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Abstract—In this paper, we describe an activity carried out
with mathematics teachers of high school. The general objectives
are: on the one hand, to include a stage of programming in
the process of solving problems, emphasising the importance of
discrete mathematics and logic to the training of all students.
On the other hand, opening possibilities of introducing basic
knowledge of programming into schools, an issue with high
impact in higher education in computing. Finally, to introduce
a functional language -MateFun- as a tool for achieving the
said goals. The activity is organised in two parts: in the first
one teachers are taught to program solutions to problems taken
from their courses in MateFun; in the second part, the teachers
choose a subject and design didactic instances of teaching it
to their students using MateFun. In this way, the learning
of programming is naturally presented to students as part of
the mathematics course, integrating theoretical and empirical
foundations of the concepts.

Index Terms—mathematics, programming, learning

I. INTRODUCTION: THE DIDACTIC PROBLEMS

We have participated for more than ten years in teaching
the first programming course of the Computer Engineering
career at the Faculty of Engineering in Uruguay. According to
our experience, it can be said that the origin of most of the
difficulties in learning programming lies in the mathematical
background of the students. In general, the students entering
the University have serious difficulties to understand concepts
related to logic and discrete mathematics. The pervasiveness
of continuous mathematics makes students (and teachers!)
develop preconceived ideas with unfortunate consequences,
especially for computer science education. For instance, they
(almost) never describe a function including domain and range
(all is R) and they are restricted in their understanding of func-
tion to the idea of an algebraic formula for computing values;
they hardly ever use either quantifiers carefully in proofs or
notions of logic in calculations (i.e. boolean functions); and
they treat induction as a recipe to solve certain problems (often
involving sums of numbers).

Researchers and teachers of computer science of several
countries’ Universities have made the problem of providing
high school students (and even primary school students) with
basic programming knowledge their own [1]–[5].

The difficulties are a consequence of didactic approaches
stressing the development of students’ calculation skills. How-
ever, mathematics courses of high school are sources of

several types of algorithmic problems, a fact that can favour
the introduction of programming learning, creating a context
where mathematics becomes more useful and applicable for
students [6]–[9].

In this paper we present a didactics focusing on students’
understanding of the motivations and the reasons of the
symbolic manipulation using functional programming. Several
authors agree that this programming paradigm is a good
vehicle towards to enhance mathematics learning [6], [10],
[11]. We have developed a functional language -MateFun
[12], [13]- with the specific purpose of being a tool to learn
mathematics at high school.

Our didactics is described through an activity with mathe-
matics teachers, consisting in two parts: in the first one, they
are taught to program solutions to problems taken from their
courses in MateFun. In the second part the teachers choose
a topic, design didactic instances of teaching it and put these
into practice with their students using MateFun.

The paper is organised as follows: the main features of
MateFun are briefly described in Section II. The first part of
the activity with mathematics teachers (the course) is described
in Section III and the teachers activities with their students
in Section IV. Finally, we conclude and present some future
work.

II. MATEFUN

The language MateFun is a functional programming lan-
guage developed in our institute by the research group of the
authors Viera and Garcı́a-Garland, with the specific purpose
of being a tool to support mathematical learning, especially
in high school. Both in its creation and in its evolution, the
opinions and comments of mathematics teachers are taken into
account.

A. Description

MateFun is purely functional, meaning that functions do
not introduce side effects and they only depend on their
arguments. To be easily approachable it is available as a
web integrated development environment (Matefun IDE1), as
shown in Figure 1. The left frame is a text editor, where the

1https://matefun.math.psico.edu.uy
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Figure 1. MateFun IDE

program is written, and the right frame is a shell with a read-
eval-print-loop, where the expressions are evaluated.

Syntax and semantics of MateFun are both influenced by
the seek to be a tool to express mathematics. The syntax
is minimal and close to the usual mathematical notation.
Semantically, it has the peculiarity of being strongly typed,
while having no type inference. The skill to specify the domain
and range of a function is part of the learning process when
learning about functions. In MateFun type information must
be given by users, and types in MateFun are called sets.

