
Q-SAND: a Quick Neighbor Discovery Protocol for
Wireless Networks with Sectored Antennas

Nicolás Gammarano∗, Javier Schandy† and Leonardo Steinfeld‡
Instituto de Ingenierı́a Eléctrica, Facultad de Ingenierı́a, Universidad de la República, Montevideo, Uruguay

∗ngammarano@fing.edu.uy, †jschandy@fing.edu.uy, ‡leo@fing.edu.uy

Abstract—In this paper, we proposed Q-SAND (Quick
Sectored-Antenna Neighbor Discovery), a neighbor discovery
protocol for wireless networks with sectored antennas which
enhances the state-of-the-art SAND protocol. Both SAND and
Q-SAND protocols were successfully implemented in Contiki,
an open source operating system for Wireless Sensor Networks
and the Internet of Things, and extensively tested using Cooja
simulator for Tmote Sky nodes with 6-sectored antennas. The
neighbor discovery times were analyzed and analytical expres-
sions were found showing that the time needed to discover all
sensor nodes of a network is proportional to the number of nodes
in that network. The proposed enhancements to SAND protocol
speed up the discovery process up to K times per node, being K
the number of sectors of the sectored antenna. Our experiments
based on simulations show that for a 6-sectored antenna the time
is reduced by 4 times per node, with a greater impact in time and
power consumption in networks of increasing size. The Q-SAND
protocol performance has been verified through simulations for
different network topologies and sizes and compared with that
of SAND.

Index Terms—Wireless sensor networks, neighbor discovery,
sectored antennas, directional antennas.

I. INTRODUCTION

Directional antennas offer some advantages over omnidirec-
tional antennas. In the first place, as the transmission beam
is concentrated, the nodes can reach longer distances with
the same transmission power or analogously, for a given
transmission range, they require less transmission power. In
second place, interference between neighbors is significantly
reduced, allowing more simultaneous transmissions in the
network, and thus increasing its capacity. Nevertheless, some
simple aspects of nodes communication become challenging
with directional antennas. It is the case of broadcast messages
and neighbor discovery. The main challenges are: i) we have
to repeat a message in every direction to ensure that every
possible node receives it, ii) the receiver node also needs to
be pointing to the transmitter node, iii) there could be many
combinations of sectors discovered for a single pair of nodes.

SAND (Sectored-Antenna Neighbor Discovery) protocol [1]
solves the neighbor discovery problem in wireless networks
with sectored antennas by serializing the neighbor discovery
process sequentially in time. One of the main disadvantages
of SAND protocol is the time it takes to complete, which is
increasingly linear with the number of nodes in the network.

The main contributions of the present work are: i) an open-
source implementation of SAND protocol using Contiki OS
[2], a popular operating system for the IoT, ii) a study of

the neighbor discovery time taken by SAND protocol, iii) the
proposal of enhancements to SAND protocol, resulting in Q-
SAND (Quick SAND) protocol, and iv) a comparison between
SAND and Q-SAND based on simulations.

The rest of this document is organized as follows. In Section
II, we present the sectored antennas. In Section III we describe
SAND protocol as was initially proposed by Felemban et al.,
proposing modifications in Section V, resulting in Q-SAND. In
Section VI we explain some details of our implementation of
both SAND and Q-SAND, showing then the simulation results
in Section VII. Finally, we conclude the paper in Section VIII.

II. SECTORED ANTENNAS

The originally proposed protocol SAND and our enhanced
version are designed for sectored antennas. A K sectored
antenna has K parasitic elements defining K sectors, each
of which covers 360◦

K of the azimuth, as shown in Fig. 1.
The K sectors together cover the entire azimuth. The parasitic
elements can be electronically switched to operate as reflectors
or directors in order to select a sector at will. An example of
a 6-sectored antenna is the SPIDA (Sics Parasitic Interference
Directional Antenna) designed in [3], evaluated in [4] and
characterized in [5], showing that it has a very good directional
antenna performance. A model of SPIDA antenna was used for
the simulations in Cooja to assess the protocols. The antenna
gain as a function of the angles follows a sinusoidal pattern,
as proposed in [6]; gdB (θ) = −1,565 + 5,835 cos (θ − θ0),
where θ0 is the pointing direction.

Sector 0

Sector 1

Sector 2

Sector K-1

Fig. 1: K sectored-antenna.

