | -0,025  | 0,6188         | 0,205   | 0,0584 | S      |
| CCS (x1000)    | 89,271 | 42,475  |         | 0,2244         | 227,774 | 0,10*  | S      |

<sup>\*</sup> P<0,10

En el cuadro anterior se presentan las funciones de predicción para las variables de producción animal analizadas, con sus correspondientes parámetros estadísticos.

Primeramente hay que señalar que los niveles de significancia fueron inferiores al límite teórico del 10 %, mientras que los coeficientes de determinación fueron medios a altos para la mayor parte de las variables estudiadas, a excepción de CCS que fue bajo.

Figura N°6. Respuesta en LCG al nivel de DON.




Figura N°7. Respuesta en porcentaje de grasa al nivel de DON.

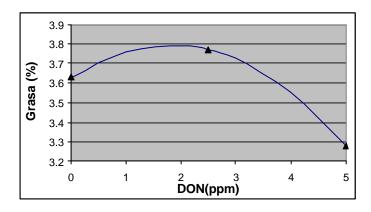



Figura N°8. Respuesta en kg. de grasa al nivel de DON.

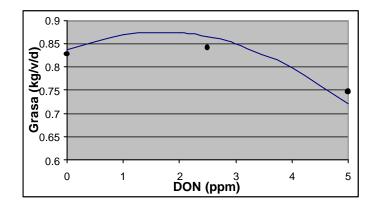



Figura Nº9. Respuesta en kg. de lactosa al nivel de DON.

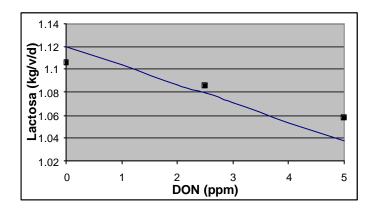



Figura Nº10. Respuesta en kg. de sólidos no grasos al nivel de DON.

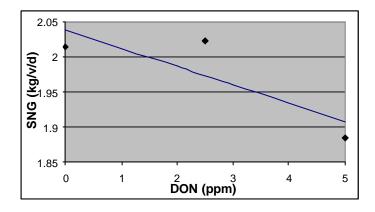



Figura Nº11. Respuesta en porcentaje de sólidos totales al nivel de DON.

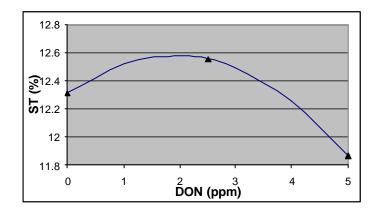



Figura N°12. Respuesta en kg. de sólidos totales al nivel de DON.

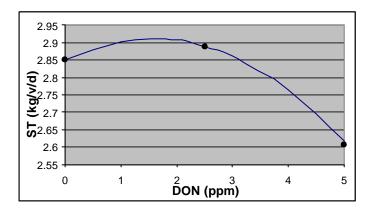
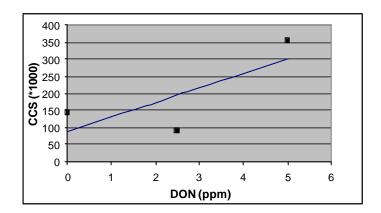
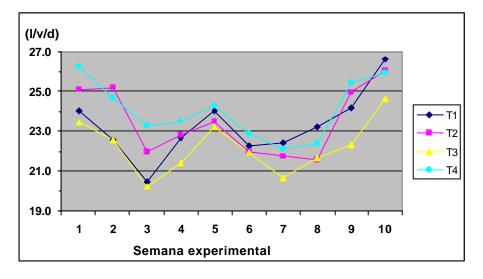




Figura N°13. Respuesta en recuento de células somáticas al nivel de DON.



Para el caso de LCG, porcentaje de grasa, producción de grasa, porcentaje de ST y producción de ST, los modelos encontrados son los que mejor se ajustan para las citadas variables; sin embargo, estos modelos matemáticos desde el punto de vista estrictamente biológico carecen de sustento. En este sentido, no es posible encontrar una causa que explique porqué la mayor producción de leche o el mayor tenor de grasa láctea se obtiene con concentraciones de DON intermedias (2,5 ppm). Sin embargo esta aparente contradicción no es tal, ya que como surge del análisis de varianza de los datos experimentales, no existen diferencias estadísticas entre el T1 y el T2 para las variables inicialmente mencionadas. Por otra parte, el T3 presenta generalmente valores inferiores (aunque no siempre significativamente distintos) a los de los mencionados tratamientos, hecho que queda explicitado en las gráficas de los modelos de predicción.


Para las variables producción de lactosa y SNG, y recuento de células somáticas, las funciones de predicción obtenidas indican que por cada parte por millón de incremento de la concentración de DON en el alimento consumido, ocurre una disminución de 16,5 g. y de 26 g. en rendimiento diario por animal de lactosa y SNG respectivamente, y un aumento de 43.000 células somáticas en leche.

A partir de los resultados del experimento realizado se puede identificar un umbral relativamente seguro para el uso de concentrados contaminados que se ubicaría alrededor de los 15 mg totales/vaca/día de DON, para vacas en lactancia temprana. A partir de este nivel, el uso de materiales contaminados con DON podría deprimir la producción de leche y LCG, el rendimiento de sólidos totales en leche, y podría ocasionar un incremento importante en el recuento de células somáticas.

## 4.4. EVOLUCIÓN DE LOS TRATAMIENTOS

En esta sección se trata de mostrar la evolución que tuvieron los distintos tratamientos durante las semanas del ensayo, intentando a través de los mismos estudiar la tendencia de las curvas, de manera de verificar la estabilidad de bs tratamientos.

Figura Nº14. Evolución semanal de la producción de leche en litros por día para los cuatro tratamientos para todo el período experimental.



A partir de la figura Nº14, se puede apreciar que el T3 consistentemente se mantiene por debajo de los restantes tratamientos durante la mayor parte del

experimento, tanto en producción de leche como en el tenor graso de la leche. Esto es tanto más claro cuando se observa el rendimiento diario de grasa diario; para esta variable, las vacas del T3 produjeron menos grasa durante todas las semanas experimentales.

Con respecto a los sólidos totales en leche, como se puede observar en las figuras Nº 19 y 20, los T3 y T4 evolucionan por debajo de los otros dos tratamientos, no habiendo un comportamiento diferencial entre ellos por lo menos hasta las últimas tres semanas del experimento, en los que el T3 tiende a producir leche con un menor contenido de sólidos totales que el T4. Sin embargo, dado que la producción de leche del T3 fue menor que la del T4 durante el experimento, el rendimiento de sólidos totales también fue menor durante todo el experimento.

En lo que atañe al CCS, es claro que T3 se diferencia de los demás durante una gran parte del experimento, a pesar de la gran variación que existe entre las semanas. Los picos en CCS que se observan en algunas semanas probablemente están asociados a los casos de mastitis clínica que presentaron algunas vacas de este tratamiento, y que ya fueron comentados anteriormente.

Figura Nº15. Evolución semanal del porcentaje de grasa, para los cuatro tratamientos, durante todo el período experimental.

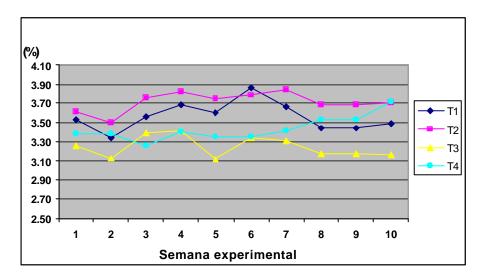



Figura Nº16. Evolución semanal de la producción de grasa, para los cuatro tratamientos, durante todo el período experimental.

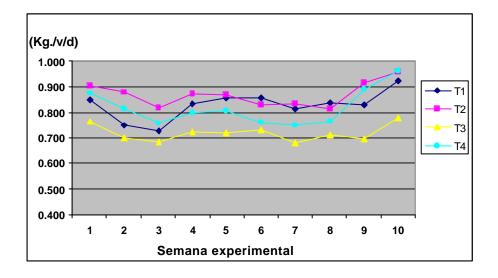



Figura Nº17. Evolución semanal del porcentaje de proteína, para los cuatro tratamientos, durante todo el período experimental.

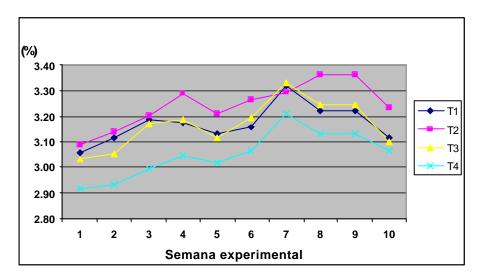



Figura Nº18. Evolución semanal de la producción de proteína, para los cuatro tratamientos, durante todo el período experimental.

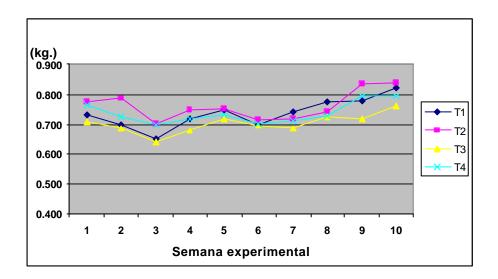



Figura Nº19. Evolución del porcentaje de sólidos totales, para los cuatro tratamientos, durante todo el período experimental.

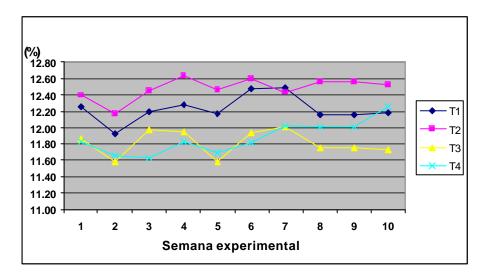



Figura Nº20. Evolución de la producción de sólidos totales, para los cuatro tratamientos, durante todo el período experimental.

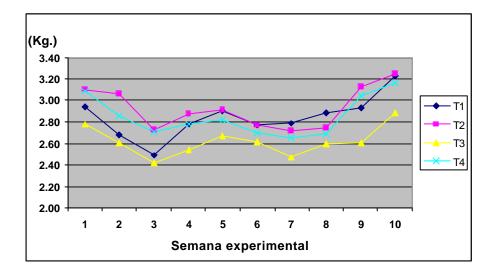
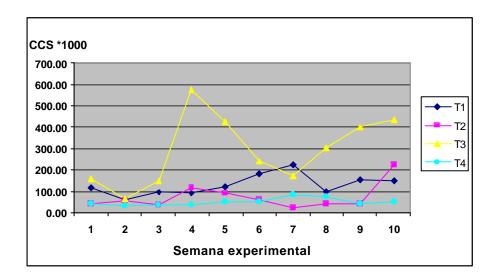




Figura Nº21. Evolución del recuento de células somáticas, para los cuatro tratamientos, durante todo el período experimental.



#### 5. CONCLUSIONES

El consumo por parte de los animales de cantidades totales diarias mayores a 15 mg de DON resultó en una disminución (aunque no significativa) del consumo de materia seca de pastura. Con relación al consumo de concentrado, si bien se detectaron diferencias significativas entre tratamientos, las mismas son tan pequeñas que a los efectos prácticos carecen de importancia.

Los resultados obtenidos en este ensayo permiten identificar un umbral relativamente confiable para la utilización de concentrados contaminados con DON en la alimentación de vacas en lactancia temprana; este umbral se ubica alrededor de los 15 mg totales/vaca/día de DON. A partir de este nivel, el empleo de materiales contaminados con DON puede afectar la respuesta productiva del animal de diversas formas: depresión de la producción de leche y LCG, disminución del rendimiento de sólidos totales en leche, e incrementos relevantes en el recuento de células somáticas en lactancia temprana.

En ninguno de los niveles evaluados de DON se detectaron alteraciones en la función hepática. Esto indica que los efectos nocivos de esta micotoxina detectados en el experimento no necesariamente están vinculados con una alteración del metabolismo hepático.

El empleo de un adsorbente comercial (elaborado a partir de glucomananos esterificados) a razón del 0,1 % en el concentrado evitó que variables productivas como la producción de leche y LCG, y el rendimiento de sólidos totales en leche se vieran deprimidas cuando se utilizó una carga teórica de DON en el concentrado equivalente a 30 mg. por día. De hecho, los resultados obtenidos muestran pocas diferencias a las obtenidas con un material con 15 mg. o menos de DON. Por otra parte, el uso del

adsorbente mostró una importante reducción en el recuento de células somáticas en lactancia temprana.

#### 6. RESUMEN

Se realizó un experimento con el objetivo de evaluar el efecto del nivel de deoxinivalenol (DON) y de un adsorbente comercial en la dieta de vacas lecheras en lactancia temprana, sobre la producción y composición de leche, sobre la variación de peso y de condición corporal, y sobre el funcionamiento hepático. El mismo fue realizado en la unidad de lechería del Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental "La Estanzuela", en el departamento de Colonia (Uruguay), desde el 17 de junio al 27 de agosto de 2002.

Para el ensayo se utilizaron 32 vacas Holando, las cuales fueron bloqueadas por nivel de producción de leche previo al inicio del experimento, número de lactancias y fecha de parto. Posteriormente se asignaron al azar a cada tratamiento. El experimento fue analizado según un diseño de bloques completamente al azar, con análisis de covarianza.

Se evaluaron cuatro tratamientos: 0 ppm de DON en el concentrado (T1), 2,5 ppm de DON en el concentrado (T2), 5,0 ppm de DON en el concentrado (T3) y 5,0 ppm de DON más un adsorbente comercial, en el concentrado (T4). Los animales consumieron dietas teóricamente isoenergéticas e isoproteicas, que solamente se diferenciaron en el contenido de DON del concentrado. Los recursos asignados a cada dieta fueron los siguientes: 10 Kg. de MS por vaca y por día de pradera artificial, mezcla de leguminosas y gramíneas (en régimen de pastoreo directo), 25 Kg. de ensilaje de maíz por vaca y por día (en base fresca) y 6 Kg. de concentrado (base fresca) por vaca y por día.

El consumo de MS total no fue afectado significativamente por el consumo de DON, aunque se evidenció una tendencia a que el tratamiento con mayor carga de DON (T3) consumiese menos MS que los restantes. Este hecho fue explicado básicamente por

un menor consumo de pasturas (T3 = 4,558 Kg. MS, T1 = 5,501 Kg. MS); ni el consumo de concentrado ni el de ensilaje se vió significativamente afectado por la ingesta de DON.

Se observó que el consumo de concentrados con 5 ppm de DON (T3) tendió a promover una menor producción de leche, con un tenor de grasa y sólidos totales significativamente menores que los tratamientos con 0 y 2,5 ppm, y con una mayor concentración de proteína. La producción de LCG disminuyó significativamente en el caso del T3 en comparación a los T1 y T2, así como también los rendimientos de grasa y de sólidos totales. El recuento de células somáticas se vió fuertemente incrementado en el nivel más alto de DON, pasando de 140.000 células por ml en el T1 a más de 350.000 en el T3.

La inclusión de un adsorbente comercial en el concentrado con mayor contenido de DON evitó disminuciones en la producción de leche y LCG, en el rendimiento de sólidos totales, y claramente impidió el incremento del recuento de células somáticas observado en el tratamiento que utilizaba una ración con la misma concentración de DON pero sin este producto (T3).

No se detectaron diferencias significativas ni en incremento de peso ni de condición corporal. Tampoco se encontraron diferencias en el funcionamiento hepático de las vacas de los distintos tratamientos, lo cual podría ser indicio de que la acción tóxica del DON sobre la performance animal no necesariamente está vinculada con la alteración de aquél.

#### 7. SUMMARY

An experiment was carried out to evaluate the effects of deoxinivalenol (DON) and a commercial binding in the diet of dairy cows in early lactation, on the production and composition of milk, on the weight and body condition changes and on the hepatic function. It took place at the Dairy Unit of INIA "La Estanzuela" (Colonia, Uruguay) between 17/6/02 to 27/8/02.

In the experiment 32 Holstein cows were used and grouped by level of milk production before the experiment, number of lactations and date of calving. Later on, they were randomly disposed for each treatment. The experiment was analyzed according to a complete block random design, with covariance analysis.

Four treatments were evaluated in this experiment: 0 ppm of DON in the concentrate (T1), 2,5 ppm of DON in the concentrate (T2), 5,0 ppm of DON in the concentrate (T3) and 5,0 ppm of DON plus a commercial binding in the concentrate (T4). The animals consumed theoretically isoenergetic and isoproteic diets, which only differed in the content of DON in the concentrate. The resources assigned to each diet were: 10 Kg of DM per cow and day of artificial pasture, mixture of leguminous and gramineous (in direct grazing), 25 Kg of corn silage (as fed) per cow and per day and 6 Kg of concentrate (as fed) per cow and per day.

Total DM intake was not significantly affected by DON intake, although it was possible to observe a tendency in which the treatment with the highest content of DON (T3) consumed less DM than the others. This was mainly explained by a lesser intake of pasture (T3 = 4,558 Kg. DM, T1 = 5,501 Kg. DM); neither the concentrate intake nor the silage one were significantly affected by DON intake.

It was observed that the intake of the concentrate with 5 ppm of DON (T3) showed a tendency to produce a lesser milk production, with percentages of fat and solid totals significantly lower than the treatments with 0 and 2,5 ppm, and with a higher concentration of protein. FCM production was significantly reduced in the case of T3 compared to T1 and T2, as well as in the fat and solids totals yields. The somatic cells count was strongly increased in the highest DON level, rising from 140.000 cells per ml in T1 to more than 350.000 in T3.

The inclusion of a commercial binding in the concentrate with higher DON content prevented a decrease in milk and FCM production and in the total solids yield. This clearly prevented the increase in the somatic cells count observed in the treatment which used a concentrate with the same DON content but without this product (T3).

No significant differences in weight and body condition changes were detected in this experiment between treatments. Differences in hepatic function were not found either. This could indicate that DON toxic action on dairy cows performance might not necessarily be related to an alteration of the hepatic function.

# 8. BIBLIOGRAFÍA

- 1. ABBAS, H. K.; MIROCHA, C. J.; KOMMEDAHL, T.; VESONDER, R. F.; GOLINSKI, P. 1989. Production of trichothecenes and non-trichothecene mycotoxins by fusarium species isolated from maize in Minnesota. Mycopathologia 108: 55.
- 2. ACOSTA, Y. M. 1991. Utilización de ensilajes, concentrados y pasturas para producción de leche. In: Pasturas y producción animal en áreas de ganadería intensiva. Uruguay. INIA. Serie Técnica Nº 15, pp 159-166.
- 3. ACOSTA, Y. M. 1994. Estimadores del valor nutritivo para producción de leche. In: Guía para la alimentación de rumiantes. Uruguay. INIA. Serie Técnica Nº 44, pp 41-50.
- 4. AHOKAS, J.; EL-NEMAZI, H.; KANKAANPAA, P.; MYKKANEN, H.; SALINEN, S.; 1998. A pilot clinical study examining the ability of a mixture of Lactobacillus propionibacterium to remove aflatoxin fron the gastrointestinal tract of healthy egyptian volunteers. Revue Méd. Vét., 149: 568.
- 5. ANNISON, E. F. 1983. Metabolite utilization by the ruminants mamary gland. In: Biochemistry of lactation (ed). Mephan. Elsevier, Amsterdam.
- 6. ARNOLD, G. W. 1970. Regulation of food intake in grazing ruminants. In: Phillipson, A. T. ed. Phisiology of digestion and metabolism in the ruminant. Proceedings from International Symposium N° 3. Oriel.
- 7. ARNOLD, G. W. 1981. Grazing behaviour. In: Morley, F. H. W. ed. Grazing animal. Amsterdam, Elsevier. World Animal Science. pp. 79-104.
- 8. BACON, C. W. 1995. Toxic endophyte-infected tall fescue and range grasses: historic perspectives. J. Anim. Sci. 73: 861-864.
- 9. BAILEY, C. A.; FORBES, J. M. 1974. Control of feed intake and regulation of energy balance in the ruminants. Physiology Review. 54: 160
- 10. BATH, D. L.; DIKINSON, I. N.; TUCKER, H. A.; APPLEMAN, R. D. 1982. Ganado lechero: principios, prácticas, problemas y beneficios. Contin Sanz, A., trad. 2ª edición. México. Interamericana. 541 p.
- 11. BETINA, V. 1989. Bioactive molecules. Vol. 9: Mycotoxins chemical, biological and environmental aspects. Ed. Elsevier. 438 p.

- 12. BINES, J. A. 1976 a. Regulation of food intake in dairy tows in relation to milk production. Livestock production Science. 3: 115-128.
- 13. BINES, J. A. 1982. Factores que influyen sobre el consumo voluntario de alimento por el ganado. In: Swan, H.; Broster, W. H., eds. Principios para la producción ganadera. Buenos Aires. Hemisferio Sur. pp 283-296.
- 14. BRODERICK, K. G. 1994. Quantifying forage protein quality. In: Fahey, G. C., ed. Forage quality, evaluation and utilization. Madison, Wisconsin. American Society of Agronomy. pp. 200-229.
- 15. BROSTER, W. H. 1972. Effects on milk yield of cow of the feeding during lactation. Dairy Science Abstract. 34: 265.
- 16. BURMEISTER, H. R.; ELLIS, J. J.; HESSELTINE, C. W. 1972. Survey for Fusaria that elaborate T-2 toxin. Appl. Microbiol. 23: 1165-1166.
- 17. CAMPLING, R. C. 1966. The intake of hay silage by cows. Grassland society. 21: 41-48.
- 18. CAST. Council for Agricultural Science and Technology. 1989. Mycotoxins: Economic and Health Risks. Task Force Report No. 116. Ames, Iowa.
- 19. CHALUPA, W.; SNIFFEN, C. J. 1991. Protein and aminoacids nutrition of lactating dairy cattle. The veterinary Clinics of North America. Food Animal Practice. 7 (2); 353-372.
- CHARMLEY, E.; TRENHOLM, H. L.; THOMPSON, B. K.; VUDATHALA, D.; NICHOLSON, J. W. G.; PRELUSKY, G. D. B.; CHARMLEY, L. L. 1993. Influence of level of deoxynivalenol in the diet of dairy cows on feed intake, milk production, and its composition. J. Dairy Sci. 76: 3580-3587.
- 21. CHEEK, P. R. 1995. Endogenous toxins and mycotoxins in forages, grasses and their effects on livestock. J. Anim. Sci. 73: 909-918.
- 22. CHRISTENSEN, C. M.; KAUFMANN, H. H., 1965. Deterioration of stored grains by fungi. Ann. Rev. Phytopathol. 3: 9-84.
- 23. CHRISTENSEN, C.M.; MIROCHA, C. J.; MERONUCK, R.A. 1988. « Molds and Mycotoxins in Feeds ». Minn. Ext. Serv. Bull. AG-FO-3538. Univ. MN,
- 24. CHUNG, T. K.; GELBERG, G. B.; DOMMER, J. L.; BAKER, D. H. 1991. Safety of L-tryptophan for pigs. J. Anim. Sci. 69: 2955.

- COTE, L. M.; DAHLEM, A. M.; YOSHIZAWA, T.; SWANSON S. P.; BUCK, W. 1986a. Excretion of deoxynivalenol and its metabolite in milk, urine, and feces of lactating dairy cows. J. Dairy Sci. 69: 2416-2423.
- 26. COTÉ, L. M.; NICOLLETTI, J.; SWANSON, S. P.; BUCK, W. B. 1986b. Production of deepoxydeoxynivalenol (DOM-1), a metabolite of deoxynivalenol, by in vitro rumen incubation. J. Aric. Food. Chem. 34: 458-460.
- 27. COTTY, P. J.; BHATNAGAR, O., 1994. Variability among atoxigenic Aspergillus flavus strains to prevent aflatoxin contamination and production aflatoxin biosynthetic path-way enzimes. Appl. Environ. Microbiol., 60: 2248-2251.
- 28. DEVEGOWDA, G.; RAJU, M. V. L. N.; AFZALI, N.; SWAMY, H. V. L. N. 1998. Mycotoxin picture worldwide: novel solutions for their counteraction. In: Biotechnology in the Feed Industry. Proceedings of the 14th Annual Symposium. (T.P. Lyons and K.A. Jacques, eds). Nottingham University Press, Nottingham, UK. pp. 241-255.
- 29. DEVEGOWDA, G. 2000. Mettre les mycotoxines sur la touche : d'où viennent les glucomannanes estérifiés. Feeding Times, 4, 12-14.
- 30. DIAZ, D.E.; HAGLER, JR, W. M.; HOPKINS, B. A.; EVE, J. A.; WHITLOW, L. W. 1999. The potential for dietary sequestering agents to reduce the transmission of dietary aflatoxin to milk of dairy cows and to bind aflatoxin *in vitro*. J. Dairy Sci. 82 (Suppl. 1): 838.
- 31. DIAZ, M. 1996. Golpe blanco de la espiga, causado por *Giberella zeae* (Schw.) Petch., estado perfecto de *Fusarium graminearum* Schw. In: Manejo de enfermedades en cereales de invierno y pasturas. Uruguay. INIA. Serie técnica Nº 74, pp 79-86.
- 32. DIAZ, M.; PEREYRA, S.; STEWART, S.; MIERES, J. M. 2002. Fusariosis de la espiga en trigo y cebada. Uruguay. INIA. Hoja de divulgación Nº 79, 4 p.
- 33. DURAN, H. 1981. Factores relacionados con las pasturas que afectan el consumo voluntario de animales en pastoreo. Seminario. Departamento de Zootecnia. Facultad de Agronomía, Pontificia Universidad Católica, Santiago de Chile, Chile. 32 p.
- 34. EVANS, J.; DAWSON, K. 2000. The ability of Mycosorb to bind toxins present in endophyte-infected tall fescue. In: Biotechnology in feed industry.

- Proceedings of the 16<sup>th</sup> Annual Symposium (T. P. Lyons, K. A. Jacques, eds.). Nottingham University Press. Nottingaham, UK, p. 409-422.
- 35. FRIEND, D. W.; TRENHOLM, H. L.; THOMPSON, B. K.; FISER, P. S.; HARTIN, K. E. 1986. Effect of feeding diets containing deoxynivalenol (vomitoxin) contaminated wheat or corn on the feed consumption, weight gain, organ weight and sexual developement of male and female pigs. Can. J. Anim. Sc. 66: 765
- 36. GAGLIOSTRO, G. A.; CANGIANO, C.; SANTINI, F. 1986. Suplementación de vacas lecheras en pastoreo: efecto del consumo de forraje y la producción de leche. Resúmenes 12º Congreso Argentino de Producción Animal. Revista Argentina de Producción Animal 6: 3-4.
- 37. GALVANO, F.; PIETRI, A.; BERTUZZI, T.; FUSCONI, T.; GALVANO, M.; PIVA, A.; PIVA, G. 1996. Reduction of carryover of aflatoxin from cow feed to milk by addition of activated carbons. J. Food Prot. 59: 551.
- 38. GALTIER, P. 1998. Biological fate of mycotoxins in animals. Revue Med. Vet., 149: 549-554.
- 39. GAMBA, F. E.; CHILIBROSTE, P.; MATTIAUDA, D. 2000. Informe final del proyecto "Calidad de los granos para consumo animal: caracterización de la problemática de contaminación y micotoxinas y algunas estrategias para su manejo". 9 p.
- 40. GARCIA PALOMA, J. A. 1990. El método de la condición corporal en vacunos lecheros: propuesta de una metodología unificadora. Investigaciones Agrarias: producción y sanidad animal. 5: 121-130.
- 41. GÓMEZ-BASAURI, J. (2001). El papel de las levaduras en la Era de suplementos Nutracéticos y Alimentos Funcionales. In: Un tiempo para respuestas. Boletín de la 11<sup>a</sup> Ronda Latinoamericana de Alltech. pp 59-66.
- 42. HODGSON, 1990. Grazing management: science into practice. Longman Scientific and Technical: Harlow. . . . p.
- 43. INGALLS, J. R. 1996. Influence of deoxynivalenol on feed consumption by dairy cows. Animal Feed Science, 60: 297-300.
- 44. IRETA, M.; GILCHRIST, L. 1994. Roña o tizón de la espiga de trigo (F. Graminearum Schwabe). México, D. F. CIMMYT. Informe especial de trigo 21A. 25 p.