A MateFun script is a list of definitions of sets and functions
over such sets. Predefined sets such as R (representing real
numbers) or Z (representing integer numbers) are available as
built-in constructs.

The user can define new sets either by comprehension or by
extension just as usually presented in mathematics courses. In
the following example we define the sets of natural numbers
(N), non-zero real numbers (Rno0) and days of the week
(Day):

1 set N = { x in Z | x >= 0 }
2 set Rno0 = { x in R | x /= 0 }
3 set Day = { Mon, Tue, Wed, Thu
4 , Fri, Sat, Sun }

Sets such as Rno0, defined by comprehension, take a base
set (R in this case) and refine it with a predicate. Predicates
can be built by relational operators and from other predicates
by conjunctions.

Functions are defined giving a signature and a proper
definition. For instance, one could define the inverse function
over the non-null real numbers:

5 inv :: Rno0 -> R
6 inv (x) = 1/x

MateFun supports some of the idioms used to define
functions in mathematics. For instance, piece-wise functions
can be defined, while, unlike most functional languages, it
does not support pattern matching or conditional expressions.
The following MateFun definition specifies the absolute value
function over the real numbers:

7 abs :: R -> R

8 abs (x) = x if x >= 0
9 or -x

This program resembles the definition in the usual mathe-
matical notation given by:

abs : R→ R

abs(x) =

{
x if x ≥ 0

−x otherwise

To emphasise that not all functions are numeric, MateFun
allows to define non-numeric sets (eg. Day) and functions
between those sets, such as nextDay:

10 nextDay :: Day -> Day
11 nextDay (d) = Tue if d == Mon
12 or Wed if d == Tue
13 or Thu if d == Wed
14 or Fri if d == Thu
15 or Sat if d == Fri
16 or Sun if d == Sat
17 or Mon

Functions with multiple variables can be defined using n-
tuples (the generalisation of Cartesian products). The follow-
ing function computes the area of a triangle, given its base
and height:

18 areaTria :: R X R -> R
19 areaTria (b, h) = b * h / 2

We can also define sequences of elements of a given set;
usually called lists in programming. The sequence set A* is
defined inductively as:

• [], the empty sequence
• a:as, a sequence composed by an element a belonging

to A and a sequence as belonging to A*.
For instance, N* is the set of sequences of natural numbers.

There exist some primitive functions to operate with se-
quences: first(s) returns the first element of the sequence
s, rest(s) returns the sequence s without its first ele-
ment, and range(n,m,k) returns a sequence of numbers
(n, n+ k, n+ 2k, ...) from n to m with step k. With range,
combined with a function to sum the elements of a sequence,

we can for instance easily implement the summatory
n∑

i=m

i.

20 summatory :: N X N -> N
21 summatory (m, n) = sum(range(m, n, 1))
22

23 sum :: R* -> R
24 sum (xs) = 0 if xs == []
25 or first(xs) + sum(rest(xs))

Notice the use of recursion in the implementation of sum.
The language includes the primitive sets Figure and

Color, and a set of primitive functions to create and trans-
form figures. For example, the following function returns a
red-coloured circle of a given radius, centred in the (0, 0) point
of a Cartesian plane.

26 redCirc :: R -> Fig
27 redCirc (r) = color(circ(r), Red)



Figure 2. redCirc(2)

In MateFun, animations are sequences of figures. The
following function takes a figure and a number n of steps, and
returns an animation in which the figure is moved n times one
unit to the right on the x-axis:

28 moveRight :: Fig X Z -> Fig*
29 moveRight (f, n)
30 = [] if n == 0
31 or f : moveRight(move(f, (1, 0)), n - 1)

B. Evaluation

Matefun IDE provides a read-eval-print-loop interpreter
where scripts can be loaded and evaluated. Then, if all the code
of the previous subsection is contained in a file Example and
we load it, the interpreter can evaluate expressions involving
all the sets and functions defined in the file. This is represented
in the prompt of the interpreter:

Example>

For instance, consider the function abs. In the shell we can
ask to compute the absolute value of the number 10 by typing
the expression:

Example>abs(-10)
10

Expressions may be function applications as in the previous
case or any kind of combination of builtin operations, literals,
and function applications. For example, we can evaluate:

Example>f(abs(-4)) + 5
5.25

We can also evaluate expressions that return figures, like:

Example>redCirc(2)

In this case the result is drawn in the “Figures” tab in the left
frame of the IDE. Figure 2 shows the result of the example.

