
DANDi: Dynamic Asynchronous Neighbor
Discovery Protocol for Directional Antennas

Nicolás Gammarano∗, Javier Schandy† and Leonardo Steinfeld‡
Instituto de Ingenierı́a Eléctrica, Facultad de Ingenierı́a, Universidad de la República, Montevideo, Uruguay

Avenida Julio Herrera y Reissig 565, 11300, Montevideo, Uruguay
∗ngammarano@fing.edu.uy, †jschandy@fing.edu.uy, ‡leo@fing.edu.uy

Abstract—In this paper, we propose DANDi (Dynamic Asyn-
chronous Neighbor Discovery Protocol for Directional Anten-
nas), a neighbor discovery protocol for Wireless Sensor Net-
works (WSN) with directional antennas that guarantees that
every communication link in a network is discovered. DANDi
is asynchronous, fully directional (supports both directional
transmissions and receptions) and has a dynamic contention
resolution mechanism so no network topology information is
needed in advance. It was implemented in Contiki, an open-
source operating system for WSN and the Internet of Things,
and extensively tested using the COOJA network simulator
with Tmote Sky nodes equipped with 6-sectored antennas. The
neighbor discovery times are deeply analyzed and analytical
expressions for these times are presented. The DANDi protocol
performance is assessed through simulations and compared with
SAND, the state of the art protocol for this kind of networks.
Our experiments based on simulations show that the discovery
time is reduced 19 % for networks with no collisions, and more
than four times in average for unevenly dense networks. To the
best of our knowledge, DANDi is faster than any other protocol
in the state of the art with the great advantage of being able to
discover every node in a network without requiring any prior
information.

Index Terms—Wireless sensor networks, neighbor discovery,
sectored antennas, directional antennas.

I. INTRODUCTION

Directional antennas offer several benefits when used for
Wireless Sensor Networks (WSN). The increased range and
the reduction of the interference with neighbor nodes make this
antennas very useful for several applications. Electronically
Switched Directional (ESD) antennas are one kind of sectored
antennas that are the most widely used for WSN. These
antennas have the capability of dynamically selecting the
direction of transmission by switching an electronic circuit
(generally RF switches) to concentrate the radiation in K
different directions. Their simplicity, reduced size and reduced
cost make them suitable for large deployments of sensor nodes.
Fig. 1 shows an ideal K-sectored antenna.

The benefits of this kind of antennas for wireless communi-
cations are well known, but to take advantage of them in WSN,
it is necessary to make some changes to the network protocols.
One of the first problems that arises when using directional
antennas is how to discover all the possible communication
links with neighbor nodes. When using omnidirectional anten-
nas, one single broadcast message is enough to query neighbor
nodes, and the ones in range may reply including their network

Sector 0

Sector 1

Sector 2

Sector K-1

Fig. 1: K sectored-antenna.

address. But with ESD antennas, there may be many sector-to-
sector (S2S) links between two nodes. Besides, the transmitter
must know when its neighbor is pointing to a certain direction.

Several neighbor discovery protocols have been proposed to
solve this problem when using directional antennas. Some of
them rely on omnidirectional antennas to assist the neighbor
discovery process [1], [2], some of them rely on time synchro-
nization [3], [4], some of them are based on a probabilistic
approach [5], while others serialize the discovery process in
time [6], [7]. The latter are convenient for WSN, as they are
fully directional and do not rely on time synchronization that is
difficult to achieve in this kind of networks. One example is the
SAND protocol, that uses a serialized mechanism that guar-
antees that each node discovers sequentially all its neighbor
nodes in a bounded time. One of the main disadvantages of this
protocol is that it takes a considerable amount of time, and this
time grows linearly with the number of nodes in the network.
Another important disadvantage of SAND is that a certain
knowledge of the network topology is needed in advance to
optimize the parameters of the protocol.

