Detección y caracterización de plásmidos asociados a resistencia a antibióticos en muestras de Península Fildes (Isla Rey Jorge).

Tesis de Maestría en Biología, sub-área microbiología PEDECIBA

Estudiante: Lic. Matías Giménez^{1, 2} Orientadora: Dra. Silvia Batista¹ Co-orientador: Dr. Gregorio Iraola² Co-orientador: Dr. Gastón Azziz¹

¹ Grupo de Microbiología Molecular, Departamento de Bioquímica y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable.

² Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo.

Agradecimientos

En primer lugar quiero agradecer a Silvia por permitirme desarrollar este trabajo con una libertad que es difícil de encontrar en otros ambientes de trabajo. El ser tenido en cuenta al plantear objetivos y técnicas en este trabajo me ha hecho trabajar con entusiasmo en esto y sentirme valorado en todo momento. También quiero agradecer a Gastón por el tiempo y los consejos a lo largo del trabajo.

A Gregorio por recibirme en Pasteur cuando fui con algunas preguntas, por todo el conocimiento y el apoyo en el desarrollo de este trabajo. A mis compañeros del Laboratorio de Genómica Microbiana por la disposición a ayudar siempre, varias ideas que surgen de ellos están presentes en este trabajo. También a la Unidad de Bioinformática que junto con el LGM hacen del trabajo en Pasteur algo muy disfrutable.

A mis compañeros del Depto. De Bioquímica y Genómica Microbiana de IIBCE por la compañía y el apoyo desde que comencé a trabajar en ciencia, algunas ideas surgidas en intercambios con ellos también son parte del trabajo. A mis compañeros de Microbiología Molecular por la ayuda en las tareas de laboratorio y por hacer de mi rutina algo que disfruto.

Por último, agradecer a los evaluadores de este trabajo por aceptar corregirlo en un momento en el que el tiempo es escaso y complicado de organizar y por la excelente disposición para aportar ideas y conocimiento en esta etapa del proceso de aprendizaje.

Contenido

Resumen5						
1	1 Introducción					
	1.1 Transferencia horizontal de genes					
	1.2 Plásmidos					
	1.2.1	Estructura general de los plásmidos	8			
	1.2.2	Conjugación	10			
	1.2.3	Métodos de estudio de plásmidos	11			
	1.2.4	Estrategias para el estudio de plásmidos a partir de metagenomas ambiental	es 13			
	1.3 Biolog	ía de la resistencia a antibióticos: mecanismos y evolución	14			
1.4 Dispersión de genes de resistencia a antibióticos1						
1.5 Rol de los EGM en la emergencia de patógenos resistentes a antibióticos						
1.6 El ambiente antártico y su impacto						
2	Metodolo	gía	22			
	2.1 Toma de muestras					
	2.2 Extracción de ADN					
	2.3 Secue	nciación de metagenomas	24			
	2.4 Ensayos de conjugación					
	2.5 Construcción de una cepa receptora para captura exógena de plásmidos					
	2.6 Ensay	o de captura exógeno de plásmidos	25			
	2.7 Caract	terización de plásmidos capturados	26			
	2.7.1 V	isualización de plásmidos en aislamientos	26			
	2.7.2 Ex	xtracción de ADN plasmídico	27			
	2.7.3 C	aracterización de plásmidos a través de técnicas moleculares	27			
	2.7.4 A	nálisis de secuencia de plásmidos a partir de cepa transonjugante	29			
2.8 Desarrollo de <i>plaSquid</i> : herramienta para la búsqueda y clasificación de plásmidos partir de datos de secuenciación.						
	2.8.1 C	omparación de <i>plaSquid</i> con otras herramientas similares	32			
	2.8.2 A	nálisis de <i>contigs</i> metagenómicos	33			
3	Resultado	S	33			

3.1 Captura exógena de plásmidos a partir de muestras ambientales
3.1.1 Caracterización de plásmidos obtenidos
3.1.2 Secuenciación del genoma de la cepa transconjugante
3.2 Validación de estrategia de detección de plásmidos en metagenomas dependiente de una base de datos plasmídica40
3.3 Comparación de <i>plaSquid</i> contra otras herramientas de detección de plásmidos 43
3.3.1 Comparación utilizando genomas de referencia
3.2.2 Comparación utilizando datos de metamobiloma46
3.4 Análisis de secuencias plasmídicas en metagenomas ambientales
3.5 Análisis de GRAs y GRBMs en metagenomas50
4 Discusión
4.1 Ensayo de captura exógena de plásmidos53
4.2 Diseño de la herramienta <i>plaSquid</i> para la detección de secuencias plasmídicas en datos de secuenciación masiva58
4.3 Análisis de metagenomas61
5 Bibliografía66
6 Anexos

Resumen

La Resistencia a antibióticos es uno de los mayores problemas de salud pública que enfrentamos actualmente. Hay consenso en que este problema debe ser abordado desde la perspectiva de *Una salud*, en la cual se toma en cuenta el equilibrio entre la salud humana, ambiental y animal. En este sentido, la Transferencia Horizontal de Genes (THG) cumple un rol fundamental en la adaptación de las comunidades microbianas, ya que permite el pasaje de genes entre bacterias que habitan diversos ambientes. Los plásmidos son plataformas genéticas móviles que permiten la THG, principalmente por conjugación, de manera altamente regulada y efectiva. El objetivo de esta tesis es analizar la presencia de plásmidos y los genes que estos albergan en muestras de suelo provenientes de la Península Fildes (Isla Rey Jorge, Antártida marítima), colectadas en tres sitios expuestos a diferentes impactos ambientales.

El abordaje utilizado incluyó técnicas que permitieran reducir el sesgo que genera el cultivo a partir de este tipo de muestras. Para ello, se secuenciaron metagenomas de muestras provenientes de un sitio cercano a la cámara séptica de la Base Científica Antártica Artigas (BCAA), expuesto al impacto humano, un sitio de cría de pingüinos (IA) y otro alejado de las bases científicas y, presumiblemente, con una reducida presencia de fauna (HTP). Para el análisis de estos metagenomas se desarrolló una herramienta que permite la búsqueda de secuencias plasmídicas a partir de ensamblados genómicos o metagenómicos. Por otra parte, se evaluó la capacidad de transferir algunos fenotipos de resistencia a *Escherichia coli*. Para esto se hicieron ensayos de captura exógena de plásmidos, seleccionando específicamente aquellos que confieren resistencia a antibióticos y analizando luego los genes involucrados.

Los resultados obtenidos indican que la muestra tomada del sitio expuesto a un mayor impacto humano fue la única en la que se detectaron plásmidos portando genes de resistencia antibiótica (GRAs). Además, se pudo determinar que en esta muestra existe contaminación fecal humana, a través del mapeo de *reads* contra el genoma del fago crAssphage. Debido a esto, creemos que estos plásmidos podrían provenir directamente de la microbiota humana que es introducida al ambiente, a través de pérdidas en los sistemas de tratamiento y acopio de efluentes. Al comparar el metagenoma de esta muestra con la colectada en los sitios expuestos a un alto impacto animal (IA), se encontraron proporciones similares de genes conservados en plásmidos. Sin embargo, esta última exhibió una menor ocurrencia de GRAs. A su vez, la única muestra que dio resultados positivos en la captura exógena de plásmidos fue, nuevamente, la muestra proveniente de las cercanías de BCAA. Los plásmidos capturados fueron secuenciados, mostrando resultados concordantes al análisis de metagenomas de dicha muestra. Se obtuvo un plásmido conjugativo y varios plásmidos movilizables que contienen genes de resistencia a sulfonamidas, macrólidos, aminoglicósidos y tetraciclinas.

1 Introducción

1.1 Transferencia horizontal de genes

La Transferencia Horizontal de Genes (THG) es un proceso que consiste en la transferencia de material genético entre células, independientemente de que esto involucre la generación de descendencia. En general, se considera que la THG abarca una célula donadora, que dona material genético, y una célula receptora que lo incorpora. La integración en el genoma de fragmentos nucleotídicos adquiridos por transferencia horizontal puede ser deletérea (Elena et al., 1998). Las células que sufren este proceso se tienden a perder de la población, de la misma forma que se pierden las mutaciones deletéreas. Sin embargo, de manera aleatoria, las variantes generadas por THG pueden resultar ventajosas para la célula receptora y de esta forma se pueden perpetuar dentro de la comunidad en la que se encuentra (Thomas & Nielsen, 2005). Este proceso tiene una gran implicancia en la generación de diversidad en los genomas bacterianos y en la capacidad de adaptación de bacterias a cambios ambientales.

Debido al advenimiento de las técnicas de secuenciación masiva se ha logrado comparar genomas completos a gran escala. Esto ha permitido reconocer una cantidad de eventos de THG mucho más amplia de la que se creía. De hecho, se ha observado que este proceso evolutivo se puede dar en cualquier dominio de la vida, e incluso entre distintos dominios. Sin embargo, en procariotas existen mecanismos estables y regulados que permiten y facilitan la THG. Esto hace que las tasas de THG sean más importantes en procariotas que en cualquier otro dominio. Dagan et al. (2008) encontraron que el 81% \pm 15% de los 539.723 genes de 181 genomas procariotas evaluados fueron transferidos de manera horizontal en algún momento de la evolución de dichos genomas. Por otro lado, Gophna, Doolittle, & Charlebois (2005) tomaron el ejemplo particular de Thermotoga maritima, una bacteria hipertermófila del orden Thermotogales. En este caso se observó que existe un relacionamiento filogenético cercano con el dominio Archaeae. Algunas especies de ese dominio y esta bacteria ocupan un nicho ecológico similar dada su resistencia a las altas temperaturas. En ese trabajo observaron que si se construían los árboles filogenéticos con distintos conjuntos de genes, el posicionamiento de los organismos de esta especie dentro del árbol variaba entre Gram positivos (filogenéticamente coherente) y arqueas, lo que sugeriría intercambios de genes entre estos microorganismos. El conjunto de evidencias que destacan la importancia de la THG, tanto en la evolución como en las relaciones filogenéticas, ha hecho que en algunos trabajos se discuta la validez de representar los procesos evolutivos con árboles, en lugar de hacerlo con redes u otros modelos que tengan en cuenta explícitamente los procesos de THG (Soucy, Huang, & Gogarten, 2015).

Según la hipótesis de la complejidad, los genes que tienden a ser exitosos en procesos de transferencia horizontal son aquellos que codifican para productos génicos que necesitan menor cantidad de interacciones con otros genes para dar un fenotipo determinado. De esta forma, los genes "informacionales" son menos transferidos de manera horizontal que los genes "operacionales" (Cohen et al., 2011). Un ejemplo claro de estos últimos son los **g**enes determinantes de **r**esistencia a **a**ntibióticos (GRAs). Estos muchas veces consisten en un único

gen que al ser expresado en el hospedero correcto puede otorgar un fenotipo de resistencia. Por otro lado, se sabe que en procariotas hay una fuerte selección hacia la reducción genómica. Esto hace que sea necesario transferir menor cantidad de ADN para encontrar productos funcionales (Ochman, Howard and Davalos, 2006). Existen también elementos genéticos móviles (EGMs), que en lugar de proveer una ventaja adaptativa al hospedero tienen mecanismos para asegurar su estabilidad luego de la transferencia. En general se los denomina elementos genéticos "egoístas" y pueden ser plásmidos, fagos u otros. (Werren, 2011)

Como se mencionó en ejemplos anteriores, se ha visto que la THG se puede dar entre bacterias que se encuentran distantes en términos filogenéticos (incluso entre organismos de diferentes dominios). Cuando la THG se da entre organismos distantes en términos filogenéticos, las secuencias transferidas son más fáciles de identificar como foráneas. Esto se debe principalmente al sesgo en el uso de codones sinónimos que existe entre especies y que se puede estudiar a través del contenido G+C de la secuencia. Sin embargo, también se conoce que la THG no es el único proceso que afecta este parámetro, por lo cual estos resultados deben interpretarse con cautela (Lawrence & Ochman, 2002).

Dada la importancia de la THG en la genómica y evolución de bacterias, se ha desarrollado el concepto de 'super-genoma'. De acuerdo a este concepto, el *pool* genético de las bacterias de una comunidad no se limita solo a los genes particulares contenidos en sus cromosomas, sino que también incluye un *pool* de genes comunal, que se encuentran alojados en EGMs de distintas bacterias presentes en esa comunidad (Norman, Hansen, & Sorensen, 2009). En este mismo sentido, se observó que puede existir una gran diversidad en el contenido de genes de bacterias que pertenecen a una misma especie. De este modo, se definió el genoma *core*, que se compone de los genes compartidos por todos los organismos de una especie, y el genoma *dispensable*, que comprende los genes que no aparecen en los genomas de todos los individuos de esa especie (Lawrence & Hendrickson, 2005).

Existen diferentes mecanismos a través de los cuales los microorganismos pueden transferir material genético. Algunas bacterias pueden adquirir un estado de competencia natural, en el cual son capaces de internalizar ADN exógeno (Lorenz & Wackernagel, 1994). En primera instancia se forma un complejo núcleo-proteico que une el ADN exógeno a la membrana citoplasmática, de modo independiente de la secuencia. A partir de esto se expresan genes del sistema de secreción tipo II (T2SS) y del *pilus* tipo IV (T4P) que forman un *pseudo-pilus* de competencia que acerca el ADN a la maquinaria de translocación, que se encuentra en la membrana citoplasmática. Este proceso es activo, involucrando la hidrólisis de ATP. De hecho, las proteínas que realizan este paso se clasifican como transportadores ABC (*ATP Binding Cassettes*) (Chen & Dubnau, 2004).

Otro mecanismo importante para la THG entre procariotas es la transducción. En este proceso, los bacteriófagos median el pasaje de ADN entre bacterias. Esto se debe a que cuando un profago se escinde del cromosoma, puede encapsular parte del genoma de la bacteria hospedera (Riquelme et al., 2019). Cuando el genoma del profago se escinde con ADN bacteriano adyacente al sitio en el que se encontraba insertado, se conoce como transducción especializada. Sin embargo, cuando existe una ruptura del genoma del hospedero, en un proceso denominado transducción generalizada. Ambos tipos de eventos deben culminar con el bacteriófago infectando otra célula bacteriana y transfiriendo el ADN encapsulado en el paso anterior. Últimamente se han descripto los *Gene Transfer Agents*, éstos se describen como fagos que han perdido la capacidad de albergar parte de su propio genoma. Estos encapsidan y

transfieren parte del genoma del hospedero, pero requieren que el hospedero exprese las proteínas de su cápside (Lang, Zhaxybayeva, & Beatty, 2012).

Por último, el proceso de conjugación permite la transferencia de plásmidos o elementos integrativos conjugativos (EIC) entre una bacteria donadora y una receptora. La conjugación tiene un rol ecológico y evolutivo fundamental en las comunidades bacterianas. Se reconoce que este es uno de los mecanismos de THG mejor regulado y por lo tanto más efectivo en cuanto a la evolución de genomas bacterianos (Norman, Hansen, & Sørensen, 2009). El mecanismo a través del cual sucede la conjugación será tratado en detalle en las siguientes páginas.

1.2 Plásmidos

1.2.1 Estructura general de los plásmidos

Los plásmidos son moléculas circulares de ADN doble cadena que tienen la capacidad de replicarse de manera autónoma, aunque en algunos casos también se pueden encontrar lineales. La única característica obligatoria de un plásmido es su capacidad de replicarse de forma independiente del cromosoma. El conjunto de secuencias que aseguran la replicación de un plásmido se denomina replicón. Estas secuencias son objeto de estudio en la biología de plásmidos, no sólo debido a que permiten que estos se mantengan en una línea celular sino que también han sido utilizados para su clasificación. La presencia del mismo replicón en dos plásmidos es tomada como indicador de un origen evolutivo común. A partir de esto, los plásmidos se clasifican en grupos de incompatibilidad.

La incompatibilidad fue descrita por primera vez por Novick, Richmond y Hill (1965), quienes observaron que dos plásmidos que comparten secuencias reguladoras de la replicación no podían co-existir en la misma línea celular, en ausencia de una presión selectiva para ambos replicones. La explicación de este fenómeno radica en la interferencia entre las reacciones bioquímicas que ocurren en *trans* dentro de la célula. Básicamente, el *pool* de proteínas iniciadoras de la replicación (PIRs) producido a partir de ambos plásmidos compite por unirse a secuencias repetidas, denominadas iterones, que están presentes en ambos replicones. Esta unión constituye el primer paso en el inicio de la replicación. De manera estocástica, uno de los dos plásmidos será replicado con menor frecuencia, dado que las PIRs producidas no podrán diferenciar entre iterones de uno y otro plásmido. Debido a esto, luego de algunas generaciones uno de los dos plásmidos se perderá de la línea celular. A las PIRs e iterones correspondientes se los denomina determinantes de incompatibilidad. Otros determinantes de incompatibilidad comunes son las secuencias que controlan la segregación en plásmidos de alto peso molecular y las secuencias reguladoras del número de copias en algunos plásmidos.

Las secuencias del replicón también determinan la especificidad del plásmido para replicarse en un hospedero. Algunos plásmidos pueden tener replicones muy pequeños, como por ejemplo los plásmidos del tipo ColE1. Sin embargo, esto acota la capacidad de replicarse en hospederos diferentes. Este tipo de plásmidos se denomina de espectro reducido de hospedero. En el otro extremo se ubican los plásmidos del grupo de incompatibilidad IncQ que tienen 3 proteínas diferentes involucradas en la replicación, codificadas a partir del propio plásmido. Esto hace que dependa menos de la interacción con proteínas del hospedero para replicarse efectivamente y por tanto aumenta la capacidad de replicarse en múltiples hospederos, desde bacterias Gram positivas a Gram negativas y cianobacterias (Rawlings & Tietze, 2001). También se conocen plásmidos que tienen más de un replicón. En este caso, pueden evitar la incompatibilidad expresando distintos replicones dependiendo de los plásmidos que co-existan en una célula. Por otra parte, podrían aumentar la capacidad de replicarse en diversos hospederos (Tang et al., 2017).

Uno de los modelos de replicación más estudiados en plásmidos es el de replicación por iterones. En este caso, se encuentran presentes secuencias denominadas iterones, que son repetidos que se ubican cercanos a una secuencia DUE (*DNA unwinding element*), rica en AT y por lo tanto de fácil desnaturalización. La PIR se une específicamente a los iterones del grupo de incompatibilidad al que corresponde ese replicón, a través de un dominio de unión al ADN (Giraldo & Fernández-Tresguerres, 2004). Además recluta proteínas del hospedero como la DnaA en *Escherichia coli*, las cuales se unen directamente a la ADN polimerasa que será la encargada de comenzar a replicar el plásmido desde el origen de replicación que se encuentra dentro de la secuencia DUE.

La regulación del número de copias en este tipo de plásmidos se da a través de un fenómeno denominado *handcuffing* o esposado. Al aumentar demasiado el número de copias de un replicón determinado, se promueve la unión de los plásmidos a través de las secuencias homólogas de los replicones. Esto genera que la proteína iniciadora no se pueda unir a los iterones y por tanto cesa la replicación de estos replicones (Chattoraj, 2000).

