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Abstract—Dairy profitability depends on the quantity and
quality of the produced milk. Bovine mastitis is the infection of
udder tissues of cows that reduces both, and therefore it causes
considerable economic damage to milk producers. Nowadays, the
most widely adopted method to detect mastitis is by determining
the somatic cell count per milliliter of milk. However, it requires
qualified personnel and sometimes the results take a long time
to be available, hampering an effective solution. The electrical
conductivity of the milk could also be used, but if the test is
done manually by an operator neither is effective, since affects
the normal operation of the parlour.

In this work we propose a mastitis detection system based on
the measuring of the electrical conductivity of the milk of each
quarter during the milking. A new milking claw is designed to
include the conductivity traducers inside it, which are connected
to the rest of the measuring unit. As a result, the only necessary
modification to the milking machine is to replace the original
milking claw with the new one. The system also includes a central
unit to process conductivity samples sent by each measuring
unit to determine if a cow has mastitis or not. A prototype is
successfully tested in field, obtaining a precision of 65% and a
recall of 64% for infected cows, approaching to the state of the
art. Nevertheless, our approach is, to the best of our knowledge,
the first proposal that allows a cost-effective solution since it can
be integrated to existing milking machines and capable of issuing
early warnings.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

The management of the health of dairy cows is critical,
since it affects directly farmers profitability through the quality
and quantity of the produced milk. The quality of milk is
determined by the correct proportion of solid components
(such as grass, protein, lactose and minerals), minimum mi-
crobial load, free of disease-causing bacteria, minimum of
somatic cells and free of chemical waste. Bovine mastitis is
the persistent, inflammatory reaction of the udder tissue due
to physical trauma or microorganisms infections. It is one of
the most important factors that affects the quality of milk and
it also reduces the yield milk and the well-being of cows.
As a consequence, mastitis causes important economic losses
associated with the reduced milk quality and yield.

There are two types of mastitis events: clinical and sub-
clinical. Clinical event affects the structure of milk (change
colour and flakes), udder (higher temperature) and also the

general condition of animals may deteriorate. On the other
hand, subclinical event not presents visible changes in milk.
So, most of these latter events are unobserved and untreated,
which represent a huge problem because the proportion of
subclinical events are bigger than the clinical events. Exists
several diagnosis mastitis tools, some of them are currently
used in the industry. Tests are based on that mastitis changes
the milk composition, such as Somatic Cell Count (SCC),
California Mastitis Test (CMT) and Electrical Conductivity
(EC) measurements. SCC’s method is commonly realized in
specialized laboratories, while CMT requires qualified per-
sonnel, like a veterinary technician. EC measurement test
relies on that the milk’s ionic composition from a cow with
mastitis changes, increasing its electrical conductivity. Conse-
quently, this method is increasingly used in the dairy industry.
However, EC in milk is also affected by age, type, lactation
rank, milk yield, anatomical and physiological characteristics
of udder stress, season, nutrition, shelter conditions, milking
technique and mastitis.

Several works [1], [2] analyze and compare the of this meth-
ods, concluding that EC measurement could be an efficient
mastitis detection method. Moreover, there is a stronger corre-
lation between mastitis and quarter milk electrical conductivity
than between mastitis and electrical conductivity of the milk’s
mix [3]. So that, measuring the EC of each milking quarter
improves significantly its effectiveness.

Ferrero et al. [4] propose an low-cost electrical circuit to
measure EC quarter milk, while Muñoz et al. [5] presents
a electronic interface to measure EC in liquids. On the other
hand, signal processing and pattern recognition techniques has
been applied for improving the mastitis detection’s results
from EC measurements [6]–[10] and also considering other
milking data [11]. Real-time measurements of the rumen
temperature by utilizing an ingestible biosensor with wireless
communication enable the farm manager to receive mastitis
alert messages when a rise in a cow’s body temperature is
detected [12]. This approach requires one sophisticated and
costly sensor for each cow.

In this work we propose a mastitis detection system based
on the measuring of the EC of each quarter. The system is
composed by one measurement unit (MU) per milking unit



Fig. 1. Typical herringbones parlour and its parts: (1) operator’s pit, (2)
operator, (3) entry and (4) exit gate.

that measures EC and sends the values to a central unit (CU).
Once the CU has the complete milking time series, the cow
is classified. For that it is used a Random Forest approach to
classify dairy cows in healthy and subclinical mastitis groups.
The result of this classification is indicated by LED lights on
the CU.

