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ABSTRACT: Natural languages can express some logical propositions that humans are able to understand. We illustrate 
this fact with a famous text that Conan Doyle attributed to Holmes: “It is an old maxim of mine that when you 
have excluded the impossible, whatever remains, however improbable, must be the truth”. This is a subtle logical 
statement usually felt as an evident truth. The problem we are trying to solve is the cognitive reason for such 
a feeling. We postulate here that we accept Holmes’ maxim as true because our adult brains are equipped with 
neural modules that naturally perform modal logical computations.

Keywords: Neural computations; Natural language; Models of reasoning; Modal logics.

RESUMEN: Los lenguajes naturales pueden expresar algunas proposiciones lógicas que los humanos pueden entender. 
Ilustramos esto con un famoso texto que Conan Doyle atribuye a Holmes: «Una vieja máxima mía dice que 
cuando has eliminado lo imposible, lo que queda, por muy improbable que parezca, tiene que ser la verdad”. Esto 
es una sutil declaración lógica que usualmente se siente evidentemente verdadera. El problema que tratamos de 
resolver es la razón cognitiva de tal sentimiento. Postulamos que aceptamos la máxima de Holmes como ver-
dadera porque nuestros cerebros adultos están equipados con módulos neurales que ejecutan naturalmente 
cómputos de la lógica modal.
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1. Introduction

Human language is used to express logical and mathematical computations whose cog-
nitive bases still remain unexplained. We ask ourselves if language acquisition involves 
a kind of implicit logical and mathematical programming that could explain such per-
formances. Examples of these performances are some logical propositions, transferred by 
natural language, valid for different languages and for large populations of humans shar-
ing similar cultural traditions. In the present work we choose —as a largely accepted logi-
cal statement— one of the most cited expressions that Arthur Conan Doyle attributed 
to Sherlock Holmes, the “old maxim” mentioned by the character in the story “The Ad-
venture of the Beryl Coronet”. For an allusion to this maxim in a scientific context see 
Cairns-Smith (1990). We enunciate different versions of this “old maxim”, and the reader 
can explore by himself the origin of the conviction that these expressions usually provoke 
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(see Doyle 1988). This maxim is a subtle logical statement and the interesting (and even 
astonishing) point is that many readers feel that this maxim is an evident truth. One prob-
lem we are trying to explain is the following: which is the cognitive reason for such a feel-
ing? The method we follow here implies to keep the theories as simple as possible. We 
avoid in this first approach the temptation to deeply expand Bayesian theories, logical for-
malisms or the mathematical technicalities of neural models. Our aim is to explore the 
possibility of establishing an acceptable link between very different disciplines that are, 
however, all connected with our problem.

Perhaps the most important question about the “old maxim” concerns the consistency 
of the statement. At the same time, the most enigmatic aspect of this maxim is the natural 
acceptability triggered by it in our mind. We are going to analyze two approaches to con-
sistency: the logical consistency and the “neurocomputational consistency”. We propose 
to accept the logical consistency whenever the statement can be immersed in normal well-
formed formulas of basic propositional and modal logic. In addition, we propose to accept 
the neurocomputational acceptability if the logical computation of the statement can be 
executed by a neural network model. In this work we intend to show that both consistency 
conditions are satisfied. We begin by describing a Bayesian approach to the maxim. Then, 
we provide a logical framework to Holmes’ statement. After this, we show how these logi-
cal approaches can be computed in model neural modules capable to integrate modular 
networks (ie. networks of networks) that execute a variety of logical operations. With these 
purposes, we begin describing some basic concepts of propositional calculus and modal 
logic that confer the logical support of Holmes’ maxim. Then, we present a kind of mod-
ular neural model based on matrix algebra, and describe how logic operations can be very 
naturally incorporated into these matrix modules. Finally, we put together this material to 
provide a neural model that is capable to represent Holmes’ maxim. This approach allows 
us to propose an explanation of the reason why the Holmes’ maxim seems so naturally ac-
ceptable by us. Our explanation is based on modeling some particular neural networks ca-
pable of representing the cognitive computation of modalities.

2. Holmes’ Old Maxim

Perhaps the most cited version is the following: “It is an old maxim of mine that when you 
have excluded the impossible, whatever remains, however improbable, must be the truth” (in 
Appendix 1 we present three versions of this maxim with the corresponding sources). In 
the articles compiled by Eco and Sebeok (1988) there are many allusions to these texts, as 
well as some formalizations of the methods attributed by Conan Doyle to Holmes using 
techniques coming from mathematical logic.

The involvement of probability in this text invites us to approach the meaning of these 
statements using a naïve Bayesian description. In this context, the probability P(Ai!B) of 
Ai being the cause of event B is given by

 

 (1)
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where it is assumed that the set {A1, ..., An} includes disjoint events susceptible of being in-
terpreted as causes of the event B (e.g. B can be a symptom of a disease and {A1, ..., An} the 
set of potential pathological agents). Each P(B!Ai) measures the conditional probability of 
event B given Aj, and each P(Aj) measures (or estimates) the a priori probability of event Aj.

