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Abstract

To facilitate reasoning about programs in Martin-Lof’s Type Theory, the introduc-
tion of general recursion operators has been studied. This allows a more conventional
programming style, being possible to separate the termination proof of the program
from the proof of other properties.

This work experiments with this idea studying Course-of-Values induction for Nat-
ural Numbers. An induction rule is derived from natural induction, obtaining an
expression for a recursion operator. A propositional equality that expresses the be-
havior of the obtained operator is proved. This equality will be usefull when proving
properties of programs.

ALF is used as editor of Martin-Lof’s monomorphic Set Theory and checker of all

the proofs.




1 Introduction

In recent years several formalisms for program construction have been introduced. Pro-
gramming logics becomes an important area of study. A programming logic is a concep-
tual framework which allows to express specifications and programs and to verify their
correspondence. Editors and automatic tools for using Programming Logics have been
developed. These tools allow us to automatically check if one program satisfies its speci-
fication.

Martin-L6f’s Type Theory [L&f84] (TT) was developed as a work in mathematics and
philosophy more than a work in programming theory. The intention was to clarify the
meaning of constructive mathematics. The identification of propositions and sets allows
the view of Martin-L5f’s Type Theory as a logic for Programming: a proposition expresses
a specification and a proof of the proposition is a program satisfying the specification.

Martin-Lo6f’s Type Theory as a theory of programs, is a theory for total correctness.
The type structure is very rich, being possible to completely express the task of a pro-
gram. The programming language of TT is like typed lambda calculus and all well-typed
programs are normalizable.

There are no explicit operators of general recursion in TT. Recursion is included into
the language by means of primitive constants expressing primitive recursion.

To facilitate reasoning about programs in TT the introduction of general recursion opera-
tors has been studied. This allows a more conventional programming style, being possible
to separate the termination proof of the program from the proof of other properties.

In [Smi83] a course-of-values induction rule for Lists is proved. Quicksort is defined in
type theory using this rule. Paulson [Pau86] formalizes induction and recursion over a
wide class of well-founded relations. Some well-founded relations are constructed from
simpler ones, using rules that preserve the well-foundness property. Nordstrom [Nor88]
describes a way to allow a general recursion operator in a version of type theory extended
with propositions and subsets. He presents a proof rule for a course-of-values recursion
operator and shows how to generalize the idea to an arbitrary set well-founded by a rela-
tion.

This work experiments with this idea studying Course-of-Values induction for Natural
Numbers. An induction rule is derived from natural induction, obtaining an expression for
2 recursion operator. A propositional equality that expresses the behavior of the obtained
operator is proved. This equality will be usefull when proving properties of programs.
ALF [ACNOQ] is used as editor of Martin-L5f’s monomorphic Set Theory and checker of
21l the proofs. :

The rest of the paper is organized as follows:
Section 2 presents basic concepts concerning primitive recursion and course-of-values

In section 3 notational conventions and basic sets needed in the rest of the work are
presented.



Section 4 describes the introduction of course-of-values recursion into type theory.
Induction rules and recursion rules for the schema are presented and some applications of
the operator to programming are showed.

In section 5 a course-of-values induction rule is derived in type theory, giving an ex-
pression for a recursion operator. A propositional equality expressing a correspondence
between the obtained expression and the recursion rule previously defined is showed.

Section 6 comments the work, describing the alternatives followed in its development.

In the appendix, the complete formalization of these results is given, as it is seen when
using ALF.

2 Primitive Recursion and Course of Values Recursion

In the first part of this section, Primitive Recursion and Course of Values recursion are
briefly described. Then course-of-values recursion is defined in terms of primitive recursion.
The functions used in this section range over Natural Numbers. In the definitions, the
usual order of generation of the Natural Numbers is considered. For a more detailled
explanation see [Her65, Hen77].

2.1 Primitive Recursion

In a definition by primitive recursion, the value of a function at one argument is specified
in terms of its predecessor and its functional value. The definition takes the form of:

F0)=a
F(s(z)) = H(z, F(z))
From now on, a function like H will be called a step function.

The more relevant characteristics of Primitive Recursion are:
— the defined function is computable and total.

— the schema of definition corresponds closely to the induction principle for natural
numbers, easing to reason about the functions defined.

2.2 Course of Values Recursion

In a course-of-values definition, the value of a function at one argument is specified in
terms of one or more preceding values. A typical example is the definition of the Fibonacci
function Fzb:

Fib(0)=1

Fib(1)=1
Fib(s(z)) = Fib(z) + Fib(pred(z))  wherez > 1



In arithmetics, we can talk about finite sequences of natural numbers via suitable
codings. One of such codings is Godel Numbering, that gives the schema:

F(0)=d
F(s(z)) = e(z,¥(z))

where

Y(z)=If=o prime(i)F ()

prime is a function that defines the prime numbers, being prime(0) = 2.
¥(z) computes the Godel number for the values F(0),..., F(z);

Godel Numbering characteristics are:

— 1 can be defined by primitive recursion.

— an extraction function E to decode Gédel numbers can be defined. This is a function
that given ¢, 0 < 7 < z, obtains the exponent of prime(:) in ¥(z).

— the extraction function F can be defined by primitive recursion.

2.3 Course of Values definitions are Primitive Recursive

Any course-of-values definition can be expressed with primitive recursion. A primitive
recursive definition of the function % in terms of d and e is:

$(0) = 2
P(s(z)) = ¥(z) * prime(s(z)) (= ¥(=))

To compute a function defined like F, it is sufficient to decode the function %) obtaining
the exponent of the prime number corresponding to the argument. Then F can be defined
as:

F(z) = E(z,¥(2))

This result permits to generalize the properties verified by primitive recursive defini-
tions to course-of-values definitions. In particular:

— any function defined by course of values recursion will be computable and total.

— since the schema corresponds closely to the complete induction principle, it can be
used to reason about functions.

— this increases the clarity and expressivity of function definitions.



3 Notation and Basic Sets

In this section, we present some notational conventions of Martin-Lof’s Type Theory.
Refer to [NPS90] for a complete explanation of Martin-Lo6f’s Type Theory.

- 3.1 Notational Conventions

In intuitionistic predicate logic, a proposition is identified with the set of its proofs. The
judgements A prop and A true are used when regarding a set as a proposition. In the last
case, the proof object is omitted.

The notation used for expressions is as follows: if e is an expression and z a variable, then
[z)e is used for abstraction of z from e. If e and t are expressions then e(t) is used for the
application of e to t.

To introduce definitions, the notation a =ges b is used.
Assumptions are of the form [z € A], where z is a variable and A is a set.

The rules are formulated in a natural deduction style

P, P, ... P,
C

where the premises P;, P,,. .., P, and the conclusion C are (possibly hypothetical) judge-
ments. In a rule, only the assumptions that are discharged are written. The premises
that are obvious for the context are omitted (for example, if @ € A is a premise, A set is
excluded).

The proposition Id(A, a,b) is written also as a =4 b. ~(A) denotes A = L.
The notation used for types, constants and rules is the same of [NPS90] polymorphic

version of TT. In the appendix these results are formalized in the monomorphic ST.

3.2 Basic sets and Relations

Besides the basic sets of type theory, some new inductively defined sets are used in this
work. The order for Natural Numbers is needed in the formalization of the course-of-values
recursion rule. In [Sza91] definitions for < and < are introduced and their properties
proved. I will use these definitions for < and <.

The following properties of =4, < and < are used in the proofs and examples:
Assume A set, P(z)set[z € A], Bset, f(z)€ Bz € A], a,b € A.
a =4 a (reflexivity)

a=4bDb=4 a (symmetry)



la=4b& b=4 c) D a =4 c(transitivity)
(2=4 b& P(a)) D P(b) (substitutivity)
2 =4 bD f(a) =B f(b) (congruence)
Assumem, n,p € N.

~{n < 0)

n < s(n)

n<s(m)dDn<m
s<mD(n<mVn=nNm)
n<mvVm<n '
m<mAm<p)dDn<p
m=xmAm<p)On<p

Iz the applications, the following properties for expressions containing the operators +, —

znd = are also used. These properties, are interpretations into the theory of axioms and
theorems of formal number theories and primitive recursive arithmetics.

Letk.m,n,p €N.
a=-0=nn
mn—m=ym+"n
s=yxmDOn+p=Nm+p
as=xymDOp+n=Np+m
m=xmAk=Np)Dn+k=Nm+p
simip=nnt(mtp)
sn)<m>DOm-s(n)<m
s<mDO(m—-n)+n=nm
m=0=x0

mEsm=NM*N
(R=NM)DnAP=NMH*P

Aa=xm)Dpxn=Npxm




4 Course of Values Recursion in Type Theory

In this section, a course-of-values induction rule and a computation rule for a course-of-
values operator are introduced to TT.