Existen otros tipos de replicones que han sido muy estudiados y caracterizados, como los denominados ColE1. En este caso el control de la replicación viene dado por un ARN antisentido denominado RNAI, el descubrimiento de este mecanismo de control fue la primera descripción de un ARN antisentido como regulador de la replicación. La replicación de estos plásmidos es iniciada por la transcripción de una molécula de 550 pares de bases, denominada RNAII, la cual está codificada en *cis* respecto al origen de replicación. Esta se une a una secuencia complementaria de ADN, próxima al origen de replicación, formando un híbrido ARN-ADN. Este híbrido de RNAII es clivado por la RNAasaH para que pueda actuar como cebador para la ADNpolI, que es la polimerasa encargada de copiar el plásmido. El control de la replicación está dado por el ARN antisentido RNAI, que se une de manera complementaria al RNAII en su región 5'. La unión de este ARN antisentido favorece plegamientos de RNAII que inhiben la formación del híbrido RNAII-DNA, por lo cual no se da el clivaje de RNAII por parte de la RNAasaH. Esto inhibe la posibilidad de que se inicie la copia del plásmido por parte de la ADNpoII (Cesareni, Helmer-Citterich & Castagnoli 1991; Solar et al. 1998)

Los replicones de tipo ColE1 son de espectro reducido de hospedero y de alto número de copias. Se replican en enterobacterias y generalmente son plásmidos pequeños, no conjugativos, pero que pueden ser movilizados por diversos mecanismos. Como consecuencia de su adaptación a replicarse en enterobacterias, estos plásmidos no utilizan ni codifican PIRs y por tanto generan bajo costo metabólico (*fitness cost*) para mantenerse. Estos plásmidos suelen carecer de módulos de estabilización de replicones como los sistemas toxina/antitoxina o módulos de partición. De esta forma, estos replicones se podrían ver como estrategas *r*, ya que su permanencia se basa en la presencia de un alto número de copias. Este mecanismo está permitido por el bajo costo metabólico de mantenimiento y permite perpetuarse en las células hijas de manera estable. Este tipo de plásmidos ha sido muy estudiado y se encuentra muy representado en las bases de datos de plásmidos.

1.2.2 Conjugación

La conjugación es un proceso a través del cual un plásmido o elemento integrativo conjugativo (EIC) puede transferirse a otro hospedero de manera horizontal. Esto viene dado por la formación de un pili de conjugación entre las bacterias donadora y receptora, a través del cual se transfiere el plásmido o EIC en cuestión. Este canal de conjugación es estrecho, por lo cual también es necesario el procesamiento del ADN previo y posterior a la transferencia. Todos los genes implicados en la formación del pili y del procesamiento del ADN durante la transferencia están contenidos en los plásmidos conjugativos (Samuels, Lanka, & Davies, 2000). El tamaño de ambos módulos varía pero se encuentra en el orden de las 25 kb, por lo cual los plásmidos conjugativos suelen ser grandes y con medio o bajo número de copias.

Los plásmidos conjugativos contienen dos módulos de genes que le dan la posibilidad de ser conjugados efectivamente. Por un lado, la región Dtr (DNA transfer replication) contiene la información encargada del procesamiento del ADN previo y posterior a la transferencia. El ADN plasmídico se transfiere de forma lineal y monohebra, por lo cual requiere de enzimas que ayuden en su procesamiento. En este sentido, las relaxasas (Rel) juegan un rol fundamental. Estas proteínas contienen diferentes dominios que les permiten cumplir varias funciones en el proceso de transferencia. Las relaxasas en primera instancia reconocen el sitio OriT u origen de transferencia del plásmido que las codifica y se unen a través de un loop formado como consecuencia de una secuencia palindrómica. Este complejo núcleo-proteico es denominado relaxosoma y es la forma a través de la cual el ADN plasmídico es transferido. A su vez, las relaxasas tienen actividad topoisomerasa, por lo cual cortan el ADN en el sitio de unión, para aliviar las tensiones topológicas que se generen durante el proceso de transferencia. El ADN se transfiere en forma de monohebra y aquí la proteína mencionada actúa en el reconocimiento del canal de conjugación y en la estabilización del ADN durante la transferencia. Una vez que se encuentra en la célula receptora, la proteína, a partir de su actividad primasa, permite la copia de la hebra complementaria a partir del sitio OriTy el restablecimiento del plásmido en su forma circular. La unión de la relaxasa al plásmido durante la transferencia también es importante para que este no sea degradado por exonucleasas, que actúan sobre el ADN monohebra que ingresa a una célula receptora. (Grohmann et al., 2017).

Por otro lado, también es necesaria la formación de un canal de conjugación para el pasaje del ADN. Se ha visto que las proteínas que forman este canal de conjugación pertenecen a la familia del sistema de secreción tipo IV (T4SS). Esta familia de proteínas está vinculada a la secreción de macromoléculas a través de la membrana en sistemas de patogenicidad. El pasaje del ADN a través del canal formado es un proceso activo acoplado a la hidrólisis de ATP y guiado por la relaxasa (Fernandez-Lopez et al., 2017)(Llosa & De La Cruz, 2005).

Los plásmidos también pueden ser movilizables si cuentan únicamente con los genes vinculados al procesamiento del ADN durante la transferencia. En este caso necesitan de otro plásmido o EIC que cuente con los genes para la formación del canal de conjugación a través del cual pueden ser transferidos. De hecho, se ha determinado que las estructuras mínimas para que un plásmido pueda ser transferido por conjugación es la presencia de un OriT. En este caso, el plásmido podría utilizar todas las proteínas codificadas en otro plásmido (o EIC) para lograr la conjugación (Smillie et al., 2010). Los plásmidos movilizables han sido clasificados según la secuencia de las relaxasas que contienen. Se ha visto que la filogenia de estas proteínas se distribuye en 6 familias claramente identificadas (MOB_V, MOB_Q, MOB_P, MOB_H, MOB_F y MOB_C). Este esquema de clasificación tiene la ventaja de ser directamente dependiente del análisis de secuencia y por

tanto es menos trabajoso que la clasificación clásica en grupos de incompatibilidad(Garcillán-Barcia, Francia, & De La Cruz, 2009).

1.2.3 Métodos de estudio de plásmidos

Análisis dependiente de cultivo

Clásicamente, los métodos utilizados para el aislamiento y estudio de plásmidos son dependientes del cultivo. Es decir, que se parte de microorganismos cultivados para poder aislar los plásmidos. Esto tiene la ventaja de que es posible identificar al hospedero y por tanto se puede tener noción de la ecología de dicho microorganismo. Generalmente se pueden utilizar medios selectivos que permitan buscar determinados fenotipos tales como resistencia a antibióticos o degradación de compuestos, lo que inevitablemente introduce un sesgo. A partir de los aislamientos se pueden utilizar diferentes técnicas para el análisis de la presencia de plásmidos. Una de las principales dificultades en este sentido es la ruptura del plásmido como consecuencia de la técnica de obtención empleada, especialmente cuando este es de alto peso molecular.

Una de las técnicas más comunes para la recuperación de plásmidos de gran tamaño involucra la técnica de lisis *in situ*. En este procedimiento, se colocan directamente las células de un cultivo en el pocillo de un gel de electroforesis y se utilizan diferentes reactivos para generar la lisis dentro del mismo. Luego de esto, el gel se somete a un campo eléctrico para separar y visualizar los plásmidos sin romper su estructura (Eckhardt, 1978). Los plásmidos visualizados pueden ser purificados a partir del gel para luego continuar con su análisis. Existen algunas variantes de esta técnica que no utilizan el procedimiento de lisis *in situ*, pero que sí se basan en muy pocos pasos de manipulación del ADN para no romper los plásmidos que puede tener el aislamiento estudiado (C. I. Kado & Liu, 1981).

Otra de las técnicas utilizadas clásicamente para purificar plásmidos de gran tamaño es la ultracentrifugación en gradiente de densidad con CsCl y en presencia de bromuro de etidio. Esta técnica permite aislar moléculas de ADN de diferentes densidades, separando las moléculas de ADN lineal de las circulares cerradas covalentemente. Los tubos en los que se centrifugan las extracciones de ADN son revelados bajo luz UV. Al detectar y visualizar las zonas fluorescentes que indican la presencia de los plásmidos de interés, éstos se pueden extraer utilizando una jeringa. Esta técnica permite el aislamiento de plásmidos con alta integridad a partir de un hospedero (Clewell et al., 1974; Womble, Taylor, & Rownd, 1977).

Luego de obtener los plásmidos aislados, estos pueden ser transformados a nuevos hospederos conocidos, como *E. coli*, para estudiar características fenotípicas que puedan estar codificadas en el plásmido. También se puede ensayar la transformación y permanencia del plásmido en distintos organismos, para explorar su espectro de hospedero, lo cual es una característica importante en la ecología de un plásmido. Por último, una de las técnicas más utilizadas para el estudio de plásmidos es el análisis dela secuencia nucleotídica del plásmido.

Análisis independiente de cultivo

Existen muchas estrategias independientes de cultivo para el análisis de plásmidos en distintos ambientes. En general, las técnicas involucran en primer término la extracción del ADN total de la muestra. Este ADN se usa como templado en reacciones de PCR, con cebadores (*primers*) específicos para detectar la presencia de plásmidos de determinados grupos de incompatibilidad. Esta técnica se denomina *PCR-based replicon typing* y se basa en la detección de secuencias conservadas en los replicones de cada grupo de incompatibilidad y la posterior confirmación de la secuencia amplificada, ya sea por *Southern blot* o directamente por análisis de secuencia de los productos de PCR (Götz et al., 1996; Orlek et al., 2017). Esta técnica únicamente detecta los tipos de replicones presentes, y previamente descritos, en una muestra.

Otra de las técnicas utilizadas para la detección de plásmidos es la transformación directa del ADN ambiental total en un hospedero, como puede ser *E. coli*. Además, es necesario que dicho plásmido permita la expresión de un fenotipo en particular que pueda ser seleccionado para detectar su presencia. Luego de esto se puede extraer el ADN plasmídico y continuar caracterizando dicho plásmido. Esta técnica introduce grandes sesgos debido a que es necesario que el plásmido capturado a través de la transformación se replique en el hospedero utilizado y que llegue a expresar el fenotipo utilizado como selección.

Para independizarnos del sesgo asociado al hospedero, se ha desarrollado una técnica conocida como TRACA o transposon aided capture, la cual es independiente de cualquier característica codificada por el plásmido capturado (Jones & Marchesi, 2007). Esta técnica incluye como primer paso la digestión del ADN lineal presente en la preparación de ADN total con una DNAasa plasmid-safe. Este paso eliminaría el ADN cromosomal, dado que los protocolos de purificación promueven en general la ruptura de las cadenas de ADN, generando fragmentos de ADN lineal. Los plásmidos son usualmente circulares y suelen conservarse sin ruptura, excepto los megaplásmidos. El protocolo se continúa con una transposición in vitro con un transposón, disponible comercialmente, que contiene un origen de replicación activo en E. coli y un gen de resistencia a antibiótico como nptll, que confiere resistencia a aminoglicósidos. La mezcla de reacción incluyendo los productos de esta transposición se transfiere a células de E. coli. Los clones recombinantes resistentes al antibiótico deberían contener plásmidos con el transposón inserto. La replicación de esos plásmidos se asegura por la presencia del origen de replicación contenido dentro del transposón. En este caso se reducen ampliamente los sesgos del método anterior. Esta estrategia ha sido ampliamente usada para estudiar el moviloma de diferentes comunidades, recuperando plásmidos que no eran conocidos hasta el momento (Jones, 2010; Warburton et al., 2011; Zhang, Zhang, & Ye, 2011).

Otra de las estrategias diseñadas para la detección de plásmidos a partir de muestras ambientales involucra también la digestión del ADN ambiental total con la exonucleasa *plasmidsafe* que degrada el ADN lineal. Esto deja intacto únicamente el ADN circular que incluye plásmidos, fagos y otros elementos genéticos circulares. Debido a que generalmente el ADN circular se encuentra en muy baja concentración, se utiliza la polimerasa de fago phi-29 para amplificar el ADN circular. Esta polimerasa amplifica específicamente ADN circular por Amplificación de círculo rodante (RCA). Cuando se agregan múltiples cebadores degenerados se logra amplificar de manera exponencial los elementos circulares (Dean et al., 2001). A partir de esto se obtiene ADN suficiente para secuenciar los elementos circulares recuperados de la

muestra en cuestión. Es importante tener en cuenta que no solamente los plásmidos son elementos circulares, por lo cual se debe realizar un análisis *in silico* de las secuencias obtenidas, para determinar si su origen es plasmídico o de otro elemento circular. Esta es una de las estrategias más utilizadas para el análisis a gran escala de EGMs en una comunidad determinada, ya que es totalmente independiente de hospederos o características codificadas en el plásmido. Esto ha generado una ampliación de las bases de datos de plásmidos a partir de los resultados de estudios que aplicaron esta metodología (Jørgensen et al., 2014; Kav et al., 2012).

Otra de las estrategias exitosas para la detección y captura de plásmidos en comunidades ambientales es el aislamiento exógeno de plásmidos. Esta metodología consiste en la utilización de un hospedero marcado con algún tipo de fluoróforo, como el gen que codifica para la proteína Gfp, para conjugar con las bacterias de la comunidad a estudiar. Se realiza un ensayo de conjugación y luego se selecciona algún carácter fenotípico de interés como resistencia a metales o antibióticos. En comunidades complejas pueden existir muchos microorganismos con resistencia intrínseca o que alberguen en sus cromosomas los genes implicados, por lo cual no es suficiente con utilizar medios selectivos para detectar las bacterias transconjugantes, y es por ello que se realiza también el *screening* por fluorescencia de la bacteria receptora. A su vez, también es necesario realizar un control de bacterias fluorescentes en la comunidad estudiada. Los plásmidos que se recuperan a partir de esta estrategia son capaces de conjugar y replicarse en el hospedero utilizado. Esta estrategia también ha sido utilizada exitosamente para el estudio de plásmidos en diferentes comunidades (Binh et al., 2008; Kopmann et al., 2013; K. Smalla et al., 2000).

1.2.4 Estrategias para el estudio de plásmidos a partir de metagenomas ambientales

Una de las técnicas para el estudio de comunidades microbianas que ha cobrado gran importancia en la última década ha sido la metagenómica. Este cambio metodológico ha sido potenciado por un importante descenso en el costo de secuenciación y por el hecho de que en la mayoría de los ambientes se recupera una baja proporción de bacterias por técnicas dependientes de cultivo. Además de aportar información muy detallada de la composición genómica de las diferentes comunidades, introduce pocos sesgos durante el procesamiento, por lo cual es preferible respecto a otras técnicas de biología molecular (Mahnert et al., 2019; Wooley, Godzik, & Friedberg, 2010).

Actualmente, las tecnologías de secuenciación permiten obtener gran cantidad de información en muy poco tiempo, a bajo costo y de manera automatizada. Esto ha permitido el avance de la ecología microbiana desde diversas perspectivas. Sin embargo, también ha generado que el cuello de botella en el análisis de comunidades microbianas ya no sea la generación de datos sino el procesamiento y análisis de los mismos. De esta forma, la bioinformática ha pasado a cumplir un rol fundamental en diferentes líneas de investigación en la ecología microbiana moderna.

A su vez, para el estudio de plásmidos la metagenómica es una herramienta que puede aportar información de excelente calidad, dado que tiende a disminuir los sesgos que presentan otras técnicas de estudio de estos elementos genéticos móviles. En este caso no existe un sesgo hacia elementos pequeños, por lo cual la información de secuencia podría potencialmente ser

utilizada para recuperar el plasmidoma (el conjunto total de plásmidos presentes en una comunidad) de la comunidad (Martínez et al., 2017). La mayor desventaja que acarrea la secuenciación del metagenoma completo es que las tecnologías que generan mayor información como Illumina, generan lecturas cortas las cuales se deben ensamblar informáticamente en *contigs*. De este modo, la información del metagenoma se encuentra fragmentada en secuencias de menor tamaño que pueden corresponder a secuencias cromosómicas o plasmídicas (Smalla, Jechalke, & Top, 2015).

Existen diferentes estrategias para la identificación de secuencias plasmídicas a partir de datos metagenómicos. Una de las más comunes es la búsqueda de genes conservados que son específicos de plásmidos. PlasmidFinder es una de las herramientas bioinformáticas que utiliza esta estrategia, ya que busca a través de BLAST (Altschul et al., 1990) secuencias conservadas en los replicones de plásmidos que se conocen y por lo cual también permite clasificar los replicones encontrados (Carattoli et al., 2014). Una de las desventajas que tiene esta herramienta es que solamente detecta los *contigs* que tienen dicha secuencia. Existen otras herramientas que también permiten la clasificación de plásmidos en grupos de movilización (MOB), este es el caso de MOBrecon (Robertson & Nash, 2018).

Otras herramientas apuntan a la detección de secuencias plasmídicas a partir de los grafos de ensamblado. Una de las particularidades que tienen los *contigs* plasmídicos respecto a los cromosómicos, es que teóricamente deberían tener una cobertura mayor y uniforme, debido a un mayor número de copias de los replicones plasmídicos con respecto a los cromosomas. La cobertura es el promedio de veces que fue secuenciada cada base de un *contig* y se puede extraer a través del mapeo de lecturas contra el *contig* en cuestión. Otra de las características que permite diferenciar *contigs* plasmídicos es la topología del *contig*. Esto refiere a si dicha secuencia se logra circularizar *in silico*. Esta característica también se extrae a partir del grafo de ensamblado. Recycler y PlasmidSPAdes son dos de las herramientas que utilizan este tipo de información. Ambas han sido utilizadas para el análisis de diferentes conjuntos de datos (Antipov et al., 2016).

Otra de las estrategias utilizadas para detectar plásmidos en datos de secuenciación genómica, es el análisis de la composición nucleotídica de los *contigs* generados. Esta estrategia se basa en la observación de que las frecuencias nucleotídicas de las secuencias plasmídicas difiere de las cromosómicas. Existen dos herramientas que se basan en estos supuestos y que han demostrado un buen comportamiento para el análisis de plásmidos (Mahnert et al., 2019). Estas son cBar (Zhou & Xu, 2010) y PlasFlow (Krawczyk, Lipinski, & Dziembowski, 2018). cBar fue una de las primeras herramientas publicadas para la extracción de plásmidos a partir de genomas y la segunda una de las más recientes. Esta última utiliza algoritmos de aprendizaje automático que se entrenan contra una base de datos de plásmidos y luego clasifica los *contigs* en base a su firma genómica. La limitante en este caso es la necesidad de una base de datos completa y correctamente curada de plásmidos y cromosomas.

1.3 Biología de la resistencia a antibióticos: mecanismos y evolución

Los antibióticos son moléculas de bajo peso molecular que inhiben el crecimiento de bacterias impidiendo el normal funcionamiento de diferentes procesos celulares o destruyendo

estructuras necesarias para la célula bacteriana. Los sitios blanco de estas moléculas tienden a ser sitios conservados en diferentes microorganismos. El concepto de antibiótico fue utilizado por primera vez para describir cualquier molécula de bajo peso molecular producida por un microorganismo que reduce o impide el crecimiento de otro microorganismo (Fleming, 1929). Algunos de estos compuestos son producidos por los propios microorganismos por lo cual es esperable que a lo largo de la historia evolutiva hayan emergido mecanismos de resistencia a estas moléculas (Blair et al., 2015).