- 45. JACOBSEN, B. J.; BOWEN, K. L.; SHELBY, R. A.; DIENER, U. L.; KEMPPAINEN, B. W.; FLOYD, J. 1993. Mycotoxins and Mycotoxisis. http://www.aces.edu/department/grain/ANR767.htm
- 46. JENNINGS, R. G.; HOLMES, W. 1984. Supplementary feeding of dairy cows on continuously stocked pasture. Journal of Agricultural Science 103: 161-170.
- 47. JENSEN, R. G.; FERRIS, A. M.; LAMMI-KEEFE, C. J. 1991. The composition of milk fat. Journal of Dairy Science. 74: 3228-3243.
- 48. JOUANY, J. P. 2001. The impact of mycotoxins on performance and health of dairy cattle. In: Proceedings of Alltech's 17<sup>th</sup> Annual Symposium (T. P. Lyons and K. A. Jacques, Eds.) Nottingham University Press, Nottingham, UK, p. 191.
- 49. JOURNET, M.; REMOND, B. 1976. Phisiologycal factors affecting the voluntary intake of feed by cows: A review. Livestock Production Science 3: 129-146.
- 50. KIESSLING, K.; PETTERSSON, H; SANDHOLM, K.; OLSEN, M. 1984. Metabolism of aflatoxin, ochratoxin, zearalenone and three trichothecenes by intact rumen fluid, rumen protozoa and rumen bacteria. Appl. Environ. Microbiol. 47: 1070.
- 51. KIESSLING, K. H. 1986. Pure Appl. Chem. 58: 327.
- 52. KING, R.R.; MCQUEEN, R. E.; LEVESQUE, D.; GREENHALGH, R. 1984. Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms. J. Agric. Food Chem. 32: 1181.
- 53. LAFARGE-FRAYSSINET, C.; DECLOITRE, F.; MOUSSET, S., MARTIN, M.; FRAYSSINET, C.; 1981. Mutation Res. 88: 115
- 54. LANGE, A. 1980. Suplementación de pasturas para la producción de carnes. 2ª edición. Comisión Técnica Intercrea de Producción de Carne. 74 p.
- 55. LEATHWOOD, P. D. 1987. Tryptophan availability and serotonin synthesis. Proc. Nutr. Soc. 46: 143.
- 56. LEAVER, J. D. 1985. Effects of supplements on herbage intake and performance. In: Fram, J. ed. Grazing. British Grassland Society. Occasional Symposium 19: 79-88.

- 57. MATTIAUDA, D. A.; FAVRE, E.; CHILIBROSTE, P. 1997. Suplementación energética de vacas lecheras en pastoreo con subproductos de la industria. Primer Congreso Binacional de Producción Animal. Argentina-Uruguay. 21º Congreso Argentino de Producción Animal. 2º Congreso Uruguayo de Producción Animal. Revista Argentina de Producción Animal, 17 Sup. 1.
- 58. MCQUEEN, R. E.; FILLMORE, A. E. 1991. Effects of triticale (cv. Beaguelita) and barley-based concentrate on feed intake and milk yield by dairy cows. Can. J. Anim. Sci., 71: 845.
- 59. MERONUCK, R.; WEIPING, X. 1999. Mycotoxins in feeds. Feedstuffs 71: 31, p. 123-127.
- 60. MERTENS, D. R. 1994. Regulation of forage intake. In: Fahey, G. C. et al., eds. Forage quality, Evaluation and utilization. Madison, Wisconsin. American Society of Agronomy. pp. 450-494.
- 61. MIERES, J. M.; STEWART, S.; ACOSTA, Y. M.; PEREYRA, S.; DIAZ, M. 2002. Fusariosis: un tema a tener en cuenta en la alimentación animal. Revista del Plan Agropecuario Nº 101, pp 52-54
- 62. MILLER, J. D.; TRENHOLM, H. L. 1994. Mycotoxins in grain: compounds other than aflatoxin. J. D. Miller, H. L. Trenholm, eds., St. Paul, Minnesota, USA, 552 p.
- 63. MINSON, D. J.; WILSON, J. R. 1994. Prediction of intake as an element of forage quality. In: Fahey, G. C. et al, eds. Forage quality, evaluation and utilization. Madison, Wisconsin. American Society of Agronomy. pp. 533-563
- 64. NAKAZATO, M.; MOROZUMI, S.; SAITO, K.; FUJINUMA, K.; NISHIMA, J.; KASAI, N. 1990. Interconversion of aflatoxin B1 and aflatoxicol by several fungi. Appl. Environ. Microbiol., 56: 1465-1470.
- 65. NOLLER, C.H.; STOB, M.; TUITE, J. 1979. Effects of feeding *Gibberella zeae* infected corn on feed intake, body weight gain and milk production of dairy cows. J. Dairy Sci. 62: 1003- 1009.
- 66. OLDHAM, J. D.; SUTTON, J. D. 1983. Composición de la leche y la vaca de alta producción. In: Broster, W. H.; Swan, H. comps; Orcasberro, R. tr. 1983. Estrategias de alimentación para vacas lecheras de alta producción. 1ª edición. México. AGT. PP. 84-108.

- 67. ORCASBERRO, R. 1991. Suplementación y performance de ovinos y vacunos alimentados con forraje. In: Pasturas y producción animal en áreas de ganadería extensiva. Uruguay. INIA. Serie técnica Nº 13. pp 225-232.
- 68. ORCASBERRO, R. 1992. Suplementación de vacas lecheras con concentrados. In: Jornada Regional de Lechería. Centro Agronómico Regional Paysandú. Paysandú, Uruguay. (mecanografiado). 16 p.
- 69. OSUJI, P. O. 1974. The physiology of eating and the energy expenditure of the ruminant at pasture. Journal of Range Management Science 27: 437-443.
- 70. OSWEILER, G. D. 1990. Mycotoxins and livestock: what role do fungal toxins play in illness and production losses? Vet. Med. 85: 89-94.
- 71. OTOKAWA, M. 1983. Inmunological disorders. Pages 163-170. In: Trichothecenes: Chemical, biological and toxicological aspects. Y. Ueno, ed. Elsevier. New York.
- 72. OWENS, F. N.; ZINN, R. A.1988. Protein metabolism of ruminant animals. In: Church, D. C. ed. The ruminant animal. Digestive physiology and nutrition. New Jersey. Prentice Hall. pp 227-249.
- 73. PHILLIPS, C. J. C. 1985. Supplementary feeding of forage to grazing dairy cows. 2. Offering grass silage in early and late season. Grass and Forage Science. 40: 193-199
- 74. PHILLIPS, C. J. C. 1988. The use of conserved forage as supplement for grazing dairy cows. Review paper. Grass and Forage Science. 43: 215-230.
- 75. PITTET, A. 1998. Natural ocurrence of mycotoxins in foods and feeds. Anupdated review. Rev. Méd. Vet., 149: 479-492.
- 76. PRELUSKY, D.B.; TRENHOLM, H. L.; LAWRENCE, G. A.; SCOTT, P. M. 1984. Nontransmission of deoxynivalenol (vomitoxin) to milk following oral administration to dairy cows. J. Environ. Sci. Health (B). 19: 593-609.
- 77. PRELUSKY, D.B.; VEIRA, D. M.; TRENHOLM, H. L.; FOSTER, B. C. 1987. Metabolic fate and elimination in milk, urine and bile of deoxynivalenol following administration to lactating sheep. J. Environ. Sci. Health (B). 22: 125-148.

- 78. PRELUSKY, D. B.; YEUNG, J. M.; THOMPSON, B. K.; TRENHOLM, H. L. 1992. Effects of deoxynivalenol on neurotransmitters in discret regions of swine brain. Arch. Environ. Contam. Toxicol. 22: 36.
- 79. PRELUSKY, D. B. 1993. The effects of low-level deoxynivalenol on neurotransmitter levels measured in pig cerebral spinal fluid. J. Environ. Sci. Health. B28: 731.
- 80. RAMOS, A. J.; FINK-GREMMELS, J.; HERNÁNDEZ, E. 1996. Prevention of toxic effects of mycotoxins by means of non-nutritive absorbent compounds. J. Food. Protect., 59: 631-641.
- 81. RAYMOND, W. F. 1969. The nutritive value of the forage crops. Advan. Ing. Agr. 21: 1-108.
- 82. REARTE, D. H. 1992. Alimentación y composición de la leche en los sistemas pastoriles. Balcarce, Argentina, CERBAS, INTA. 94 p.
- 83. ROSSI-FANELLI, F.; CANGIANO, C. 1991. Increased availability of tryptophan in brian as common pathologic mechanism of anorexia associated with diseases. Nutrition. 7: 364.
- 84. ROTTER B. A.; PRELUSKY, D. B.; PESTKA, J. J. 1996. Toxicology of desoxynivalenol (Vomitoxin). J Toxicol Environ Health 48: 1-34.
- 85. SANTINI, F. J.; RUIZ, E. G. 1985. Efecto de la suplementación energética sobre la dinámica de la digestión ruminal de la pared celular en novillos en pastoreo. Resúmen Anual de Actividades, Departamento de Producción Animal, INTA, Balcarce.
- 86. SARKER, A. B.; HOLMES, W. 1974. The influence of supplementary feeding on the herbage intake and grazing behaviour of dry cows. Journal of the British Gassland Society. 29: 141-143.
- 87. SATO, N.; UENO, Y. 1977. In: Mycotoxins in Human and Animal Health. (J.V. Rodricks, C.W. Hesseltine and M.A. Mehlman, eds), Pathotox Publishers, Park Forest South, IL. p. 304.
- 88. SCOTT, P. M. 1998. Industrial and farm detoxification processes for mycotoxins. Revue. Méd. Vét., 149: 543-548.
- 89. SCUDAMORE, K. A.; LIVESEY, C. T. 1998. Occurrence and significance of mycotoxins in forage crops and silage: a review. J. Sci. Food Agric. 77: 1-17.

- 90. SEGLAR, B. 2001. Mycotoxin effects on dairy cattle. http://www.uwex.edu/ces/forage/wfc/proceedings2001/dairy\_mycotoxin.htm.
- 91. SHARMA, R. P. 1993. Immunotoxicity of mycotoxins. J. Dairy Sci. 76: 892-897.
- 92. SHARMA, R. P.; KIM, Y. W. 1990. Tricothecene mycotoxins. In: Mycotoxins and Phytoalexins in Huma and Animal Health. (R.P. Sharma and D.K. Salunkhe, eds). CRC Press, Boca Raton. pp. 339-347
- 93. SMITH, T. K.; MCMILLAN, I. G.; CASTILLO, J. B. 1997. Effects of feeding blends of Fusarium mycotoxin-contaminated grains containing deoxynivalenol and fusaric acid on growth and feed consumption of immature swine. J. Anim. Sci., 75: 2184-2191.
- 94. SMITH, T. K.; SEDDON, I. R. 1998. Toxicological synergism between Fusarium mycotoxins in feeds. In: Biotechnology in the Feed Industry. Proceedings of the 14th Annual Symposium. (T.P. Lyons and K.A. Jacques, eds). Nottingham University Press, Nottingham, UK. pp. 257-269.
- 95. SNIFFEN, C. J.; THOMAS, E. D.; WELCH, J. G. 1993. Effective fiber in silage. In: Silage production from seed to animal. Proceedings from the National Silage Production Conference, 1993. Syracuse, New York. pp. 176-185.
- 96. SUTTON, J. D. 1989. Altering milk by feeding. Journal of Dairy Science 72: 2801-2814.
- 97. SWANSON, S.P.; NICOLETTI, J.; ROOD, H. D.; BUCK, W. B.; COTE, L. M.; YOSHIZAWA, T. 1987. Metabolism of three tricothecene mycotoxins, T-2 toxin, diacetoxyscirpenol and deoxynivalenol, by bovine rumen microorganisms. J. Chromatog. 414:335-342.
- 98. TAUBENHAUS, J.J. 1920. A study of the black and yellow molds of ear corn. Tex. Agr. Expt. Sta. Bull. 270:38.
- THURSTON, J. R.; RICHARD, J. L.; PEDEN, W. M. 1986. Inmunomodulation in mycotoxicosis other than aflatoxicosis. Pages 149-161. In: Diagnosis of mycotoxicosis. J. L. Richard, J. R. Thurston, eds. Martius Nijhof publishers, Boston.

- 100. TRENHOLM, H.L.; THOMSON, B. K.; HARTIN, K. E.; GREENHALGH, R.; Mc Allister, A. J. 1985. Ingestion of vomitoxin (deoxinivalenol)-contaminated wheat by non-lactating dairy cows. J. Dairy Sci. 68:1000-1005.
- 101. UTLEY, P. R.; BRADLEY, N. W.; BOLING, J. A. 1979. Effect of restricted water intake on feed intake, nutrient digestibility and nitrogen metabolism in steers. Journal of Animal Science, 31: 130-135.
- 102. VALK, H.; POELHUIS, H.W.K.; WENTINK, H.J. 1990. Effect of fibrous and starchy carbohydrates in concentrates as supplements in a herbage-based diet for high-yielding dairy cows. Netherlands Journal of Agricultural Science, 38, 475-486.
- 103. VAN EGMOND, H. P. 1989. Aflatoxin M1: occurrence, toxicity, regulation. pp 11-55. In: Van Egmond, (Ed.) « Mycotoxins in Dairy Products ». Elsevier Sci. Pub. Co., Ltd. New York.
- 104. VAN ES, A. D. H.; VAN DER HONING, Y. 1983. Utilización de la energía. In: Broster, W. H.; Swan, H., comps; Orcasberro, R. tr. 1983. Estrategias de alimentación para vacas lecheras de alta producción. 1ª edición. México. AGT. pp 52-68.
- 105. VAN SOEST, J. P. 1965. Symposium on factors influencing the voluntary intake of herbage by ruminants: voluntary intake in relation to chemical composition and digestibility. Journal of Animal Science 24: 834-843.
- 106. VAN SOEST, J. P. 1975. Physico-chemical aspects of fiber digestion. In: Mc Donald; Warner, A. C. I., ed. Digestion and metabolism in the ruminant. The University of New England. Public unit.
- 107. VAN VUUREN, A. M.; VAN DER KOELEN, C. J.; VROONS DE BRUIN, J. 1986. Influence of level and composition of concentrate supplements on rumen fermentation patterns of grazing dairy cows. Netherlands Journal Agricultural Science 34: 457-467.
- 108. VAN VUUREN, A. M. 1993. Digestion and Nitrogen metabolism of grass fed dairy cows. PhD. Tesis. Wageningen Agricultural University. 134 p.
- 109. VESONDER, R. F.; CIEGLER, A.; HENSEN, A. H. 1973. Isolation of the emetic principle from Fusarium infected corn. Appl. Microbiol. 25: 1008-1010.
- 110. VIDAL, D. R. 1990. Proprietés inmunosupressives des mycotoxins du group des trichothecenes. Bull. Inst. Pasteur. 88; 159-192.

- 111. WAGNSNESS, P. J.; LAWRENCE, D. M. 1981. Maximum forage for dairy cows. Review Journal of Dairy Science. 64: 1.
- 112. WALDO, D. R. 1986. Effect of forage quality on intake and forage-concentrate interactions. Journal of Dairy Science. 69, 617-631.
- 113. WANNEMACHER, R. W.; DINTERMAN, R. E. 1983. Plasma amino acid changes in Guinea pigs injected whit T-2 mycotoxins. Fed. Proc. 42 (abstr.): 625.
- 114. WATTIAUX, M. A. 1996. Composición de la leche y su valor nutritivo. In: Esenciales lecheras. http.babcok.cals.wisc.edu. Wisconsin. 8 p.
- 115. WESTLAKE, K.; MACKIE, R. I.; DUTTON, M. F. 1989. *In vitro* metabolism of mycotoxins by bacterial, protozoal and ovine ruminal fluid preparations. Anim. Feed Sci. Technol. 25:169-178.
- 116. WHITLOW, L.W., NEBEL, R. F.; BEHLOW, R. F.; HAGLER, W. M.; BROWIE, C. F. G. 1986. Mycotoxins in North Carolina dairy feeds a survey of 100 dairy farms. J. Dairy Sci. 69 (Suppl. 1):223 (abstr.).
- 117. WHITLOW, L. W.; HAGLER, JR., V. M.; HOPKINS, B. A. 1998. Mycotoxins ocurrence in farmed submitted samples of North Carolina. feedstuffs, 1989-1997. J. Dairy Sci., 81 (abstr.): 1189
- 118. WHITLOW L.W.; HAGLER, W. M. 1999. An association of mycotoxins with production, health and reproduction in dairy cattle and guidelines for prevention and treatment. In: Biotechnology in the Feed Industry. Proceedings of the 15th Annual Symposium. (T.P. Lyons and K.A. Jacques, eds). Nottingham University Press, Nottingham, UK. pp. 401-419.
- 119. WHITLOW, L. W.; HAGLER, JR, W. M.; HOPKINS, B. A.; DÍAZ, D. E. 2000. Mycotoxins in feeds and their effects on dairy cattle. Feed facts 10:1-7.
- 120. WHITLOW, L. W.; HAGLER, JR, W. M.; 2001. La contamination des aliments par les mycotoxines: un facteur de stress additionnel pour les bovins laitiers. www.agrireseau.qc.ca/bovinslaitiers/Documents/2001\_Whitlow.pdf
- 121. XIMENO, A. 2002. Seminario técnico: Fusariosis de la espiga en trigo y cebada http://www.inia.org.uy/novedades/novedades.htm

- 122. YIANNIKOURIS, A.; JOUANY, J. P.; 2002. Les mycotoxines dans les aliments des rumiants, leur devenir et leurs effects chez l'animal. INRA Prod. Anim., 15 (1), 3-16.
- 123. YOUSEFF, I. M.; HUBER, J. T.; EMERY, R. S. 1970. Milk protein synthesis as afected by high grain, low fiber ratios. Journal of Dairy Science. 53: 739.

# 9. APENDICES

# 9.1. RESUMEN DE ANOVAS DE FORRAJE, ENSILAJE, CONCENTRADO Y TOTAL OFRECIDOS.

# 1. % PC del concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 21.75345000       | 5.43836250 1.57 0.3713        |
| Error  | 3    | 10.42273750       | 3.47424583                    |
| Total  | 7    | 32.17618750       |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.676073 | 9.072992 | 1.86393289      | 20.54375000 |

| Fuente | G.I | L. Tipo I   | Cuadrado Me | dio Va | lor F P | 2r > F |
|--------|-----|-------------|-------------|--------|---------|--------|
| TRAT   | 3   | 20.57533750 | 6.85844583  | 1.97   | 0.2953  |        |
| BLK    | 1   | 1.17811250  | 1.17811250  | 0.34   | 0.6012  |        |

| Alfa= 0.1 G.L.= 3 CME= 3.474246 |        |     |        |  |  |  |  |
|---------------------------------|--------|-----|--------|--|--|--|--|
| Valor crítico de T= 2.35        |        |     |        |  |  |  |  |
| D.M.S.= 4.3865                  |        |     |        |  |  |  |  |
| Agrupamiento                    | Media  | . 1 | N TRAT |  |  |  |  |
| A                               | 22.960 | 2   | 2      |  |  |  |  |
| A                               | 20.970 | 2   | 1      |  |  |  |  |
| A                               | 19.460 | 2   | 4      |  |  |  |  |
| A                               | 18.785 | 2   | 3      |  |  |  |  |

## 2. % FDA del concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 27.77985000       | 6.94496250 29.66 0.0095       |
| Error  | 3    | 0.70255000        | 0.23418333                    |
| Total  | 7    | 28.48240000       |                               |

| $R^2$    | C.V.     | Desvio Están | dar Media   |
|----------|----------|--------------|-------------|
| 0.975334 | 3.190013 | 0.48392493   | 15.17000000 |

| Fuente | G.L. | Tipo I      | Cuadrado Me | dio Va | lor F  | Pr > F |
|--------|------|-------------|-------------|--------|--------|--------|
| TRAT   | 3 2  | 26.92180000 | 8.97393333  | 38.32  | 0.0068 |        |
| BLK    | 1    | 0.85805000  | 0.85805000  | 3.66   | 0.1515 |        |

| Alfa= 0.1 G.L.= 3 CME= 0.234183 |         |   |      |   |  |  |  |
|---------------------------------|---------|---|------|---|--|--|--|
| Valor crítico de T= 2.35        |         |   |      |   |  |  |  |
| D.M.S.= 1.1389                  |         |   |      |   |  |  |  |
| Agrupamiento                    | Media   | N | TRAT |   |  |  |  |
| A                               | 17.1550 | 2 | 2    |   |  |  |  |
| A                               | 16.5650 | 2 | 1    |   |  |  |  |
| В                               | 14.4450 | 2 | 4    |   |  |  |  |
| С                               | 12.5150 | 2 | 3    | • |  |  |  |

#### 3. % FDN del concentrado.

| Fuente | G.L. | Suma de Cuadrad | los Cuadrado Me | dio Valo | or F Pr>F |  |
|--------|------|-----------------|-----------------|----------|-----------|--|
| Modelo | 4    | 67.87395000     | 16.96848750     | 2.37     | 0.2520    |  |
| Error  | 3    | 21.46545000     | 7.15515000      |          |           |  |
| Total  | 7    | 89.33940000     |                 |          |           |  |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.759731 | 11.22027 | 2.67491121      | 23.84000000 |

| Fuente | G.L. | Tipo I      | Cuadrado Med | lio Va | lor F  | Pr > F |
|--------|------|-------------|--------------|--------|--------|--------|
| TRAT   | 3    | 51.22750000 | 17.07583333  | 2.39   | 0.2468 |        |
| BLK    | 1    | 16.64645000 | 16.64645000  | 2.33   | 0.2246 |        |

| Alfa= 0.1 G.L.= 3 CME= 7.15515 |                          |   |      |  |  |  |  |
|--------------------------------|--------------------------|---|------|--|--|--|--|
| Valor crítico de T=            | Valor crítico de T= 2.35 |   |      |  |  |  |  |
| D.M.S.= 6.295                  |                          |   |      |  |  |  |  |
| Agrupamiento                   | Media                    | N | TRAT |  |  |  |  |
| A                              | 27.450                   | 2 | 4    |  |  |  |  |
| A                              | 24.980                   | 2 | 2    |  |  |  |  |
| A                              | 21.485                   | 2 | 1    |  |  |  |  |
| A                              | 21.445                   | 2 | 3    |  |  |  |  |

# 4. % cenizas del concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio V | Valor F Pr > F |
|--------|------|-------------------|------------------|----------------|
| Modelo | 4    | 3.06625000        | 0.76656250 1.8   | 88 0.3151      |
| Error  | 3    | 1.22130000        | 0.40710000       |                |
| Total  | 7    | 4.28755000        |                  |                |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.715152 | 9 715171 | 0.63804389      | 6 56750000 |

| Fuente | G.L. | Tipo I     | Cuadrado M | edio \ | Valor F | Pr > F |
|--------|------|------------|------------|--------|---------|--------|
| TRAT   | 3    | 2.82125000 | 0.94041667 | 2.31   | 0.2548  |        |
| BLK    | 1    | 0.24500000 | 0.24500000 | 0.60   | 0.4944  |        |

| Alfa= 0.1 G.L.= 3 C   | $CME = 0.40^{\circ}$ | 71 |      |
|-----------------------|----------------------|----|------|
| Valor crítico de T= 2 | 2.35                 |    |      |
| D.M.S.= 1.5015        |                      |    |      |
| Agrupamiento          | Media                | N  | TRAT |
| A                     | 7.3750               | 2  | 3    |
| A                     | 6.8950               | 2  | 1    |
| A                     | 6.0600               | 2  | 2    |
| Α                     | 5.9400               | 2  | 4    |

#### 5. % EE del concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | Valo | or F Pr > F |
|--------|------|-------------------|----------------|------|-------------|
| Modelo | 4    | 1.42745000        | 0.35686250     | 3.39 | 0.1718      |
| Error  | 3    | 0.31575000        | 0.10525000     |      |             |
| Total  | 7    | 1.74320000        |                |      |             |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.818868 | 10.16999 | 0.32442256      | 3.19000000 |

| Fuente | G.L. | Tipo I     | Cuadrado Me | dio V | alor F | Pr > F |
|--------|------|------------|-------------|-------|--------|--------|
| TRAT   | 3    | 1.30740000 | 0.43580000  | 4.14  | 0.1368 |        |
| BLK    | 1    | 0.12005000 | 0.12005000  | 1.14  | 0.3638 |        |

| Alfa= 0.1 G.L.= 3   | CME = 0.10 | 525 |      |
|---------------------|------------|-----|------|
| Valor crítico de T= | 2.35       |     |      |
| D.M.S.= 0.7635      |            |     |      |
| Agrupamiento        | Media      | N   | TRAT |
| A                   | 3.5150     | 2   | 4    |
| A                   | 3.5150     | 2   | 3    |
| BA                  | 3.2050     | 2   | 1    |
| В                   | 2.5250     | 2   | 2    |

#### 6. % calcio del concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | Valor | rF I  | Pr > F |
|--------|------|-------------------|----------------|-------|-------|--------|
| Modelo | 4    | 0.37815000        | 0.09453750     | 5.21  | 0.103 | 32     |
| Error  | 3    | 0.05445000        | 0.01815000     |       |       |        |
| Total  | 7    | 0.43260000        |                |       |       |        |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.874133 | 14.56453 | 0.13472194      | 0.92500000 |

| Fuente | G.L. | Tipo I     | Cuadrado M | edio | Valor F | Pr > F |
|--------|------|------------|------------|------|---------|--------|
| TRAT   | 3    | 0.32370000 | 0.10790000 | 5.94 | 0.0886  |        |
| BLK    | 1    | 0.05445000 | 0.05445000 | 3.00 | 0.1817  |        |

| Alfa= 0.1 G.L.= 3 CME= 0.01815 |        |   |      |  |  |
|--------------------------------|--------|---|------|--|--|
| Valor crítico de T=            | 2.35   |   |      |  |  |
| D.M.S.=0.317                   |        |   |      |  |  |
| Agrupamie nto                  | Media  | N | TRAT |  |  |
| A                              | 1.1350 | 2 | 1    |  |  |
| A                              | 1.1100 | 2 | 3    |  |  |
| В                              | 0.7800 | 2 | 2    |  |  |
| В                              | 0.0750 | 2 | 4    |  |  |

# 7. % fosforo del concentrado.

| Fuente | G.L. | Suma de Cuad | drados Cuadrado Medi | io Valor | F Pr > F |
|--------|------|--------------|----------------------|----------|----------|
| Modelo | 4    | 0.29350000   | 0.07337500           | 6.39     | 0.0798   |
| Error  | 3    | 0.03445000   | 0.01148333           |          |          |
| Total  | 7    | 0.32795000   |                      |          | _        |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.894953 | 21.53976 | 0.10716032      | 0.49750000 |

| Fuente | G.L. | Tipo I     | Cuadrado M | edio  | Valor F | Pr > F |
|--------|------|------------|------------|-------|---------|--------|
| TRAT   | 3    | 0.14225000 | 0.04741667 | 4.13  | 0.1373  |        |
| BLK    | 1    | 0.15125000 | 0.15125000 | 13.17 | 0.0360  |        |

| Alfa= 0.1 G.L.= 3 CME= 0.011483 |             |   |  |  |  |  |
|---------------------------------|-------------|---|--|--|--|--|
| Valor crítico de T=             | 2.35        |   |  |  |  |  |
| D.M.S.= 0.2522                  |             |   |  |  |  |  |
| Agrupamiento                    | Media N TRA | T |  |  |  |  |
| A                               | 0.6950 2 4  |   |  |  |  |  |
| BA                              | 0.5400 2 3  |   |  |  |  |  |
| В                               | 0.4050 2 1  | • |  |  |  |  |
| В                               | 0.3500 2 2  |   |  |  |  |  |