4.1 Course of Values Recursion and Complete Induction

To express in TT a course-of-values recursive definition, a representation of all the func-
tional values for arguments less than a given one must be found. A convenient way to do
this, is to define a function that stores all the functional values for arguments less than
the given argument [Nor88]. This is a function like:

yE[[ze N.(2<z=> C(2))

The step function e(z), will take as argument y to give the solution for s(z). Then e(z) is
a function element with type:

([Tz € N.(2 <z = C(2))) = C(s(z))
The course-of-values induction rule can be stated as:

Course-of-Values Induction rule - 1

pEN

C(v) set [v € N]

d € C(0)

apply(e(z),y) € C(s(z))[zr € N,y €[]z € N(2 <z = C(2))]
covrec(p,d,e) € C(p)

The operator covrec makes it possible, course-of-values recursive definitions. The value of
covrec(p, d, e) is obtained in the following way:

Evaluate p to canonical form.
1. If the value of p is 0 then the value of covrec(p,d,e) is the value of d.
2. If the value of p is s(a) then the value of covrec(p, d, e) is the value of
apply(e(a), Az.\g.covrec(z,d,e)).

The justification of the rule is based on the semantics of TT and the computation rule for
covrec:

That p € N means that when computed, p gives as value 0 or s(a) where a € N.

1. If the value of p is 0 then the value of covrec(p, d,e) is the value of d which solves
the problem C(0). -



2. If the value of p is s(a) then the value of covrec(p,d,e) is the value
of apply(e(a), \z.\g.covrec(z,d,e)) which solves the problem C(s(a)), if
Az.\g.covrec(z,d,e) € [[z € N.(z < a = C(2)).

To know this, we have to know that covrec(z,d,e) € C(2) [z € N, ¢ € z < 4]
and to know that covrec(z,d,e) € C(z) [z € N, g € z < a], we have to know that
covrec(n,d,e) € C(n) [g € n < a] for an arbitrary n € N.

So,

— Ifthe value of n is 0, reasoning as in (1) we prove that the value of covrec(n, d,e)
solves the problem C(0).

— If the value of n is s(b) we proceed as in (2) to show that the value of
apply(e(b), \z.\g.covrec(z,d, €)) solves the problem C(s(b)).

Notice the importance of the restriction imposed by ¢ € n < a. Although ¢’s value
is not used in computations, is its existence that guarantee that at most in a steps
this method terminate. ‘

Another schema for course-of-values induction, is given by a step function which takes a
solution of all arguments strictly smaller than z to a solution of C(z). The corresponding
rule is:

Course-of-Values Induction rule - 2

pEN

C(v) set [v € N]

apply(e(z),y) € C(z)[z € N, ye[]z€ N.(2<z = C(2))]
covrec(p,e) € C(p)

where the value of covrec(p, e) is the value of apply(e(p), Az.Aq.covrec(z,¢€)).

There is nothing in this rule which is particular to the set of Natural Numbers. The rule
reflects that the natural numbers are well-ordered by <. So, we can generalize the rule to
an arbitrary set A which is well-founded by a relation <4 [Nor88]. The computation rule
remains the same.

If some of the constructions in the rule are omitted, we obtain the rule for complete
induction:

Complete Induction rule

pEN

C(v) prop [v € N]

C(z) true [z € N, C(2) true [z € N, z < z true]]
C(p) true

The justification of this rule comes from Course-of-Values Induction rule-2.
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4.2 Applications

To easy notation the following abbreviations will be used in this subsection:

letz,z€ N,qez2< =,
ye[lz€ N.(z2< z) = C(2),
e(z) € ([[z € N.(z <z = C(2))) = C(s(z))

we will write e(z, y) instead of apply(e(z), y) and y(z,g) instead of apply(apply(y, 2),9)-

4.2.1 natrec in terms of covrec

The introduction of covrec, permits to replace the operator for primitive recursion natrec
with an operator for pattern matching, allowing a programming style much more similar
:o the conventional in functional programming languages. So, we will define a primitive
constant natcases expressing pattern-matching over Natural Numbers, and show that the
primitive recursion operator natrec can be reduced to natcases and covrec [Nor88].

The primitive constant natcases expresses pattern-matching over natural numbers as fol-
lows:

The value of natcases(p, d,e) is computed by first computing the value of p.

1. If the value of p is 0 then the value of natcases(p,d,e) is the value of d.

2. If the value of p is s(a) then the value of natcases(p,d,e) is the value of e(a).
Now, natrec can be expressed in terms of natcases and covrec as:
natrec(p,d, ) =4c5 covrec(p, [z]natcases(z, Ay.d, [u] Ay.e(u, y(u, lesssuce(u)))))
where lesssucc(u) € u < s(u) [u € N].

If we define natrec in this way, the expression natrec(p, d, €) will be computed in the same
way that the traditional primitive recursion operator. This can be shown as follows:

The program natrec(p,d, e) is definitionally equal to:
covrec(p, [z]natcases(z, Ny.d, [u] Ay.e(u,y(u,lesssucc(u)))))
This expression is computed by computing the value of:

apply(natcases(p, Ay.d, [u] Ay.e(u, y(u, lesssucc(w)))),
Az.Ag.covrec(z, [z]natcases(z, A y.d, [u] Ay.e(u, y(u,lesssucc(u)))))

To compute the natcases expression we compute p.



1. If the value of p is 0 we compute:

apply( Ay.d,
Az.\g.covrec(z,[z]natcases(z, My.d, [u] Ay.e(u, y(u,lesssuce(uw)))))

which by the computation rule for apply yields d.

o

If the value of p is s(a) we compute the value of the program:

apply( Ay.e(a, y(a,lesssucc(a)))),
Az.Ag.covrec(z, [z]natcases(z, Ay.d, [u] Ay.e(u,y(u,lesssucc(u)))))

which by the computation rule for apply yields
e(a, covrec(a,[z]natcases(z, Ay.d, [u] Ay.e(u, y(u,lesssucc(n))))))
which by the given definition, is definitionally equal to
e(a,natrec(a,d,e)).
4£.2.2 The Fibonacci function

The Fibonacci function can be defined as:

Fib(n) =4e5 covrec(n,

[z]natcases(z,
Ay.1,
[a]natcases(a,
“Ay.d,
[6] Ay. y(s(b),lesssucc(s(b)))

+
y(b, lesstrans(lesssuce(b), lesssuce(s(b)))))))

where lesstrans(q,¢') € n<p[n,m,pe N,geEn<m, ¢ € m<p].

This example shows the application of covrec and natcases together. The program reflects
the traditional structure of this function’s definition.

4.2.3 Division

We illustrate the application of course-of-values induction to programming and reasoning
over programs, by defining functions associated with division.

Assume n,m € N. Let order(n,m) denote a proofof n < m V m < n.

Quotient

The quotient of dividing n by m, can be defined as:

10



guo(n,m) =
natcases(m, 0
[u]covrece(n,
[a]\y.when(order(s(u),a)
[1] s(y(a— s(u),lessproof(1)))
(r]0))

where lessproof(l) € a — s(u) < a [a,u€ N, l € s(u) < a.

The termination of this program follows from the fact that it is an element in N. Now,
we can establish the following properties:

Idquol
guo(n,0) =N 0 true [n € N]

Proof. by Id-introduction.

Idquo2
guo(n,s(v)) =n s(quo(n — s(u),s(u))) true [n,u € N, s(u) < nirue]
Proof. apply V-elimination to order(s(u), n): |

1. case [s(u) < n] follows by Id-congruence with s.

2. case [n < s(u)] obtain a proof of s(u) < s(u) from s(u) < n and n < s(u)
apply L-elimination to this proof.

Idquo3
quo(n,s(u)) =y 0 true [n,u€ N, n < s(u)true]
Proof. apply V-elimination to order(s(u),n):
1. case [s(u) < n] L-elimination to a proof of s(u) < s(u).

2. case [n < s(u)] follows by Id-introduction.

Remainder
Similarly, the remainder obtained dividing n by m, can be defined as:

rem(n,m) =
natcases(m, n
[u]covree(n,
[a]\y.when(order(s(u),a)
[1] y(a — s(u),lessproof(l))
[r] a)))

11




znd we can prove:
Idreml
rem(n,0) =N n true [n € N]
Proof. by Id-introduction.
Idrem?2
rem(n,s(u)) =n rem(n — s(u),s(u)) true [n,u € N, s(u) < n true]
Proof. apply V-elimination to order(s(u),n):
1. case [s(u) < n] follows by Id-introduction.