Algunas bacterias pueden crecer y sobrevivir a pesar de las presiones ejercidas por la presencia de antibióticos. Este fenómeno se conoce como resistencia a antibióticos y su origen puede ser intrínseco o adquirido. La resistencia intrínseca es aquella que es heredada de manera estable en el genoma de una especie bacteriana y es una característica universal en dicho linaje. Este tipo de resistencia se debe a la ausencia de las estructuras blanco de los antibióticos o a la presencia normal de bombas de eflujo u otros mecanismos, como baja permeabilidad de la membrana externa, que se heredan de manera estable en el genoma de una especie. En los casos en los que la resistencia intrínseca no se debe a la ausencia de los genes blanco del antibiótico, la misma suele estar codificada por genes asociados a una especie o clado en particular (Cox & Wright, 2013). Un ejemplo de esto es el sistema MexAB-Oprm de Pseudomonas aeruginosa, el cual es una bomba de eflujo constitutivamente expresada y contribuye a la resistencia a moléculas estructuralmente no relacionadas tales como antibióticos β-lactámicos y quinolonas (Rice, 2006). Actualmente se sabe que los mecanismos de resistencia a antibióticos son funciones muy antiguas en bacterias, y se continúan encontrando mecanismos aún no descriptos que son conservados establemente en algunas bacterias ambientales (Pawlowski et al., 2016).

Por otro lado, la resistencia adquirida es un tipo de resistencia que se genera por evolución del genoma de algún microorganismo, es decir cuando un genoma adquiere o pierde funciones. Dentro de los procesos evolutivos que pueden llevar a la adquisición de resistencia se encuentran las mutaciones puntuales en los genes que codifican para las proteínas blanco o la adquisición de genes determinantes de resistencia a antibióticos por THG (Van Hoek et al., 2011). La adquisición de resistencia es el proceso responsable de la crisis de los antibióticos, ya que permite la evolución hacia fenotipos de resistencia en patógenos que se tornan difíciles de tratar en el área clínica. Por lo cual resulta importante generar conocimiento en los mecanismos que permiten la adquisición de resistencia en bacterias y por tanto su adaptación a la presencia de antibióticos (Martens & Demain, 2017).

Los mecanismos de resistencia a antibióticos son variados pero se pueden agrupar en diferentes modos de acción. De hecho, para varios antibióticos hay más de un mecanismo de resistencia descrito. Uno de los más comunes es la modificación o degradación del antibiótico. Un ejemplo ampliamente estudiado de este tipo de enzimas son las β -lactamasas que hidrolizan el anillo β lactámico que caracteriza y da la función a dichos antibióticos (Shaikh et al., 2015). Existen otros tipos de modificaciones que inactivan antibióticos como la adición de grupos; las enzimas que actúan en este caso se conocen como transferasas. Los aminoglicósidos son un tipo de antibióticos susceptibles a la adición de grupos. En este caso se han descripto diversas enzimas llamadas <u>ac</u>etil-transferasas de <u>a</u>minoglicósidos (AAC), <u>f</u>osfotransferasas de <u>a</u>minoglicósidos (AAP) y <u>n</u>ucleotidil<u>t</u>ransferasas de <u>a</u>minoglicósidos (ANT), el nombre de cada enzima se completa con el sitio en el que adiciona la modificación del aminoglicósido (M. Vetting et al., 2004; Vladar et al., 2016).

Otro mecanismo de Resistencia a antibióticos son las modificaciones del sitio blanco que impiden la interacción del antibiótico con el mismo. Una de las modificaciones postranscripcionales más comunes en el ARNr son las metilaciones. Cuando estas metilaciones ocurren en posiciones particulares, pueden impedir estéricamente la unión del antibiótico a su sitio blanco. Un ejemplo de este mecanismo de resistencia son las metilaciones que impiden la unión de aminoglicósidos a la subunidad 16S del ribosoma. Se ha observado que estas no generan un costo de *fitness* en la bacteria hospedera, por lo cual las enzimas que catalizan esta reacción son seleccionadas positivamente; los genes que las codifican permanecen incluso en ausencia de la presión selectiva en la población y podrían ser transferidos a nuevas bacterias como mecanismo de resistencia adquirida (Gutierrez et al., 2012). Otro mecanismo de resistencia es el de protección del sitio blanco, la resistencia a fluoroquinolonas mediada por los genes *qnr* son un ejemplo claro de esto. Las proteínas codificadas por estos genes son pentapéptidos repetidos que se unen a la DNA girasa y a la topoisomerasa IV, impidiendo la unión del antibiótico y generando niveles moderados de resistencia (M. W. Vetting et al., 2011). Otro mecanismo de resistencia es la expresión de variantes de enzimas que tienen baja afinidad por el antibiótico. Se han seleccionado enzimas que cumplen las mismas funciones que las variantes originales, pero que tienen afinidad reducidad por el antibiótico, lo cual vuelve resistente al microorganismo que la codifica. Este es el caso de la resistencia a sulfonamidas a través de las variantes de di-hidrofolato reductasas sull y sull (Skold, 2001).

Por otro lado, la resistencia a antibóticos como la tetraciclina puede estar mediada por genes que codifican sistemas de eflujo. Existen alrededor de 30 genes que codifican para bombas de eflujo que confieren resistencia a tetraciclinas (M. C. Roberts & Schwarz, 2016). Las bombas de eflujo tienen una importancia considerable en el transporte de metabolitos desde el interior de las células bacterianas hacia el exterior. Existe evidencia de un origen evolutivo temprano y se encuentran tanto en bacterias Gram positivas como Gram negativas. Tienen una importancia clínica considerable en cuanto a la resistencia a antibióticos, ya que algunas de ellas permiten simultáneamente la resistencia a más de un antibiótico (Webber & Piddock, 2003).

Por otro lado, la regulación de la expresión de genes juega un rol importante en la resistencia a antibióticos. Se ha visto que el cambio en la expresión de algunos genes permite a las bacterias soportar bajas concentraciones de antibiótico a corto plazo. Se cree que esta respuesta es concertada con otros mecanismos como la inducción de la respuesta SOS. Esto induce cambios en la estabilidad genética de la bacteria que pueden permitir explorar fenotipos de mayor resistencia (Händel et al., 2014). A su vez, se ha visto que en una población de bacterias, las respuestas frente al estrés por antibióticos pueden ser moduladas por moléculas señal como el indol. Esta molécula es producida por bacterias resistentes en la población y actúa regulando la expresión de genes, como bombas de eflujo, que permiten una mayor tolerancia a antibióticos (Lee et al., 2010). La resistencia a antibióticos es un fenómeno complejo a nivel molecular en el que la ecología microbiana debe ser tenida en cuenta para estudiar la emergencia y diseminación de fenotipos de resistencia.

1.4 Dispersión de genes de resistencia a antibióticos.

La crisis de la resistencia a antibióticos se manifiesta en mayor medida en ambientes hospitalarios, donde las presiones de selección son altas y donde se encuentran personas inmunocomprometidas. Sin embargo, los ambientes naturales cumplen un rol fundamental en la emergencia y dispersión de GRAs (Larsson et al., 2018). Es por esto que se considera que la crisis antibiótica debe ser abordada desde la perspectiva de *Una Salud* en la cual se toma en cuenta la interacción entre la salud humana, animal y ambiental (Figura 1). Esto se debe a que las bacterias, o sus genes, se mueven con relativa facilidad entre estos compartimentos, lo cual genera que la emergencia de fenotipos de resistencia en alguno de ellos pueda repercutir en otros (Robinson et al., 2016).

El rol del ambiente es fundamental como reservorio de GRAs, muchos de los antibióticos utilizados en el área clínica actualmente provienen de microorganismos presentes en ambientes naturales. Por ende, es esperable encontrar genes de detoxificación o de resistencia que han coevolucionado por la presencia de antibióticos en el ambiente. Existe amplia evidencia de que ambientes como el suelo se comportan como reservorios de genes determinantes de resistencia a antimicrobianos (Nesme & Simonet, 2015; Riesenfeld, Goodman, & Handelsman, 2004). Utilizando metagenómica funcional de suelos, se ha visto que sólo una fracción de los genes de resistencia presentes en diferentes suelos se han reportado en patógenos humanos, por lo cual este reservorio aún contiene genes de resistencia no caracterizados (Forsberg et al., 2014).

Existe una amplia discusión sobre el rol que podrían cumplir los antibióticos en los ambientes naturales. En un principio la hipótesis con mayor apoyo era que estas moléculas eran utilizadas para competir por nichos ecológicos con otros microorganismos. Sin embargo, actualmente se reconoce que estas moléculas no se encuentran en ambientes naturales en las concentraciones necesarias para ello (Larsson, 2014). Además, se ha observado que muchas de ellas generan cambios en la transcripción de algunos genes, en particular cuando son aplicadas en bajas concentraciones (Goh et al., 2002). Es por esto que actualmente se discute que el rol fundamental de los antibióticos en el ambiente sería el de señalización y comunicación celular en comunidades complejas (Davies, 2006).

El reservorio ambiental de GRAs no debería ser un problema para el área clínica. Sin embargo, los procesos de adaptación, principalmente a través de la THG, pueden permitir el pasaje de GRAs provenientes del ambiente a cepas con relevancia clínica. Este proceso tiene algunas restricciones, se pueden identificar tres cuellos de botella de esta transferencia. El primero es la conectividad entre poblaciones microbianas. Para que exista THG entre dos poblaciones se debe llegar a una densidad poblacional similar entre bacterias donadoras y receptoras en un mismo espacio ecológico. Existe evidencia de que es más importante la conectividad ecológica que la función de los genes transferidos para que un evento de THG ocurra y se perpetúe (C. S. Smillie et al., 2011). La segunda barrera tiene que ver con el efecto fundador, hay una baja probabilidad de que una población adquiera un gen que cumple una función similar a algún gen que ya se encuentre fijado en ella. Es decir que el perfil de sustratos del gen adquirido debería ser nuevo para la población que lo adquiere, esto se vincula principalmente con la selección de los eventos de THG que se llegan a dar efectivamente (Baquero, Tedim & Coque, 2013). Por último, la tercera barrera se encuentra vinculada al costo de *fitness* que puede generar el evento de THG. Actualmente se sabe que el costo de fitness no está únicamente vinculado al costo metabólico de la replicación y transcripción de un elemento genético móvil adquirido. Este costo también

puede ser gen-específico y se vincula con la interferencia en la regulación de la expresión de genes en varios niveles diferentes (Sánchez & Martínez, 2012).

Figura 1.Interacción entre el microbioma humano, ambiental y animal en la diseminación de GRAs. La interacción entre los microbiomas se representa a través de flechas negras, mientras que los círculos rojos indican las presiones selectivas por la utilización de antibióticos.

Sin embargo, se encuentra bien documentada la capacidad de transferencia de GRAs entre bacterias ambientales y patógenos humanos. A pesar de las restricciones a la emergencia de patógenos resistentes a antibióticos, expuestas anteriormente, existen diversas situaciones y ambientes que facilitan el intercambio de material genético entre bacterias patógenas y aquellas que habitan ambientes naturales. Un ejemplo de este tipo de situación es la emergencia de los genes *qnr* como mecanismo de resistencia en patógenos humanos. Estos genes son parte estable del cromosoma de la bacteria acuática *Shewanella algae*, aunque su función y regulación en este contexto es desconocida (Poirel et al., 2005). Sin embargo, el gen se ha asociado a plásmidos y ha perdido su regulación para ser expresado de manera constitutiva, lo que contribuye a la resistencia a quinolonas en el hospedero del plásmido en cuestión. Además, se ha observado que la contaminación con quinolonas en cuerpos de agua puede seleccionar en mayor medida bacterias que contengan los genes *qnr* (Cattoir et al., 2007). En este sentido, la presencia conjunta de antibióticos y de bacterias comensales del ser humano en el ambiente pueden ser dos formas de facilitar la emergencia de patógenos resistentes a antibióticos (Wright, 2010)

1.5 Rol de los EGM en la emergencia de patógenos resistentes a antibióticos.

Si bien a lo largo de la introducción hemos mencionado diferentes casos en los que los elementos genéticos móviles (EGMs) cumplen un rol importante en la emergencia de patógenos resistentes a antibióticos, en esta sección describiremos algunos casos con mayor profundidad. Existen diferentes tipos de EGMs, aquellos que median el movimiento de ADN entre diferentes sitios de un mismo genoma y los que median el movimiento de ADN entre genomas. El primer grupo se denomina EGMs intragenómicos y allí se encuentran las secuencias de inserción (IS), los transposones y los integrones. Por otro lado, en el grupo de los EGMs intergenómicos se encuentran los plásmidos, elementos integrativos conjugativos (EIC) y los bacteriófagos. Además, se ha reportado que estos elementos pueden asociarse entre sí, permitiendo un alto flujo de genes entre diferentes bacterias. En algunos organismos se ha estimado que un 25% del genoma proviene de la adquisición de genes por THG (Ochman, Lawrence, & Groisman, 2000). En esta sección describiremos en mayor profundidad los EGMs intragenómicos, su estructura y funcionamiento dado que estos muchas veces se pueden encontrar asociados a plásmidos.

Las IS son segmentos cortos de ADN asociados a un gen que codifica para una transposasa. Esta enzima cataliza la inserción de la IS en diferentes sitios de un genoma, sin la necesidad de largos fragmentos de homología de ADN con el sitio de inserción. Las IS han sido caracterizadas dependiendo del tipo de transposasa asociada. Además, debido a su mecanismo de copia, generalmente se encuentran secuencias repetidas invertidas que delimitan dicha estructura (Siguier et al., 2015). Este tipo de EGMs son de los más pequeños conocidos, pero son importantes para la movilización y regulación de genes, incluso de ARGs. En patógenos como *Acinetobacter baumanii,* se encontró que la inserción de la secuencia IS*Aba-1* corriente arriba del gen *bla*_{AMP-C} con un promotor fuerte, generaba la sobreexpresión de la cefalosporinasa (Héritier, Poirel, & Nordmann, 2006). Otro ejemplo de la importancia de este tipo de EGM se basa en la evidencia de que han estado involucrados en la movilización del gen *mcr-1* (*Mobile Colistin Resistance*) desde el cromosoma de *Actinobacillus pleuropneumoniae* hacia diferentes replicones plasmídicos (Snesrud et al., 2016).

Los transposones son secuencias móviles que se encuentran delimitadas por repetidos invertidos (IR_R-IR_L). El transposón incluye un gen que codifica para una transposasa, que cataliza su movimiento, además de otros genes funcionales como los GRAs que pueden estar asociados a esta estructura. Existen dos clases de elementos transponibles, TEI y TEII, que se diferencian por su mecanismo de movilización. Los primeros se basan en un mecanismo de retrotranscripción a través de una molécula de ARN e inserción en el sitio blanco (retrotransposones) y los segundos en la escisión del segmento de ADN e inserción del fragmento en otro sitio del genoma (A. P. Roberts, 2008). El mecanismo de inserción en el genoma es independiente de la homología de secuencia, por lo cual se pueden insertar en cualquier sitio del genoma. La principal diferencia entre las secuencias de inserción y los transposones es que estos últimos contienen una mayor cantidad de genes dentro de su estructura. Se ha encontrado que muchos de estos transposones se encuentran asociados a GRAs y que incluso han mediado su pasaje a plásmidos conjugativos, lo cual les permitiría la movilización intergenómica. (Frost et al., 2005)

Los genes *cassette* son fragmentos de ADN, que conforman marcos de lectura abierta (ORFs) flanqueados por regiones conservadas denominadas *attC*. Los genes *cassette* pueden encontrarse formando parte de EGMs denominados integrones o circularizados, aunque en este caso carecen de la capacidad de replicarse de manera autónoma. Los integrones son EGMs que se caracterizan por tener un gen *int1* que codifica para una recombinasa sitio específico (Int1), un sitio de recombinación *att1* adyacente y un promotor *Pc* que controla la expresión de los genes *cassette* ubicados corriente abajo. La recombinasa tiene la capacidad de insertar los genes *cassette* por recombinación entre los sitios *attCxatt1*, en una orientación tal que el gen *cassette* se puede expresar a partir del promotor *Pc*. También puede escindirlos mediante recombinación *att2xatt2*. Los integrones se han clasificado dependiendo de la secuencia de la integrasa asociada (Int1, Int2 e Int3) (Escudero et al., 2015). La importancia de los integrones radica en su capacidad de reclutar y expresar fácilmente genes *cassette* en su estructura. A su vez, existen integrones asociados a transposones, lo cual permite un grado de movilidad extra entre diferentes sitios o replicones de un genoma (Partridge et al., 2009).

Los plásmidos tienen características diferentes a los otros EGMs descritos hasta el momento. La principal de ellas es que son elementos autorreplicativos que median la transferencia de ADN entre diferentes genomas. Las características de movilidad y replicación de estos elementos ya fueron descritas en detalle anteriormente. Sin embargo, es importante destacar que los plásmidos pueden tener tamaños de entre 1 kb y varias megabases (Galata et al., 2019). Esto pone en evidencia que la cantidad de genes que pueden albergar en su estructura es mucho mayor que la de otros elementos genéticos móviles. De hecho, son varios los casos en los que se encuentran diferentes EGM intragenómicos, como transposones o integrones asociados a plásmidos. Estas asociaciones de EGMs permiten una movilidad de genes tanto intra como inter genómica, lo cual es clave para la rápida adaptación a nivel genómico en bacterias (Diene & Rolain, 2014; Hudson et al., 2014). Un caso estudiado de la evolución de plásmidos es el del grupo IncW, que debido a la inserción de integrones o transposones han podido reclutar diferentes GRAs, dando lugar a plásmidos que confieren resistencia a antibióticos a partir de un esqueleto conservado. Se cree que las presiones selectivas ejercidas por la presencia de antibióticos en el ambiente ayudan a que estas variantes evolutivas se fijen en distintas comunidades (Revilla et al., 2008).

1.6 El ambiente antártico y su impacto

La Antártida es un continente en el cual se reconocen diferentes regiones biogeográficas, tienen características climáticas particulares y por ende también su biota asociada es particular. El paisaje más dominante de este continente es el denominado Antártida continental, caracterizado por una baja disponibilidad de agua, bajas temperaturas, fuertes vientos y alta radiación ultravioleta, e incluye algunos sitios definidos como desiertos polares (Convey, 2010).

Sin embargo, la zona conocida como Antártida marítima tiene un clima menos extremo, sobre todo en cuanto a la mayor disponibilidad de agua y mayor temperatura. La Isla Rey Jorge se encuentra dentro de esta región biogeográfica y es el sitio antártico con mayor población humana del continente. Esto se debe a la presencia de las bases científicas permanentes de Chile, Rusia, Polonia, Corea del Sur, Argentina, Uruguay y China. La península Fildes es la zona

más extensa dentro de la isla que no tiene cobertura de hielo permanente y allí se disponen las bases científicas de Uruguay, Chile, Rusia y China.

Para resguardar el ambiente del continente antártico, se han definido las llamadas zonas antárticas especialmente protegidas (ZAEP). La definición de estos sitios tiene como objetivo restringir el impacto humano en zonas que poseen algún interés particular, tanto por la presencia de fósiles, biota o restos de naufragios de interés histórico que se encuentran definidas en el Tratado Antártico (TA) (http://www.ats.aq/e/ep.html). Para ingresar a estas zonas se debe contar con un permiso especial expedido por las autoridades competentes (país del TA responsable del ZAEP en cuestión).

