
Design Automation for Embedded Systems
https://doi.org/10.1007/s10617-020-09236-4

Reducing neighbor discovery time in sensor networks with directional
antennas using dynamic contention resolution

Nicolás Gammarano1 · Javier Schandy1 · Leonardo Steinfeld1

Received: 26 May 2019 / Accepted: 9 March 2020

Abstract
In this paper we present, simulate, and evaluate Dynamic Asynchronous Neighbor Discovery protocol for
Directional Antennas (DANDi), a neighbor discovery protocol for Wireless Sensor Networks (WSN) with
directional antennas that guarantees that every reliable communication link in a network is discovered.
DANDi is asynchronous, fully directional (supports both directional transmissions and receptions) and has
a dynamic contention resolution mechanism based on the detection of packet collisions, so no network
topology information is needed in advance. We propose, implement and evaluate a mechanism to identify
these collisions, both in simulations and with real nodes. DANDi is implemented in Contiki OS, an open-
source operating system for WSN and the Internet of Things, and extensively tested. First using the COOJA
network simulator and then with real Tmote Sky nodes equipped with 6-sectored antennas. The neighbor
discovery times are analyzed and analytical expressions for these times are presented. The DANDi protocol
performance is compared with Sectored-Antenna Neighbor Discovery, a state-of-the-art protocol for this
kind of networks. Our experiments show that the discovery time can be reduced up to four times in average
depending on the network topology, while discovering every reliable sector-to-sector link. To the best of our
knowledge, DANDi is the fastest protocol that is able to discover every reliable link in a network without
requiring any prior information of the network topology.

Keywords Wireless sensor networks · Neighbor discovery · Sectored antennas · Directional antennas ·
Collision detection

1 Introduction

Directional antennas offer several benefits when used for Wireless Sensor Networks (WSN). The increased
range and the reduction of the interference with neighbor nodes make these antennas very useful for several
applications. Electronically Switched Directional (ESD) antennas are one kind of sectored antennas that are
the most widely used for WSN. These antennas have the capability of dynamically selecting the direction
of transmission by switching an electronic circuit (generally radio frequency switches) to concentrate the
radiation in K different directions. Their simplicity, reduced size and reduced cost make them suitable for
large deployments of sensor nodes. Figure 1 shows an ideal K-sectored antenna.

The benefits of this kind of antennas for wireless communications are well known, but to take advantage
of them in WSN, it is necessary to make some changes to the network protocols. One of the first problems
that arises when using directional antennas is how to discover all the possible communication links with
neighbor nodes. When using omnidirectional antennas, one single broadcast message is enough to query

This work has been supported by Fondo Maŕıa Viñas (Project FMV 1 2014 1 104872).

Nicolás Gammarano
ngammarano@fing.edu.uy

Javier Schandy
jschandy@fing.edu.uy

Leonardo Steinfeld
leo@fing.edu.uy

1Instituto de Ingenieŕıa Eléctrica, Facultad de Ingenieŕıa, Universidad de la República, Avenida Julio Herrera y
Reissig 565, 11300 Montevideo, Uruguay

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4
https://doi.org/10.1007/s10617-020-09236-4


2 N. Gammarano et al.

Sector 0

Sector 1

Sector 2

Sector K-1

Fig. 1: K-sectored antenna

neighbor nodes, and the ones in range may reply including their network address. But with ESD antennas,
there may be (and generally there are) more than one sector-to-sector (S2S) link between two nodes.
Besides, the transmitter must know when its neighbor is pointing to a certain direction.

This work is an extended version of a paper presented in SBESC 2018 [1]. In that paper, Dynamic
Asynchronous Neighbor Discovery protocol for Directional Antennas (DANDi), a protocol based on collision
detection, was presented and evaluated through simulations. In that previous implementation, the collisions
were detected by the network simulator and passed as events to the nodes.

In this work, we present a simple and effective collision detection mechanism to be implemented in
the nodes. We also evaluate this mechanism and take new considerations for the DANDi protocol to work
correctly in lossy networks. Finally, we present the evaluation, both in simulations and in real nodes, of
the DANDi protocol including these improvements and its comparison with a state-of-the-art protocol with
similar characteristics and for nodes with directional antennas.

The rest of the work is organized as follows. In Sect. 2, we present the related work. In Sect. 3, we
describe the proposed protocol, its parameters, time restrictions, we find an expression for the duration of
the protocol and present considerations for lossy networks. Section 4 presents some implementation details
and the experimental setup. The collision detection mechanism is presented in Sect. 5 and the evaluation
of the DANDi protocol in Sect. 6, including a comparison with SAND. Finally, we present conclusions in
Sect. 7.

2 Related work

Many algorithms have been proposed to perform neighbor discovery when using directional antennas. Some
neighbor discovery algorithms are based on a probabilistic approach. One of the simplest is to divide the
time in timeslots and to send with probability pt and to receive with probability 1 − pt. Vasudevan et
al. [2] deduce the probability pt that maximizes the number of nodes discovered in time. This optimal
probability depends on the beamwidth of the directional antennas and the number of nodes in the network.
The disadvantage of a fully probabilistic approach is that it will take much more time to discover the last
links.

Other neighbor discovery algorithms rely on omnidirectional antennas to assist the neighbor discovery
process [3], or assume that only the sink node is equipped with a directional antenna [4]. The most common
approach is to use directional transmissions and omnidirectional receptions, eliminating the need of knowing
in which direction the neighbor’s antenna is pointing. The main drawbacks of this approach are that an
extra omnidirectional antenna is needed for each node, neighbors that would only be reached with both
directional transmissions and receptions would not be discovered, and that the spatial reuse decreases.

Other algorithms [5,6] rely on previous time synchronization among nodes in the network. This time
synchronization is hard to achieve before establishing the network. Xiong et al. [5] propose SBA, an algo-
rithm where each node transmits with probability pt to the sector Si and receives with probability 1− pt

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


Reducing neighbor discovery time in directional WSN 3

to the opposite of sector Si. The synchronization is needed for every node in the network to know where
to point at every moment.

There are fully directional (directional transmissions and receptions) algorithms that do not require
previous time synchronization among the nodes [7,8,9,10,11], as it is the case of DANDi [1]. The first
two algorithms [7,8] use scan sequences based on each node’s unique ID, guaranteeing that all the sector
combinations among all nodes are tested. In both works the shortcoming is that the collisions are not
considered, so the discovery is not guaranteed for dense networks, or even for networks with dense areas.
In SAND (Sectored-Antenna Neighbor Discovery) protocol [9] (extended in [10]), a serialized mechanism
where one node is discovering its neighbors at a time guarantees that all the sector combinations among
all the nodes are tested. In all the algorithms mentioned above, the respective parameters are chosen using
the number of nodes in the network or the estimated number of neighbors using the network density and
the coverage area of the antenna. So some knowledge of the network topology is needed in advance.

