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Abstract5

Satellite-based solar irradiation forecasting is useful for short-term intra-day time horizons, outperforming

numerical weather predictions up to 3-4 hours ahead. The main techniques for solar satellite forecast are

based on sophisticated cloud motion estimates from geostationary satellite images. This work explores the

use of satellite information in a simpler way, namely spatial averages that require almost no preprocess-

ing. Adaptive auto-regressive models are used to assess the impact of this information on the forecasting

performance. A complete analysis regarding model selection, the satellite averaging window size and the

inclusion of satellite past measurements is provided. It is shown that: (i) satellite spatial averages are useful

inputs and the averaging window size is an important parameter, (ii) satellite lags are of limited utility and

spatial averages are more useful than weighted time averages, and (iii) there is no value in fine-tuning the

orders of auto-regressive models for each time horizon, as the same performance can be obtained by using a

fixed well-selected order. These ideas are tested for a region that has intermediate solar variability, and the

models succeed to outperform a proposed optimal smart persistence, used here as an exigent performance

benchmark.
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1. Introduction7

Solar Photovoltaics (PV) has become the world’s fastest growing energy technology (REN21, 2019).8

However, achieving a high penetration of solar PV into electricity grids is a challenging task due to solar9

irradiance intermittency, caused by cloud dynamics. This variability affects the demand-supply balance that10

is required for grid operation, implying stability risks and higher management costs, and also affects the11

operation of electricity markets, adding uncertainty in energy transactions. Resource forecasting is one of12

the actions to be taken in order to mitigate the negative effects produced by solar variability. Forecasting13

ability enables better decision-making both in grid and markets operations, providing valuable information14

for cost-effective spinning reserves management, unit commitment and for establishing more accurate energy15

prices and quantities for trade.16
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The research community in solar forecasting has been growing in the last years. As a reference, Google17

Scholar searches reveal an upward trend with 3.7k, 6.4k, 13.8k, and 16.8k results in each of the last four18

quinquenniums. There are now well-established methods for operational solar irradiance forecasting (Diagne19

et al., 2013), namely Numerical Weather Prediction (NWP) models, satellite derived cloud motion estimates,20

and statistical (learning) procedures over time series data. NWP models are heavily used for day ahead21

forecasting (Lorenz et al., 2009a; Lara-Fanego et al., 2012; Mathiesen & Kleissl, 2011; Perez et al., 2013), and22

they have expensive computational requirements. The prediction comes as a product of the sophisticated23

underlying physical models. Other approaches can not use the information as effectively in such large time24

horizons, given that the correlations weaken with time. A comparison of NWP models’ performance can be25

found at Lorenz et al. (2009b) and Perez et al. (2011). Alternatively, statistical or machine learning methods26

have been mostly used over ground data (Pedro & Coimbra, 2012; Lauret et al., 2015; Yagli et al., 2019).27

High quality solar global horizontal ground measurements are not only used as a basis for the forecasts,28

but more importantly, they are the ground truth used on the performance evaluation phase. Some of the29

proposals also integrate additional exogenous variables, as noted by Voyant et al. (2017). When they do not30

rely on ground measurements, they usually appear as natural methods to combine different models (Lorenz31

et al., 2012; Aguiar et al., 2016). Finally, satellite-based models are dominated by Cloud Motion Fields32

(CMF) estimations, being the work of Lorenz et al. (2004) a classical reference. These models are intended33

to project clouds by means of an estimated velocity field. There are other approaches based on satellite data,34

involving either different ways to estimate the CMF (Hammer et al., 1999; Peng et al., 2013) or computing35

correlations (Dambreville et al., 2014). Perez & Hoff (2013) and Kühnert et al. (2013) have reported that a36

satellite based method outperforms various NWP models when making forecasts up to 4 hours ahead.37

As the nature of the methods is fundamentally different, they are not expected to be totally redundant38

with each other. A method that integrates two or more approaches will likely perform better. For example,39

while solar measurements are taken at one specific point, satellite data provides information about the40

cloudiness on the surrounding areas, that can be exploited by forecasting techniques to reduce the prediction41

uncertainty. A few works exploring the combinations of the methods were conducted by Marquez et al.42

(2013); Aguiar et al. (2015, 2016); Bright et al. (2018); Harty et al. (2019). The input information given to43

these methods is diverse. Some input data require preprocessing and others do not; for instance, Marquez44

et al. use a segmented satellite image taking the cloudiness information in the form of a ladder oriented45

by the main cloud displacement between images. Some works use two different methodologies for the same46

conceptual input, e.g. using NWP outputs from a GFS (Global Forecasting System) driven WRF (Weather47

Research and Forecasting) or WRF-Solar (Jimenez et al., 2016), or using CMF information by means of48

Lorenz et al. (2004) technique or regular optical flow techniques (Horn & Schunck, 1981; Lucas & Kanade,49

1981). Given the high uncertainties still observed in solar forecast techniques, there is a need to further50

analyze the combination of the various input data.51
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In this work we explore the combination of input sources by means of a statistical signal processing52

approach. In particular, we aim to combine ground measurements with satellite information, providing a53

detailed assessment of the combination. The time series analysis literature is vast, including Artificial Neural54

Networks (ANN), classical machine learning approaches (Support Vector Machines, Trees), and statistical55

time series models. A recent comprehensive review on these methodologies can be found at Voyant et al.56

(2017). Most of these methods are suited to include scalar exogenous variables. Here, we make use of57

Auto-Regressive Moving-Average (ARMA) models, that have proved to work well in this problem (Reikard,58

2009). More specifically, the ARMA model is formulated as an adaptive filter through the Recursive Least59

Squares (RLS) algorithm as in David et al. (2016); Marchesoni-Acland et al. (2019). In Aguiar et al. (2015)60

and Dambreville et al. (2014) satellite data is integrated as input to statistical models. Both approaches61

avoid using complex CMF methodologies and use correlations in order to decide which pixels (or block of62

pixels) to include. We analyze the use of a simpler satellite input with an approach that involves almost no63

preprocessing: taking the mean of a window of the satellite albedo image. Satellite data carries valuable64

information of the surroundings of the forecast site, therefore introducing present and past satellite cloudiness65

data is a good way of improving short-term intra-day forecasts. Combining these present and past values66

can be thought as weighted time-averaging. In order to compare time-averaging with spatial-averaging the67

size of the spatial averaging window is modified as well. It is expected that satellite information is, to some68

degree, redundant with solar irradiance measurements, as irradiance estimates can be inferred from satellite69

images (Perez et al., 2002; Rigollier et al., 2004; Alonso-Suárez et al., 2012; Qu et al., 2017). This fact is70

analyzed by comparing results obtained by using more observations of ground data than of satellite data71

and viceversa. The procedure to select the best model, comprising the ARMA model selection, the number72

of lags on the satellite inputs, and the averaging window size, is presented as well. We evaluate the benefits73

of using different parameters (ARMA coefficients, satellite lags and window size) and compare the models74

against a challenging benchmark that arises from an optimal selection of smart persistences. This article75

demonstrates that this simple proposal works for intermediate solar variability sites, such as the region under76

study in this work.77

The main contributions of this article can be summarized as follows:78

• It proposes and evaluates a methodology to easily include raw satellite data (albedo) into a time series79

forecasting model. As shown in Aguiar et al. (2015); Marquez et al. (2013) adding solar satellite80

estimates improves the forecasting performance. Here, a previous step is addressed, including raw81

satellite albedo as input, without the postprocessing added by a solar satellite model which may add82

uncertainty to the problem. To the best of our knowledge, the use of raw satellite information as input83

of solar forecasting methods has not been tested in the literature. A detailed evaluation is made, using84

a challenging performance upper limit (an optimal smart persistence) for the Forecasting Skill (FS)85
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calculation.86