Por otro lado, en la isla Rey Jorge existe una gran presencia de fauna dentro de los cuales destacan las focas de Weddell y focas leopardo, así como elefantes marinos y diferentes especies de pingüinos, petreles y skúas. La presencia de fauna tiene un impacto directo sobre el ambiente, de hecho se ha observado que los sitios donde existen colonias de pingüinos el suelo tiene mayores concentraciones de C, N y P. Este tipo de suelo se conoce como ornitogénico debido a la influencia de las fecas de aves en su formación (Aislabie, Novis, & Ferrari, 2014).

Los primeros estudios de la microbiota antártica son de mediados del siglo pasado. A partir de la incorporación de técnicas moleculares se ha podido describir una riqueza mucho mayor de la que se estimaba (D. A. Cowan, 2014). A partir de esto, se considera que la microbiota antártica tiene un especial interés biotecnológico. Esto se debe a que es un continente poco explorado, por lo cual se podrían encontrar enzimas con nuevas funciones de interés. A su vez, la adaptación al frío de la microbiota antártica podría ser importante para algunos procesos industriales (Martínez-Rosales et al., 2012; Vero et al., 2013).

Particularmente, existen algunos estudios sobre elementos genéticos móviles en el continente antártico. Utilizando técnicas dependientes de cultivo, a partir de *Pseudomonas* spp. aisladas de muestras del Glaciar *Ecology* en Isla Rey Jorge, se han logrado encontrar plásmidos del grupo InCP-9. Estos han permitido ampliar la diversidad conocida de PIRs de este grupo de incompatibilidad (Dziewit et al., 2013). Por otro lado, mediante técnicas independientes de cultivo, se han logrado detectar replicones del tipo trfA2 que corresponden también a plásmidos que se pueden replicar en *Pseudomonas*. En este caso, las muestras provenían de Northern Victoria Land (Antártida continental) (Imperio, Bargagli, & Marri, 2007). Se sabe que los plásmidos cumplen un rol en la adaptación rápida a cambios ambientales en bacterias, por lo tanto también se han estudiado desde este punto de vista. Se ha encontrado que los plásmidos que se replican en bacterias psicrófilas o psicrotolerantes contienen genes que permiten la adaptación de su hospedero a bajas temperaturas. A su vez, se cree que estos plásmidos también serían importantes para la adaptación de otros microorganismos a este tipo de ambientes (Dziewit & Bartosik, 2014).

Recientemente, el impacto humano en el ambiente antártico se ha incrementado. Una de las formas de impacto que tiene la actividad humana es la generación de residuos a partir de efluentes, incluso aunque éstos sean tratados. En trabajos recientes se han recuperado aislamientos de *E. coli* que derivan de las plantas de tratamiento de aguas residuales de las bases. A su vez, las bacterias provenientes de residuos humanos tienen perfiles de resistencia más amplios que las provenientes de animales antárticos tales como pingüinos (Rabbia et al., 2016). La península Fildes constituye un sitio antártico en el que se pueden encontrar ambientes sujetos a diferentes tipos de impacto en una escala espacial reducida y por tanto es de interés estudiar aspectos vinculados a la adaptación de bacterias a estas presiones.

El objetivo general de este trabajo es detectar y caracterizar plásmidos a partir de muestras de suelo de la península Fildes en Isla Rey Jorge, provenientes de sitios sujetos a diferentes tipos de impacto ambiental. A su vez, se busca vincular estos plásmidos con GRAs utilizando estrategias que permitan disminuir los sesgos en la obtención de resultados.

2. Metodología

2.1 Toma de muestras

La toma de muestras se realizó durante la campaña antártica del mes de enero de 2017, organizada por el Instituto Antártico Uruguayo (IAU). Se tomaron tres muestras de sedimento/suelo por cada uno de los tres sitios muestreados. Estos sitios están ubicados en diferentes zonas de la península Fildes (Isla Rey Jorge), expuestas a diferentes tipos de impacto. El primer sitio muestreado está ubicado en una Zona Antártica Especialmente Protegida (ZAEP 150), denominada Isla Ardley (IA). Esta isla alberga una colonia de pingüinos. En esta zona, el suelo se describe como "ornitogénico" debido a la deposición de nutrientes y microorganismos que generan los pingüinos a través de sus heces. Por otro lado, se tomaron muestras de suelo cercano a las cámaras sépticas de la Base Científica Antártica Artigas (BCAA), sitio que debería tener mayor impacto humano debido a los efluentes generados en dicha base. Por último, se tomaron muestras de un sitio alejado de las bases científicas que también corresponde a una zona antártica especialmente protegida, ZAEP 125d. Este sitio, denominado Half Three Point (HTP), está localizado al sur de la Península Fildes. El sitio se caracteriza por tener poca presencia de aves, y fauna en general, debido a su altura sobre el nivel del mar y el poco reparo al viento que hay en la zona. En la Figura 2 se muestra una imagen de la península Fildes, donde se indican los tres sitios muestreados. La zona que se observa desprovista de hielo alberga las bases científicas y operativas de 4 países diferentes.

Figura 2. Imagen satelital de la península Fildes, se indican los tres sitios de muestreo; BCAA correspondiente a la zona de la Base Científica Antártica Artigas, IA correspondiente a la colonia de pingüinos presente en Isla Ardley y HTP correspondiente al sitio de Half Three Point.

Las muestras, tomadas por triplicado en cada sitio, fueron colectadas de forma aséptica y se conservaron en tubos cónicos de plástico de 50 mL estériles. El muestreo no fue realizado de forma tal que representara completamente la ZAEP muestreada. Los tubos fueron mantenidos a 4°C hasta su llegada al laboratorio del Deparatamento de Bioquímica y Genómica Microbiana de IIBCE donde fueron separadas en alícuotas a -20°C para extracción de ADN y a 4°C para su utilización en ensayos de captura exógena de plásmidos.

2.2 Extracción de ADN

A partir de las alícuotas conservadas a -20°C se realizaron extracciones de ADN ambiental total. Para esto se utilizó el kit comercial PowerSoil DNA de Qiagen (Hilden, Alemania) siguiendo las instrucciones del fabricante. Este kit incluye un protocolo de lisis mecánica y química de las células. Para esto, se colocaron aproximadamente 250 mg de muestra en un tubo con una suspensión de cuentas de zirconia con un buffer de lisis y se lo colocó en vórtex con adaptador por 10 minutos. Para la purificación de los ácidos nucleicos se utilizaron columnas de elución con una matriz que une específicamente ADN y ARN, de esta manera se lograron separar los ácidos nucleicos de otras moléculas no deseadas. En los últimos pasos se separó el ADN del ARN a través de reactivos de elución específicos.

Para comprobar la calidad de la extracción se realizó una electroforesis en gel de agarosa 0,9% en buffer TAE 1X (Ver anexo), utilizando GoodView™ (Beijing, China) como agente intercalante. Se conservó únicamente el ADN para su posterior utilización.

2.3 Secuenciación de metagenomas

Para la secuenciación de metagenomas se eligió la mejor extracción de las 3 repeticiones de cada muestra, se enviaron 50 μ L del ADN ambiental total extraído de cada muestra a Macrogen Inc. (Seúl, Corea). Se utilizó la tecnología de secuenciación Illumina con el secuenciador Hi-seq 2500, que arroja lecturas de tipo Pair-end de 101 pares de bases (pb) de largo. Para todas las muestras se obtuvieron más de 2 Gbp de datos.

Una vez recibidos los datos crudos generados por Macrogen, se utilizó el progama Trimmomatic para realizar el filtrado de calidad de los *reads* obtenidos (Bolger, Lohse, & Usadel, 2014). Para el ensamblado de metagenomas se usó el programa IDBA_UD (Peng, Leung, Yiu, & Chin, 2012) con los parámetros ajustados a los valores por defecto. Este programa fue seleccionado luego de probar varios ensambladores con nuestro conjunto de datos. Para evaluar la calidad de los ensamblados se utilizó el programa QUAST (Gurevich, Saveliev, Vyahhi, & Tesler, 2013), comparando parámetros como N50 y el número de *contigs* de diferentes largos.

2.4 Ensayos de conjugación

Se realizaron varios ensayos de conjugación siguiendo el siguiente protocolo. Las células donadoras y receptoras se cultivaron durante toda la noche a 30°C y con agitación (200 RPM) en 5 ml de caldo LB con el antibiótico al que presentaba resistencia cada una. Las células fueron centrifugadas a 3300 g por 1 minuto para concentrarlas y luego se resuspendieron en 200 µL de NaCl 0,85% estéril (p/v). Estas suspensiones fueron colocadas sobre un filtro de acetato de nitrocelulosa estéril apoyado sobre medio LB agar e incubadas por 24 hs a 30°C, para facilitar el proceso de conjugación. Los filtros fueron removidos de la placa en condiciones asépticas, se transfirieron a tubos de plástico de 50 mL con 10 mL de NaCl 0,85% (p/v) estéril y se agitó en vórtex para desprender las células del filtro. A partir de esta suspensión se realizaron diluciones seriadas al décimo y se sembraron con rastrillo en placas con los medios selectivos correspondientes para seleccionar cada transconjugante, estas condiciones se explicitan posteriormente para cada ensayo de conjugación.

En todos los casos se incluyeron controles de crecimiento, sembrando las cepas donadoras y receptoras de forma independiente, en el mismo medio de selección que las células transconjugantes.

2.5 Construcción de una cepa receptora para captura exógena de plásmidos.

Se construyó un clon derivado de la cepa DH5 α nal^R de *E. coli* resistente a kanamicina y que expresa la proteína verde fluorescente (Gfp) debido a la integración en el cromosoma del mini transposón mTn5-*gusA-pgfp12* (DH5 α ::mTn5-*gusA-pnptII-gfp12*)(Xi et al., 1999). Esta inserción se obtuvo a partir de un ensayo de conjugación, empleando la cepa de *E. coli* S17.1- λ pir como donante (contiene en el cromosoma los genes involucrados en la síntesis del pili de conjugación) y DH5 α como cepa receptora. La cepa S17.1- λ pir porta, además, un plásmido de tipo pUT::mTn5-*gusA-pgfp12*, que sólo se puede replicar en cepas del tipo pir. Esto se debe a que este plásmido requiere la expresión de una proteína iniciadora de la replicación (PIR) (π), la cual es codificada a nivel cromosomal en la cepa hospedera λ pir.

Este plásmido es movilizable, por lo que puede transferirse por conjugación a otras cepas como plásmido suicida en ausencia de la proteína π . El plásmido pUT, además, contiene el mini transposón sintético miniTn5-*gusA-pgfp12*, el gen que codifica para la transposasa adyacente y externo al transposón y un gen que codifica para la resistencia a Ampicilina. Se espera que este mini transposón se inserte de manera estable, debido a que una vez que se transpone se pierde el gen que codifica para la transposasa, la cual debe actuar en *cis*.

La conjugación se realizó como se describe en el punto 2.4 y se seleccionaron las colonias transconjugantes por crecimiento en LB agar suplementado con ácido nalidíxico (30 μ g/mL) y kanamicina (50 μ g/mL). Una de las colonias transconjugantes cuya fluorescencia demostró estabilidad luego de varios repiques fue utilizada como cepa receptora en el ensayo de captura exógena de plásmidos.

2.6 Ensayo de captura exógeno de plásmidos

Para el ensayo de captura exógena de plásmidos se utilizó como organismo receptor la cepa *E. coli* DH5 α ::mTn5-*gusA-pgfp12*. Esta tiene integrado en el cromosoma el transposón mini Tn5 el cual tiene dos copias del gen *gfp* bajo un promotor fuerte. Este fenotipo de fluorescencia es útil para discriminar la cepa receptora en ensayos de conjugación que utilizan la comunidad de suelo total como donante.

Para realizar este ensayo se siguió el protocolo de Binh et al., (2008), en primer lugar se resuspendió 1 g de suelo en un tubo estéril conteniendo 9 mL de medio TSB diluido al décimo. El tubo se incubó con la suspensión y 5 esferas de vidrio de 5 mm de diámetro estériles con agitación a 200 rpm por 90 minutos para disgregar el suelo. Por otro lado, se cultivó la cepa receptora en 5 mL de caldo LB por 24 hs. con agitación a 200 RPM y 37°C. Luego de esto se centrifugó el cultivo a 3900 g por 5 minutos, se descartó el sobrenadante y se resuspendió en 1 mL de LB. A esta suspensión celular se le agregaron

4 mL de la suspensión de suelo y se centrifugó nuevamente a 3900 g por 5 minutos, se descartó el sobrenadante y el pellet se resuspendió en 100 μ L de caldo LB. Esta mezcla se colocó sobre un filtro estéril de 0.45 μ m de tamaño de poro apoyado sobre una placa de medio LB sólido y se incubó durante 48 h a 25°C.

Luego de esto, se resuspendió el filtro en 5 mL de NaCl 0,85% y se realizaron diluciones seriadas al décimo de dicha suspensión. Se seleccionaron los transconjugantes sembrando alícuotas de 100 μ L de la suspensión celular en placas con medio LB suplementado con kanamicina (50 μ g/mL), ácido nalidíxico (30 μ g/mL), cicloheximida (10 μ g/mL), y alguno de los siguientes antibióticos: tetraciclina (10 μ g/mL), ampicilina (50 μ g/mL), trimetoprim (25 μ g/mL), o gentamicina (10 μ g/mL). Los plásmidos conjugativos o movilizables que se encuentren en bacterias de la muestra, que puedan ser replicados en *E. coli*, y que además confieran resistencia a los antibióticos seleccionados, podrían ser capturados en la cepa receptora, la cual se puede visualizar como una colonia fluorescente con la capacidad de crecer en los medios suplementados con los distintos antibióticos. Las colonias fluorescentes detectadas fueron estriadas en el mismo medio en que crecieron para la poaterior caracterización de clones puros a partir de colonias aisladas.

A su vez, se realizaron controles para corroborar la ausencia de crecimiento de la cepa receptora en los medios para transconjugantes y de ausencia de crecimiento de colonias fluorescentes en las muestras utilizadas. Como control positivo en los ensayos de captura exógena de plásmidos se utilizó un cultivo de una cepa de *E. coli* TOP10 conteniendo el plásmido R388 (NC_028464.1). Este es un plásmido de tamaño cercano a 34 kb y es del grupo de incompatibilidad IncW. Además, R388 es conjugativo y alberga el gen que confiere resistencia a Trimetoprim. El resto de las condiciones fueron iguales al ensayo de captura exógena.

2.7 Caracterización de plásmidos capturados

2.7.1 Visualización de plásmidos en aislamientos

Para determinar la adquisición de plásmidos por la cepa receptora en el paso anterior, se procedió a la extracción y purificación de plásmidos mediante el protocolo de Kado & Liu, (1981). En este protocolo se parte de colonias crecidas en medio sólido. En nuestro caso, se utilizó una placa con células crecidas en medio LB suplementado con los antibióticos necesarios para la selección del plásmido de interés. Se tomó una ansada voluminosa de células y se la transfirió a un microtubo conteniendo 100 μ L de solución de lisis (SDS 3%, Tris 50 mM, pH=12,6). Se utilizó un vórtex para disgregar el cúmulo de células y se colocó durante 30 minutos a 55°C.

Para la extracción de fases se utilizó una mezcla de Fenol-Cloroformo 50:50. Para esto, se fundió el Fenol sólido a 55°C, se equilibró con buffer TE, y se adicionó un volumen igual de cloroformo. Se adicionó un volumen igual de esta mezcla a las células lisadas y se centrifugaron durante 5 minutos a 3000 g. Se tomaron 30 µL de la fase acuosa, se colocaron en *buffer* de carga, se sembraron en un gel de agarosa y se corrieron en un ensayo de electroforesis en gel de agarosa al 0,7%. Para este ensayo se utilizó *buffer* E (40 mM Tris-acetato y 2 mM EDTA, pH=7,9), que corresponde a una modificación del *buffer* TAE con menor concentración de sales para poder correr durante toda la noche a 30 V y 4°C. A su vez, se utilizó GoodView[™] (Beijing, China) como agente intercalante. El gel fue revelado utilizando el transiluminador de luz azul Safe Imager[™] de Life technologies (California, EEUU).

2.7.2 Extracción de ADN plasmídico

Para las minipreparaciones de plásmidos, se partió de un cultivo de células en 5 ml de caldo LB, incubado durante 24 h a 200 rpm y a 37°C. En primer lugar se centrifugaron los 5 mL de cultivo y se resuspendieron en 300 µL de solución I (50 mM de glucosa, 25 mM Tris y 10 mM EDTA, pH 8,0). A esta suspensión se le agregó 0,5µL de RNAasa 10 U/μ L. La suspensión se incubó a temperatura ambiente (T.A.) durante 5 min. Luego se agregaron 300 μL de solución de lisis (NaOH 2 N y SDS 1% (p/v)), se invirtió el tubo para homogeneizar y se esperó 5 minutos para que las células se lisaran. Se agregaron 300 μL de cloroformo, se agitó en vórtex y se agregaron 300 μL de solución III (3M de acetato de potasio, ácido acético glacial 11,5 % (v/v)). Para facilitar la separación de fases, la suspensión se centrifugó a 4°C por 10 minutos a 17900 g, se tomó la fase superior (acuosa) y se transfirió a un microtubo de 1,5 mL. En el siguiente paso se agregó un volumen de isopropanol y se centrifugó por 30 minutos a 17900 g a 4°C. Se descartó el sobrenadante invirtiendo el microtubo, se lavó con 500 μ L de etanol 70% (v/v) frío y se centrifugó por 5 minutos a 17900 g. El etanol se retiró con micropipeta y se secó en vacío con SpeedVac Centrivap[®], Labconco (Missouri, EEUU). Por último, el pellet obtenido se resuspendió en 30 μL de agua ultrapura.

Para la realización de *midipreps* se aumentaron los volúmenes de cultivo del cual se partió y también se aumentaron los volúmenes de solución utilizados en cada paso de la extracción de ADN plasmídico. Se partió de 50 mL de cultivo y se utilizaron 5 mL de las soluciones I, II y III. El resto de las condiciones se mantuvieron similares y se aumentó el volumen de resuspensión en agua a 100 µL.

2.7.3 Caracterización de plásmidos a través de técnicas moleculares

Para la caracterización de los plásmidos capturados se realizaron reacciones de PCR utilizando el ADN plasmídico extraído con el protocolo mencionado anteriormente.

Estas reacciones de PCR se realizaron utilizando la ADN Taq-polimerasa de Tiangen Biotech™ (Beijing, China) en un termociclador Biometra TAdvanced S 96 de Analytik Jena AG™ (Jena, Alemania). Todos los programas de amplificación utilizados constaron de un paso de desnaturalización de 10 minutos a 95°C, luego de esto se programaron 30 ciclos de 3 pasos incluyendo, primero una desnaturalización a 95°C por 1 minuto, *annealing* por un minuto dependiente de los cebadores utilizados y una extensión a 72°C por un minuto. Por último se agregó un paso de extensión de 10 minutos a 72°C. En la Tabla 3 se muestran las secuencias y temperaturas de hibridación correspondientes a cada conjunto de cebadores.