Our proposed algorithm DANDi does not need omnidirectional antennas nor time synchronization; it
relies on serialization of the discovery process (like SAND) and on collision detection. DANDi guarantees
that all the sectors of all the nodes in the network are discovered, taking collisions into account. Besides,
no network information is needed in advance.

3 DANDi protocol description

The main goal of a neighbor discovery protocol is to enable every node in a network to gather information
about its respective neighboring nodes. If we consider nodes with sectored antennas, the essential purpose
is to ensure the discovery of all reliable S2S links between nodes in the network. Considering K-sectored
antennas, there are K2 possible sector combinations between two neighbor nodes: K possible sectors of one
node and K possible sectors of the other.

The main idea of the DANDi protocol is that one single discoverer node (DN) at a time discovers
all reliable S2S links with its neighbor nodes (NN) by transmitting probe messages repeatedly, while the
remainder network nodes listen for incoming messages in each sector sequentially.

The DN probes one sector at a time using the probe-reply with dynamic contention resolution mechanism
described below. Once the DN finishes discovering nodes in one sector, it continues with the next one. When
the DN ends discovering neighbors in its K sectors, it passes the DN role to a NN through the token passing
mechanism.

Figure 2 shows a state diagram representing both roles (DN and NN) and the main processes. In this
case the node ID is used to select the initial role, so the first DN is the node with ID 1. The discovery
process ends when the DN role is taken again by the node that started as DN, and all of its neighbors have
already discovered their own neighbors. The above mechanisms are thoroughly explained in this section.

3.1 Probe-reply with dynamic contention resolution

The messages exchanged between DN and NN are organized in rounds. The probe message sent by the DN
delimits the start of a round. A round is composed by a probe slot and one or many reply slots. A probe
message is sent at the beginning of the probe slot. After the probe slot follows a reply round composed of
one or more reply slots. The number of reply slots is specified in the leading probe message. The probe
message also includes other information, such as the list of nodes discovered in the last round. Figure 3
shows a first round with one reply slot followed by a second round with many reply slots.

The probe-reply with dynamic contention resolution algorithm involves the DN and all the NN in the
network. Depending on its actual role, a node executes the DN part of the algorithm (probing sectors) or
the NN part (scanning sectors).

3.1.1 Probing sectors algorithm

Figure 4 shows the probing sectors algorithm of the DN for discovering neighbor nodes sequentially starting
at sector 0.

The probing of a sector starts by selecting an antenna sector and locking it at that position until it
discovers all the neighbors at that sector.

The DN initializes the number of reply slots Rslots equal to an initial predefined value (e.g. equal to
one). Then it sends the probe message of the first round and waits for a reply in each slot during the time
tslot. In each reply slot, there are four possible situations shown in Fig. 5 and summarized below:

(a) No answer.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


4 N. Gammarano et al.

Probing 
sectors 

(DN) 

Token 
passing 

(DN) 

Scanning 
sectors 
(NN) 

ID = 1 ID ≠ 1 

done 

token 
passed 

Initialization 
DN NN 

token received and 

token received and 

End 

ID = 1 and 
all neighbors have 
already been DN 

have not been DN yet

have already been DN

Fig. 2: State diagram: node roles and main process

Probe slot

Reply slot

Fig. 3: Slots and rounds

(b) A single node replies.
(c) Many nodes reply, and one frame prevails over the others due to the capture effect.
(d) Many nodes reply, and results in a collision.

The first case implicates that no neighbor is able to receive at that sector at that time. From the point
of view of the DN, the second and third cases are indistinct, and the DN needs to give the chance to any
node that had a suppressed message due to the capture effect, to send its reply again. The capture effect
occurs when a node receives two or more messages almost at the same time, and it is able to demodulate
the message with higher signal strength, when some conditions are met [12]. For the last case, in which the
DN detects a collision, all the replies in that slot are lost. Summarizing, more rounds are needed to ensure
that all NN are discovered correctly for every case except the first one.

When the reply round completes, the result is processed to determine whether a new round is initiated
or not. This process consists in analyzing the following cases:

1. No answer in any slot.
2. A reply or a collision happens in any slot.

The second case needs a new round to resolve either the collision/s or give the chance to any potential
suppressed message to be sent again by the corresponding node. In any of these situations, the DN starts
a new round. In this case, the DN selects the number of reply slots of the next round Rslots based on the
results. The DN could increment the number of slots to speed up the contention resolution if there is a
collision in any slot. If there are no collisions, the number of reply slots could be kept unchanged or even
reduced. In this work we adopted a simple yet effective solution that is exponential back-off [13]. The DN
acknowledges the replies in the probe message of the following round, by including the NN identification
in the list of discovered nodes.

In the first case (no answer in any slot), the DN can pass the token to the next node only after one
round with no replies from the NN. However, if there is a round with more than one reply slot for contention

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


Reducing neighbor discovery time in directional WSN 5

no

no

no

yes

yes

yes

initialize sector

select sectors

inizialize Rslots

send probe

receive reply

more slots?

process round

more rounds?

all sectors

discovered?

update Rslotsnext sector

done

Fig. 4: Probing sectors algorithm

resolution, there will be no probe slots for a certain time (determined below) since the nodes are resolving
the contention. To ensure that the missing slots will not lead a neighbor to miss a probe, the missing probe
slots must be recovered. To achieve this, the DN must explore a certain number of rounds with a single
reply slot (Nprobe, determined in Sect. 3.3), and receive no answer in any of them in order to change sector.

Only after this process is completed, can the DN continue with the next sector. When the DN finishes
discovering all the sectors, it passes the token to a NN that has not discovered neighbors yet.

3.1.2 Scanning sectors algorithm

Figure 6 shows the scanning sectors algorithm of the NN, where the scan performed in every sector can
be observed. The NN selects one sector and listens for incoming messages during a certain period of time
tswitch. If the NN does not receive anything, it continues with the next sector. If it receives a probe message
from the DN, the NN processes the message. It verifies in the probe message whether it is in the list of
discovered nodes or not. If it is not in the list, the NN randomly chooses a slot and sends a reply message.

If the NN is in the list, it means that the DN received the previous reply correctly and so the NN
continues scanning sectors. The NN also continues with the next sector if it had already received a probe
sent by this DN from the same S2S link. This is why probe messages need to include the sector of the DN.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


6 N. Gammarano et al.

DN

NN1

NN2

Probe slot Reply slot...