# 8. Mcal/Kg. de MS de ENL del concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | o Va | lor F Pr > F |  |
|--------|------|-------------------|----------------|------|--------------|--|
| Modelo | 4    | 0.00620000        | 0.00155000 23  | 3.25 | 0.0136       |  |
| Error  | 3    | 0.00020000        | 0.00006667     |      |              |  |
| Total  | 7    | 0.00640000        |                |      |              |  |

| R     | C.V         | . Desvio l | Estándar Me | edia |
|-------|-------------|------------|-------------|------|
| 0.968 | 750 0.48601 | 0.008164   | 97 1.680000 | 000  |

| Fuente | G.L. | Tipo I    | Cuadrado Me | edio V | alor F | Pr > F |
|--------|------|-----------|-------------|--------|--------|--------|
| TRAT   | 3 0  | .00600000 | 0.00200000  | 30.00  | 0.009  | 7      |
| BLK    | 1 0. | 00020000  | 0.00020000  | 3.00   | 0.1817 |        |

| Alfa= 0.1 G.L.= 3  | 3  CME = 0.00 | 0067 |      |
|--------------------|---------------|------|------|
| Valor crítico de T | `= 2.35       |      |      |
| D.M.S.=0.0192      |               |      |      |
| Agrupamiento       | Media         | N    | TRAT |
| A                  | 1.720000      | 2    | 3    |
| В                  | 1.690000      | 2    | 4    |
| С                  | 1.660000      | 2    | 1    |
| C                  | 1.650000      | 2.   | 2.   |

# 9. Kg. PC del concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | o Val | or $F Pr > F$ |
|--------|------|-------------------|----------------|-------|---------------|
| Modelo | 4    | 0.06101542        | 0.01525385     | 1.60  | 0.3647        |
| Error  | 3    | 0.02862485        | 0.00954162     |       |               |
| Total  | 7    | 0.08964026        |                |       |               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.680670 | 9.048528 | 0.09768120      | 1.07952586 |

| Fuente | G.L | . Tipo I   | Cuadrado Me | edio V | 'alor F | Pr > F |
|--------|-----|------------|-------------|--------|---------|--------|
| TRAT   | 3   | 0.05775087 | 0.01925029  | 2.02   | 0.2895  |        |
| BLK    | 1   | 0.00326455 | 0.00326455  | 0.34   | 0.5997  |        |

| Alfa= 0.1 G.L.= 3 CME= 0.009542 |                          |   |      |  |  |  |  |
|---------------------------------|--------------------------|---|------|--|--|--|--|
| Valor crítico de T=             | Valor crítico de T= 2.35 |   |      |  |  |  |  |
| D.M.S.= 0.2299                  |                          |   |      |  |  |  |  |
| Agrupamiento                    | Media                    | N | TRAT |  |  |  |  |
| A                               | 1.20196                  | 2 | 2    |  |  |  |  |
| A                               | 1.11330                  | 2 | 1    |  |  |  |  |
| A                               | 1.01795                  | 2 | 4    |  |  |  |  |
| A                               | 0.98490                  | 2 | 3    |  |  |  |  |

# 10. Kg. FDA del concentrado.

| Fuente | G.L. Suma de Cuadrados Cuadrado Medio Valor F Pr > F |  |
|--------|------------------------------------------------------|--|
| Modelo | 4 0.07947555 0.01986889 31.00 0.0089                 |  |
| Error  | 3 0.00192251 0.00064084                              |  |
| Total  | 7 0.08139806                                         |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.976381 | 3 174984 | 0.02531478      | 0.79731988 |

| Fuente | G. | L.  | Tipo I   | Cuadr  | ado M | edio | Valor F  | Pr > F |
|--------|----|-----|----------|--------|-------|------|----------|--------|
| TRAT   | 3  | 0.0 | 07711443 | 0.025  | 70481 | 40.1 | 1 0.0064 |        |
| BLK    | 1  | 0.0 | 00236112 | 0.0023 | 36112 | 3.68 | 0.1507   |        |

| Alfa= 0.1 G.L.= 3   | CME = 0.00 | 0641 |      |
|---------------------|------------|------|------|
| Valor crítico de T= | 2.35       |      |      |
| D.M.S.= 0.0596      |            |      |      |
| Agrupamiento        | Media      | N    | TRAT |
| A                   | 0.89806    | 2    | 2    |
| A                   | 0.87944    | 2    | 1    |
| В                   | 0.75562    | 2    | 4    |
| С                   | 0.65616    | 2    | 3    |

#### 11. Kg. FDN del concentrado.

| 111118112 | 1 1 001 0 | one entra de o i  |                |      |               |
|-----------|-----------|-------------------|----------------|------|---------------|
| Fuente    | G.L.      | Suma de Cuadrados | Cuadrado Medio | Valo | or $F Pr > F$ |
| Modelo    | 4         | 0.17672287        | 0.04418072     | 2.25 | 0.2654        |
| Error     | 3         | 0.05886572        | 0.01962191     |      |               |
| Total     | 7         | 0.23558858        |                |      |               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.750133 | 11.18699 | 0.14007822      | 1.25215313 |

| Fuente | G.I | L. Tipo I  | Cuadrado M | edio Va | ılor F | Pr > F |
|--------|-----|------------|------------|---------|--------|--------|
| TRAT   | 3   | 0.13123682 | 0.04374561 | 2.23    | 0.2636 |        |
| BLK    | 1   | 0.04548605 | 0.04548605 | 2.32    | 0.2252 |        |

# Alfa= 0.1 G.L.= 3 CME= 0.019622

| Valor crítico de T= 2 | 2.35   |   |        |
|-----------------------|--------|---|--------|
| D.M.S.= 0.3297        |        |   |        |
| Agrupamiento          | Media  | N | I TRAT |
| A                     | 1.4359 | 2 | 4      |
| A                     | 1.3077 | 2 | 2      |
| A                     | 1.1406 | 2 | 1      |
| A                     | 1.1244 | 2 | 3      |

# 12. Kg. cenizas del concentrado.

| Fuente | G.L. Suma de Cuadrados Cuadrado Medio Valor F Pr > F |
|--------|------------------------------------------------------|
| Modelo | 4 0.00891722 0.00222930 2.00 0.2983                  |
| Error  | 3 0.00334954 0.00111651                              |
| Total  | 7 0.01226675                                         |

| $\mathbb{R}^2$ | C.V.     | Desvio Estándar | Media      |
|----------------|----------|-----------------|------------|
| 0.726942       | 9.680457 | 0.03341426      | 0.34517230 |

| Fuente | G.L. | Tipo I     | Cuadrado Me | dio V | alor F | Pr > F |
|--------|------|------------|-------------|-------|--------|--------|
| TRAT   | 3    | 0.00825059 | 0.00275020  | 2.46  | 0.2393 |        |
| BLK    | 1    | 0.00066663 | 0.00066663  | 0.60  | 0.4960 |        |

| Alfa= 0.1 G.L.= 3  | CME= 0.00 | 1117 | 1    |  |
|--------------------|-----------|------|------|--|
| Valor crítico de T | = 2.35    |      |      |  |
| D.M.S.= 0.0786     |           |      |      |  |
| Agrupamiento       | Media     | N    | TRAT |  |
| A                  | 0.38667   | 2    | 3    |  |
| A                  | 0.36606   | 2    | 1    |  |
| A                  | 0.31724   | 2    | 2    |  |
| A                  | 0.31072   | 2    | 4    |  |

### 13. Kg. EE del concentrado.

| 10.115.22 |      | e e i i i i i i i i i i i i i i i i i i |                |      |            |
|-----------|------|-----------------------------------------|----------------|------|------------|
| Fuente    | G.L. | Suma de Cuadrados                       | Cuadrado Medio | Valo | r F Pr > F |
| Modelo    | 4    | 0.00393542                              | 0.00098385     | 3.40 | 0.1714     |
| Error     | 3    | 0.00086881                              | 0.00028960     |      |            |
| Total     | 7    | 0.00480422                              |                |      | _          |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.819158 | 10.15226 | 0.01701769      | 0.16762458 |

128

| Fuente | G.L. | Tipo I     | Cuadrado M | edio \ | Valor F | Pr > F |
|--------|------|------------|------------|--------|---------|--------|
| TRAT   | 3    | 0.00360827 | 0.00120276 | 4.15   | 0.1364  |        |
| BLK    | 1    | 0.00032715 | 0.00032715 | 1.13   | 0.3658  |        |

| Alfa= 0.1 G.L.= 3  | CME = 0.00 | 029 |      |  |
|--------------------|------------|-----|------|--|
| Valor crítico de T | = 2.35     |     |      |  |
| D.M.S.=0.04        |            |     |      |  |
| Agrupamiento       | Media      | N   | TRAT |  |
| A                  | 0.18429    | 2   | 3    |  |
| A                  | 0.18387    | 2   | 4    |  |
| BA                 | 0.17015    | 2   | 1    |  |
| В                  | 0.13218    | 2   | 2    |  |

#### 14. Kg. calcio del concentrado.

| _ 1 11g. vare | 1 11 11g. carers der concentrado. |                   |                      |          |  |  |
|---------------|-----------------------------------|-------------------|----------------------|----------|--|--|
| Fuente        | G.L.                              | Suma de Cuadrados | Cuadrado Medio Valor | F Pr > F |  |  |
| Modelo        | 4                                 | 0.00108061        | 0.00027015 5.41 0    | 0.0984   |  |  |
| Error         | 3                                 | 0.00014969        | 0.00004990           |          |  |  |
| Total         | 7                                 | 0.00123030        |                      |          |  |  |

| $\mathbb{R}^2$ | C.V.     | Desvio Estánda | r Media    |
|----------------|----------|----------------|------------|
| 0.878333       | 14.51966 | 0.00706370     | 0.04864918 |

| Fuente | G.L.   | Tipo I  | Сиаа | lrado Me | edio V | alor F | Pr > F |
|--------|--------|---------|------|----------|--------|--------|--------|
| TRAT   | 3 0.00 | 0092992 | 0.00 | 0030997  | 6.21   | 0.0839 |        |
| BLK    | 1 0.00 | 0015070 | 0.00 | 015070   | 3.02   | 0.1806 |        |

| Alfa= 0.1 G.L.= 3 CME= 0.00005 |                          |   |      |  |  |  |  |
|--------------------------------|--------------------------|---|------|--|--|--|--|
| Valor crítico de T             | Valor crítico de T= 2.35 |   |      |  |  |  |  |
| D.M.S.=0.0166                  |                          |   |      |  |  |  |  |
| Agrupamiento                   | Media                    | N | TRAT |  |  |  |  |
| Α                              | 0.060257                 | 2 | 1    |  |  |  |  |
| A                              | 0.058197                 | 2 | 3    |  |  |  |  |
| В                              | 0.040833                 | 2 | 2    |  |  |  |  |
| В                              | 0.035309                 | 2 | 4    |  |  |  |  |

#### 15. Kg. de fosforo del concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.00080209        | 0.00020052 6.28 0.0815        |
| Error  | 3    | 0.00009574        | 0.00003191                    |
| Total  | 7    | 0.00089783        |                               |

| R <sup>2</sup> | C.V.     | Desvio Estándar | Media      |
|----------------|----------|-----------------|------------|
| 0.893369       | 21.62504 | 0.00564909      | 0.02612290 |

| Fuente | G.L | . Tipo I   | Cuadrado Medio Valor $F$ $Pr > F$ |  |
|--------|-----|------------|-----------------------------------|--|
| TRAT   | 3   | 0.00038340 | 0.00012780 4.00 0.1422            |  |
| BLK    | 1   | 0.00041869 | 0.00041869 13.12 0.0362           |  |

| Alfa= 0.1 G.L.= 3 CME= 0.000032 |          |   |        |   |  |
|---------------------------------|----------|---|--------|---|--|
| Valor crítico de T              | = 2.35   |   |        |   |  |
| D.M.S.=0.0133                   |          |   |        |   |  |
| Agrupamiento                    | Media    | N | I TRAT |   |  |
| A                               | 0.036355 | 2 | 4      |   |  |
| BA                              | 0.028312 | 2 | 3      |   |  |
| В                               | 0.021501 | 2 | 1      | • |  |
| В                               | 0.018323 | 2 | 2      |   |  |

# 16. Mcal ENL del concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.15080540        | 0.03770135 20.60 0.0161       |
| Error  | 3    | 0.00548943        | 0.00182981                    |
| Total  | 7    | 0.15629483        |                               |

| $R^2$    | C.V.     | Desvio Estár | ndar Media |
|----------|----------|--------------|------------|
| 0.964878 | 0.484593 | 0.04277628   | 8.82726000 |

| Fuente | G.L. Tipo I  | $Cuadrado\ Medio\ Valor\ F\ Pr>F$ |
|--------|--------------|-----------------------------------|
| TRAT   | 3 0.14531598 | 0.04843866 26.47 0.0117           |
| BLK    | 1 0.00548942 | 0.00548942 3.00 0.1817            |

| Alfa= 0.1 G.L.= 3   | CME = 0.00 | 183 |      |
|---------------------|------------|-----|------|
| Valor crítico de T= | 2.35       |     |      |
| D.M.S.=0.1007       |            |     |      |
| Agrupamiento        | Media      | N   | TRAT |
| A                   | 9.01796    | 2   | 3    |
| В                   | 8.84039    | 2   | 4    |
| В                   | 8.81294    | 2   | 1    |
| С                   | 8.63775    | 2   | 2    |

### 17. Kg. PC total.

| 17.115.10 | total. |                   |                               |
|-----------|--------|-------------------|-------------------------------|
| Fuente    | G.L.   | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
| Modelo    | 4      | 0.25203500        | 0.06300875 6.60 0.0764        |
| Error     | 3      | 0.02862485        | 0.00954162                    |
| Total     | 7      | 0.28065985        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.898009 | 3.097630 | 0.09768120      | 3.15341756 |

| Fuente | G.L | . Tipo I   | Cuadrado Me | edio V | alor F | Pr > F |
|--------|-----|------------|-------------|--------|--------|--------|
| TRAT   | 3   | 0.05775087 | 0.01925029  | 2.02   | 0.2895 |        |
| BLK    | 1   | 0.19428414 | 0.19428414  | 20.36  | 0.0203 |        |

| Alfa= $0.1$ G.L.= $3$ | CME = 0.009 | 9542 | )    |
|-----------------------|-------------|------|------|
| Valor crítico de T=   | = 2.35      |      |      |
| D.M.S.= 0.2299        |             |      |      |
| Agrupamiento          | Media       | N    | TRAT |
| A                     | 3.27585     | 2    | 2    |
| A                     | 3.18719     | 2    | 1    |
| A                     | 3.09184     | 2    | 4    |
| A                     | 3.05879     | 2    | 3    |

# 18. Kg. FDA total.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.07922451        | 0.01980613 30.91 0.0090       |
| Error  | 3    | 0.00192251        | 0.00064084                    |
| Total  | 7    | 0.08114702        |                               |

| $R^2$    | C.V.     | Desvio Estánda | r Media    |
|----------|----------|----------------|------------|
| 0.976308 | 0.320761 | 0.02531478     | 7.89209143 |

| Fuente | G.L. | Tipo I     | Cuadrado Me | edio Va | alor F Pr > F |  |
|--------|------|------------|-------------|---------|---------------|--|
| TRAT   | 3    | 0.07711443 | 0.02570481  | 40.11   | 0.0064        |  |
| BLK    | 1    | 0.00211008 | 0.00211008  | 3.29    | 0.1672        |  |

| Alfa= 0.1 G.L.= 3   | CME = 0.00 | 0641 |      |
|---------------------|------------|------|------|
| Valor crítico de T= | = 2.35     |      |      |
| D.M.S.=0.0596       |            |      |      |
| Agrupamiento        | Media      | N    | TRAT |
| A                   | 7.99284    | 2    | 2    |
| A                   | 7.97421    | 2    | 1    |
| В                   | 7.85039    | 2    | 4    |
| С                   | 7.75093    | 2    | 3    |

### 19. Kg. FDN total.

| 17.115.1101 | i i totai. |                   |             |           |                       |  |
|-------------|------------|-------------------|-------------|-----------|-----------------------|--|
| Fuente      | G.L.       | Suma de Cuadrados | Cuadrado Me | edio Valo | or $F 	ext{ } Pr > F$ |  |
| Modelo      | 4          | 0.91439824        | 0.22859956  | 11.65     | 0.0358                |  |
| Error       | 3          | 0.05886572        | 0.01962191  |           |                       |  |
| Total       | 7          | 0.97326396        |             |           |                       |  |

| $R^2$    | C.V.     | Desvio Estánda | ır Media    |
|----------|----------|----------------|-------------|
| 0.939517 | 1.285118 | 0.14007822     | 10.90002853 |

| Fuente | G.L. | Tipo I    | Cuadrado Me | dio Va | lor F  | Pr > F |
|--------|------|-----------|-------------|--------|--------|--------|
| TRAT   | 3 0  | .13123682 | 0.04374561  | 2.23   | 0.2636 |        |
| BLK    | 1 0. | .78316142 | 0.78316142  | 39.91  | 0.0080 |        |

| Alfa= 0.1 G.L.= 3 CME= 0.019622 |                          |   |      |  |  |  |
|---------------------------------|--------------------------|---|------|--|--|--|
| Valor crítico de T=             | Valor crítico de T= 2.35 |   |      |  |  |  |
| D.M.S.= 0.3297                  |                          |   |      |  |  |  |
| Agrupamiento                    | Media                    | N | TRAT |  |  |  |
| A                               | 11.0838                  | 2 | 4    |  |  |  |
| A                               | 10.9556                  | 2 | 2    |  |  |  |
| A                               | 10.7885                  | 2 | 1    |  |  |  |
| A                               | 10.7722                  | 2 | 3    |  |  |  |

# 20. Kg. cenizas total.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | Valor | F Pr > F |
|--------|------|-------------------|----------------|-------|----------|
| Modelo | 4    | 0.44552645        | 0.11138161     | 99.76 | 0.0016   |
| Error  | 3    | 0.00334954        | 0.00111651     |       |          |
| Total  | 7    | 0.44887599        |                |       |          |

| ı |          |          |                 |            |
|---|----------|----------|-----------------|------------|
|   | $R^2$    | C.V.     | Desvio Estándar | Media      |
|   | 0.992538 | 0.502148 | 0.03341426      | 6.65426245 |

| Fuente | G.L | . Tipo I   | Cuadrado Medio Valor $F$ $Pr > F$ |  |
|--------|-----|------------|-----------------------------------|--|
| TRAT   | 3   | 0.00825059 | 0.00275020 2.46 0.2393            |  |
| BLK    | 1   | 0.43727586 | 0.43727586 391.64 0.0003          |  |

| Alfa= 0.1 G.L.= 3 CME= 0.001117 |                          |   |      |  |  |  |
|---------------------------------|--------------------------|---|------|--|--|--|
| Valor crítico de T=             | Valor crítico de T= 2.35 |   |      |  |  |  |
| D.M.S.= 0.0786                  |                          |   |      |  |  |  |
| Agrupamiento                    | Media                    | N | TRAT |  |  |  |
| A                               | 6.69576                  | 2 | 3    |  |  |  |
| A                               | 6.67515                  | 2 | 1    |  |  |  |
| A                               | 6.62633                  | 2 | 2    |  |  |  |
| A                               | 6.61981                  | 2 | 4    |  |  |  |

### 21. Kg. EE total.

| 21. IX5. DD | totai. |                   |                               |
|-------------|--------|-------------------|-------------------------------|
| Fuente      | G.L.   | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
| Modelo      | 4      | 0.03567742        | 0.00891935 30.80 0.0090       |
| Error       | 3      | 0.00086881        | 0.00028960                    |
| Total       | 7      | 0.03654622        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.976227 | 2.590108 | 0.01701769      | 0.65702623 |

| Fuente | G.L. Tipo I  | Cuadrado Medio Valor $F$ $Pr > F$ |
|--------|--------------|-----------------------------------|
| TRAT   | 3 0.00360827 | 0.00120276 4.15 0.1364            |
| BLK    | 1 0.03206915 | 0.03206915 110.74 0.0018          |

| Alfa= 0.1 G.L.= 3 CME= 0.00029 |                          |   |        |  |  |
|--------------------------------|--------------------------|---|--------|--|--|
| Valor crítico de T             | Valor crítico de T= 2.35 |   |        |  |  |
| D.M.S.= 0.04                   |                          |   |        |  |  |
| Agrupamiento                   | Media                    | N | I TRAT |  |  |
| A                              | 0.67369                  | 2 | 3      |  |  |
| A                              | 0.67327                  | 2 | 4      |  |  |
| BA                             | 0.65956                  | 2 | 1      |  |  |
| В                              | 0.62159                  | 2 | 2      |  |  |

# 22. Kg. calcio total.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.00093234        | 0.00023308 4.67 0.1180        |
| Error  | 3    | 0.00014969        | 0.00004990                    |
| Total  | 7    | 0.00108202        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.861660 | 4.864357 | 0.00706370      | 0.14521333 |

| Fuente | G.L. | $Tipo\ I$  | Cuadrado Me | dio V | alor F | Pr > F |
|--------|------|------------|-------------|-------|--------|--------|
| TRAT   | 3    | 0.00092992 | 0.00030997  | 6.21  | 0.0839 | 1      |
| BLK    | 1    | 0.00000242 | 0.00000242  | 0.05  | 0.8398 |        |

| Alfa= 0.1 G.L.= 3  | CME= 0.000 | 005 |      |
|--------------------|------------|-----|------|
| Valor crítico de T | = 2.35     |     |      |
| D.M.S.= 0.0166     |            |     |      |
| Agrupamiento       | Media      | N   | TRAT |
| A                  | 0.156821   | 2   | 1    |
| A                  | 0.154761   | 2   | 3    |
| В                  | 0.137397   | 2   | 2    |
| В                  | 0.131873   | 2   | 4    |

### 23. Kg. fosforo total.

| 23. 115. 105 | ioro totar. |                   |                               |
|--------------|-------------|-------------------|-------------------------------|
| Fuente       | G.L.        | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
| Modelo       | 4           | 0.00093226        | 0.00023306 7.30 0.0671        |
| Error        | 3           | 0.00009574        | 0.00003191                    |
| Total        | 7           | 0.00102799        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.906870 | 8.011818 | 0.00564909      | 0.07050945 |

| Fuente | G.L | . Tipo I   | Cuadrado Me | edio V | alor F | Pr > F |  |
|--------|-----|------------|-------------|--------|--------|--------|--|
| TRAT   | 3   | 0.00038340 | 0.00012780  | 4.00   | 0.1422 |        |  |
| BLK    | 1   | 0.00054885 | 0.00054885  | 17.20  | 0.0255 |        |  |

| AIC OI OI                    |               | 0020 |      |  |
|------------------------------|---------------|------|------|--|
| Alfa= $0.1  \text{G.L.} = 3$ | 6  CME = 0.00 | 0032 |      |  |
| Valor crítico de T           | = 2.35        |      |      |  |
| D.M.S.=0.0133                |               |      |      |  |
| Agrupamiento                 | Media         | N    | TRAT |  |
| A                            | 0.080742      | 2    | 4    |  |
| BA                           | 0.072699      | 2    | 3    |  |
| В                            | 0.065888      | 2    | 1    |  |
| В                            | 0.062709      | 2    | 2    |  |

#### 24. Mcal ENL total.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | Valor F | Pr > F |
|--------|------|-------------------|----------------|---------|--------|
| Modelo | 4    | 48.24217871       | 12.06054468    | 6591.15 | 0.0001 |
| Error  | 3    | 0.00548943        | 0.00182981     |         |        |
| Total  | 7    | 48.24766814       |                |         |        |

| $R^2$    | C.V.       | Desvio Estái | ndar Media  |
|----------|------------|--------------|-------------|
| 0.999886 | 5 0.129160 | 0.04277628   | 33.11870500 |

| Fuente | G.L. | Tipo I      | Cuadrado Me | edio Va  | lor F  | Pr > F |
|--------|------|-------------|-------------|----------|--------|--------|
| TRAT   | 3    | 0.14531598  | 0.04843866  | 26.47    | 0.0117 |        |
| BLK    | 1    | 48.09686273 | 48.09686273 | 26285.16 | 0.0001 |        |

| Alfa= 0.1 G.L.= 3  | 3 CME=0.00      | 183 |      |
|--------------------|-----------------|-----|------|
| Valor crítico de T | $\Gamma = 2.35$ |     |      |
| D.M.S.=0.1007      |                 |     |      |
| Agrupamiento       | Media           | N   | TRAT |
| A                  | 33.30941        | 2   | 3    |
| В                  | 33.13184        | 2   | 4    |
| В                  | 33.10439        | 2   | 1    |
| С                  | 32.92920        | 2   | 2    |

### 25. % PC total.

| 23. 70 1 0 1 | otur. |                   |                |       |          |
|--------------|-------|-------------------|----------------|-------|----------|
| Fuente       | G.L.  | Suma de Cuadrados | Cuadrado Medio | Valor | F Pr > F |
| Modelo       | 4     | 1.08492898        | 0.27123225     | 1.52  | 0.3804   |
| Error        | 3     | 0.53493285        | 0.17831095     |       |          |
| Total        | 7     | 1.61986184        |                |       |          |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.669766 | 3.208604 | 0.42226881      | 13.16051530 |

| Fuente | G.L | . Tipo I   | Cuadrado Me    | edio | Valor F  | Pr > F |
|--------|-----|------------|----------------|------|----------|--------|
| TRAT   | 3   | 1.02834638 | <br>0.34278213 | 1.92 | 2 0.3025 |        |
| BLK    | 1   | 0.05658260 | 0.05658260     | 0.32 | 0.6126   |        |

| Alfa= 0.1 G.L.= 3 CME= 0.178311 |         |   |      |  |  |
|---------------------------------|---------|---|------|--|--|
| Valor crítico de T=             | = 2.35  |   |      |  |  |
| D.M.S.= 0.9938                  |         |   |      |  |  |
| Agrupamiento                    | Media   | N | TRAT |  |  |
| A                               | 13.6905 | 2 | 2    |  |  |
| A                               | 13.2722 | 2 | 1    |  |  |
| A                               | 12.9261 | 2 | 4    |  |  |
| A                               | 12.7533 | 2 | 3    |  |  |

# 26. % FDA total.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 18.96892541       | 4.74223135 446.20 0.0002      |
| Error  | 3    | 0.03188390        | 0.01062797                    |
| Total  | 7    | 19.00080930       |                               |

|   | $R^2$    | C.V.     | Desvio Estándar | Media       |
|---|----------|----------|-----------------|-------------|
| I | 0.998322 | 0.312305 | 0.10309202      | 33.01007474 |

| Fuente | G.L | Tipo I      | Cuadrado Me | dio Val | or F  | Pr > F |
|--------|-----|-------------|-------------|---------|-------|--------|
| TRAT   | 3   | 1.24341780  | 0.41447260  | 39.00   | 0.006 | 57     |
| BLK    | 1   | 17.72550760 | 17.72550760 | 1667.82 | 0.000 | 1      |

| Alfa= 0.1 G.L.= 3 CME= 0.010628 |         |   |      |  |  |
|---------------------------------|---------|---|------|--|--|
| Valor crítico de T= 2.35        |         |   |      |  |  |
| D.M.S.= 0.2426                  |         |   |      |  |  |
| Agrupamiento                    | Media   | N | TRAT |  |  |
| Α                               | 33.4552 | 2 | 2    |  |  |
| A                               | 33.2795 | 2 | 1    |  |  |
| В                               | 32.8716 | 2 | 4    |  |  |
| С                               | 32.4340 | 2 | 3    |  |  |

### 27. % FDN total.

| 27. /0 I DIT | totui. |                   |                               |
|--------------|--------|-------------------|-------------------------------|
| Fuente       | G.L.   | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
| Modelo       | 4      | 5.92192202        | 1.48048050 4.97 0.1093        |
| Error        | 3      | 0.89316574        | 0.29772191                    |
| Total        | 7      | 6.81508776        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media       |  |
|----------|----------|-----------------|-------------|--|
| 0.868943 | 1.198373 | 0.54563899      | 45.53166629 |  |

| Fuente | G.L. | Tipo I     | Cuadrado Me | edio Ve | alor F | Pr > F |
|--------|------|------------|-------------|---------|--------|--------|
| TRAT   | 3    | 2.50863422 | 0.83621141  | 2.81    | 0.2095 |        |
| BLK    | 1 :  | 3.41328780 | 3.41328780  | 11.46   | 0.0429 |        |

| Alfa= $0.1  \text{G.L.} = 3$ | CME = 0.297722 | 2      |
|------------------------------|----------------|--------|
| Valor crítico de T           | = 2.35         |        |
| D.M.S.= 1.2841               |                |        |
| Agrupamiento                 | Media N        | N TRAT |
| A                            | 46.3216 2      | 4      |
| BA                           | 45.7982 2      | 2      |
| В                            | 45.0268 2      | 3      |
| В                            | 44.9800 2      | 1      |