• It provides an assessment of the forecasting gain by adding raw satellite information to a baseline87

ARMA-RLS model that only uses ground measurements. A performance analysis when varying the88

final model’s parameters is provided, in particular, the p and q ARMA-RLS parameters, the satellite89

averaging window size and the satellite past samples (satellite lags).90

• It shows that when using only ground measurements as input there is not much to be gained by fine-91

tuning the ARMA-RLS model’s parameters. The best performance, which is achieved by setting the92

optimal parameters for each lead time, presents a negligible difference with the performance that can93

be obtained by using a few fixed auto-regressive and moving average terms for all lead times.94

• It shows that when adding satellite albedo, the utility of the ground measurements past samples as95

input is restricted only to the very short-term forecast horizons (up to 30 minutes ahead). Above this96

limit, the performance of models that use satellite albedo is insensitive to ground measurements lags.97

In all cases, models including satellite information, whether they include ground measurements past98

values or not, achieve the best performance for all time horizons.99

• It defines and uses a natural challenging persistence benchmark that is obtained from the utilization100

of the optimal smart persistence procedure at each lead time. This defines the best performance101

curve that the simple smart persistence procedure can obtain. As explained in Subsection 4.2, some102

authors differ and use a few different benchmark definitions of persistence or smart persistence. These103

definitions and some relevant work in this topic are discussed in Subsection 4.2, ending with the104

introduction of the optimal smart persistence benchmark.105

This article is organized as follows: in Section 2 the data is presented along with a description of the106

equipment and stations’ characteristics, the exogenous variable being used and the data quality procedure.107

In Section 3 the RLS algorithm is introduced, with a brief mention of the advantages of the approach.108

In Section 4 the evaluation framework is presented, describing the performance metrics to be used (Sub-109

section 4.1) and the optimal smart persistence (Subsection 4.2). Section 5 provides the results obtained110

with the different models and the performance analysis. The ARMA-RLS model selection is discussed in111

Subsection 5.1 while the inclusion of satellite albedo is addressed in Subsection 5.2. Finally, our conclusions112

are summarized in Section 6.113

2. Data114

This section describes the two types of data used in this work: global horizontal irradiance ground115

measurements (GHI, Gh), and Earth albedo (ρp) derived from visible channel GOES-East satellite images.116
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2.1. Solar irradiance data117

Solar irradiance measurements recorded at seven ground stations in the south-east part of South America118

are used in this work. Two of these sites, the Solar Energy Laboratory (LES, http://les.edu.uy/) exper-119

imental facility at the North of Uruguay (LE) and the São Martinho da Serra station from the SONDA120

(Sistema de Organização Nacional de Dados Ambientais) network (http://sonda.ccst.inpe.br/) at the South121

of Brasil (MS), record GHI measurements with equipment and procedures that comply with BSRN (Baseline122

Solar Radiation Network, https://bsrn.awi.de/) requirements (McArthur, 2005), being the latter formally123

a BSRN site. In these sites, the GHI is measured using spectrally flat Class A pyranometers (according to124

the ISO 9060:2018 standard) and routine maintenance is performed on a daily basis, such as dome cleaning.125

The other five stations are part of the LES solar irradiance measurement network and are located on field126

in semi rural environments. They are equipped with spectrally flat Class A or B pyranometers for the127

GHI measurement and maintenance is done on a monthly basis by personal at the stations. Based on our128

experience, equipments’ quality, calibration schemes, and maintenance schedules, we assign a global (P95)129

uncertainty for GHI measurements of 3% of the average at the LE and MS sites and of 5% in the rest. These130

uncertainties are way lower than the uncertainty of the forecast being evaluated in this work.131

Table 1 presents the sites’ location, data span, and some relevant measurements’ characteristics, namely132

the GHI average value, Gh, and the 10-minutes nominal variability, σ. The GHI average is the value that133

will be used to express the performance metrics as a percentage. The nominal variability is defined by Perez134

et al. (2016) as the standard deviation of the changes in the clear-sky index time-series, σ = Std{∆kc(t)}.135

The clear-sky index is defined as,136

kc(t) =
Gh(t)

Gcsk
h (t)

, (1)

where Gcsk
h is the output of a clear-sky model. Here, the McClear model is used (Lefèvre et al., 2013), publicly137

available at the CAMS (Copernicus Atmosphere Monitoring Service) platform (http://www.soda-pro.com),138

to calculate the clear-sky index from the GHI time series. The values provided in Table 1 were calculated139

over the 10-minutes quality-checked daylight solar irradiance data set, as explained in Subsection 2.3.140

These stations are representative of the subtropical temperate climate of the south-east part of South141

America known as Pampa Húmeda, which is classified under the updated Köppen-Geiger climate map as Cfa142

(Peel et al., 2007). This is a warm, temperate and humid climate, with hot summers. The solar variability143

of the region is intermediate, both in terms of inter-annual variability (Alonso-Suárez, 2017) and short-term144

variability. The latter, more relevant for this work, is quantified by nominal variability and has an average145

of σ = 0.148 in the region (see Table 1). Hence, the results provided in this work are applicable to sites with146

similar climate conditions (intermediate variability and Cfa or Cfb), as Central and South-East US, non-147

Mediterranean Europe and East Australia, among others. For other climates or different solar variability148
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sites, as low-variability desert sites or high-variability insular locations, results may not be extrapolable and149

further investigation is required.150

station station period lat. lon. alt. Gh σ

name code of time (deg) (deg) (m) (W/m2) (–)

LES facility LE 01/2016 – 12/2017 -31.28 -57.92 56 461 0.139

São Martinho MS 01/2012 – 12/2015 -29.44 -53.82 489 451 0.149

Artigas AR 01/2015 – 12/2017 -30.40 -56.51 136 451 0.147

Las Brujas LB 01/2015 – 12/2017 -34.67 -56.34 38 440 0.152

Tacuarembó TA 01/2016 – 12/2017 -31.71 -55.83 142 443 0.147

Rocha RO 01/2016 – 12/2017 -34.49 -54.31 20 425 0.159

La Estanzuela ZU 01/2016 – 12/2017 -34.34 -57.69 70 442 0.144

all sites average 445 0.148

Table 1: Solar irradiance measuring sites: location, characteristics and data span.