Probe TX

(a) No answer.

DN

NN1

NN2

Probe slot Reply slot...

Probe TX

Probe RX Reply TX

Reply RX
from NN1

(b) A single node replies.

DN

NN1

NN2

Probe slot Reply slot...

Probe TX

Probe RX

Probe RX

Reply TX

Reply TX

Reply RX
from NN1

(c) Many nodes reply: capture effect.

DN

NN1

NN2

Probe slot Reply slot...

Probe TX

Probe RX

Probe RX

Reply TX

Reply TX

Collision!

(d) Many nodes reply: collision.

Fig. 5: Possible results for a reply slot

If the NN receives at any time a token message instead of a probe, it stops scanning sectors and assumes
the DN role.

3.2 Token passing mechanism

After a DN finishes discovering neighbors in all of its sectors, it passes the discoverer role to a NN that has
not discovered neighbors yet. To achieve this, a token identifies the node with the DN role, and a special
message is used to pass the token to another node. In the case that all the neighbors of a DN have already
discovered their neighbors, the DN passes the token to the node from which it received the token initially.
Since the NN are scanning sectors, the DN locks its antenna in the direction of the node that will receive
the token message, and sends repeatedly probe messages until it can guarantee that the neighbor node
received it. For the NN to be able to receive at least one probe per sector, the restriction is the same as
when probing a sector. After having sent the probe messages, the DN sends the token and waits to receive
an acknowledgment.

In this way the token passing process between nodes gradually forms a directed rooted tree, where the
node that initiates the discovery process is the tree root, the remainder vertexes are the nodes that have
already been in the DN role, and the edges represent the token passing relation.

Figure 7 depicts the neighbor discovery performed by each DN, token passing between nodes, and the
formed tree.

3.3 Probe, reply and switching time restrictions

The probe slot duration has some restrictions. Considering that probe and reply messages are at most of
the maximum frame length, then the duration of these messages is limited by a given time τframe. The
period for sending probe messages is tprobe. A guard time tguard between slots may be necessary for turning
around and switching from transmitting to receiving or vice-versa. Then, the probe period must satisfy

tprobe > 2 (τframe + tguard) . (1)

Figure 8a shows the minimum probe period required to allocate a probe or a reply and the actual time
used by the DN probe and a NN reply.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


Reducing neighbor discovery time in directional WSN 7

no
ye

s

no

yes

ye
s

no

initialize sector

receive probetimeout t switch

reply acked?

select random slot

any probe?

process round

send reply

wait for slotselected slot * t slot

select sector

next sector

any token?

token received

Fig. 6: Scanning sectors algorithm

NN asynchronously switch their active sector every tswitch, scanning for incoming messages. Note that
tswitch is the period for switching the active sector, but while switching, there is a time τswitch which
accounts for the hardware switching time, where the node cannot receive anything.

To ensure that the DN neighbor nodes are able to receive at least one probe message, the following
condition must be satisfied:

tswitch > tprobe + τframe + τswitch. (2)

Figure 8b depicts the time involved in the probing process and shows the minimum tswitch.

In order to send enough probe messages so that every NN has the opportunity to receive at least one
of them, the total time sending probes at one sector must be larger than the time of one “full turn” scan
of the neighbors:

Nprobe · tprobe > K · tswitch, (3)

where Nprobe is the number of probes sent per sector. This relationship can be observed in Fig. 8c.

Hereinafter, for the sake of simplicity, we define a generic time slot for sending probe and reply messages
of duration tprobe = tswitch/2, and long enough to satisfy the above restrictions. Note that during the time
tswitch there is enough time for a probe slot and a reply slot.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


8 N. Gammarano et al.

1

2

3

4

5

6

7

8

Node #1

(the first DN node)

Node that has

already been the DN

Node that has not

been the DN yet

Token passing

link between

nodes

Fig. 7: Partial tree started by node #1. Nodes #2, #3 and #7 have already been the DN, while node #4
is the current DN. Nodes #5, #6 and #8 have not been the DN yet

Finally, to minimize the duration of the overall neighbor discovery process, the number of messages
Nprobe must be also minimized. Then considering Eqs. (2) and (3), we obtain

Nprobe > K

(
1 +

τframe + τswitch

tprobe

)
. (4)

3.4 Neighbor discovery time analysis

The discovery process forms a directed rooted tree, whose edges represent the passage of the token between
nodes. The network has n nodes (vertexes), and since it is a tree it has n − 1 edges. At the end of the
protocol, there have been 2 (n− 1) token passing (two tokens passing per edge: one upwards in the tree
and one downwards). Taking this into consideration, the total time the protocol takes to complete is the
sum of the time taken to discover neighbors by each network node through the probe-reply mechanism and
the time taken to pass the token through the token passing mechanism (there are 2 (n− 1) in total):

TDANDi =

n∑
i=1

{TPR (i)}+ 2 (n− 1)TTP , (5)

where TPR (i) and TTP are the time taken by the probe-reply mechanism of node i and by the token passing
mechanism respectively.

The time taken by the probe-reply mechanism of node i can be expressed as:

TPR (i) = tslot

K−1∑
j=0


Rij∑
k=1

{1 + sijk}

 , (6)

where Rij is the number of rounds needed to complete the discovery process for node i for its active sector
j, and sijk is the number of reply slots that has the kth round, when node i is the DN and its active sector
is j.

TPR (i) is probabilistic and not deterministic, given that the random choice of reply slot by the NN
impacts on the number of suppressed messages or collisions, and then in the number of rounds needed to
resolve the contention. It could happen that two NN choose the same reply slot for a lot of consecutive
rounds, and as a result a lot of rounds would be needed. In this case the time TPR (i) would be greater
than if the nodes had chosen different reply slots earlier. So the time TPR (i) will vary with i, expecting it

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


Reducing neighbor discovery time in directional WSN 9

Probe slot Reply slot
(a) Restriction on tprobe.

NN sector i NN sector i+1

(b) Restriction on tswitch.

NN sector i ...

...

NN sector (i+K-1) mod K

(c) Restriction on Nprobe.

Fig. 8: Time restrictions

to be greater for nodes with more neighbors. Even more, the time of probing sectors will vary from sector
to sector for a given DN, being greater for sectors in which the DN has more neighbors.

In case that a DN has at most one neighbor per sector, there will be no collisions and TPR (i) will be
the minimum possible time of a probe-reply mechanism duration. In this case TPR (i) is deterministic and
it is given by the following equation:

TPR (i) = 2 · tslot ·K ·Nprobe. (7)

The time taken by the token passing mechanism can be expressed in the following way:

TTP = (NTP − 1) tprobe + ttoken−ack, (8)

where NTP is the number of messages sent from the current DN to the NN, and ttoken−ack is the time that
takes to send the token and receive an acknowledgment.