#### 28. % cenizas total.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 37.98218767       | 9.49554692 487.95 0.0002      |
| Error  | 3    | 0.05838039        | 0.01946013                    |
| Total  | 7    | 38.04056806       |                               |

|   | $R^2$   | C.V.     | Desvio Estándar | Media       |
|---|---------|----------|-----------------|-------------|
| 0 | .998465 | 0.500494 | 0.13949957      | 27.87236242 |

| Fuente | G.L. | Tipo I      | Cuadrado Med | lio Va  | ılor F | Pr > F |
|--------|------|-------------|--------------|---------|--------|--------|
| TRAT   | 3    | 0.11356675  | 0.03785558   | 1.95    | 0.2992 |        |
| BLK    | 1    | 37.86862092 | 37.86862092  | 1945.96 | 0.0001 |        |

| Alfa= 0.1 G.L.= 3 CME= 0.01946 |                          |   |      |  |  |
|--------------------------------|--------------------------|---|------|--|--|
| Valor crítico de T=            | Valor crítico de T= 2.35 |   |      |  |  |
| D.M.S.=0.3283                  |                          |   |      |  |  |
| Agrupamiento                   | Media                    | N | TRAT |  |  |
| A                              | 28.0589                  | 2 | 3    |  |  |
| A                              | 27.8929                  | 2 | 1    |  |  |
| A                              | 27.7757                  | 2 | 2    |  |  |
| A                              | 27.7619                  | 2 | 4    |  |  |

### 29. % EE total.

| 2): // EE total:        |      |                   |                               |  |  |  |
|-------------------------|------|-------------------|-------------------------------|--|--|--|
| Dependent Variable: TEE |      |                   |                               |  |  |  |
| Fuente                  | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |  |  |  |
| Modelo                  | 4    | 0.23285901        | 0.05821475 12.90 0.0311       |  |  |  |
| Error                   | 3    | 0.01353815        | 0.00451272                    |  |  |  |
| Total                   | 7    | 0.24639716        |                               |  |  |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.945056 | 2.454849 | 0.06717676      | 2.73649285 |

| Fuente | G.L. | Tipo I     | Cuadrado Medio Valor $F$ $Pr > F$ |
|--------|------|------------|-----------------------------------|
| TRAT   | 3    | 0.06099843 | 0.02033281 4.51 0.1240            |
| BLK    | 1    | 0.17186057 | 0.17186057 38.08 0.0086           |

| Alfa= 0.1 G.L.= 3 CME= 0.004513 |                          |   |        |  |  |  |  |
|---------------------------------|--------------------------|---|--------|--|--|--|--|
| Valor crítico de T=             | Valor crítico de T= 2.35 |   |        |  |  |  |  |
| D.M.S.=0.1581                   |                          |   |        |  |  |  |  |
| Agrupamiento                    | Media                    | N | I TRAT |  |  |  |  |
| A                               | 2.80630                  | 2 | 3      |  |  |  |  |
| A                               | 2.80481                  | 2 | 4      |  |  |  |  |
| BA                              | 2.74299                  | 2 | 1      |  |  |  |  |
| В                               | 2.59187                  | 2 | 2      |  |  |  |  |

#### 30. % calcio total.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.02236012        | 0.00559003 6.24 0.0823        |
| Error  | 3    | 0.00268878        | 0.00089626                    |
| Total  | 7    | 0.02504889        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.892659 | 4.928921 | 0.02993759      | 0.60738619 |

| Fuente | G.L. Tipo I | I Cuadrado Med | dio Valor | rF Pr > F |
|--------|-------------|----------------|-----------|-----------|
| TRAT   | 3 0.015893  | 0.00529786     | 5.91 (    | ).0893    |
| BLK    | 1 0.0064665 | 54 0.00646654  | 7.22 0.   | .0747     |

| Alfa= 0.1 G.L.= 3   | CME = 0.00 | 0896 |      |  |
|---------------------|------------|------|------|--|
| Valor crítico de T= | 2.35       |      |      |  |
| D.M.S.=0.0705       |            |      |      |  |
| Agrupamiento        | Media      | N    | TRAT |  |
| A                   | 0.65480    | 2    | 1    |  |
| A                   | 0.64774    | 2    | 3    |  |
| В                   | 0.57395    | 2    | 2    |  |
| В                   | 0.55305    | 2    | 4    |  |

#### 31. % fosforo total

| 31. /0 1031 | oro totar |                   |                               |
|-------------|-----------|-------------------|-------------------------------|
| Fuente      | G.L.      | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
| Modelo      | 4         | 0.01080567        | 0.00270142 4.39 0.1273        |
| Error       | 3         | 0.00184786        | 0.00061595                    |
| Total       | 7         | 0.01265353        |                               |

| L | $R^2$    | C.V.     | Desvio Estándar | Media      |   |
|---|----------|----------|-----------------|------------|---|
| I | 0.853965 | 8.458315 | 0.02481839      | 0.29341997 | 1 |

| Fuente | G.L. | Tipo I     | Cuadrado Me | dio Va | alor F | Pr > F |
|--------|------|------------|-------------|--------|--------|--------|
| TRAT   | 3    | 0.00695501 | 0.00231834  | 3.76   | 0.1526 |        |
| BLK    | 1    | 0.00385066 | 0.00385066  | 6.25   | 0.0877 |        |

| Alfa= 0.1 G.L.= 3 CME= 0.000616 |         |   |      |  |  |
|---------------------------------|---------|---|------|--|--|
| Valor crítico de T              | = 2.35  |   |      |  |  |
| D.M.S.=0.0584                   |         |   |      |  |  |
| Agrupamiento                    | Media   | N | TRAT |  |  |
| A                               | 0.33750 | 2 | 4    |  |  |
| BA                              | 0.30202 | 2 | 3    |  |  |
| В                               | 0.27308 | 2 | 1    |  |  |
| В                               | 0.26107 | 2 | 2    |  |  |

#### 32. Kg. ofrecido de concentrado.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 10   | 0.03228000        | 0.00322800 99999.99 0.0001    |
| Error  | 21   | 0.00000000        | 0.00000000                    |
| Total  | 31   | 0.03228000        |                               |

| $\mathbb{R}^2$ | C.V. | Desvio Estándar | Media      |
|----------------|------|-----------------|------------|
| 1.00000        | 00 0 | 0               | 5.25450000 |

| Fuente | G.L. | Tipo I     | Cuadrado M | ledio Va | lor F  | Pr > F |
|--------|------|------------|------------|----------|--------|--------|
| TRAT   | 3    | 0.03228000 | 0.01076000 | 99999.99 | 0.0001 |        |
| BLK    | 7    | 0.00000000 | 0.00000000 | 99999.99 | 0.0001 |        |

| Alfa= 0.1 G.L.= 21  | CME=0 |   |        |
|---------------------|-------|---|--------|
| Valor crítico de T= | 1.72  |   |        |
| D.M.S.= 0           |       |   |        |
| Agrupamiento        | Media |   | N TRAT |
| A                   | 5.309 | 8 | 1      |
| В                   | 5.243 | 8 | 3      |
| С                   | 5.235 | 8 | 2      |
| D                   | 5.231 | 8 | 4      |

#### 33. Oferta kg. total

| 33. Office | Kg. total |                   |                  |                |
|------------|-----------|-------------------|------------------|----------------|
| Fuente     | G.L.      | Suma de Cuadrados | Cuadrado Medio   | Valor F Pr > F |
| Modelo     | 10        | 22.56349150       | 2.25634915 99999 | 9.99 0.0001    |
| Error      | 21        | 0.00000000        | 0.00000000       |                |
| Total      | 31        | 22.56349150       |                  |                |

| $R^2$    | C.V. | Desvio Estándar | Media       |  |
|----------|------|-----------------|-------------|--|
| 1.000000 | 0    | 0               | 24.03062500 |  |

| Fuente | G.L | . Tipo I    | Cuadrado Me | edio Valo | or F Pr > F |
|--------|-----|-------------|-------------|-----------|-------------|
| TRAT   | 3   | 0.03228000  | 0.01076000  | 99999.99  | 0.0001      |
| BLK    | 7   | 22.53121150 | 3.21874450  | 99999.99  | 0.0001      |

| Alfa= 0.1 G.L.= 21 CME= 0 |       |   |        |  |  |  |  |
|---------------------------|-------|---|--------|--|--|--|--|
| Valor crítico de T=       | 1.72  |   |        |  |  |  |  |
| D.M.S.=0                  |       |   |        |  |  |  |  |
| Agrupamiento              | Media |   | N TRAT |  |  |  |  |
| A                         | 24.09 | 8 | 1      |  |  |  |  |
| В                         | 24.02 | 8 | 3      |  |  |  |  |
| С                         | 24.01 | 8 | 2      |  |  |  |  |
| D                         | 24.01 | 8 | 4      |  |  |  |  |

# 9.2. RESUMEN DE ANOVAS DE FORRAJE, ENSILAJE, CONCENTRADO Y TOTAL CONSUMIDO

#### 1. Consumo Kg MS pastura

|        |      | l .               |                |         |          |  |
|--------|------|-------------------|----------------|---------|----------|--|
| Fuente | G.L. | Suma de cuadrados | Cuadrado medio | Valor I | F Pr > F |  |
| Modelo | 10   | 21.32299150       | 2.13229915     | 2.20    | 0.0611   |  |
| Error  | 21   | 20.31659638       | 0.96745697     |         |          |  |
| Total  | 31   | 41.63958788       |                |         |          |  |

| R <sup>2</sup> | C.V.     | Desvio Estánda | nr Media   |  |
|----------------|----------|----------------|------------|--|
| 0.512085       | 19.48507 | 0.98359391     | 5.04793750 |  |

| Fuente | G.I | L. Tipo     | Cuadrado me | dio Va | alor F | Pr > F |
|--------|-----|-------------|-------------|--------|--------|--------|
| TRAT   | 3   | 4.13358663  | 1.37786221  | 1.42   | 0.2638 |        |
| BLK    | 7   | 17.18940487 | 2.45562927  | 2.54   | 0.0464 |        |

| Alfa= 0.1 G.L.= 21  | E.E.M.=0. | 9674 | -57  |
|---------------------|-----------|------|------|
| Valor Crítico de T= | = 1.72    |      |      |
| D.M.S.= 0.8463      |           |      |      |
| Agrupamiento        | Media     | N    | TRAT |
| A                   | 5.5030    | 8    | 1    |
| BA                  | 5.2508    | 8    | 2    |
| BA                  | 4.8804    | 8    | 4    |
| В                   | 4.5576    | 8    | 3    |

#### 2. Kg. PC pastura

| Fuente   | G.L.   | Suma de cua | drados  | Cuadr | ado me | dio Valor F | Pr > F |
|----------|--------|-------------|---------|-------|--------|-------------|--------|
| Modelo   | 10     | 0.87208700  | 0.087   | 20870 | 5.02   | 0.0009      |        |
| Error    | 21 0   | .36457650   | 0.01736 | 079   |        |             |        |
| Total 31 | 1.2366 | 6350        |         |       |        |             |        |

| $R^2$    | C.V.     | Desvio Están | dar Media  |
|----------|----------|--------------|------------|
| 0.705193 | 15.79150 | 0.13176033   | 0.83437500 |

| Fuente | G.L. | Tipo       | Cuadrado me | dio V | alor F | Pr > F |
|--------|------|------------|-------------|-------|--------|--------|
| TRAT   | 3    | 0.04230400 | 0.01410133  | 0.81  | 0.5014 | 1      |
| BLK    | 7    | 0.82978300 | 0.11854043  | 6.83  | 0.0003 |        |

| Alfa= 0.1 G.L.= 2  | 1 E.E.M.= 0. | 017 | 361    |  |
|--------------------|--------------|-----|--------|--|
| Valor Crítico de T | = 1.72       |     |        |  |
| D.M.S.=0.1134      |              |     |        |  |
| Agrupamiento       | Media        | N   | I TRAT |  |
| A                  | 0.88038      | 8   | 1      |  |
| A                  | 0.85238      | 8   | 2      |  |
| A                  | 0.82238      | 8   | 4      |  |
| A                  | 0.78238      | 8   | 3      |  |

#### 3. Kg. FDA pastura

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio | Valor $F Pr > F$ |
|--------|------|-------------------|----------------|------------------|
| Modelo | 10   | 9.05481500        | 0.90548150     | 3.30 0.0101      |
| Error  | 21   | 5.75393100        | 0.27399671     |                  |
| Total  | 31   | 14.80874600       |                |                  |

| $\mathbb{R}^2$ | C.V.     | Desvío Está | ndar Media |
|----------------|----------|-------------|------------|
| 0.611450       | 23.47822 | 0.52344695  | 2.22950000 |

| Fuente | G.L. | Tipo       | Cuadrado me | dio Va | ılor F | Pr > F |
|--------|------|------------|-------------|--------|--------|--------|
| TRAT   | 3    | 0.90923600 | 0.30307867  | 1.11   | 0.3688 |        |
| BLK    | 7    | 8.14557900 | 1.16365414  | 4.25   | 0.0046 |        |

| Alfa= 0.1 G.L.= 21 E.E.M.= 0.273997 |        |   |      |  |  |  |
|-------------------------------------|--------|---|------|--|--|--|
| Valor Crítico de T=                 | 1.72   |   |      |  |  |  |
| D.M.S.= 0.4504                      |        |   |      |  |  |  |
| Agrupamiento                        | Media  | N | TRAT |  |  |  |
| A                                   | 2.4280 | 8 | 1    |  |  |  |
| A                                   | 2.3295 | 8 | 2    |  |  |  |
| A                                   | 2.1795 | 8 | 4    |  |  |  |
| A                                   | 1.9810 | 8 | 3    |  |  |  |

## 4. Kg. FDN pastura.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio | Valor $F Pr > F$ |
|--------|------|-------------------|----------------|------------------|
| Modelo | 10   | 11.82768331       | 1.18276833     | 2.92 0.0185      |
| Error  | 21   | 8.50866666        | 0.40517460     |                  |
| Total  | 31   | 20.33634997       |                |                  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.581603 | 24.82125 | 0.63653327      | 2.56446875 |

| Fuente | G.L | . Tipo      | Cuadrado med | io Va | lor F  | Pr > F |
|--------|-----|-------------|--------------|-------|--------|--------|
| TRAT   | 3   | 1.54285759  | 0.51428586   | 1.27  | 0.310  | 5      |
| BLK    | 7   | 10.28482572 | 1.46926082   | 3.63  | 0.0102 | 2      |

| Alfa= 0.1 G.L.= 21 E.E.M.= 0.405175 |        |   |      |  |  |  |
|-------------------------------------|--------|---|------|--|--|--|
| Valor Crítico de T=                 | 1.72   |   |      |  |  |  |
| D.M.S.= 0.5477                      |        |   |      |  |  |  |
| Agrupamiento                        | Media  | N | TRAT |  |  |  |
| A                                   | 2.8448 | 8 | 1    |  |  |  |
| A                                   | 2.7046 | 8 | 2    |  |  |  |
| A                                   | 2.4102 | 8 | 4    |  |  |  |
| Α                                   | 2.2983 | 8 | 3    |  |  |  |

## 5. Consumo Kg. MS ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 10   | 32.44669256       | 3.24466926 105.82 0.0001      |
| Error  | 21   | 0.64392066        | 0.03066289                    |
| Total  | 31   | 33.09061322       |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.980541 | 2.028440 | 0.17510822      | 8.63265625 |

| Fuente | G.L. | Tipo        | Cuadrado medi | o Valo | rF Pr > F |
|--------|------|-------------|---------------|--------|-----------|
| TRAT   | 3    | 0.07242959  | 0.02414320    | 0.79   | 0.5144    |
| BLK    | 7    | 32.37426297 | 4.62489471    | 150.83 | 0.0001    |

| Alfa= 0.1 G.L.= 21 E.E.M.= 0.030663 |         |   |      |  |  |  |
|-------------------------------------|---------|---|------|--|--|--|
| Valor Crítico de T=                 | 1.72    |   |      |  |  |  |
| D.M.S.= 0.1507                      |         |   |      |  |  |  |
| Agrupamiento                        | Media   | N | TRAT |  |  |  |
| A                                   | 8.68800 | 8 | 2    |  |  |  |
| A                                   | 8.67088 | 8 | 4    |  |  |  |
| A                                   | 8.59463 | 8 | 3    |  |  |  |
| A                                   | 8.57713 | 8 | 1    |  |  |  |

## 6. Kg. MS concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 10   | 0.37906156        | 0.03790616 14.61 0.0001       |
| Error  | 21   | 0.05446966        | 0.00259379                    |
| Total  | 31   | 0.43353122        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.874358 | 0.987068 | 0.05092930      | 5 15965625 |

| Fuente | G.L | . Tipo     | Cuadrado me | edio Ve | alor F | Pr > F |
|--------|-----|------------|-------------|---------|--------|--------|
| TRAT   | 3   | 0.07696909 | 0.02565636  | 9.89    | 0.000  | 3      |
| BLK    | 7   | 0.30209247 | 0.04315607  | 16.64   | 0.0001 |        |

| Alfa= 0.1 G.L.= 2  | 1 E.E.M.= 0. | .002 | 594    |  |
|--------------------|--------------|------|--------|--|
| Valor Crítico de T | = 1.72       |      |        |  |
| D.M.S.= 0.0438     |              |      |        |  |
| Agrupamiento       | Media        | N    | I TRAT |  |
| A                  | 5.23638      | 8    | 1      |  |
| В                  | 5.15288      | 8    | 4      |  |
| В                  | 5.14963      | 8    | 3      |  |
| С                  | 5.09975      | 8    | 2      |  |

#### 7. Kg. P pastura

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio | Valor F Pr > F |
|--------|------|-------------------|----------------|----------------|
| Modelo | 10   | 0.00035606        | 0.00003561     | 3.61 0.0064    |
| Error  | 21   | 0.00020741        | 0.00000988     |                |
| Total  | 31   | 0.00056347        |                |                |

| $R^2$    | C.V.     | Desvio Estándar | Media      |  |
|----------|----------|-----------------|------------|--|
| 0.631912 | 18.25155 | 0.00314269      | 0.01721875 |  |

| Fuente | G.L. | Tipo       | Cuadrado med | dio Va | lor F P | r > F |
|--------|------|------------|--------------|--------|---------|-------|
| TRAT   | 3    | 0.00003634 | 0.00001211   | 1.23   | 0.3248  |       |
| BLK    | 7    | 0.00031972 | 0.00004567   | 4.62   | 0.0029  |       |

| Alfa= 0.1 G.L.= 21 E.E.M.= 9.876E-6 |                          |   |      |  |  |  |  |  |
|-------------------------------------|--------------------------|---|------|--|--|--|--|--|
| Valor Crítico de T                  | Valor Crítico de T= 1.72 |   |      |  |  |  |  |  |
| D.M.S.= 0.0027                      |                          |   |      |  |  |  |  |  |
| Agrupamiento                        | Media                    | N | TRAT |  |  |  |  |  |
| A                                   | 0.017875                 | 8 | 1    |  |  |  |  |  |
| A                                   | 0.017875                 | 8 | 2    |  |  |  |  |  |
| A                                   | 0.017750                 | 8 | 4    |  |  |  |  |  |
| A                                   | 0.015375                 | 8 | 3    |  |  |  |  |  |

## 8. Kg. Ca pastura.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 10   | 0.01150225        | 0.00115023 13.25 0.0001       |
| Error  | 21   | 0.00182362        | 0.00008684                    |
| Total  | 31   | 0.01332587        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.863152 | 18.84958 | 0.00931876      | 0.04943750 |

| Fuente | G.L. | Tipo       | Cuadrado me | dio V | alor F | Pr > F |
|--------|------|------------|-------------|-------|--------|--------|
| TRAT   | 3    | 0.00010938 | 0.00003646  | 0.42  | 0.740  | 7      |
| BLK    | 7    | 0.01139288 | 0.00162755  | 18.74 | 0.000  | 1      |

| Alfa= 0.1 G.L.= 21 E.E.M.= 0.000087 |          |   |      |  |  |  |  |
|-------------------------------------|----------|---|------|--|--|--|--|
| Valor Crítico de T= 1.72            |          |   |      |  |  |  |  |
| D.M.S.=0.008                        |          |   |      |  |  |  |  |
| Agrupamiento                        | Media    | N | TRAT |  |  |  |  |
| A                                   | 0.052500 | 8 | 1    |  |  |  |  |
| A                                   | 0.049250 | 8 | 2    |  |  |  |  |
| A                                   | 0.048250 | 8 | 4    |  |  |  |  |
| A                                   | 0.047750 | 8 | 3    |  |  |  |  |

## 9. Kg. EE pastura.

| Fuente | G.L. | Suma de cuadrados | Cuadrado m | edio Val | or $F Pr > F$ |  |
|--------|------|-------------------|------------|----------|---------------|--|
| Modelo | 10   | 0.00840581        | 0.00084058 | 6.87     | 0.0001        |  |
| Error  | 21   | 0.00257016        | 0.00012239 |          |               |  |
| Total  | 31   | 0.01097597        |            |          |               |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.765838 | 8.955571 | 0.01106293      | 0.12353125 |

| Fuente | G.L | . Tipo     | Cuadrado me | dio Va | ılor F | Pr > F |
|--------|-----|------------|-------------|--------|--------|--------|
| TRAT   | 3   | 0.00037459 | 0.00012486  | 1.02   | 0.4036 |        |
| BLK    | 7   | 0.00803122 | 0.00114732  | 9.37   | 0.0001 |        |

| Alfa= 0.1 G.L.= 21 E.E.M.= 0.000122 |          |   |      |  |  |  |  |
|-------------------------------------|----------|---|------|--|--|--|--|
| Valor Crítico de T= 1.72            |          |   |      |  |  |  |  |
| D.M.S.= 0.0095                      |          |   |      |  |  |  |  |
| Agrupamiento                        | Media    | N | TRAT |  |  |  |  |
| A                                   | 0.128750 | 8 | 1    |  |  |  |  |
| A                                   | 0.124375 | 8 | 2    |  |  |  |  |
| A                                   | 0.121000 | 8 | 4    |  |  |  |  |
| A                                   | 0.120000 | 8 | 3    |  |  |  |  |

## 10. Consumo Kg. MS total.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio | Valor | F Pr > F |
|--------|------|-------------------|----------------|-------|----------|
| Modelo | 10   | 82.97184925       | 8.29718492     | 8.60  | 0.0001   |
| Error  | 21   | 20.25876275       | 0.96470299     |       |          |
| Total  | 31   | 103.23061200      |                |       |          |

| $R^2$    | C.V.     | Desvio Estándar | Media       |  |
|----------|----------|-----------------|-------------|--|
| 0.803752 | 5.213269 | 0.98219295      | 18.84025000 |  |

| Fuente | G.L. Tipo     | Cuadrado medio | Valor F  Pr > F |
|--------|---------------|----------------|-----------------|
| TRAT   | 3 4.59595825  | 1.53198608 1.  | 59 0.2221       |
| BLK    | 7 78.37589100 | 11.19655586 1  | 1.61 0.0001     |

| Alfa= 0.1 G.L.= 21 E.E.M.= 0.964703 |         |   |      |  |  |  |
|-------------------------------------|---------|---|------|--|--|--|
| Valor Crítico de T                  | = 1.72  |   |      |  |  |  |
| D.M.S.= 0.8451                      |         |   |      |  |  |  |
| Agrupamiento                        | Media   | N | TRAT |  |  |  |
| A                                   | 19.3165 | 8 | 1    |  |  |  |
| BA                                  | 19.0385 | 8 | 2    |  |  |  |
| BA                                  | 18.7041 | 8 | 4    |  |  |  |
| В                                   | 18.3019 | 8 | 3    |  |  |  |

#### 11. % PC pastura.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 10   | 178.57842563      | 17.85784256 8.87 0.0001       |
| Error  | 21   | 42.28899019       | 2.01376144                    |
| Total  | 31   | 220.86741581      |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.808532 | 8.504924 | 1.41907062      | 16.68528231 |

| Fuente | G.L. | Tipo         | Cuadrado me | dio Va | lor F  | Pr > F |
|--------|------|--------------|-------------|--------|--------|--------|
| TRAT   | 3    | 7.79374338   | 2.59791446  | 1.29   | 0.3038 |        |
| BLK    | 7    | 170.78468225 | 24.39781175 | 12.12  | 0.0001 |        |

| Alfa= 0.1 G.L.= 2  | 21 E.E.M.= 2. | 013 | 761  |  |
|--------------------|---------------|-----|------|--|
| Valor Crítico de T | T= 1.72       |     |      |  |
| D.M.S.= 1.2209     |               |     |      |  |
| Agrupamiento       | Media         | N   | TRAT |  |
| A                  | 17.3175       | 8   | 3    |  |
| BA                 | 16.9319       | 8   | 4    |  |
| BA                 | 16.4983       | 8   | 2    |  |
| В                  | 15.9934       | 8   | 1    |  |

#### 12. % FDA pastura.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio | Valor | F Pr > F |
|--------|------|-------------------|----------------|-------|----------|
| Modelo | 10   | 1578.96872363     | 157.89687236   | 7.45  | 0.0001   |
| Error  | 21   | 445.12010378      | 21.19619542    |       |          |
| Total  | 31   | 2024.08882741     |                |       |          |

| $R^2$    | C.V.     | Desvio Estándar | Media       |  |
|----------|----------|-----------------|-------------|--|
| 0.780089 | 10.61251 | 4.60393260      | 43.38214696 |  |

| Fuente | G.1 | L. Tipo       | Cuadrado medio | Valo  | r F   | Pr > F |
|--------|-----|---------------|----------------|-------|-------|--------|
| TRAT   | 3   | 31.26986347   | 10.42328782    | 0.49  | 0.691 | 18     |
| BLK    | 7   | 1547.69886015 | 221.09983716   | 10.43 | 0.00  | 001    |

| Alfa= 0.1 G.L.= 21  | E.E.M.=21 | .196 | 2    |
|---------------------|-----------|------|------|
| Valor Crítico de T= | 1.72      |      |      |
| D.M.S.= 3.9611      |           |      |      |
| Agrupamiento        | Media     | N    | TRAT |
| A                   | 44.299    | 8    | 4    |
| A                   | 44.175    | 8    | 1    |
| A                   | 43.227    | 8    | 2    |
| A                   | 41.828    | 8    | 3    |

#### 13. Mcal ENL/Kg. MS pastura.

| 13.1110411 | 11 1D/ 11g. | rib pusturu.      |                               |
|------------|-------------|-------------------|-------------------------------|
| Fuente     | G.L.        | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
| Modelo     | 10          | 1.23791148        | 0.12379115 7.45 0.0001        |
| Error      | 21          | 0.34897416        | 0.01661782                    |
| Total      | 31          | 1 58688564        |                               |

145

| $R^2$    | C.V.     | Desvio Estándar | Media      |  |
|----------|----------|-----------------|------------|--|
| 0.780089 | 10.89412 | 0.12891011      | 1.18329989 |  |

| Fuente | G.L. | Tipo       | Cuadrado med | lio Val | or F Pr > F |  |
|--------|------|------------|--------------|---------|-------------|--|
| TRAT   | 3    | 0.02451557 | 0.00817186   | 0.49    | 0.6918      |  |
| BLK    | 7    | 1.21339591 | 0.17334227   | 10.43   | 0.0001      |  |

| Alfa= 0.1 G.L.= 21 | 1  E.E.M. = 0. | 0166 | 518  |  |
|--------------------|----------------|------|------|--|
| Valor Crítico de T | = 1.72         |      |      |  |
| D.M.S.= 0.1109     |                |      |      |  |
| Agrupamiento       | Media          | N    | TRAT |  |
| A                  | 1.22682        | 8    | 3    |  |
| A                  | 1.18765        | 8    | 2    |  |
| A                  | 1.16111        | 8    | 1    |  |
| A                  | 1.15763        | 8    | 4    |  |

14. % FDN pastura.