In this work we propose a Dynamic Asynchronous Neighbor
Discovery protocol for Directional Antennas (DANDi). The
main contributions of this protocol are that: i) it is fully
directional as it does not rely on omnidirectional antennas,
ii) it guarantees every node in the network to discover all the
possible communication links with its neighbor nodes, iii) it
is faster than any other protocol in the state of the art, iv) it
is dynamic, so no network topology information is needed
beforehand to optimize the protocol and v) the neighbor
information can be collected centrally to enable the sink node



Probing 
sectors 

(DN) 

Token 
passing 

(DN) 

Scanning 
sectors 
(NN) 

ID = 1 ID ≠ 1 

done 

token 
passed 

Initialization 
DN NN 

token received and 
have already been DN 

token received and 
have not been DN yet 

End 

ID = 1 and 
all neighbors have 
already been DN 

Fig. 2: State diagram: node roles and main process.

to process it and take, for example, routing decisions.
The rest of the work is organized as follows. In Sec-

tion II, we describe the proposed protocol, its parameters,
time restrictions and we find an expression for the duration
of the protocol. Section III presents some implementation
details of the protocol. The simulations results are presented
in Section IV, including a comparison with SAND protocol.
We conclude and state future work in Section V.

II. DANDI PROTOCOL DESCRIPTION

The main goal of a neighbor discovery protocol is to enable
every node in a network to gather information about its respec-
tive neighboring nodes. If we consider nodes with sectored
antennas, the essential purpose is to ensure the discovery of
all S2S links between nodes in the network. Considering K-
sectored antennas, there are K2 possible sector combinations
between two neighbor nodes: K possible sectors of one node
and K possible sectors of the other.

The main idea of DANDi protocol is that one single
discoverer node (DN) at a time discovers all S2S links with its
neighbor nodes (NN) by transmitting probe messages repeat-
edly, while the remainder network nodes listen for incoming
messages in each sector sequentially.

The DN probes one sector a time using the probe-reply with
dynamic contention resolution mechanism described below.
Once the DN finishes discovering nodes in one sector, it
continues with the next one. When the DN ends discovering
neighbors in its K sectors, it passes the DN role to a NN
through the token passing mechanism.

Fig. 2 shows a state diagram representing both roles (DN
and NN) and the main processes. In this case the node ID
is used to select the initial role, so the first DN is the node
with ID 1. The discovery process ends when the DN role is
taken again by the node that started as DN, and all of its
neighbors have already discovered their own neighbors. The
above mechanisms are deeply explained in the next sections.

Probe slot

Reply slot

Fig. 3: Slots and rounds.

A. Probe-reply with dynamic contention resolution

The messages exchanged between DN and NN are orga-
nized in rounds. The probe message sent by the DN delimits
the start of a round. A round is composed by a probe slot
and one or several reply slots. A probe message is sent at
the beginning of the probe slot. After the probe slot follows a
reply round composed of one or more reply slots. The number
of reply slots is specified in the leading probe message. The
probe message also includes other information, such as the
list of nodes discovered in the last round. Fig. 3 shows a first
round with one reply slot followed by a second round with
many reply slots.

The probe-reply with dynamic contention resolution al-
gorithm involves the DN and all the NN in the network.
Depending on its actual role, a node executes the DN part
of the algorithm (probing sectors) or the NN part (scanning
sectors).

1) Probing sectors algorithm: Fig. 4 shows the probing
sectors algorithm of the DN for discovering neighbor nodes
sequentially starting at sector 0.

The probing of a sector starts by selecting an antenna
sector and locking it at that position until it discovers all the
neighbors at that sector.

The DN initializes the number of reply slots Rslots equal
to an initial predefined value (e.g. equal to one). Then it sends
the probe message of the first round and waits for a reply in
each slot during the time tslot. In each reply slot, there are four
possible situations shown in Fig. 5 and summarized below:

a) No answer.
b) A single node replies.
c) Many nodes reply, and one frame prevails over the others

due to the capture effect.
d) Many nodes reply, and results in a collision.

The first case implicates that no neighbor is able to receive
at that sector at that time. From the point of view of the DN,
the second and third cases are indistinct, and the DN needs to
give the chance to any node that had a suppressed message due
to the capture effect, to send its reply again. The capture effect
occurs when a node receives two or more messages almost at
the same time, and it is able to demodulate the message with
higher signal strength, when some conditions are met [8]. The
last case, in which the DN detects a collision, all the replies
in that slot are lost. A receiver-side collision detection can
be implemented using CRC or CCA-based techniques [9],
adopted in some other protocols [10]. Summarizing, more
rounds are needed to ensure that all NN are discovered
correctly for every case except the first one.



no

no

no

yes

yes

yes

initialize sector

select sectors

inizialize Rslots

send probe

receive reply

more slots?

process round

more rounds?

all sectors

discovered?

update Rslotsnext sector

done

Fig. 4: Probing sectors algorithm.