Figure 3. moveRight(redCirc(1),10)

Figure 4. Function plot: ?plot abs

In the case of animations, a timeline displays the progress
of the frames. Figure 3 shows the sixth frame of the following
animation:

Example>moveRight(redCirc(1),10)

The interpreter evaluates expressions and interprets special
commands. For instance, we can graph a (one-variable) func-
tion using the command ?plot.

Example>?plot abs

The result is shown in Figure 4.

C. Detecting Errors

Expressions that we try to evaluate in the interpreter may
be ill-formed. For example, we could try to apply the function
abs to an element of a different set than its domain. In this
case, MateFun displays a message indicating the error.



Example>abs(Tue)
Error: {Interpreter column: 5}
Expected elements of R but found
Day.

We can also make mistakes by violating a constraint required
by a set comprehension:

Example> inv(0)
Error: {Interpreter column: 2}
Value 0 does not belong to set Rno0
because the following condition is
false: [0 /= 0].

We can also make mistakes when defining functions. Sup-
pose we change the signature of abs defined in line 8 of
Example to:

8 abs :: R -> Day

In this case, two errors are found, in lines 9 and 10, when we
try to return an element of R, while the function is defined to
return a Day.

Error: {file: Example line: 9
column: 13}
Expected elements of Day but found
R.
Error: {file: Example line: 10
column: 12}
Expected elements of Day but found
R.

No File>

All previous errors are identified and reported as we try to
load the file.

There are some cases where MateFun does not consider this
kind of type mismatch as an error, but as a possible source of
errors. An example is when we change the signature of abs
defined in line 8 of Example to:

8 abs :: R -> Rno0

When loading the file, MateFun displays warnings instead
of errors, and the process succeeds. It requires non trivial
automatic reasoning to decide statically (i.e, when loading
the module) if abs is well-typed. Our current approach is to
delay errors and decide dynamically (i.e. in running time) in
this cases. Also, this approach has the flexibility of allowing
the use of functions whose codomain is included strictly in
the potential range of the defining expression is useful. For
instance, to avoid having to redefine the numerical operators
(+, -, etc.) that are real valued functions, but also closed in
sets such as Z.

Warning: {file: Example line: 9
column: 13}
Set Rno0 required is a subset of
resulting R. There is a chance that
its value is out of the set.
Warning: {file: Example line: 10
column: 12}
Set Rno0 required is a subset of
resulting R. There is a chance that
its value is out of the set.

Example>

Then, errors can occur when evaluating an expression.
When these dynamic errors occur, MateFun messages point
to the place in the code that generated them.

Example> abs(0)
Error: {file: Example line: 9
column: 13}
Value 0 does not belong to set Rno0
because the following condition is
false: [0 /= 0].

III. FIRST PART OF THE ACTIVITY: TEACHERS COURSE

The activities were carried out using the moodle platform,
during three months in which four face to face instances of
four hours each took place. Teachers from diverse educational
centres in different places of Uruguay participated. They teach
in different high school years, and most of them teach to
more than one group of students. After three face to face
instances the teachers worked with their students during six
weeks. The teachers were assisted through the moodle forums
when working with their students. Some examples of that part
of the activity are included in the next section. The fourth face
to face instance was for the presentation of the final work.

The main objectives of the course for the teachers can be
summarised as follows:

• Emphasise the relationship between mathematics and
computer science, through reinforcing the importance of
discrete mathematics and logic to understanding defini-
tions, properties and proofs.