3.5 Considerations for lossy networks

The originally proposed DANDi protocol, as described previously in this section, was extensively tested
and assessed [1] using the COOJA network simulator [14]. The simulation setup used a radio medium with
no packet losses and without interference.

A real-world wireless network faces some practical issues such as frame losses (due to interference,
fading, etc.) that must be taken into account in the protocol design and implementation, in order for it to
work properly.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


10 N. Gammarano et al.

The design of the original protocol in a network with real nodes performs poorly. In some cases not all
the sectors or nodes are discovered, and in other cases the protocol does not even finish because the token
messages are lost. Considering these aspects, the protocol design must include mechanisms to cope with
lossy links to guarantee: i) the discovery of all reliable S2S links and ii) the passage of the token.

We analyze the effect of losing the different kind of messages in the original protocol, and we later
present modifications to deal with these issues.

Probe. Losing a probe message may lead to fail to discover some S2S links. If a probe is lost, any NN that
would have received the probe will continue scanning sectors. Depending on the moment the probe is lost,
NNs may receive subsequent probes or fail to discover that particular S2S link if the DN changes its active
sector. To reduce the probability of losing a probe message, the number of probe messages sent without
answer before changing the active sector (Nprobe) can be increased. This would also increase the discovery
time per sector.

Reply. In case a NN’s reply message is lost, the DN will not send the ACK message (sent in the probe
message of the following round), and the NN will send again a new reply. Consequently, there is no need
to introduce modifications. The effect is that more rounds may be needed to discover every S2S link.

Token. The loss of a token message would lead to stop the discovering process, leaving the protocol in
an inconsistent state, so it is fundamental to make the token passage reliable. The token message is then
acknowledged. A timer is used to retransmit the token in case the DN does not receive the ACK message.

Ack. If the ACK message corresponding to a token message is lost, the DN will continue to send token
messages until the corresponding ACK is received (even if the NN received the token correctly). In order to
increase the probability of receiving the acknowledge message, it is sent repeatedly 10 times. This number
is selected to be large enough to ensure that at least one ACK arrives to destination, but as low as possible
to reduce the overall time of the protocol. If the previous DN fails to receive the ACK, but receives any
message that indicates that the target node received the token correctly (a probe message sent by the new
DN or a reply message of any node), it assumes that the token message was correctly delivered and takes
the NN role.

4 Implementation and experimental setup

We implement DANDi in Contiki OS [15], an operating system for wireless sensor nodes with constrained
resources. We based the implementation on the Tmote Sky [16] platform and used the default 6LoWPAN
protocol stack (IEEE 802.15.4 in the 2.4 GHz band).

To validate DANDi, we simulate a network of 16 Tmote Sky nodes with 6-sectored antennas in the
COOJA network simulator. The directional radiation pattern of the antennas is modeled as a function of
the angle between the transmitter and the receiver nodes, and the transmission success is determined by
the signal strength of the received packets, also considering the capture effect. The radio medium does not
consider packet losses or interference from external sources (e.g. WiFi, Bluetooth).

The experiments with real sensor nodes were performed in an office environment with moderate WiFi
interference. We deployed a network of 10 Tmote Sky nodes with 6-sectored SPIDA antennas built in our
laboratory as shown in Fig. 9. The maximum gain of these antennas is 6 dBi with a half-power beamwidth
of 130◦ and no side lobes. Output power was set near the minimum value supported by the radio hardware
(−25 dBm) in order to enable testing the network in a reduced space. In this configuration, the maximum
communication range is around six meters. Ten nodes were distributed over an area of 20 by 8 meters as
shown in Fig. 10.

We compare the performance of DANDi with our own implementation of SAND, developed following
the protocol description available in the original paper [9]. This implementation was validated through
simulations.

We defined the following types of messages according to the protocol: i) probe, ii) reply, iii) token,
and iv) acknowledgment. These messages are sent using link-local addresses. Probe messages are broadcast
(since their destination is any NN), while reply messages are unicast, addressed to the DN.

The parameters of DANDi used in the simulations are shown in Table 1.

Table 1: Parameters of the DANDi protocol used in the simulations

DANDi
Parameter Value
tswitch 62.5 ms
tslot 31.25 ms
Nprobe 13

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


Reducing neighbor discovery time in directional WSN 11

Fig. 9: Tmote Sky node with 6-sectored SPIDA antenna

1

2

3 4

5

6
7

8

9 10

543210

meters

Fig. 10: Network deployed in an office environment

In this implementation, if a NN chooses the first reply slot, it replies immediately after having received
the probe message. This is done to reduce the discovery time, as well as to keep the implementation simple.
As a consequence, the probe slot is very short (negligible) compared to the reply slots, so the time taken
by the probe-reply mechanism of node i can be simplified as:

TPR (i) = tslot

K−1∑
j=0


Rij∑
k=1

{sijk}

 , (9)

and the minimum possible time (in case of no collisions whatsoever) becomes:

TPR (i) = tslot ·K ·Nprobe. (10)

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


12 N. Gammarano et al.

We still have to choose how the number of slots of each round sri is selected depending on the number of
slots sri−1 , the number of collisions cri−1 and the number of discovered neighbors Nri−1 in the past round.
A mathematical way to express this is through a function: sri = f

(
sri−1 , cri−1 , Nri−1

)
. The function we

used in the simulations is the following, based on exponential back-off as mentioned in Sect. 3.1:

sri =

{
1 if i = 0 or cri−1 = 0
2sri−1 otherwise.

(11)

This function strongly impacts in the time required by the protocol to complete. The optimization of the
function used to determine the number of slots of a given round is out of the scope of this paper.

5 Collision detection

One of the key features of DANDi that enables the dynamic contention resolution is the collision detection
mechanism. The DN node must be able to detect if more than one node reply and it results in a collision.
A receiver-side collision detection can be implemented using Cyclic Redundancy Check (CRC) or Clear
Channel Assessment-based (CCA) techniques [17], adopted in some other protocols [18]. We chose to
implement the collision detection based on received signal strength measured by the radio receiver as the
RSSI (Received Signal Strength Indicator).

To determine if a collision occurs, the DN checks the RSSI level during the reply slots. If the RSSI is
above a certain threshold for a certain time, it means one or many NN may have sent a reply message. If
the DN does not receive a reply message it assumes a collision occurred.