In this Bayesian framework, Holmes’ maxim can be interpreted as follows: after a re-
search process the investigator can establish that for all j ≠ i P(B!Aj) → 0: As a conse-
quence, only P(B!Ai) ≠ 0. Hence, at this stage, Bayes’ formula adopts the following aspect:

 

P(B | Ai)P(Ai)
0 + … + P(B | Ai)P(Ai) + … + 0

 (2)

Consequently, P(Ai!B) → 1 independently of the value of the a priori probability P(Ai). 
This deliberately simplified Bayesian approach gives us a good insight into the meaning of 
Holmes’ maxim.

It is important to remark that, together with allusions to probability, Holmes’ maxim 
includes the words “impossible” and “truth”. These two words point to a logical frame-
work, and particularly “impossible” leads us to the domain of modal logic. Consequently, 
we are going to assume that understanding our cognitive acceptation of the maxim requires 
to start from logic, and to include a posteriori a probabilistic argument inside the logical 
frame. Moreover, we need to include this logical frame inside a neural model in order to ex-
plore how a biological device such as the brain could become prone to accept the validity 
of Holmes’ maxim. We introduce the neural modeling framework in Section 4.1 and the 
probabilistic approach returns in Section 4.3.

3. Logical Consistency

Some of the fundamental ideas about modal logic were exposed by Aristotle in his short 
text “On Interpretation” (Aristotle, around 350 BC, edition E.M. Edghill). The two ba-
sic modal operators “possibility” and “necessity” are formally related by a postulate clearly 
stated by Aristotle. We provide here with a version of this postulate (Aristotle, 350 BC, 
Chapter 13):

“It remains, therefore, that the proposition ‘it is not necessary that it should not be’ follows from 
the proposition ‘it may be’ ”.

A modern formalization of modal logic can be found in Hugues and Cresswell 1972. The 
symbolic representation for the previous postulate is the following,

 ◊(Q) ≡ ¬ �[¬(Q)]  (3)
where ◊ represents the modal proposition “It is possible”, � means “It is necessary”, ¬ is 
the negation, and ≡ represents the logical equivalence. Q represents any proposition.

An equivalent representation is

 �(Q) ≡ ¬ ◊[¬(Q)]  (4)
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A corollary, based on the fact that the double negation corresponds to an affirma-
tion, is

 ¬[◊(Q)] ≡ �[¬(Q)]  (5)

Note that if Q is an arbitrary proposition, its negation ¬(Q) can be interpreted as “what-
ever remains” once excluded Q. Hence, this corollary (5) shows the proximity of Aristo-
tle’s postulate with Holmes’ maxim: If it is true that Q is impossible, it is true that what re-
mains, ¬(Q), is necessary.

Remark that the equivalences (3), (4) and (5) are true in all cases, notwithstanding the 
truth-value of the modal evaluations of Q (i.e., both members of the equivalence can be 
false). The relation with Holmes’ maxim restricts to the case in which both members of the 
equivalence are true.

The works of De Morgan, Gregory, Boole and Peirce, among others, were fundamen-
tal to transform logic into a discipline susceptible of being supported by the techniques of 
mathematics. Their work produced a variety of mathematical representations of logical cal-
culus. We note here that, deeply influenced by the symbolic methods developed in the field 
of differential equations (his main area of expertise), Boole established the basic conditions 
that allow to map the logic truth-values on mathematical variables and to transform the 
logical statements in mathematical functions (Boole 1847, 1854). In addition, in his book 
“The Laws of Thought” (1854) Boole attempted to link logical procedures with probabil-
ity theory. From this Boolean approach, it was possible to define functional relations for all 
the fundamental logical operations (e.g., negation, disjunction, conjunction, implication, 
exclusive-or, equivalence).

When logic is immersed into this “Boole’s Universe” (BU), the truth-values define a 
set

τ2 = {t, f}
where t and f are abstract (even arbitrary) mathematical objects corresponding to the truth-
values “true” and “false” respectively. In this BU, the monadic functions Mon are applica-
tions

Mon: τ2 → τ2

(the negation Not is an example of these monadic functions, being Not (t) = f and 
Not (f) = t). The dyadic functions Dyad are applications

Dyad: τ2 × τ2 → τ2;
where the symbol × indicates the Cartesian product. The truth tables used to represent the 
logical operations (e.g. disjunction or implication) are examples of the use of these dyadic 
mappings.

Following the methods created by Boole, other researchers tried to represent modal 
operations as mathematical functions. Nevertheless, in a famous work Łukasiewicz (1930) 
demonstrated the impossibility to represent “possibility” and “necessity” as mathemati-
cal functions inside the two-valued logic defined in BU (for details, see Łukasiewicz 1930, 
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Mizraji 2008). Consequently, the search for truth-functional representations for these logi-
cal modalities leads Łukasiewicz to extend the truth-value space by adding a third value “u” 
corresponding to uncertain or undecidable propositions. In this new Łukasiewicz’s Uni-
verse (LU), the logical monadic and dyadic functions are built up over the set

τ3 = {t, f, u}
where

Mon: τ3 → τ3

and

Dyad: τ3 × τ3 → τ3.

Inside this LU, the classical modalities become monadic logical functions, and “possibility” 
and “necessity” can be respectively expressed by the functions possibility ◊(x) and necessity 
�(x), x ∈ τ3, defined as follows:

◊(t) ≡ ◊(u) ≡ t; ◊(f) = f
�(t) ≡ t; �(u) ≡ �(f) ≡ f.