The kc time series, at 10-minutes granularity, is the ground measurements input considered for the151

forecast algorithm. This is common practice in the solar forecasting field, as the GHI time series has a daily152

and seasonal geometrical behavior that introduces a deterministic complexity on the statistical learning153

approaches. This deterministic behavior can be easily eliminated by using clear-sky estimations (or even154

top of the atmosphere irradiance calculations), isolating the higher-rate fluctuations due to cloudiness. With155

this methodology, the forecasting models can be dedicated to predict the non-deterministic component of156

solar irradiance due to clouds dynamics, leaving the geometric part to be represented by the clear sky model.157

2.2. Satellite images158

GOES-East satellite visible channel images are used here by means of the Earth Albedo (ρp). We are159

not using, for instance, solar satellite estimates. The images are preferred in a non-processed version, as160

a way to exclude the uncertainty associated with the conversion of the Earth Albedo (mainly, cloudiness161

information) to solar irradiance. The satellite images used in this work were generated by the GOES12162

and GOES13 satellites, which operated in the GOES-East position during the considered time period (see163

Table 1). During that time, the GOES-East series provided irregular acquisition for South America, usually164

available at a rate of two images per hour. The 10-minutes time resolution for the satellite albedo was165

obtained via a linear interpolation of the satellite time series. Satellite gaps of more than two consecutive166

hours were not interpolated and were removed from the data set. Our local GOES-East satellite database167

has a spatial coverage of the Pampa Húmeda region and surroundings areas.168
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The former GOES-East satellites (GOES12 and GOES13) had a nominal spatial resolution of 1 km169

on their visible channel. The location of these satellites (geostationary orbit, 75◦W) results in a pixel170

size of about 1-2 km over the region. To include satellite information in a simple way into the forecast171

algorithm, an average value is calculated in a cell centered at each site. As we are interested in analyzing the172

forecast performance and features for different satellite spatial average sizes, different cell sizes are tested.173

For easy communication, we choose three different cell sizes: small, medium and large, representing each174

a 1 arcmin × 1 arcmin, 10 arcmin × 10 arcmin and 20 arcmin × 20 arcmin latitude-longitude cells. This175

approximately corresponds to cell sizes of 1.9 km× 1.6 km, 19 km× 16 km and 37 km× 31 km, respectively,176

over the target region.177

2.3. Data filtering178

The data quality check and filtering is as follows. First, we exclude data with solar altitude lower than179

10o to avoid using early morning or late afternoon observations which present higher relative deviations180

due to cosine error in the measurements. This is a standard filtering procedure that ignores only ' 1%181

of the annual total solar energy (David et al., 2016). Then, we remove erroneous or missing data in the182

measurements or the satellite time series (3% of the data). Our GHI data is flagged in order to allow a183

10 minute observation to be calculated only from the 1-minute time-series if at least 7 minutes of data184

are available (more than 66% of the interval). Next, two filters associated with irradiance upper limits are185

applied over the GHI data set (and remove between 0.1-0.2% of the data): (i) the BSRN quality procedure186

to detect physically impossible and extremely rare GHI measurements (Ohmura et al., 1998) and (ii) the187

exclusion of observations with clear sky index exceeding the value 1.35. Finally, a last check is done over188

the variability metric, discarding a few variability outliers that arise due to the previous filtering stages189

(' 0.1% of the data). This last check is only intended to remove very few outliers associated with the190

data gaps originated from the previous filtering stages. Some of these gaps cause artificial large changes in191

two consecutive kc samples that can affect the auto-regressive modeling. The threshold for this filter was192

heuristically set to comply only with this objective without affecting the natural solar resource variability193

of the sites. The filtering procedure is summarized in Table 2 for each station and the complete data set.194

The last column shows the fraction of data that is being filtered. As can be seen, around 4.4% of the initial195

data is discarded by these procedures.196

3. Algorithms197

3.1. ARMAX models198

Auto-Regressive (AR) and Moving-Average (MA) models with Exogenous Variables (ARMAX) describe199

a process as a linear combination of past measurements (Xt−i), past errors (εt−j) and past exogenous200
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Table 2: Quality check and data set description for each measurements station.

solar alt. > 10o missing or erroneous upper limit filters variability filter filtered

site samples samples (%) samples (%) samples (%) (%)

LE 46198 44585 3.5% 44530 0.1% 44318 0.5% 4.1%

SM 92541 85528 7.6% 85377 0.2% 85120 0.3% 8.1%

AR 69335 66941 3.5% 66836 0.2% 66820 < 0.05% 3.6%

LB 68780 67157 2.4% 67068 0.1% 67031 0.1% 2.5%

TA 46155 44635 3.3% 44541 0.2% 44528 < 0.05% 3.5%

RO 45886 44520 3.0% 44467 0.1% 44437 0.1% 3.2%

ZU 45927 44633 2.8% 44584 0.1% 44555 0.1% 3.0%

total 414822 397999 4.1% 397403 0.15% 396809 0.15% 4.4%

variables (Et−k). If p and q are the orders of the AR and the MA terms respectively, the model is described201

by,202

Xt+1 = c0 +

p−1∑
i=0

αiXt−i +

q−1∑
j=0

βjεt−j +

l−1∑
k=0

γkEt−k + εt, (2)

where c0 is an independent term and εt+1 is assumed to be white Gaussian noise and set to zero when203

forecasting. The offset term (c0) allows to improve the modeling of processes of non zero mean. Using204

an ARMAX model to make forecasts implies finding the set of parameters c0, αi, βj and γk, and then205

computing a step forward for some input at time t. ARMAX models are well-known as a prediction tool206

and are a natural generalization of ARMA models, which were popularized by Box & Jenkins (1970).207

In the current work, the variables of Eq. (2) are defined as follows: Xt corresponds to the clear sky208

index kc at time t, our main time series, which we want to predict. The kc predictions are then transformed209

back to GHI to compute the metrics values. As the kc time series has a non-zero mean, the offset term210

c0 is useful to enhance the model’s performance. The εt is the kc error obtained when forecasting Xt and211

finally, the Et represents the average cloudiness around the site, computed as explained in Subsection 2.2.212

Later, the l term in the upper limit of the exogenous variables sum will be called “lags”. The terms inside213

the summations refer to present time (time t) and past values of these quantities. Eq. (2) is presented as214

a standard ARMAX filter in which the next step (h = 1) is predicted. Note that all terms in the right215

hand side of Eq. (2) are known except the innovation et+1. This expression can be adapted to any arbitrary216

forecast horizon.217
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3.2. RLS filter218

Recursive Least Squares (RLS) is an optimization algorithm that recursively solves the minimization of219

a cost function depending on the weights wn,220

C(wn) =

n∑
i=0

λn−ie2(i), (3)

where e(i) is the forecasting error of observation i. If the lead time is h, then e(i) = wT
nzi−h −Xi, being221

zi−h a vector including all input variables and Xi the target value. The factor λ is called forgetting factor222

and when it is near 1, it resembles Least Squares Minimization while allowing the weights to adapt to the223

statistical changes of the kc time series. The algorithm presents some similarity to computing Least Squares224

in a moving window, being the main differences the exponentially decaying weights in the cost function and225

the fact that the computation is recursive. The mathematical generalization and resulting algorithm of the226

ARMAX-RLS framework for an arbitrary lead time h is detailed in the Appendix of Marchesoni-Acland227

et al. (2019).228

In traditional signal processing literature, the RLS algorithm is classified as an adaptive filter. Being229

adaptive makes historical data unnecessary, i.e. it avoids using train-test splits and fixed-weights, making230

the approach useful for operational context. Furthermore, statistical properties vary between seasons and231

even days (i.e. cloudy and clear-sky days), causing short-term adaptability to be a desirable property in232

general. The adaptability of the RLS algorithm depends on the value of the forgetting factor λ ∈ [0, 1]. The233

algorithm’s behavior when changing the λ value is illustrated in Figure 1, using as an example a 1-hour234

ahead (h = 6) naive ARMAX forecast using p = 2, q = 0 and no exogenous variables, which is usually235

denoted as an AR(2) filter. The algorithm is highly sensitive to the λ value, so two options close to one are236

analyzed in Figure 1: λ = 0.999 y λ = 0.990. The coefficients of the filter are, as expected, more stable for237

a larger value of λ (see solid lines in Figure 1a). For large λ, the coefficients do not change much when a238

high variability period is found, as shown in the first ' 275 observations of Figure 1. On the other hand,239

when there is clear sky, forecasts with large λ consistently underestimate the target value due to the very240

low convergence rate, as can be noted in the last ' 100 observations. Using a smaller value of λ makes241

convergence to the steady state of kc faster, yielding also to lower bias estimates under clear sky conditions.242