DN

NN1

NN2

Probe slot Reply slot...

(a) No answer.

DN

NN1

NN2

Probe slot Reply slot...

From NN1

(b) A single node replies.

DN

NN1

NN2

Probe slot Reply slot...

From NN1

(c) Many nodes reply: capture effect.

DN

NN1

NN2

Probe slot Reply slot...

Collision !

(d) Many nodes reply: collision.

Fig. 5: Possible results for a reply slot.

When the reply round completes, the result is processed to
determine whether a new round is initiated or not. This process
consists in analyzing the following cases:

1) No answer in any slot.
2) A reply or a collision happens in any slot.
The second case needs a new round to resolve either the

collision/s or give the chance to any potential suppressed
message to be sent again by the corresponding node. In any
of these situations, the DN starts a new round. In this case
the DN selects the number of reply slots of the next round
Rslots based on the results. If there is a collision in any slot,
the DN could increment the number of slots to speed up the
contention resolution. If there are no collisions the number
of reply slots could be kept unchanged or even reduced. In
this work we adopted a simple yet effective solution that is
exponential back-off [11]. The DN acknowledges the replies
in the probe message of the following round, by including the
NN identification in the list of discovered nodes.

In the first case (no answer in any slot), only after one round
with no replies from the NN, can the DN pass the token to the
next node. However, if there is a round with more than one
reply slots for contention resolution, there will be no probe
slots for a certain time (determined below) since the nodes
are resolving the contention. To ensure that the missing slots
will not lead a neighbor to miss a probe, the missing probe
slots must be recovered. To achieve this, the DN must add
a certain number of rounds with a single reply slot (Nprobe,
determined in Section II-C), and receive no answer in any of
them in order to change sector.

Only after this process is completed, can the DN continue
with the next sector. When the DN finishes discovering all the
sectors, it passes the token to a NN that has not discovered
neighbors yet.

2) Scanning sectors algorithm: Fig. 6 shows the scanning
sectors algorithm of the NN, where the scan performed along
all sectors can be observed. The NN selects one sector and
listens for incoming messages during a certain period of time
tswitch. If the NN does not receive anything, it continues with
the next sector. If it receives a probe message from the DN,
the NN processes the message. It verifies in the probe message
whether it is in the list of discovered nodes or not. If it is not
in the list, the NN randomly chooses a slot and sends a reply
message.

If the NN is in the list, it means that the DN received the
previous reply correctly and so the NN continues scanning
sectors. The NN also continues with the next sector if it had
already received a probe sent by this DN from the same sector.
This is why probe messages need to include the sector of the
DN.

If the NN receives at any time a token message instead of
a probe, it stops scanning sectors and assumes the DN role.

B. Token passing mechanism

After a DN finishes discovering neighbors in all of its
sectors, it passes the discoverer role to a NN that has not
discovered neighbors yet. To achieve this, a token identifies



no
ye

s

no

yes

ye
s

no

initialize sector

receive probetimeout t switch

reply acked?

select random slot

any probe?

process round

send reply

wait for slotselected slot * t slot

select sector

next sector

any token?

token received

Fig. 6: Scanning sectors algorithm.

the node with the DN role, and a special message is used
to pass the token to another node. In the case that all the
neighbors of a DN have already discovered their neighbors,
the DN passes the token to the node from which it received
the token initially. Since the NN are scanning sectors, the DN
locks its antenna in the direction of the node that will receive
the token message, and sends repeatedly probe messages until
it can guarantee that the neighbor node received it. For the
NN to be able to receive at least one probe per sector, the
restriction is the same as when probing a sector. After having
sent the probe messages, the DN sends the token and waits to
receive an acknowledgment.

In this way the token passing process between nodes gradu-
ally forms a directed rooted tree, where the node that initiates
the discovery process is the tree root, the remainder vertexes
are the nodes that have already been in the DN role, and the
edges represent the token passing relation.

Fig. 7 depicts the neighbor discovery performed by each
DN, token passing between nodes, and the formed tree.