The negation is defined in the LU as follows:

¬(t) ≡ f; ¬(u) ≡ u; ¬(f) ≡ t.

With this formal repertoire, we can represent Aristotle’s postulate with a truth-functional 
equivalence:

 ◊[x(Q)] ≡ ¬ �[¬(x(Q))]  (6)
where x(Q) ∈ τ3 is the truth-value corresponding to an abstract proposition Q. Equa-
tion (6) transforms the Aristotelian postulate into a theorem. Being the negation ¬ an 
idempotent operator (¬[¬(x)] ≡ x), we can deduce the following equivalence from (6):

 ¬[◊[x(Q)]] ≡ �[¬(x(Q))] (7)

We are going to assume the following Axiom:

axiom: ¬(x(Q)) ≡ x (Negation Q);

Observe that, in this truth-functional format, our logical operators apply only to truth-
values; instead “Negation Q” designates the negation of a proposition. For instance, the 
truth-value of Q = “3 is an even number” is f and its negation is t; the truth-value of Nega-
tion Q = “3 is not an even number” is t; “Negation Q” is not a mathematical variable but a 
proposition and can be considered as a propositional definition of negation. This Axiom 
can be proved as a Lemma (Mizraji and Lin 2011) if we consider that Q refers to a category 
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W (a set) of propositions, and that the proposition is true if Q belongs to this category and 
false if it belongs to the negation of this category (the complement of the set W).

Using this Axiom, the logical equivalence (7) can be transformed as follows:

 ¬[◊[x(Q)]] ≡ �[x(Negation Q)] (8)

If it is verified that

 ¬[◊[x(Q)]] ≡ t (9)

then the equivalences (7) or (8) can be considered as partial mathematical models of Hol-
mes’ statement. In fact, this mathematical result seems too simple because equivalence (9), 
due to Łukasiewicz functional definitions of negation ¬ and possibility ◊, implies that 
◊[x(Q)] ≡ f and, hence, that x(Q) = f. Does this excessive simplicity disqualify the useful-
ness of the logical model? If one considers that the problem for Holmes is to develop a re-
search process able to abolish uncertainty, the answer is negative because the statement 
x(Q) = f represents the success of such process. In fact, the introduction of the third truth-
value in Łukasiewicz logic was essential to guide the neural modeling of modal logic. As we 
are going to see in the next Section, modalities can be computed in the matrix neural mod-
els using two different ways to represent the uncertain truth-value in the network: on the 
one hand, defining a specific “truth-vector” to characterize uncertain truth-values (Sec-
tion 4.2), and on the other, as a probabilistic weighting of the “true” and “false” vectors 
(Section 4.3).

The modal formats previously established are extremely important for the interpreta-
tion of Holmes’ maxim, but they do not solve our problem because they do not constitute 
cognitive models and probabilities are absent. However, the modal relation (5) and the cor-
responding truth-valued representations (7) to (9) give us a powerful formal construction 
that shares with Holmes’ postulate the enigmatic “feeling” of correctness that it produces. 
In fact, this formalism is a fundamental link to connect these modal equivalences with 
mathematical models of logical operations derived from neural models. Consequently, this 
approach covers some logical aspects of the statement, but a more comprehensive modeling 
should include the following points: a) a connection with the neural structures that pro-
duce and decode Holmes’ maxim, and b) a link with probability concepts. As we are going 
to show in the next Section, matrix algebra is a fundamental framework for the construc-
tion of these models.

4. A neural approach to logic computations

The human brain is a spontaneous, pre-theoretical, computing device capable of perform-
ing sophisticated information processing, including mathematical and geometrical calcu-
lations. It is “pre-theoretical” in the sense that the human brains display many computa-
tional performances with no need of any explicitly programmed procedures or techniques. 
Clearly, language is used to express logical and mathematical computations whose cognitive 
bases still remain unexplained. We can ask ourselves if language acquisition involves a kind 
of implicit logical and mathematical programming that could explain such performances.



Theoria 31/1 (2016): 7-25

 Illustrating a neural model of logic computations: The case of Sherlock Holmes’ old maxim 13

It is a common experience that the brain can solve problems concerning visual patterns 
without using any pre-existing mathematical knowledge. These problems are usually stated 
verbally. To illustrate this point, we can consider the image of Figure 1 representing a road.

Figure 1. The points A and B over the design of a curved road have very different curvatures

If you ask adults in which zone, A or B, the road shows larger curvature, the majority of the 
answers indicate point B. Of course, this conclusion is not based on the use of the classical 
mathematical formula

  
that gives the curvature of point (x, y) in a plane trajectory with Cartesian equation y(x). 
On the contrary, almost surely this equation was strongly inspired by the pre-existing cog-
nitive notion of curvature.

Logical judgments usually integrate the repertoire of human cognition, and even if 
many human actions are not submitted to the logic, the logical procedures are used for 
some crucial tasks that involve rational decisions. Consequently, it is particularly relevant 
to investigate the relation between cognitive models and logical performances (for an anal-
ysis of this point, see Binazzi 2012).