The rest of this paper is organized as follows. Section
II describes the milking parlour. Section III presents the
proposed system and its implementation. Section IV describes
the method and circuits for milk conductivity measurements.
Section V describes the implementation of the software for
each component (MU and CU). Section VI introduces the
machine learning techniques used for cow health classification.
Section VII summarizes the experimental results obtained
using the proposed system. Finally, Section VIII presents the
conclusions and future work.

II. MILKING PARLOUR

The aim of the work is to develop a system able to
be integrated in most adopted modern milking parlours. A
representative milking parlour is described in the next section
to later describe the proposed mastitis detection system.

Herringbone parlour has become popular in all major milk
producing countries, since are suitable for medium to large
herds (about from 50 to 400 cows). In this parlour cowshed
stall are arranged in two rows at both sides of the operator’s
pit. Cows enter and leave in batches. In each row, cows stand
in echelon formation at an angle of 30◦-35◦. There is one
milking unit for each pair of stall, milking a row of cows
at a time. Fig. 1 depict a herringbone parlour and its main
components.

The operator most of the time is in the operator’s pit
milking and controlling the entry and exit of cows. He or she
prepares the udders for milking and attach the teatcup clusters
to them. During milking, the operator should check that every
teatcup remains adjusted correctly. Modern milking machines
are equipped with milk flow detectors to sense the end of milk
flow to remove the cluster from the udder.

The milking cluster consists of four sets of teatcup, each of
which has a shell and a rubber liner. The teacups are connected
to vacuum by rubber tubes and claws to extract the milk. The
milk travels from the teatcups through the short milk tubes to

Fig. 2. Stall milking parlour: (1) cluster teatcup, (2) milking claw, (3) long
tube, (4) vacuum tube, (5) automatic cluster removal mechanism (6) power
cable tray

the claw, and later travel along the long milk tube to the bulk
tank. The claw is made of stainless steel or combining parts of
plastics and stainless steel, with a effective claw bowl volume
about 200 ml.

Fig. 2 depicts one stall milking parlour and the aforemen-
tioned parts.

III. MASTITIS DETECTION SYSTEM

The system is composed by one MU per milking unit and
a single CU. The MU is responsible for measure the milk
conductivity per quarter and mix temperature and transmit
them to the CU, which is in charge of analyzing the time
series to determine if the cow has mastitis or not.

A. Measurement unit

The MU, depicted in Fig. 3, comprises a microcontroller, a
Bluetooth (BT) radio transceiver, and four conductivity sensors
and a temperature sensor for measuring the milk conductivity
of each quarter and the temperature of the mixed milk re-
spectively. A power supply subsystem feeds the modules with
the corresponding voltage: ±5 V, ±12 V and 8 V dc source.
Since, this unit is fed from the mains supply, no special power
consumption optimization are considered.

The MU is split into two parts: one integrated into the
milk cluster comprising the conductivity traducers and the
temperature sensor, and another part with the measurement
and auxiliary electronics circuits, the microcontroller and
transceiver installed in the power cable tray. Fig. 3 shows a
block diagram of MU.



Fig. 3. Block diagram of the measure unit

1) Microcontroller: The microcontroller requirements in-
clude: i) two analog inputs, one for the conductivity sensor and
another for the temperature sensor, ii) six digital output, two
for the LEDs, three to control the conductivity sensor and one
for the serial communication interface (UART port, Tx pin)
for communicating with the Bluetooth module, and iii) one
digital input for communicating with the Bluetooth module
(UART port, Rx pin). An Arduino UNO module is selected
because it is an excellent choice for prototyping. This module
is powered from 8 V provided by the power subsystem.

2) Bluetooth: We considered a number of options for the
wireless communication between the MUs and the CU. The
Bluetooth technology offers a very good trade-off between
cost, communication range and ease of use. The Bluetooth
radio transceiver module selected is a HC-05 mainly because
is a popular shield for Arduino with a communication range
between 5 and 10 meters. The HC-05 supports serial commu-
nication (UART) and an AT command mode. The connection
between the microcontroller, powered from 5 V, and the HC-
05, powered form 3 V, is done using a voltage divider in the
direction to the HC-05. The signal voltage from the HC-05 is
within the tolerable input ranges of the microcontroller.

3) Temperature sensor: The temperature sensor selected is
the LM35 [13] in a plastic TO-92 transistor package. The
sensor features a typical accuracy of 0.75◦C over a temperature
range of −55◦C to 150◦C. The output voltage of the sensor is
linearly-proportional, 10 mV/◦C. Since the milk temperature
is around 33◦C and that it is expected to vary just a few
grades, the sensor output is feed to an amplifier stage to reduce
the quantization error at the microcontroller analog input.
The temperature value is used to compensate the conductivity
measurement.