C. Probe, reply and switching time restrictions

The probe slot duration has some restrictions. Considering
that probe and reply messages are at most of the maximum
frame length, then the duration of these messages are limited

1

2

3

4

5

6

7

8

Node #1

(the first DN node)

Node that has

already been the DN

Node that has not

been the DN yet

Token passing

link between

nodes

Fig. 7: Partial tree started by node #1. Nodes #2, #3 and #7
have already been the DN, while node #4 is the current DN.
Nodes #5, #6 and #8 have not been the DN yet.

Probe slot Reply slot

(a) Restriction on tprobe.

NN sector i NN sector i+1

(b) Restriction on tswitch.

NN sector i ...

...

NN sector (i+K-1) mod K

(c) Restriction on Nprobe.

Fig. 8: Time restrictions.

by a given time τframe. The period for sending probe mes-
sages is tprobe. A guard time tguard between slots may be
necessary for turning around and switching from transmitting
to receiving or vice-versa. Then, the probe period must satisfy

tprobe > 2 (τframe + tguard) . (1)

Fig. 8a shows the minimum probe period required to allocate
a probe or a reply and the actual time used by the DN probe
and a NN reply.

NN switch asynchronously their active sector every tswitch,
scanning for incoming messages. Note that tswitch is the
period for switching the active sector, but while switching,



there is a time τswitch which accounts for the hardware
switching time, where the node cannot receive anything.

To ensure that the DN neighbor nodes are able to receive
at least one probe message, the following condition must be
satisfied:

tswitch > tprobe + τframe + τswitch. (2)

Fig. 8b depicts the time involved in the probing process and
shows the minimum tswitch.

In order to send enough probe messages so that every NN
has the opportunity to receive at least one of them, the total
time sending probes at one sector must be larger than the time
of one “full turn” scan of the neighbors:

Nprobe · tprobe > K · tswitch, (3)

where Nprobe is the number of probes sent per sector. This
relationship can be observed in Fig. 8c.

Hereinafter, for the sake of simplicity, we define a generic
time slot for sending probe and reply messages of duration
tprobe = tswitch/2, and long enough to satisfy the above
restrictions. Note that during the time tswitch there is enough
time for a probe slot and a reply slot.

Finally, to minimize the duration of the overall neighbor
discovery process, the number of messages Nprobe must be
also minimized. Then considering Eq. (2) and (3), we obtain

Nprobe > K

(
1 +

τframe + τswitch

tprobe

)
. (4)

D. Neighbor discovery time analysis

The discovery process forms a directed rooted tree, whose
edges represent the passage of the token between nodes. The
network has n nodes (vertexes), and since it is a tree it has n−1
edges. At the end of the protocol, there have been 2 (n− 1)
token passing (two token passing per edge: one upwards in
the tree and one downwards).

Taking this into consideration, the total time the protocol
takes to complete is the sum of the time taken to discover
neighbors by each network node through the probe-reply
mechanism and the time taken to pass the token through the
token passing mechanism (there are 2 (n− 1) in total):

TDANDi =

n∑
i=1

{TPR (i)}+ 2 (n− 1)TTP , (5)

where TPR (i) is the time taken by the probe-reply mechanism
of node i, and TTP is the time taken by the token passing
mechanism.

The time taken by the probe-reply mechanism of node i can
be expressed as:

TPR (i) = tslot

K−1∑
j=0


Rij∑
k=1

{1 + sijk}

 , (6)

where Rij is the number of rounds needed to complete the
discovery process for node i for its active sector j, and sijk is

the number of reply slots that has the kth round, when node
i is the DN and its active sector is j.
TPR (i) is probabilistic and not deterministic, given that the

random choice of reply slot by the NN impacts on the number
of suppressed messages or collisions, and then in the number
of rounds needed to resolve the contention. It could happen
that two NN choose the same reply slot for a lot of consecutive
rounds, and as a result a lot of rounds would be needed. In
this case the time TPR (i) would be greater than if the nodes
had chosen different reply slots earlier. So the time TPR (i)
will vary with i, expecting it to be greater for nodes with more
neighbors. Even more, the time of probing sectors will vary
from sector to sector for a given DN, being greater for sectors
in which the DN has more neighbors.