It is important to note that the three-valued logic, defined in Section 3, assumes the 
existence of well pre-classified data according to three cognitive categories: true, false, un-
certain. The possibility of this classification is the consequence of clear diagnoses about the 
nature of the facts (e.g.: due to the lack of documents some historical facts can be transito-
rily classified in these three categories). But an open and evolving inquiry is full of transi-
tory conjectures. In this situation, a sharp classification is not possible and the investigators 
must explore actual facts and build up their conclusions trying to decide if the conjectures 
are true or false in an environment full of uncertainties. In fact, this is the normal situation 
for many of the decisions adopted by humans in their natural environments.
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4.1. Matrix Associative Memories
Many different approaches have been proposed to describe different aspects of neural func-
tion (Arbib 1995). In particular, the relations between brain dynamics and linguistic proc-
esses have been the subject of important investigations (see, for instance, Blutner 2004, 
beim Graben 2008). Let us mention the importance of matrices in the development of the 
theory of neural associative memories, a theory mainly developed around 1970 (Anderson 
1972, Kohonen 1972, Cooper 1974). The matrix associative memories are able to model 
important facts about biological memories established in many experimental and clinical 
investigations. Comprehensive descriptions of this theory are included in Kohonen (1977) 
and Anderson (1995). These matrix memories are considered “distributed memories” be-
cause the residence of the information is a large set of synaptic contacts between neurons. 
This information is scattered and partitioned prior to be stored. This fact produces a desir-
able robustness of the model, in the sense that stored data can persist even in the presence 
of damages that produce a loss of neurons or synapses; this robustness of the model is a de-
sirable fact because biology had revealed the existence of a relative tolerance to damage in 
real memories (Anderson 1995).

This theory assumes that the cognitive patterns correspond to neural activities that 
map on large dimensional vectors. A memory is a matrix that associates pairs of column 
vectors (gi, fi), i = 1, 2, …, K, where fi corresponds to the pattern i that enters the memory 
(e.g. the image of a person), and gi is the associated output (e.g. a name associated with the 
input image). As the theory shows, these vectors are composed by the electrochemical sig-
nals used by neurons to code information; these signals are generated in parallel by thou-
sands of firing axons (Anderson 1995). The simplest form of the matrix that stores those 
pairs of vectors is as follows:

 
, (10)

(the superindex T indicates transposition). Usually it is assumed that the set of stored in-
put vectors is orthonormal (i.e. the fi are orthogonal between them and with lengths equal 
one). This assumption implies that the similarity between patterns is measured by the angle 
(equal patterns are parallel and completely different patterns are orthogonal). When a pat-
tern fk enters the memory A, it is processed and generates an output. The following equa-
tion illustrates the mechanism:

  
(11)

where 〈fi, fk〉 = fi
T fk is the scalar product (an operation that directly produces the cosines 

of the angle between this multidimensional unitary vectors; this cosines measure the angle 
and, consequently, the similarity between the patterns). If the input pattern belongs to the 
set stored into the memory, i.e. fk ∈ {fi}, we have

 Afk = gk, (12)
a perfect association.



Theoria 31/1 (2016): 7-25

 Illustrating a neural model of logic computations: The case of Sherlock Holmes’ old maxim 15

To include semantic contexts in the framework of this theory, different approaches 
involving a complex integration between inputs and contexts have been proposed (Arbib 
1995). One of these approaches (Mizraji and Lin 2011) uses the Kronecker product to in-
tegrate inputs and contexts. In this framework, the matrix memory can be expressed as

  
(13)

where pj is the context associated with the input fi, and gij is the output associated with the 
contextualized input. The symbol ⊗ represents the Kronecker (or tensor) product; in Ap-
pendix 2 we describe the basic properties of this operation (we use this tensor product in-
side a neural model, but for a foundation of this operation based on cognitive science see 
Smolensky 1990).

According to the algebraic rules involved in matrix algebra and Kronecker products 
(Graham 1981), the response of matrix memory M in the presence of an input and its con-
text is

  
(14)

with exact associations if the sets {fi} and {pj} are orthonormal, and if fk ∈ {fi} and ph ∈ {pj}.
If matrix memories (10) and (13) represent biological associative memory modules, 

they are usually rectangular matrices of large dimensionality.

4.2. A Matrix-Vector Logic
The neural models previously described, provide us with a simple and powerful way to rep-
resent a large variety of logical operations2. Based on these memory modules, some years 
ago a matrix formalism named ‘vector logic’, that connects elementary propositional and 
modal logics with matrix neural models, was developed (see, for instance, Mizraji 2008). 
Inside this neural theory, the logical gates map on matrices and the truth values on vec-
tors. The procedure to create the maps begins by mapping the truth values on orthogonal 
unitary vectors. Inside this neural formalism, the number of vector truth-values is a priori 
only limited by the dimensionality of the neural vectors. A large variety of many-valued log-
ics can in principle be developed and sustained by matrix memory modules, because nor-
mally it is biologically plausible to assume that a neural vector has hundreds or thousands 
of components (Anderson 1995). In what follows, we describe two- and three-valued ma-
trix-vector logics. In Section 4.3 we are going to show how a translation of the classical neu-
ral representation of modalities described by McCulloch-Pitts (1943) neuronal circuits 
can be adapted to produce an infinite-valued logic from two truth values and probabilistic 
weights.