The RSSI level is polled repeatedly during the reply slot. In our implementation we were able to obtain a
valid RSSI measurement every 200 µs. A reply packet has 72 bytes of data and takes approximately 2.46 ms
to be transmitted, so we poll the RSSI level around 12 times during the transmission of a reply packet. We
set our threshold to seven consecutive checks were the RSSI is above a certain power level to determine if
a packet is being transmitted. Seven consecutive checks correspond to 1.4 ms. This time restriction is very
important to distinguish between packet collisions and interference. WiFi signals can make the RSSI level
increase significantly for short periods of time, even though the nodes are working in the channels with
lower overlap with WiFi. In the next section, we show that there are no false positive measurements due
to WiFi interference if we consider that a packet transmission should be at least 1.4 ms long.

The power level above which we say there is a packet transmission must be properly selected. On the
one hand, a low threshold close to the radio sensitivity (e.g. −95 dBm for the CC2420 radio of the Tmote
Sky) could increase the number of false positive (FP) detections (a collision is detected and there was none)
due to a high noise level (e.g. Wi-Fi interference). On the other hand, a relatively high threshold could
increase the number of false negative (FN) detections (a collision occurred and it is not detected), resulting
in missing detecting a real collision just because the received signal is low.

A threshold of −88 dB was selected based on empirical experiments, detailed in the next section. We
used the criteria of selecting the lower threshold that resulted in 0 % of FP, even though we know that the
protocol could fail to discover links with an RSSI lower than −88 dB due to FNs in the collision detection
mechanism. The S2S links that we would fail to discover would be the weaker ones, and probably would
not be used for further communication to avoid packet losses even if they were discovered.

5.1 Collision detection evaluation

We performed several experiments to assess the performance of the collision detection mechanism, both in
simulation and with real sensor nodes.

5.1.1 Simulation results

We performed two simulated experiments as a first step in verifying our approach. In experiment #1, we
placed one DN node periodically sending probe messages and one NN node that replied each probe message.
This experiment corresponds to a scenario without collisions and it aims to obtain an estimation of the FP
rate. In experiment #2, we placed a second NN replying the probe messages in the same slot as the other
NN to force collisions. This experiment aims to obtain an estimation of the FN rate.

Table 2 shows the results of the simulation of these experiments.
Results from experiment #1 show that we have no FPs, as no collisions were detected. In experiment

#2, even though there is only one slot for the NNs to reply, the DN is able to receive some packets due to
the capture effect. The remainder cases are collisions correctly detected so we can conclude that we have
no FNs.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


Reducing neighbor discovery time in directional WSN 13

Experiment Probe messages sent Reply messages received Collisions detected
#1 10 000 10 000 0
#2 10 000 924 9076

Table 2: Collision detection simulation results

These results show that the logic of the implementation works fine, but to assess the real performance
we have to test it with real sensor nodes.

5.1.2 Experimental results

We repeat the experiments performed in simulation with real sensor nodes in an office environment (as
described in Sect. 4) adding a third experiment. For experiment #3 we placed a single DN node sending
probe messages, without any NN. The main objective of this experiment was to find out if WiFi interference
was detected as packet collisions. Results from these three experiments are shown in Table 3.

Experiment Probe messages sent Reply messages received Collisions detected
#1 10 000 9561 125
#2 10 000 3016 6822
#3 10 000 0 0

Table 3: Collision detection experimental results

For experiment #1 (scenario without collisions), we can see that we have detected 125 collisions when
we were expecting none. We can also observe that 9561 reply messages were received by the DN. The
remainder cases are probe messages that did not received the corresponding reply message nor were detected
as collisions.

In this kind of networks, depending on the link quality, some packets are expected to be lost. We
analyzed the sequence number of each packet and found that 229 reply messages were lost. When a reply
packet is lost, it is possible that it was sent by the NN but could not be received correctly by the DN due
to interference. If this is the case, the DN would find that the RSSI exceeds the threshold long enough to
mistake it with the collision of two or more reply messages. Then, the 125 detected collisions correspond to
some of the 229 reply messages sent by the NN but not received correctly by the DN due to interference.

For experiment #2 (scenario forcing collisions), we can observe that there are 162 probe messages that
did not receive a reply nor were detected as a collision (10 000−3016−6822 = 162). Analyzing the sequence
number of the packets, we can observe that from these probe messages, 125 were not received by either of
the NN. So the remaining 37 probe messages that were replied by the NN, but not received nor detected
as a collision by the DN are the candidates for FNs. We say candidates because it is also possible that the
NN sent the replies but the DN did not receive any of them. But if we take a worst-case scenario, the FN
ratio would be:

FN ≤ 37

6822 + 37
= 0.54 %.

For experiment #3 we obtained no detections of collisions for 10 000 probe messages transmitted. Based
on the results of the experiments, we can conclude that our implementation is robust to interference from
the environment.

6 DANDi evaluation

This section presents the performance results of the DANDi protocol, and a comparison with the state-of-
the-art protocol SAND. We present both simulation and experimental results with real sensor nodes.

6.1 Simulation results

To assess the protocol effectiveness, we simulate DANDi for different network topologies. In this section we
show the obtained results.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


14 N. Gammarano et al.

20 m

1
2

3

4

5

6

7
8

9

10

11
12

13

14

15

16

S0

S1S2

S3

S4 S5

Fig. 11: Simulated network with 16 nodes. The sectors of all nodes are oriented as shown for node #9

6.1.1 Performance evaluation

In the first place, we simulate the 16-node network shown in Fig. 11 with 25 different simulation seeds. In
every case, there were 666 S2S links discovered in total.

The total time taken by the protocol was 1 min 31 s averaging the 25 simulations. The simulation that
took the least time took 1 min 15 s, and the one that took the longest took 1 min 48 s.

Table 4: Number of S2S links per sector of each node of the network

Node S0 S1 S2 S3 S4 S5 Total
#1 20 18 12 16 15 15 96
#2 16 16 16 15 14 10 87
#3 12 12 6 3 2 7 42
#4 15 11 7 5 5 10 53
#5 7 5 12 13 16 11 64
#6 9 9 15 14 14 16 77
#7 16 8 0 6 13 17 60
#8 0 2 6 13 13 6 40
#9 1 6 12 8 2 3 32

#10 0 0 1 4 3 0 8
#11 1 3 5 4 2 0 15
#12 5 5 4 3 0 1 18
#13 0 1 3 5 1 0 10
#14 6 4 2 3 4 6 25
#15 6 7 3 0 1 3 20
#16 1 2 4 4 5 3 19

Table 4 shows the number of S2S links discovered for each sector of each node in the network. Note that
a node can discover more than one S2S link per neighbor. At most, a node can discover K2 (in our case 36)
S2S links per neighbor. As expected from the position of the nodes, we identify two unevenly dense zones
in the network that generate different number of S2S links per node: a very dense zone near nodes #1 to
#8 (with 40 to 87 S2S links per node) and a lesser dense zone near nodes #10 to #16 (with 8 to 25 S2S
links per node). Node #9 is between both zones with 32 S2S. Another expected result is that the nodes
that are on the edges of the network have no S2S links when pointing away from the network (e.g. the case
of node #10 for sectors S0, S1, and S5).