• Evidence the rigour attained through programming, and
especially the benefits of the functional paradigm and the
language MateFun for the learning of mathematics.

• Encourage good programming practices, through math-
ematically solving problems and then programming the
solution, in a process that is not simply making programs
work

It is worth noting that while this is the first time MateFun
has been used, the course has been taught with other languages
for several years (ISetL [14] 2006-2008, Python 2 2013-
2018). The accumulated experience has taught us that some
of teachers’ practices are part of the didactic problems raised
in the introduction. One of these is the fact that mathemat-
ics teachers are not used to rigorously formulate problems;

2https://www.python.org/



many times they state problems forgetting details that they
unconsciously interpret. The step of writing the solution in a
rigorous language such as a programming language, and the
step of executing the program, are in dialectic relation with
the understanding of the problem. For example, if the problem
is to find the multiples of a natural number, programming
a function for the solution forces to explicitly including the
natural number and a limit as input. In turn, this means that
the problem must be formulated in terms of input-output [15],
whether we are going to solve it or whether we are going
to pose it to the students. In this sense, MateFun is a more
powerful tool than the languages previously used, since it is
strongly typed and it is necessary to write the signature of
the function when programming it. However, whatever the
programming language used, this fact has as negative side,
as teachers comment (see Section IV): some details, irrelevant
with paper and pencil work, require especial attention, like
handling the computer, finding symbols on the keyboard, the
syntax, etc.

A. Examples of exercises

Some examples of the teachers’ work are selected to il-
lustrate the approach towards the mentioned objectives. One
of the themes presenting difficulties to students is recursive
definitions of functions, as pointed out in teachers’ comments
in Section IV. At high school level it is clearly revealed when
applied to define functions over natural numbers and sequences
(the most adequate for beginners). The following are examples
of basic exercises solved by the teachers.

1 {- non empty sequences of integers -}
2 set SeqNoEmpty = {x in Z* | x /= []}
3

4 {- the last element of a sequence of
integers-}

5 last :: SeqNoEmpty -> Z
6 last(l) = first(l) if rest(l)==[]
7 or last(rest(l))
8

9 {- minimun value of a sequence of integers
-}

10 minSeq :: SeqNoEmpty -> Z
11 minSeq(l) = first(l) if rest(l)==[]
12 or min(first(l), minSeq(rest(l)))
13

14 {- sum and product of the elements of a
sequence -}

15 sumSeq :: Z* -> Z
16 sumSeq (seq)
17 = 0 if seq == []
18 or first(seq) + sumSeq(rest(seq))
19

20 productSeq :: Z* -> Z
21 productSeq (l)
22 = 1 if l == []
23 or first (l) * productSeq(rest(l))

One of MateFun’s features that teachers find more friendly,
is the the way that errors messages are displayed. The mes-
sage attempts to guide the user (teachers and students) for
themselves discovering where the error is generated. Not only

Figure 5. Example of a teacher’s code with errors

Figure 6. Example of a teacher’s code with error exposed

the error message appears in the section of the interpreter, but
also the instruction of the program is marked with a symbol,
depending on whether it is an error or a warning.

In Figure 5 we can see the code written by a teacher to
solve the basic exercises. We can see that there is a warning
introduced by the use of the operator *, which returns elements
of R. In fact this will not be a problem, because the operands
will always belong to N in this function. A real mistake
of this code appears if we, for example, try to evaluate
minSeq(1:2:[]), because this call to the function will
cause a call to minSeq([]):



MathAndProg> minSeq(1:2:[])
Error: {Interpreter file:
MathAndProg line: 9 column: 37}
Value [] does not belong to set
SeqNoEmpty because the following
condition is false: [[] /= []].

Figure 6 shows how the place in the code where this error
occurs is pointed by MateFun’s IDE.

In our course the teachers are asked to solve many problems
involving programming of functions over sequences, using
recursion and/or composition of functions. The example below
shows a MateFun program for the factorial function (fact).
This is a well known definition by the teachers and all of them
succeed in solving this problem.