Thus, a two-valued logic requires mapping t 8 s and f 8 n, with s and n being orthon-
ormal q-dimensional vectors; hence τ2 = {s, n}. Using this vector representation for the 

2 For an historical account of the links between logical theory and neural models see Eduardo Mizraji 
(2013) En Busca de las Leyes del Pensamiento (Second Edition), Montevideo: Trilce-Dirac.
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truth-values, the monadic and the dyadic two-valued gates respectively become the func-
tions

Mon (2):  τ2 → τ2,
Dyad (2): τ2 × τ2 → τ2.

A three-valued logic is defined over the vector set τ3 = {s, n, h}, where h is a q-dimensional 
normal vector (orthogonal to vectors s and n) corresponding to the uncertain truth-value 
u (u 8 h). This vector set allows building up matrix versions for monadic and dyadic three-
valued logical operators:

Mon (3):  τ3 → τ3,
Dyad (3): τ3 × τ3 → τ3.

As simple examples of Mon(2) we have the following matrices, I2 and N2, that correspond 
in this matrix framework to the logical two-valued Identity and Negation ¬ :

 I2 = ssT + nnT, (15)
 N2 = nsT + snT. (16)

Important examples of Dyad(2) operators are the matrix conjunction C2 and disjunction 
D2, given by the expressions:

 C2 = s(s ⊗ s)T + n(s ⊗ n)T + n(n ⊗ s)T + n(n ⊗ n)T, (17)
 D2 = s(s ⊗ s)T + s(s ⊗ n)T + s(n ⊗ s)T + n(n ⊗ n)T. (18)

Using these equations it can be easily proved that these operators execute vector versions of 
the classical operations. For instance,

C2 (s ⊗ s) = s; C2 (s ⊗ n) = C2 (n ⊗ s) = C2 (n ⊗ n) = n.

It is important to see that the monadic operators (15) and (16) are particular cases of mem-
ory modules (10), and that the dyadic operators (17) and (18) correspond to memory 
modules (13). The vector logic provides explicit expressions for some of the Mon(3) and 
Dyad(3) matrix operators. We mention the fact that, under this formalism, the modali-
ties possibility and necessity become very simple monadic matrices (a consequence of the 
Łukasiewicz functional definitions described in Section 3). Thus, for the three-valued vec-
tor system of logic, the identity I3, the negation N3, the matrix Pos (that represents in this 
formalism the possibility ◊) and the matrix Nec (that represents the necessity �) can be ex-
pressed by the following simple formulas:

 I3 = I2 + hhT, (19)
 N3 = N2 + hhT, (20)
 Pos = I2 + shT, (21)
 Nec = I2 + nhT, (22)
where I2 and N2 are the operators given by equations (15) and (16).



Theoria 31/1 (2016): 7-25

 Illustrating a neural model of logic computations: The case of Sherlock Holmes’ old maxim 17

Inside this matrix formalism, some basic theorems on logical modalities can be ex-
pressed as vector-matrix equalities. For instance, the postulate expressed by the equivalence 
(3) and its algebraic version given by (6), can be expressed by the matrix equation

 Pos Val (Q) = N3 Nec [N3 Val (Q)], (23)
with Val (Q) representing the truth-value assigned to proposition Q, Val (Q) ∈ {s, n, h}. In 
addition, in this case the rules of matrix calculus allow us to express Aristotle’s postulate as 
a product between the matrix operators involved:

 Pos = N3 Nec N3, (24)
an identity not dependent on any particular value of the logical variable. These modal op-
erators can be used as a way to represent logical modalities in terms of memory modules; 
for a discussion of the biological situations where these representations can be operative see 
Mizraji (2008).

The point of contact with Holmes’ maxim is given by the matrix versions of equa-
tions (7) and (9):

 N3 Pos Val (Q) = Nec [N3 Val (Q)] (25)
and

 N3 Pos Val (Q) = s. (26)
Consequently,

 Nec [N3 Val (Q)] = s. (27)
We can adapt the Axiom of Section 3 to this context by writing

 N3 Val (Q) = Val (Negation Q). (28)

Note that Q is not a vector-matrix variable and we cannot apply the matrix negation on it. 
Instead, Negation Q is a proposition with a vector truth-valuation Val (Negation Q). Un-
der this condition, equation (18) can be restated as

 N3 Pos Val (Q) = Nec [Val (Negation Q)] = s. (29)

This is a way to express that the impossibility of a proposition is equivalent to the necessity 
of the complement of that proposition. This result establishes a close contact with Holmes’ 
maxim.

Obviously, equation (27) implies an extremely simple fact: Val (Negation Q) = s. As 
we mentioned previously, this seems a trivial conclusion, but it can be the result of a non-
trivial process that was capable of eliminating uncertainty and of converging to this asser-
tion. In fact, the valuation represented by Val (Q) (or Val (Negation Q)) involves a neural 
substrate apt to sustain the very complex cognitive process required to diagnose the truth-
value of a proposition.
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Equation (27) helps us to put the modal logical apparatus in terms of neural models, 
and to provide a new point of view to approach the spontaneous understanding that we 
feel when we are confronted with Holmes’ old maxim. But this formalism does not con-
sider any probabilistic evaluation of propositions, except the global assignment of uncer-
tainties via the inclusion of a third truth-value. In the next Section, we are going to connect 
the previous matrix-logical approach with matrix models for associative memories capable 
of sustaining probabilistic operations.