III. DESCRIPTION OF SAND PROTOCOL

This section describes SAND protocol initially proposed by
Felemban et al. [1] for the sake of completeness and in order



to ease the understanding of the proposed improvement of this
work.

SAND is a neighbor discovery protocol for sensor nodes
with sectored-antennas1. This protocol is based on the idea
of serializing the neighbor discovery process sequentially in
time. This means that there is always a single node discovering
neighbors at a time. To achieve this, a token is used to identify
the node that is discovering neighbors. The node that holds it
is called the Token-Holder (TH) node.

The idea is not only to discover neighbor nodes, but also to
find the sector combination between them that results in the
best link quality. To do so, SAND proposes to explore all the
K2 sector combinations (K possible sectors of the TH node
and K possible sectors of its neighbors). To carry out this
exploration, the TH node and its neighbors need a mechanism
to synchronize and know when to change sector (Hone-In
Mechanism). Once synchronized, all the sector combinations
are explored (Hello-Reply Mechanism). Finally, the TH node
passes the token to a discovered neighbor node that has
not discovered neighbors yet or, in case all its neighbors
have already discovered neighbors, to the node from which
it received the token initially (Token Passing Mechanism or
Token Releasing Mechanism). If the TH has just finished
discovering neighbors, it passes the token through the Token
Passing Mechanism, otherwise through the Token Releasing
Mechanism. The reason for this distinction is explained below,
in Section III-D.

Summarizing, the protocol is formed by the three steps
introduced before:

1) Hone-In Mechanism
2) Hello-Reply Mechanism
3) Token Passing Mechanism or Token Releasing Mecha-

nism
Next, these steps are described in more detail.

A. Initialization

All nodes except the first TH node start in Fast Scan mode.
In this mode, the nodes scan for activity in the network,
switching its active sector every tswitch. It is important to
note that initially the nodes are not synchronized.

B. Hone-In Mechanism

As mentioned before, the Hone-In Mechanism is necessary
to synchronize the TH node with all its neighbors. The TH
sends periodically every tHone-In a number h of Hone-In
messages per each sector. The message carries the information
of the number of messages remaining (including the current
message) before starting the next step: the Hello-Reply Mech-
anism. So the first Hone-In message will contain hK, the
second hK − 1, until the last one, that will contain 1 (in
total, hK Hone-In messages will be sent). This mechanism is
shown in Fig. 2 for a 4-sectored antenna and 3 nodes.

1The extended paper [7] proposes a modification to allow token recovery.
This modification is not considered in this work since it is independent, and
could be introduced later.

In turn, when receiving a Hone-In message containing the
number m, the neighbor nodes (that are in Fast Scan mode)
will set a timer that will expire in mtHone-In and cease
switching sectors. In this way, a local synchronization between
the TH node and its neighbors is achieved, as the timer of all
its neighbors will expire (ideally) at the same time. The total
duration of the Hone-In Mechanism is THI = hKtHone-In.

In order to guarantee that all the neighbor nodes have the
chance to receive messages in all its sectors, the switching
time tswitch must be greater than tHone-In. t

To minimize the duration of the Hone-In Mechanism, the
number of messages h must be also minimized. Nevertheless,
h must be large enough to ensure that at least 1 message could
be received for each one of the K2 sector combinations, so h
must satisfy h > K tswitch

tHone-In
.

C. Hello-Reply Mechanism

Once the TH node has sent the hK Hone-In messages, the
Hello-Reply Mechanism starts. On the side of the neighbor
nodes, such a mechanism starts when the timer set during the
Hone-In Mechanism expires.

The idea is to explore the K2 sector combinations in a
predetermined way.

To accomplish this, the TH node sends Hello messages,
to which the neighbor nodes that receive it respond with a
Reply message containing its ID, its current sector and a bit
indicating whether it has already done neighbor discovery or
not (this is for the TH node to determine to which neighbor to
pass the token after finishing the neighbor discovery process).
When receiving a Reply message, the TH node adds to its
neighbor discovery table the corresponding neighbor with its
ID, current sector (both TH and neighbor current sectors), the
neighbor discovery bit mentioned above and a link quality
indicator, such as the RSSI.