4) Conductivity sensor: The conductivity sensor is spe-
cially developed for this particular application and it is de-
scribed in Section IV. First, the design and implementation
of conductivity traducer, which is the part of MU integrated
into the milk cluster (upper part in Figs. 3), is described in
detail. Then, the electronic circuits for signal conditioning is
presented (lower part in Figs. 3).

B. Central unit

The CU is implemented using a Raspberry PI 3 platform. It
features a quad-core 64-bit ARM Cortex A53 running at 1.2
GHz, Bluetooth 4.1, WiFi, four USB ports and an Ethernet
port. It is selected because, it is a powerful single-board
computer at a very low cost (around 35 US dollars). Since,
it runs a linux-based operating system, Ubuntu Core 16 for
Raspberry PI 3, it supports Python, which enables to use the
classification libraries provided by scikit-learning (a Python
based tool for data analysis).

IV. CONDUCTIVITY MEASUREMENT

The conductivity transducers requires measuring the milk
conductivity of each quarter independently. The milk con-
ductivity is within the range 1.0 mS/cm to 12.0 mS/cm,
where lower values, close to 1.0 mS/cm, corresponds to a
cow without mastitis [14].

To achieve this without modifying significantly the milk
cluster, the transducers must be located inside the milk claw,
which is relatively small (a few tens of cm3 of available
space). For a simple integration of these traducers, the de-
signed electronic circuit presents a voltage output, which is
easily acquired by an analog-to-digital converter (ADC) of the
microcontroller. Moreover, the conditioning circuit is shared
between quarters to reduces cost and size. An enable signal is
used to initiate a measuring, plus two additional digital signals
to select the quarter.

A. Cells modeling and design

The conductivity of a solution retained in a vessel or cell can
be measured based on Ohm’s law by applying an alternating
electrical current to two opposite surface electrodes located
parallel to each other and measuring the resulting voltage. The
expression for the resistance of the solution is

Rm =
l

σA
. (1)

Thus, the conductivity can be obtained using

σ =
Kcell

Rm
, (2)

where Kcell is the ratio of the distance between electrodes, l ,
and its area, A. If this cell constant is computed geometrically
may be subject to errors and it should be better determined
by calibration using standard solutions. Alternate current is
used to avoid polarization effect, accumulating ionic species
near the electrodes, leading to erroneous results as it adds a
parasitic component to the solution resistance.



Fig. 4. Equivalent-circuit model.

TABLE I
EQUIVALENT CIRCUIT MODEL VALUES.

Rm (Ω) Cpm (pF) Rpm (Ω) Cpp(pF)

688.4 63.8 3.4 100.0

In order to identify the effects of the cell geometry and other
factors on the milk impedance, a lumped-element equivalent
circuit model is used.

First a reference cell is build, a cube with the sides of
1 cm. The impedance of this cell filled with a KCl solution of
1.3 mS/cm at 19◦C is acquired using the impedance analyzer
Cypher Instruments C60. Various RLC circuits are tested,
fitting the measurement data to the model in the range of 1 kHz
to 100 kHz. The adopted model is depicted in Fig. 4, where:
Rm is the milk resistance, used to determine the conductivity
using Eq. (2); Cpm and Rpm represent the capacitance and
resistance of the milk electrode (plate) interface respectively
in series with the milk resistance; and finally Cpp models the
capacitance between electrodes. Compared to previous models
(e.g. Mabrook et al. [15]), the proposed one adds the Rpm for a
better fitting, modeling the resistance in the milk-to-electrode
interface. The data is fitted to the model using a nonlinear
least-squares solver in Matlab.

Fig. 5 shows the impedance (module and phase) of the
reference cell, measured and modeled, and Table I shows the
model component values after the fitting.

The effects of the capacitance Cpp, in parallel with the
branch of Rm, are significant for frequencies higher than 100
KHz. While the impedance of the milk-to-electrode interface
(parallel of Rpm and Cpm) are negligible for frequencies
higher than 10 KHz. Moreover, it can be observed that the
phase is almost zero for a frequency slightly higher than
10 KHz, so that |Z| ' Re(Z). Since, Rm � Rpm then
|Z| ' Rm. Therefore, a frequency of 10 KHz is adopted
for the measurement current, since it allows measuring with
relative ease |Z| to estimate with low relative error Rm. The
measurement method is explained in Section IV-C.