Por otra parte, también se confirmó la movilidad de los plásmidos capturados a través de otro ensayo de conjugación entre la cepa *E. coli* DH5 α conteniendo los plásmidos capturados y una cepa de *E. coli* Top10 str^r de referencia. Los ensayos de conjugación se realizaron siguiendo las descripciones detalladas anteriormente (Sección 2.4). Los clones transconjugantes se seleccionaron en medio LB suplementeado con estreptomicina (50 µg/mL) y tetraciclina (10 µg/mL). Se verificó el crecimiento de estos clones en medio LB suplementado con kanamicina (50 µg/mL) para la caracterización de resistencia a aminoglicósidos. Nuevamente se procedió a la confirmación de la presencia de los plásmidos en las cepas transconjugantes a partir de la visualización de midipreps en geles de agarosa. Dichos procedimientos se encuentran detallados en la sección 2.8.1.

Cebador	Secuencia	Tm (°C)	Producto amplificado
tetCf	CTT GAG AGC CTT CAA CCC AG	- 60	TetC
tetCr	ATG GTC GTC ATC TAC CTG CC	- 60	
tet31F	GGA CCG CCC ATT TTT GCA TT	E0	Tet31
tet31R	TCG TGA TCG GCA AGG ATA CG	50	
rep 1	CCA GCG GGT ACW TGG G	—	Don (IncD 0)
rep 2	GTC GGC AGC TGC TTG AGC TT	54	Kep (IIICP-9)
trfA2 1	ATG ACG ACC AAG AAG CG	E7	trfA1 (IncP-1)
trfA2 2	AAC CCC CAG CCG GAA CTG	- 57	
OriV1	GAC CCG GAA AAC CAA AAA TA	го	OriV (IncW)
OriV2	GTG AGG GTG AGG GTG CTA TC		
rep 1	AGT TCA CCA CCT ACT CGC TCC G		Don (IncNI)
rep 2	CAA GTT CTT CTG TTG GGA TTC CG	55	rep (Inch)

 Tabla 1. Cebadores utilizados para caracterización de plásmidos recuperados por captura exógena.

2.7.4 Análisis de secuencia de plásmidos a partir de cepa transonjugante.

El ADN genómico de las bacterias transconjugantes obtenidas a partir de los ensayos de captura exógena de plásmidos fue enviado a secuenciar a las facilidades de Genoma Mayor, Universidad Mayor (Santiago de Chile, Chile). La tecnología utilizada para la secuenciación fue Illumina con tamaño de lecturas de 150 pb mediante el equipo HiSeq 2500. Los datos crudos fueron filtrados a través de Trimmomatic (Bolger et al., 2014) y se utilizaron dos aproximaciones diferentes para el análisis de dicho genoma. En primera instancia se mapearon las lecturas utilizando Bowtie2 (Langmead & Salzberg, 2013) contra el ensamblado del genoma de la cepa DH5 α , que fue descargado de la base de datos RefSeg de NCBI con el número de acceso GCF_000755445.1. El 75% de las lecturas obtenidas mapearon contra este genoma. Dichas lecturas fueron eliminadas y el resto de ellas fueron utilizadas para realizar un ensamblado de novo, suponiendo que este 25% de lecturas restante correspondían a los plásmidos capturados en dicho hospedero. A partir de esto se analizaron los contigs obtenidos utilizando las funciones repsearch y minidist. Para comparar con esta estrategia se utilizó plasmidSPAdes sobre las lecturas filtradas. Esta herramienta toma en cuenta la cobertura y topología de la gráfica de ensamblado de SPAdes para discernir entre secuencias plasmídicas y no plasmídicas (Antipov, et al. 2016).

Para la anotación de *contigs* plasmídicos derivados de la secuenciación de genomas se utilizó el programa *prokka* (Seemann, 2014). El resultado de este programa fue corregido con la anotación de RAST (Aziz et al., 2008). A su vez, la búsqueda de GRAs en estos *contigs* fue realizada con Abricate utilizando la base de datos CARD y con los mismos valores de corte que los *contigs* metagenómicos.

2.8 Desarrollo de *plaSquid*: herramienta para la búsqueda y clasificación de plásmidos a partir de datos de secuenciación.

Se diseñó un paquete en R para la detección y clasificación de secuencias derivadas de plásmidos. Esta herramienta consta de 2 funciones "*repsearch*" y "*minidist*" que son complementarias en cuanto a las aproximaciones utilizadas para la detección de secuencias plasmídicas. La primera de ellas se basa en la búsqueda de genes conservados en secuencias plasmídicas a través de modelos ocultos de Markov (HMM). Para lograr esto se descargaron modelos de dominios característicos presentes en proteínas iniciadoras de la replicación en plásmidos, desde la base de datos Pfam(Finn et al., 2014). Las familias de dominios utilizados fueron los siguientes: IncFII_repA, PriCT_1, Rep_1, Rep_2, Rep_3, RepA_C, RepA_N, RepC, RepL, Rep_N, Replicase, Rep_trans, RHH_1, Rop, RPA, RP_C y TrfA (Jørgensen et al., 2014). Esta herramienta anota todas las proteínas del metagenoma utilizando el programa prodigal(Hyatt et al., 2010)con los parámetros por *default*. Luego realiza una búsqueda con hmmscan, se utiliza la opción –*cut_ga* como valor límite de inclusión en la búsqueda. Esta opción hace

referencia a un valor límite que se genera cuando se crea el modelo y que tiene en cuenta el *score* mínimo que generan los dominios verdaderos positivos utilizados para curar el modelo (www.pfam-xfam.org).

Sin embargo, la presencia de estos dominios no es suficiente para diferenciar proteínas iniciadoras de la replicación (PIR) plasmídicas de otras proteínas que se unen al ADN y que pueden estar codificadas a nivel cromosómico. Por esto se agregó un paso de filtrado teniendo en cuenta la arquitectura de dominios de las proteínas PIR. La arquitectura de dominios refiere al orden en que se disponen los dominios en una secuencia proteica. Se ha visto que en genes ortólogos lejanos, la arquitectura de dominios se mantiene conservada. Como buscamos utilizar esta herramienta en metagenomas provenientes de ambientes poco estudiados, creemos que es importante recuperar ortólogos lejanos de estas proteínas plasmídicas.

Para diseñar este filtro se utilizó la base de datos de plásmidos de Refseq de NCBI (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/plasmid/). Esta base de datos contiene plásmidos provenientes de los genomas que se encuentran en la base de datos Refseq. En esta base de datos se anotaron todas las proteínas y se buscaron las que tuvieran los dominios de proteínas iniciadoras de la replicación explicitados anteriormente. Se anotaron las arquitecturas de dominio de estas proteínas utilizando el archivo *pfamA* de la base de datos Pfam. Una secuencia representante de cada arquitectura de dominio se utilizó para aplicar *blastn* contra la base de datos no redundante de NCBI, para confirmar si se encontraban anotadas como PIR. A partir de esto se describió su arquitecturas descriptas para el conjunto de PIR se guardaron como una lista de R que la función *repsearch* utiliza para comparar contra las proteínas candidatas del metagenoma.

Luego de los pasos de filtrado de PIR se busca clasificar las proteínas en diferentes tipos de replicones. Esta forma de clasificación se denomina *replicon typing* o tipeado de replicones y permite inferir el tipo de replicón a partir de alguno de los genes presentes en el mismo. En este caso, el tipeado de replicones es *in silico* y se realiza también a través de modelos ocultos de Markov. Para diseñar esto se realizó una búsqueda bibliográfica detallada de los plásmidos descriptos para cada grupo de incompatibilidad. Se utilizó como referencia el trabajo de Shintani, Sanchez, and Kimbara (2015) para crear un archivo multifasta con las secuencias de referencia de PIR de cada grupo de incompatibilidad. En las tablas S2 y S3 de Anexos se adjunta la lista de plásmidos utilizados para la clasificación en cada grupo de incompatibilidad de bacterias Gram negativas y Gram positivas respectivamente. A partir de las PIR de plásmidos de cada grupo se hicieron modelos ocultos de Markov con el comando *hmmbuild* del programa HMMER 3.0(Eddy, 2011).

Para definir el valor límite de inclusión en cada grupo de incompatibilidad se utilizó cada modelo para buscar (*hmmsearch*) las mismas proteínas con las que fue creado y que según la bibliografía consultada pertenecen efectivamente a dicho grupo de incompatibilidad. El valor de *bit score* mínimo reportado para las proteínas con las que

se crearon los modelos fueron los *scores* mínimos de inclusión para la clasificación de proteínas iniciadoras de la replicación en cada tipo de replicón. Luego, se concatenaron todos los archivos *fasta* con las secuencias de referencia de cada grupo de incompatibilidad en un único archivoconteniendo todas las secuencias de referencia. Se utilizaron todos los modelos para buscar contra este archivo y se verificó que cada modelo (asociado a su *score* mínimo de inclusión) identificara únicamente las secuencias que pertenecían al grupo de incompatibilidad correspondiente. Esto lo tomamos como un indicativo de precisión de los modelos generados.

Una aproximación similar se utilizó para la búsqueda de relaxasas en los metagenomas. En este caso no fue necesaria la utilización de filtros por arquitecturas de dominios ya que estas proteínas tienen dominios únicos que no se repiten en otras proteínas y por lo tanto se pueden identificar a través de los mismos. Los modelos que se descargaron de las bases de datos Pfam para la detección de dominios en las proteínas fueron MobA-MobL, MobC, MobilizationB, Mob Pre, TraA, TraC, Tral y TrwC, nuevamente se utilizó la opción --cut ga como valor límite de inclusión. Luego de esto se utilizó una aproximación similar a la de PIR para clasificar las relaxasas en los 6 grupos de movilidad descriptos hasta el momento. Se tomó como referencia las publicaciones de Garcillán-Barcia et al. (2009) y Francia et al. (2004), se buscaron las relaxasas de plásmidos que ya se encuentran clasificados en cada grupo, se crearon modelos de Markov y se fijaron valores mínimos de inclusión a partir de las mismas proteínas. Las relaxasas de plásmidos utilizados para los grupos MOBF, MOBH, MOBC, MOBHEN, MOBP, MOBQ y MOBV se describen en la tabla S4 en anexos. Para la clasificación en grupos de movilidad se utilizaron los últimos 300 aminoácidos de la región N-terminal que es donde se ubica el dominio relaxasa de dichas proteínas.

La otra función de este paquete se llamó *minidist*, el funcionamiento de la misma se basa en tomar los *contigs* del metagenoma y cortarlos en sub-secuencias "*win*" de tamaño 1000 bp que se superponen entre sí. Estas sub-secuencias se mapean contra una base de datos de plásmidos. La base de datos utilizada fue PLSDB (Galata et al., 2019) y el software que se utilizó para mapear fue Minimap2 (H. Li, 2018). Para cada *win* mapeado (1...n) se obtiene el producto de la identidad y la cobertura del mismo. Luego se promedian para cada *contig* del metagenoma. A partir de este valor único para cada *contig* que denominamos 'S' se buscó determinar si se trata de una secuencia derivada de plásmidos o de cromosomas.

$$S = \sum_{w=1}^{w=n} \frac{(id\% \times q. cov)}{n}$$

Para tener un control de secuencias cromosómicas se utilizó la base de datos de genomas representativos de PATRIC (http://www.patricbrc.org) (Wattam et al., 2014). Esta base de datos cuenta con un genoma representativo de cada género, para curar la base de datos de cromosomas se siguió la metodología utilizada para la creación de la base de datos PLSDB. Esta se basa en la búsqueda de palabras claves en los encabezados de cada secuencia y el filtrado de aquellas que hagan referencia a secuencias plasmídicas

(Plasmid, replicon, phage, etc..). Esto nos generó un archivo multifasta con 1987 secuencias cromosómicas que representan la diversidad de genomas secuenciados hasta el momento.

Para fijar los parámetros adecuados para esta función se analizaron los valores de *S* generados por la base de datos de plásmidos y de cromosomas por separado. Se utilizó la base de datos de plásmidos de EBI (https://www.ebi.ac.uk/genomes/plasmid.html) para esta comparación debido a que al ser de menor tamaño, el costo computacional de dicha comparación es menor. Luego de esto, se cortaron ambas bases de datos en sub-secuencias de 1500 pb para comparar el valor de S generado por *contigs* derivados de cromosomas y de plásmidos. A partir de este análisis elegimos un valor de S >= 65 que permite diferenciar *contigs* cromosómicos de plasmídicos.

Por otra parte, las funciones descritas anteriormente generan tablas separadas y un multifasta con las secuencias plasmídicas reportadas para cada función. La última función que tiene este paquete es *sum_info*(). Ésta tiene como objetivo únicamente combinar las tablas que generan ambas funciones en una sola y ordenar la información que se genera mediante dos aproximaciones diferentes.

2.8.1 Comparación de *plaSquid* con otras herramientas similares.

Para la comparación de nuestra herramienta con otras que cumplen funciones similares se utilizaron tres sets de datos diferentes. El primero fue obtenido de Arredondo-Alonso et al., (2017) este consta de 39 genomas cerrados de diferentes especies que contienen plásmidos con diferente tamaño, número de copias V replicones (https://gitlab.com/sirarredondo/Plasmid Assembly) en la tabla S5 de Anexos se describe la lista de plásmidos contenidos en estos genomas de referencia. Estos genomas han sido cerrados y los reads se encuentran disponibles en la base de datos SRA de NCBI. Se descargaron los datos crudos a través del programa SRA-toolkits, se ensamblaron utilizando SPAdes y a partir de estos ensamblados se predijeron los contigs plasmídicos con los software MOBrecon (Robertson & Nash, 2018), cBar (Zhou & Xu, 2010), plasmidSPAdes (Antipov et al., 2016), PlasmidFinder(Carattoli et al., 2014), PlasFlow (Krawczyk et al., 2018) y plaSquid. Se utilizó el software QUAST (Quality assessment tool for genome-Assembly) (Gurevich et al., 2013) para detectar la fracción de plásmidos predicha. Esto se realizó utilizando los plásmidos de cada cepa como genomas de referencia y calculando la fracción cubierta por la predicción de contigs plasmídicos hecha por cada herramienta. Este dato se tomó como recall $R = \frac{Predicted plasmidlength}{Reference plasmidlength}$. Esta es una medida de la sensibilidad de cada herramienta para la predicción de plásmidos. Por otro lado se calculó la precisión, una medida que cuantifica la especificidad de la predicción a través de $P = \frac{Plasmia j raction}{(Chromosome fraction + Plasmid fraction)}$. En este caso la fracción cromosómica también fue calculada a través de QUAST utilizando como genomas de referencia los cromosomas de las cepas de referencia. Para ambas medidas se calculó la varianza utilizando el paquete base de R (R Core Team, 2008).

Para evaluar el comportamiento de nuestra herramienta en datos de metamobiloma se utilizó la información generada por Jørgensen et al. 2014. En este trabajo se secuenciaron los elementos circulares obtenidos a partir de muestras de intestino de rata. Se descargaron los 616 *contigs* reportados como circulares a partir del análisis realizado por los autores de dicho trabajo. En este caso se partió de los elementos circulares cerrados por lo cual no se pudo comparar aquellas herramientas que utilizan información del ensamblado para detectar *contigs* plasmídicos. Se calculó la predicción de *contigs* derivados de plásmidos a partir del total de *contigs* circulares y se compararon con los resultados encontrado por los autores del trabajo.

2.8.2 Análisis de *contigs* metagenómicos

Para la búsqueda de genes en secuencias derivadas de plásmidos se utilizó el programa Abricate (https://github.com/tseemann/abricate). Este programa utiliza BLAST para comparar *contigs* contra diferentes bases de datos. Para la búsqueda de GRAs se utilizó la base de datos CARD (https://card.mcmaster.ca/) (Mcarthur et al., 2013), utilizando un límite de identidad y cobertura de 70%.

Por otra parte, se utilizó la base de datos BacMet (Pal et al., 2014) para la búsqueda de genes determinantes de resistencia a biocidas y metales (GRBMs). Se tomaron en cuenta únicamente los genes cuya función fue confirmada experimentalmente. Para la detección de dichas secuencias se utilizó el programa BLAST+ *blastn* (Altschul et al., 1990) filtrando los resultados al mismo nivel de identidad y cobertura que la búsqueda de GRAs. Para la normalización del número de genes de resistencia encontrados en cada metagenoma se utilizó el programa metaxa2 a partir de los *contigs* ensamblados (Bengtsson-Palme et al., 2015).

Para detectar la presencia del fago CrAssphage se descargó su genoma (Número de acceso: NC_024711.1) de la base de datos RefSeq de NCBI. Se utilizó el programa minimap2 (Li, 2018) para mapear los *reads* crudos de cada metagenoma contra este genoma de referencia. El archivo de salida de este programa fue utilizado para calcular la cobertura del genoma en cada uno de los metagenomas secuenciados.

3. Resultados

3.1 Captura exógena de plásmidos a partir de muestras ambientales

El ensayo de captura exógena de plásmidos fue realizado con tres muestras de suelo de cada sitio, utilizando cuatro antibióticos diferentes para cada *screening* (tetraciclina, ampicilina, gentamicina y Trimetoprim). En todas las condiciones se obtuvieron colonias

no fluorescentes, evidenciando la presencia de bacterias ambientales resistentes a todos los antibióticos que se utilizaron en cada placa.

La única condición a partir de la cual se obtuvieron colonias transconjugantes fluorescentes, fue en el ensayo en el que se usó medio sólido LB suplementado con tetraciclina como antibiótico de selección y utilizando una muestra de BCAA como suspensión donadora. En esta condición se obtuvieron colonias con resistencia a tetraciclina en dos de las repeticiones, alcanzando un total de cuatro colonias transconjugantes. En la Figura 3A se ve una de las repeticiones con tres colonias fluorescentes. Se visualizaron los plásmidos mediante el protocolo de Kadó & Liu (1981). Al analizar las preparaciones mediante electroforesis en gel de agarosa, se visualizó un plásmido de alto peso molecular (Fig. 3B). Al comparar la posición del plásmido con el perfil del marcador de peso molecular y del plásmido R388, se observó que el replicón era mayor a 10 kb y similar al tamaño del control positivo (R388, 33934 pb), lo cual coincide con el tamaño mínimo de plásmidos conjugativos.

Figura 3.A) Placa con transconjugantes obtenidos en el aislamiento exógeno de plásmidos para la muestra BCAA utilizando DH5 α ::*mTn5-gusA-pgfp12* como cepa receptora. El medio utilizado fue LB suplementado con kanamicina (50 µg/ml), ácido nalidíxico (30µg/ml), tetraciclina (10 µg/ml) y cicloheximida (10 µg/ml). **B)** Electroforesis en gel de agarosa de miniprep realizada para el relevamiento de plásmidos en las colonias transconjugantes de la figura A (carriles 1, 2, 3 y 4) utilizando la cepa DH5 α con el plásmido R388 como control (carriles 5 y 6).

Luego de visualizar la presencia de este plásmido, se lo intentó purificar utilizando el protocolo de aislamiento de ADN plasmídico detallado en Materiales y métodos (sección 2.7.2). Se utilizó dicho protocolo a partir de un cultivo de 5 mL y también se probó un protocolo de midiprep partiendo de 50 mL de cultivo. Luego de visualizar a través de electroforesis en gel de agarosa el resultado del protocolo de *midiprep* se pudo determinar que también existen otros plásmidos que lograron ser transferidos en el ensayo de conjugación (Figura S1A en anexos). Sin embargo, en ninguno de los casos se logró obtener una cantidad de plásmido suficiente como para realizar ensayos de

restricción. También se utilizó el protocolo descripto por Kado & Liu (1981). En este caso, sin embargo, no se logró purificar suficiente plásmido a partir de la extracción de ADN del gel de electroforesis. Esto es esperable en plásmidos de alto peso molecular, por lo cual buscamos utilizar otras estrategias para su caracterización.