2. case [n < s(u)] L-elimination to a proof of s(u) < s(u).

Idrem3
rem(n,s(u)) =N n true [n,u € N, n < s(u)true]
Proof. apply V-elimination to order(s(u),n):
1. case [s(u) < n] L-elimination to a proof of s(u) < s(u).

2. case [n < s(u)] follows by Id-introduction.

Lessrem

rem(n,s(u)) < s(u) true [n,u € N]

Proof. By Complete Induction. Assume

n,u€ N, rem(z,s(u)) < s(u) true [z € N, z < ntrue]
2pply V-elimination to order(s(u),n):

1. case [s(u) < n]
by Idrem?2 we have
rem(n,s(u)) =n rem(n — s(u), s(u)) true
from the inductive assumption, n — s(u) € N and n — s(u) < ntrue we get

rem(n — s(u),s(u)) < s(u) true

12



So, applying the corresponding proof of (n =y m A m < p) D n < p true [n,m,p € N]|
we prove

rem(n,s(u)) < s(u) true
2. case [n < s(u)]
by Idrem3 we have
rem(n,s(u)) =y n true

Then, apply the corresponding proof of (n =y m Am < p) D n < p true [n,m,p€ N]
to get

rem(n,s(u)) < s(u) true

Finzlly, as one would expect, the following proposition are also true:

Proposition.
m * quo(n,m) + rem(n,m) =y n true[n,m € N]
Proof.
By Natural Induction on m.
If m = 0, we have to prove
0 = guo(n,0) + rem(n,0) =y n true [n € N]
This follows from Idrem1, properties of * and +.
If m = s(u), we have to prove |
s(u) * quo(n,s(u)) + rem(n,s(u) =y n true [n,u € N]
which we prove by Complete Induction on =.

Assume

nu€ N,
s(u) * quo(z,s(u)) + rem(z,s(u)) =N ztrue[z € N, z < ntrue]

Apply V-elimination to "order(s(u), n).

13




1. case s(u) < n. Successively applying Id-transitivity we have:

s(u) * quo(n,s(u)) + rem(n, s(u))
=y by Idquo?
s(u) * s(quo(n — s(u),s(u))) + rem(n,s(u))
=N by Idrem?2
s(u) * s(quo(n — s(u),s(u))) + rem(n — s(u),s(u))
=N by properties of * and +
s(u) * quo(n — s(u), s(w)) + rem(n — s(u), s(w)) + s(u)
=N from the inductive assumption, n — s(u) € N and n — s(u) < n ir
n — s(u) + s(u)

= by properties of —, + with s(u) < n

2. case n < s(u). Successively applying Id-transitivity we have:

s(u) * quo(n,s(u)) + rem(n,s(u))

=N by Idquo3
s(u) * 0 + rem(n,s(u))

=N by properties of * and +
rem(n, s(u))

=N by Idrem3

14




5 Course of Values recursion as a derived rule

A formulation of course-of-values recursion will be expressed into TT. A course-of-values
induction rule is proved, obtaining as the corresponding proof term an expression for a
course-of-values operator.

5.1 Course-of-Values Recursion rule as a derived rule

Consider the following rule:

pEN

C(v) set [v € N]

apply(e(z),y) € C(z)[z € N,y € [[z€N.(2<z = C(2))]
covrec(p,e) € C(p)

Assume the rule premises. To prove the rule, we must find an element in C(p) where
» € N. Considering that the solution for any value can be obtained from the previous
solutions by applying the step function, we define:

covrec(p,e) =qcr apply(e(p), Approz fun(e, p))
where Approz fun(e,p) € [[z € N.(z2 < p = C(2)).
Approz fun is defined by Natural Induction on p as follows:

Approz fun(e,p) =45 natrec( p,
G07

[, v]Gsyce(e, u,v))  where
Go € [Iz€N.(2<0=>C(z)) and
Goeele,u,v) € [[2 € N.(2 < s(u) = C(z)) S

vE [[z€ N(2<u=C(2)

To define Gy, is to define an empty function. This can be done as follows:
assumez € N, g€ 2<0
let notlesszero(z) denote an element in =(z < 0) [z € N]
by =-elimination we get

apply(notlesszero(z),q) € L [z€ N, g€ z < 0]

15



now, by L-elimination N
1 elim(apply(notlesszero(z),q)) € C(z) [z € N, g € z < 0]
and by =-introduction and []-introduction

Go =des Az.Mg.bottom E(apply(notlesszero(z),q)) € [z € N.(z < 0= C(2))

Gsucc(e, u,v), is defined as follows:
assume 2 € N, q € z < s(u)
let lesssucctoleg(q) denote an element in z < u [z,u € N, ¢ € z < s(u)]
from this element, we can construct a proof of z < u or a proof of z =N u.
(a) assume we have constructed Is € z < u,

by the inductive assumption and []-elimination we get

zZ,u €N
apply(v,z) € z2<u=C(2) | 'c [1z € N.(2 < u= C(2)

and by =-elimination
z,u € N

apply(apply(v,z),ls) € C(z) | ls€ z<u
v€ [[2€ N.(z< u= C(2))

(b) assume we have constructed eq € z =n ,
by the third premise is
apply(e(u),v) € C(u))[u € N,v € [[z € N.(z2 < u= C(2))]

by using a proof of (2 =n u & C(u)) D C(z) we can define an element in C(zv).
It will be denoted as

z,u €N

Idsubst(eq, apply(e(u),v)) € C(z)) | eq€ z=Nu
vE [[z€ N.(z2 < u= C(2))

16




Now, by V-elimination is

when ( lesssucctoleq(q),
[1s] apply(apply(v,2),1s),
[eq] Idsubst(eq, apply(e(u),v))) € C(2))

[z,u€ N, ge z<s(u), veE [[2€ N.(z<u= C(2))]
and by =-introduction and []-introduction the following term is obtained:

Gsuce(€, Uy v) =def A2z Ag. when ( lesssucctoleq(q),
[1s] apply(apply(v, 2),1s),
[ eq] Idsubst(eq, apply(e(un),v)))

e MzeNG<sw=0E) | bE,enmzcun @)

Informally, we can explain Approz fun definition as follows: from an initial empty function
G, a family of functions is constructed. This functions are approzimations to the function
being defined. The s(u) — th function, G succ(€, u,v), will be defined for all the values less
than s(u), and for all the values less than u is exactly the same as the u — th function v.
This has some similarity with the way in which is solved a recursive specification in
Domain Theory, but is not the same. The main difference is that these approximations
are constructed from the first function which is defined for the given argument. We are
knowing that we want the p — th approximation, and this is what we compute.

5.2 A result about equality

In subsection 4.1, covrec was introduced as a primitive constant and the computation rules
for the operator were given. In subsection 5.1 an expression for the operator in terms of
primitive recursion was found, giving the possibility of introduce course-of-values recursion
as an abbreviation.

- We can look at the computation rule for the primitive constant, as specifying the
expected behavior of the derived expression. In TT, this can be expressed as:

covrec(p,€) =c(p) apply(e(p), A z-A g.covrec(z,€e)) true @
where

PEN,
C(z) Set[z € N], '
apply(e(z),y) € C(z) [z € N,y € [Tz € N.(2< z = C(2))]
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We try to prove this equality as follows :

since

covrec(p,e) =c(p) apply(e(p), Approz fun(e,p)) true

is enought to show that
Approz fun(e, p) =[[ 2€N-(z<p=C(2)) A z.) g.covrec(z,€) true
applying natural induction, for p = 0 we have to show:

Go =[] z€N.(:<0=C(2)) A z.) g.covrec(z,e) true

at this point, the intentional equality of two function elements must be proved. Since a
function is a canonical element (it is just evaluated), there is no way to prove this last

equation.

Instead of (I), the F¢g-equality of both expressions is proved. This proof has an intensional
part, that proves that these functions yields equal values when applied to equal elements
in the domain.

Lemma

Let

peEN
C(z) Set[z € N],
apply(e(z),y) € C(z) [z € N,y € [[z€ N(2<z = C(2))]

then
apply(apply(Approz fun(e, p), z),q) =c(z) covrec(z,e) true [z € N, g€ z < p]
Proof.