It is easy to see that the matrix logical operations of this Section are particular cases of 
the Anderson-Kohonen distributed memories. In equation (25) Holmes’ maxim is repre-
sented using modal logical operators and truth-evaluations expressed with a matrix-vector 
formalism. These logical operators are interpretable as memory modules that integrate a 
modular network (in fact a network of networks, because each one of the logical modules is 
by itself a neural network).

4.3. Guessing probabilities from “Neuro-Logic”
Many decisions are taken in the presence of uncertainty. These decisions usually rely heav-
ily on modal operations. The decision adopted out of a group of choices must take into ac-
count a set of evaluations about possibilities. For instance, a gambler may say, ‘I play rou-
lette if I believe it is possible to win’, and by gambling the risk-taker intentionally ignores 
the mathematical odds against winning. Considering this propensity, it is natural that Hol-
mes’ maxim was embedded in its modal frame.

However, Conan Doyle enlarges and refines this frame including a subjective proba-
bilistic evaluation: “whatever remains, however improbable”. Probability is a well defined 
mathematical construct (see Feller 1968) and an interesting open problem is the accuracy 
of subjective estimations of a probability (for an important analysis of this point, see Pearl 
2000). Nevertheless, we are continuously guessing probabilities, using a lot of accessible 
databases that help us to roughly estimate frequencies. Probability as a mathematical con-
struct is one of the basis of the Bayesian explanation for Holmes’ maxim sketched in Sec-
tion 2, where the a priori probabilities involved are subjective guesses. How to deal with 
such probabilistic guesses in a logical theory? Many theoretical approaches connecting 
logic and probability have been published (e.g. Boole 1854, Keynes 1921) and these ap-
proaches have been connected with the problems of plausible reasoning (in particular by 
Polya 1990).

The neural models of logical operators have the potentiality to permit two different 
ways for the computation of the logical modalities. One way has been described in Sec-
tion 4.2, with uncertainty “conceptualized” by a specific vector h. The other way is based 
on a recursive approach to logical modalities. We are going to adopt the vector-logic for-
malism to establish a connection with cognitive estimated probabilities and the recur-
sive modal logic formalism. In the framework of this “neuro-logic”, a way of introducing a 
probability guess in the logical formalism is to assign a numerical weight to the truth-value 
of an uncertain proposition. For instance, somebody can enunciate the proposition “giving 
the clouds I am seeing, and the direction of the wind, I can forecast rain for the next two hours” 
and based on my own experience about weather (i.e.: screening the databases installed in 
my memory modules), I can establish that such a proposition has an 80 % of probability 
of being true. This assignment (obviously not a probabilistic measure but a conjecture) in 
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some way touches probability theory because it implies that the complementary situation 
(no rain) has a conjectural probability of 20 %. In the framework of the vector formalism 
that procedure can be modeled assuming that

 Val (Q) = αs + βn,  α, β ∈ [0,1],  α + β = 1, (30)
s and n being the vector truth-values defined in Section 4.2.

Let us recall how inside the algebraic logic, recursive processes based on disjunction 
and conjunction (see Blanché 1968) can define the classical modalities. In this abstract 
approach, it is assumed the existence of an infinite set Q of propositions Qi. This set can 
be mapped on a set of binary evaluations {q1, q2, ..., qn, ...}, with qi = Val (Qi) ∈ {t, f}. The 
proposition “Q is possible”, ◊(Q), can be symbolically represented by

◊(Q) = q1 ∨ q2 ∨ ... ∨ qn ∨ ...,
that is an informal representation of the recursive process

 ◊n+1(Q) = qn+1 ∨ ◊n(Q)  n = 1, 2, ... (31)
with ◊1(Q) = q1. In this process, the possibility ◊(Q) is the limit of ◊n(Q) for n → ∞. The 
symbol ∨ represents the dyadic disjunction.

In this formalism, the necessity is defined as follows. The proposition “Q is necessary”, 
�(Q), can be represented using a concatenated conjunction ∧,

�(Q) = q1 ∧ q2 ∧ ... ∧ qn ∧ ...,
or by the limit for n → ∞ of the recursive process

 �n+1(Q) = qn+1 ∧ �n(Q)  n = 1, 2, ... (32)
with

�1(Q) = q1.

It is important to mention that these recursive processes reported in Mizraji (2008) using 
a matrix-vector formalism, were originally implemented by McCulloch and Pitts (1943) 
with formal neurons capable of executing OR and AND. Obviously, in the context of any 
neural model that pretends to describe a physical reality, recursions become finite. The 
formalism described in the previous section allows to represent these recursions using the 
conjunction and disjunction matrices (17) and (18). Let Nec (Q) describe a neural system 
that recursively evaluates possibilities exploring the information stored in a finite set {Qi} 
of propositions evaluated by vector truth-values ui = Val (Qi). The matrix version of this 
process is as follows:

 Posn+1[u] = D2(un+1 ⊗ Posn[u]) (33)

with Pos1[u] = u1, in general being ui = αis  + (1 – αi)n, αi ∈ [0,1]. If we project this re-
cursive process on vector s (the projection of a vector u on s is given by the scalar product 
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sTu) we obtain some interesting results. The scalar projection of  is 
given by the product

 sTPos[u] = 1 – (1 – α1) (1 – α2) (1 – α3)... . (34)

For a large number of data stored in a memory, this product can be approximated by a 
quasi-infinite recursion, and interpreted as a geometrical mean expression:

 . (35)

Consequently

 
. 