Two more cells are built varying its size and characterized
finding the parameters values of the equivalent circuit. The
obtained results confirm that the model is correct for modeling
the dependence of the main parameters with the dimension of
the cell (Rm is proportional to the distance between electrodes
and inversely proportional to its area, the opposite is valid for
Cpp). It is found that the reference cell is the most appropriate
cell, presenting a good trade-off between reduced size and low
relative error.

The milk conductivity also depends on the temperature.

Fig. 5. Impedance (module and phase) of the model and experimental data.

Fig. 6. Milking claw.

The mobility of the ions increases with the temperature, so
the conductivity increases. To compensate this effect, the
following formula is used [4]:

σ = σ0 (1 + α(T − T0)) (3)

The parameter α is determined obtaining conductivity mea-
surements for three temperature values. It is verified that the
correction is relative small, 2.4 %/◦C and consistent with
previous reports [4].

B. Mechanical design

The conductivity cells, defined in the previous section, and
the temperature sensor must be integrated into the milking
claw (see Fig. 6). The designed piece consists of two parts: i)
the upper support part, which is attached to the milking claw
with screws, and ii) cells part. The design is made in two
parts to make its manufacture feasible using a 3D printer. The
design is done using the FREECAD’s software. Fig. 7 shows
a perspective view of both pieces.

The upper support has four funnels (one per cell) to reduce
the milking flow and force them to be stationary, so that the
EC measurement can be accurate (otherwise, it is affected by



(a) Upper support

(b) Cells

Fig. 7. Design of pieces to put in the milking claw.

Fig. 8. Pieces attached to the milking claw.

turbulences). Both pieces are sticked together using acrylic
glue.

It is used two stainless steel electrodes with an effective
area of 1.0 cm2 and 1 cm apart. They are attached to the cell
with steel screws. Fig. 8 shows a photograph of the final piece
attached to the milking claw.

C. Electronic design

Fig. 9 shows a block diagram of the EC electronic circuit.
Implementation details are omitted due to space restrictions.
The alternating voltage, necessary to measure the EC, is
generated with the oscillator block. This is composed of a
LM555, which generates a periodic square wave, and a band
pass filter to obtain a sinusoidal voltage. The filter is designed
to pass the fundamental harmonic of the square wave and
reject all the other harmonics. The filter gain adjusts the
output of the oscillator block to an amplitude of 1.0 V. The
sinusoidal signal from the oscillator block is feed to one cell to

Fig. 9. Block digram of the EC electronic circuit.

measure its EC . This is done using a multiplexer (ADG1604)
with four channels. The cells are represented as electrical
resistance Rmi (where i identifies the cell: from 1 to 4) in the
diagram. The voltage drop of the selected cell is connected to
an operational amplifier (OPA4192) in inverse configuration
with gain Rg/Rmi. So, the output voltage amplitude of the
amplifier is inversely proportional to the milk resistance, so it
is proportional to the EC. The final step of circuit is a peak
detector to obtain from the ac signal its amplitude value. The
output of the described electronic circuit is a voltage signal
proportional to the EC of the selected cell. Assuming each
block as ideal, the circuit’s transfer is:

vcond =
Rg
Kcell

σm (4)

D. Calibration

The conductivity output voltage is acquired by the ADC of
the MU microcontroller and sent to CU. The CU convert the
received raw value (a number from 0 to 1023) to a conductivity
value (mS/cm) using a linear relationship, y = ax + b,
where the b coefficient accounts for off-set errors . For this
conversion the parameters of a transfer function must be
calculated previously. The gain of the Eq. (4) can be calculated
using the nominal values of the electronic components and
the cell dimensions to calculate its constant (offset zero
is assumed). Another way to determine them is through a
calibration procedure, fitting data samples to a curve using
least squares regression. There are two options for calibration,
obtaining: i) an individual curve per cell, and ii) an unique
curve corresponding to an average cell, in which the four cell
acquired values are considered for each solution. Five different
NaCl solutions in the range 1.0-12.0 mS/cm are prepared.
The EC of these solutions are measured using a commercial
conductivity meter (Goodes TDS&EC E-1 Portable) and the
output voltage of the conductivity sensor saved for further
processing.

Fig. 10 shows the data samples corresponding to the four
cells for each solution and the obtained curves. Clearly,
the calibration curve for each individual cell are different.
This may be explained by the differences between electrodes
that are made manually, so their electrical characteristics are
different. Also it can be observed that the offset is negligible.