Para continuar caracterizando la movilidad de estos plásmidos se realizó una conjugación a una cepa Top 10. La electroforesis en gel de agarosa de una *midiprep* de algunos clones transconjugantes obtenidos se pueden observar en la figura S1B. El perfil de plásmidos obtenidos es igual al de la cepa parental DH5 α que portaba los plásmidos (figura S1A). Esto nos permite inferir la presencia de plásmidos conjugativos y/o movilizables en la cepa receptora. Además los clones transconjugantes fueron capaces de crecer en medio suplementado con tetraciclina (10 µg/mL) y kanamicina (50 µg/mL), lo cual también nos daría información de genes de resistencia a aminoglicósidos en dichos plásmidos.

3.1.1 Caracterización de plásmidos obtenidos

A partir de las *midipreps* de ADN plasmídico se ensayaron distintas reacciones de PCR dirigidas a amplificar secuencias conservadas en replicones de tipo IncW, IncN, IncP-1 e IncP-9. Todos estos replicones son de amplio espectro de hospedero, por lo cual podrían replicarse en bacterias ambientales así como en enterobacterias. A pesar de que los controles positivos dieron resultados correctos, ninguno de estos ensayos de amplificación generó resultados positivos para las muestras ensayadas, por lo cual descartamos, en principio, que el plásmido contuviera alguno de estos replicones.

Otra de las estrategias utilizadas para poder caracterizar este plásmido fue ensayar reacciones de PCR dirigidas a amplificar un tipo de gen de resistencia a tetraciclina, dado que este plásmido otorga ese fenotipo a las células del hospedero. De hecho, esta era la única característica fenotípica que conocíamos del plásmido en cuestión. Por lo tanto, se utilizaron cebadores específicos para el gen *tetC* y por otro lado, se diseñaron cebadores para la única secuencia de gen de resistencia a tetraciclina encontrada en el metagenoma BCAA (*tet*31). Estimamos que el *contig* en el que se encuentra el gen de resistencia a tetraciclina detectado en el metagenoma BCAA, podría ser parte de la secuencia del plásmido recuperado por captura exógena. Sin embargo, no obtuvimos resultados positivos en las reacciones ensayadas.

3.1.2 Secuenciación del genoma de la cepa transconjugante

Debido a los resultados obtenidos, estimamos que la estrategia más conveniente para caracterizar los plásmidos capturados era secuenciar y analizar el genoma completo de la cepa transconjugante derivada de DH5 α ::miniTn5-*gusA*-p*gfp*, conteniendo el o los plásmidos en cuestión.

Por un lado, logramos establecer mediante BLAST que la cepa tiene integrado en el genoma el minitransposón miniTn5 con el gen *gfp*, el gen que codifica para la resistencia a kanamicina y el gen que codifica para la glucuronidasa (*gusA*) pero sin promotor. Consideramos que esta cepa se podría utilizar en otros ensayos de captura exógena de plásmidos.

Para el análisis de plásmidos contenidos en la cepa, usamos la herramienta *plasmidSPAdes*, que toma en cuenta principalmente la información de la "cobertura" de los *contigs* (se estima que los *contigs* plasmídicos deberían exhibir una mayor "cobertura" que los cromosómicos). Mediante esta herramienta obtuvimos 23 *contigs* derivados de plásmidos.

Otra estrategia empleada para el análisis de secuencia del genoma incluyó, en primer lugar, el comparar la secuencia obtenida con el genoma de la cepa de referencia *E. coli* DH5 α y el miniTn5. Las secuencias resultantes de la comparación no son consideradas para el análisis posterior. De este modo, se utilizan solamente las lecturas remanentes para realizar un ensamblado *de novo*. Luego de esto, se aplicaron las funciones *minidist* y *repsearch* sobre los *contigs* obtenidos para determinar su origen plasmídico. Ambas estrategias arrojaron resultados similares, difiriendo únicamente en los *contigs* menores a 500 pb que no se utilizaron para el análisis.

Al analizar los *contigs* plasmídicos con las herramientas *PlasmidFinder* y *repsearch*, logramos identificar 4 replicones diferentes. Ambas herramientas coinciden en la clasificación de los replicones en los grupos de Incompatibilidad de amplio espectro de hospedero IncQ, IncP-1 e IncN, además de un replicón de tipo ColE-1. Si bien existen plásmidos que tienen más de un replicón, este resultado coincide con lo observado en las electroforesis en la que se ve más de un plásmido en dicha cepa y que por lo tanto el ensayo de conjugación quizás permitió también capturar plásmidos movilizables. Esto también se refleja en la clasificación en grupos de movilidad de los plásmidos encontrados. *Repsearch* logró clasificar 3 relaxasas de tipo MOBQ y una relaxasa de tipo MOBF (ver anexos).

Figura 4.A) Mapa de secuencia de un *contig* de plásmido conjugativo aislado a través del ensayo de captura exógena de plásmidos. Se visualizan genes correspondientes al módulo de formación del canal de conjugación (verde claro), al módulo de transferencia (verde oscuro), al replicón IncP-1 (azul) y genes de estabilización de dicho plásmido (celeste) B) Mapa del plásmido movilizable capturado por ensayo de captura exógena de plásmidos. Este se encuentra cerrado y contiene el replicón de tipo ColE1 junto con dos genes de resistencia a (ble) y aminoglicósidos (APH-3'II)

El contig más largo que se logró ensamblar tiene 43383 pb, y según los resultados de *minidist*, muestra alta similitud con el plásmido pKJK172 de *Thauera aromatica* (CP028340). La figura 4A muestra los genes anotados en dicho *contig*. Se puede observar que se trata de un plásmido conjugativo, con los genes correspondientes al módulo de formación del canal de conjugación (T4SS) y al módulo de procesamiento del ADN, compuesto por la relaxasa y la proteína de acople tipo IV (T4CP). Esto permite que el plásmido conjugue sin la necesidad de factores codificados en otros elementos móviles. Por otro lado, se encontró que dicho plásmido pertenece al grupo de incompatibilidad IncP-1, ya que alberga los genes de regulación de la replicación conservados en ese grupo de incompatibilidad (*trfA* y *korB*). Esto no concuerda con los resultados obtenidos por PCR. Sin embargo, al analizar los cebadores utilizados para detectar este replicón observamos que uno de estos no se une de manera específica al gen *trfA*, lo cual puede explicar el resultado negativo en la PCR.

Por otro lado, se pueden observar múltiples secuencias de estabilización del replicón como toxinas/antitoxinas y genes de sistemas de partición. Otro resultado interesante

que se desprende de la anotación de este *contig* es la presencia de un gen que codificaría para una integrasa tipo I y por otro lado, para una transposasa. Ambos genes se vinculan a elementos genéticos móviles. Sin embargo, este *contig* no contiene GRAs en su secuencia, por lo cual no podemos vincularlo con ningún fenotipo de resistencia en particular. Este *contig* seguramente pertenezca al plásmido de alto peso molecular visualizado en la Figura 3A.

También se encontró un replicón de tipo ColE1, que se encuentra en una cobertura mucho mayor a la del resto de los replicones (Figura 4B). Dicho plásmido contiene dos genes de resistencia a antibióticos. Uno de ellos codifica para la resistencia a bleomicina (ble), el cual se ubica solapado al origen de replicación. El otro gen codifica para la resistencia a aminoglicósidos (APH3'-II). Este plásmido se encuentra cerrado y coincide con lo observado en la midiprep, donde pudimos visualizar un plásmido de poco más de 2000 pb en los perfiles electroforéticos. Este tipo de replicón es específico de enterobacterias y suelen encontrarse en un alto número de copias, lo cual se corresponde con la cobertura de la secuenciación y la intensidad de la banda observada en la electroforesis (Figura 3B). Este plásmido también es movilizable ya que también logró transferirse a la cepa Top10 en el ensayo de conjugación (Figura S1B).

Por otro lado, también se lograron ensamblar varios *contigs* de menor tamaño que contienen una gran diversidad de GRAs. El más grande de estos es un *contig* de 11349 pb, que contiene el gen *tetR*, regulador de la expresión del gen *tetA* (gen de resistencia a tetraciclina) (Figura 5). Este *contig* contiene el gen que codifica para una relaxasa, un origen de transferencia OriT y un ORF que codificaría para la proteína RepA, de regulación de la replicación.También se identificaron dos genes que codificarían para transposasas, una de ellas vinculada a la secuencia de inserción IS200 y genes de estabilización del replicón (MazE/MazF). El gen *tetA*, que confiere resistencia a tetraciclinas, no se encuentra en este *contig*. Sin embargo, se identificó un gen *tetA* en otro *contig* de 1345 pb que fue ensamblado con una cobertura similar y flanqueado por regiones repetidas. Es importante destacar que este fue el único gen de resistencia que fue seleccionado directamente y permitió recuperar los clones transconjugantes. Las regiones repetidas en los extremos de este *contig* no pudieron ser clasificadas por RAST.

En la Figura 5 observamos el mapa de otro replicón que se pudo identificar en la cepa transconjugante. Tanto a través de *repsearch* como de *Plasmidfinder*, logramos detectar y clasificar un replicón de tipo IncQ. Este es el caso del *contig-100_72*, en el cual se lograron anotar los genes correspondientes a las tres proteínas iniciadoras de la replicación, características de dicho grupo de incompatibilidad (RepA, RepB y RepC). Este *contig* además contiene una relaxasa de tipo MobA y un origen de transferencia (OriT), por lo cual el plásmido al que pertenece dicho *contig* podría ser movilizable. A su vez, este *contig* contiene dos genes de metilación del ARN ribosomal (*rsml* y *rmtB*), este último es capaz de conferir altos niveles de resistencia a todos los aminoglicósidos clínicamente relevantes, salvo estreptomicina. Además contiene un gen de resistencia a sulfonamidas (*sull*). Ninguno de los fenotipos de resistencia codificados por estos genes fue seleccionado en el ensayo de captura exógena realizado.

Figura 5. Mapa de *Contigs* pertenecientes a plásmidos que fueron aislados a partir del ensayo de captura exógena de plásmidos. Se observan genes pertenecientes a replicones (azul), GRAs (rojo), genes de movilidad (verde) y genes de EGMs (amarillo).

Además de estos *contigs,* se pudieron ensamblar otros de menor tamaño que albergan varios genes de resistencia, de diferentes clases. De esta forma, se observa la presencia de genes de resistencia a macrólidos (*msrE* y *mph*) en un mismo *contig* (Figura 5), algo que también se observó al analizar el metagenoma de esta muestra. Este contig tiene elementos repetidos en un extremo. Además encontramos un *contig* de 4703 pb cuyos extremos se componen de elementos repetidos y contienen genes que codifican para dos transposasas (TniA y TniB). Adyacentes a estos genes se anotaron GRAs correspondientes a resistencia a aminoglicósidos (N-acetiltransferasa), a sulfonamidas

(*sull*) y a compuestos de amonio cuaternario (QacE-delta1). La resistencia a compuestos de amonio cuaternario y a aminoglicósidos también se encuentran codificadas en el más pequeño de los *contigs* identidificados a través de los genes *qacH* y *aadA6* respectivamente.

3.2 Validación de estrategia de detección de plásmidos en metagenomas dependiente de una base de datos plasmídica.

Se utilizó la función *minidist* para evaluar si realmente existen diferencias entre las secuencias de origen plasmídico y cromosomales y si la utilización de una base de datos plasmídica permite caracterizar su origen. En este análisis preliminar se utilizó como *query* un conjunto de secuencias cromosomales, generadas a partir de la base de datos de genomas representativos de PATRIC (Wattam et al., 2017). Por otro lado, la base de datos de plásmidos que se utilizó fue la de RefSeq de NCBI que fue generada a partir de genomas cerrados de alta calidad, pero que no es la base de datos de plásmidos más completa. La distribución de valores de *ldentidad* obtenidos para cada cromosoma se muestran en la Figura 6. En la misma se observa que la mayoría de las secuencias presentan valores de identidad bajos, con un pico cercano a 20% de identidad entre secuencias alineadas. Algo que nos llamó la atención fue la presencia de un pico que contiene 68 secuencias, asignadas como cromosomales y que exhibieron un valor de *Id>*95% al ser alineadas con la base de datos de plásmidos, además de algunas otras que se ubicaron entre 65% y 95% de Identidad.

Plásmidos vs cromosomas

Figura 6. Histograma de valores de identidad obtenidos al comparar una base de datos de cromosomas enteros contra una base de datos de plásmidos completos. La mayoría de los valores se agrupan en un %Id < 65, sin embargo existen secuencia con S cercano a 100.

En la tabla S1 de Material suplementario se muestran los resultados obtenidos al comparar por BLAST las secuencias cromosomales que alcanzaron un porcentaje de *Identidad* (*Id*) mayor a 90 contra la base de datos plasmídica. Al verificar los resultados

de esta comparación, observamos que las secuencias que se encuentran en la base de datos de plásmidos y en la de cromosomas representativos son idénticas. De hecho, al alinear las secuencias, se verifica que son del mismo largo, presentan una identidad de 100% y no se generan *gaps*. Al observar la anotación asignada, apreciamos que la mayoría de estas secuencias no fueron correctamente anotadas en el encabezado del archivo *fasta*, por lo cual no se las descartó cuando se curó la base de datos de genomas representativos (ver metodología). Por otro lado, también se encontraron secuencias explícitamente mal anotadas como cromosomales y como megaplásmido en cada una de las bases de datos. Debido a que la base de datos que curamos nosotros fue la de cromosomas representativos y que se encontraron muchas secuencias de tamaño pequeño, similares a un plásmido, tomamos el criterio de descartar estas secuencias ambiguas de la base de datos de cromosomas.

A partir de estos resultados y con el objetivo de mejorar la capacidad de discriminar secuencias según su origen, comenzamos a utilizar el valor *S*, que toma en cuenta además de la Identidad, la cobertura del alineamiento entre las secuencias *query* y las de la base de datos plasmídica.

El siguiente conjunto de datos que utilizamos para probar la función *minidist* fue la base de datos de cromosomas curada pero fraccionada, en fragmentos de 1500 pb. El objetivo de esto es simular *contigs* provenientes de cromosomas secuenciados y observar la distribución de los valores de S al ser comparados con la base de datos de plásmidos, utilizando minidist. A partir de esta comparación se comenzó a utilizar la base de datos de plásmidos PLSDB (Galata et al., 2019). El resultado de esta comparación se observa en la Figura 7, en la misma se aprecia que la mayoría de los valores S fueron mucho menores a los observados al tomar únicamente en cuenta la identidad (Figura 6). Solamente 25 de cada 10000 contigs generaron valores S> 65. Esta proporción es muy baja y en la mayoría de los casos creemos que se puede deber a eventos de recombinación entre plásmidos y regiones de cromosomas. Esta suposición se fundamenta en el hecho de que la mayoría de las secuencias que alcanzaron un alto valor S se generaron a partir de alineamientos de regiones de plásmidos y cromosomas secuenciados en la misma cepa. También se observó que los valores S> 65 se asociaban con la presencia de elementos genéticos móviles como transposones en los contigs cromosómicos. También se encontró un plásmido completamente cointegrado al cromosoma de su hospedero.

Plásmidos vs cromosomas

Figura 7. Histograma de valores de S obtenidos al comparar una base de datos de *contigs* cromosómicos de 1500 pares de bases de largo contra una base de datos de plásmidos completos. La mayoría de los valores se agrupan en un S<65.

Sin embargo, la proporción de estos *contigs* es muy baja respecto al total de los *contigs* comparados, por lo cual el valor *S* sería un estadístico que nos permite discriminar entre secuencias plasmídicas y cromosómicas. Es por esto que continuamos con el desarrollo de esta función y la incorporamos como una de las estrategias para la detección de plásmidos. Se utilizó una aproximación en la cual cada valor de identidad y cobertura, que se utiliza para el cálculo de *S*, es un promedio de todos los alineamientos generados por un *contig* contra todos los plásmidos de la base de datos. En otras palabras, la herramienta no toma en cuenta únicamente el mejor alineamiento de cada secuencia para el cálculo de *S*, sino que también toma en cuenta otros alineamientos de menor calidad y hace un promedio de la identidad y la cobertura de esos alineamientos.

Por último, para determinar el valor de corte de las secuencias plasmídicas, se realizó la búsqueda usando como *query* una base de datos de plásmidos contra sí misma. Esto permitió evaluar si la función diseñada realmente detecta los plásmidos que se encuentran en la base de datos. En este caso, se utilizó la base de datos PLSDB "cortada" en fragmentos de 1500 pb y muestreada de a 10000 secuencias, lo cual tiene la ventaja de disminuir el costo computacional de la comparación. En la Figura 8 se observa que la distribución de valores de *S* reportados para las secuencias derivadas de plásmidos contenidos en PLSDB fue mayor a 65 y por ende se utilizó este valor de corte para nuestra función.

Plásmidos vs plásmidos

Figura 8. Histograma de valores de S obtenidos al comparar una base de datos de *contigs* plasmídicos de 1500 pares de bases de largo contra una base de datos de plásmidos completos. La mayoría de los valores se agrupan en un *S*> 65.

En este caso, no todos los valores de *S* reportados son 100, a pesar de que los plásmidos estén completos en la base de datos en la que se está buscando. De todas formas, la mayoría de los valores reportados son cercanos a 100. La ventaja que tiene esta aproximación es que permite tomar en cuenta diferentes alineamientos para detectar plásmidos que no se encuentren en PLSDB pero que tienen cierto mosaicismo con diferentes plásmidos de dicha base de datos.

3.3 Comparación de *plaSquid* contra otras herramientas de detección de plásmidos.

3.3.1 Comparación utilizando genomas de referencia.

Al comparar nuestra herramienta contra otras que cumplen funciones similares, evaluamos en primer lugar la sensibilidad de las mismas. Esta es una medida de recuperación del total de las secuencias plasmídicas presentes en cada genoma. En el gráfico de cajas presentado en la figura 9, se observa que de las 6 herramientas comparadas, *plaSquid*, anotada como *minidist*, es una de las que tiene mejor promedio en los datos de sensibilidad. Además, junto con *MOBrecon*, son las herramientas que presentan menor dispersión en los valores de sensibilidad obtenidos para los distintos genomas de referencia. Esto último es muy importante, ya que la dispersión de los datos refleja los sesgos que tienen las diferentes estrategias para la detección de *contigs* plasmídicos. Esto se debe a que el conjunto de genomas y plásmidos utilizados tiene una gran diversidad en cuanto al tamaño, número de copias y tipo de replicones (Arredondo-Alonso et al., 2017).

Se analizó la varianza de los datos de sensibilidad para poder comparar la dispersión en términos cuantitativos. En la Figura 9 se observa que *PlasmidSPAdes, PlasFlow* y *PlasmidFinder* son los *softwares* que presentan mayor varianza en los resultados. Dentro de ellos, *PlasmidFinder* es el que muestra el promedio de valores de sensibilidad más bajo, lo cual refleja la estrategia, basada únicamente en la búsqueda de replicones, que utiliza. *PlasmidSPAdes* es el que presenta mayor varianza en este *set* de datos. Se sabe que esta herramienta tiende a recuperar plásmidos pequeños de alto número de copias (Arredondo-Alonso et al., 2017). Por otro lado, tanto *cBar* como *PlasFlow*, que utilizan estrategias similares para la recuperación de *contigs* plasmídicos, tienen resultados similares entre sí pero con una sensibilidad más baja que la herramienta desarrollada en este trabajo.