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


Reducing neighbor discovery time in directional WSN 15

Table 5: Average time taken by the probe-reply mechanism of each sector of each node in the network

Node S0 (s) S1 (s) S2 (s) S3 (s) S4 (s) S5 (s) Total (s)
#1 1.839 1.550 1.083 1.783 1.519 1.261 9.034
#2 2.543 1.340 1.415 1.438 1.421 1.201 9.358
#3 1.215 1.020 0.550 0.406 0.406 1.103 4.700
#4 1.596 1.096 0.611 0.406 0.406 0.863 4.979
#5 0.610 0.406 1.100 1.106 1.359 1.423 6.004
#6 0.888 0.785 1.299 1.759 1.414 1.968 8.111
#7 1.623 0.955 0.406 0.661 1.139 1.835 6.619
#8 0.406 0.406 0.486 1.278 1.311 0.713 4.600
#9 0.406 0.489 1.286 1.029 0.406 0.488 4.104

#10 0.406 0.406 0.406 0.504 0.481 0.406 2.610
#11 0.406 0.476 0.476 0.406 0.406 0.406 2.578
#12 0.421 0.458 0.406 0.492 0.406 0.406 2.590
#13 0.406 0.406 0.478 0.561 0.406 0.406 2.664
#14 0.609 0.428 0.406 0.439 0.406 0.490 2.778
#15 0.551 0.833 0.464 0.406 0.406 0.406 3.066
#16 0.406 0.406 0.525 0.538 0.626 0.450 2.951

Table 5 shows the average time taken by the probe-reply mechanism of each sector of each node in the
network. We can see that for a sector with more S2S links to discover, it takes longer for the probe-reply
mechanism to complete. This result was expected, since more S2S links in a sector generate more collisions
which induce more rounds and thus more time. We can also see that the minimum time taken by the probe-
reply mechanism per sector is 0.406 s. This corresponds with Eq. (10), since TPR (i) /K = tslotNprobe =
(31.25 ms)× 13 = 406.25 ms.

The average of the total values shown in Tables 4 and 5 (last column in both tables) are graphically
presented in Figs. 12 and 13 respectively. Figure 13 also includes the minimum and the maximum time
taken of all simulations.

Node ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ot

al
 n

um
be

r 
of

 S
2S

 li
nk

s

0

20

40

60

80

100

Fig. 12: Total number of S2S links for each node of the network

We see that Figs. 12 and 13 have similar tendencies, confirming that the nodes that take longer to
discover its neighbors are the ones that have more S2S links. We also see in Fig. 13 the minimum time
taken per node (in case there are no collisions between reply messages), calculated using Eq. (10): TPR (i) =
tslotKNprobe = (31.25 ms) × 6 × 13 = 2.4375 s. We observe that nodes #10 to #16 take very close to the
minimum time.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


16 N. Gammarano et al.

Node ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16T

im
e 

ta
ke

n 
by

 th
e 

P
ro

be
-R

ep
ly

 m
ec

ha
ni

sm
 (

in
 s

)

0

5

10

15

20

25

30
Time taken per node
Minimum time taken per node

Fig. 13: Minimum, average and maximum time taken by the probe-reply mechanism for each node of the
network

6.1.2 Comparison with SAND

We also implemented and simulated SAND protocol for the same networks, in order to compare our proposed
protocol DANDi to SAND. We chose SAND protocol given that it is a state-of-the-art fully directional
neighbor discovery protocol, widely used for WSN applications [19]. Like DANDi, SAND is a token-based
protocol in which a single node is discovering neighbors at a time, defining slots and rounds. The number
of slots s and number of rounds r in SAND have the same meaning as in DANDi. But with SAND, s and
r are fixed and set in advance before running the protocol. The parameters of both DANDi and SAND
protocols used in the simulations are shown in Table 6. In order for the comparison to be fair, we used the
same protocol parameters and the same network topologies. We see from Table 6 that the DANDi protocol
is simpler than SAND in that it has less parameters.

Table 6: Parameters of DANDi and SAND protocols used in the simulations

DANDi SAND
Parameter Value Parameter Value
tswitch 62.5 ms tswitch 62.5 ms
tpretoken 31.25 ms tHone-In 31.25 ms
Nprobe 13 h 12

dynamic s and r
s s (Nmax, 99 %)
r r (Nmax, 99 %)

tslot 31.25 ms tslot 31.25 ms
- (not used) tGoToFastScan 31.25 ms

For SAND, the parameters s and r were optimized taking into account the maximum number of neigh-
bors per sector Nmax for each simulated network and a probability of discovering all of them of p = 99 %.
The authors of SAND proposed an algorithm that given Nmax and p, it allows to obtain s and r minimiz-
ing the protocol duration [9,10]. We computed that algorithm in order to make a fair comparison between
DANDi and SAND.

In the first place, we simulated the network shown in Fig. 11 with SAND for s = 5 slots and r = 4
rounds. If s or r were smaller, SAND would take less time to finish, but it would fail to discover all the 666
S2S links with a probability greater than 1 %. The total time taken by SAND was 6 min 46 s. This time
is approximately 4.46 times more than the average time taken by DANDi. In the case of SAND, once the
parameters s and r are fixed, the time the protocol takes is deterministic, and all the nodes in the network

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


Reducing neighbor discovery time in directional WSN 17

take the same amount of time. Even more, each sector of every node in the network takes the same amount
of time to discover its neighbors.

It is clear from the results that for a random network with different number of neighbors in each active
sector of each network node, DANDi outperforms SAND in regard to network discovery time. This is an
expected result because, on one hand, if we choose for SAND a small number of slots s and rounds r
(suitable for sectors with very few neighbors), the sectors that have more neighbors will very likely fail to
discover all of them. On the other hand, if we choose a number of slots s and rounds r large enough (suitable
for sectors with the largest number of neighbors in the network), we can make the probability of discovering
all of those neighbors arbitrarily high, but the time taken by the protocol would be unnecessarily high for
the sectors with few neighbors. In the case of DANDi, r and s are dynamic, in such a way that the time
taken to discover neighbors on a sector is according to the neighbors of that sector. The only time overhead
in DANDi is due to the added probe messages to recover probe gaps in case of contention (round with
number of reply slots greater than one).