Since many neighbors can respond to the same Hello
message, there can be a collision between the Reply messages,
causing those neighbors not to be discovered for that sector
combination. To reduce the number of collisions, the time
after a Hello message is divided into a number Nslots of
time slots of duration tslots. The neighbor nodes choose a
time slot randomly to send their Reply message. To reduce
the number of collisions even more, the TH repeats the Hello
message Nrounds times per each sector combination, and adds
to each Hello message the ID of every node that has already
been discovered for the current sector combination (this type
of message is called Long-Hello message). The nodes that
recognize its ID in the Long-Hello message know they have
already been discovered, so they do not respond with a Reply
message.

At the end of the mechanism, the TH node will proceed to
pass the token. The neighbor nodes will activate the sector
in which the Hone-In message was initially received. The
total duration of the Hello-Reply Mechanism is THR =
K2NroundsNslotstslots.



Token-Holder node

Hone-In node

Fast Scanning node

(a) The TH sends the first Hone-In message
containing the number of remaining messages
Kh. No neighbor receives this message as their
sectors are not pointing towards the TH.

(b) The neighbors switch their respective sector.
The TH sends the third Hone-In message. No
neighbor receives this message as their sectors
are not pointing towards the TH.

(c) The neighbors switch their respective sector
again. The TH sends the fifth Hone-In message.
One of the neighbors receives it and ceases
switching sectors.

(d) The TH switch its sector as it sends the
(h+ 1)th Hone-In message. The remaining
neighbor in Fast Scan mode does not receive
the message.

(e) The neighbor in Fast Scan mode switches
its sector. The TH sends the (h+ 3)th Hone-
In message. The neighbor in Fast Scan mode
receives it and ceases switching sectors.

(f) The TH sends the remaining Hone-In mes-
sages. At the end of the process, all its neigh-
bors would have received at least one Hone-In
message and their timers will expire at the same
time.

Fig. 2: Hone-In process for K = 4 and tswitch = 2tHone-In. In this case, h must be greater than K tswitch

tHone-In
= 4× 2 = 8. At

the beginning of the mechanism, all the neighbor nodes are in Fast Scan mode. At the end of the mechanism, all the neighbor
nodes have received at least one Hone-In message from the TH and their respective active sectors are pointing towards it.

D. Token Passing and Token Releasing Mechanisms

Once the Hello-Reply Mechanism is completed, the TH
node goes over its neighbor table, searching for the first node
that has not done neighbor discovery yet (this is checked with
the bit mentioned in Section III-C). If such a node is found,
the TH node proceeds to pass the token to it. Otherwise (if
such a node is not found), the TH node proceeds to pass the
token to the node from which it originally received the token.

The token passage between nodes then forms a tree, whose
root is the node that started the neighbor discovery process
(the first TH node).

To pass the token, 2 different cases need to be distinguished.
1) Token Passing Mechanism: In case the TH node has

just finished discovering neighbors, all its neighbors will point
to a specific sector, directing its antenna to the TH node.
It is necessary for the TH to send GoToFastScan messages
signaling its neighbors to start Fast Scan mode (otherwise
the neighbor nodes would stay with the same active sector
forever). One single GoToFastScan message per sector ensures
that all the neighbors receive at least one of such messages.
Along with the GoToFastScan message, the ID of the node
that will receive the token next is also sent. This is done for
the next TH to know that it should not go to Fast Scan mode

as it will receive the token.
Then, the TH node sends the token and waits for an

acknowledgment. When the acknowledgment is received, the
older TH node goes to Fast Scan mode.

The total duration of the Token Passing Mechanism is
TTP = (K − 1) tGoToFastScan+ tTokenAck, where tTokenAck

is the time it takes to send the token and receive the acknowl-
edgment.

2) Token Releasing Mechanism: In case the TH node had
already discovered neighbors (it is not the first time it has
the token), all its neighbors will be in Fast Scan mode. It is
necessary for the TH to make a reduced version of the Hone-
In Mechanism (we call it Mini-Hone-In), just for the node that
will receive the token next.

Once enough Mini-Hone-In messages to guarantee the node
is paying attention are sent, the TH node sends the token to it,
and waits for an acknowledgment. When the acknowledgment
is received, the older TH node goes to Fast Scan mode.

The total duration of the Token Releasing Mechanism is
TTR = (h− 1) tHone-In + tTokenAck.

So far, we described SAND protocol proposed by Felemban
et al.; we will next find an analytical expression for the total



time taken by the protocol.