| Dependent ' | Variable: | PFDN              |                               |
|-------------|-----------|-------------------|-------------------------------|
| Fuente      | G.L.      | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
| Modelo      | 10        | 2024.73266039     | 202.47326604 7.98 0.0001      |
| Error       | 21        | 533.07461518      | 25.38450548                   |
| Total       | 31        | 2557.80727557     |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.791589 | 10.08011 | 5.03830383      | 49.98262038 |

| Fuente | G.L | Tipo          | Cuadrado med | lio Val | or $F 	ext{ } Pr > F$ |
|--------|-----|---------------|--------------|---------|-----------------------|
| TRAT   | 3   | 61.14081409   | 20.38027136  | 0.80    | 0.5062                |
| BLK    | 7   | 1963.59184630 | 280.51312090 | 11.05   | 0.0001                |

| Alfa= 0.1 G.L.= 21 E.E.M.= 25.38451 |        |   |      |  |  |  |
|-------------------------------------|--------|---|------|--|--|--|
| Valor Crítico de T=                 | 1.72   |   |      |  |  |  |
| D.M.S.= 4.3348                      |        |   |      |  |  |  |
| Agrupamiento                        | Media  | N | TRAT |  |  |  |
| A                                   | 51.605 | 8 | 1    |  |  |  |
| A                                   | 51.024 | 8 | 2    |  |  |  |
| A                                   | 49.083 | 8 | 3    |  |  |  |
| A                                   | 48.218 | 8 | 4    |  |  |  |

15. % EE pastura.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 10   | 9.02336767        | 0.90233677 3.24 0.0112        |
| Error  | 21   | 5.85406080        | 0.27876480                    |
| Total  | 31   | 14.87742847       |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.606514 | 20 55006 | 0.52798182      | 2.56924715 |

146

| Fuente | G.L | . Tipo     | Cuadrado medio Valor F | Pr > F |
|--------|-----|------------|------------------------|--------|
| TRAT   | 3   | 1.04628349 | 0.34876116 1.25 0.3166 | 5      |
| BLK    | 7   | 7.97708418 | 1.13958345 4.09 0.0056 |        |

| Alfa= 0.1 G.L.= 21  | E.E.M.=0. | 2787 | 65   |
|---------------------|-----------|------|------|
| Valor Crítico de T= | 1.72      |      |      |
| D.M.S.= 0.4543      |           |      |      |
| Agrupamiento        | Media     | N    | TRAT |
| A                   | 2.8583    | 8    | 3    |
| BA                  | 2.5786    | 8    | 4    |
| BA                  | 2.4562    | 8    | 2    |
| В                   | 2.3838    | 8    | 1    |

16. % P pastura.

| 10.70 I pa | o correct. |                   |                               |
|------------|------------|-------------------|-------------------------------|
| Fuente     | G.L.       | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
| Modelo     | 10         | 0.20931544        | 0.02093154 4.70 0.0014        |
| Error      | 21         | 0.09344495        | 0.00444976                    |
| Total      | 31         | 0.30276039        |                               |

| R | <sup>2</sup> C.V. | Desvio l | Estándar   | PP Media   |  |
|---|-------------------|----------|------------|------------|--|
|   | 0.691357          | 18.87891 | 0.06670652 | 0.35333880 |  |

| Fuente | G.L. | Tipo       | Cuadrado medio | o Va | lor F  | Pr > F |
|--------|------|------------|----------------|------|--------|--------|
| TRAT   | 3    | 0.01307189 | 0.00435730     | 0.98 | 0.4214 |        |
| BLK    | 7    | 0.19624356 | 0.02803479     | 6.30 | 0.0005 |        |

| Alfa= 0.1 G.L.= 2  | 1 E.E.M.= 0.00445 |      |
|--------------------|-------------------|------|
| Valor Crítico de T | = 1.72            |      |
| D.M.S.=0.0574      |                   |      |
| Agrupamiento       | Media N           | ΓRAT |
| A                  | 0.38239 8 4       |      |
| A                  | 0.35806 8 3       |      |
| A                  | 0.34639 8 2       |      |
| A                  | 0.32651 8 1       |      |

% Ca pastura.

| 70 000 |      |                   |                               |
|--------|------|-------------------|-------------------------------|
| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
| Modelo | 10   | 3.56633359        | 0.35663336 25.45 0.0001       |
| Error  | 21   | 0.29424501        | 0.01401167                    |
| Total  | 31   | 3.86057859        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.923782 | 12.25364 | 0.11837089      | 0.96600620 |

| Fuente | G.1 | L. Tipo    | Cuadrado med | dio Va | lor F Pr | > <i>F</i> |
|--------|-----|------------|--------------|--------|----------|------------|
| TRAT   | 3   | 0.08406129 | 0.02802043   | 2.00   | 0.1449   |            |
| BLK    | 7   | 3.48227230 | 0.49746747   | 35.50  | 0.0001   |            |

| Alfa= 0.1 G.L.= 2  | 21  E.E.M. = 0  | .014 | 012    |   |
|--------------------|-----------------|------|--------|---|
| Valor Crítico de T | $\Gamma = 1.72$ |      |        |   |
| D.M.S.=0.1018      |                 |      |        |   |
| Agrupamiento       | Media           | N    | N TRAT | 1 |
| A                  | 1.04850         | 8    | 3      |   |
| BA                 | 0.96887         | 8    | 4      |   |
| В                  | 0.92842         | 8    | 1      |   |
| В                  | 0.91824         | 8    | 2      |   |

#### 17. Mcal ENL pastura

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 10   | 34.69104619       | 3.46910462 3.98 0.0037        |
| Error  | 21   | 18.30191596       | 0.87151981                    |
| Total  | 31   | 52.99296215       | _                             |

| $R^2$    | C.V.     | Desvio Estánda | ar Media   |
|----------|----------|----------------|------------|
| 0.654635 | 15.92453 | 0.93355225     | 5.86235413 |

| Fuente | G.L. Tipo     | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|---------------|-----------------------------------|
| TRAT   | 3 5.02553192  | 1.67517731 1.92 0.1569            |
| BLK    | 7 29.66551426 | 4.23793061 4.86 0.0022            |

| Alfa= 0.1 G.L.= 21  | E.E.M.=0.3 | 8715 | 52   |  |
|---------------------|------------|------|------|--|
| Valor Crítico de T= | = 1.72     |      |      |  |
| D.M.S.=0.8032       |            |      |      |  |
| Agrupamiento        | Media      | N    | TRAT |  |
| A                   | 6.3978     | 8    | 1    |  |
| BA                  | 6.0687     | 8    | 2    |  |
| BA                  | 5.6005     | 8    | 4    |  |
| В                   | 5.3824     | 8    | 3    |  |

#### 18. Kg. cenizas pastura.

| 10. Kg. ccm | 10. Kg. cemzas pastara. |            |                               |  |  |  |  |
|-------------|-------------------------|------------|-------------------------------|--|--|--|--|
| Fuente      | G.L. Suma de cuadrados  |            | Cuadrado medio Valor F Pr > F |  |  |  |  |
| Modelo      | 10                      | 0.55006028 | 0.05500603 3.18 0.0173        |  |  |  |  |
| Error       | 17                      | 0.29360868 | 0.01727110                    |  |  |  |  |
| Total       | 27                      | 0.8436689  |                               |  |  |  |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.651986 | 27.23520 | 0.13141955      | 0.48253571 |

| Fuente | G.L. Tipo    | Cuadrado medio $Valor F Pr > F$ |
|--------|--------------|---------------------------------|
| TRAT   | 3 0.09785329 | 0.03261776 1.89 0.1698          |
| BLK    | 7 0.45220699 | 0.06460100 3.74 0.0124          |

#### 19. % cenizas pastura.

| 17. 70 CCIII | zas pasta. | 14.               |                      |          |
|--------------|------------|-------------------|----------------------|----------|
| Fuente       | G.L.       | Suma de cuadrados | Cuadrado medio Valor | F Pr > F |
| Modelo       | 10         | 197.35755820      | 19.73575582 9.99 (   | 0.0001   |
| Error        | 17         | 33.57100471       | 1.97476498           |          |
| Total        | 27         | 230 928 56290     | _                    |          |

148

|      | $R^2$    | C.V. Des    | vio Estándar | Media   |
|------|----------|-------------|--------------|---------|
| 0.85 | 54626 15 | 5.20978 1.4 | 0526331 9.23 | 3920818 |

| Fuente | G.L. | Tipo        | Cuadrado medio | Vale  | or $F Pr > F$ |
|--------|------|-------------|----------------|-------|---------------|
| TRAT   | 3    | 11.23246003 | 3.74415334     | 1.90  | 0.1686        |
| BLK    | 7 1  | 86.12509817 | 26.58929974    | 13.46 | 0.0001        |

#### 20. Kg. PC ensilaje.

| Fuente   | G.L.  | Suma de cua | drados Cu  | adrado me | dio Valor F | Pr > F |
|----------|-------|-------------|------------|-----------|-------------|--------|
| Modelo   | 8     | 0.04775400  | 0.0059692  | 5 17.15   | 0.0001      |        |
| Error    | 15    | 0.00521996  | 0.00034800 |           |             |        |
| Total 23 | 0.052 | 97396       |            |           |             |        |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.901462 | 2.631899 | 0.01865468      | 0.70879167 |

| Fuente | G.L. Tipo    | Cuadrado medio $Valor F Pr > F$ |
|--------|--------------|---------------------------------|
| TRAT   | 3 0.00083279 | 0.00027760 0.80 0.5142          |
| BLK    | 5 0.04692121 | 0.00938424 26.97 0.0001         |

| Alfa= 0.1 G.L.= 1  | 5 E.E.M.= 0. | 0003 | 348  |  |
|--------------------|--------------|------|------|--|
| Valor Crítico de T | = 1.75       |      |      |  |
| D.M.S.= 0.0189     |              |      |      |  |
| Agrupamiento       | Media        | N    | TRAT |  |
| A                  | 0.71483      | 6    | 4    |  |
| A                  | 0.71433      | 6    | 2    |  |
| A                  | 0.70450      | 6    | 3    |  |
| A                  | 0.70150      | 6    | 1    |  |

#### 21. Kg. FDA ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado m | edio Valo | or $F 	ext{ Pr} > F$ |  |
|--------|------|-------------------|------------|-----------|----------------------|--|
| Modelo | 8    | 0.62155583        | 0.07769448 | 17.90     | 0.0001               |  |
| Error  | 15   | 0.06510279        | 0.00434019 |           |                      |  |
| Total  | 23   | 0.68665862        |            |           | <u> </u>             |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.905189 | 2.545476 | 0.06588009      | 2.58812500 |

| Fuente | G.L | Tipo       | Cuadrado | medio Va | lor F Pr > | F |
|--------|-----|------------|----------|----------|------------|---|
| TRAT   | 3   | 0.01089646 | 0.00363  | 215 0.84 | 0.4944     |   |
| BLK    | 5   | 0.61065938 | 0.122131 | 88 28.14 | 0.0001     |   |

| Alfa= 0.1 G.L.= 15 | 5  E.E.M. = 0.0 | 0043 | 34   |  |
|--------------------|-----------------|------|------|--|
| Valor Crítico de T | = 1.75          |      |      |  |
| D.M.S.= 0.0667     |                 |      |      |  |
| Agrupamiento       | Media           | N    | TRAT |  |
| A                  | 2.61067         | 6    | 4    |  |
| A                  | 2.60800         | 6    | 2    |  |
| A                  | 2.56950         | 6    | 3    |  |
| A                  | 2.56433         | 6    | 1    |  |

#### 22. Kg. FDN ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado me | dio Valo | or $F Pr > F$ |  |
|--------|------|-------------------|-------------|----------|---------------|--|
| Modelo | 8    | 3.28392383        | 0.41049048  | 51.32    | 0.0001        |  |
| Error  | 15   | 0.11998713        | 0.00799914  |          |               |  |
| Total  | 23   | 3.40391096        |             |          |               |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.964750 | 2.416778 | 0.08943792      | 3.70070833 |

| Fuente | G.L. Tipo    | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|--------------|-----------------------------------|
| TRAT   | 3 0.01999313 | 0.00666438                        |
| BLK    | 5 3.26393071 | 0.65278614 81.61 0.0001           |

| Alfa= 0.1 G.L.= 1  | 5 E.E.M.= 0.0 | 0079 | 999  |  |
|--------------------|---------------|------|------|--|
| Valor Crítico de T | T= 1.75       |      |      |  |
| D.M.S.= 0.0905     |               |      |      |  |
| Agrupamiento       | Media         | N    | TRAT |  |
| A                  | 3.73117       | 6    | 4    |  |
| A                  | 3.72767       | 6    | 2    |  |
| A                  | 3.67583       | 6    | 3    |  |
| A                  | 3.66817       | 6    | 1    |  |

#### 23.Kg. cenizas ensilaje.

| 25.Kg. comzas enshaje. |      |                  |              |            |                       |  |
|------------------------|------|------------------|--------------|------------|-----------------------|--|
| Fuente                 | G.L. | Suma de cuadrado | s Cuadrado m | nedio Valo | or $F 	ext{ } Pr > F$ |  |
| Modelo                 | 8    | 0.03523233       | 0.00440404   | 22.95      | 0.0001                |  |
| Error                  | 15   | 0.00287862       | 0.00019191   |            |                       |  |
| Total                  | 23   | 0.03811096       |              |            |                       |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |  |
|----------|----------|-----------------|------------|--|
| 0.924467 | 2.427352 | 0.01385310      | 0.57070833 |  |

| Fuente | G.I | L. Tipo    | Cuadrado med | tio Val | lor F Pi | r > F |
|--------|-----|------------|--------------|---------|----------|-------|
| TRAT   | 3   | 0.00047813 | 0.00015938   | 0.83    | 0.4976   |       |
| BLK    | 5   | 0.03475421 | 0.00695084   | 36.22   | 0.0001   |       |

| Alfa= 0.1 G.L.= 15 E.E.M.= 0.000192 |          |   |        |  |  |
|-------------------------------------|----------|---|--------|--|--|
| Valor Crítico de '                  | Γ= 1.75  |   |        |  |  |
| D.M.S.=0.014                        |          |   |        |  |  |
| Agrupamiento                        | Media    | N | I TRAT |  |  |
| A                                   | 0.575333 | 6 | 4      |  |  |
| A                                   | 0.575000 | 6 | 2      |  |  |
| A                                   | 0.566500 | 6 | 3      |  |  |
| A                                   | 0.566000 | 6 | 1      |  |  |

#### 24. Kg. P ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado me | dio Valo | r F Pr > F |
|--------|------|-------------------|-------------|----------|------------|
| Modelo | 8    | 0.00025350        | 0.00003169  | 109.69   | 0.0001     |
| Error  | 15   | 0.00000433        | 0.00000029  |          |            |
| Total  | 23   | 0.00025783        | •           |          |            |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.983193 | 3.086032 | 0.00053748      | 0.01741667 |

| Fuente | G.L. Tipo    | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|--------------|-----------------------------------|
| TRAT   | 3 0.00000017 | 0.00000006 0.19 0.9000            |
| BLK    | 5 0.00025333 | 0.00005067 175.38 0.0001          |

| Alfa= 0.1 G.L.= 15 E.E.M.= 2.889E-7 |                          |   |      |  |  |  |  |
|-------------------------------------|--------------------------|---|------|--|--|--|--|
| Valor Crítico de                    | Valor Crítico de T= 1.75 |   |      |  |  |  |  |
| D.M.S.=0.0005                       |                          |   |      |  |  |  |  |
| Agrupamiento                        | Media                    | N | TRAT |  |  |  |  |
| A                                   | 0.0175000                | 6 | 2    |  |  |  |  |
| A                                   | 0.0175000                | 6 | 4    |  |  |  |  |
| A                                   | 0.0173333                | 6 | 1    |  |  |  |  |
| A                                   | 0.0173333                | 6 | 3    |  |  |  |  |

#### 25. Kg. Ca ensilaje.

| 25. Rg. eu chishaje. |      |                   |              |          |          |
|----------------------|------|-------------------|--------------|----------|----------|
| Fuente               | G.L. | Suma de cuadrados | Cuadrado med | io Valor | F Pr > F |
| Modelo               | 8    | 0.00244883        | 0.00030610   | 503.18   | 0.0001   |
| Error                | 15   | 0.00000912        | 0.00000061   |          |          |
| Total                | 23   | 0.00245796        |              |          |          |

| L | $R^2$    | C.V.     | Desvio Estándar | Media      |
|---|----------|----------|-----------------|------------|
|   | 0.996288 | 2.764989 | 0.00077996      | 0.02820833 |

| Fuente | G.L. | Tipo       | Cuadrado med | dio Val | or F Pr | > F |
|--------|------|------------|--------------|---------|---------|-----|
| TRAT   | 3    | 0.00000113 | 0.00000038   | 0.62    | 0.6150  |     |
| BLK    | 5    | 0.00244771 | 0.00048954   | 804.73  | 0.0001  |     |

| Alfa= 0.1 G.L.= 15 E.E.M.= 6.083E-7 |                          |   |      |  |  |  |  |
|-------------------------------------|--------------------------|---|------|--|--|--|--|
| Valor Crítico de                    | Valor Crítico de T= 1.75 |   |      |  |  |  |  |
| D.M.S.=0.0008                       |                          |   |      |  |  |  |  |
| Agrupamiento                        | Media                    | N | TRAT |  |  |  |  |
| A                                   | 0.0285000                | 6 | 4    |  |  |  |  |
| A                                   | 0.0283333                | 6 | 2    |  |  |  |  |
| A                                   | 0.0280000                | 6 | 1    |  |  |  |  |
| A                                   | 0.0280000                | 6 | 3    |  |  |  |  |

#### 26. Kg. EE ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado me | edio Valor | rF Pr > F |
|--------|------|-------------------|-------------|------------|-----------|
| Modelo | 8    | 0.08040183        | 0.01005023  | 204.24     | 0.0001    |
| Error  | 15   | 0.00073813        | 0.00004921  |            |           |
| Total  | 23   | 0.08113996        |             |            |           |

| $R^2$    | C.V.     | Desvio Estánda | r Media    |
|----------|----------|----------------|------------|
| 0.990903 | 2.251662 | 0.00701487     | 0.31154167 |

| Fuente | G.L | . Tipo     | Cuadrado me | edio Va | lor F  | Pr > F |
|--------|-----|------------|-------------|---------|--------|--------|
| TRAT   | 3   | 0.00012012 | 0.00004004  | 0.81    | 0.5060 |        |
| BLK    | 5   | 0.08028171 | 0.01605634  | 326.29  | 0.0001 |        |

| Alfa= 0.1 G.L.= 15 E.E.M.= 0.000049 |                          |   |      |  |  |  |
|-------------------------------------|--------------------------|---|------|--|--|--|
| Valor Crítico de T                  | Valor Crítico de T= 1.75 |   |      |  |  |  |
| D.M.S.=0.0071                       |                          |   |      |  |  |  |
| Agrupamiento                        | Media                    | N | TRAT |  |  |  |
| A                                   | 0.313833                 | 6 | 4    |  |  |  |
| A                                   | 0.313667                 | 6 | 2    |  |  |  |
| A                                   | 0.309833                 | 6 | 3    |  |  |  |
| A                                   | 0.308833                 | 6 | 1    |  |  |  |

#### 27. % PC ensilaje.

| 27. 70 1 C | chismaje. |                   |             |              |        |
|------------|-----------|-------------------|-------------|--------------|--------|
| Fuente     | G.L.      | Suma de cuadrados | Cuadrado me | edio Valor F | Pr > F |
| Modelo     | 8         | 23.83748640       | 2.97968580  | 99999.99     | 0.0001 |
| Error      | 15        | 0.00021866        | 0.00001458  |              |        |
| Total      | 23        | 23.83770506       |             |              |        |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.999991 | 0.045235 | 0.00381805      | 8.44055685 |

| Fuente | G.L. | Tipo        | Cuadrado medio $Valor F Pr > F$ |  |
|--------|------|-------------|---------------------------------|--|
| TRAT   | 3    | 0.00002967  | 0.00000989                      |  |
| BLK    | 5    | 23.83745673 | 4.76749135 99999.99 0.0001      |  |

| Alfa= 0.1 G.L.= 15 E.E.M.= 0.000015 |          |   |      |  |  |
|-------------------------------------|----------|---|------|--|--|
| Valor Crítico de '                  | T= 1.75  |   |      |  |  |
| D.M.S.=0.0039                       |          |   |      |  |  |
| Agrupamiento                        | Media    | N | TRAT |  |  |
| A                                   | 8.442422 | 6 | 2    |  |  |
| A                                   | 8.440289 | 6 | 3    |  |  |
| A                                   | 8.440002 | 6 | 1    |  |  |
| A                                   | 8.439515 | 6 | 4    |  |  |

#### 28. % FDA ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 8    | 368.17082334      | 46.02135292 99999.99 0.0001   |
| Error  | 15   | 0.00008402        | 0.0000560                     |
| Total  | 23   | 368.17090736      |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 1.000000 | 0.007670 | 0.00236675      | 30.85624492 |

| Fuente | G.L. | Tipo         | Cuadrado medio $Valor F Pr > F$ |
|--------|------|--------------|---------------------------------|
| TRAT   | 3    | 0.00006117   | 0.00002039 3.64 0.0374          |
| BLK    | 5    | 368.17076217 | 73.63415243 99999.99 0.0001     |

| Alfa= 0.1 G.L.= 15 E.E.M.= 5.602E-6 |           |   |      |  |  |
|-------------------------------------|-----------|---|------|--|--|
| Valor Crítico de '                  | T= 1.75   |   |      |  |  |
| D.M.S.=0.0024                       |           |   |      |  |  |
| Agrupamiento                        | Media     | N | TRAT |  |  |
| A                                   | 30.857927 | 6 | 4    |  |  |
| A                                   | 30.857323 | 6 | 1    |  |  |
| BA                                  | 30.855959 | 6 | 2    |  |  |
| В                                   | 30.853771 | 6 | 3    |  |  |

#### 29. Mcal EN L/Kg. MS ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 8    | 0.27439403        | 0.03429925 99999.99 0.0001    |
| Error  | 15   | 0.00000006        | 0.0000000                     |
| Total  | 23   | 0.27439410        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 1.000000 | 0.004430 | 0.00006461      | 1.45862451 |

| Fuente | G.L. | Tipo       | Cuadrado medio $Valor F Pr > F$ |
|--------|------|------------|---------------------------------|
| TRAT   | 3    | 0.00000005 | 0.00000002 3.64 0.0374          |
| BLK    | 5    | 0.27439399 | 0.05487880 99999.99 0.0001      |

| Alfa= 0.1 G.L.=  | 15 E.E.M.= 4. | 175E | <del>-</del> -9 |
|------------------|---------------|------|-----------------|
| Valor Crítico de | T= 1.75       |      |                 |
| D.M.S.=0.0001    |               |      |                 |
| Agrupamiento     | Media         | N    | TRAT            |
| A                | 1.4586921     | 6    | 3               |
| BA               | 1.4586323     | 6    | 2               |
| В                | 1.4585951     | 6    | 1               |
| В                | 1.4585786     | 6    | 4               |

#### 30. % FDN ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado me | dio Valor F | r > F  |
|--------|------|-------------------|-------------|-------------|--------|
| Modelo | 8    | 347.83253647      | 43.47906706 | 99999.99    | 0.0001 |
| Error  | 15   | 0.00015574        | 0.00001038  |             |        |
| Total  | 23   | 347.83269221      |             | •           | ·      |

|    | $R^2$   | C.V.     | Desvio Estándar | Media       |
|----|---------|----------|-----------------|-------------|
| 1. | .000000 | 0.007356 | 0.00322221      | 43.80617452 |

| Fuente | G.L. | Tipo       | Cuadrado medio | Valor  | rF Pr > F |
|--------|------|------------|----------------|--------|-----------|
| TRAT   | 3 (  | 0.00000278 | 0.00000093     | 0.09   | .9648     |
| BLK    | 5 34 | 7.83253369 | 69.56650674 99 | 999.99 | 0.0001    |

| Alfa= 0.1 G.L.= 15 E.E.M.= 0.00001 |           |   |      |  |  |
|------------------------------------|-----------|---|------|--|--|
| Valor Crítico de                   | T= 1.75   |   |      |  |  |
| D.M.S.=0.0033                      |           |   |      |  |  |
| Agrupamiento                       | Media     | N | TRAT |  |  |
| A                                  | 43.806718 | 6 | 3    |  |  |
| A                                  | 43.806176 | 6 | 1    |  |  |
| A                                  | 43.806003 | 6 | 4    |  |  |
| A                                  | 43.805802 | 6 | 2    |  |  |

#### 31. % cenizas ensilaje.

| 31. 70 centras ensita e. |      |                   |                               |  |  |  |
|--------------------------|------|-------------------|-------------------------------|--|--|--|
| Fuente                   | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |  |  |  |
| Modelo                   | 8    | 23.54679313       | 2.94334914 99999.99 0.0001    |  |  |  |
| Error                    | 15   | 0.00016474        | 0.00001098                    |  |  |  |
| Total                    | 23   | 23.54695788       |                               |  |  |  |

|     | $R^2$    | C.V.     | Desvio Estándar | Media      |
|-----|----------|----------|-----------------|------------|
| 0.9 | 999993 ( | 0.048652 | 0.00331403      | 6.81166096 |

| Fuente | G.L | . Tipo      | Cuadrado me | dio Val  | for $F Pr > F$ |
|--------|-----|-------------|-------------|----------|----------------|
| TRAT   | 3   | 0.00004947  | 0.00001649  | 1.50     | 0.2547         |
| BLK    | 5   | 23.54674366 | 4.70934873  | 99999.99 | 9 0.0001       |

| Alfa= 0.1 G.L.=  | Alfa= 0.1 G.L.= 15 E.E.M.= 0.000011 |   |      |  |  |
|------------------|-------------------------------------|---|------|--|--|
| Valor Crítico de | Γ= 1.75                             |   |      |  |  |
| D.M.S.=0.0034    |                                     |   |      |  |  |
| Agrupamiento     | Media                               | N | TRAT |  |  |
| A                | 6.813443                            | 6 | 2    |  |  |
| BA               | 6.812642                            | 6 | 3    |  |  |
| BA               | 6.810660                            | 6 | 4    |  |  |
| В                | 6.809899                            | 6 | 1    |  |  |

#### 32. % EE ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 8    | 1.56523788        | 0.19565473 19398.88 0.0001    |
| Error  | 15   | 0.00015129        | 0.00001009                    |
| Total  | 23   | 1.56538917        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.999903 | 0.087388 | 0.00317583      | 3.63417180 |

| Fuente | G.L. Tipo    | Cuadrado medio $Valor F Pr > F$ |
|--------|--------------|---------------------------------|
| TRAT   | 3 0.00001544 | 0.00000515                      |
| BLK    | 5 1.56522244 | 0.31304449 31037.91 0.0001      |

| Alfa= 0.1 G.L.= 1  | 5 E.E.M.= 0.0 | 0000 | 1    |
|--------------------|---------------|------|------|
| Valor Crítico de T | T= 1.75       |      |      |
| D.M.S.=0.0032      |               |      |      |
| Agrupamiento       | Media         | N    | TRAT |
| A                  | 3.634964      | 6    | 2    |
| A                  | 3.634542      | 6    | 3    |
| A                  | 3.634344      | 6    | 1    |
| A                  | 3.632838      | 6    | 4    |

#### 33. % Pensilaje.

| 33. /0 I CII | Biiaje. |                |                 |                     |  |
|--------------|---------|----------------|-----------------|---------------------|--|
| Fuente       | G.L.    | Suma de cuadra | ados Cuadrado m | edio Valor F Pr > F |  |
| Modelo       | 8       | 0.01215624     | 0.00151953      | 176.68 0.0001       |  |
| Error        | 15      | 0.00012900     | 0.00000860      |                     |  |
| Total        | 23      | 0.01228525     |                 |                     |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.989499 | 1.436406 | 0.00293262      | 0.20416393 |

| Fuente | G.I | Tipo       | Cuadrado m | edio Va | ılor F | Pr > F |
|--------|-----|------------|------------|---------|--------|--------|
| TRAT   | 3   | 0.00001267 | 0.00000422 | 0.49    | 0.693  | 7      |
| BLK    | 5   | 0.01214357 | 0.00242871 | 282.40  | 0.0001 |        |

| Alfa= 0.1 G.L.= 1  | 15 E.E.M.= 8. | 6E-6 | 5    |
|--------------------|---------------|------|------|
| Valor Crítico de T | Γ= 1.75       |      |      |
| D.M.S.=0.003       |               |      |      |
| Agrupamiento       | Media         | N    | TRAT |
| A                  | 0.204990      | 6    | 1    |
| A                  | 0.204777      | 6    | 3    |
| A                  | 0.203544      | 6    | 2    |
| A                  | 0.203345      | 6    | 4    |