In case that a DN has at most one neighbor per sector,
there will be no collisions and TPR (i) will be the minimum
possible time of a probe-reply mechanism duration. In this
case TPR (i) is deterministic and it is given by the following
equation:

TPR (i) = 2 · tslot ·K ·Nprobe. (7)

The time taken by the token passing mechanism can be
expressed in the following way:

TTP = (h− 1) tprobe + ttoken−ack, (8)

where NTP is the number of messages sent from the current
DN to the NN, and ttoken−ack is the time that takes to send
the token and receive an acknowledgment.

III. IMPLEMENTATION AND SIMULATIONS

To assess the proposed protocol, we implemented it in Con-
tiki OS [12], an operating system for wireless sensors nodes
with constrained resources. We based the implementation in
the Tmote Sky [13] platform and used the default 6LoWPAN
protocol stack. In order to be able to test it with several nodes,
we simulated a network of 16 nodes with 6-sectored antennas
in the COOJA network simulator.

We defined the following types of messages according to the
protocol: i) probe, ii) reply, iii) token, and iv) acknowledgment.
These messages are sent using link-local addresses. Probe
messages are broadcast (since their destination is any NN),
while reply messages are unicast, addressed to the DN.

The parameters of DANDi used in the simulations are
shown in Table I.

TABLE I: Parameters of DANDi protocol used in the simula-
tions

DANDi
Parameter Value
tswitch 62.5 ms
tslot 31.25 ms

Nprobe 13

In this implementation, if a NN chooses the first reply slot,
it replies immediately after having received the probe message.
This is done to reduce the discovery time, as well as to keep
the implementation simple. As a consequence, the probe slot



20 m

1
2

3

4

5

6

7
8

9

10

11
12

13

14

15

16

S0

S1S2

S3

S4 S5

Fig. 9: Simulated network with 16 nodes. The sectors of all
nodes are oriented as shown for node #9.

is very short compared to the reply slots, so the time taken by
the probe-reply mechanism of node i is expressed as:

TPR (i) = tslot

K−1∑
j=0


Rij∑
k=1

{sijk}

 (9)

and the minimum possible time (in case of no collisions
whatsoever) becomes:

TPR (i) = tslot ·K ·Nprobe. (10)

IV. SIMULATION RESULTS

To assess the protocol effectiveness, we simulated DANDi
for different networks and in this section we show the obtained
results.

We have to choose how the number of slots of each round
evolves depending on the number of slots, the number of
collisions and the number of discovered neighbors in the
past round. A mathematical way to express this is through a
function: sri = f

(
sri−1

, cri−1
, Nri−1

)
. The function we used

in the simulations is the following, based on exponential back-
off as mentioned in Section II-A:

sri =

{
1 if i = 0 or cri−1

= 0
2sri−1

otherwise. (11)

This function strongly impacts in the time required by the
protocol to complete. The optimization of the function used
to determine the number of slots of a given round is out of
the scope of this paper.

A. Performance evaluation

In the first place, we simulated the 16-node network shown
in Fig. 9 with 25 different simulation seeds. In every case,
there were 666 S2S links discovered in total.

The total time taken by the protocol was 1 min 31 s averag-
ing the 25 simulations. The simulation that took the least time
took 1 min 15 s, and the one that took the longest took 1 min
48 s.

TABLE II: Number of S2S links per sector of each node of
the network

Node S0 S1 S2 S3 S4 S5 Total
#1 20 18 12 16 15 15 96
#2 16 16 16 15 14 10 87
#3 12 12 6 3 2 7 42
#4 15 11 7 5 5 10 53
#5 7 5 12 13 16 11 64
#6 9 9 15 14 14 16 77
#7 16 8 0 6 13 17 60
#8 0 2 6 13 13 6 40
#9 1 6 12 8 2 3 32

#10 0 0 1 4 3 0 8
#11 1 3 5 4 2 0 15
#12 5 5 4 3 0 1 18
#13 0 1 3 5 1 0 10
#14 6 4 2 3 4 6 25
#15 6 7 3 0 1 3 20
#16 1 2 4 4 5 3 19

Table II shows the distribution of the links. As expected
from the position of the nodes, we identify two unevenly dense
zones in the network that generate different number of S2S
links per node: a zone very dense near nodes #1 to #8 (with
40 to 87 S2S links per node) and a lesser dense zone near
nodes #10 to #16 (with 8 to 25 S2S links per node). Node #9
is between both zones with 32 S2S. Another expected result
is that the nodes that are on the edges of the network have no
S2S links when pointing away from the network (i.e. the case
of node #10 for sectors S0, S1, and S5).