The proof is done by Natural Induction on p. Since ¢ € z < p, depends on p, we will look
for a proof of

Vg € z < p. 1d(C (%), apply(apply(Approz fun(e, p), 2), q), covrec(z,¢€)) true [z € N]

Applying V-elimination to this proof and ¢ € z < p, we get the desired result.

Natural Induction on p.

(a) if p = 0, we must prove
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Yq €2 < 0.1d(C(2), apply(apply(Approz fun(e,0), 2),q), covrec(z,e)) true [z € N]

which follows applying V-introduction and L-elimination from ¢ € z < 0 and =(z2 < 0).

(b) if p = s(u), we must prove
Vg € z < s(u). 1d(C(z), apply(apply(Approz fun(e, s(u)), 2), q), covrec(z, €)) true

under the assumptions

z,u € N,
[ Vis € z < u. Id(C(z), apply(apply(Approz fun(e,u), z),1s), covrec(z,e)) true ]
Assume g € 2 < s(u).
Unfolding Approz fun and applying []-elimination and =>-elimination,
we see that it is enought to prove
when ( lesssucctoleg(q), :
[1s] apply(apply( Approz fun(e, v), 2),1s)
" [eq] Idsubst(eq, apply(e(u), Approz fun(e, u))) =0(z) covrec(z,e) true
under the assumptions

zZ,u€ N, q € z < s(u) :
Vis € z < u.Id(C(2), apply(apply(Approz fun(e,u), z),1s), covrec(z,e)) true

This equality follows applying V-elimination to lesssucctoleq(q):
(a) assume we have Is € z < u, then by V-elimination from the inductive assumption we get
apply(apply(Approz fun(e,u), z),1s) =N covrec(z,e)) true
(b) assume we have eq € z = u, applying Id-elimination to this proof, we get

Idsubst(eq, apply(e(u), Approz fun(e,u))) =¢(z) covrec(z,€) true

Now, applying V-introduction to this proof and the assumption ¢ € z < s(u) we get the
proof of the inductive step.
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Theorem
In type theory with Extensional Equality, we can prove:
Eq(C(p),covrec(p,e),apply(e(p), A 2.\ g.covrec(z,€))) true

where

PEN,
C(z) Set [z € NJ,
apply(e(z),y) € C(z) [r € N, y€[[2 € N(2 < z = C(2))]

Proof.

A similar proof for Eq instead of Id in Lemma, gives a term in
Eq(C(z),apply(apply(Approz fun(e, p), z),q), covrec(z,e)) true[z € N, g € z < p]
By strong Eg-elimination we get
apply(apply(Approz fun(e, p), 2), q) = covrec(z,e) € C(z) [z € N, g € z < p]
by =-introduction and Eg¢-introduction it follows |
Eq(z < p= C(2), A q.apply(apply( Approz fun(e, p), 2),q), A g.covrec(z,€)) true [z € N]
and by n-equality and transitivity of Fq
Eq(z < p = C(2), apply(Approz fun(e, p), z), A g.covrec(z,e)) true [z € N]
applying strong Eg-elimination one more time, we get
apply(Approz fun(e, p),z) = A g.covrec(z,e) € z < p= C(z) [z € N]
by H-introdﬁction and Eg-introduction it follows

Eq(JIz € N.(z < p =C(2)),
A z.(apply(Approz fun(e,p),2), X 2.\ g.covrec(z,e)) true

and by 7n-equality and transitivity of Eq

Eq([Tz € N.(z < p=> C(2)), Approz fun(e, p), X z.A g.covrec(z,€)) true
Now, apply Eg-congruence to prove

Eq(C (p), apply(e(p), Approz fun(e, p)), apply(e(p), A z.) g.covrec(z, €))) true
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which by the given definition for covrec, is the same that
Eq(C(p),covrec(p,e),apply(e(p), A z.\ g.covrec(z,€))) true

The proof is complete.

This proof can be seen as stating the well-foundness of the relation < on N.

6 Comments on the work

In this section we will describe the steps followed when formalizing the proofs and appli-
cations. We will describe the alternative implementations and mention the problems we

have to face in each case.

6.1 From the polymorphic to the monomorphic

To formalize the proofs in ALF [ACN90], we use an implementation of Martin-Lof’s
monomorphic set theory. The major difference is that all constants contains explicit
information about which sets its arguments belong to. Beside this, the constants are cur-
rified and the selectors takes their main argument in the rightmost place [NPS90]. As an
instance, covrec is declared as:

covrec: (C : (N)Type;e: (z: N)[[z€ N.z<p=C(2)) = C(z);p: N)C(p)

There is a fundamental difference between both theories. There are derivable judgements
in the polymorphic theory which can not be proved in the monomorphic theory. In par-
ticular, the extensional equality Fq does not fit in the monomorphic theory, then the
previous Theorem will not have a corresponding proof in the formalization.

6.2 About the induction rule
The first rule we tried to formalize is:

pEN

C(v) set [v € N]

d € C(0)

e(z,y) € C(s(z)) [z €N, y(2,9) € C(2) [z € N, g € 2 < 7]
covrec(p,d,e) € C(p)

where the step function e, is represented by an abstraction and the inductive structure
of the natural numbers is reflected in the rule premises. Once defined the corresponding
ALF constant, we tried to write a program for the Fibonacci function. When doing the

proof, we arrive at the following situation:
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Conjeture: Fib(n: N): N
Current term : [n : N]covrec(n, 1, [z, ylcovree(z, 1, [z, y']y(z, legreflez(z)) + y(z',71)))
Subgoals: 71 :2' <=z

Local context :
n:N
z:N
y:(z:N)(g:z2<z)N
z': N
y:(z:N)(g:z<z')N

In this proof term, legreflex represents a proof of z < z. To finish this definition, we
need a proof element for z’ < z, but this element can not be defined since z is a constant

when looked from 71.

From this application, the following aspects of this covrec definition becomes clear:

o To use this operator, we must compute ezplicitly the previous arguments, by using
operations that allow the proof of the order property. As an instance, Fibonacci
function can be defined applying predecessor as:

[n : N]covree(n,1,
[z, y]covrec(z, 1, [z, y'ly(z, legre flez(z)) + y(pred(z), legpred(z))))

where legpred(z) is a proof of pred(z) < z.

This limitation, is a consequence of the representation of the step function by an
abstraction. Since we prefer to define an operator that allows the use of case analysis
over its major argument, we decide to represent the step function as a function

element.

e We have used covrec two times in this expression. The second time, without any

particular reason (we could have used natrec in the same way). Really, we have no
interest in recursion in this place, and what we want to do is to analize z value.
If we remember quotient and remainder examples, we have analized the proposition
(n £ m) V (m < n) in order to define them, and the definition was made, knowing
before hand that m value is of the form s(z) and independently of n value. Then,
we think that there is really no reason to consider the inductive structure of natural
numbers as part of covrec definition.
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6.3 About the equality

When introducing a primitive constant, its definition can be reflected at the type level
using Id sets. As a consequence, useful properties of programs can be proved. This also,
was showed in the previously presented examples.

If we introduce an operator as a definition, we had to face the problem of proving this
equality properties. It is not enought to give the definition, and something more must be
constructed that allows the proof of equality properties.

The intentional part of the equality presented above, (Lemma) seems to be usefu] for
this.

As an example, consider the quotient program. When proving its equality properties,
covrec definition was implicitly used in the introduction of the /d elements. These prop-
erties can be proved using the derived covree as follows:

The program for quotient was defined as

quo(n, m) =T
natcases(m, 0
[u]covrec(n,
[a]A y-when(order(s(u), a),
[1] s(y(a = (), lessproof(1))),
[r]0)))

Properties

Idquo1
quo(n,0) =x 0 true [n ¢ N]

the proof remains the same.

Idquo2
quo(n, s(u)) =y s(quo(n — s(u), s(u))) true [n,uc N, s(u) < n true]

by unfolding covrec definition, quo(n, $(u)) is the same that

when( order(s(u),n),
[1] s( apply(apply(Appro:z:fun([a]A y-when(order(s(u),a)
(1] s(y(a— s(u), lessproof(h)))
[r1]0,)) )
n — s(u)), :
lessproof(1)))
[r]0)
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the equality between this program and s(quo(n — s(u), s(u))) is proved by V-elimination
to order(s(u), n):

1. case [s(u) < n] by Lemma we have:

apply(apply(Approz fun([a]A y.when(order(s(u),a)
[11] s(y(a - s(u),lessproof(1;)))
[r1]0,)), yn)
n — s(u)),
lessproof(1))
=N quo(n — s(u), s(u)) true

then, its enought to apply Id-congruence with s.
2. case [n < s(u)] follows from 1-elimination to a proof of s(u) < s(u).
Idquo3
quo(n,s(u)) =N 0 true [n,uc N, n < s(u)true]
the proof remains the s@me.