However, the values of λ closer to 1 are the ones that achieve better numerical results in the long run. The243

loss function is a weighted sum of squared errors, making it convenient for any algorithm to ‘play safe’ to244

some extent: an underestimating forecast under clear sky conditions will achieve less quadratic error when245

clouds appear. By inspecting this behavior, the λ value was set to λ = 0.999, as was previously used by246

David et al. (2016). This allows anyone to compare results with this previous work if desired, and it is a247

λ value close enough to 1 to provide almost the best results, although in our experience higher λ values248

achieve better performance across all the time series. This observation may be climate dependent.249
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(a) Coefficients c0, α0 and α1. Solid lines correspond to higher λ while dotted lines to lower λ.

(b) Clear sky index. Dotted lines correspond to the AR(2) predictions.

Figure 1: Qualitative behavior of RLS filter with different forgetting factors λ. The example shows the behavior of the AR(2)

model for the LE site and a time horizon of 1 hour (h = 6). The x axis in both figures is the same.

4. Evaluation framework250

4.1. Metrics251

Results are presented in terms of the traditional Mean Bias Deviation (MBD) and Root Mean Squared252

Deviation (RMSD) metrics, as well as the Forecasting Skill (FS) metric. The MBD and RMSD definitions253

are,254

MBDh =
1

N

∑
i

[
ŷh(i)− yref(i+ h)

]
, (4)
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RMSDh =

√
1

N

∑
i

[ŷh(i)− yref(i+ h)]
2
, (5)

where ŷh(t) is the GHI forecast made at time t with time horizon h and yref(t) is the GHI measurement255

taken at time t. The MBD definition is such that a positive value means a forecasting overestimation and a256

negative value means a forecasting underestimation. Their relative values, rMBD and rRMSD, are expressed257

as a percentage of the average irradiance value (see Table 1). The relative values shall be used in order258

to reduce the effect of the geographical location in the metric values and provide a more intuitive error259

indicator. However, as the Tables provided in the Appendix A include the average irradiance values, the260

reader may calculate the absolute indicators if desired. These two metrics and their normalized values are261

very popular indicators to evaluate solar forecast (Yang et al., 2018).262

The forecasting skill represents the gain of the forecasting RMSD with respect to the persistence proce-263

dure, and it is defined as,264

FS = 1− RMSDm

RMSDp
, (6)

where the subscripts ‘m’ and ‘p’ refer to the model and persistence respectively (the result is the same when265

using relative errors). The traditional persistence is calculated by setting k̂c(t+ h) = kc(t), for every h ≥ 1,266

where k̂c(t+ h) is the predicted kc value. Then, the corresponding GHI is predicted by using the clear sky267

model estimates. Being a simple procedure, the persistence is then used as a benchmark to measure how268

good a forecast is: any additional complexity of the forecasting procedure should imply an improvement in269

comparison with the persistence to be worthwhile. This metric implicitly takes into account the difficulty270

of forecasting at each location via the persistence’s RMSD (Coimbra et al., 2013), and thus it is a better271

indication than the RMSD or rRMSD, which are insensitive, for instance, to the local short-term resource272

variability. However, the choice of the benchmark over which to calculate the FS is arguable. An alternative273

to persistence is to persist in time the past observations’ average, known as Smart Persistence (SP). For this274

work, the “best” SP (bSP) is used as performance reference. This defines the forecasting skill metric that275

will be used later, defined exactly as in Eq. (6), but using RMSDbSP instead of RMSDp. The procedure to276

obtain this bSP is detailed in the next subsection.277

4.2. Smart persistence278

A slightly more complex variant of the classical persistence (P) method is called “smart persistence” (SP).279

The P and SP methods are defined in different ways in the literature. For example, Voyant & Notton (2018)280

define P as persistence of the GHI value and SP as persistence of the kc index. David et al. (2016) define281

SP as the average of the last h values of kc, being h the forecasting time horizon. Let us now introduce282

a slightly more general formulation, to be called general SP (gSP). This method sets the number of past283
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observations to be averaged to an arbitrary number nh. This is, gSPh(t) = 1
nh

∑i=nh−1
i=0 kc(t − i). In this284

work the optimal value of nh is obtained for each time horizon. Note that when nh = 1 for all h, the285

traditional P method is recovered, when nh = h we have David et al. SP method and when nh is large286

for all h, the prediction approximates the climatology value (nh � 1). It is known that the shorter time287

horizons are better predicted by the classical persistence, while the longer time horizons are better predicted288

by the climatology value. In Yang (2019) a linear combination of persistence and climatology is proposed289

as benchmark, after mathematically proving that the weights are directly related to the autocorrelation of290

the time series at the time horizon studied. Here it is argued that there exists an optimal n∗h value for each291

lead time h (the value of n that minimizes the prediction RSMD for that time horizon), which is not usually292

assessed nor presented. We now define the best SP (bSP) as the gSP that uses the optimal values of nh,293

which we call n∗h. This is, bSPh(t) = 1
n∗
h

∑i=n∗
h−1

i=0 kc(t− i). The bSP method can be seen, by definition, as294

the Pareto frontier when framing the procedure as a multiobjective optimization problem.295

To obtain the best SP, the n∗h were obtained for each site and time horizon. Performance evaluation of296

gSP is done via a grid search methodology: forecasts are made for every location, for every lead-time value297

up to 8 hours ahead with 10 minutes granularity, and over different values of n. The results, depicted in298

Figures 2a and 2b for the average of all sites, show two things. First, the value of optimal nh increases299

with lead-time, but not following n∗h = h. Second, there is a time horizon from which smart persistence300

forecasts with bounded n are worse than climatology forecasts. This breakpoint in which big n persistence301

(pseudo climatology) is better than small n persistence, is best observed in Figure 2b. This rather atypical302

plot is useful to observe the n∗h variation with the lead times, as each blue dot is located in the absolute303

minimum of each curve, and smaller lead times correspond to curves closer to the bottom. It can be seen304

that n∗h increases slowly (note that the x-axis is logarithmic) with forecasting lead time until the breakpoint305

is reached (blue dots located between n = 103 and n = 104, which correspond to larger time horizons). In306

the breakpoint, the forecasting lead time is large enough to make the information contained in the recent307

past samples less valuable than the historical aggregate. This breakpoint can also be observed in Figure 2a308

as the saturation of the optimal n curve and for the region under study is located at 4 hours and 20 minutes309

(sites’ average). For time horizons longer than this point it makes little sense to benchmark with any kind310

of smart persistence, as the simple climatology value will be better.311

The procedure for obtaining the “best smart persistence” can be viewed as computing the RMSD curve312

(vs h) for each possible value of n, and then taking the bottom envelope of the curves as the RMSDbSP.313

Figure 2a shows in gray scale the site-averaged RMSD curves with varying n, and three special curves are314

identified: the classical persistence in red, the climatology in green and the best persistence performance in315

blue. This RMSD bottom envelope, for each station, is the benchmark used in this work to define the FS316

from Eq (6).317

In a real case scenario, the n∗h values (over past and future) are unknown. Optima obtained from historical318
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(a) rRMSD as a function of h.