TABLE III: Average time taken by the probe-reply mechanism
of each sector of each node in the network.

Node S0 S1 S2 S3 S4 S5 Total
#1 1.839 s 1.550 s 1.083 s 1.783 s 1.519 s 1.261 s 9.034 s
#2 2.543 s 1.340 s 1.415 s 1.438 s 1.421 s 1.201 s 9.358 s
#3 1.215 s 1.020 s 0.550 s 0.406 s 0.406 s 1.103 s 4.700 s
#4 1.596 s 1.096 s 0.611 s 0.406 s 0.406 s 0.863 s 4.979 s
#5 0.610 s 0.406 s 1.100 s 1.106 s 1.359 s 1.423 s 6.004 s
#6 0.888 s 0.785 s 1.299 s 1.759 s 1.414 s 1.968 s 8.111 s
#7 1.623 s 0.955 s 0.406 s 0.661 s 1.139 s 1.835 s 6.619 s
#8 0.406 s 0.406 s 0.486 s 1.278 s 1.311 s 0.713 s 4.600 s
#9 0.406 s 0.489 s 1.286 s 1.029 s 0.406 s 0.488 s 4.104 s

#10 0.406 s 0.406 s 0.406 s 0.504 s 0.481 s 0.406 s 2.610 s
#11 0.406 s 0.476 s 0.476 s 0.406 s 0.406 s 0.406 s 2.578 s
#12 0.421 s 0.458 s 0.406 s 0.492 s 0.406 s 0.406 s 2.590 s
#13 0.406 s 0.406 s 0.478 s 0.561 s 0.406 s 0.406 s 2.664 s
#14 0.609 s 0.428 s 0.406 s 0.439 s 0.406 s 0.490 s 2.778 s
#15 0.551 s 0.833 s 0.464 s 0.406 s 0.406 s 0.406 s 3.066 s
#16 0.406 s 0.406 s 0.525 s 0.538 s 0.626 s 0.450 s 2.951 s

Table III shows the average time taken by the probe-reply
mechanism of each sector of each node in the network. We
can see that for a sector with more S2S links to discover, it
takes longer for the probe-reply mechanism to complete. This
result was expected, since more S2S links in a sector generate
more collisions which induce more rounds and thus more time.
We can also see that the minimum time taken by the probe-
reply mechanism per sector is 0.406 s. This corresponds with
Eq. (10), since TPR (i) /K = tslotNprobe = (31.25ms) ×
13 = 406.25ms.

The average of the total values shown in Table II and
Table III (last column in both tables) are graphically presented



Node ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ot

al
 n

um
be

r 
of

 S
2S

 li
nk

s

0

20

40

60

80

100

Fig. 10: Total number of S2S links per sector for each node
of the network.

Node ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16T

im
e 

ta
ke

n 
by

 th
e 

P
ro

be
-R

ep
ly

 m
ec

ha
ni

sm
 (

in
 s

)

0

5

10

15

20

25

30
Time taken per node
Minimum time taken per node

Fig. 11: Minimum, average and maximum time taken by the
probe-reply mechanism for each node of the network.

in Fig. 10 and Fig. 11 respectively. Fig. 11 includes the
minimum and maximum time taken along all the simulations
to the average time (already present in the table).

We see that Fig. 10 and Fig. 11 have similar tendencies,
confirming that the nodes that take longer to discover its
neighbors are the ones that have more S2S links. We also see in
Fig. 11 the minimum time taken per node (in case there are no
collisions between reply messages), calculated using Eq. (10):
TPR (i) = tslotKNprobe = (31.25ms) × 6 × 13 = 2.4375 s.
We observe that nodes #10 to #16 take very close to the
minimum time.

B. Comparison with SAND

We also implemented and simulated SAND protocol for the
same networks, in order to compare our proposed protocol
DANDi to SAND. We chose SAND protocol given that it is a
state-of-the-art fully directional neighbor discovery protocol,
widely used for WSN applications [14]. Like DANDi, SAND
is a token-based protocol in which a single node is discovering
neighbors at a time, but with SAND, the number of slots s
and rounds r are set in advance before running the protocol.
The parameters of both DANDi and SAND protocols used
in the simulations are shown in Table IV. In order for the
comparison to be fair, we used the same protocol parameters
and the same network topologies. We see from Table IV that

DANDi protocol is simpler than SAND in that it has less
parameters.