A detailed version of these proofs are in the appendix.
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APPENDIX

ALF is a system for editing proofs and theories, based on a combination of a general type system and
Martin-Lof’s logical framework. When representing Martin-L6f’s monomorphic Set Theory in ALF, we
associate to each set an ALF type and to elements in sets objects in types. In the monomorphic ST,
propositions are identified with sets and proofs with elements in the corresponding set, so there are also
represented by ALF types and objects.

Definitions are grouped in theories. To define a theory, you define a list of typings and definitions of
constants. There are primitive constants that corresponds to constructors (it has only a type), and defined
constants (it has a type and a definition). A defined constant can be implicitely defined (defined recursively)
or explicitely defined (abreviattion). When implementing Martin-Léf’s monomorphic Set Theory in ALF,
we define a theory for each set forming operation and basic set of the theory. ALF constants can be seen as
representing rules of the theory. In this case formation and introduction rules are identified with primitive
constants, elimination and equality rules with implicitely defined constants, and derived rules with defined

constants.

Some constants are defined with hidden parameters, which is indicated with the symbol | in front of
them. In this case, the parameter is not visible but the information is there. In this form, we can get a
polymorphic ”vision” of the system by hidding type information. In some cases, we hide other parameters
that are redundant and can be inferred from the context.

Pi Sets
(V)(A: Type; B:(A)Type): Type
A(lA: Type; |B:(A)Type; b:(x:A)B(x) ):(Vx€A.B(x))

Velim (] A: Type; |B:(A)Type; |C:((Vx€A.B(x)))Type ; e:(y:(x:A)B(x))C(A(y)) ; £:(Vx€A.B(x)) ): C(f) =
case f of (A(A, B, b) => e(b))

Vapply (1A: Type; |B:(A)Type; f:(Vx€A.B(x)); a:A): B(a) = Velim([z]z(a), f)

Functions
(=)(A,B: Type): Type = (VheA.B)
A(lA,B: Type; b: (A)B): A=B = A(b)

apply(lA,B: Type; f: A=B; a: A): B = Velim([y]y(a), f)

Disjoint Union

(V)(Type;Type):Type

inl(|A,B:Type;A):AVB;

inr(|A,B:Type;B):AVB;

when(lA,B:Type; |C:(AVB)Type; e:(x:A)C(inl(x)); f:(y:B)C(inz(y));p:AVB):C(p) =

case p of (inl(A,B,a) => e(a) |
inr(A,B,b) => (b))
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Exists Proposition
(3)(A: Type; B:(A)Type): Type
Jintro(|A: Type; |B:(A)Type; a: A; b: B(a)): (Ix€A.B(x))

Jelim(lA: Type; |B:(A)Type; |C: ((3x€A.B(x)))Type; d: (a:A)(b:B(a))C(Jintro(a, b))); p: (3x€A.B(x))): C
case p of (Jintro(A, B, a, b) => d(a, b))

fst(lA: Type; |B:(A)Type; p: (3x€A.B(x))): A = Jelim([a,b]a, p)

snd(]A: Type; 1B:(A)Type; p: (3x€A.B(x))): B(fst(p)) = Jelim([a,b]b, p)

Bottom
1:Type
Lelim(]C:(L)Type; b: 1L):C(b)

—(A:Type):Type = A= L

Id sets

Id({A:Type; a,b:A): Type

id(|A:Type; x:A): Id(x,x)

IdE(|A:Type; 1C:(x:A)(y:A)(e1d(x y)) Type; a,b:A; edd(a,b); d:(x:A)C(x,x,id(x))): Clabie) =
case e of (id(A,2) => d(a))

Properties of Id

Idrefi(| A:Type; a:A): Id(a,a) = id(a)

Idsymm(]A:Type; la,b:A; i:1d(a,b)): Id(b,a) = IdE(a,b,i,[xJid(x))

Idtrans(| A:Type; la:A; b:A; |c:A; p:ld(a,b); q:1d(b,c)):d(a,c) = apply(IdE(a,b,p,[yA([z]2)),q)
Idsubst(lA:Type; P:(A)Type; a:A; |b:A; i:1d(a, b); p: P(a)): P(b) = apply(IdE(a, b, i,[x]A([w]w)), p)

Idcongr(]A,B:Type; f:(A)B; |a,b:A; i:Id(a,b)): 1d(f(a),f(b)) = Idsubst([h]Id(f(a),f(h)),a,i,id(f(a)))
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Natural Numbers
N: Type

0: N

s(n:N): N
natcases({C:(N)Type; d:C(0); e:(u:N)C(s(u)); p:N): C(p) = case p of (0 => d | s(u) => e(u))

natrec(|C: (N)Type; d: C(0); e: (u:N)(v:C(u))C(s(u)); n: N): C(n)=
case n of (0 =>d | s(u) => e(u, natrec(C, d, e, u)))

Operations on N
pred(n: N): N = natrec(0, [u,v]u, n)
(+)(x,y: N): N = natrec(y, [u,v]s(v), x)
(=)(x,y: N): N = natrec(x, [u,v]pred(v), y)

(*)(x,y: N): N = natr_ec(O, [u,v](v+y), x)

1: N = s(0)
2: N = s(1)
3: N = s(2)
4: N = 5(3)

Double Recursion

This constant defines a double recursion schema into the theory. The parameters where defined to represent
double induction, as it is done usually in Arithmetics. The definition needs the use of higher order functions
in order to be able to make recursion over one argument when using the other as parameter.

doubrec(]C:(N)(N)Type; d:(x:N)C(x, 0); e:(y:N)C(0, s(y)); £:(x:N)(y:N)(C(x, ¥))C(s(x),s(y)); a,b:N): C(a,b) =
Vapply(natrec(A([k]d(k)),
E1),v]1)\([k]natrec(e(u),[w,z]f(w, u, Vapply(v, w)), k)),
,a

Idon N

IdN:(x,y:N)Type = Id(N)

Idsucc(lx,y:N; i:IdN(x, y)): IdN(s(x), s(y)) = Idcongr(s,i)
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The next terms looks equal, but there are different. The differences are not visibles since corresponds to
hidden parameters.

Idfromsuce(|x,y:N; i:1dN(s(x),s(y))): 1dN(x, y) = Idcongr(pred,i)

Idpred(|x,y:N; i:IdN(x, y)): IdN(pred(x),pred(y)) = Idcongr(pred,i)

Peano4

Natrec(d: Type; e: (u:N)(T:Type)Type; n: N): Type = case n of (0 =>d | s(u) => e(u, Natrec(d, e, u)))
Iszero(n: N): Type = Natrec(N, [u,T]L, n)

peano4(n: N): ~(IdN(0, s(n))) = A([h]Idsubst(Iszero,0,h,0))

The following properties state equalities between objects in N constructed by the use of the operations +,
— and . These equalities correspond to axioms and theorems of formal number theories and primitive

recursive arithmetics and are basics for the rest of the work. They are needed for proof of properties of
the order on N, and when defining the applications.

Properties of +

addzero(n:N): IdN(n+0, n) = natrec(id(0),[u,v]Idsucc(v), n)

Saddzero(n:N): IdN(n, n40) = Idsymm(addzero(n))

addsucc(n,m: N): IdN(s(n+m), n+s(m)) = natrec(id(s(0+m)), [u,v]Idsucc(v), n)

Saddsucc(n,m: N): IdN(n+s(m), s(n+m)) = Idsymm(addsucc(n,m))

addsubstL(la,b,y:N; p:IdN(a,b)): IdN(a+y, b+y) = Idcongr([h](h+y),¥>)

addsubstR(la,b,x:N; p:IdN(a,b)): IdN(x+a, x+b) = Idcongr([h](x+h),p)

addsubst(|x,y,w,z:N; p:IdN(x,y); q:1dN(z,w)): IdN(x+z, y+w) = Idtrans(y+z,addsubstL(p), addsubstR(q))

addassocR(n,m,k: N): IdN(n+m+k, n+(m+k) ) = natrec(id(m+k), [u,v]ldsucc(v), n)

addassocL(n,m,k: N): IdN(n+(m+k), n+m+k) = Idsymm(addassocR(n, m, k))

addcommut(n,m: N): IdN(m+n, n+m) = natrec(Saddzero(n), [u,v]Idtrans(s(n+u),Idsucc(v), addsucc(n, u)), m)