For the necessity operation, the matrix version is:

 Necn+1[u] = C2 (un+1 ⊗ Necn[u]) (36)

with Nec1[u] = u1 (ui = αis + (1 – αi)n, αi ∈ [0,1]). Using the previous quasi-infinite ap-
proximation, the scalar projection of  gives the product

 sTNec[u] = α1 α2 α3... (37)

Note that, due to the fact that u is the result of a recursive process, we have the following 
result:

 sTNec[N2u] = (1 – α1) (1 – α2) (1 – α3)... = β1 β2 β3 ... (38)

This recursion can be averaged using the limit geometrical mean

 
, (39)

that gives the classical scalar expression for the necessity

 
. 

Note that these modal operators calculated from two valued operators, but with “probabil-
istic” truth-values given by equation (30), satisfy the theorem:

 Pos[u] = N2 Nec[N2 u]. (40)
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A version of equation (8) is given by

 N2 Pos[u] = Nec[N2 u] = s, (41)
that gives us another formal “neuro-logical” version of Holmes’ maxim, but now with the 
possibility of establishing contact with subjective probabilities (obviously only estimated 
probabilities from the mathematical point of view).

Remark that, in the scheme of this section, a research process implies the existence of a 
fact F that must be explained from a potential set of causes Q = {Qi}. We can assume that a 
priori highly improbable causes do not belong to Q; consequently, they belong to the com-
plement or negation of Q, that we represent symbolically by Negation Q. Remark that the 
elements of the set Q are not necessarily unlinked nor exhaustive: (a) they can be linked 
and (b) they are not exhaustive. Concerning (a), they can be linked because if, for instance, 
Q3 represents the name of a possible guilty of a crime (say Jean) then Q7 (say Jacques) can 
be the name of the same criminal (Jean-Jacques) or the name of his associate, both corre-
sponding to the searched cause. Concerning (b), we mention that in general we may expect 
that

 
. The assumption here is that

 Val (Qi) = αis + βin,  αi,βi ∈ [0,1],  αi + βi = 1. (42)

Hence, Prob(Qi) = αi ≤ 1. This is the only assumption concerning probabilities. It im-
plies a kind of conservation inside the judgment (conservation mapped in the comple-
mentarity of assigned probabilities for the two canonical truth-values s and n, and in 
turn supported by the complementarity of the associated conceptual sets (Mizraji and 
Lin 2011)). In this work we will leave as an open problem the link between these “cogni-
tive probabilities” and the formal probabilities involved in the Bayesian treatment illus-
trated in Section 2.

Using equation (41) we can now establish a modal-probabilistic version of Holmes’ 
maxim. Let us rewrite this equation as follows:

 N2 Pos[e] = Nec [N2 e], (43)
with e being a composed event described by a vector. This vector e emerges from the recur-
sive process triggered by the search of evidences (evidences obtained from previous knowl-
edge of the researcher or from fresh data coming from the external reality). We define the 
link between modalities and the corresponding binary probabilities as follows:

 Prob(u) = sTNec [u]. 

For the modal evaluation describing Holmes’ maxim, we have

 N2 Pos[e] = s ⇒ Prob(e) = 00 0 
 Nec[N2 e] = s ⇒ Prob(N2 e) = 1. 

This is the final point of our neural version of Holmes’ old maxim. According to equation 
(38), we have sTNec[N2e] = (1 – α1) (1 – α2) (1 – α3)... = β1β2β3…, then Prob(N2e) = 1 im-
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plies βi = 1, ∀i. This very simple conclusion indicates that, even if the pre-judged probabili-
ties βi* were very small, the a posteriori result, after a research process showing the events ei 
to be impossible, induces the necessity of the complementary events and rise their probabil-
ity to βi = 1.

5. Discussion

From the very beginning of the mathematical theory of neuronal networks, the re-
lation between logical reasoning and its neuronal bases has been a subject of primordial 
interest. The pioneering work by McCulloch and Pitts (1943) shows how some basic 
logical gates as NOT, AND and OR can be represented on the basis of binary neuro-
nal elements by adjusting the thresholds and the synaptic weights of these formal neu-
rons; other gates (e.g.: XOR) required a small network to be computed. In addition, 
M cCulloch and Pitts showed that modalities ◊ and � could be computed with recurrent 
networks based on the neuronal gates OR and AND respectively. These M cCulloch-
Pitts “logical neurons” had strong influence in the very important works published by 
Kleene (1951) and von Neumann (1956). Recently, the investigation of the links be-
tween reasoning and neural models acquired a new impulse and new perspectives pro-
moted in part from the advances in cognitive sciences and the interest in neural compu-
tations. Between these new approaches, we want to mention the panoramic contribution 
of Stenning and van Lambalgen (2008, in particular Chapter 8) linking logic, cognition 
and biological evolution, and the investigations of d’Avila Garcez, Lamb and G abbay 
concerning the representation by artificial neural networks of a variety of symbolic log-
ical processes, including modalities and temporal logic (d’Avila Garcez 2007, d’Avila 
Garcez, Lamb and Gabbay 2009).