(b) rRMSD as a function of n.

Figure 2: Relative RMSD versus lead time for different values of smart persistence n.

data are not guaranteed to keep being optimal in the future, although the likelihood of this happening grows319

with historical data size. The same thing happens when using climatology as a benchmark. It is noted here320
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that this subtle case of data snooping is harmless because persistence models are only used as benchmarks321

instead of operationally. The procedures presented here and in Yang (2019) are of different nature, being the322

present benchmark more computationally expensive. However, this optimal smart persistence benchmark323

is computed only one time as a standalone calculation for the purpose of performance assessment, hence it324

does not represent a limitation for operational systems. Future work should include the comparison of both325

methodologies, addressing different climates and solar variability sites.326

5. Results327

This section presents the performance results of the forecasting algorithms. The focus is on understanding328

and quantifying the performance gain of adding averaged satellite albedo to the ARMA-RLS baseline model329

that only uses ground measurements. Subsection 5.1 introduces the results for the baseline model, providing330

a discussion on model selection and showing that model fine-tuning is of little utility. Subsection 5.2 presents331

the core results of this article, addressing the inclusion of satellite albedo into the auto-regressive framework.332

A grid-search methodology among a large set of possible configurations was used to obtain the results. We333

focus the following discussion in our main findings, that are in fact the contributions of this article (not the334

grid-search itself or parameter tuning). As the data volume of such grid-search is extensive and in most cases335

fine-tuning does not yield to significant performance changes, as it will be demonstrated in the following,336

we present here a small subset of the full simulation and the results in this section will be presented via337

graphical aids. Nevertheless, the corresponding quantitative results are provided in Tables in Appendix A.338

The results of the full simulation for Subsection 5.2, including p, q, satellite lags and satellite pixel size, are339

available in: http://les.edu.uy/RDpub/ARMAX-grid-search.xlsx.340

5.1. Endogenous RLS filter341

Figures 3a to 3c show the rRMSD for each p (number of AR terms) and q (number of MA terms) averaged342

over all locations. It is observable in these examples that with q = 0 and 3 ≤ p ≤ 8 the performance is343

near the optimal one. For the shorter time horizons (h = 1, 10 minutes, Figure 3a), after a certain value344

of p and q, i.e. for p ≥ 3 and ∀q, the performance is rather similar, with rRMSD variations below 0.1%.345

The rRMSD span over all p and q values is ' 0.8%, which is not very high. For the longer time horizons346

(h = 24, 4 hours, Figure 3c), the surface seems to favor q = 0 more clearly, but the performance difference347

over different values of q and p near the optimum is below 0.2% (negligible, see the plot’s z-axis scale). It348

is clear that for large time horizons, there is less performance gain by tuning the p and q values for each349

lead time. Intermediate lead times stand between both situations. Hence, for all time horizons, the gain350

obtained by fine-tuning p and q is below 0.8% of rRMSD. Furthermore, we will shortly show that if a fixed351

pair of these values is intelligently set, there is no global significant performance gain in optimizing (p, q)352

for each lead time.353
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To find a good global model with fixed (p, q) parameters, the procedure is as follows: we calculated all354

the rRMSD surfaces averaged over the locations, subtracted the mean of the rRMSD at each lead time,355

and averaged the result. This procedure obtains the mean rRMSD anomalies surface, whose minimum is356

the best fixed operation point. This procedure avoids giving more importance to one specific lead time.357

The result is shown in Figure 3d and the minimum is located at (6, 0). This is very close to the ad-hoc358

(5, 0) model that we analyzed in a preliminary work (Marchesoni-Acland et al., 2019). In that preliminary359

work, we observed that the performance of an arbitrary (p = 5, q = 0) model was indistinguishable from the360

best error achievable with any bounded combination of p and q (the bounds were p ≤ 10 and q ≤ 4). For361

simplicity and ease of comparison with previous work, and as there is a negligible difference between using362

(5, 0), the global optimum model or the fine-tuned (p, q) models for each lead time, we will keep p = 5 for363

the analysis.364

Figures 4a and 4b show the forecasting skill of different (p, q) models in comparison with the optimal365

model, i.e. the model that uses the optimal p and q values for each time horizon. For easy comparison with366

other works and to visualize the effect of using different persistence procedures, Figures 4a and 4b show367

the FS using the regular persistence and the optimal smart persistence, respectively. It is to be noted the368

different span (y axis) and the different behavior for shorter lead times (up to 1 hour ahead) and longer lead369

times (for 4-5 hours ahead, when the pseudo climatology is the best benchmark), where the concavities are370

different. One can observe that the bSP method is indeed difficult to beat, surpassing the performance of371

an ARMA (1, 0) model. This is depicted as negative values of the FS in Figure 4b. The performance when372

using (5, 0) and (5, 1) remains very close to each other and to the optimal (p, q) model. This in fact shows373

that using a fixed well-selected pair of (p, q) obtains essentially the same performance as the optimal choice374

and that fine-tuning the ARMA-RLS filter is futile. For short time horizons, the effect of adding a MA term375

(q) is positive for p = 1, but is insignificant for p = 5. For long time horizons, adding a MA term tends to376

slightly downgrade the performance.377

5.2. RLS filter including satellite albedo378

Including satellite albedo data improves the models’ performance compared to using only ground mea-379

surements, as shown in this subsection. The models used here will only include AR terms, as the difference380

is insignificant for p ≥ 3. Henceforth, “lags” will be used to refer to past satellite observations, i.e. albedo381

observations previous to time (t). Also, the performances will be expressed only in terms of the FS metric382

using as benchmark the optimal smart persistence in order to avoid redundancy. The cases with p = 5 and383

p = 1 and no satellite input are included in the following figures as a performance reference, and the FS384

curves are the same of Figure 4b for the (5, 0) and (1, 0) models, respectively.385

The effect of the number of AR terms p on the performance when including a single value of satellite386

albedo data is presented in Figure 5a. The pixel size used here is medium (see Subsection 2.2). The addition387

15



(a) Forecast horizon: 10 minutes (h = 1). (b) Forecast horizon: 90 minutes (h = 9).

(c) Forecast horizon: 240 minutes (h = 24). (d) Average rRMSD anomalies over all lead times.

Figure 3: Relative RMSD analysis for the different (p, q) parameters of the endogenous ARMA-RLS filter.

(a) Using regular persistence. (b) Using the benchmark optimal smart persistence.