En este conjunto de datos, la utilización de la herramienta *repsearch* no detectó más *contigs* plasmídicos que aquellos detectados por *minidist*. Por esto es que reportamos únicamente los valores de sensibilidad y precisión de *minidist*. Una ventaja que tiene este paquete es que los resultados de ambas funciones se suman en un resultado final. Es por esto que en este caso los resultados de correr ambas funciones son iguales a los de correr únicamente *minidist*. La función *repsearch* en este caso aportaría únicamente la clasificación de las secuencias plasmídicas en grupos de incompatibilidad y de movilidad. Esto no fue evaluado de manera sistemática, dado que el resto de los *softwares* no reportan dicha información.

Figura 9. Gráfico de sensibilidad de diferentes herramientas evaluando la predicción de *contigs* plasmídicos un conjunto de datos de referencia de genomas de 39 cepas. Cada punto corresponde a la sensibilidad para un genoma determinado. Se observa la media y la varianza para cada herramienta.

Por otro lado, también se calcularon los valores de precisión en la predicción de plásmidos para cada genoma de referencia utilizando las diferentes herramientas. En este caso se tienen en cuenta los falsos positivos, es decir, *contigs* cromosómicos que fueron clasificados como secuencias plasmídicas. Cuanto más cercano a 1 es el valor de precisión, menor cantidad de falsos positivos son recuperados. Nuevamente, teniendo en cuenta la media y la dispersión de los datos que se presentan en la figura 10, la herramienta desarrollada en este trabajo muestra muy buenos resultados.

En este caso, *PlasmidFinder* es la herramienta más precisa, logrando detectar casi exclusivamente secuencias plasmídicas, esto nuevamente refleja la estrategia de búsqueda de plásmidos a través de genes conservados que no se encuentran en cromosomas. *MOBrecon* y *minidist* son herramientas que también tienen muy buena precisión en la detección de plásmidos en genomas bacterianos. En este caso, la dispersión de nuestros resultados es levemente menor que la que mostró *MOBrecon*. Las herramientas *PlasmidSPAdes*, *PlasFlow* y *cBar* mostraron resultados comparables al resto de las herramientas en la media pero con una dispersión mucho mayor de los resultados. Esto nuevamente refleja los sesgos inherentes a las estrategias utilizadas que se discutirán posteriormente.

Figura 10.Gráfico de precisión de diferentes herramientas evaluando la predicción de *contigs* plasmídicos un set de datos de referencia de 39 genomas de cepas diferentes. Cada punto corresponde a la precisión para un genoma determinado incluyendo más de un plásmido en algunos de ellos. Se observa la media y la varianza para cada herramienta.

3.2.2 Comparación utilizando datos de metamobiloma.

Otro de los conjuntos de datos que utilizamos para evaluar la herramienta desarrollada fueron secuencias circulares detectadas en datos de metamobiloma. En la Figura 11 se pueden observar estos resultados. La línea punteada corresponde a las secuencias que fueron reportadas como plasmídicas por los autores de dicho trabajo(Jørgensen et al., 2014). Si observamos el gráfico de barras, *cBar* sobreestima la cantidad de secuencias plasmídicas respecto a lo reportado por los autores. Esa herramienta clasifica todos los *contigs* plasmídicos pero además clasifica secuencias que tienen genes conservados en fagos y otros elementos genéticos móviles circulares. *Minidist + repsearch* es la herramienta que muestra los resultados más ajustados a lo reportado por los autores del trabajo, además, clasifica 15 elementos circulares más como plásmidos presentes en el metamobiloma clasificando solamente 27 secuencias como plasmídicas. Este resultado es algo a tener en cuenta, ya que en el conjunto de datos de genomas de referencia este *software* mostró buenos resultados.

manera similar clasificando aún menos secuencias, solamente 6. En este caso no se pudo correr *PlasmidSPAdes* debido a que para estos datos no se encuentran disponibles las lecturas, sino los *contigs* circulares ya ensamblados.

Figura 11. Gráfico de sensibilidad de predicción de plásmidos en datos de metamobiloma de intestino de rata. El *set* de datos consta de 600 elementos circulares, de los cuales los autores reportan 160 plásmidos, este valor es indicado con la línea roja punteada.

3.4 Análisis de secuencias plasmídicas en metagenomas ambientales.

Los metagenomas secuenciados fueron ensamblados con diferentes ensambladores, buscando aquel que se comportara mejor para nuestros datos. Elegimos los resultados de IDBA UD, teniendo en cuenta sobre todo el estadístico N50. Este es un estadístico utilizado para evaluar la calidad de ensamblados y describe el largo del *contig* mínimo, seleccionado de modo que la mitad del largo total del metagenoma provenga de *contigs* iguales o mayores a ese largo.

En la tabla 2 se observa que el ensamblado de mayor calidad es el de la muestra BCAA. En este metagenoma, todos los parámetros que describen el ensamblado son mejores que en el resto de los ensamblados. Algo que destaca de este metagenoma es la presencia de un *contig* de algo más de 1 Mb que puede representar gran parte del cromosoma de alguna bacteria presente en la muestra. El ensamblado de menor calidad es el de HTP, si bien este presenta un N50 similar al de IA, en el resto de los parámetros existen diferencias considerables. Este metagenoma tuvo algunos problemas en el control de calidad previo a la preparación de librerías pero pudo ser secuenciado luego de un paso de purificación adicional.

	BCAA	IA	HTP	
N50	3506 bp	1397 bp	1280 bp	
# contigs >= 1000 bp	31893	20419	9328	
# contigs >= 10000 bp	1534	334	50	
# contigs >= 25000 bp	410	36	0	
contig más largo	1052263 bp	67446 bp	20075 bp	
largo total	140728077 bp	72306029 bp	33086328 bp	

Tabla 2. Estadísticos de los ensamblados generados utilizando IDBA UD para los metagenomas de los 3 sitios estudiados.

A partir de los ensamblados generados se utilizó la función *repsearch* descripta en Materiales y métodos para la búsqueda de genes involucrados en la replicación (PIR) y movilización (MOB). Los datos fueron normalizados respecto al recuento de genes de ARNr16S detectados en cada ensamblado: 79 en Isla Ardley, 72 en BCAA y 22 en HTP. Los recuentos de genes totales en los ensamblados metagenómicos se pueden observar en la Tabla 3. Para poder comparar entre los diferentes metagenomas, los genes totales detectados se normalizaron respecto a la cantidad de genes del ARNr16S recuperados en cada metagenoma. En los metagenomas de IA y BCAA se lograron detectar relaciones en el entorno de un gen PIR por gen de ARNr16S, estos resultados se pueden observar en la Figura 12. Sin embargo, en el metagenoma obtenido de la muestra HTP se detectaron únicamente 2 genes de PIR, lo cual da una proporción de genes PIR/genes ARNr16S mucho menor. Esto indicaría que la abundancia de plásmidos es relativamente alta en todas las muestras, excepto en la que corresponde al sitio de menor impacto.

Tabla 3. Recuento de genes totales detectados e	n los ensamblados metagenómicos de las diferentes muestras estudiadas.
---	--

	ARNr 16S	Relaxasas	PIRs	GRAs	GRBMs	GRAs ^P	GRBMs^P
BCAA	72	49	84	21	264	9	8
IA	79	37	74	3	143	-	-
HTP	22	1	2	2	36	-	-

(^P) Indica presencia en *contig* plasmídico.

La cantidad de genes de relaxasas detectados fue menor para todas las muestras, lo cual es esperable ya que no todos los plásmidos son conjugativos o movilizables. La muestra proveniente de HTP nuevamente presentó una proporción de genes de relaxasas más bajo que el resto (Figura 12). Por otro lado, también se encontraron *contigs* conteniendo genes PIR y de relaxasa en los metagenomas de BCAA e IA, lo cual indicaría que estos pertenecen a plásmidos mobilizables. El recuento de genes totales derivados de plásmidos fue similar en estas dos muestras.

La función *repsearch* que busca genes conservados en plásmidos utiliza estos mismos genes para clasificar los plásmidos que detecta. Los genes que codifican para PIRs permiten clasificar los replicones en grupos de incompatibilidad. Tomando en cuenta esto, nuestra función pudo clasificar pocos replicones en los grupos de incompatibilidad

descriptos en la literatura. La mayoría de ellos provienen del metagenoma de BCAA, donde se identificaron secuencias correspondientes a los grupos de incompatibilidad IncN, IncP2, IncQ e Inc13. Por otra parte, en el metagenoma de IA se identificaron *contigs* con secuencias de los grupos de incompatibilidad Inc11 e Inc13 asociados a bacterias Gram positivas. La clasificación en grupos de movilidad resultó más inclusiva que la recién mencionada en grupos de incompatibilidad, de hecho se pudieron clasificar la mayoría de las secuencias de relaxasas encontradas en los metagenomas de BCAA e IA. En este caso, se detectaron únicamente relaxasas del tipo MOBV y MOBQ. Para el metagenoma de BCAA se clasificaron 10 secuencias del grupo MOBV y 15 del grupo MOBQ, mientras que en el metagenoma correspondiente a IA se clasificaron 10 secuencias del grupo MOBV y 8 del grupo MOBQ. Para el metagenoma correspondiente a HTP no se lograron clasificar replicones ni relaxasas en los grupos existentes hasta el momento.

Figura 12.Gráfico del número de genes conservados en plásmidos normalizado respecto al número de genes de ARNr16S en cada metagenoma. Se presentan los datos de Proteínas iniciadoras de la replicación (PIR), relaxasas (MOB) y *contigs* que albergan genes que codifican para ambas proteínas (MOB+PIR). Los datos de la columna MOB+PIR se encuentran también incluidos en las otras columnas.

Luego de esto, se utilizó la función *minidist*, que se basa en la comparación con una base de datos para detectar *contigs* plasmídicos. En este caso se detectaron 122 *contigs* plasmídicos en el metagenoma proveniente de BCAA, con tamaños que variaron entre 300 pb y 25 kb. Al alinear estos *contigs* contra la base de datos de secuencias no redundantes de NCBI, los plásmidos más similares fueron obtenidos tanto a partir de bacterias ambientales, como *Rhodoferax antarcticus* o *Psychrobacter* sp., así como a partir de bacterias asociadas al microbioma humano como *Klebsiella pneumoniae* o *Enterobacter cloacae*. En el metagenoma obtenido de IA se encontraron solamente 8 *contigs* plasmídicos a través de esta estrategia, todos menores a 1 kb, y similares a plásmidos provenientes de hospederos ambientales como *Psychrobacter* sp. o *Deinococcus desertii*. En cuanto al metagenoma proveniente de HTP no se encontraron *contigs* plasmídicos a partir de la comparación con la base de datos PLSDB. Las tablas con los resultados de ambas funciones combinadas utilizando la función *sum_info()* se pueden ver en Anexos.

3.5 Análisis de GRAs y GRBMs en metagenomas.

Se utilizó el programa Abricate para analizar en detalle la presencia de GRAs en los metagenomas de cada muestra. Se realizó primero una búsqueda utilizando todos los contigs de cada metagenoma y luego se utilizó el subgrupo de contigs que habían sido determinados como plasmídicos a través de la herramienta plaSquid. En la Figura 13 se observa que existe una diferencia entre BCAA y el resto de las muestras. La cantidad de GRAs tanto en contigs plasmídicos como cromosómicos fue mayor que en los otros dos metagenomas. En este análisis, las muestras que presuntivamente tienen menor impacto humano se agruparon en un cluster separado al analizar la presencia o ausencia de GRAs. De hecho, IA y HTP comparten la presencia de los genes *aadA* y *APH-3Ia*, que confieren resistencia a los aminoglicósidos streptomicina V kanamicina respectivamente. En el metagenoma de IA se encontró además el gen blaTEM-4, una β lactamasa de espectro extendido que confiere resistencia a cefalosporinas de tercera generación.

La mayor diversidad de GRAs se encontró en el metagenoma de BCAA, en donde destacan diferentes variantes de genes de resistencia a macrólidos (*mphD*, *ErmF*, *mphG*, *OpmH* y *mefC*), aminoglicósidos (*APH* y *aad*) y beta-lactámicos (*CARB-14*, *VEB-1* y*OXA* 205). En menor medida se detectaron genes de resistencia a cloramfenciol (*floR*), tetraciclinas (*Tet-31*), sulfonamidas (*sul1* y *sul2*) y bombas de eflujo (*mex* y *qac*). El número de GRAs detectados podría tener un sesgo por la calidad de los ensamblados generados, por lo cual normalizamos estos datos también por el número de genes del ARNr 16S encontrados en los diferentes metagenomas. Lo que encontramos es que el metagenoma derivado de BCAA contiene 0.292 GRAs por gen de ARNr 16S, IA contiene 0.038 y HTP 0.091, estos datos derivan de los presentados en la Figura 11.

Figura 13. Análisis de presencia de GRAs en metagenomas secuenciados de cada muestra. Se muestran *clusters* por sitio y por tipo de resistencia. Según el código de colores se puede observar la presencia de GRAs en *contigs* cromosómicos (verde), en *contigs* determinados como plasmídicos a través de la comparación con una base de datos de plásmidos: función *minidist* (violeta) y en *contigs* determinados como plasmídicos por co-ocurrencia de genes conservados en plásmidos: función *repsearch* (Azul claro).

En cuanto a las plataformas genéticas en que se encontraron estos genes se observa que 9 de los 21 GRAs encontrados en el metagenoma proveniente de Base Artigas se distribuyeron en *contigs* plasmídicos, a diferencia de los otros dos metagenomas en los que no se econtraron GRAs en plásmidos. Uno de los *contigs* plasmídicos recuperados de BCAA contiene los dos genes de resistencia a macrólidos *mphD* y *msrE*. Al comparar este *contig* contra la base de datos no redundante de NCBI nos da 100% de Identidad y cobertura contra varios plásmidos de *Acinetobacter* spp. El método que logró vincular mayor cantidad de GRAs con plásmidos fue el de comparación contra una base de datos plasmídica utilizado por la función *minidist()*.

Las comunidades microbianas ambientales que se analizaron tienen mayor presencia de GRBMs que GRAs. En la Figura 14 se observa la media y el desvío estándar para cada tipo de resistencia evaluada en los tres metagenomas. De manera consistente, en los tres metagenomas obtuvimos mayor presencia de GRBMs. Además, gran parte de estos genes se encuentran en *contigs* cromosómicos. Solamente 8 GRBMs de un total de 443 detectados en los tres metagenomas se encontraron en *contigs* plasmídicos. Estos 8 genes correspondieron al metagenoma de BCAA. En los otros dos sitios no se detectaron *contigs* plasmídicos conteniendo GRBMs. Es interesante destacar que la relación entre GRBMs y genes de ARNr16S en los tres metagenomas supera el valor de 1, mientras que la misma relación para GRAs en todos los casos es menor a 0,3.

Figura 14. Gráfico de recuento de Genes Determinantes de Resistencia a Biocidas y Metales (GRBMs) y Genes de Resistencia a Antibióticos (GRAs) normalizados respecto al gen ARNr16S para cada metagenoma ensamblado. Las líneas delimitan la media y el desvío estándar para cada tipo de gen.

El último análisis que se hizo fue el de mapear los *reads* de los metagenomas secuenciados contra el genoma del fago *crAssphage*. En este análisis observamos que el único metagenoma en el que se han encontrado alineamientos ha sido el que proviene del sitio cercano a la Base Artigas. Se ha observado que 4279 *reads* del metagenoma BCAA mapean en diferentes posiciones del genoma vírico. Los *reads* mapeados tienen un largo de 101 pares de bases y el genoma de este fago es de 97,065 kb. Por ende, la cobertura del genoma de este fago es de 4,5X. Este valor representa un 0,00019 % de las lecturas totales de este metagenoma. Si bien la tasa de mapeo es baja, se trata de un metagenoma de suelo donde se espera que la abundancia de secuencias bacterianas disminuya la presencia de secuencias derivadas de este fago. En los metagenomas de IA y HTP no se lograron detectar lecturas que mapearan contra el genoma del fago *crAssphage*.

4 Discusión

4.1 Ensayo de captura exógena de plásmidos

El ensayo de captura exógena de plásmidos permitió, a partir de una muestra de suelo/sedimento colectada en las cercanías de la cámara séptica de la BCAA, detectar y aislar varios plásmidos con capacidad de movilización y que confieren resistencia a diferentes clases de antibióticos. Estos plásmidos pueden ser transferidos y replicados en enterobacterias, ya que la cepa receptora utilizada fue una *E. coli* DH5 α . A través de este ensayo hemos constatado que la THG entre comunidades microbianas obtenidas de muestras antárticas y enterobacterias como *E. coli* es posible. Existen otros trabajos recientes que también aportan evidencias en este sentido, analizando plásmidos de gran tamaño capaces de conjugar a bajas temperaturas (Antelo et al., 2018).

El *contig* plasmídico más largo que se pudo ensamblar, a partir de la secuenciación de la cepa receptora, correspondió a un plásmido conjugativo del grupo de incompatibilidad IncP-1. Este plásmido cuenta con el módulo de conjugación completo con los genes implicados en el procesamiento del ADN durante la transferencia y los genes implicados en la formación del canal de conjugación. La capacidad de conjugación de este plásmido quedó demostrada, ya que se pudo capturar por conjugación a nuestra cepa receptora DH5 α , pero también a partir de ésta a otra cepa Top10. Además, se observó que este plásmido sería capaz de movilizar otros plásmidos que contienen una relaxasa y/o OriT. De esta forma es que se pudo reclutar más de un plásmido en un único paso de conjugación.

El plásmido mencionado pertenece al grupo de incompatibilidad IncP-1 cuya PIR se conoce como TrfA. Los primeros ensayos mediante PCR, usando cebadores dirigidos a este gen y como molde el ADN plasmídico, no generaron resultados positivos. Esto se debe a que los cebadores con que contamos fueron descriptos hace mucho tiempo y la base de datos usada para su diseño no comprendía la diversidad total de estos factores de replicación (Götz et al., 1996). Actualmente, se sabe que estos genes tienen una alta tasa evolutiva, por lo cual se definieron varios subgrupos (IncP-1 α , IncP-1 β , IncP-1 γ , IncP-1 δ y IncP-1 ϵ) con cebadores diseñados específicamente para cada uno de ellos. Los plásmidos de este grupo de incompatibilidad son de amplio espectro de hospedero y han sido detectados en múltiples ambientes. En diferentes trabajos se ha visto que estos replicones se pueden encontrar vinculados a diferentes fenotipos como degradación de herbicidas (Dealtry et al., 2014), resistencia a antibióticos y a metales (Sen et al., 2011).