1 fact :: N -> N
2 fact (n) = 1 if n == 0
3 or n * fact(n-1)

Then the teachers are asked to write another MateFun program
(factorial) for the same function using two functions:
productSeq defined above, and range introduced in Sec-
tion II.

1 factorial :: N -> N
2 factorial (n) = 1 if n == 0
3 or productSeq(range(1, n, 1))

Most of teachers arrived to a solution similar to that above,
but with an extra redundant equation, which is used for a case
that is actually encompassed for the definitions of functions
range (case b < a) and productSeq (productSeq([])
= 1). This kind of errors in which edge cases are mishandled
are frequently made by both teachers and students.

Several lessons are learnt from solving those kind of exer-
cises. One of the most important is that a program perhaps
gives the correct result (teachers’ solution of factorial does),
but has errors anyway. From the point of view of programming
it is an error to make the computer do things that are not
necessary or are redundant. Another one is that problems
have to be precisely formulated: if the relation between a
and b in function range is not specified as it is, the result
could vary. Besides, programming more than one solution to
a problem gives us the opportunity of introducing teachers to
a topic that brings mathematics and functional programming
even closer: the use of the principle of structural induction to
prove properties of programs. Although the proofs are done
with paper and pencil, it is possible to do them using equation
reasoning (substituting equals for equals where every step
has to be well founded) since MateFun is a pure functional
language (without side effects).

In the next example, we present the proof of the following
property:

Property. ∀ n ∈ N, fact(n) = factorial(n).

The property is proved using the principle of structural
induction:

1) Base case: prove Property for n = 0

2) Inductive case: ∀ n ≥ 0, if fact(n)
= factorial(n) then fact (n+1) =
factorial(n+1)

3) If 1) and 2) then Property holds.
Base case:

fact(0)

= 1 { def. fact }
= factorial(0) { def. factorial }

Inductive case:

fact(n+ 1)

= (n+ 1) ∗ fact(n+ 1− 1) { def. fact }
= (n+ 1) ∗ fact(n) { arithmetic }
= (n+ 1) ∗ factorial(n) { Ind. Hypothesis }
= (n+ 1) ∗ prodSeq(range(1, n, 1)) { def. factorial }
= prodSeq(range(1, n+ 1, 1)) { lemma }
= factorial(n+ 1) { def. factorial }

The lemma whose proof is left to the reader is:
∀ n ∈ N, (n+1) * prodSeq(range(1,n,1)) =
prodSeq(range(1,n+1,1)).

Since 1) and 2) hold then 3) holds, that is, the Property
holds and the two definitions of the function are equivalent.

It is worth saying that traditionally, the principle of induc-
tion is used in a very restricted way in high school education,
usually making no sense for students. Here the relevance of
this method becomes evident.

This kind of exercises reinforces the importance of logic to
understand definitions, properties and proofs which is one of
the goals of the course as above said.

B. An advanced example

Interesting examples arose from concerns of some teachers
and were discussed in the forum. In this section one of them
is presented.

The teachers usually work with GeoGebra [16] that is an
interactive geometry, algebra, statistics and calculus appli-
cation, intended for learning and teaching mathematics and
science from primary school to university level. They find a
challenge in solving exercises that they have previously solved
with GeoGebra. Some teachers give a great importance to the
possibility of solving exercises and drawing the solution as
they do with GeoGebra. We point out that a programming
language like MateFun allows to construct the mathematical
solution as an object - the program - putting into practice
from more basic notions to advanced concepts. Even more,
programs can be executed and we can see our solutions in
action. The example below illustrates the case.

Given a function f it is possible to compute an approxima-
tion of the definite integral∫ b

a

f(x)dx



using the rectangle method (or Riemann sum). The method
consists of partitioning the interval [a, b] in n equidistant sub-
intervals [xi, xi+1] where i ∈ {0 . . . n} xi = a+ i

(
b−a
n

)
. For

each sub-interval a point x∗ is chosen. A rectangle of width
b−a
n and height f(x∗) is an approximation of

∫ xi+1

xi
f(x)dx

and the sum of rectangles approximates the full integral,
improving with a bigger n.