TABLE IV: Parameters of DANDi and SAND protocols used
in the simulations

DANDi SAND
Parameter Value Parameter Value
tswitch 62.5 ms tswitch 62.5 ms
tpretoken 31.25 ms tHone-In 31.25 ms
Nprobe 13 h 12

dynamic s and r
s s (Nmax, 99%)
r r (Nmax, 99%)

tslot 31.25 ms tslot 31.25 ms
- (not used) tGoToFastScan 31.25 ms

For SAND, the parameters s and r were optimized taking
into account the maximum number of neighbors per sector
Nmax for each simulated network and a probability of discov-
ering all of them of p = 99%. The authors of SAND proposed
an algorithm that given Nmax and p allows to obtain s and r
minimizing the protocol duration [6], [7]. We computed that
algorithm in order to make a fair comparison between DANDi
and SAND.

In the first place, we simulated the network shown in Fig. 9
with SAND for s = 5 slots and r = 4 rounds. If s or r were
smaller, SAND would take less time to finish, but it would fail
to discover all the 666 S2S links with a probability greater than
1 %. The total time taken by SAND was 6 min 46 s. This time
is approximately 4.46 times more than the average time taken
by DANDi. In the case of SAND, once the parameters s and
r are fixed, the time the protocol takes is deterministic, and
all the nodes in the network take the same amount of time.
Even more, each sector of every node in the network takes the
same amount of time to discover its neighbors.

It is clear from the results that for a random network
with different number of neighbors in each active sector of
each network node, DANDi outperforms SAND in regards to
network discovery time. This is an expected result because,
on one hand, if we choose for SAND a small number of slots
s and rounds r (suitable for sectors with very few neighbors),
the sectors that have more neighbors will very likely fail to
discover all of them. On the other hand, if we choose a number
of slots s and rounds r large enough (suitable for sectors with
the largest number of neighbors in the network), we can make
the probability of discovering all of those neighbors arbitrarily
high, but the time taken by the protocol would be unnecessarily
high for the sectors with few neighbors. In the case of DANDi,
r and s are dynamic, in such a way that the time taken to
discover neighbors on a sector is according to the neighbors
of that sector. The only time overhead in DANDi is due to
the added probe messages to recover probe gaps in case of
contention (round with number of reply slots greater than one).

Besides reducing considerably the neighbor discovery time,
DANDi does not require a previous knowledge of the network.
Note that we compared DANDi to the better optimized version
of SAND (s = 5 and r = 4), which was chosen considering
the network topology. Since we want to discover all S2S links,
even for the sectors with more neighbors in the network, it



100 m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 12: Simulated network with 16 nodes and no collisions.

is not sufficient to simply estimate the number of neighbors
based on the network density as if the nodes were evenly
distributed, but we need the topology information. In a real
deployment, it is not very likely to have such information
beforehand. Additionally, if the network changes (i.e. nodes
are added, moved or removed), no changes are required for
DANDi protocol. However, for SAND protocol, a change
in the parameters s and r might be needed to re-optimize
SAND, and all the nodes in the network would have to be
reprogrammed with the new parameters.

Next, we proceeded to compare DANDi to SAND for the
case of a network with no collisions whatsoever: every sector
must have at most one neighbor. We created the network
depicted in Fig 12, where each node is in the range of the
consecutive nodes only. As there are no collisions, the better
optimized version of SAND is with s = 1 and r = 1. We used
those parameters of SAND for this network simulation.

For both protocols, the 30 S2S links were discovered. We
obtained the same results (milliseconds of difference) for
different simulation seeds, both for DANDi and for SAND.
This indicates that in the case of a network with no collisions,
DANDi duration is deterministic, as analyzed in Section II-D.
DANDi took 51.26 s to discover all nodes, while SAND took
63.29 s. We can see that even in the case where DANDi
performs worse, it outperforms SAND in terms of discovery
time taking 19 % less.

Using Eq. (5), (8) and (10), and the parameters of DANDi
in Table IV (assuming that ttoken-ack ≈ 0 or negligible),
we obtain TDANDi = 50.25 s, confirming the theoretical
equations deduced.