IV. NEIGHBOR DISCOVERY TIME THEORETICAL ANALYSIS

After the protocol ends, all n nodes in the network have
discovered their neighbors forming a tree graph.

The tree graph is formed by the token passage and has n
vertexes (because each node is represented by a vertex) and
n−1 edges (because it is a tree). So there have been n Hone-
In, Hello-Reply and Token-Passing mechanisms independently
of the network topology, and 2 (n− 1) Token Passing and
Token Releasing mechanisms (together). There have been
then 2 (n− 1) − n = n − 2 Token Releasing mechanisms,
independently of the network topology.

We have then

TSAND = n (THI + THR + TTP ) + (n− 2)TTR. (1)

The neighbor discovery time is independent of the network
topology, and is increasingly linear with the number of nodes
of the network.

V. MODIFICATIONS TO SAND: Q-SAND

One of the drawbacks of SAND protocol is that since the
neighbor discovery time is increasingly linear with the number
of nodes in the network, if the network is very big, so is
the time the protocol needs to complete. Another issue is the
reliability of the protocol that depends on the token (if the
token is lost, the protocol fails), but the authors of SAND
have already solved this issue by proposing a new version of
the protocol [7] allowing token recovery when it is lost.

We then proposed an improvement to the protocol to reduce
the neighbor discovery time. We call this modified protocol Q-
SAND (for Quick SAND).

Q-SAND is capable of finding the “best” combination of
sectors (that is the one with highest RSSI in our implemen-
tation) between a pair of neighbor nodes. It can be assumed
in first place that the links are reciprocal (as shown by [8])
and in second place that a node has maximum link quality
with a neighbor with its sector pointing to him and vice-
versa. The last assumption is valid for line of sight and open
environments. A mathematical way to express this is that a
node has a maximum link quality indicator with a neighbor
when their active sector is the one that contains the line that
joins both nodes. Examples are shown in Fig. 3 for K even
and in Fig. 4 for K odd.

A

B

Fig. 3: Best sector combination between two nodes A and B
for K even (K = 6).

A

B

(a)

A

B

(b)

Fig. 4: Best sector combination between two nodes A and B
for K odd (K = 5).

With that assumption in mind, it is clear that if the sector
of node A that contains the line that joins both nodes is SA ∈
[0, ...,K − 1], then the sector of node B that contains the same
line is SB

•
(
SA + K

2

)
mod K if K is even, and

•
(
SA + K−1

2

)
mod K or

(
SA + K+1

2

)
mod K if K is

odd.
We see that if K is even, we only need to try K sector

combinations to find the best one (and 2K sector combinations
if K is odd), compared to the K2 sector combinations that are
needed without this modification.

The main drawback is that we would only find the best
sector combination, so this improvement is not applicable if
we would like to obtain all the discovered sector combinations
between two nodes and not just the best one.

An extra consideration compared to SAND is that the nodes
need to be oriented in the same manner, for example, all nodes
with sector 0 pointing to the north, so this improvement is not
applicable if the nodes are free to rotate.

The advantage is that the new duration of the Hello-Reply
Mechanism (which is the mechanism that commonly takes
longer) is now KNroundsNslotstslots = THR

K if K is even

2KNroundsNslotstslots = 2THR

K if K is odd
(2)

Then, with Q-SAND, we have that the total time TQ−SAND

the protocol takes is n
(
THI +

THR

K + TTP

)
+ (n− 2)TTR if K is even

n
(
THI + 2THR

K + TTP

)
+ (n− 2)TTR if K is odd

(3)
The neighbor discovery time in Q-SAND

compared to SAND is greatly reduced when
THR � (THI + TTP + TTR)K (up to K times if K
is even and up to K

2 times if K is odd), and little reduced
when THR � THI + THR + TTP .

VI. IMPLEMENTATION

We implemented a basic and open-source version of both
SAND and Q-SAND protocols in the programming language



C, using Contiki OS [2], a popular operating system for the
IoT, with a plug-in for Tmote Sky [9] with 6-sectored SPIDA
nodes, so K = 6 in this case. We adopted the 6LoWPAN stack
protcol included with Contiki standard distribution. We used
the C programming language preprocessor macro #define
to define all the protocol parameters: tswitch, tHone-In, h,
Nslots, tslots, Nrounds and tGoToFastScan so they can be
easily modified.