Besides reducing considerably the neighbor discovery time, DANDi does not require a previous knowl-
edge of the network. Note that we compared DANDi to the better optimized version of SAND (s = 5 and
r = 4), which was chosen considering the network topology. Since we want to discover all S2S links, even
for the sectors with more neighbors in the network, it is not sufficient to simply estimate the number of
neighbors based on the network density as if the nodes were evenly distributed, but we need the topology
information. In a real deployment, it is not very likely to have such information beforehand. Additionally,
if the network changes (i.e. nodes are added, moved or removed), no changes are required for the DANDi
protocol. However, for SAND protocol, a change in the parameters s and r might be needed to re-optimize
SAND, and all the nodes in the network would have to be reprogrammed with the new parameters.

Next, we proceeded to compare DANDi to SAND for the case of a network with no collisions whatsoever:
every sector must have at most one neighbor. We created the network depicted in Fig. 14, where each node
is in the range of the consecutive nodes only. As there are no collisions, the better optimized version of
SAND is with s = 1 and r = 1. We used those parameters of SAND for this network simulation.

100 m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 14: Simulated network with 16 nodes and no collisions

For both protocols, the 30 S2S links were discovered. We obtained the same results (milliseconds of
difference) for different simulation seeds, both for DANDi and for SAND. This indicates that in the case
of a network with no collisions, DANDi duration is deterministic, as analyzed in Sect. 3.4. DANDi took
51.26 s to discover all nodes, while SAND took 63.29 s. We can see that even in the case where DANDi
performs “worse”, it outperforms SAND in terms of discovery time taking 19 % less.

Using Eq. (5), (8) and (10), and the parameters of DANDi in Table 6 (assuming that ttoken-ack ≈ 0 or
negligible), we obtain TDANDi = 50.25 s, confirming the theoretical equations deduced.

These results show that the DANDi protocol implementation works as expected. We proceeded then to
test it with real sensor nodes.

6.2 Experimental results

6.2.1 Performance evaluation

We deployed the network shown in Fig. 10 composed of ten Tmote Sky nodes equipped with 6-sectored
antennas. We performed the experiments running the DANDi protocol and repeated them six times. The
total times required by DANDi to perform the neighbor discovery in the different experiments were 134 s,
126 s, 124 s, 113 s, 121 s and 109 s, giving an average time of 121 s.

As expected from the position of the nodes, we can see that there are two unevenly dense zones in the
network: a very dense zone near nodes #1 to #6 and a lesser dense zone near nodes #7 to #10.

We observe in Table 7 that nodes in the first zone discover more S2S links in average (between 124 and
171) and, correspondingly take more time (between 9.805 s and 21.820 s). On the other hand, nodes in the
second zone discover lesser S2S links (between 46 and 79), and correspondingly take lesser time (between
3.547 s and 10.852 s). This shows how the protocol dynamically adapts to the network topology, taking
more time in denser zones with more S2S links to discover, and speeding up in zones with less nodes and
less links to discover.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


18 N. Gammarano et al.

Node S2S links Time (s)
#1 125 10.117
#2 137 10.984
#3 132 9.805
#4 158 12.789
#5 171 14.898
#6 124 21.820
#7 75 7.602
#8 79 10.852
#9 75 5.273

#10 46 3.547
Total 1122 107.687

Table 7: Average S2S links discovered and average time taken by the probe-reply mechanism for each node
using the DANDi protocol

6.2.2 Comparison with SAND

For the same network topology, we run SAND protocol with different number of slots and rounds, to
compare it with DANDi. We run SAND (s = 2, r = 2), (s = 3, r = 3) and (s = 5, r = 5), where s is the
number of slots and r is the number of rounds.

Table 8 shows the total number of S2S links discovered in the network (per node and total) for the
different experiments.

Node DANDi
SAND

(s = 2, r = 2) (s = 3, r = 3) (s = 5, r = 5)
#1 125 96 114 129
#2 137 119 150 160
#3 132 105 126 130
#4 158 135 156 163
#5 171 138 152 178
#6 124 74 115 146
#7 75 78 106 110
#8 79 63 79 81
#9 75 69 71 79

#10 46 38 45 52
Total 1122 915 1114 1228

Table 8: Total number of S2S links discovered in the network per node for the different experiments

Table 9 shows the time taken by the probe-reply mechanism of each node.
To compare the total time taken by each protocol, besides the time taken by the probe-reply mechanism,

we have to consider the time required for the token passing present in both protocols. For SAND we also
have to consider the extra time taken by the mechanism needed to locally synchronize the nodes before
beginning the probe-reply mechanism. These total times are shown in Table 10.

Node DANDi (s)
SAND

(s = 2, r = 2) (s) (s = 3, r = 3) (s) (s = 5, r = 5) (s)
1 10.117 4.500 10.125 28.125
2 10.984 4.500 10.125 28.125
3 9.805 4.500 10.125 28.125
4 12.789 4.500 10.125 28.125
5 14.898 4.500 10.125 28.125
6 21.820 4.500 10.125 28.125
7 7.602 4.500 10.125 28.125
8 10.852 4.500 10.125 28.125
9 5.273 4.500 10.125 28.125

10 3.547 4.500 10.125 28.125
Total 107.687 45.000 101.250 281.250

Table 9: Probe-reply time taken by each node of the network for the different experiments

We observe that for the DANDi protocol, the time taken by each node to perform the discovery is
different and depends on the number of neighbors each node has, showing its dynamic property. For SAND,
the time taken by each node to perform the discovery is fixed and depends on the number of rounds and

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


Reducing neighbor discovery time in directional WSN 19

DANDi (s)
SAND

(s = 2, r = 2) (s) (s = 3, r = 3) (s) (s = 5, r = 5) (s)
121 81 137 318

Table 10: Total time taken for the different experiments

slots. To ensure that a node in a dense zone discover all the S2S links, we have to force nodes in lesser
dense zones to take more time to discover their neighbors.

We also see that while SAND[s = 2, r = 2] takes less time than DANDi to finish, it fails to discover
some S2S links in the denser zones.

SAND[s = 3, r = 3] takes more time than DANDi to complete, while it discovers almost the same number
of S2S links than DANDi.

If we compare DANDi with SAND[s = 5, r = 5], we can see that it is 2.6 times faster but it discovers
10 % less S2S links. However, the S2S links that are not discovered by DANDi are the ones with RSSI less
than the collision detection threshold (−88 dB). Those links are not considered as reliable links.