Figure 4: Forecasting Skill of the ARMA-RLS filter with different parameters in comparison with optimal choice.
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of satellite albedo enhances performance significantly for all lead times. Peak performance is obtained at 30388

minutes ahead (FS ' +18.5%), being a × 4 improvement over the ARMA (5, 0) model for that time horizon.389

In general, it can be seen that the higher impact of adding satellite albedo is at the shorter time horizons,390

i.e. during the first hour ahead, but then a remnant improvement persists for longer lead times, declining391

during the last forecast hour (4-5 hours ahead) in the same manner as the rest of the models. Furthermore,392

Figure 5a shows that increasing p ceases to be useful when satellite data is present (see p = 1 and p = 5393

cases). Taking this to the edge and using no ground data in the algorithm’s input (p = 0) only implies394

sacrificing significant performance on the 10 minutes lead time, as the FS is almost the same for larger395

lead times. This does not mean that ground measurements are unnecessary: they are used to generate396

the error signal that is fed back into the RLS algorithm. Therefore, this does not mean that the p = 0397

algorithm is only running on satellite information. The use of solar satellite estimates to completely replace398

the measurement signal is left as future work, but recent studies suggest this may be possible without a399

significant performance reduction (Yang & Perez, 2019).400

Another experiment was made: adding lags on the satellite cloudiness data. It should be noted that,401

as the 10-minutes satellite data series is obtained via interpolation from a smaller time resolution, there is402

some degree of redundancy in this information. Adding lags can be seen as a type of time-averaging, as403

a set of weights {γk} will be assigned to each past data-point. The value p = 1 was used in this test as404

there is no significant improvement by using p = 5 when satellite albedo is also used (as seen in Figure 5a).405

The analysis is shown in Figure 5b’s blued curves. A little performance improvement on the peak of the FS406

curve is found, of around 1% of FS. For larger time horizons the effect is negligible. This happens for both407

lags = 1 and lags = 5, showing a behavior similar to that of the p value: there is no extra value in adding408

more satellite lags than lags = 1. In Figure 5b the curve with one satellite lag is indistinguishable from the409

one with five satellite lags.410

The third analysis is about the impact of the spatial window in which the values of satellite albedo are411

averaged. p = 1 and one lag on satellite data are used in this case, in order to quantify the impact of the412

window size in the best model inspected so far. Figure 6a shows the models’ performance when using the413

small, medium and big cell size (defined in Subsection 2.2). It is observed that larger cell sizes are preferred.414

A significant performance improvement is observed when using a medium cell size in comparison with a415

small cell size, especially up to ' 2 hours ahead. The bigger cell inspected here is the one which provides416

better performance, being similar to that of the medium cell size up to the 30 minutes time horizon, but417

showing an improvement for longer ones. Another interesting observation is the location of the peak: using418

a larger spatial window implies moving the peak in the direction of larger lead times. Note also that the419

concavity of all curves that include satellite data is negative in the shorter lead times, denoting a relative420

advantage over forecasts methods that do not include satellite data in these time horizons: spatially averaged421

satellite albedo effectively improves the forecast in the first forecast hour and has a positive effect over all422
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(a) With varying p. (b) With varying satellite lags.

Figure 5: Forecasting Skill for ARMA-RLS filter using satellite albedo.

time horizons.423

The last test is shown in Figure 6b and refers to the absence or presence of the “ergodicity” property424

of satellite albedo images for solar forecasting. This means analyzing whether time-averaging and spatial425

averaging are interchangeable or not for forecasting purposes. In absence of any other information, it was426

tested if using satellite lags (i.e. weighted time averaging) is the same as using a spatially averaged satellite427

input, without lags. The former is tested by using p = 0, lags = 5 and a small window size, and the latter428

is tested by using p = 0, lags = 0 and a medium window size. The baseline level of p = 0, lags = 0 and a429

small window size is also given, as a reference. It can be seen that the model including satellite lags shows430

almost no improvement from the baseline level. However, the model using a medium satellite window size431

reaches a significant improvement. Hence, it is clear that including spatially averaged satellite information432

is more useful than using time-averaged satellite information. In other words, weighted time averaging is433

not equivalent to spatial averaging over satellite data in terms of forecasting performance.434

Summing up, the simpler best performing ARMAX-RLS model found here is that with p = 1, one435

lag in satellite data and a large spatial window (37 km × 31 km), followed closely by the medium spatial436

window (19 km× 16 km). It has a peak FS slightly above +19% at 40 minutes ahead (h = 4) and a better437

performance than the previously tested models for h ≥ 4. From 10 to 30 minutes ahead its performance438

is similar to that of the same model but using a medium satellite albedo window, being ' +1% lower in439

the first two lead times. Its FS is ' +16% for most lead times between 2 and 4 hours, showing the typical440
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(a) With varying pixel size. (b) With varying satellite lags and pixel size.

Figure 6: Forecasting Skill for ARMA-RLS filter using satellite albedo.

downgrade in the last hour, as seen in previously tested models. The FS of all the tested models are positive,441

even using the optimal smart persistence as benchmark for its calculation, with the only exception of the442

model using p = 1 but no satellite data. Based on this, it can be argued that simple ARMA-RLS models443

based only on ground measurements, like the (5, 0) model, could be used as a more exigent performance444

benchmark for solar forecasting methods. Further studies on this topic should include different climates.445

The closest work in the literature is the one of Dambreville et al. (2014). The comparison can be made in446

terms of the regular FS (provided in this work in Appendix A), but it is not straightforward due to different447

time scales and locations under study. Dambreville et al. use a 15 minutes times basis (the Meteosat second448

generation satellite time resolution) and tested their ideas using ground measurements from an urban BSRN449

site in Paris, France (PAL station, SIRTA Observatory). The short-term variability (σ) of the site is not450

provided, but one can use the absolute RMSD of the regular persistence as an indication of the sites’451

similarity. Table 3 provides the comparison between both works. We use the 10 minutes time basis in this452

work, so the 15 and 45 minutes values were linearly interpolated from Tables A.4, A.5 and A.7 in order to453

make the comparison possible. The AR(5) model stands for the ARMA model with p = 5 and q = 0. The454

AST method uses as input the 3× 3 fixed pixels centered at the site’s location and the AST2 method uses455

intercorrelation maps to decide which pixels are more useful as input for each time horizon. The convention456

in Table 3 for the satellite models of this work is SAT(p, lags) and the used pixel size is medium. It is457

observed that in the Paris site the regular persistence’s RMSD starts lower than in our region, but increases458
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more quickly, hence the solar variability regimen is not the same, although rather similar. The satellite459

models’ FS are of similar order, but there is an important difference in their behavior for both works: for460

Dambreville et al. they increase with the time horizon while for the present work they have a maximum461

around 30 minutes. As the same behavior is observed with the AR(5) model, which does not use satellite462

information, we think this phenomenon is explained by the different behavior of the regular persistence. In463

fact, the AR(5) model is included here as a reference between both works that does not take into account464

the way that satellite information is used (which is different). To isolate the contribution of the satellite465

input it is possible to take the FS difference of each model with respect to the AR(5) model, also shown in466

Table 3 as ‘gain’. It is observed that the AST2, SAT(1,0) and SAT(1,1) models have similar gains, around467

+9-14%, while for the AST model the gain is lower. The AST2 model presents a slightly better gain of468

' 1% than that of the SAT models for the first time horizon considered (15 minutes), but this gain then469

decreases monotonically. On the other hand, the SAT models have a maximum gain at 30 minutes ahead470

of +13-14%, outperforming in ' +3% the AST2 model between 30 and 60 minutes ahead. The gain with471

respect to the AR(5) model also allows to visualize better the slight improvement obtained when including472

satellite lags (SAT(1,1) model vs SAT(1,0) model), of around +0.5% for these time horizons. We conclude473

that the proposals of the present work are a simple and effective alternative to include satellite information474

into solar forecasting methods and its performance is competitive with other more complex approaches.475