We defined several types of broadcast messages according
to SAND and Q-SAND: Hone-In message, Hello message,
Reply message, GoToFastScan message, Mini-Hone-In mes-
sage, Token message and Acknowledgment message. These
messages are used by the nodes to communicate using link-
local addresses.

In our implementation, when the protocols (both SAND and
Q-SAND) are initialized, the first TH is the one with ID =
1. In practice, this node usually is the border router of the
network. Once the TH finishes discovering neighbors, it checks
its neighbor table and passes the token to the neighbor with
lowest ID that has not discovered neighbors yet.

Our implementation was based on a state machine, whose
diagram is shown in Fig. 5. As we see, the three rows represent
each one of the three steps that form the protocol (Hone-
In Mechanism, Hello-Reply Mechanism, Token Passing and
Token Releasing Mechanisms), and the two columns represent
whether the node is acting as the TH (left) or as the neighbor
node being discovered (right).

Hone-In

Reply

Token
Receiving

Hello

Token Passing
and Releasing

Fast Scan
mode

ID = 1 ID ≠ 1

GoToFastScan
message received

with my ID

Mini-Hone-In
message
received

Token received and has
already discovered neighbors

Hone-In
message
received

GoToFastScan
message received

without my ID

Token received and
has not discovered

neighbors yet

all the Hone-In
messages sent

all sector
combinations

explored

Token
passed

Initialization

Fig. 5: State diagram of protocols SAND and Q-SAND.

The neighbor discovery table is saved in each mote’s RAM.
This table contains the node’s sector, the neighbor ID, the
neighbor sector, the RSSI, and a bit indicating whether the
neighbor has already been a TH or not. This bit is used by
the TH to know to which node to pass the token, as described
in Section III. When the protocol ends and all the nodes have
completed their respective neighbor discovery table, this bits
should be all set.

To reduce the memory burden of a neighbor discovery table
saving all the sector combination links, we decided to save
only the sector combination with highest RSSI. This results in
one single table entry per neighbor node.

Another simplification of the protocols implementation was
that the neighbor discovery tables are not passed along with
the token, so each node of the network only has access to its
own neighbor discovery table. This simplification reduces the
size of the messages exchanged, as well as the memory burden
of each node, but does not allow to gather the neighborhood
information in a centralized location. However, as each node
does not receive the other nodes’ tables, it has to update the
neighbor discovery bit somehow. We did this by passing the
IDs of all the nodes that have already discovered neighbors
along with the token when it is passed upwards in the tree.
When the token is passed downwards in the tree, the ID of the
TH is passed along with the token, for the new TH to know
to which neighbor pass the token when all its neighbors have
completed the neighbor discovery process.

VII. RESULTS

We simulated the implementation described in the previous
section with Cooja (a network simulation tool including an
instruction-level emulator for the node microcontroller and
radio propagation models) for different networks. The pa-
rameters of both SAND and Q-SAND protocols used in the
simulations are shown in Table I.

TABLE I: Parameters of SAND and Q-SAND protocols used
in the simulations

Protocol mechanism Parameter Value
Fast Scan mode tswitch 31,25 ms

Hone-In Mechanism tHone-In 15,625 ms
h 12

Hello-Reply Mechanism
Nslots 5
tslots 15,625 ms

Nrounds 5
Token Passing Mechanism tGoToFastScan 15,625 ms

First, we simulated different random networks with the same
number of nodes but different topologies, in order to verify the
results of the theoretical analysis in Section IV. We obtained
the exact same neighbor discovery time for networks with the
same number of nodes, confirming the independence of the
neighbor discovery time with respect to the network topology
for both SAND and Q-SAND protocols.

We then proceeded to simulate a random network with 16
nodes for both protocols. Fig. 6 shows the simulated network.
The colored node is the border router of the network with ID =
1, and is the node that starts with the discovery process. The
tree formed by the token passage is shown with continuous
lines. The links between nodes are shown both in continuous
and dotted lines.

The resulting neighbor discovery tables were the same for
both protocols: the exact same best combination of sectors was
discovered for each pair of nodes.

Table II shows the neighbor discovery table of node 1.
We see that -as we stated in Section V-, if the best sector



Fig. 6: Simulated network with 16 nodes.