#### 34. % Ca ensilaje.

| Fuente | G.L. | Suma de cuadrados | Cuadrado me | dio Valor l | F Pr > F |
|--------|------|-------------------|-------------|-------------|----------|
| Modelo | 8    | 0.82659033        | 0.10332379  | 10294.91    | 0.0001   |
| Error  | 15   | 0.00015055        | 0.00001004  |             |          |
| Total  | 23   | 0.82674087        |             |             |          |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.999818 | 0.902371 | 0.00316803      | 0.35107815 |

| Fuente | G.L. | Tipo       | Cuadrado medio $Valor F Pr > F$ |
|--------|------|------------|---------------------------------|
| TRAT   | 3    | 0.00003589 | 0.00001196 1.19 0.3463          |
| BLK    | 5    | 0.82655444 | 0.16531089 16471.15 0.0001      |

| Alfa= 0.1 G.L.= 1  | 15 E.E.M.= 0.0 | 0000 | )1   |  |
|--------------------|----------------|------|------|--|
| Valor Crítico de T | Γ= 1.75        |      |      |  |
| D.M.S.=0.0032      |                |      |      |  |
| Agrupamiento       | Media          | N    | TRAT |  |
| A                  | 0.352632       | 6    | 3    |  |
| A                  | 0.351916       | 6    | 4    |  |
| A                  | 0.349935       | 6    | 1    |  |
| A                  | 0.349830       | 6    | 2    |  |

#### 35. Mcal ENL ensilaje.

| 33. Wicai Ei | · VL CHOIL | ujc.              |                               |  |
|--------------|------------|-------------------|-------------------------------|--|
| Fuente       | G.L.       | Suma de cuadrados | Cuadrado medio Valor F Pr > F |  |
| Modelo       | 8          | 143.16880682      | 17.89610085 230.05 0.0001     |  |
| Error        | 15         | 1.16689419        | 0.07779295                    |  |
| Total        | 23         | 144.33570100      |                               |  |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.991915 | 2.225011 | 0.27891387      | 12.53539138 |

| Fuente | <i>G</i> | L. Tipo      | Cuadrado med | io Vai | lor F Pr > | > <i>F</i> |
|--------|----------|--------------|--------------|--------|------------|------------|
| TRAT   | 3        | 0.20508571   | 0.06836190   | 0.88   | 0.4741     |            |
| BLK    | 5        | 142.96372111 | 28.59274422  | 367.5  | 5 0.0001   |            |

| Alfa= 0.1 G.L.= 1  | 5 E.E.M.= $0$ . | 077 | 793    |  |
|--------------------|-----------------|-----|--------|--|
| Valor Crítico de T | = 1.75          |     |        |  |
| D.M.S.= 0.2823     |                 |     |        |  |
| Agrupamiento       | Media           | N   | I TRAT |  |
| A                  | 12.6327         | 6   | 4      |  |
| A                  | 12.6204         | 6   | 2      |  |
| A                  | 12.4648         | 6   | 3      |  |
| A                  | 12.4236         | 6   | 1      |  |

#### 36. Kg. PC concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.06041250        | 0.01510313 1.59 0.3669        |
| Error  | 3    | 0.02854300        | 0.00951433                    |
| Total  | 7    | 0.08895550        | _                             |

|       | $R^2$ C  | V. Desvio    | Estándar Med  | ia |
|-------|----------|--------------|---------------|----|
| 0.679 | 9132 9.0 | 42081 0.0975 | 4144 1.078750 | 00 |

| Fuente | G.L. | Tipo       | Cuadrado me | dio Va | alor F | Pr > F |
|--------|------|------------|-------------|--------|--------|--------|
| TRAT   | 3    | 0.05737050 | 0.01912350  | 2.01   | 0.2905 | 5      |
| BLK    | 1    | 0.00304200 | 0.00304200  | 0.32   | 0.6113 |        |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.009514 |         |   |      |  |  |
|------------------------------------|---------|---|------|--|--|
| Valor Crítico de T                 | = 2.35  |   |      |  |  |
| D.M.S.= 0.2296                     |         |   |      |  |  |
| Agrupamiento                       | Media   | N | TRAT |  |  |
| A                                  | 1.20100 | 2 | 2    |  |  |
| A                                  | 1.11200 | 2 | 1    |  |  |
| A                                  | 1.01750 | 2 | 4    |  |  |
| A                                  | 0.98450 | 2 | 3    |  |  |

#### 37. Kg. FDA concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.07901900        | 0.01975475 31.02 0.0089       |
| Error  | 3    | 0.00191050        | 0.00063683                    |
| Total  | 7    | 0.08092950        |                               |

|   | $R^2$    | C.V.     | Desvio Estándar | Media      |
|---|----------|----------|-----------------|------------|
| ſ | 0.976393 | 3.167312 | 0.02523556      | 0.79675000 |

| Fuente | G.L. | Tipo       | Cuadrado med | dio Va | lor F  | Pr > F |
|--------|------|------------|--------------|--------|--------|--------|
| TRAT   | 3    | 0.07677450 | 0.02559150   | 40.19  | 0.0064 |        |
| BLK    | 1    | 0.00224450 | 0.00224450   | 3.52   | 0.1571 |        |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.000637 |         |   |      |  |  |
|------------------------------------|---------|---|------|--|--|
| Valor Crítico de T                 | = 2.35  |   |      |  |  |
| D.M.S.= 0.0594                     |         |   |      |  |  |
| Agrupamiento                       | Media   | N | TRAT |  |  |
| A                                  | 0.89750 | 2 | 2    |  |  |
| A                                  | 0.87850 | 2 | 1    |  |  |
| В                                  | 0.75500 | 2 | 4    |  |  |
| С                                  | 0.65600 | 2 | 3    |  |  |

#### 38. Kg. FDN concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.17591350        | 0.04397837 2.25 0.2659        |
| Error  | 3    | 0.05869838        | 0.01956613                    |
| Total  | 7    | 0.23461188        | _                             |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.749806 | 11.17802 | 0.13987897      | 1.25137500 |

| Fuente | G.L | . Tipo     | Cuadrado me | dio V | alor F | Pr > F |
|--------|-----|------------|-------------|-------|--------|--------|
| TRAT   | 3   | 0.13136237 | 0.04378746  | 2.24  | 0.2627 | 7      |
| BLK    | 1   | 0.04455112 | 0.04455112  | 2.28  | 0.2284 |        |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.019566 |        |   |      |  |  |
|------------------------------------|--------|---|------|--|--|
| Valor Crítico de T= 2              | 2.35   |   |      |  |  |
| D.M.S.= 0.3292                     |        |   |      |  |  |
| Agrupamiento                       | Media  | N | TRAT |  |  |
| A                                  | 1.4355 | 2 | 4    |  |  |
| A                                  | 1.3065 | 2 | 2    |  |  |
| A                                  | 1.1395 | 2 | 1    |  |  |
| A                                  | 1.1240 | 2 | 3    |  |  |

#### 39. Kg. cenizas concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.00893650        | 0.00223413 2.01 0.2959        |
| Error  | 3    | 0.00332838        | 0.00110946                    |
| Total  | 7    | 0.01226488        |                               |

| l | $R^2$    | C.V.     | Desvio Estándar | Media      |
|---|----------|----------|-----------------|------------|
|   | 0.728625 | 9.658146 | 0.03330853      | 0.34487500 |

| Fuente | G.L. | Tipo       | Cuadrado me | dio V | alor F | Pr > F |
|--------|------|------------|-------------|-------|--------|--------|
| TRAT   | 3    | 0.00823338 | 0.00274446  | 2.47  | 0.2383 | }      |
| BLK    | 1    | 0.00070312 | 0.00070312  | 0.63  | 0.4842 |        |

| Alfa= 0.1 G.L.= 3  | Alfa= 0.1 G.L.= 3 E.E.M.= 0.001109 |   |      |  |  |  |
|--------------------|------------------------------------|---|------|--|--|--|
| Valor Crítico de T | = 2.35                             |   |      |  |  |  |
| D.M.S.= 0.0784     |                                    |   |      |  |  |  |
| Agrupamiento       | Media                              | N | TRAT |  |  |  |
| A                  | 0.38650                            | 2 | 3    |  |  |  |
| A                  | 0.36550                            | 2 | 1    |  |  |  |
| A                  | 0.31700                            | 2 | 2    |  |  |  |
| A                  | 0.31050                            | 2 | 4    |  |  |  |

#### 40. Kg. P concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.00078750        | 0.00019687 5.60 0.0942        |
| Error  | 3    | 0.00010538        | 0.00003513                    |
| Total  | 7    | 0.00089288        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.881982 | 22.68568 | 0.00592663      | 0.02612500 |

| Fuente | G.L. | Tipo       | Cuadrado me | dio Va | lor F  | Pr > F |
|--------|------|------------|-------------|--------|--------|--------|
| TRAT   | 3    | 0.00038137 | 0.00012712  | 3.62   | 0.1594 |        |
| BLK    | 1    | 0.00040612 | 0.00040612  | 11.56  | 0.0425 |        |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.000035 |          |   |      |  |  |
|------------------------------------|----------|---|------|--|--|
| Valor Crítico de '                 | T= 2.35  |   |      |  |  |
| D.M.S.= 0.0139                     |          |   |      |  |  |
| Agrupamiento                       | Media    | N | TRAT |  |  |
| A                                  | 0.036500 | 2 | 4    |  |  |
| BA                                 | 0.028000 | 2 | 3    |  |  |
| В                                  | 0.021500 | 2 | 1    |  |  |
| В                                  | 0.018500 | 2 | 2    |  |  |

#### 41. Kg. Ca concentrado.

| 11. Hg. Ca concentrado. |      |                   |                               |  |  |  |
|-------------------------|------|-------------------|-------------------------------|--|--|--|
| Fuente                  | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |  |  |  |
| Modelo                  | 4    | 0.00109050        | 0.00027262 5.70 0.0921        |  |  |  |
| Error                   | 3    | 0.00014338        | 0.00004779                    |  |  |  |
| Total                   | 7    | 0.00123387        |                               |  |  |  |

| L | $R^2$    | C.V.     | Desvio Estándar | Media      |   |
|---|----------|----------|-----------------|------------|---|
| I | 0.883801 | 14.29075 | 0.00691315      | 0.04837500 | 1 |

| Fuente | G.L. | Tipo       | Cuadrado med | dio Va | alor F | Pr > F |
|--------|------|------------|--------------|--------|--------|--------|
| TRAT   | 3    | 0.00093737 | 0.00031246   | 6.54   | 0.0787 | 1      |
| BLK    | 1    | 0.00015313 | 0.00015313   | 3.20   | 0.1714 |        |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.000048 |                          |  |  |  |  |  |
|------------------------------------|--------------------------|--|--|--|--|--|
| Valor Crítico de                   | Valor Crítico de T= 2.35 |  |  |  |  |  |
| D.M.S.= 0.0163                     |                          |  |  |  |  |  |
| Agrupamiento                       | Media N TRAT             |  |  |  |  |  |
| A                                  | 0.060000 2 1             |  |  |  |  |  |
| A                                  | 0.058000 2 3             |  |  |  |  |  |
| В                                  | 0.040500 2 2             |  |  |  |  |  |
| В                                  | 0.035000 2 4             |  |  |  |  |  |

#### 42. Kg. EE concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.00393550        | 0.00098388 3.31 0.1767        |
| Error  | 3    | 0.00089250        | 0.00029750                    |
| Total  | 7    | 0.00482800        |                               |

| $R^2$    | C.V.     | Desvio Está | ndar Media |
|----------|----------|-------------|------------|
| 0.815141 | 10.29743 | 0.01724819  | 0.16750000 |

| Fuente | G.L. | Tipo       | Cuadrado med | dio Va | ılor F P | r > F |
|--------|------|------------|--------------|--------|----------|-------|
| TRAT   | 3    | 0.00362300 | 0.00120767   | 4.06   | 0.1400   |       |
| BLK    | 1    | 0.00031250 | 0.00031250   | 1.05   | 0.3808   |       |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.000297 |                          |   |        |  |  |  |
|------------------------------------|--------------------------|---|--------|--|--|--|
| Valor Crítico de T                 | Valor Crítico de T= 2.35 |   |        |  |  |  |
| D.M.S.= 0.0406                     |                          |   |        |  |  |  |
| Agrupamiento                       | Media                    | N | I TRAT |  |  |  |
| A                                  | 0.18450                  | 2 | 3      |  |  |  |
| A                                  | 0.18350                  | 2 | 4      |  |  |  |
| BA                                 | 0.17000                  | 2 | 1      |  |  |  |
| В                                  | 0.13200                  | 2 | 2      |  |  |  |

#### 43. Kg. PC total.

| 13. Hg. I C | totar. |                   |                               |  |
|-------------|--------|-------------------|-------------------------------|--|
| Fuente      | G.L.   | Suma de cuadrados | Cuadrado medio Valor F Pr > F |  |
| Modelo      | 4      | 0.35180100        | 0.08795025 1.78 0.3322        |  |
| Error       | 3      | 0.14847100        | 0.04949033                    |  |
| Total       | 7      | 0.50027200        |                               |  |

|   | $R^2$    | C.V.     | Desvio Estándar | Media      |
|---|----------|----------|-----------------|------------|
| I | 0.703219 | 8.629334 | 0.22246423      | 2.57800000 |

| Fuente | G.1 | L. Tipo    | Cuadrado med | lio Va | lor F Pr > | F |
|--------|-----|------------|--------------|--------|------------|---|
| TRAT   | 3   | 0.03658300 | 0.01219433   | 0.25   | 0.8600     |   |
| BLK    | 1   | 0.31521800 | 0.31521800   | 6.37   | 0.0859     |   |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.04949 |                          |   |      |  |  |  |
|-----------------------------------|--------------------------|---|------|--|--|--|
| Valor Crítico de T=               | Valor Crítico de T= 2.35 |   |      |  |  |  |
| D.M.S.= 0.5235                    | ·                        |   | · ·  |  |  |  |
| Agrupamiento                      | Media                    | N | TRAT |  |  |  |
| A                                 | 2.6385                   | 2 | 2    |  |  |  |
| A                                 | 2.6260                   | 2 | 1    |  |  |  |
| A                                 | 2.5805                   | 2 | 4    |  |  |  |
| A                                 | 2.4670                   | 2 | 3    |  |  |  |

#### 44. Kg. FDA total.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 3.93142650        | 0.98285662 2.30 0.2604        |
| Error  | 3    | 1.28461438        | 0.42820479                    |
| Total  | 7    | 5.21604088        |                               |

| $R^2$    | C.V.     | Desvio Estánda | r Media    |
|----------|----------|----------------|------------|
| 0.753718 | 12.19737 | 0.65437359     | 5.36487500 |

| Fuente | G.L. | Tipo       | Cuadrado med | io Val | lor F Pr > F |
|--------|------|------------|--------------|--------|--------------|
| TRAT   | 3    | 0.64822337 | 0.21607446   | 0.50   | 0.7058       |
| BLK    | 1    | 3.28320312 | 3.28320312   | 7.67   | 0.0696       |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.428205 |        |   |      |  |
|------------------------------------|--------|---|------|--|
| Valor Crítico de T=                | 2.35   |   |      |  |
| D.M.S.= 1.54                       |        |   |      |  |
| Agrupamiento                       | Media  | N | TRAT |  |
| A                                  | 5.6540 | 2 | 4    |  |
| A                                  | 5.6415 | 2 | 1    |  |
| A                                  | 5.1265 | 2 | 3    |  |
| A                                  | 5.0375 | 2 | 2    |  |

#### 45. Kg. FDN total.

| 13.115.1101 | · · total. |                   |             |                    |
|-------------|------------|-------------------|-------------|--------------------|
| Fuente      | G.L.       | Suma de cuadrados | Cuadrado me | dio Valor F Pr > F |
| Modelo      | 4          | 9.14281150        | 2.28570288  | 5.26 0.1018        |
| Error       | 3          | 1.30244650        | 0.43414883  |                    |
| Total       | 7          | 10.44525800       |             |                    |

|   | $R^2$    | C.V.     | Desvio Estándar | Media      |
|---|----------|----------|-----------------|------------|
| I | 0.875307 | 8.484416 | 0.65889971      | 7.76600000 |

| Fuente | G.L. | Tipo       | Cuadrado med | io Val | for $F 	ext{ } Pr > F$ | 7 |
|--------|------|------------|--------------|--------|------------------------|---|
| TRAT   | 3    | 1.07466700 | 0.35822233   | 0.83   | 0.5609                 |   |
| BLK    | 1    | 8.06814450 | 8.06814450   | 18.58  | 0.0230                 |   |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.434149 |                          |   |        |  |  |
|------------------------------------|--------------------------|---|--------|--|--|
| Valor Crítico de T=                | Valor Crítico de T= 2.35 |   |        |  |  |
| D.M.S.= 1.5506                     |                          |   |        |  |  |
| Agrupamiento                       | Media                    | N | N TRAT |  |  |
| A                                  | 8.2545                   | 2 | 4      |  |  |
| A                                  | 7.9465                   | 2 | 1      |  |  |
| A                                  | 7.5770                   | 2 | 3      |  |  |
| A                                  | 7.2860                   | 2 | 2      |  |  |

#### 46. Kg. P total.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.00120150        | 0.00030038 3.78 0.1518        |
| Error  | 3    | 0.00023850        | 0.00007950                    |
| Total  | 7    | 0.00144000        | _                             |

| $\mathbb{R}^2$ | C.V.     | Desvio Estánda | : Media    |
|----------------|----------|----------------|------------|
| 0.834375       | 15.92192 | 0.00891628     | 0.05600000 |

| Fuente | G.L. Tipo    | Cuadrado medio Val | or F Pr > F |
|--------|--------------|--------------------|-------------|
| TRAT   | 3 0.00051700 | 0.00017233 2.17    | 0.2708      |
| BLK    | 1 0.00068450 | 0.00068450 8.61    | 0.0608      |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.000079 |          |   |      |  |
|------------------------------------|----------|---|------|--|
| Valor Crítico de                   | T= 2.35  |   |      |  |
| D.M.S.=0.021                       |          |   |      |  |
| Agrupamiento                       | Media    | N | TRAT |  |
| A                                  | 0.068000 | 2 | 4    |  |
| BA                                 | 0.058000 | 2 | 3    |  |
| BA                                 | 0.051500 | 2 | 1    |  |
| В                                  | 0.046500 | 2 | 2    |  |

#### 47. Kg. Ca total.

| 17. Hg. Cu | totui. |                   |                               |
|------------|--------|-------------------|-------------------------------|
| Fuente     | G.L.   | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
| Modelo     | 4      | 0.00113450        | 0.00028362                    |
| Error      | 3      | 0.00067750        | 0.00022583                    |
| Total      | 7      | 0.00181200        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.626104 | 13.85046 | 0.01502775      | 0.10850000 |

| Fuente | G.L. | Tipo       | Cuadrado med | io Vai | lor F Pr > F |  |
|--------|------|------------|--------------|--------|--------------|--|
| TRAT   | 3    | 0.00091400 | 0.00030467   | 1.35   | 0.4057       |  |
| BLK    | 1    | 0.00022050 | 0.00022050   | 0.98   | 0.3959       |  |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.000226 |         |   |      |  |  |
|------------------------------------|---------|---|------|--|--|
| Valor Crítico de T                 | = 2.35  |   |      |  |  |
| D.M.S.=0.0354                      |         |   |      |  |  |
| Agrupamiento                       | Media   | N | TRAT |  |  |
| A                                  | 0.12100 | 2 | 1    |  |  |
| A                                  | 0.11700 | 2 | 3    |  |  |
| A                                  | 0.10000 | 2 | 4    |  |  |
| A                                  | 0.09600 | 2 | 2    |  |  |

#### 48. Kg. EE total.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.04499250        | 0.01124813 207.82 0.0005      |
| Error  | 3    | 0.00016238        | 0.00005413                    |
| Total  | 7    | 0.04515488        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.996404 | 1.224376 | 0.00735697      | 0.60087500 |

| Fuente | G.L. Tipo    | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|--------------|-----------------------------------|
| TRAT   | 3 0.00565238 | 0.00188413 34.81 0.0079           |
| BLK    | 1 0.03934013 | 0.03934013 726.84 0.0001          |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.000054 |                 |   |      |  |  |
|------------------------------------|-----------------|---|------|--|--|
| Valor Crítico de T                 | $\Gamma = 2.35$ |   |      |  |  |
| D.M.S.=0.0173                      |                 |   |      |  |  |
| Agrupamiento                       | Media           | N | TRAT |  |  |
| A                                  | 0.626000        | 2 | 3    |  |  |
| A                                  | 0.624000        | 2 | 4    |  |  |
| В                                  | 0.592500        | 2 | 1    |  |  |
| С                                  | 0.561000        | 2 | 2    |  |  |

#### 49. % PC total.

| 17. /0 I C to | mi.  |                   |                               |
|---------------|------|-------------------|-------------------------------|
| Fuente        | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
| Modelo        | 4    | 4.77789562        | 1.19447391 2.13 0.2807        |
| Error         | 3    | 1.68493946        | 0.56164649                    |
| Total         | 7    | 6.46283508        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.739288 | 5.473687 | 0.74943078      | 13.69151668 |

| Fuente | G.L. | Tipo       | Cuadrado med | lio Va | lor F - F | Pr > F |
|--------|------|------------|--------------|--------|-----------|--------|
| TRAT   | 3    | 3.11107027 | 1.03702342   | 1.85   | 0.3135    |        |
| BLK    | 1    | 1.66682535 | 1.66682535   | 2.97   | 0.1834    |        |

| Alfa= 0.1 G.L.= 3  | Alfa= 0.1 G.L.= 3 E.E.M.= 0.561646 |  |  |  |  |
|--------------------|------------------------------------|--|--|--|--|
| Valor Crítico de T | = 2.35                             |  |  |  |  |
| D.M.S.= 1.7637     |                                    |  |  |  |  |
| Agrupamiento       | Media N TRAT                       |  |  |  |  |
| A                  | 14.6913 2 2                        |  |  |  |  |
| A                  | 13.7306 2 1                        |  |  |  |  |
| A                  | 13.2577 2 4                        |  |  |  |  |
| A                  | 13.0864 2 3                        |  |  |  |  |

#### 50. % FDA total.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 9.05552759        | 2.26388190 0.51 0.7356        |
| Error  | 3    | 13.20016799       | 4.40005600                    |
| Total  | 7    | 22.25569558       |                               |

| $R^2$    | C.V.     | Desvio Estánda | r Media     |
|----------|----------|----------------|-------------|
| 0.406886 | 7.419125 | 2.09763104     | 28.27329355 |

| Fuente | G.L. | Tipo       | $Cuadrado\ medio\ Valor\ F\ Pr>F$ |
|--------|------|------------|-----------------------------------|
| TRAT   | 3    | 8.05959429 | 2.68653143                        |
| BLK    | 1    | 0.99593329 | 0.99593329                        |

| Alfa= 0.1 G.L.= 3 I | Alfa= 0.1 G.L.= 3 E.E.M.= 4.400056 |   |      |  |  |  |
|---------------------|------------------------------------|---|------|--|--|--|
| Valor Crítico de T= | 2.35                               |   |      |  |  |  |
| D.M.S.= 4.9365      |                                    |   |      |  |  |  |
| Agrupamiento        | Media                              | N | TRAT |  |  |  |
| A                   | 29.443                             | 2 | 1    |  |  |  |
| A                   | 29.049                             | 2 | 4    |  |  |  |
| A                   | 27.591                             | 2 | 2    |  |  |  |
| A                   | 27.010                             | 2 | 3    |  |  |  |

#### 51. % FDN total.

| 31. /0 1 D11 | with. |                   |                               |
|--------------|-------|-------------------|-------------------------------|
| Fuente       | G.L.  | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
| Modelo       | 4     | 14.27450440       | 3.56862610 1.17 0.4662        |
| Error        | 3     | 9.12168319        | 3.04056106                    |
| Total        | 7     | 23.39618759       |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media       |  |
|----------|----------|-----------------|-------------|--|
| 0.610121 | 4.260821 | 1.74372047      | 40.92452231 |  |

| Fuente | G.L | . Tipo     | Cuadrado med | lio Vai | lor F Pr > | F |
|--------|-----|------------|--------------|---------|------------|---|
| TRAT   | 3   | 7.88811736 | 2.62937245   | 0.86    | 0.5461     |   |
| BLK    | 1   | 6.38638703 | 6.38638703   | 2.10    | 0.2431     |   |

| Alfa= 0.1 G.L.= 3 E   | Alfa= 0.1 G.L.= 3 E.E.M.= 3.040561 |   |      |  |  |  |
|-----------------------|------------------------------------|---|------|--|--|--|
| Valor Crítico de T= 2 | 2.35                               |   |      |  |  |  |
| D.M.S.= 4.1036        |                                    |   |      |  |  |  |
| Agrupamiento          | Media                              | N | TRAT |  |  |  |
| A                     | 42.303                             | 2 | 4    |  |  |  |
| A                     | 41.428                             | 2 | 1    |  |  |  |
| A                     | 40.084                             | 2 | 3    |  |  |  |
| A                     | 39.883                             | 2 | 2    |  |  |  |

#### 52. % P total.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.01359263        | 0.00339816 2.88 0.2057        |
| Error  | 3    | 0.00354061        | 0.00118020                    |
| Total  | 7    | 0.01713324        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.793349 | 11.72862 | 0.03435406      | 0.29290788 |

| Fuente | G.L. | Tipo       | Cuadrado medio | Valor F  Pr > F |
|--------|------|------------|----------------|-----------------|
| TRAT   | 3    | 0.01103638 | 0.00367879 3.1 | 12 0.1877       |
| BLK    | 1    | 0.00255625 | 0.00255625 2.1 | 7 0.2375        |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.00118 |                          |  |  |  |  |  |  |
|-----------------------------------|--------------------------|--|--|--|--|--|--|
| Valor Crítico de                  | Valor Crítico de T= 2.35 |  |  |  |  |  |  |
| D.M.S.=0.0808                     |                          |  |  |  |  |  |  |
| Agrupamiento                      | Media N TRAT             |  |  |  |  |  |  |
| A                                 | 0.34935 2 4              |  |  |  |  |  |  |
| BA                                | 0.30262 2 3              |  |  |  |  |  |  |
| В                                 | 0.26483 2 1              |  |  |  |  |  |  |
| В                                 | 0.25483 2 2              |  |  |  |  |  |  |

#### 53. % Ca total.

| 33. 70 Cu ti | otui. |                   |                               |
|--------------|-------|-------------------|-------------------------------|
| Fuente       | G.L.  | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
| Modelo       | 4     | 0.03444610        | 0.00861153 2.91 0.2030        |
| Error        | 3     | 0.00886312        | 0.00295437                    |
| Total        | 7     | 0.04330923        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.795352 | 9.424499 | 0.05435416      | 0.57673265 |

| Fuente | G.L. | Tipo       | Cuadrado medio | Val  | or F | Pr > F |
|--------|------|------------|----------------|------|------|--------|
| TRAT   | 3    | 0.02444716 | 0.00814905     | 2.76 | 0.21 | 34     |
| BLK    | 1    | 0.00999894 | 0.00999894     | 3.38 | 0.16 | 31     |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.002954 |         |   |      |  |  |  |
|------------------------------------|---------|---|------|--|--|--|
| Valor Crítico de T=                | = 2.35  |   |      |  |  |  |
| D.M.S.= 0.1279                     |         |   |      |  |  |  |
| Agrupamiento                       | Media   | N | TRAT |  |  |  |
| A                                  | 0.63674 | 2 | 1    |  |  |  |
| A                                  | 0.62678 | 2 | 3    |  |  |  |
| A                                  | 0.52729 | 2 | 2    |  |  |  |
| A                                  | 0.51612 | 2 | 4    |  |  |  |