V. CONCLUSIONS AND FUTURE WORK

DANDi, a fully directional asynchronous and dynamic
neighbor discovery protocol for wireless sensor networks is
proposed, implemented and tested through extensive simula-
tions. The results of the simulations show that all the S2S links
in the network are discovered independently of the network
topology, and that the sectors that have few neighbors take less
time to discover than the sectors that have more neighbors. The
comparison made with SAND, the state of the art protocol for
this kind of networks, showed that DANDi takes from 19 %
to 78 % less time to discover the network, without having to
set any parameter depending on the network topology. This
makes DANDi, to the best of our knowledge, the fastest
neighbor discovery protocol in the state of the art for WSN
with directional antennas, with the additional advantage of
being able to discover 100 % of the communication links in a
network without requiring any prior information.

Future work should include testing the protocol in a real
network with real antennas to validate the design and compare
with the simulations.

ACKNOWLEDGMENT

The authors would like to thank Fondo Marı́a Viñas for
supporting this project (FMV 1 2014 1 104872).

REFERENCES

[1] R. A. Santosa, B.-S. Lee, C. K. Yeo, and T. M. Lim, “Distributed
neighbor discovery in ad hoc networks using directional antennas,” in
Computer and Information Technology, 2006. CIT’06. The Sixth IEEE
International Conference on. IEEE, 2006, pp. 97–97.

[2] S. Zhang and A. Datta, “A directional-antenna based MAC protocol
for wireless sensor networks,” in International Conference on Compu-
tational Science and Its Applications. Springer, 2005, pp. 686–695.

[3] G. Jakllari, W. Luo, and S. V. Krishnamurthy, “An integrated neighbor
discovery and MAC protocol for ad hoc networks using directional
antennas,” IEEE Transactions on Wireless Communications, vol. 6, no. 3,
2007.

[4] Z. Zhang and B. Li, “Neighbor discovery in mobile ad hoc self-
configuring networks with directional antennas: algorithms and compar-
isons,” IEEE Transactions on Wireless Communications, vol. 7, no. 5,
2008.

[5] S. Vasudevan, J. Kurose, and D. Towsley, “On neighbor discovery in
wireless networks with directional antennas,” in INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, vol. 4. IEEE, 2005, pp. 2502–2512.

[6] R. Murawski, E. Felemban, E. Ekici, S. Park, S. Yoo, K. Lee, J. Park,
and Z. Hameed Mir, “Neighbor discovery in wireless networks with
sectored antennas,” Ad Hoc Networks, vol. 10, no. 1, pp. 1 – 18, 2012.

[7] E. Felemban, R. Murawski, E. Ekici, S. Park, K. Lee, J. Park, and
Z. Hameed, “SAND: Sectored-Antenna Neighbor Discovery Protocol for
Wireless Networks,” in 2010 7th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), June 2010, pp. 1–9.

[8] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler, “Exploiting
the capture effect for collision detection and recovery,” in Embedded
Networked Sensors, 2005. EmNetS-II. The Second IEEE Workshop on.
IEEE, 2005, pp. 45–52.

[9] M. Demirbas, O. Soysal, and M. Hussain, “A singlehop collaborative
feedback primitive for wireless sensor networks,” in INFOCOM 2008.
The 27th Conference on Computer Communications. IEEE. IEEE, 2008,
pp. 2047–2055.

[10] X. Ji, Y. He, J. Wang, W. Dong, X. Wu, and Y. Liu, “Walking
down the STAIRS: Efficient collision resolution for wireless sensor
networks,” in IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications, Apr. 2014, pp. 961–969. [Online]. Available:
http://dx.doi.org/10.1109/INFOCOM.2014.6848025

[11] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, April 2016.
[Online]. Available: http://dx.doi.org/10.1109/IEEESTD.2016.7460875

[12] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks, Nov 2004,
pp. 455–462.

[13] Tmote Sky Datasheet, Moteiv Corporation, June 2006, rev. 1.0.2.
[14] A. Varshney, L. Mottola, M. Carlsson, and T. Voigt, “Directional

transmissions and receptions for high-throughput bulk forwarding in
wireless sensor networks,” in Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems. ACM, 2015, pp. 351–364.