TABLE II: Neighbor Discovery Table of Node 1

Node 1 sector Neighbor ID Neighbor sector RSSI
1 7 4 -42
5 9 2 -39
0 16 3 -44

combination between node 1 and a neighbor is achieved for
node 1 sector S1, then it is achieved for its neighbor sector(
S1 +

K
2

)
mod K. We can also see that the RSSI decreases

with distance.
In the table of each of all nodes, we verified that each one of

the best sector combination (sectorA, sectorB) was achieved
by one of the following combinations: (0, 3), (1, 4), (2, 5),
(3, 0), (4, 1) or (5, 2).

We simulated then SAND and Q-SAND protocols for
different random networks with up to 16 nodes. In all cases,
the best sector combinations discovered by both protocols had
the same RSSI, showing that Q-SAND effectively finds best
sector combinations. Fig. 7 shows the total time taken by both
protocols, both theoretical results calculated through equations
1 and 3 with the parameters shown in Table I and simulations
results. We can see that simulation results match very well the
theoretical equations for both protocols. The total time taken is
increasingly linear with the number of nodes in the network for
both protocols, taking 15,5 s per node for SAND and 3,781 s
for Q-SAND. We see that with the set of parameters used, Q-
SAND is more than 4 times faster than SAND in discovering
neighbors.

VIII. CONCLUSION

A fully directional neighbor discovery protocol for wireless
networks with sectored antennas has been proposed. A func-
tional version of both SAND and Q-SAND protocols has been

Number of nodes in the network
0 2 4 6 8 10 12 14 16

T
ot

al
 d

is
co

ve
ry

 ti
m

e 
(s

)

0

50

100

150

200

250 SAND simulation results

SAND theoretical results

Q-SAND simulation results

Q-SAND theoretical results

Fig. 7: Neighbor discovery time vs. number of nodes in the
network.

analyzed, implemented and simulated. Both protocols have
been compared through theoretical analysis and simulation
results, showing that Q-SAND outperforms SAND in protocol
duration. This is particularly useful for networks with a large
number of nodes or with K-sectored antennas with a sizeable
number of sectors K (i.e. K = 12).

ACKNOWLEDGMENT

The authors would like to thank Fondo Marı́a Viñas for
supporting this project (FMV 1 2014 1 104872).

REFERENCES

[1] E. Felemban, R. Murawski, E. Ekici, S. Park, K. Lee, J. Park, and
Z. Hameed, “SAND: Sectored-Antenna Neighbor Discovery Protocol for
Wireless Networks,” in 2010 7th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), June 2010, pp. 1–9.

[2] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks, Nov 2004,
pp. 455–462.

[3] M. Nilsson, “SPIDA: A Direction-Finding Antenna for Wireless Sen-
sor Networks,” in Real-World Wireless Sensor Networks, P. J. Marron,
T. Voigt, P. Corke, and L. Mottola, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 138–145.

[4] E. Öström, L. Mottola, and T. Voigt, “Evaluation of an Electronically
Switched Directional Antenna for Real-World Low-Power Wireless Net-
works,” in Real-World Wireless Sensor Networks, P. J. Marron, T. Voigt,
P. Corke, and L. Mottola, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 113–125.

[5] B. Rodrı́guez, J. Schandy, J. P. González, L. Steinfeld, and F. Silveira,
“Fabrication and characterization of a directional SPIDA antenna for
wireless sensor networks,” in 2017 IEEE URUCON, Oct 2017.

[6] B. Wei, A. Varshney, N. Patwari, W. Hu, T. Voigt, and C. T. Chou, “dRTI:
Directional Radio Tomographic Imaging,” in Proceedings of the 14th
International Conference on Information Processing in Sensor Networks,
ser. IPSN ’15. New York, NY, USA: ACM, 2015, pp. 166–177.

[7] R. Murawski, E. Felemban, E. Ekici, S. Park, S. Yoo, K. Lee, J. Park, and
Z. Hameed Mir, “Neighbor discovery in wireless networks with sectored
antennas,” Ad Hoc Networks, vol. 10, no. 1, pp. 1 – 18, 2012.

[8] A. Varshney, T. Voigt, and L. Mottola, Using Directional Transmissions
and Receptions to Reduce Contention in Wireless Sensor Networks.
Cham: Springer International Publishing, 2014, pp. 205–213. [Online].
Available: https://doi.org/10.1007/978-3-319-03071-5 21

[9] Tmote Sky Datasheet, Moteiv Corporation, June 2006, rev. 1.0.2.