Taking the leftmost point at each interval (left Riemann
sum) the approximation is given by the expression:

n∑
i=1

f(a+ (i− 1) ∗ w) ∗ w

where w = b−a
n

The function f(x) = x2

10 is given. The problem is solved in
MateFun in the following way.

1 f :: R -> R
2 f (x) = 0.1 * x ˆ 2

The approximation of the integral is given by

3 integral_f :: R X R X N -> R
4 integral_f (a, b, n)
5 = summatory_f(1, n, a, (b - a) / n)

where summatory_f is a function computing recursively
the sum of the areas of the n − i + 1 rightmost rectangles,
implemented as:

6 summatory_f :: N X N X R X R -> R
7 summatory_f (i, n, a, w)
8 = 0 if i > n
9 or f(a + (i - 1) * w) * w

10 + summatory_f(i + 1, n, a, w)

Another version, with a more compositional style, using the
function sum can be implemented. First, compute the sequence
of areas:

11 areas :: R X R X R -> R*
12 areas (a,n,w)
13 = [] if n == 0
14 or f(a) * w : areas(a + w, n - 1, w)

And then apply the known function sum.

15 integral :: R X R X N -> R
16 integral(a,b,n) = sum(areas(a, n, (b-a)/n))

It is possible to plot a representation of the rectangles used
to approximate the area. The result for twenty rectangles in
the interval 0-10 is showed in Figure 7.

This is accomplished by the following functions:

17

18 drawArea :: R X R X R -> Fig
19 drawArea (a, b, n)
20 = joinFigs(rectangles(a, n, (b - a)/ n))
21

22 rectangles :: R X R X R -> Fig*
23 rectangles (a, n, w)
24 = [] if n == 0
25 or rectBase(a, w, abs(f(a + w / 2)))
26 : rectangles(a + w, n - 1, w)
27

Figure 7. Integral: (drawArea(0,10,20))

28 rectBase :: R X R X R -> Fig
29 rectBase (i, b, h)
30 = move(rect(b, h), (i, h / 2))

Through this example the power of MateFun can be appre-
ciated with clarity: not only it makes possible to implement a
solution of the problem using a syntax similar to mathematics
(integral_f or integral), but also the visual representa-
tion of the solution can be programmed by the student. In other
words, MateFun allows to program the graphic representations
in contrast to other tools in which these are provided to the
user.

IV. SECOND PART: TEACHERS ACTIVITIES WITH THEIR
STUDENTS

In this section we present some exercises that teachers did
with their students in the classroom. The themes that teachers
choose vary according to the level of their groups (from 1st.
to 6th. of high school). They have to take also into account
the program of the school year. Popular themes are divisibility,
lineal and quadratic equations, statistic, successions, analytic
geometry, among others.

One of the topics that the teachers mentioned as successful
is of successions. As an example we include an exercise done
with fifty four students aged 15-16. The exercise is part of a
task carried out over three sessions of 80 minutes each. It is
formulated as follows:
Given the succession below:

an : N→ R

an =

{
1 if n = 1

((n− 1)/n) ∗ an−1 otherwise

1) write a MateFun function to obtain any term.
2) write a MateFun function that given a value m, returns

a sequence with the first m terms of the succession.
3) write a MateFun function that given a value m calculates

the sum of the first m terms of the succession.



Below are some of the solutions that teachers worked with
the students in the classroom.
32 {-Part 1: any term of the succession -}
33 anyTerm :: N -> R
34 anyTerm (n) = 1 if n == 1
35 or ((n-1) / n) * anyTerm(n-1)
36

37 {- Part 2: sequence of the first m terms
38 of the succession -}
39 firstM :: N -> R*
40 firstM (m) = anyTerm(m) : [] if m == 1
41 or anyTerm(m) : firstM(m-1)
42

43 {- Part 3: sum of the first m terms
44 of the succession. -}
45 sumFirstM :: N -> R
46 sumFirstM (m) = sum(firstM(m))

This kind of exercises forces the students to write the
definition of a succession as a function from N to any set;
R in the case of the example.

