Net-GAN: Recurrent Generative Adversarial Networks for Network Anomaly Detection in Multivariate Time-Series

Gastón García González†, Pedro Casas†, Alicia Fernández*, Gabriel Gomez*
*Facultad de Ingeniería, Universidad de la República, Uruguay – †AIT Austrian Institute of Technology, Austria

Abstract—We introduce Net-GAN, a novel approach to network anomaly detection in time-series, using recurrent neural networks (RNNs) and generative adversarial learning (GAN). Different from the state of the art, which traditionally focuses on univariate measurements, Net-GAN detects anomalies in multivariate time-series, exploiting temporal dependencies through RNNs. Net-GAN discovers the underlying distribution of the baseline, offering a powerful approach to detect anomalies in complex, difficult to model network monitoring data.

I. NET-GAN: ARCHITECTURE AND APPROACH

Network monitoring data generally consists of hundreds or thousands of counters periodically collected in the form of time-series, resulting in a complex-to-analyze multivariate time-series process (MTS). In particular, detecting anomalies in such multivariate, temporal data is challenging. Without loss of generality, we refer to the MTS as a set of \(n \), non-iid time series sampled at the same rate, referred to as \(x_t = \{x_t(1), x_t(2), \ldots, x_t(n)\} \in \mathbb{R}^n \). Current approaches to anomaly detection tackle this challenge by either focusing on univariate time-series analysis – running an independent detector for each time-series \(x_t(i) \), or by considering multi-dimensional input data \(x \in \mathbb{R}^n \) at each time \(t \), neglecting the temporal aspects of the MTS. To improve the state of affairs we propose Net-GAN, a novel unsupervised approach to anomaly detection in MTS data, based on Recurrent Neural Networks (RNNs), trained through a Generative Adversarial Networks framework (GAN) [1]. To capture the temporal correlations characterizing an MTS, we adapt the original model proposed in [1], replacing the multilayer perceptrons by recursive, LSTM networks for both generator and discriminator models. The input data is therefore sequences of multi-dimensional measurements, of length \(T: \{x_{t-T}, ..., x_t\} \). Net-GAN is inspired by previous work on GANs for time-series synthesizing and anomaly detection [2]–[4].

Fig. 1 depicts the Net-GAN architecture and both the training and anomaly detection procedures. In the training phase (left), the generator \(G \) draws synthetic sample sequences \(G(z) \) from Gaussian noise – the latent space \(Z \), with the objective of deceiving the discriminator \(D \), which in turn learns to determine whether training samples are real or derived from the generative distribution. The classification result proposed by \(D \) is additionally fed back to \(G \), serving as a reinforcement loop to guide the generation process. As both \(G \) and \(D \) compete to achieve their adversarial tasks, synthetic samples become more and more “realistic”, and the discriminator becomes robust to noise, improving the detection of non-conforming (i.e., out of the baseline) samples. In the application phase (right), the trained discriminator \(D^* \) acts naturally as an anomaly detector, detecting deviations from the baseline, through a discrimination loss function. The trained generator \(G^* \) is also used to improve detection performance, serving as baseline generation; by doing an inverse search in the latent space, we find the sample \(z \in Z \) which generates the closest sample to the tested one, producing a residual loss. Finally, both the discrimination and the residual loss functions are combined into an anomaly score, which is compared to a calibrated threshold to take the final decision.

II. NET-GAN: PRELIMINARY EVALUATION RESULTS

Fig. 2 reports the performance achieved by Net-GAN in the detection of synthetic attacks to industrial control systems, using a labeled, publicly available dataset of MTS sensor network measurements [4] – which includes 51 monitored time-series. For simplicity, in this example we only use \(D^* \) as detector. While results are preliminary, Net-GAN detects 56% of the attacks with a FPR below 1%. Being purely data-driven, we are currently working with better and bigger network measurement datasets to improve Net-GAN.

REFERENCES