The error (E) is computed with the following expres-
sions [16]:

E = 100× yerror
y

(5)



Fig. 10. Calibration curve for each cell.

and

yerror = tα/2,n−2 · S ·

√
1

n
+

n(x− x̄i)2

nΣx2i − (Σxi)2
(6)

where x is the value at which the error of the result y is
estimated, xi are the samples used for calibration, n is the
quantity of samples, x̄i is the average of samples, tα/2,n−2 is
the critical value of normal distribution (α = 0.05) and S is
the standard deviation of the samples.

Table II presents the maximum error throughout the range
of interest for each calibration procedure. The table shows
that the error using the nominal transfer function has a higher
error, and that the the average cell has the lower error than
individual curves, but just because it has more samples (see
Eq. (6).

TABLE II
CALIBRATION PROCEDURE ERROR

C1 C2 C3 C4 avg. nom.
Error (%) 13 11 12 12 6 14

V. IMPLEMENTATION

This section discuss the software implementation of the MU
and CU. MU has the following tasks: i) sampling the EC of
each cell with milk and the temperature of the milk’s mix,
ii) sending and receiving data through Bluetooth network, and
iii) displaying ubber’ state information through LEDs. MU
samples the analog input and selects a new cell each 250
milliseconds, so one time per second all the cells are sampled.
Once the four cell are sampled, it is sampled the temperature.
Finally, the measurements are sent to the CU using Bluetooth
for processing.

On the other hand, CU is waiting for a new packet from
the MU. Once a new packet is received, it decides if the data
corresponds to the time series of the current cow, to obtain
separated data series for each one. Fig 12 shows the decision
tree for a new data arriving to the CU, explained next. A new

Fig. 11. EC time series of a infected cow with a SCC of 3.399.000 cells/ml.

Fig. 12. Decision tree for a new data arrived to the CU

data belongs to the current milking if the mean of the last 10
samples of each quarter is higher than a fixed threshold. In
this case, the data is saved.

If the data don’t belong to the current milking, means that
the milking has finished and the time series of the cow is
analyzed and the result is sent to the MU.

Fig. 11 shows the four time series of a milking, where it
can be observed that between milking (different cows) the EC
drops considerably.

The complete system will integrate automatically informa-
tion of caws. Each caw will be identified using a RFID reader
that scan the cow ear tag as enter to the parlour though
the entry gate. This ID is used to identify the cow with
the EC’s time series. With this ID, it is possible applying
post-processing techniques to the data using extra information
of the cow (age, number of health quarter of the udder)
to improve the classification model. For this purpose, this
prototype uses a mobile app to manually enter the cow ID. The
communication between the CU and the app is via Bluetooth.

VI. CLASSIFICATION

This section explains the classification model and which
characteristics are extracted from the EC’s time series.

First, the following terms related to classification techniques
are defined in the problem domain:



• TP: correctly classified mastitis cases (true positive)
• FP: misclassified healthy cases (false positive)
• FN: misclassified mastitis cases (false negative)
• TN: correctly classified healthy cases (true negative)
The performance of the classification is evaluated employ-

ing:
• positive predictive value (PPV) or precision,

PPV =
TP

TP + FP
,

• true positive rate (TPR), sensitivity, or recall

TPR =
TP

TP + FN
,

• true negative rate (TNR) or specificity

TNR =
TN

TN + FP
, and finally

• F1-score
F1 = 2 · PPV · TPR

PPV + TPR

In order to obtain a database for training purposes, an
operational prototype of the system is installed during several
days in a parlour of a dairy farm near Florida (80 km
apart from Montevideo, Uruguay). The database contains 95
samples, where 63 samples are labeled as healthy and 32
samples are labeled as infected samples (cases of mastitis).
Each sample has the four EC quarter milk time series, number
of birth and percentage of grass and protein of the mixed milk.
Milk samples are extracted and analyzed to determine the state
of health of the cows. A database sample is labeled as infected
if SCC is higher than 400.000 cells/ml. Fig. 11 show the EC
of milk of a infected cow.