6. Conclusions476

Three things were done in this work: an analysis of smart persistence obtaining a novel benchmarking477

reference, a revisit on the optimal order of an ARMA model embedded in a RLS algorithm, and more478

importantly, a study of the impact of satellite data and its time and spatial averaging on the performance479

of solar forecasts made through a RLS filter approach. The resulting model is a simple alternative for480

including satellite information into solar forecasts and outperforms the best smart persistence, having a481

similar performance than other more sophisticated ways of using satellite data.482

On the smart persistence analysis it was shown that the optimal value of n depends on the lead time483

considered. As expected, this optimal value of n grows with the forecasting horizon, but it is never equal to484

1, i.e. the regular persistence. Furthermore, there is a breakpoint at a lead time of approximately 4 hours,485

in which comparing with (smart) persistence is not useful anymore, and comparison with climatology should486

be made. The optimal value of n for each time horizon defines a best smart persistence, which is used as487

performance benchmark.488

The RLS filter is a flexible algorithm that does not need train-validation-test splits and is suitable for489

formulating ARMAX models, so it was used here to assess the performance impact of including satellite490

information to baseline models that only use ground measurements. When ignoring the exogenous part (the491
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Table 3: Comparison between the work of Dambreville et al. (2014) and the present work. The information from Dambreville et

al. was taken from the Table 1 of their work. The 15 and 45 minutes values for this work were obtained via linear interpolation

of the 10-minutes metrics. The 30 and 60 minutes were taken directly from the 10 minutes evaluation.

Dambreville et al. (2014)

lead RMSD FS (%) gain vs AR(5)

time persist. AR(5) AST AST2 AST AST2

15 mins. 94 W/m2 +8.5 +17.0 +20.2 +8.5 +11.7

30 mins. 118 W/m2 +15.3 +20.3 +26.3 +5.1 +11.0

45 mins. 130 W/m2 +17.7 +20.8 +27.7 +3.1 +10.0

60 mins. 140 W/m2 +20.7 +22.9 +29.3 +2.1 +8.6

This work

lead RMSD FS (%) gain vs AR(5)

time persist. AR(5) SAT(1,0) SAT(1,1) SAT(1,0) SAT(1,1)

15 mins. 102 W/m2 +8.5 +19.4 +19.6 +10.9 +11.1

30 mins. 120 W/m2 +10.2 +23.7 +24.4 +13.5 +14.2

45 mins. 129 W/m2 +10.0 +22.7 +23.2 +12.7 +13.2

60 mins. 137 W/m2 +9.9 +21.3 +21.7 +11.4 +11.8

satellite input), optimal orders can be found via a grid search and, for solar irradiance data, an ARMA492

model with fixed 3 ≤ p ≤ 8 and q = 0 performs almost optimally. In fact, we found that there is no value in493

finding the optimal p and q values for each time horizon, as the fixed parameters filter provides performance494

results indistinguishable from the optimal ones.495

There are five remarks to be made regarding the inclusion of satellite data. (I) including satellite data496

removes the importance of ground measurements as inputs, restricting their usefulness to the first 10-minutes497

time horizon (although, in the present formulation, they are still needed to feedback the error signal to the498

RLS algorithm). (II) Adding lags in satellite data only achieves little improvements for 30-40 minutes ahead,499

on the FS curve peak. (III) Enlarging the spatial averaging window enhances performance: performance500

improvement increases quickly with the window size, but after a certain size, the improvement is restricted501

to the larger time horizons (higher than 1 hour ahead) at a cost of losing little performance in the first two502

time horizons. (IV) Enlarging the spatial averaging window moves the maximum of the FS curve in the503

direction of larger lead times. (V) As time-averages (including lags) does not yield the same performance504

improvement than spatial-averages, ergodicity does not seems to be a property of satellite albedo as input505

for solar forecasting.506

The results presented here are valid, a priori, only for intermediate solar variability sites and regions507
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with similar climates to the target region. Further research is required to fully understand the presented508

ideas for solar forecasting in various context, namely, making a simple use of satellite images. Testing these509

ideas for other sites and climates in the world, at least, accounting for the GOES-East satellite coverage, is510

part of our current work.511
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A. Detailed performance metrics516

In this appendix we provide the detailed performance results, including the rMBD, rRMSD and FS517

metrics, the latter based on the regular persistence and the optimal smart persistence, for easy comparison518

with other works. Tables A.4 and A.5 present the results for the endogenous models showed in Figure 4.519

Table A.4 also provides the rMBD and rRMSD metrics for both persistence methods. Tables A.6 and A.7520

present the results for all the tested models that include space-averaged satellite albedo, that were analyzed521

in Figures 5 and 6.522
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Table A.4: Relative MBD and RMSD metrics for the persistence and the models that only use ground measurements.

ARMA-RLS model specification

p 1 1 5 5 regular smart

q 0 1 0 1 persist. persist.

lead time relative MBD (%)

10 mins −0.3 −0.2 −0.2 −0.2 −0.1 −0.1

20 mins −0.4 −0.4 −0.4 −0.4 −0.1 −0.2

30 mins −0.5 −0.5 −0.5 −0.5 −0.2 −0.2

40 mins −0.6 −0.6 −0.6 −0.6 −0.2 −0.3

50 mins −0.7 −0.7 −0.7 −0.7 −0.3 −0.4

60 mins −0.8 −0.8 −0.8 −0.8 −0.3 −0.5

90 mins −1.0 −1.0 −1.0 −1.0 −0.5 −0.7

120 mins −1.2 −1.2 −1.2 −1.2 −0.7 −0.9

150 mins −1.3 −1.3 −1.3 −1.3 −0.9 −1.1

180 mins −1.4 −1.4 −1.4 −1.4 −1.1 −1.2

220 mins −1.5 −1.5 −1.6 −1.5 −1.3 −1.3

260 mins −1.6 −1.5 −1.6 −1.6 −1.4 −1.9

lead time relative RMSD (%)

10 mins 20.3 19.5 19.4 19.3 20.9 20.5

20 mins 23.9 22.7 22.6 22.5 25.0 23.6

30 mins 25.6 24.5 24.3 24.2 27.0 25.3

40 mins 26.9 25.9 25.6 25.5 28.4 26.7

50 mins 27.9 27.1 26.7 26.7 29.7 27.9

60 mins 28.9 28.2 27.7 27.7 30.8 29.0

90 mins 31.2 30.9 30.4 30.4 33.7 32.1

120 mins 33.3 33.2 32.6 32.7 36.5 34.8

150 mins 35.1 35.1 34.6 34.6 39.0 37.4

180 mins 36.7 36.8 36.3 36.4 41.5 39.8

220 mins 38.6 38.7 38.3 38.4 44.5 42.6

260 mins 40.1 40.2 39.9 40.0 47.3 44.5
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Table A.5: Forecasting skill of the models that only use ground measurements.