The third part of the exercise was also solved with the
formula below, which is traditionally presented to students.

m∑
i=1

ai = m ∗ (a1 + am)/2

Students were encouraged to implement it in MateFun and
with teacher’s help they arrived to:
47 sumFirstM’ :: N -> R
48 sumFirstM’ (m) = m * (anyTerm(1) +
49 anyTerm(m)) / 2

Since both definitions (sumFirstM and sumFirstM’)
reveal two methods of calculating the sum of terms in a
succession, in our course teachers were asked to prove that
these are equivalent as it had been done for the functions fact
and factorial. The following property was stated:

Property. ∀ n ∈ N, sumFirstM(n) = sumFirstM’(n).

The property was proved using the principle of structural
induction:

1) Base case: prove property for n = 1
2) Inductive case: ∀ n > 1, if sumFirstM(n) =

sumFirstM’(n) then sumFirstM(n+1) =
sumFirstM’(n+1)

3) If 1) and 2) then Property holds.
Base case:

sumFirstM(1)

= sum(FirstM(1)) { def. sumFirstM }
= sum(anyTerm(1) : []) { def. FirstM }
= sum(1 : []) { def. anyTerm }
= first(1 : []) + sum(rest(1 : [])) { def. sum }
= 1+ sum([]) { def. (first, rest) }
= 1+ 0 { def. sum }
= 1 ∗ (1+ 1)/2 { arith }
= 1 ∗ (anyTerm(1) + anyTerm(1))/2 { def. anyTerm }
= sumFirstM

′(1) { def. anyTerm’ }

Figure 8. Animation: move3cir(10)

For space reasons the proof of the inductive case is not
included. It remains as an exercise for the reader.

Through these exercises the teachers can experience one of
the goals of the course with their own students, namely how
the relationship between mathematics and computer science
comes out in an easily understandable way. Even more,
teachers could introduce their students into inductive proofs
in cases they consider adequate.

In several researches on programming didactics we have
argued that abstracting from concrete cases to obtain a generic
one is not a trivial issue [7], [17]–[19]. As several authors also
indicate [20]–[23], learning to program plays a fundamental
role in training of abstraction from early stages. The following
example shows the work that teachers did with their students
in the classroom and the work we did with teachers in our
course, related to abstraction.

A theme introduced by the teachers in a group of third-year
high school students (aged 13-14) is about the multiples of
a natural number. Teachers asked the students to program a
function that makes a circle move n steps through the points of
multiples of three on the x axis. A solution is presented below,
in which the students adapted the function moveRight (see
II) to program a function move3 that moves a figure n
steps through points corresponding to multiples of three on
the x axis. They also programmed move3cir in which
the parameter fig of move3 is instantiated to a red circle
previously defined. Notice that adapting moveRight induced
the students to write move3 abstracting the figure in the
parameter fig as in moveRight.

1 circle :: R X Color -> Fig
2 circle (r, c) = color(circ(r), c)
3

4 move3 :: Fig X Z -> Fig*
5 move3(fig,n)
6 = [] if n < 0
7 or fig : move3(move(fig, (3, 0)), n-1)



Figure 9. Parables in Z and R
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9 move3cir :: N -> Fig*
10 move3cir (n) = move3(circle(0.5, Red), n-1)

Since the problem asks for the multiples of three, they
used the concrete case of the point (3,0) in the function
move3. When the teachers presented this solution in our
course they were asked how to generalise it to the multiples
of any natural number, that is, abstracting the point (3,0) to
(num,0). To construct a general solution they observed that
move(fig,(num, 0)) moves the figure fig through the
multiples of any natural number -represented by num- on x
axis. The point discussed was how to define a single function
that also performs the movement n times. Finally, teachers
introduced the definition of moveMultiples below.