7 Conclusions

DANDi, a fully directional asynchronous and dynamic neighbor discovery protocol for wireless sensor net-
works is proposed, implemented and tested through extensive simulations and experiments with real nodes.
The contention resolution mechanism in which DANDi is based relies on a collision detection mechanism
that is also implemented and tested in simulations and experiments, achieving a FP rate of 0 % and a FN
rate of 0.54 %.

The results of the simulations show that all the reliable S2S links in the network are discovered inde-
pendently of the network topology, and that the sectors that have few neighbors take less time to discover
than the sectors that have more neighbors. The comparison made with SAND, the state-of-the-art protocol
for this kind of networks, showed that DANDi takes from 19 % to 78 % less time to discover the network,
without having to set any parameter depending on the network topology.

The experimental results confirm that DANDi can effectively discover every reliable S2S link in a given
network with a better performance than SAND. While DANDi may fail to discover the weaker S2S links
below the collision detection threshold, SAND may fail to discover some random S2S links if the number of
slots and rounds is not high enough (SAND[s = 2, r = 2] and SAND[s = 3, r = 3]). This could lead SAND
to miss reliable S2S links. If the selected number of slots and rounds is high enough (SAND[s = 5, r = 5]),
the time taken by the protocol is 2.6 times higher than the time taken by DANDi.

To the best of our knowledge, this makes DANDi the fastest neighbor discovery protocol in the state-
of-the-art for WSN with directional antennas, with the additional advantage of being able to discover every
reliable communication link in a network without requiring any prior information of the network topology.

Future work could include combining the RSSI metric with additional information such as CRC checks,
CCA or preamble-based methods in order to improve the collision detection mechanism, reducing false
negatives.

Acknowledgements
The authors would like to thank Fondo Maŕıa Viñas for partially supporting this project (FMV 1 2014 1 104872).

References

1. N. Gammarano, J. Schandy, and L. Steinfeld, “DANDi: Dynamic Asynchronous Neighbor Discovery Protocol for
Directional Antennas,” in 2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC), Nov 2018,
pp. 16–23.

2. S. Vasudevan, J. Kurose, and D. Towsley, “On neighbor discovery in wireless networks with directional antennas,” in
INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings
IEEE, vol. 4. IEEE, 2005, pp. 2502–2512.

3. J. Wang, W. Peng, and S. Liu, “Neighbor discovery algorithm in wireless local area networks using multi-beam direc-
tional antennas,” Journal of Physics: Conference Series, vol. 910, p. 012067, oct 2017.

4. G. D. S. Sidibe, A. Surier, R. Bidaud, G. Delisle, N. Hakem, M. Servajean, B. Rmili, G. Chalhoub, and M. Misson,
“Use of a switched beam antenna in a star wireless sensor network for data collection: Neighbor discovery problem,”
in 2019 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Oct 2019, pp.
21–26.

5. W. Xiong, B. Liu, and L. Gui, “Neighbor discovery with directional antennas in mobile ad-hoc networks,” in 2011
IEEE Global Telecommunications Conference - GLOBECOM 2011, Dec 2011, pp. 1–5.

6. B. El Khamlichi, D. H. N. Nguyen, J. El Abbadi, N. W. Rowe, and S. Kumar, “Collision-aware neighbor discovery with
directional antennas,” in 2018 International Conference on Computing, Networking and Communications (ICNC),
March 2018, pp. 220–225.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4


20 N. Gammarano et al.

7. L. Chen, Y. Li, and A. V. Vasilakos, “On oblivious neighbor discovery in distributed wireless networks with directional
antennas: Theoretical foundation and algorithm design,” IEEE/ACM Transactions on Networking, vol. 25, no. 4, pp.
1982–1993, Aug 2017.

8. Y. Wang, S. Mao, and T. S. Rappaport, “On directional neighbor discovery in mmwave networks,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), June 2017, pp. 1704–1713.

9. E. Felemban, R. Murawski, E. Ekici, S. Park, K. Lee, J. Park, and Z. Hameed, “SAND: Sectored-Antenna Neighbor
Discovery Protocol for Wireless Networks,” in 2010 7th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks (SECON), June 2010, pp. 1–9.

10. R. Murawski, E. Felemban, E. Ekici, S. Park, S. Yoo, K. Lee, J. Park, and Z. Hameed Mir, “Neighbor discovery in
wireless networks with sectored antennas,” Ad Hoc Networks, vol. 10, no. 1, pp. 1 – 18, 2012.

11. N. Gammarano, J. Schandy, and L. Steinfeld, “Q-SAND: A Quick Neighbor Discovery Protocol for Wireless Networks
with Sectored Antennas,” in 2018 Ninth Argentine Symposium and Conference on Embedded Systems (CASE), Aug
2018, pp. 19–24.

12. K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler, “Exploiting the capture effect for collision detection
and recovery,” in Embedded Networked Sensors, 2005. EmNetS-II. The Second IEEE Workshop on. IEEE, 2005, pp.
45–52.

13. “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011),
pp. 1–709, April 2016.

14. F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-Level Sensor Network Simulation with COOJA,”
in Proceedings. 2006 31st IEEE Conference on Local Computer Networks, Nov 2006, pp. 641–648.

15. A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating system for tiny networked
sensors,” in 29th Annual IEEE International Conference on Local Computer Networks, Nov 2004, pp. 455–462.

16. Tmote Sky Datasheet, Moteiv Corporation, June 2006, rev. 1.0.2.
17. M. Demirbas, O. Soysal, and M. Hussain, “A singlehop collaborative feedback primitive for wireless sensor networks,”

in INFOCOM 2008. The 27th Conference on Computer Communications. IEEE. IEEE, 2008, pp. 2047–2055.
18. X. Ji, Y. He, J. Wang, W. Dong, X. Wu, and Y. Liu, “Walking down the STAIRS: Efficient collision resolution for

wireless sensor networks,” in IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, Apr. 2014,
pp. 961–969.

19. A. Varshney, L. Mottola, M. Carlsson, and T. Voigt, “Directional transmissions and receptions for high-throughput
bulk forwarding in wireless sensor networks,” in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2015, pp. 351–364.

This is a pre-print of an article published in Design Automation for Embedded Systems. The final authenticated version is
available online at: https://doi.org/10.1007/s10617-020-09236-4.

https://doi.org/10.1007/s10617-020-09236-4

	Introduction
	Related work
	DANDi protocol description
	Implementation and experimental setup
	Collision detection
	DANDi evaluation
	Conclusions