#### 54. % EE total.

| 6 11 70 <u>223</u> totali |      |                   |                               |  |  |  |  |
|---------------------------|------|-------------------|-------------------------------|--|--|--|--|
| Fuente                    | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |  |  |  |  |
| Modelo                    | 4    | 0.08907607        | 0.02226902                    |  |  |  |  |
| Error                     | 3    | 0.11800909        | 0.03933636                    |  |  |  |  |
| Total                     | 7    | 0.20708517        |                               |  |  |  |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.430142 | 6.237627 | 0.19833397      | 3.17963809 |

| Fuente | G.L. Tipo    | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|--------------|-----------------------------------|
| TRAT   | 3 0.08612932 | 0.02870977 0.73 0.5990            |
| BLK    | 1 0.00294676 | 0.00294676                        |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.039336 |                          |   |      |  |  |  |
|------------------------------------|--------------------------|---|------|--|--|--|
| Valor Crítico de T=                | Valor Crítico de T= 2.35 |   |      |  |  |  |
| D.M.S.= 0.4668                     |                          |   |      |  |  |  |
| Agrupamiento                       | Media                    | N | TRAT |  |  |  |
| A                                  | 3.3457                   | 2 | 3    |  |  |  |
| A                                  | 3.1876                   | 2 | 4    |  |  |  |
| A                                  | 3.1047                   | 2 | 2    |  |  |  |
| A                                  | 3.0805                   | 2 | 1    |  |  |  |

#### 55. % PC concentrado.

| 33: 70 T & concentraco. |      |              |             |        |             |        |  |
|-------------------------|------|--------------|-------------|--------|-------------|--------|--|
| Fuente                  | G.L. | Suma de cuad | rados Cuadr | ado me | dio Valor F | Pr > F |  |
| Modelo                  | 4    | 21.68643304  | 5.42160826  | 1.56   | 0.3721      |        |  |
| Error                   | 3    | 10.41594280  | 3.47198093  |        |             |        |  |
| Total                   | 7    | 32.10237583  |             |        |             |        |  |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.675540 | 9.070530 | 1.86332524      | 20.54262847 |

| Fuente | G.L | L. Tipo     | Cuadrado med | io Vai | lor F Pr > F |
|--------|-----|-------------|--------------|--------|--------------|
| TRAT   | 3   | 20.51332548 | 6.83777516   | 1.97   | 0.2959       |
| BLK    | 1   | 1.17310756  | 1.17310756   | 0.34   | 0.6018       |

| Alfa= 0.1 G.L.= 3 E.E.M.= 3.471981 |                          |   |      |  |  |  |
|------------------------------------|--------------------------|---|------|--|--|--|
| Valor Crítico de T=                | Valor Crítico de T= 2.35 |   |      |  |  |  |
| D.M.S.= 4.3851                     |                          |   |      |  |  |  |
| Agrupamiento                       | Media                    | N | TRAT |  |  |  |
| A                                  | 22.957                   | 2 | 2    |  |  |  |
| A                                  | 20.966                   | 2 | 1    |  |  |  |
| A                                  | 19.459                   | 2 | 4    |  |  |  |
| A                                  | 18.789                   | 2 | 3    |  |  |  |

#### 56. % FDA concentrado.

| Fuente  | G.L.  | Suma de ci | uadrados  | Cuad  | rado med | dio Valor | F Pr > F |
|---------|-------|------------|-----------|-------|----------|-----------|----------|
| Modelo  | 4     | 27.7557767 | 79 6.9389 | 94420 | 29.89    | 0.0094    |          |
| Error   | 3     | 0.69639128 | 0.232130  | 43    |          |           |          |
| Total 7 | 28.45 | 216807     |           |       |          |           |          |

| $R^2$    | C.V.     | Desvio Estándar | CFDA Media  |
|----------|----------|-----------------|-------------|
| 0.975524 | 3.176147 | 0.48179916      | 15.16929886 |

| Fuente | G.L. Tipo     | Cuadrado medio $Valor F Pr > F$ |
|--------|---------------|---------------------------------|
| TRAT   | 3 26.89154036 | 8.96384679 38.62 0.0068         |
| BLK    | 1 0.86423643  | 0.86423643 3.72 0.1492          |

| Alfa= 0.1 G.L.= 3  | 3 E.E.M.= 0.23213 |  |
|--------------------|-------------------|--|
| Valor Crítico de T | ∑= 2.35           |  |
| D.M.S.= 1.1338     |                   |  |
| Agrupamiento       | Media N TRAT      |  |
| Α                  | 17.1560 2 2       |  |
| A                  | 16.5631 2 1       |  |
| В                  | 14.4387 2 4       |  |
| С                  | 12.5194 2 3       |  |

## 57. Mcal de ENL/Kg. MS concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.00624505        | 0.00156126 29.89 0.0094       |
| Error  | 3    | 0.00015669        | 0.00005223                    |
| Total  | 7    | 0.00640174        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.975524 | 0.429804 | 0.00722699      | 1.68146052 |

| Fuente | G.L. Tipo   | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|-------------|-----------------------------------|
| TRAT   | 3 0.0060506 | 60 0.00201687 38.62 0.0068        |
| BLK    | 1 0.0001944 | 45 0.00019445 3.72 0.1492         |

| Alfa= 0.1 G.L.= 3  | Alfa= 0.1 G.L.= 3 E.E.M.= 0.000052 |      |  |  |  |
|--------------------|------------------------------------|------|--|--|--|
| Valor Crítico de T | T= 2.35                            |      |  |  |  |
| D.M.S.=0.017       |                                    |      |  |  |  |
| Agrupamiento       | Media N                            | TRAT |  |  |  |
| A                  | 1.721210 2                         | 3    |  |  |  |
| В                  | 1.692420 2                         | 4    |  |  |  |
| С                  | 1.660553 2                         | 1    |  |  |  |
| С                  | 1.651659 2                         | 2    |  |  |  |

#### 58. % FDN concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 67.85992220       | 16.96498055 2.38 0.2506       |
| Error  | 3    | 21.34242606       | 7.11414202                    |
| Total  | 7    | 89.20234827       |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.760741 | 11.18774 | 2.66723490      | 23.84069481 |

| Fuente | G.L. Tipo     | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|---------------|-----------------------------------|
| TRAT   | 3 51.22385567 | 17.07461856 2.40 0.2455           |
| BLK    | 1 16.63606653 | 16.63606653 2.34 0.2237           |

| Alfa= 0.1 G.L.= 3 E.E.M.= 7.114142 |        |   |        |  |  |
|------------------------------------|--------|---|--------|--|--|
| Valor Crítico de T                 | = 2.35 |   |        |  |  |
| D.M.S.= 6.277                      |        |   |        |  |  |
| Agrupamiento                       | Media  | N | N TRAT |  |  |
| A                                  | 27.454 | 2 | 4      |  |  |
| A                                  | 24.975 | 2 | 2      |  |  |
| A                                  | 21.483 | 2 | 1      |  |  |
| A                                  | 21.451 | 2 | 3      |  |  |

#### 59. % cenizas concentrado.

| 59. 76 Centeus Concentrado: |      |                   |                |       |            |  |  |
|-----------------------------|------|-------------------|----------------|-------|------------|--|--|
| Fuente                      | G.L. | Suma de cuadrados | Cuadrado medio | Valor | r F Pr > F |  |  |
| Modelo                      | 4    | 3.07302124        | 0.76825531     | 1.89  | 0.3145     |  |  |
| Error                       | 3    | 1.22125948        | 0.40708649     |       |            |  |  |
| Total                       | 7    | 4.29428072        |                |       |            |  |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |  |
|----------|----------|-----------------|------------|--|
| 0.715608 | 9.717131 | 0.63803330      | 6.56606646 |  |

| Fuente | G.L. | Tipo       | Cuadrado med | io Va | lor F Pr | > <i>F</i> |
|--------|------|------------|--------------|-------|----------|------------|
| TRAT   | 3    | 2.82585948 | 0.94195316   | 2.31  | 0.2544   |            |
| BLK    | 1    | 0.24716176 | 0.24716176   | 0.61  | 0.4927   |            |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.407086 |                          |   |      |  |  |  |
|------------------------------------|--------------------------|---|------|--|--|--|
| Valor Crítico de T=                | Valor Crítico de T= 2.35 |   |      |  |  |  |
| D.M.S.= 1.5015                     |                          |   |      |  |  |  |
| Agrupamiento                       | Media                    | N | TRAT |  |  |  |
| A                                  | 7.3759                   | 2 | 3    |  |  |  |
| A                                  | 6.8912                   | 2 | 1    |  |  |  |
| A                                  | 6.0595                   | 2 | 2    |  |  |  |
| A                                  | 5.9377                   | 2 | 4    |  |  |  |

#### 60.% EE concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 1.43164964        | 0.35791241 3.32 0.1759        |
| Error  | 3    | 0.32348582        | 0.10782861                    |
| Total  | 7    | 1.75513546        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.815692 | 10.29483 | 0.32837266      | 3.18968575 |

| Fuente | G.L. | Tipo (     | Cuadrado med | lio Va | lor F  | Pr > F |
|--------|------|------------|--------------|--------|--------|--------|
| TRAT   | 3    | 1.31316885 | 0.43772295   | 4.06   | 0.140  | 0      |
| BLK    | 1    | 0.11848080 | 0.11848080   | 1.10   | 0.3715 | 5      |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.107829 |                          |   |      |   |  |  |
|------------------------------------|--------------------------|---|------|---|--|--|
| Valor Crítico de T=                | Valor Crítico de T= 2.35 |   |      |   |  |  |
| D.M.S.=0.7728                      |                          |   |      |   |  |  |
| Agrupamiento                       | Media                    | N | TRAT | ı |  |  |
| A                                  | 3.5211                   | 2 | 3    |   |  |  |
| A                                  | 3.5094                   | 2 | 4    |   |  |  |
| BA                                 | 3.2050                   | 2 | 1    |   |  |  |
| В                                  | 2.5232                   | 2 | 2    |   |  |  |

#### 61. % P concentrado.

| 01: /0 1 concentrado: |      |                   |                               |  |  |
|-----------------------|------|-------------------|-------------------------------|--|--|
| Fuente                | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |  |  |
| Modelo                | 4    | 0.28892408        | 0.07223102 5.70 0.0921        |  |  |
| Error                 | 3    | 0.03798926        | 0.01266309                    |  |  |
| Total                 | 7    | 0.32691334        |                               |  |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.883794 | 22.59960 | 0.11253038      | 0.49793074 |

| Fuente | G.L. | . Tipo     | Cuadrado me | dio V | alor F | Pr > F |
|--------|------|------------|-------------|-------|--------|--------|
| TRAT   | 3    | 0.14144985 | 0.04714995  | 3.72  | 0.1544 |        |
| BLK    | 1    | 0.14747423 | 0.14747423  | 11.65 | 0.0421 |        |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.012663 |                          |   |      |  |  |  |
|------------------------------------|--------------------------|---|------|--|--|--|
| Valor Crítico de T=                | Valor Crítico de T= 2.35 |   |      |  |  |  |
| D.M.S.= 0.2648                     |                          |   |      |  |  |  |
| Agrupamiento                       | Media                    | N | TRAT |  |  |  |
| A                                  | 0.6980                   | 2 | 4    |  |  |  |
| BA                                 | 0.5345                   | 2 | 3    |  |  |  |
| В                                  | 0.4055                   | 2 | 1    |  |  |  |
| В                                  | 0.3537                   | 2 | 2    |  |  |  |

#### 62. % Ca concentrado.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.38181961        | 0.09545490 5.49 0.0967        |
| Error  | 3    | 0.05216236        | 0.01738745                    |
| Total  | 7    | 0.43398197        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.879805 | 14.32736 | 0.13186149      | 0.92034748 |

| Fuente | G.L. Tipo Cuadrado medio Valor F   | Pr > F |
|--------|------------------------------------|--------|
| TRAT   | 3 0.32718938 0.10906313 6.27 0.082 | 29     |
| BLK    | 1 0.05463023 0.05463023 3.14 0.174 | 4      |

| Alfa= 0.1 G.L.= 3 E   | E.M.=0.0 | 1738 | 7    |
|-----------------------|----------|------|------|
| Valor Crítico de T= 2 | 2.35     |      |      |
| D.M.S.= 0.3103        |          |      |      |
| Agrupamiento          | Media    | N    | TRAT |
| A                     | 1.1311   | 2    | 1    |
| A                     | 1.1068   | 2    | 3    |
| В                     | 0.7742   | 2    | 2    |
| В                     | 0.6693   | 2    | 4    |

#### 63. Mcal ENL concentrado.

| 03. Medi El lE concentrado. |      |                   |                               |  |  |
|-----------------------------|------|-------------------|-------------------------------|--|--|
| Fuente                      | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |  |  |
| Modelo                      | 4    | 0.15275115        | 0.03818779 27.29 0.0108       |  |  |
| Error                       | 3    | 0.00419755        | 0.00139918                    |  |  |
| Total                       | 7    | 0.15694871        |                               |  |  |

| $R^2$    | C.V.     | Desvio Estánda | ar Media   |
|----------|----------|----------------|------------|
| 0.973255 | 0.423655 | 0.03740568     | 8.82927263 |

| Fuente | G.L. | Tipo       | Cuadrado med | dio Va | lor F P | 2r > F |
|--------|------|------------|--------------|--------|---------|--------|
| TRAT   | 3    | 0.14501814 | 0.04833938   | 34.55  | 0.0079  |        |
| BLK    | 1    | 0.00773302 | 0.00773302   | 5.53   | 0.1002  |        |

| Alfa= 0.1 G.L.= 3  | E.E.M.= 0.001399         |  |  |  |  |  |
|--------------------|--------------------------|--|--|--|--|--|
| Valor Crítico de T | Valor Crítico de T= 2.35 |  |  |  |  |  |
| D.M.S.= 0.088      |                          |  |  |  |  |  |
| Agrupamiento       | Media N TRAT             |  |  |  |  |  |
| A                  | 9.01916 2 3              |  |  |  |  |  |
| В                  | 8.84966 2 4              |  |  |  |  |  |
| В                  | 8.80759 2 1              |  |  |  |  |  |
| С                  | 8.64068 2 2              |  |  |  |  |  |

#### 64. Consumo Mcal ENL total.

| 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |      |                   |                               |  |  |
|----------------------------------------|------|-------------------|-------------------------------|--|--|
| Fuente                                 | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |  |  |
| Modelo                                 | 4    | 77.95309854       | 19.48827464 28.40 0.0102      |  |  |
| Error                                  | 3    | 2.05833449        | 0.68611150                    |  |  |
| Total                                  | 7    | 80.01143303       |                               |  |  |

| $R^2$    | C.V.     | Desvio Estár | ndar Media  |
|----------|----------|--------------|-------------|
| 0.974274 | 2.944801 | 0.82831847   | 28.12816875 |

| Fuente | G.1 | L. Tipo     | Cuadrado med | dio Valo | or F Pr > F |  |
|--------|-----|-------------|--------------|----------|-------------|--|
| TRAT   | 3   | 2.09839831  | 0.69946610   | 1.02     | 0.4939      |  |
| BLK    | 1   | 75.85470023 | 75.85470023  | 110.56   | 0.0018      |  |

| Alfa= 0.1 G.L.= 3   | Alfa= 0.1 G.L.= 3 E.E.M.= 0.686111 |   |        |  |  |  |
|---------------------|------------------------------------|---|--------|--|--|--|
| Valor Crítico de T= | Valor Crítico de T= 2.35           |   |        |  |  |  |
| D.M.S.= 1.9493      |                                    |   |        |  |  |  |
| Agrupamiento        | Media                              | N | I TRAT |  |  |  |
| A                   | 28.7023                            | 2 | 4      |  |  |  |
| A                   | 28.3383                            | 2 | 3      |  |  |  |
| A                   | 28.1649                            | 2 | 1      |  |  |  |
| A                   | 27.3071                            | 2 | 2      |  |  |  |

#### 65. Mcal ENL/Kg. MS total.

| Dependent Variable: TENL |      |                   |                               |  |  |  |
|--------------------------|------|-------------------|-------------------------------|--|--|--|
| Fuente                   | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |  |  |  |
| Modelo                   | 4    | 0.00401327        | 0.00100332                    |  |  |  |
| Error                    | 3    | 0.00726178        | 0.00242059                    |  |  |  |
| Total                    | 7    | 0.01127506        |                               |  |  |  |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.355943 | 3.303779 | 0.04919954      | 1.48918995 |

| Fuente | G.L. | Tipo       | Cuadrado med | dio Va | ılor F | Pr > F |
|--------|------|------------|--------------|--------|--------|--------|
| TRAT   | 3    | 0.00399906 | 0.00133302   | 0.55   | 0.6818 | 3      |
| BLK    | 1    | 0.00001421 | 0.00001421   | 0.01   | 0.9437 | 1      |

| Alfa= 0.1 G.L.= 3 E.E.M.= 0.002421 |         |   |      |  |  |  |
|------------------------------------|---------|---|------|--|--|--|
| Valor Crítico de T= 2.35           |         |   |      |  |  |  |
| D.M.S.=0.1158                      |         |   |      |  |  |  |
| Agrupamiento                       | Media   | N | TRAT |  |  |  |
| A                                  | 1.51291 | 2 | 3    |  |  |  |
| A                                  | 1.50999 | 2 | 2    |  |  |  |
| A                                  | 1.46953 | 2 | 4    |  |  |  |
| A                                  | 1.46433 | 2 | 1    |  |  |  |

#### 66. Kg. cenizas total.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 0.29687650        | 0.07421912 101.81 0.0742      |
| Error  | 1    | 0.00072900        | 0.00072900                    |
| Total  | 5    | 0.29760550        |                               |

| $R^2$    | C.V.     | Desvio Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.997550 | 1.997780 | 0.02700000      | 1.35150000 |

| Fuente | G.L | . Tipo     | Cuadrado me | edio Val | lor F Pr > F |
|--------|-----|------------|-------------|----------|--------------|
| TRAT   | 3   | 0.12877650 | 0.04292550  | 58.88    | 0.0954       |
| BLK    | 1   | 0.16810000 | 0.16810000  | 230.59   | 0.0419       |

## 67. % cenizas total.

| Fuente | G.L. | Suma de cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 4    | 2.63456983        | 0.65864246 15.67 0.1870       |
| Error  | 1    | 0.04203930        | 0.04203930                    |
| Total  | 5    | 2.67660914        |                               |

| $R^2$    | C.V.     | Desvio Está | ndar Media |
|----------|----------|-------------|------------|
| 0.984294 | 3.042677 | 0.20503488  | 6.73863377 |

| Fuente | G.L. | Tipo       | Cuadrado me | edio Va | ılor F | Pr > F |
|--------|------|------------|-------------|---------|--------|--------|
| TRAT   | 3    | 1.44308030 | 0.48102677  | 11.44   | 0.2132 |        |
| BLK    | 1    | 1.19148953 | 1.19148953  | 28.34   | 0.1182 |        |

## 9.3. RESUMEN DE ANOVAS DE PRODUCCIÓN ANIMAL

#### 1. Leche (l/v/d)

| Fuente | G.L. | Suma de Cuada | rados Cuadra | do Med | lio Valor F | Pr > F |
|--------|------|---------------|--------------|--------|-------------|--------|
| Modelo | 10   | 126.69585625  | 12.66958563  | 3.32   | 0.0099      |        |
| Error  | 21   | 80.15246562   | 3.81678408   |        |             |        |
| Total  | 31   | 206.84832187  |              |        |             |        |

| $R^2$    | C.V.     | Desvío Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.612506 | 8.495440 | 1.95365915      | 22.99656250 |

| Fuente | G.L. | Tipo I     | Cuadrado I | Medio Va | lor F  | Pr > F |
|--------|------|------------|------------|----------|--------|--------|
| TRAT   | 3 1  | 2.75290938 | 4.250969   | 979 1.11 | 0.3658 | 3      |
| BLK    | 7 11 | 3.94294688 | 16.277563  | 84 4.26  | 0.0045 |        |

| TRAT | LSMEDIA i/j  | 1      | 2      | 3      | 4      | Pr >  T |  |
|------|--------------|--------|--------|--------|--------|---------|--|
| 1    | 23.2212500 1 |        | 0.8695 | 0.2204 | 0.6159 |         |  |
| 2    | 23.0587500 2 | 0.8695 |        | 0.2852 | 0.5066 |         |  |
| 3    | 21.9875000 3 | 0.2204 | 0.2852 |        | 0.0909 |         |  |
| 4    | 23.7187500 4 | 0.6159 | 0.5066 | 0.0909 |        |         |  |

## 2. LCG (l/v/d)

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 10   | 100.39257507      | 10.03925751 2.60 0.0311       |
| Error  | 21   | 81.00387092       | 3.85732719                    |
| Total  | 31   | 181.39644599      |                               |

| $\mathbb{R}^2$ | C.V.     | Desvío Estándar | Media       |
|----------------|----------|-----------------|-------------|
| 0.553443       | 9.214610 | 1.96400794      | 21.31406453 |

| Fuente | G.L. | Tipo I      | Cuadrado Medio | Vale | or F Pr > F |
|--------|------|-------------|----------------|------|-------------|
| TRAT   | 3    | 33.25673384 | 11.08557795 2  | 2.87 | 0.0605      |
| BLK    | 7    | 67.13584123 | 9.59083446 2.  | .49  | 0.0501      |

| TRAT | LSMEDIA i/j  | 1      | 2      | 3      | 4      | Pr >  T |
|------|--------------|--------|--------|--------|--------|---------|
| 1    | 21.8498619 1 |        | 0.7149 | 0.0316 | 0.8049 |         |
| 2    | 22.2134813 2 | 0.7149 |        | 0.0142 | 0.5416 |         |
| 3    | 19.5887019 3 | 0.0316 | 0.0142 |        | 0.0528 |         |
| 4    | 21.6042131 4 | 0.8049 | 0.5416 | 0.0528 |        | ·       |

#### 3. % grasa.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |  |
|--------|------|-------------------|-------------------------------|--|
| Modelo | 10   | 2.87563125        | 0.28756312                    |  |
| Error  | 21   | 3.03329063        | 0.14444241                    |  |
| Total  | 31   | 5.90892188        |                               |  |

| $R^2$    | C.V.     | Desvío Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.486659 | 10.77695 | 0.38005580      | 3.52656250 |

| Fuente | G.L. | Tipo I     | Cuadrado Medio Valor $F$ $Pr > F$ |
|--------|------|------------|-----------------------------------|
| TRAT   | 3    | 1.11743438 | 0.37247813 2.58 0.0808            |
| BLK    | 7    | 1.75819687 | 0.25117098 1.74 0.1540            |

| TRAT | LSMEDIA i/j  | 1        | 2      | 3      | 4      | Pr >  T |   |
|------|--------------|----------|--------|--------|--------|---------|---|
| 1    | 3.62500000 1 |          | 0.4501 | 0.0838 | 0.3165 |         |   |
| 2    | 3.77125000 2 | 2 0.4501 |        | 0.0173 | 0.0869 |         |   |
| 3    | 3.28000000 3 | 0.0838   | 0.0173 |        | 0.4387 | •       | • |
| 4    | 3.43000000 4 | 0.3165   | 0.0869 | 0.4387 |        |         |   |

4. Kg. grasa.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | Valor | r F Pr > F |
|--------|------|-------------------|----------------|-------|------------|
| Modelo | 11   | 0.22254288        | 0.02023117     | 2.35  | 0.0467     |
| Error  | 20   | 0.17216354        | 0.00860818     |       |            |
| Total  | 31   | 0.39470642        |                |       |            |

| $R^2$    | C.V.     | Desvío Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.563819 | 11.48703 | 0.09278026      | 0.80769597 |

| Fuente | G.L. | Tipo I     | Cuadrado Med | lio Va | lor F Pr | > <i>F</i> |
|--------|------|------------|--------------|--------|----------|------------|
| TRAT   | 3    | 0.09637909 | 0.03212636   | 3.73   | 0.0280   |            |
| BLK    | 7    | 0.09670374 | 0.01381482   | 1.60   | 0.1913   |            |
| GRKG0  | 1    | 0.02946005 | 0.02946005   | 3.42   | 0.0792   |            |

| TRAT | LSMEDIA i/j  | 1      | 2      | 3      | 4      | Pr >  T |
|------|--------------|--------|--------|--------|--------|---------|
| 1    | 0.82721794 1 |        | 0.7763 | 0.1250 | 0.8228 |         |
| 2    | 0.84078133 2 | 0.7763 |        | 0.0970 | 0.6308 |         |
| 3    | 0.74634422 3 | 0.1250 | 0.0970 |        | 0.1549 |         |
| 4    | 0.81644039 4 | 0.8228 | 0.6308 | 0.1549 |        |         |

5. % proteina.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 11   | 1.04452281        | 0.09495662 13.02 0.0001       |
| Error  | 20   | 0.14586469        | 0.00729323                    |
| Total  | 31   | 1.19038750        |                               |

| 1 | $R^2$    | C.V.     | Desvío Estándar | PR Media   |
|---|----------|----------|-----------------|------------|
|   | 0.877465 | 2.664081 | 0.08540044      | 3.20562500 |

| Fuente | G.L. | Tipo I     | Cuadrado Me | dio Va | lor F Pr > F |  |
|--------|------|------------|-------------|--------|--------------|--|
| TRAT   | 3    | 0.14366250 | 0.04788750  | 6.57   | 0.0029       |  |
| BLK    | 7    | 0.40423750 | 0.05774821  | 7.92   | 0.0001       |  |
| PR0    | 1    | 0.49662281 | 0.49662281  | 68.09  | 0.0001       |  |

| TRAT | LSMEDIA i/j  | 1      | 2      | 3      | 4      | Pr >  T |
|------|--------------|--------|--------|--------|--------|---------|
| 1    | 3.18708493 1 |        | 0.4204 | 0.0697 | 0.5563 |         |
| 2    | 3.15011488 2 | 0.4204 | . (    | 0.0220 | 0.2344 |         |
| 3    | 3.27082402 3 | 0.0697 | 0.0220 |        | 0.2081 |         |
| 4    | 3.21447617 4 | 0.5563 | 0.2344 | 0.2081 |        |         |

#### 6. Kg. proteina.

| Fuente | G.L.  | Suma de  | Cuadrados  | Cuadra | ado Medio  | Valor | F Pr > F | 7 |
|--------|-------|----------|------------|--------|------------|-------|----------|---|
| Modelo | 10    | 0.0      | 7764433    | 0.00   | 776443     | 2.04  | 0.0806   |   |
| Error  | 21    | 0.0      | 7979478    | 0.003  | 379975     |       |          |   |
| Total  | 31    | 0.1      | 5743912    |        |            |       |          |   |
|        | $R^2$ | C.V.     | Desvío Est | ándar  | Me         | dia   |          |   |
| 0.493  | 171   | 8.389660 | 0.06164    | 212    | 0.73473925 | 5     | •        |   |

| Fuente | G.L. | Tipo I     | Cuadrado Medi | o Vale | or F Pr > F |
|--------|------|------------|---------------|--------|-------------|
| TRAT   | 3    | 0.01122321 | 0.00374107    | 0.98   | 0.4190      |
| BLK    | 7    | 0.06642113 | 0.00948873    | 2.50   | 0.0493      |

| TRAT | LSMEDIA i/ | j 1      | 2      | 3      | 4      | Pr >  T |   |
|------|------------|----------|--------|--------|--------|---------|---|
| 1    | 0.74195438 | 1 .      | 0.6444 | 0.2445 | 0.8377 |         |   |
| 2    | 0.75638938 | 2 0.6444 |        | 0.1106 | 0.5066 |         |   |
| 3    | 0.70505025 | 3 0.2445 | 0.1106 |        | 0.3334 |         | • |
| 4    | 0.73556300 | 4 0.8377 | 0.5066 | 0.3334 |        |         |   |

#### 7. % lactosa.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 11   | 0.97627037        | 0.08875185 16.79 0.0001       |
| Error  | 20   | 0.10572963        | 0.00528648                    |
| Total  | 31   | 1.08200000        |                               |

| $R^2$    | C.V.     | Desvío Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.902283 | 1.537171 | 0.07270819      | 4.73000000 |

| Fuente | G.I | L. Tipo I  | Cuadrado Med | dio Valo | or F Pr > | F |
|--------|-----|------------|--------------|----------|-----------|---|
| TRAT   | 3   | 0.10042500 | 0.03347500   | 6.33     | 0.0034    |   |
| BLK    | 7   | 0.21535000 | 0.03076429   | 5.82     | 0.0009    |   |
| LAC0   | 1   | 0.66049537 | 0.66049537   | 124.94   | 0.0001    |   |

| TRAT | LSMEDIA i/j    | 1     | 2      | 3      | 4      | Pr >  T |  |
|------|----------------|-------|--------|--------|--------|---------|--|
| 1    | 4.72343317 1   |       | 0.1431 | 0.8664 | 0.5414 |         |  |
| 2    | 4.77907112 2 0 | .1431 |        | 0.1070 | 0.0438 |         |  |
| 3    | 4.71706539 3 0 | .8664 | 0.1070 |        | 0.6525 |         |  |
| 4    | 4.70043032 4 0 | .5414 | 0.0438 | 0.6525 |        |         |  |