Properties of —
zerominus(n:N): I[dN(0—n, 0) = natrec(id(0),[u,v]Idpred(v)),n)

predminus(n,m:N): IdN(pre‘d(n)-m,. pred(n—m)) =
natrec(Idpred(id(n)), [u,v]Idtrans(pred(pred(n—u)), Idpred(v), Idpred(id(n—s(u)))),m)

Spredminus(n,m:N): IdN(pred(n—m), pred(n)—m) = Idsymm(predminus(n,m))
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minusdiff(x,y: N): IdN(s(x)—s(y), x—y) = Spredminus(s(x),y)

xminusx(x: N): IdN(x—x,0) = natrec(id(0), [u,v]Idtrans(u—u, minusdiff(u,u), v), x)
minussubstL(la,b,y:N; p:IdN(a, b)): IdN(a—y, b—y) = Idcongr([h](h—y),p)
minussubstR(la,b,x: N; p:IdN(a, b)): IdN(x—a, x—b) = Idcongr([h](x—h),p)

minussubst({x,y,w,z:N; p:IdN(x, y); q: IdN(z, w)}: IdN(x—z, y—w) = Idtrans(y—z,minussubstL(p), minussubstR(q))

Properties of *
timeszero(n:N): IdN(n*0, 0) = natrec(id(0), [u,v]Idtrans(ux0,addzero(ux0), v), n)
Stimeszero(n:N): IdN(0, n+0) = Idsymm(timeszero(n))
timessucc(n,m: N): IdN(n*s(m), nxm+n) =
natrec(id(0),
[u,v]Idtrans(u*m+(u+s(m)),
Idtrans(usm+u+s(m), addsubstL(v), addassocR(u*m, u, s(m))),
Idtrans(usxm+(m+s(u)),
addsubstR(Idtrans(s(u)+4m, Idsymm(addsucc(u, m)), addcommut(m, s(u)))),

| addassocL(u*m, m, s(u)))),

Stimessucc(n,m: N): IdN(n+m+n, n*s(m)) = Idsymm(timessucc(n, m))

timessubstL(la,b,y: N; p: IdN(a, b)): IdN(a+y, bsy) = Idcongr([hJh+y,b, p)

timessubstR(la,b,x: N; p: IdN(a, b)): IdN(xxa, x*b) = Idcongr([h]x+h,b, p)

timessubst(|x,y,w,z: N; p: IdN(x, y); q: IdN(z, w)): IdN(x*z, y*w) = Idtrans(yxz, timessubstL(p), timessubstR(q))

timescommut(n,m:N): IdN(m#n, n+m) = natrec(Stimeszero(n), [u,v]Idtrans(n+u+n, addsubstL(v), Stimessucc(n, u)), m)

Less

In order to formalize the course-of-values recursion rule, we have to define the order for natural numbers.
To do this, we define an inductive family of sets following [Sza91].

(<)(N;N): Type

zeroless(x: N): 0<s(x)

succless(|x,y:N; p:x<y): s(x)<s(y)

lessE(1 C:(x:N)(y:N)(x<y) Type; z2:(x:N)C(0,5(x), zeroless(x));
ss:(x:N)(y:N)(p:x<y)(u:C(x, ¥, p))C(s(x),s(y),succless(p));

In,m:N; p:n<m): C(n, m, p) = case p of (zeroless(x) => zz(x) |
succless(x, y, q) => ss(x, y, q, lessE(C, zz, ss, x, y, q)))
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Properties of Less
lesssuce(x: N):x<s(x) = natrec(zeroless(0),[u,v]succless(v), X)
lessIdtoless({x:N; y:N; |2:N; Ixy:x<y; iyz:1dN(y,z)): x<z = Idsubst ([z1)(x<z1), y, iyz, 1xy)

Idlesstoless(|x:N; y:N; |2z:N; ixy:IdN(x,y); lyz:y<z): x<z = Idsubst([x;1](x1<z), y, Idsymm(ixy), lyz)

The following proofs shows the equivalence between n<m and (3keN.IdN(s(k)+n, m)). This equivalence
is used in the transitivity proof for <.

lesstoexists(|n,m: N; p:n<m): (3k€N.IdN(s(k)+n, m)) =
lessE([x]3intro(x, addzero(s(x))),
[x,¥,q,u]3intro(fst(u), Idtrans(s(s(fst(u))+x),Saddsucc(s(fst(u)), x), Idsucc(snd(u)))),
P

existstolessL0:(Vm€N.(IkeN.IdN(s(k)+0, m))=0<m) =
A([m]A([k]lessIdtoless(s(fst(k))+0,
lessIdtoless(s(fst(k)), zeroless(fst(k)), Saddzero(s(fst(k)))),

snd(k)))))

existstolessLsucc(u:N; v:(VmeN.(3keN.IdN(s(k)+u, m))=u<m): (VmeN.(3keN.IAN(s(k)+s(u), m))=s(u)<m)=
A([m]A([k]lessIdtoless(s(s(fst (k))+u),
succless( apply( Vapply(v, s(fst(k))+u), Jintro(fst(k), id(s(fst(k))+u)))),
Idtrans(s(fst(k))+s(u), addsucc(s(fst(k)), u), snd(k)))))

existstoless(|{n,m:N; p:(3k€N.IdN(s(k)4+n, m))):n<m =
apply(Vapply(natrec(existstolessL0, existstolessLsucc, n), m), p)

Using the previous equivalences, the following constants can be defined. From this constants, transitivity
and asymmetry of < is proved.

lessbydiff(Ix,y:N: k: N; d: IdN(s(k)+x, y)): x<y = existstoless(Jintro(k, d))
lessdiff(Ix,y: N; Ixy: x<y): N = fst(lesstoexists(lxy))
lessdiffproof(|x,y: N; Ixy: x<y): IdN(s(lessdiff(lxy))+x, ¥) = snd(lesstoexists(lxy))

lesstrans(|x:N; y:N; |z:N; Ixy: x<y; lyz: y<z): x<z =
lessbydiff(lessdiff(lyz)+s(lessdiff (Ixy),
Idtrans(s(lessdiff(lyz))+s(lessdiff (Ixy)+x),
addassocR(s(lessdiff(lyz)), s(lessdiff(1xy)), x),
Idtrans(s(lessdiff(lyz))+y, addsubstR (lessdiffproof(lxy)), lessdiffproof(lyz))))

lesstranssucc({x:N; y:N; |z:N; Ixy: x<y; lyz: y<z): s(x)<z =
lessbydiff(lessdiff (lyz)+lessdiff(Ixy),
Idtrans(s(lessdiff(lyz))+ (lessdiff (Ixy)+s(x)),
addassocR(s(lessdiff(lyz)), lessdiff(lxy), s(x)),
Idtrans(s(lessdiff(lyz))+y,
addsubstR(Idtrans(s(lessdiff(Ixy))+x, Saddsucc(lessdiff(Ixy),x), lessdiffproof(lxy))),
lessdiffproof(lyz))))
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lessfromsucc(|x,y:N; q:s(x)<s(y)): x<y =
lessbydiff(lessdiff(q),
Idfromsucc(Idtrans(s(lessdiff(q)+s(x),addsucc(s(lessdiff(q)), x),lessdiffproof(q))))
asymmadd(x,k: N; h: IdN(s(k)+x, x)): L=
apply(natrec(A([h1 ]apply(peano4(k), Idtrans(s(k)+zero, Idsymm( h;),addzero(s(k))))),
[u,v]A([h1]apply(v, Idfromsucc(Idtrans(s(k)+s(u), addsucc(s(k), u), h1)))),
x),

h)

lessasymm(x:N): =(x<x) = A([h]asymmadd(x,lessdiff(h), lessdiffproof(h)))

The following proof states that N is well-founded by <. It is used as ”basis” in covrec definition and in
the proof of equality.

notlesszero(x:N):—=(x<0) =
A([h]apply(peano4(lessdiff(h)+x),
Idtrans(s(lessdiff(h))+x,
Idsymm(lessdiffproof(h)),
Idtrans(lessdiff(h)+s(x), addsucc(lessdiff(h), x), Saddsucc(lessdiff(h), x)))))

Less or Equal

The < relation is defined in terms of < and IdN as:

()(xy: N): Type = (x<y)VIdN(x, y)

Properties of Less or Equal

lesstoleq(|x,y:N; Ixy:x<y): x<y = inl(Ixy)