We evaluated for the classification the four characteristics
used by Norberg et al. [7] which are extracted from the each
EC quarter milk. The average of the 20 highest valid EC
measure within a milking (X 20) and the variation of all
valid EC measure within a milking (σ2

EC) are calculated for
each quarter. The following EC characteristics are computed:
MAX X20 (the highest quarter X20 value within cow and
milking), MAX σ2

EC (the highest quarter σ2
EC value within

cow and milking), IQR X 20 (the inter-quarter ratio between
the highest and lowest quarter X20 value within cow and
milking), and IQR σ2

EC (the IQR between the highest and
lowest quarter σ2

EC within cow and milking). It is also used
as characteristics: milking duration, number of quarter milking
(sometimes the four tits are not milked) and percentage of
grass and protein of the milk.

The classification method adopted is Random Forest algo-
rithm. In fact, this algorithm is a meta estimator that fits a
number of decision tree classifiers on various sub-samples
of the dataset and use averaging to improve the predictive
accuracy and control over-fitting.

The dataset is evaluated using cross validation techniques
to optimize the model. It is used F1-score, recall and precision
for the model evaluation defined previously. Table III shows
the result when only one of the characteristics is used for

TABLE III
CROSS VALIDATION IN 10 FOLDS

F1 Precision Sensitivity
Max X20 46.63± 2.84 43.78±3.42 50.00±2.98
Max σ2

EC 64.19±2.11 65.07±2.67 63.46±3.10
IQR X20 36.42±3.77 34.65±3.096 38.46±4.87
IQR σ2

EC 35.09±2.16 33.18±2.32 37.31±2.46
Nro. quarter 11.00±6.00 30.86±15.00 7.30±4.01

Grass 44.14±2.44 44.87±2.67 3.46±2.46
Protein 19.09+3.66 18.63±3.43 19.62±4.02
Duration 54.93±4.11 54.93±4.85 55.00±3.86

TABLE IV
CROSS VALIDATION IN 10 FOLDS. COMBINING CHARACTERISTICS.

F1 Precision Sensitivity
all 42.66±2.05 55.90±5.00 3.62±2.30

best3RF 45.66±4.76 50.03±4.92 37.31±4.57
Norberg 37.88±2.50 41.47±2.87 35.00±3.19

classification. Table IV shows the obtained the result when
combining the characteristics in three subsets:

• all: all the characteristics together.
• best3RF: using only the three best characteristics selected

by Random Forest.
• Norberg: using only the characteristics extracted from [7].

It can be observed from Table III, and Table IV that the best
option is Max σ2

EC (highlighted in bold) obtaining a F1-score
of 64%, a precision of 65% with a sensitivity of 63%.

VII. CONCLUSIONS

We have presented a mastitis detection system based on
the measuring of the electrical conductivity of each quarter
milk. The proposed solution can be adopted in virtually any
milking parlour machine since it requires only to substitute
the milking claw. The developed milking claw includes four
cells to measure in real time the electrical conductivity of the
milk of each quarter udder. The MU can be placed near the
corresponding stall which send wirelessly the measurements
to the CU. Once the milking of a cow is finished, the data is
processed by the CU to determine whether the cow has mastitis
or not. This information is sent back to the MU to properly
alarm the operator if he or she needs to take an action.

A operational prototype composed of one MU and the CU
are successfully tested on field. The classification performance
is well in line with the best mastitis detection systems reported
up to date in the literature. Best results is obtained using the
Max σ2

EC as characteristic in which the validation shows
a specificity of 83.20%, a sensitivity of 63.46 % and a
predictability of 65.07 % for infected cows. This result seems
to indicate that it is possible to use the system to make a
shortlist of the infected cattle to be trait for the veterinary
technician.

Table V shows a comparison with other works in which the
cattle have similar characteristics to ours.

Norberg et al. [7], [9] obtained similar specificity but a
lower sensitivity and predictability for infected cows. Both
works developed inline system where EC of quarter milk is



TABLE V
COMPARING RESULTS WITH OTHER WORKS.

Sensitivity Precision Specificity
This work 63.46 65.07 83.20

Norberg et al. [7] 44.80 – 84.60
Lien et al. [9] 46.20 30.70 83.70

Cavero et al. [8] 70.00 – 84.00
Biggadike et al. [6] 50.00 48.00 87.00

measured without using historical data. The best result are
obtained by Cavero et al. [8], which is reasonable because
in their work it is used historical data from EC quarter.
Finally, Biggadike et al. [6] in which also used historical
data, obtain a better specificity but worst predictability for
infected cows and sensitivity. In our work, once the equipment
is installed and working, these data could be incorporated and
the classification model retrained.

The future work includes the design for manufacturability
of piece of the cell, improving the electrode’s building process
and using an appropriate material for plastic piece that resist
cleaning products used at the parlour.
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