ARMA-RLS model specification

p 1 1 5 5

q 0 1 0 1

lead time FS (%) using the regular persistence

10 mins +3.2 +6.6 +7.4 +7.5

20 mins +4.4 +9.2 +9.6 +9.8

30 mins +5.1 +9.2 +10.0 +10.2

40 mins +5.5 +8.9 +10.0 +10.2

50 mins +5.9 +8.7 +10.0 +10.2

60 mins +6.3 +8.4 +9.9 +10.1

90 mins +7.4 +8.4 +10.0 +10.0

120 mins +8.6 +9.0 +10.6 +10.5

150 mins +9.9 +10.0 +11.3 +11.1

180 mins +11.4 +11.2 +12.4 +12.1

220 mins +13.3 +13.1 +14.0 +13.7

260 mins +15.2 +14.9 +15.6 +15.4

lead time FS (%) using the optimal smart persistence

10 mins +1.4 +4.9 +5.7 +5.8

20 mins −1.2 +3.9 +4.3 +4.5

30 mins −1.3 +3.1 +3.9 +4.2

40 mins −0.8 +2.9 +4.0 +4.2

50 mins −0.3 +2.7 +4.1 +4.3

60 mins +0.5 +2.8 +4.3 +4.6

90 mins +2.6 +3.7 +5.3 +5.3

120 mins +4.3 +4.7 +6.3 +6.2

150 mins +6.0 +6.1 +7.5 +7.3

180 mins +7.6 +7.5 +8.7 +8.4

220 mins +9.5 +9.2 +10.2 +9.9

260 mins +10.0 +9.7 +10.4 +10.1
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Table A.6: Relative MBD and RMSD metrics for the models including satellite information. q = 0 for all the models.

ARMAX-RLS model specification

window medium medium medium medium medium small small small large

p 0 1 5 1 1 0 0 1 1

lags 0 0 0 1 5 0 5 1 1

lead time relative MBD (%)

10 mins −0.6 −0.3 −0.3 −0.3 −0.3 −0.7 −0.6 −0.3 −0.3

20 mins −0.6 −0.5 −0.5 −0.5 −0.5 −0.7 −0.6 −0.5 −0.4

30 mins −0.7 −0.6 −0.6 −0.6 −0.6 −0.8 −0.7 −0.6 −0.5

40 mins −0.7 −0.6 −0.6 −0.6 −0.6 −0.8 −0.7 −0.7 −0.6

50 mins −0.7 −0.7 −0.7 −0.7 −0.7 −0.8 −0.7 −0.7 −0.7

60 mins −0.8 −0.7 −0.7 −0.7 −0.7 −0.8 −0.8 −0.8 −0.7

90 mins −0.8 −0.8 −0.8 −0.8 −0.8 −0.9 −0.8 −0.9 −0.8

120 mins −0.8 −0.8 −0.8 −0.8 −0.8 −0.9 −0.8 −0.9 −0.8

150 mins −0.9 −0.9 −0.8 −0.9 −0.9 −0.9 −0.9 −1.0 −0.8

180 mins −0.9 −0.9 −0.9 −0.9 −0.9 −0.9 −0.9 −1.0 −0.9

220 mins −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.1 −1.0

260 mins −1.2 −1.1 −1.1 −1.1 −1.1 −1.2 −1.2 −1.2 −1.1

lead time relative RMSD (%)

10 mins 19.0 17.5 17.6 17.5 17.5 19.7 19.1 17.7 17.7

20 mins 19.5 19.3 19.4 19.3 19.3 20.3 19.5 19.8 19.5

30 mins 20.6 20.6 20.6 20.4 20.4 21.6 20.5 21.3 20.5

40 mins 21.8 21.9 21.9 21.7 21.7 22.9 21.7 22.7 21.5

50 mins 23.1 23.1 23.1 23.0 23.0 24.2 23.0 24.0 22.6

60 mins 24.2 24.2 24.3 24.1 24.2 25.3 24.1 25.1 23.7

90 mins 27.1 27.2 27.2 27.1 27.1 28.1 27.1 28.0 26.7

120 mins 29.7 29.7 29.8 29.7 29.7 30.5 29.7 30.5 29.3

150 mins 31.9 32.0 32.0 32.0 32.0 32.6 32.0 32.6 31.6

180 mins 33.9 34.0 34.0 34.0 34.0 34.5 34.0 34.5 33.6

220 mins 36.3 36.3 36.4 36.3 36.4 36.7 36.3 36.8 36.0

260 mins 38.2 38.3 38.4 38.3 38.4 38.6 38.3 38.7 38.1
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Table A.7: Forecasting skill for the models including satellite information. q = 0 for all the models.

ARMAX-RLS model specification

window medium medium medium medium medium small small small large

p 0 1 5 1 1 0 0 1 1

lags 0 0 0 1 5 0 5 1 1

lead time FS (%) using the regular persistence

10 mins +9.0 +16.2 +16.1 +16.3 +16.3 +5.9 +8.8 +15.2 +15.4

20 mins +21.9 +22.6 +22.4 +22.9 +22.9 +18.8 +21.8 +20.8 +22.1

30 mins +23.8 +23.7 +23.6 +24.4 +24.3 +20.0 +24.1 +21.1 +24.2

40 mins +23.3 +23.1 +23.0 +23.7 +23.7 +19.3 +23.6 +20.0 +24.3

50 mins +22.4 +22.3 +22.1 +22.7 +22.7 +18.6 +22.7 +19.2 +23.8

60 mins +21.4 +21.3 +21.2 +21.7 +21.6 +17.9 +21.6 +18.4 +22.9

90 mins +19.5 +19.4 +19.3 +19.6 +19.5 +16.7 +19.5 +16.9 +20.9

120 mins +18.6 +18.5 +18.4 +18.6 +18.5 +16.4 +18.6 +16.5 +19.7

150 mins +18.0 +17.9 +17.8 +17.9 +17.8 +16.3 +17.9 +16.3 +18.9

180 mins +18.2 +18.1 +18.0 +18.1 +17.9 +16.8 +18.0 +16.8 +18.9

220 mins +18.5 +18.4 +18.2 +18.4 +18.2 +17.5 +18.4 +17.4 +19.0

260 mins +19.1 +19.0 +18.9 +19.0 +18.8 +18.3 +18.9 +18.2 +19.5

lead time FS (%) using the optimal smart persistence

10 mins +7.4 +14.7 +14.6 +14.8 +14.8 +4.2 +7.1 +13.7 +13.9

20 mins +17.3 +18.0 +17.8 +18.4 +18.4 +14.0 +17.2 +16.1 +17.5

30 mins +18.7 +18.6 +18.4 +19.3 +19.2 +14.6 +19.0 +15.8 +19.1

40 mins +18.2 +18.0 +17.9 +18.6 +18.6 +14.0 +18.5 +14.7 +19.3

50 mins +17.3 +17.2 +17.0 +17.7 +17.6 +13.3 +17.6 +13.9 +18.8

60 mins +16.6 +16.4 +16.3 +16.8 +16.7 +12.8 +16.8 +13.3 +18.1

90 mins +15.4 +15.2 +15.1 +15.4 +15.3 +12.4 +15.4 +12.6 +16.8

120 mins +14.7 +14.6 +14.5 +14.7 +14.6 +12.4 +14.7 +12.5 +15.9

150 mins +14.5 +14.4 +14.3 +14.4 +14.3 +12.7 +14.4 +12.7 +15.4

180 mins +14.7 +14.6 +14.5 +14.6 +14.5 +13.3 +14.6 +13.3 +15.4

220 mins +14.9 +14.8 +14.6 +14.7 +14.6 +13.8 +14.7 +13.7 +15.4

260 mins +14.1 +14.0 +13.9 +14.0 +13.8 +13.3 +13.9 +13.2 +14.5
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