11 moveMultiples :: Fig X Z X N -> Fig*
12 moveMultiples(fig, n, num)
13 = [] if n == 0
14 or fig : moveMultiples(move(fig,(num, 0))
15 , n-1, num)

For instance, moveMultiples(circle(0.5, Red),
5, 3) moves the red circle through the multiples of three on
the x axis, five times.

Teachers also noted the benefits of including the signature
of functions as part of their definitions. This feature of the
language can help students to surmount the restricted idea of
a function as an algebraic formula for computing values, that
we point out in Section I. Teachers presented the example
below that shows two quadratic functions with the same alge-
braic formula defined over different numerical sets. Through
their graphic representations (see Figure 9), the role of the
signatures becomes evident.

16 parable1 :: Z -> Z
17 parable1(x) = xˆ2
18

19 parable2 :: R -> R
20 parable2(x) = xˆ2

In this exercise the students were asked to predict the result
of calculations of several values for each case and then verify
their responses with MateFun.

A. Some students’ work and teachers comments

During the activities with their students teachers have ob-
served interesting facts, some of which are summarised here.

The motivation of the students did not always coincide with
the academic results: there were cases of highly motivated
students who did not perform well and vice versa. However,
compared to other groups where the proposal was not applied,
a better understanding of the issues, greater concentration and
predisposition to problem solving were observed.

The development of introductory activities to MateFun and
its interface did not present major difficulties. The only thing
worth noting is keyboard handling, working with parentheses,
and symbols or characters that students could not find.

The problems started with the work of recursive functions.
It was necessary to make explanations with simple cases such
as defining the function for calculating the power of natural
exponent, as shown below:

Question: Write a program in MateFun for the power
function for natural numbers, according to our definition in
which the base is greater than zero.

Student answer:

21 set NnoZero = { x in N | x > 0 }
22 pow :: NnoZero X N -> N
23 pow (x,y) = 1 if y == 0
24 or x * pow(x,y-1)

The work with graphs and figures was very attractive for
the students and they were able to solve the activities without
problems. An example of these is:

Question: Anticipate the result of this expression. Then,
copy it in the MateFun interpreter and verify your answer.

> join( scale(circ(5),1/5)
, move(circ(1), (0,3)))



Student answer: First it will draw the circle to scale
reducing its size to 1/5 of the original. Then it will draw a
circle of the given radius centred on the point (0,3). Both will
be drawn at the end of the operation.

Many teachers emphasised the benefits of experience the
dialectic relationship between “the work with the pencil and
programming in MateFun”. This is an example of a bridge
between discourse and action that Dowek mentions in [3] as
one of the main contributions of programming to education.

V. CONCLUSIONS AND FURTHER WORK

Although Computer Science (hereinafter CS) should be
included in high school as an academic discipline taught by
CS teachers, the difficulties still presented to do that [1]–[5],
make this approximation adequate to provide students with
basic programming knowledge. Even more, some of the cited
authors suggest that teachers of other disciplines should be
called for the task of introducing CS into school, especially
the community of mathematics teachers [1], [4].

From a didactic point of view MateFun has shown to be a
helpful tool for understanding the process of solving problems,
without adding technical complications, compared with other
tools. These are often software packages or apps not aimed
to students’ programming, like Geogebra, or programming
languages of general purpose, like Python or Scratch3. Fea-
tures like MateFun’s type system including the signature of
functions in their definitions; the possibility of programming
visual representations; the error messages that mathematics
teachers and students can easily understand, open possibilities
to include programming into school. At the same time, most
of teachers comments are encouraging with respect to the
participation and motivation of students in solving the prob-
lems and exercises. However, evaluation instances of students
performance is a further work issue.

Other lines of further work are mainly oriented on the
one hand to the development of MateFun. In this sense, the
activities with teachers and students are an excellent help. On
the other hand, it is necessary to compile the activities carried
out to obtain sufficient material and experience. The goal is to
offer an integrated subject of mathematics and programming
to teachers training, as a contribution for solving the didactic
problems described in Section I.
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