Idtoleq(]x,y:N; ixy:IdN(x, y)): x<y = inr(ixy)

zeroleq(x: N): 0<x = natrec(Idtoleq(id(0)), [u,v]lesstoleq(zeroless(u)), x)

succleq(lx,y:N; qxy:x<y): s(x)<s(y) = when([Ixy]lesstoleq(succless(lxy)), [ixy]Idtoleq(Idsucc(ixy)), qxy)
legreflex(x:N): x<x = Idtoleq(id(x))

legsucc(x:N): x<s(x) = lesstoleq(lesssucc(x))

legpred(x:N): pred(x)<x = natrec(leqreflex(0), [u,v]legsucc(u), x)

The following properties expresses transitivities holding between <, < and IdN.
lessleqtoless(]x:N; y:N; |z:N; Ixy:x<y; qyz: y<z): x<z = when([lyz]lesstrans(y,lxy,lyz), [iyz]lessldtoless(y,lxy,iyz), qyz)
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leqlesstoless(|x:N; y:N; |2:N; qxy:x<y; lyz:y<z): x<z = when([Ixy]lesstrans(y,lxy,lyz), [ixy]Idlesstoless(y,ixy,lyz), qxy)
legldtoleq(lx:N; y:N; |2:N; qxy:x<y; iyz:IdN(y, z)): x<z = Idsubst([z1](x<z1), ¥, iyz, qxy)
Idleqtoleq(]x:N; y:N; |2:N; ixy:IdN(x, y); qyz:y<z): x<z = Idsubst([x1](x1<z), y, Idsymm(ixy), qyz)

leqtrans({x:N; y:N; |z:N; qxy:x<y; qyz:y<z): x<z =
when([Ixy]lesstoleq(lesslegtoless (y, Ixy, qyz)),[ixy]ldleqtoleq(y, ixy, qyz), qxy)

lessleqtoleq(|x:N; y:N; |2:N; Ixy:x<y; qyz:y<z): x<z = leqtrans(y,lesstoleq(Ixy), qyz)
leqlesstoleq(]x:N; y:N; |z:N; qxy:x<y; lyz:y<z): x<z = leqtrans(y,qxy,lesstoleq(lyz))

leqtoexists(lx,y:N; qxy:x<y): (FkeN.IdN(k+x, y)) =
when([Ixy]Jintro(s(lessdiff(Ixy)), lessdiffproof(lxy))), [ixy]Jintro(0, ixy), qxy)

existstoleq(x,y:N; p:(FkeN.IdN(k+x, y))): x<y =
apply( apply(natrec(A([h]A([ixy]Idtoleq(ixy))), [u,v]A([h]A([Ixy]lesstoleq(lessbydiff(u,Ixy)))), fst(p)),
id(fst(p))),
snd(p))
legbydiff(|x,y:N; k:N; d:IdN(k+x, y)): x<y = existstoleq(Jintro(k, d))
leqdiff(|x,y:N; qxy:x<y):N = fst(leqtoexists(qxy))
leqdiffproof(|x,y:N; qxy:x<y): IdN(leqdiff(qxy)+x, y) = snd(leqtoexists(qxy))
leqfromsucc(x,y:N; q: s(x)<s(y)): x<y = when([Ixy]lesstoleq(lessfromsucc(lxy)), [ixy]Idtoleq(Idfromsucc(ixy)), q)

lesstolegsucc(x,y:N; Ixy:x<y): s(x)<y = leqbydiff(lessdiff(Ixy), Idtrans(s(lessdiff(Ixy))+x, Saddsucc(lessdiff(Ixy), x),
lessdiffproof(lxy)))

legsucctoless(lx,y:N; qxy:s(x)<y):x<y = lessfromsucc(leglesstoless(y,qxy,lesssucc(y)))
leqtolesssuc(|x,y:N; qxy:x<y): x<s(y) = leqlesstoless(y, gxy, lesssucc(y))
lesssucctoleq(lx,y:N; L:x<s(y)): x<y = leqfromsucc(lesstolegsucc(l))

legzerotold({x:N; q:x<0): IdN(x, 0) = when([l] Lelim(apply(notlesszero(x), 1)), [ili, q)

The next are properties of < and < with respect to —.
lessminus(x,y: N): s(x)—s(y)<s(x) =
Idlesstoless(x—y, minusdiff(x, y), natrec(lesssucc(x—0), [u,v]leqlesstoless(x—u, legpred(x—u), v), y)

lessminusfun(a,b:N): s(b)<a=>a—s(b)<a = natrec(A([q]Jwhen([l]bottomE(apply(notlesszero(s(b)), 1)),
: [i]bottomE(apply(peano4(b), Idsymm(i))), q)),
[u,v]A([q)lessminus(u, b)),

a)

lessproof(a,b:N; q:s(b)<a): a—s(b)<a = apply(lessminusfun(a, b), q)
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The following proof is done by using the double recursion schema.

Idminusadd(a,b: N): a<b=>IdN((b—a)+a, b) =
doubrec([x]A([q]addsubst(zerominus(x),leqzerotold(q))),

[¥]A([a]addzero(s(y)—0)),
[x,¥,f]A([q)Idtrans(y—x+s(x),addsubstL(minusdiff(y, x)),
Idtrans( s(y—x+x),Saddsucc(y—x, x),
Idsucc( apply( {, legfromsucc(q)))))),

a, b)

The next constant is very useful when defining applications. This allows to ”decide” the order relation (we
are looking for a proof of (x<y)V— (x<y)).

order(x,y: N): x<yVy<x =
natrec(inl(zeroleq(y)),
[u1,v1]when([li]when([luy)inl(lesstolegsucc(luy)),
[iuy)inr(Idlesstoless(us ,Jdsymm(iuy),lesssucc(ui))),

1),
[r1]inr(lesstrans(u;, 11, lesssucc(ui))),
Vi ),

x)

Another definition for order, can be done by using the scheme of double recursion defined earlier. This
example shows a nice application of this operator to programming.

order(x,y: N): x<yVy<x =
doubrec([x; Jnatcases(inl(zeroleq(0)),[u]inr(zeroless(u)), x1),

[y1]inl(lesstoleq(zeroless(y1))),

[x1,¥1,f]when([Ixylinl(succleq(lxy)),
[lyxJinr(succless(lyx)),
f),

x,

y)

covrec definition

Now, we present the definition for the course-of-values operator. The proof follows the same steps presented

earlier in the paper. We introduce also an abbreviation for the type of the functions.

approxtype(]C:(N)Type; p:N): Type = (VzeN.z<p=C(z))

gzero(|C:(N)Type): approxtype(0) = A([z]A([q] Lelim(apply(notlesszero(z), q))))

gsucc(] C:(N)Type; e:(x:N)(approxtype(x)=>C(x)) ; u: N; v: approxtype(u)): approxtype(s(u)) =
A([z)A([q] when([ls]apply(Vapply(v, z), ls),

[eq]Idsubst(C, u, Idsymm(eq), apply(e(u), v)),
lesssucctoleq(q))))
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approxfun(]C:(N)Type; e:(x:N)(a.pproxtype(x)=>C(x)) ; p: N): approxtype(p) =
natrec(gzero, [u,v]gsucc(e, u, v), P)

covrec(|C:(N)Type; e:(x:N)(approxtype(x)=C(x)); p:N):C(p) = apply(e(p), approxfun(e, p))

Some applications

We have defined natcases as an implicitly defined constant. Now, natrec is defined as an abbreviation by
using natcases and covrec. In the paper we had justified these definition by refering to the computational
behavior, here on the other side, we present a derivation of the operator into the system.

natrec in terms of covrec

natrec’(]C: (N)Type; d:C(0); e:(u:N)(v:C(u))C(s(n)); p:N): C(p) =
covrec([x]natcases(A([y]d)) ,
[';]/\([Y]E(U, apply(Yapply(y, u), lesssucc(u)))),
p) ’

Fibonacei function

Fib(n:N):N = covrec([x]natcases(A([y]1),
[a]natcases(A([y]1),
[b]A([¥](2pply(Yapply(y, s(b)),lesssucc(s(b))))
+

(apply(Yapply(y, b),lesstrans(s(b),lesssgcc(b) ;lesssucc(s(b))))))

X)
’n)

A result about equality

What follows is the proof of the Lemma already presented. The proof follows the same steps as before.
Since some terms are too long, we prove some auxiliary lemmas and combine them to obtain the proof.