In the present work, we opted to use models based on Anderson-Kohonen matrix 
memories, where the logical computations are performed by networks of interconnected 
matrix modules (Mizraji and Lin 2011). In turn, each modular unit is composed by a large 
set of interconnected neurons represented by high dimensional matrices and can be pro-
grammed or instructed via a learning algorithm (e.g. Widrow-Hoff algorithm, see Ander-
son 1995, chapter 9). This kind of matrix models present many aspects that enhance their 
biological plausibility (a point analyzed with detail in Anderson 1995), including their 
reliability in the presence of failures, their ability to create statistical averages from their 
learned inputs (interpretable as a source of conceptualizations, see Cooper 1974), and also 
their capacity to sustain logical gates and to display many-valued logics in the presence of 
uncertain data. It is now important to challenge these models with interesting problems 
linked with natural neural computations (“natural” in the sense that an adult human brain 
with a normal education and linguistic performances can do these computations). The 
Holmes’ old maxim is one of these challenges and we think that these models provide in-
teresting answers.

Using the neural-inspired logical formalism (Mizraji 2008 and Mizraji and Lin 2011), 
we showed in equation (29) how Holmes’ maxim is represented using modal logical op-
erators and how truth-evaluations are expressed with a matrix-vector formalism. As was 
previously mentioned, these logical operators are interpretable as memory modules that 
integrate a modular network (in fact a network of networks, because each one of the logi-
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cal modules is by itself a neural network). The final point of our argument, equation (43), 
involves the matrices N2, Pos, Nec and the vector e. The matrix operations implement the 
abstract algebraic relationships constructed in order to formalize a basic modal logic, us-
ing the Boolean theoretical framework. Clearly, these operators are simplified models of 
biological neural devices. In this formalism, vectors are the ‘stuff cognitive decisions are 
made on’ inside the neural realm. Obviously, if mathematical approach helps us to explain 
our cognitive acceptability of Holmes’ maxim, but on the other hand mathematics itself 
(being a cognitive construction) remains unexplained, then our eventual explanation can 
be considered incomplete and provisional, a flaw that we accept as a transitory step in our 
understanding of this kind of problem. We want to mention that many of the modern 
works concerning the neural representation of reasoning, emphasizes the need of nonmo-
notonic logics capable to deal with adaptive planning (see Stenning and van Lambalgen 
2008). In Section 4.3 we saw how in our neural representation of Holmes’ maxim, all the 
process —even if it is guided by the framework of modal logic truth-functionality— is de-
pendent on the adaptive evaluations of probabilities. We can ask if, formally, this process 
represents a class of nonmonotonic reasoning (as described for instance in d’Avila Garcez, 
Lamb and Gabbay 2009, Chapter 2) but we do not have still a clear answer. Surely the 
possibility to formalize this process as a nonmonotonic logic is an issue that deserves fur-
ther exploration.

The argument developed in this work suggests that we accept Holmes’ maxim as true 
because our brains are capable to activate neural modules able to perform modal logical 
computations. Our formal approach is neutral in the debate about the “Nature versus Nur-
ture” origin of our logical abilities: these neural logical modules can be the result of a ge-
netically coded ontogenetic process, or, on the contrary, they can be the result of a learning 
process occurring in a particular cultural environment (for a discussion of this point, see 
Mizraji and Lin 2011). We argue that the spontaneous computation involved in the under-
standing of Holmes’ maxim is only one example among many others; all of them emerging 
from a natural biological design that obviously includes our cognitive brains, together with 
our sensory and motor systems. In fact, language uses some computational codes that trig-
ger complex cognitive procedures. For instance, a preposition like “in” can induce the brain 
to represent a complex spatial relationship between an object and a container. Prepositions 
and logical words are crucial linguistic constructions that can act as passwords that give ac-
cess to sophisticated neurocomputational operations.

Appendix 1

Sherlock Holmes’ old maxim
We transcribe three well-known versions of Holmes’ maxim (Doyle, Penguin Edition 
1981). In “The Adventure of the Beryl Coronet”, Holmes says: “It is an old maxim of mine 
that when you have excluded the impossible, whatever remains, however improbable, must be 
the truth”.

Another version is in the novel “The Sign of Four” where Holmes says to Dr. Watson:

“How often I said to you that when you have eliminated the impossible, whatever remains, how-
ever improbable, must be the truth?”.
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The last version we want to reproduce here is the one included in “The Adventure of the 
Bruce-Partington Plans”, where Holmes comments: “We must fall back upon the old maxim 
that when all other contingencies fail, whatever remains, however improbable, must be the 
truth”.

Appendix 2

Kronecker Product (Graham 1981)
For the matrices A = [aij] ∈ Rm×n and B = [bij] ∈ Rp×q, the Kronecker product is a matrix 
A ⊗ B ∈ Rmp×nq defined by

 A ⊗ B = [aijB]. 

Some important properties of the Kronecker product are the following:
A1. (A + A’) ⊗ (B + B’) = A ⊗ B + A ⊗ B’ + A’ ⊗ B + A’ ⊗ B’
A2. (A ⊗ B)T = AT ⊗ BT

A3. (A ⊗ B) (A’ ⊗ B’) = (AA’) ⊗ (BB’)
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