#### 8. Kg. lactosa.

| 0.115.1000 | 0.544. |                   |                               |
|------------|--------|-------------------|-------------------------------|
| Fuente     | G.L.   | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
| Modelo     | 11     | 0.28816204        | 0.02619655 3.38 0.0088        |
| Error      | 20     | 0.15510389        | 0.00775519                    |
| Total      | 31     | 0.44326593        |                               |

| $R^2$    | C.V.     | Desvío Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.650088 | 8.104173 | 0.08806358      | 1.08664491 |

| Fuente | G.L. | Tipo I     | Cuadrado Medi | io Vale | or $F - Pr > F$ |
|--------|------|------------|---------------|---------|-----------------|
| TRAT   | 3    | 0.03880369 | 0.01293456    | 1.67    | 0.2059          |
| BLK    | 7    | 0.22597405 | 0.03228201    | 4.16    | 0.0056          |
| LACKG0 | 1    | 0.02338429 | 0.02338429    | 3.02    | 0.0979          |

| TRAT | LSMEDIA i/j  | 1      | 2      | 3      | 4      | Pr >  T |
|------|--------------|--------|--------|--------|--------|---------|
| 1    | 1.10457374 1 |        | 0.6800 | 0.3462 | 0.8926 |         |
| 2    | 1.08578543 2 | 0.6800 |        | 0.6011 | 0.7778 |         |
| 3    | 1.05767035 3 | 0.3462 | 0.6011 |        | 0.4165 |         |
| 4    | 1.09855011 4 | 0.8926 | 0.7778 | 0.4165 |        |         |

#### 9. % SNG.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 11   | 2.88407001        | 0.26218818 17.26 0.0001       |
| Error  | 20   | 0.30372999        | 0.01518650                    |
| Total  | 31   | 3.18780000        |                               |

| I | $R^2$    | C.V.     | Desvío Estándar | Media      |
|---|----------|----------|-----------------|------------|
|   | 0.904721 | 1.427140 | 0.12323352      | 8.63500000 |

| Fuente | G.L. | Tipo I     | Cuadrado Me | dio Vale | or F Pr > F |
|--------|------|------------|-------------|----------|-------------|
| TRAT   | 3    | 0.40292500 | 0.13430833  | 8.84     | 0.0006      |
| BLK    | 7    | 0.92550000 | 0.13221429  | 8.71     | 0.0001      |
| SNG0   | 1    | 1.55564501 | 1.55564501  | 102.44   | 0.0001      |

| TRAT | LSMEDIA i/j 1       | 2      | 3      | 4      | Pr >  T |
|------|---------------------|--------|--------|--------|---------|
| 1    | 8.60366126 1 .      | 0.5948 | 0.2019 | 0.9122 |         |
| 2    | 8.63712274 2 0.5948 |        | 0.4475 | 0.7018 |         |
| 3    | 8.68827084 3 0.2019 | 0.4475 |        | 0.2247 |         |
| 4    | 8.61094516 4 0.9122 | 0.7018 | 0.2247 |        |         |

#### 10. Kg. SNG.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | Valor | F Pr > F |
|--------|------|-------------------|----------------|-------|----------|
| Modelo | 10   | 0.73636035        | 0.07363603     | 2.95  | 0.0176   |
| Error  | 21   | 0.52409353        | 0.02495683     |       |          |
| Total  | 31   | 1.26045388        |                |       |          |

| $\mathbb{R}^2$ | C.V.     | Desvío Estándar | Media      |
|----------------|----------|-----------------|------------|
| 0.584203       | 7.969818 | 0.15797732      | 1.98219481 |

| Fuente | G.L. | Tipo I     | Cuadrado Med | dio Va | lor F  | Pr > F |
|--------|------|------------|--------------|--------|--------|--------|
| TRAT   | 3    | 0.10094743 | 0.03364914   | 1.35   | 0.285  | 57     |
| BLK    | 7    | 0.63541291 | 0.09077327   | 3.64   | 0.0100 | )      |

| TRAT | LSMEDIA i/j  | 1      | 2      | 3      | 4      | Pr >  T  |  |
|------|--------------|--------|--------|--------|--------|----------|--|
| 1    | 2.01360388 1 |        | 0.9128 | 0.1193 | 0.9388 |          |  |
| 2    | 2.02236338 2 | 0.9128 |        | 0.0975 | 0.8522 |          |  |
| 3    | 1.88534575 3 | 0.1193 | 0.0975 |        | 0.1370 |          |  |
| 4    | 2.00746625 4 | 0.9388 | 0.8522 | 0.1370 |        | <u> </u> |  |

#### 11. % ST.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | Valor F Pr > F |
|--------|------|-------------------|----------------|----------------|
| Modelo | 10   | 6.81403125        | 0.68140313     | 2.07 0.0770    |
| Error  | 21   | 6.91219062        | 0.32915193     |                |
| Total  | 31   | 13.72622187       |                |                |

| $\mathbb{R}^2$ | C.V.     | Desvío Estándar | Media       |
|----------------|----------|-----------------|-------------|
| 0.496424       | 4.717467 | 0.57371764      | 12.16156250 |

| Fuente | G.L. | Tipo I     | Cuadrado Medio | Val  | or F Pr | r > F |
|--------|------|------------|----------------|------|---------|-------|
| TRAT   | 3    | 2.58468437 | 0.86156146     | 2.62 | 0.0778  |       |
| BLK    | 7    | 4.22934688 | 0.60419241     | 1.84 | 0.1329  |       |

| TRAT | LSMEDIA i/j 1       | 2      | 3      | 4      | Pr >  T |
|------|---------------------|--------|--------|--------|---------|
| 1    | 12.3125000 1 .      | 0.4122 | 0.1400 | 0.1739 |         |
| 2    | 12.5525000 2 0.4122 |        | 0.0274 | 0.0357 |         |
| 3    | 11.8725000 3 0.1400 | 0.0274 |        | 0.9006 |         |
| 4    | 11.9087500 4 0.1739 | 0.0357 | 0.9006 |        |         |

#### 12. Kg. ST.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > | ·F |
|--------|------|-------------------|-----------------------------|----|
| Modelo | 10   | 1.46685648        | 0.14668565 2.79 0.0230      |    |
| Error  | 21   | 1.10557402        | 0.05264638                  |    |
| Total  | 31   | 2.57243050        |                             |    |

| $R^2$    | C.V.     | Desvío Estándar | Media      |
|----------|----------|-----------------|------------|
| 0.570222 | 8.224264 | 0.22944799      | 2.78989078 |

| Fuente | G.L. | Tipo I     | Cuadrado Medio | Valor | rF Pr > F |
|--------|------|------------|----------------|-------|-----------|
| TRAT   | 3    | 0.38631461 | 0.12877154     | 2.45  | 0.0922    |
| BLK    | 7 1  | 1.08054187 | 0.15436312     | 2.93  | 0.0263    |

| TRAT | LSMEDIA i/j  | 1      | 2      | 3      | 4      | Pr >  T |
|------|--------------|--------|--------|--------|--------|---------|
| 1    | 2.85102800 1 |        | 0.7481 | 0.0438 | 0.7582 |         |
| 2    | 2.88836213 2 | 0.7481 |        | 0.0221 | 0.5308 |         |
| 3    | 2.60492588 3 | 0.0438 | 0.0221 |        | 0.0810 |         |
| 4    | 2.81524712 4 | 0.7582 | 0.5308 | 0.0810 |        |         |

#### 13. CCS (\*1000).

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio  | Valor F Pr > F |
|--------|------|-------------------|-----------------|----------------|
| Modelo | 3    | 441216.09375000   | 147072.03125000 | 3.74 0.0223    |
| Error  | 28   | 1100749.37500000  | 39312.47767857  |                |
| Total  | 31   | 1541965.46875000  |                 |                |

| $R^2$    | C.V.     | Desvío Estándar | Media        |
|----------|----------|-----------------|--------------|
| 0.286139 | 124.5291 | 198.27374430    | 159.21875000 |

| Fuente | G.L. | Tipo I          | Cuadrado Medio  | Valo | or F Pr > F |  |
|--------|------|-----------------|-----------------|------|-------------|--|
| TRAT   | 3    | 441216.09375000 | 147072.03125000 | 3.74 | 0.0223      |  |

| TRAT | LSMEDIA    | i/j | 1      | 2      | 3      | 4      | Pr >  T |
|------|------------|-----|--------|--------|--------|--------|---------|
| 1    | 142.250000 | 1   |        | 0.5989 | 0.0410 | 0.3626 |         |
| 2    | 89.500000  | 2   | 0.5989 |        | 0.0124 | 0.6970 |         |
| 3    | 354.625000 | 3   | 0.0410 | 0.0124 |        | 0.0047 |         |
| 4    | 50.500000  | 4   | 0.3626 | 0.6970 | 0.0047 |        |         |

## 14. AST(U/L).

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 11   | 3191.01252419     | 290.09204765 2.09 0.0736      |
| Error  | 20   | 2779.86247581     | 138.99312379                  |
| Total  | 31   | 5970.87500000     |                               |

| $R^2$    | C.V.     | Desvío Estándar | AST Media   |
|----------|----------|-----------------|-------------|
| 0.534430 | 12.32087 | 11.78953450     | 95.68750000 |

| Fuente | G.L.      | Tipo I | Cuadrado Med  | io Vald | or F Pr > F |
|--------|-----------|--------|---------------|---------|-------------|
| TRAT   | 3 992.62  | 500000 | 330.87500000  | 2.38    | 0.1000      |
| BLK    | 7 327.37  | 500000 | 46.76785714   | 0.34    | 0.9276      |
| AST0   | 1 1871.01 | 252419 | 1871.01252419 | 13.46   | 0.0015      |

| TRAT | LSMEDIA i/j 1      | 2      | 3      | 4      | Pr >  T |
|------|--------------------|--------|--------|--------|---------|
| 1    | 102.087883 1 .     | 0.0654 | 0.6813 | 0.0629 |         |
| 2    | 90.590892 2 0.0654 | •      | 0.1447 | 0.9835 |         |
| 3    | 99.603528 3 0.6813 | 0.1447 | •      | 0.1389 |         |
| 4    | 90.467697 4 0.0629 | 0.9835 | 0.1389 |        |         |

#### 15. GGT(U/L).

| Fuente | G.L. | Suma de Cuadrados | Cuadrado Medio | Valor | F Pr > F |
|--------|------|-------------------|----------------|-------|----------|
| Modelo | 10   | 1549.25000000     | 154.92500000   | 1.20  | 0.3434   |
| Error  | 21   | 2703.62500000     | 128.74404762   |       |          |
| Total  | 31   | 4252.87500000     |                |       |          |

| $R^2$    | C.V.     | Desvío Estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.364283 | 38.70889 | 11.34654342     | 29.31250000 |

| Fuente | G.I | Tipo I        | Cuadrado Medio | Valo | or F Pr > F |
|--------|-----|---------------|----------------|------|-------------|
| TRAT   | 3   | 201.37500000  | 67.12500000    | 0.52 | 0.6722      |
| BLK    | 7   | 1347.87500000 | 192.55357143   | 1.50 | 0.2226      |

| TRAT | LSMEDIA i/j  | 1      | 2      | 3      | 4      | Pr >  T |
|------|--------------|--------|--------|--------|--------|---------|
| 1    | 29.0000000 1 |        | 0.7608 | 0.7941 | 0.4365 |         |
| 2    | 27.2500000 2 | 0.7608 |        | 0.9653 | 0.2831 |         |
| 3    | 27.5000000 3 | 0.7941 | 0.9653 |        | 0.3023 |         |
| 4    | 33.5000000 4 | 0.4365 | 0.2831 | 0.3023 |        |         |

## 9.4. ESTIMACIÓN DE MODELOS Y PARÁMETROS

#### 1. Producción de leche.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 9    | 79.10950833       | 8.78994537 3.29 0.0229        |
| Error  | 14   | 37.45547500       | 2.67539107                    |
| Total  | 23   | 116.56498333      |                               |

| $R^2$    | C.V.     | Desvío estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.678673 | 7.187881 | 1.63566227      | 22.75583333 |

| Fuente | G.L. | Tipo I      | Cuadrado med | io Val | or F Pr > F |
|--------|------|-------------|--------------|--------|-------------|
| DON    | 1    | 6.08855625  | 6.08855625   | 2.28   | 0.1536      |
| LOF    | 1    | 1.10110208  | 1.10110208   | 0.41   | 0.5315      |
| BLK    | 7    | 71.91985000 | 10.27426429  | 3.84   | 0.0154      |

#### 2. Producción de LCG.

| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio | Valor | $F 	ext{ } Pr > F$ |  |
|--------|------|-------------------|----------------|-------|--------------------|--|
| Modelo | 9    | 73.27409167       | 8.14156574     | 2.70  | 0.0464             |  |
| Error  | 14   | 42.15595833       | 3.01113988     |       |                    |  |
| Total  | 23   | 115.43005000      |                |       |                    |  |

| $R^2$    | C.V.     | Desvío estándar | Media       |
|----------|----------|-----------------|-------------|
| 0.634792 | 8.178455 | 1.73526363      | 21.21750000 |

| Fuente | G.L. | Tipo I      | Cuadrado med | io Vale | or $F 	ext{ } Pr > F$ |  |
|--------|------|-------------|--------------|---------|-----------------------|--|
| DON    | 1    | 20.45300625 | 20.45300625  | 6.79    | 0.0207                |  |
| LOF    | 1    | 11.91016875 | 11.91016875  | 3.96    | 0.0666                |  |
| BLK    | 7    | 40.91091667 | 5.84441667   | 1.94    | 0.1378                |  |

| Variable | G.L. | Estimación del parámetro | Error estándar | T para HO: Parámetro=0 | Prob >  T |
|----------|------|--------------------------|----------------|------------------------|-----------|
| INTERCE  | EP 1 | 21.850000                | 0.70316832     | 31.074                 | 0.0001    |
| DON      | 1    | 0.743250                 | 0.71709380     | 1.036                  | 0.3118    |
| DON2     | 1    | -0.239100                | 0.13779229     | -1.735                 | 0.0974    |

#### 3. Porcentaje de grasa

| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio | Valor F Pr > F |
|--------|------|-------------------|----------------|----------------|
| Modelo | 9    | 2.41837083        | 0.26870787     | 2.28 0.0811    |
| Error  | 14   | 1.65229167        | 0.11802083     |                |
| Total  | 23   | 4.07066250        |                |                |

|    | $\mathbb{R}^2$ | C.V.     | Desvío estándar | Media      |
|----|----------------|----------|-----------------|------------|
| 0. | 594098         | 9.653435 | 0.34354160      | 3.55875000 |

| Fuente | G.L. | Tipo I     | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|------|------------|-----------------------------------|
| DON    | 1    | 0.47610000 | 0.47610000 4.03 0.0643            |
| LOF    | 1    | 0.54187500 | 0.54187500 4.59 0.0502            |
| BLK    | 7    | 1.40039583 | 0.20005655 1.70 0.1897            |

| Variable | G.L. | Estimación del parámetro | Error estándar | T para HO: Parám | etro=0 $ T $ |
|----------|------|--------------------------|----------------|------------------|--------------|
| INTERCEP | 1    | 3.625000                 | 0.13479896     | 26.892           | 0.0001       |
| DON      | 1    | 0.186000                 | 0.13746850     | 1.353            | 0.1904       |
| DON2     | 1    | -0.051000                | 0.02641509     | -1.931           | 0.0671       |

#### 4. Producción de grasa

| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio | Valor F  Pr > F |  |
|--------|------|-------------------|----------------|-----------------|--|
| Modelo | 9    | 0.15655000        | 0.01739444     | 2.28 0.0805     |  |
| Error  | 14   | 0.10670000        | 0.00762143     |                 |  |
| Total  | 23   | 0.26325000        |                | <u> </u>        |  |

| $R^2$    | C.V.     | Desvío estándar | Media      |
|----------|----------|-----------------|------------|
| 0.594682 | 10.81124 | 0.08730079      | 0.80750000 |

| Fuente | G.L. | Tipo I     | Cuadrado medio $Valor F Pr > F$ |
|--------|------|------------|---------------------------------|
| DON    | 1    | 0.05522500 | 0.05522500 7.25 0.0175          |
| LOF    | 1    | 0.03967500 | 0.03967500 5.21 0.0387          |
| BLK    | 7    | 0.06165000 | 0.00880714 1.16 0.3856          |

| Variable | G.L. | Estimación del parámetro | Error estándar | T para HO: Parám | etro=0 Prob >  T |  |
|----------|------|--------------------------|----------------|------------------|------------------|--|
| INTERCE  | P 1  | 0.837500                 | 0.03165570     | 26.457           | 0.0001           |  |
| DON      | 1    | 0.045500                 | 0.03228261     | 1.409            | 0.1733           |  |
| DON2     | 1    | -0.013800                | 0.00620322     | -2.225           | 0.0372           |  |

#### 5. Porcentaje de proteína

|        | 1    |                   |                               |
|--------|------|-------------------|-------------------------------|
| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio Valor F Pr > F |
| Modelo | 9    | 0.50729167        | 0.05636574 2.10 0.1024        |
| Error  | 14   | 0.37490833        | 0.02677917                    |
| Total  | 23   | 0.88220000        |                               |

| $\mathbb{R}^2$ | C.V.     | Desvío estándar | Media      |
|----------------|----------|-----------------|------------|
| 0.575030       | 5.050723 | 0.16364341      | 3.24000000 |

| Fuente | G.L. | Tipo I     | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|------|------------|-----------------------------------|
| DON    | 1    | 0.00022500 | 0.00022500 0.01 0.9283            |
| LOF    | 1    | 0.03000000 | 0.03000000 1.12 0.3078            |
| BLK    | 7    | 0.47706667 | 0.06815238 2.54 0.0649            |

#### 6. Producción de proteína

| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 9    | 0.04192083        | 0.00465787 2.26 0.0831        |
| Error  | 14   | 0.02887500        | 0.00206250                    |
| Total  | 23   | 0.07079583        |                               |

| I | $R^2$    | C.V.     | Desvío estándar | Media      |
|---|----------|----------|-----------------|------------|
|   | 0.592137 | 6.182383 | 0.04541476      | 0.73458333 |

| Fuente | G.L. | Tipo I     | Cuadrado medio Valor | rF Pr > F |
|--------|------|------------|----------------------|-----------|
| DON    | 1    | 0.00562500 | 0.00562500 2.73      | 0.1209    |
| LOF    | 1    | 0.00563333 | 0.00563333 2.73      | 0.1206    |
| BLK    | 7    | 0.03066250 | 0.00438036 2.12      | 0.1091    |

7. Porcentaje de lactosa

| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio Valor F Pr > F |  |
|--------|------|-------------------|-------------------------------|--|
| Modelo | 9    | 0.34295833        | 0.03810648 1.14 0.4009        |  |
| Error  | 14   | 0.46977500        | 0.03355536                    |  |
| Total  | 23   | 0.81273333        |                               |  |

| $R^2$    | C.V.     | Desvío estándar | Media      |  |
|----------|----------|-----------------|------------|--|
| 0.421981 | 3.857800 | 0.18318121      | 4.74833333 |  |

| Fuente | G.L. | Tipo I     | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|------|------------|-----------------------------------|
| DON    | 1    | 0.04202500 | 0.04202500 1.25 0.2819            |
| LOF    | 1    | 0.02613333 | 0.02613333                        |
| BLK    | 7    | 0.27480000 | 0.03925714 1.17 0.3785            |

#### 8. Producción de lactosa

| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 9    | 0.18058750        | 0.02006528 2.37 0.0715        |
| Error  | 14   | 0.11847500        | 0.00846250                    |
| Total  | 23   | 0.29906250        |                               |

| F      | $R^2$ C.V. | Desvío estánda | ır Media   |
|--------|------------|----------------|------------|
| 0.6038 | 8.52763    | 4 0.09199185   | 1.07875000 |

| Fuente | G.L. | Tipo I     | Cuadrado medio | Vale | or F 	 Pr > F |  |
|--------|------|------------|----------------|------|---------------|--|
| DON    | 1    | 0.02722500 | 0.02722500     | 3.22 | 0.0945        |  |
| LOF    | 1    | 0.00750000 | 0.00750000     | 0.89 | 0.3625        |  |
| BLK    | 7    | 0.14586250 | 0.02083750     | 2.46 | 0.0717        |  |

| Variable | G.L. | Estimación del parámetro | Error estándar | T para HO: Pará | metro=0 $Prob >  T $ |  |
|----------|------|--------------------------|----------------|-----------------|----------------------|--|
| INTERCEP | 1    | 1.120000                 | 0.03587631     | 31.218          | 0.0001               |  |
| DON      | 1    | -0.016500                | 0.01111587     | -1.484          | 0.1519               |  |

#### 9. Porcentaje de sólidos no grasos

| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio Valor F Pr > F |
|--------|------|-------------------|-------------------------------|
| Modelo | 9    | 0.97467083        | 0.10829676 1.22 0.3549        |
| Error  | 14   | 1.23982500        | 0.08855893                    |
| Total  | 23   | 2.21449583        |                               |

| $R^2$    | C.V.     | Desvío estándar | Media      |
|----------|----------|-----------------|------------|
| 0.440132 | 3.425644 | 0.29758852      | 8.68708333 |

181

| Fuente | G.L. | Tipo I     | Cuadrado me | dio Val | lor F Pr > F |
|--------|------|------------|-------------|---------|--------------|
| DON    | 1    | 0.03610000 | 0.03610000  | 0.41    | 0.5335       |
| LOF    | 1    | 0.10640833 | 0.10640833  | 1.20    | 0.2915       |
| BLK    | 7    | 0.83216250 | 0.11888036  | 1.34    | 0.3019       |

10. Producción de sólidos no grasos

| 10. I loddeelon de sondos no grasos |      |                   |                               |  |  |  |
|-------------------------------------|------|-------------------|-------------------------------|--|--|--|
| Fuente                              | G.L. | Suma de Cuadrados | Cuadrado medio Valor F Pr > F |  |  |  |
| Modelo                              | 9    | 0.44594167        | 0.04954907 2.43 0.0659        |  |  |  |
| Error                               | 14   | 0.28519167        | 0.02037083                    |  |  |  |
| Total                               | 23   | 0.73113333        |                               |  |  |  |

| I | $R^2$    | C.V.     | Desvío estándar | Media      |  |
|---|----------|----------|-----------------|------------|--|
|   | 0.609932 | 7.232758 | 0.14272643      | 1.97333333 |  |

| Fuente | G.L. | Tipo I     | Cuadrado med | dio Vale | or $F Pr > F$ |
|--------|------|------------|--------------|----------|---------------|
| DON    | 1    | 0.06760000 | 0.06760000   | 3.32     | 0.0899        |
| LOF    | 1    | 0.02900833 | 0.02900833   | 1.42     | 0.2526        |
| BLK    | 7    | 0.34933333 | 0.04990476   | 2.45     | 0.0728        |

| Variable | G.L. | Estimación del parámetro | Error estándar | T para HO: Parámetr | ro=0 $Prob >  T $ |
|----------|------|--------------------------|----------------|---------------------|-------------------|
| INTERCEP | 1    | 2.038333                 | 0.05605114     | 36.366              | 0.0001            |
| DON      | 1    | -0.026000                | 0.01736681     | -1.497              | 0.1486            |

11. Porcentaje de sólidos totales

| Fuente | G.L. | Suma de Cuadrados | Cuadrado medio | Valor | F Pr > F |
|--------|------|-------------------|----------------|-------|----------|
| Modelo | 9    | 5.55583333        | 0.61731481     | 2.33  | 0.0759   |
| Error  | 14   | 3.71576667        | 0.26541190     |       |          |
| Total  | 23   | 9.27160000        |                |       |          |

| F     | $R^2$ C.   | V. Desvío   | estándar Med    |    |
|-------|------------|-------------|-----------------|----|
| 0.599 | 9231 4.207 | 280 0.51518 | 3143 12.2450000 | 00 |

| Fuente | G.L. | Tipo I     | Cuadrado me | edio Val | or F Pr > F |  |
|--------|------|------------|-------------|----------|-------------|--|
| DON    | 1    | 0.76562500 | 0.76562500  | 2.88     | 0.1115      |  |
| LOF    | 1    | 1.13467500 | 1.13467500  | 4.28     | 0.0577      |  |
| BLK    | 7    | 3.65553333 | 0.52221905  | 1.97     | 0.1332      |  |

| Variable | G.L. | Estimación del parámetro | Error estándar | T para HO: Parámetro=0 | Prob >  T |
|----------|------|--------------------------|----------------|------------------------|-----------|
| INTERCEP | 1    | 12.310000                | 0.20946786     | 58.768                 | 0.0001    |
| DON      | 1    | 0.281500                 | 0.21361614     | 1.318                  | 0.2018    |
| DON2     | 1    | -0.073800                | 0.04104715     | -1.798                 | 0.0866    |

12. Producción de sólidos totales

| Fuente | G.L. | Suma de Cuadrado | Cuadrado medio | Valor F  | Pr > F |
|--------|------|------------------|----------------|----------|--------|
| Modelo | 9    | 0.95627083       | 0.10625231     | 2.52 0.0 | )584   |
| Error  | 14   | 0.58912500       | 0.04208036     |          |        |
| Total  | 23   | 1.54539583       |                |          |        |

182

| I | $R^2$    | C.V.     | Desvío estándar | Media      |  |
|---|----------|----------|-----------------|------------|--|
| ſ | 0.618787 | 7.373430 | 0.20513497      | 2.78208333 |  |

| Fuente | G.L. | Tipo I     | Cuadrado medio Valor $F$ $Pr > F$ |
|--------|------|------------|-----------------------------------|
| DON    | 1    | 0.23765625 | 0.23765625 5.65 0.0323            |
| LOF    | 1    | 0.13335208 | 0.13335208 3.17 0.0968            |
| BLK    | 7    | 0.58526250 | 0.08360893 1.99 0.1299            |

| Variable | G.L. | Estimación del parámetro | Error estándar | T para HO: Parámetro | 0=0  Prob >  T |
|----------|------|--------------------------|----------------|----------------------|----------------|
| INTERCEP | 1    | 2.851250                 | 0.08360862     | 34.102               | 0.0001         |
| DON      | 1    | 0.077750                 | 0.08526440     | 0.912                | 0.3722         |
| DON2     | 1    | -0.025300                | 0.01638388     | -1.544               | 0.1375         |

13. Recuento de células somáticas

| Fuente G.L. |    | Suma de Cuadrados | Cuadrado medio Valor F Pr > F |  |  |  |  |
|-------------|----|-------------------|-------------------------------|--|--|--|--|
| Modelo      | 2  | 315138.58333333   | 157569.29166667 3.04 0.0694   |  |  |  |  |
| Error       | 21 | 1089505.37500000  | 51881.20833333                |  |  |  |  |
| Total       | 23 | 1404643.95833333  |                               |  |  |  |  |

| I | $R^2$    | C.V.     | Desvío estándar | Media        |  |
|---|----------|----------|-----------------|--------------|--|
|   | 0.224355 | 116.5335 | 227.77446813    | 195.45833333 |  |

| Fuente | DF | Tipo I          | Cuadrado med    | Cuadrado medio Valor $F$ $Pr > F$ |        |
|--------|----|-----------------|-----------------|-----------------------------------|--------|
| DON    | 1  | 180412.56250000 | 180412.56250000 | 3.48                              | 0.0762 |
| LOF    | 1  | 134726.02083333 | 134726.02083333 | 2.60                              | 0.1220 |

| Variable | G.L. | Estimación del parámetro | Error estándar | T para HO: Parámetro=0 | Prob >  T |
|----------|------|--------------------------|----------------|------------------------|-----------|
| INTERCEP | 1    | 89.270833                | 76.13507844    | 1.173                  | 0.2535    |
| DON      | 1    | 42.475000                | 23.58959127    | 1.801                  | 0.0855    |