Eqzero(|C: (N)Type; e:(x:N)(approxtype(x)=C(x)); z: N; q: z<0):
Id(apply(‘v’apply(a.pproxfun(e,O), z),q), covrec(e,z)) = Lelim(apply(notlesszero(z), q))

Eqi.(]C: (N)Type;e:(x:N)(approxtype(x)=>C(x)); u, z: N;
v:(Vls€z<u.Id(apply(Vapply(approxfun(e,u), z), Is), covrec(e,z))) ; q: z<u):
Id(apply(Vapply(a.pproxfun(e,u), z), q), covrec(e,z)) = Vapply(v, q)

Eqeg(1C: (N)Type; e:(x:N)(approxtype(x)=C(x)); u, z: N; eq: IdN(z, u)):

Id(Idsubst(C, u, Idsymm(eq), apply(e(u), approxfun(e, u))), covrec(e,z)) =
IdE(z, u, eq, [x]id(Idsubst(C, x, Idsymm(id(x)), apply(e(x), approxfun (e, x)))))
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Egsucc(]C: (N)Type;e: (x:N)(approxtype(x)=-C(x)); u, z: N;
v:(Vls€z<u.ld(apply(Vapply(approxfun(e,u), z), Is), covrec(e,z))) ; q: z<s(u)):
Id(apply(piapply(approxfun(e, s(u)), z), q), covrec(e,z)) =
when([Is]Eqi. (e, u, z, v, Is),
[eq]Eq¢Q(e) u, z, eq)),
lesssucctoleq(q))

funEq(|C:(N)Type; e: (x:N)(approxtype(x)=>C(x)); p, z: N):
(Yq€z<p.1d(apply(Yapply(approxfun(e,p), z), q), covrec(e,z))) =
natrec(A([q]Eqzero(e, z, q)), [u,v]A([q]Eqsucc(e, u, z, v, q)), p)

Equality(|{C:(N)Type; e: (x:N)(approxtype(x)=-C(x)); p,z: N; q:z<p):
Id(apply(Yapply(approxfun(e,p), z),q), covrec(e,z)) = Vapply(funEq(e, p, z), q)

Here we formalize the presented examples concerning to Division. The same programs are defined and
properties proved. In the proof of equality properties of the programs, the result about equality is used.

Quotient definition

quo(n,m:N): N = natcases(0,
[u]covrec([a]A([y]when({l::]’;(apply(Vapply(y, a—s(u)),lessproof(a, u, 1))),
ordér(s(u), a))),
n),
m)

Properties of Quotient definition

This constant represents the corresponding application of the Lemma. This term is used below in the proof
of the properties of quo definition.

Eqquo(n,u:N; I: s(u)<n):
1dN(apply(Vapply(approxfun([a]A([y]when([li ]s(apply(Vapply(y, a—s(u)), lessproof(a, u, 1))),
[1'1]0, order(s(u), a)))) 11)),
n—s(u)),
lessproof(n, u, 1)),
quo(n—s(u),s(u)) =
Equa.lity([a]/\([y]when(%h]]s(a.pply(Vapply(y, a—s(u)), lessproof(a, u, 1))),
I3 0,
order(s(u), a))),
n,
n—s(u),
lessproof(n, u, 1))

Idquol(n: N): IdN(quo(n,0), 0) = id(0)
Idquo2(n,u: N; g: s(u)<n): IdN(quo(n, s(u)), s(quo(n—s(u), s(u)))) =
when([I]Idcongr(s,Eqquo(n,u,l))

[r]bottomE(apply(lessasymm(s(u)),leglesstoless(n, q, r)))
order(s(u), n))
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Idquo3(n,u: N; q: n<s(u)): IdN(quo(n, s(u)), 0) = when([]]bottomE(apply(lessasymm(s(n)),leqlesstoless(n, 1, q))),
[z]id(0),

order(s(u), n))
Remainder definition
rem(n,m:N): N = natcases(n,

[u]covrec([a]A( [ﬂwhen(ﬁ%applywapply(y,
Ila,

order(s(u), a))),

a—s(u)),lessproof(a, u, 1)),

n),

m)

Properties of Remainder definition

This constant represents the corresponding application of the Lemma. This term is used below in the proof
of the properties of rem definition.

Eqrem(n,u:N; I: s(u)<n):
IdN(app]y(\/apply(approxfun([a,]/\([y]when([h

n—s(u))
lessproof(n, u, 1)),
rem(n—s(u),s(u))) =
Equality{[a]/\([ﬂwhen([h%appIY(Vapply(y,

order(s(u), a))),

]apply(Vapply(y, a—s(u

), Iessproof(a, u, I1)),
[r1]a, order(s(u), a))), n), -

)

a—s(u)), lessproof(a, u, L)),

o,
n—s(u),
lessproof(n, u, 1))

Idrem1(n: N): IdN(rem(n, 0), n) = id(n)

Idrem2(n,u: N; q: s(u)<n): IdN
When([]]Eqrem(n,u,l)
[r]bottomE(apply
order(s(u), n))

(rem(n, s(u)), rem(n—s(u), s(u))) =

(lessasymm(s(u)),leqlesstoless(n, q, r)))

Idrem3(n,u: N; q: n<s(u)): IdN(rem(n, s(u)), n) = when([l]bottomE(apply(lessasymm(s(u)),leqlesstoless(n, L, q))),
[tlid(n),

order(s(u), n))
Lessrem (n,u: N): rem(n, s(u))<s(u) =
covrec([a]A([y]when([]]Idlesstoless(rem(a—s(u), s(u)),
Idrem2(a, u, 1),

apply(Vapply(y, a—s(u)), lessproof(a, u, 1)),
[r]Idlesstoless(a, Idrem3(a, u, I), 1),

order(s(u), a))), n)
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division
The proposition concerning division, presented earlier in the main text is proved. The proof follows the
same steps. Some parts of the proof are too long, so they are separated in lemmas.

divi(n:N): IdN(0*quo(n,0)+rem(n,0), n) =
Idtrans( 0+n, addsubst(Idtrans(quo(n,0)*0, timescommut(quo(n,0),0), timeszero(quo(n,0))),
Idrem1(n)),
Idtrans(n+0, addcommut(n,0), addzero(n)))

divaa(n,u: N;q:s(u)<n):
IdN(s(u)*quo(n, s(u))+rem(n, s(u)),s(u)*quo(n—s(u), s(u))+(s(u)+rem(n—s(u), s(u)))) =
Idtrans(s(u)+*s(quo(n—s(u), s(u)))+rem(n—s(u), s(u)),
addsubst(timessubstR (Idquo2(n, u, q)), Idrem2(n, u, q)),
Idtrans(s(u)*quo(n—s(u), s(u))+s(u)+rem(n—s(u), s(u)),
addsubstL(timessucc(s(u),quo(n—s(u), s(u))))
addassocR(s(u)*quo(n—s(u), s(u)), s(u), rem(n—s(u), s(u)))))

divap(n,u: N; q:s(u)<n; v: IdN(s(u)*quo(n—s(u), s(u)) +rem(n—s(u), s(u)),n—s(u))):
IdN(s(u)*quo(n—s(u), s(u))+(s(u)+rem(n—s(u), s(u))), n) =
Idtrans(s(u)*quo(n—s(u), s(u))+(rem(n—s(u), s(u))+ s(u)),
addsubstR(addcommut(rem(n—s(u), s(u)), s(u))),
Idtrans(s(u)*quo(n—s(u), s(u))+rem(n—s(u), s(u))+s(u),
addassocL{s(u Jxquoln—s(w), s(u)) , rem(n—s(u), s(u)}, s(a)),
Idtrans(n—s(u)+s(u),
addsubstL(v),
apply(Idminusadd(s(u), n), q)))))))

divz(n,u: N;q:s(u)<n; v: IdN(s(u)*quo(n—s(u), s(u)) +rem(n—s(u), s(u)),n—s(u))): o
IdN(s(u)*quo(n, s(u))+rem(n, s(u)), n) =
Idtrans(s(u)*quo(n—s(u), s(u))+(s(u)+rem(n—s(u), s(u))), divza(n,u,q), divzs(n,u,q,v))

diva(n,u: N; q:n<s(u)): IdN(s(u)*quo(n, s(u))+rem(n, s(u)), n) = I
Idtrans(0+n, addsubst(Idtrans(s(u)+0, timessubstR(Idquo3(n, u, q)), timeszero(s(u))), Idrem3(n, u, q)),
Idtrans(n+0, addcommut(n, 0), addzero(n)))

div(n,m: N): IdN(mxquo(n, m)+rem(n, m), n) =
natcases(div; (n),
[u]covrec([a]A([y]when([I]div2(a,u,l,apply(piapply(y, a—s(u)), lessproof(a, u, 1)),
[r]divs(a, u, 1), '
order(s(u), a))),

n),
m)
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