En nuestro caso, no pudimos establecer el tamaño exacto de este plásmido, debido a que no se encuentra completamente cerrado. De hecho, ni siquiera podemos vincularlo a ningún fenotipo de resistencia a antibióticos ya que el *contig* correspondiente a este plásmido no contiene ningún GRA. Si bien en este ensayo de captura exógena de plásmidos hemos seleccionado bacterias resistentes a tetraciclina, hemos logrado capturar varios plásmidos sin saber cuál de ellos es el que confiere dicho fenotipo. La problemática que subyace a estos resultados es que hemos utilizado la tecnología lllumina para la secuenciación de la cepa con los plásmidos capturados. Existe evidencia de que uno de los problemas de las tecnologías de lecturas cortas es que no pueden ensamblar secuencias repetidas que sobrepasen el largo de las lecturas. Por ello, los plásmidos tienden a quedar distribuidos en varios *contigs* sin poder cerrarlos o acoplarlos completamente (Król et al., 2012). En este trabajo ocurre un ejemplo claro de esto: el *contig* que contiene el gen de resistencia a tetraciclina contiene únicamente el gen *tetA* flanqueado por secuencias repetidas. Esto no permite que el GRA mencionado pueda ser asignado a alguno de los replicones detectados.

Algo que observamos es que los genes que aportan ventajas adaptativas presentes en los *contigs* plasmídicos son en su mayoría GRAs. Puede que exista un sesgo en la anotación debido a que también se observan muchas proteínas hipotéticas que podrían ser genes que confieran otro tipo de ventajas adaptativas y no logren ser anotados. Sin embargo, queda claro que uno de los mecanismos de adaptación que más han reclutado estos plásmidos son GRAs. Varios de estos genes se encuentran próximos a elementos genéticos móviles como transposasas.

En este trabajo también se identificaron replicones de otros grupos de incompatibilidad. Uno de los replicones completos encontrados en un solo *contig* fue del grupo IncQ. Este replicón contiene 3 genes que codifican para proteínas implicadas en el inicio de la replicación RepA, RepB y RepC. La proteína iniciadora de la replicación es RepC, la cual se une a los iterones presentes en el OriV y desencadena cambios conformacionales que llevan a la separación de las hebras y la formación del complejo de replicación. La proteína RepA tiene actividad helicasa y cumple la función de separar las hebras del ADN plasmídico para permitir la actividad de RepB, la cual tiene actividad primasa y sintetiza los cebadores para el inicio de la replicación (Rawlings & Tietze, 2001). La proteína RepB puede también ser una proteína de fusión Mob-RepB, y este caso es el que se observa en el replicón encontrado en nuestro trabajo (Sakai & Komano, 1996).

La actividad de las PIR y de otras secuencias reguladoras involucradas, así como el número de iterones, regulan el número de copias en este replicón. Se ha visto que el número de copias varía entre 10 y 20 por cromosoma y que además tienen un tamaño medio entre 8 y 20 kb (Rawlings & Tietze, 2001). Además estos plásmidos pueden ser movilizados por elementos conjugativos que co-habiten la misma célula. Esto mismo se podría deducir de nuestro *contig*, el cual posee una relaxasa y un origen de transferencia OriT. En este mismo sentido se orientan los resultados de trabajos anteriores en los que se han logrado capturar plásmidos de tipo IncQ en ensayos de conjugación exógena de plásmidos a partir de muestras de efluentes de criaderos de cerdos (K. Smalla et al.,

2000). Además, existen trabajos que muestran que los plásmidos conjugativos de tipo IncP-1 tienen la capacidad de movilizar plásmidos de tipo IncQ (Haines et al., 2006). Este fenómeno es exactamente lo que hemos logrado observar en nuestro ensayo. A su vez, esos plásmidos también mostraron ser portadores de genes de resistencia a antibióticos. En nuestro caso, logramos identificar genes de resistencia a aminoglicósidos y sulfonamidas, que ya han sido reportadas en este tipo de plásmidos.

Al portar tres factores de replicación en el propio plásmido, se requiere una menor cantidad de interacciones con proteínas codificadas por genes cromosómicos para lograr la replicación del plásmido. Esto permite que los plásmidos de tipo IncQ tengan una gran independencia del hospedero y por tanto se denominan de amplio espectro de hospedero. Esto se ve reflejado en su habilidad para replicarse tanto en bacterias Gram-positivas como Gram-negativas. Se ha visto que estos plásmidos se replican tanto en enterobacterias vinculadas a infecciones humanas como *Klebsiella pneumoniae, Acinetobacter baumanii o Escherichia coli,* pero también en bacterias ambientales como *Acidithiobacillus ferrooxidans, Pseudoanabaena* sp. o *Streptomyces lividans* (Rawlings & Tietze, 2001). Es por esto que los ambientes a partir de los cuales se pueden aislar estos plásmidos son muy variados y por los resultados obtenidos en este trabajo también comprenden el ambiente antártico.

Las características mencionadas anteriormente hacen que los plásmidos de tipo IncQ sean importantes en la movilización de GRAs. Esto puede suceder incluso entre microorganismos que habitualmente se encuentran en ambientes diferentes, lo cual no es menor, si tenemos en cuenta el rol de los ambientes naturales como reservorio de nuevas variantes de GRAs. La capacidad de movilización de genes y de proveer ventajas adaptativas a nuevos hospederos es real y lo hemos observado en este trabajo, incluso, esto puede suceder en ocasiones en las que no se están seleccionando activamente los GRAs que contienen dicho replicón. Los mecanismos de estabilización de replicones observados en los diferentes *contigs* parecen ser efectivos en su función y proveen cierta independencia de las presiones selectivas para la estabilidad de los plásmidos incorporados.

Otro de los replicones encontrados es de tipo CoIE1. Estos plásmidos tienen una ecología muy diferente al resto de los replicones descriptos anteriormente. Tienen un espectro de hospedero muy estrecho, se replican únicamente en enterobacterias, ya que el tamaño del replicón es muy pequeño y no codifica para ninguna PIR. Las secuencias reguladoras de la replicación son ARNs y todas las proteínas implicadas en este proceso se encuentran codificadas en el cromosoma de enterobacterias. A su vez, el tamaño de estos plásmidos es pequeño, ya que generalmente no sobrepasan los 10 kb (Chan, Ohmori, Tomizawa, & Lebowitz, 1985). Esto viene acoplado a un alto número de copias, lo cual resulta en una estrategia de estabilidad, asegurando su segregación en cada ronda de reproducción del hospedero. Por otro lado, se ha visto que algunos de estos plásmidos movilizables que replican únicamente en enterobacterias pueden ser movilizados a otros hospederos, no enterobacterias, actuando como vectores suicidas

de otros elementos genéticos móviles que se encuentren codificados en su secuencia (Smorawinska et al., 2012).

Este tipo de plásmidos tienden a asociarse a GRAs y el que hemos capturado en este trabajo no es la excepción. Se identificó en él un gen de resistencia a aminoglicósidos. Además, se observa un gen de resistencia a bleomicina que no conocemos si es funcional, ya que se solapa con parte del replicón. Este fue el único plásmido que logramos cerrar por secuenciación de *reads* cortos y su cobertura refleja el alto número de copias que encontramos en la célula. Este es el único replicón de espectro de hospedero acotado y de cierta forma aporta evidencia de la presencia de enterobacterias viables en la muestra tomada del sitio con impacto humano.

Hemos colectado algunas evidencias que apuntan a que este plásmido proviene de bacterias que habitan el intestino humano y que han llegado al ambiente antártico debido al impacto humano. En primer lugar hemos logrado mapear lecturas que indicarían la presencia del fago *crAssphage* en el metagenoma proveniente de la zona de la cual se logró capturar este plásmido. Por otro lado, la viabilidad de microorganismos como *E. coli* en el ambiente antártico se encuentra documentada, por lo cual esto no sería una barrera (Sjöling & Cowan, 2000). Además las bacterias fecales que pueden formar estructuras de resistencia, como *Clostridium* o *Bacillus*, podrían permanecer por varios años en el ambiente y recuperar su viabilidad en condiciones favorables (Hughes & Nobbs, 2004).

También se sabe que al aumentar las condiciones de estrés se disparan respuestas fisiológicas en bacterias. Una de estas es la respuesta SOS, la cual se encuentra ampliamente estudiada. Se sabe que esta respuesta regula positivamente mecanismos de THG, como la conjugación, lo cual tiene como consecuencia la dispersión de genes determinantes de resistencia. De hecho, se sabe que existen algunos antibióticos que promueven la respuesta SOS (Beaber, Hochhut, & Waldor, 2004). Si bien en este trabajo las condiciones de conjugación utilizadas no fueron similares a las del ambiente antártico, pudimos observar que existe un potencial de transferencia entre bacterias comensales del ser humano y la comunidad antártica presente en el sitio impactado por la actividad humana. Debido a que en este ensayo se dejó conjugar las células por 48 h, no podemos descartar la posibilidad de que los clones transconjugantes obtenidos puedan haber tenido más de una cepa donadora desde las cuales se reclutaron diversos plásmidos movilizables.

En la introducción se ha expuesto que los ambientes naturales pueden ser un reservorio de genes determinantes de resistencia. Estos genes de resistencia generalmente se transfieren a bacterias del microbioma humano o animal por THG. Una de las primeras barreras de la THG es el alcanzar concentraciones efectivas de bacterias donadoras y receptoras en una misma comunidad (Martínez, Coque, & Baquero, 2014). En el continente antártico, los sitios de contacto entre los sistemas de aguas residuales y el ambiente representan un espacio en el que se podrían lograr estas concentraciones efectivas para la THG. Generalmente, donde existe un sistema de tratamiento de efluentes que permite la construcción de emisarios, u otro tipo de estructuras como

caños colectores, los efluentes se deponen en sitios en los que la comunidad del efluente es diluida rápidamente, por lo cual no llegan a altas proporciones en las comunidades naturales (Fresia et al., 2019). Esto es fundamental para minimizar la dispersión de GRAs, ya que al no llegar a poblaciones suficientes de microorganismos, la probabilidad de eventos de THG disminuye.

Es importante revisar la deposición de efluentes y residuos que se generan por la actividad humana. Se ha logrado determinar que las plantas de tratamiento de aguas municipales son un sitio de alta dispersión de genes de resistencia. De hecho, muchos de los plásmidos identificados en este tipo de comunidades albergan genes de resistencia a todos los antibióticos de importancia clínica. Incluso algunos plásmidos presentes en estos ambientes confieren resistencia a múltiples drogas (Szczepanowski et al., 2008). También se ha logrado determinar que, debido a la gran densidad y diversidad de bacterias con plásmidos con diversos tipos de ARGs, estos ambientes son propensos a la dispersión de los mismos por conjugación (Li, Li, & Zhang 2015). Además, se ha visto que estos sitios pueden ser concentradores de antibióticos y genes de resistencia, especialmente cuando se intenta degradar antibióticos que pueden ser recalcitrantes y permanecer en efluentes secundarios, como es el caso de las fluoroquinolonas (Xu et al., 2007). Por todo esto es necesario pensar formas efectivas de eliminar antibióticos, bacterias y genes de resistencia antes de liberarlos al ambiente, y así evitar su libre circulación a través de diferentes reservorios. Teniendo en cuenta que el ambiente antártico representa un sitio de estudio importante de diversos procesos biológicos, el evitar el impacto humano resulta fundamental para mantener este sistema incambiado.

Algo que llama la atención es la cantidad de plásmidos y replicones que se recuperaron en un solo hospedero en este ensayo de captura exógena. Una de las dudas que surgen es si este tipo de procesos de THG pueden ocurrir efectivamente en comunidades naturales. El protocolo de conjugación durante 48 h podría haber permitido mayor cantidad de interacciones entre la comunidad y la cepa receptora, es decir que la detección de múltiples plásmidos puede deberse a procesos de conjugación multiparentales durante el ensayo. Además, al encontrarse sobre un filtro con la estructura física del suelo disgregada la probabilidad de contacto entre células puede haber sido mayor que en condiciones naturales. Se podrían probar diversas condiciones de conjugación para determinar las condiciones en que se ven favorecidos estos procesos de THG.

Por otra parte, existe un costo metabólico o de *fitness* asociado a la replicación y reparación del ADN plasmídico en la célula hospedera (Glick, 1995). También existe un costo que comprende la producción de proteínas codificadas en plásmidos, la utilización de nutrientes para su síntesis y la ocupación de componentes celulares como los ribosomas (Rozkov et al., 2004). Esto nos conduciría a pensar que en ausencia de una presión de selección a favor de los fenotipos codificados en plásmidos, sería difícil que se mantengan en una comunidad. Sin embargo, en múltiples estudios se ha observado que los plásmidos, incluso aquellos de alto peso molecular, se pueden mantener en

ausencia de presiones selectivas a su favor. Además, esta adaptación no se explica a través de la presencia de mecanismos de estabilización de replicones como sistemas toxina-antitoxina, ya que en algunos casos se ha observado que los plásmidos logran mantenerse en ausencia de estos mecanismos (Modi & Adams 1991).

La explicación más aceptada a la paradoja de los plásmidos es que a medida que pasan las generaciones, se da una co-evolución del plásmido y de su hospedero, que permiten la reducción del costo metabólico en el mantenimiento del mismo. En este sentido, en diferentes ensayos in-vitro se ha observado que la disminución de las tasas de conjugación colaboran en la reducción del costo de fitness (Dahlberg & Chao, 2003). Otro de los mecanismos de adaptación que se ha observado es la pérdida de genes no esenciales en la secuencia plasmídica (R. I. Modi et al., 1991). Por último, también se ha visto que la regulación negativa en la expresión de genes plasmídicos disminuye el costo metabólico del mantenimiento del plásmido (Harr & Schlötterer, 2006). Estas adaptaciones ayudan a mantener plásmidos en líneas celulares en ausencia de una presión selectiva a favor del mismo. También se ha observado que estos fenómenos de co-adaptación permiten ampliar el espectro de hospedero de algunos plásmidos, lo cual puede tener efectos importantes en la evolución de los replicones (De Gelder et al., 2008). En nuestro trabajo observamos que seleccionando a favor de un único gen de resistencia a tetraciclina se lograron capturar diferentes plásmidos que contienen GRAs, incluso algunos, que no fueron específicamente seleccionados. Sería de interés estudiar cambios adaptativos en estos plásmidos luego del pasaje de varias generaciones para observar como ocurre la co-adaptación en cepas que contienen más de un plásmido.

4.2 Diseño de la herramienta *plaSquid* para la detección de secuencias plasmídicas en datos de secuenciación masiva.

La herramienta diseñada para la detección de plásmidos se basa en dos estrategias diferentes. Por un lado, una de las funciones apunta a la búsqueda de genes conservados en plásmidos. Actualmente existe una herramienta que realiza una estrategia similar denominada *PlasmidFinder*. Esta se basa en una base de datos curada de genes que codifican para proteínas iniciadoras de la replicación y otros determinantes de incompatibilidad comunes. Dichos genes se utilizan como *queries* para buscar en genomas o metagenomas con el programa BLAST, filtrando los resultados por porcentaje de identidad y cobertura de los genes encontrados. Uno de los aspectos en que creemos nuestra herramienta representa una mejora, es la detección de genes a través de la búsqueda de arquitecturas de dominios en las proteínas PIR. Esta estrategia ayuda a recuperar ortólogos lejanos de proteínas sin depender directamente de valores fijos de similitud de secuencia (Geer, Domrachev, Lipman, & Bryant, 2002). Por lo tanto, se podrían detectar genes que codifican para PIRs que no se encuentren en las bases de datos. Los modelos ocultos de Markov (HMM) permiten una representación numérica

de alineamientos múltiples de secuencias a través de la asignación de probabilidades a la sustitución de residuos, su inserción o deleción en las diferentes posiciones del alineamiento. Debido a que estos modelos trabajan con puntajes específicos para cada posición en el alineamiento, es más fácil detectar posiciones con residuos muy conservados o muy variables (Eddy, 1998). Esto permite tener en cuenta una característica de la evolución de las secuencias proteicas que es que no todos los residuos están sujetos a la misma presión selectiva, esto genera que los diferentes dominios proteicos tengan residuos más o menos conservados en las diferentes posiciones. Esta característica hace que estos modelos matemáticos sean compatibles y eficientes en la detección de dominios en secuencias proteicas.

Si comparamos el resultado de PlasmidFinder al buscar secuencias circularizadas de metamobiloma de rata, vemos que se logran detectar sólo 6 secuencias como derivadas de plásmidos. Una de las principales limitantes del método empleado por este software es que no permite la detección de secuencias plasmídicas nuevas, que no se encuentran en la base de datos de *PlasmidFinder,* por lo cual subestima de gran manera la presencia de plásmidos en datos de secuenciación, sobre todo cuando provienen de ambientes poco estudiados. Otra de las fallas de esta herramienta se revela únicamente cuando la búsqueda se efectúa en contigs derivados de genomas o metagenomas, en donde únicamente se logran detectar los contigs que abarcan el gen de PIR. Si el plásmido se encuentra fragmentado, no se logrará detectar ningún otro contig del mismo. Sin embargo, esta herramienta presenta dos ventajas importantes, en primer lugar su especificidad es alta debido a que detecta genes que se encuentran únicamente presentes en plásmidos y que han sido muy estudiados. En segundo lugar, la base de datos de la que depende se encuentra muy bien curada, por lo cual permite la clasificación de las secuencias plasmídicas detectadas en los grupos de incompatibilidad que se encuentran descriptos (Carattoli et al., 2014). En nuestro caso, al trabajar con secuencias provenientes de muestras de suelo antárticas que fueron secuenciadas con tecnología illumina, esta herramienta no nos es útil para el análisis de plásmidos en nuestros metagenomas.

Existen otras herramientas que también permiten la clasificación de plásmidos a partir de secuencias plasmídicas como lo es *MOBsuite*. Este *software* abarca un conjunto de herramientas que permiten diferentes tipos de análisis de las secuencias plasmídicas que detecta. Al igual que nuestra herramienta, permite utilizar diferentes estrategias para la detección y caracterización de secuencias plasmídicas en datos de secuenciación (Robertson & Nash, 2018). Mostró buenos resultados en el análisis de genomas de referencia. Sin embargo, al utilizarla con datos de metamobiloma, la capacidad de recuperar secuencias plasmídicas fue muy baja respecto al resto de las herramientas utilizadas. Esto podría demostrar una baja capacidad de detectar secuencias plasmídicas nuevas o la necesidad de contar con secuencias cromosómicas en los datos de secuenciación para poder distinguir plásmidos de cromosomas.

Otra de las herramientas utilizadas han sido *cBar* y *PlasFlow*, las cuales se basan en estrategias similares (Krawczyk et al., 2018; Zhou & Xu, 2010). Ambas herramientas

utilizan una base de datos plasmídica para ser entrenadas y logran reconocer firmas genómicas similares a aquellas presentes en la base de datos de entrenamiento. Como hemos visto en este trabajo, existe una diferencia a nivel de secuencia entre plásmidos y cromosomas, lo cual permitiría esta diferenciación. Sin embargo, el confiar únicamente en bases de datos podría tender a reproducir los sesgos y errores de las mismas. En nuestro caso, al tratarse de datos obtenidos del ambiente antártico sería esperable que basarse en bases de datos de plásmidos completos sea de limitada utilidad. Estas herramientas han mostrado un comportamiento medio en todas las comparaciones realizadas, superando a *PlasmidFinder* y *PlasmidSPAdes* pero con peores resultados que *MOBrecon* y *plaSquid*.

En este trabajo se ha observado que muchas de las herramientas diseñadas para detectar contigs plasmídicos a partir de datos de secuenciación de lecturas cortas tienen diferentes sesgos. Estos sesgos son inherentes a las estrategias utilizadas para detectar las secuencias plasmídicas en los datos de secuenciación. Una de nuestras innovaciones radica en la combinación de diferentes estrategias (comparación contra una base de datos y búsqueda de genes conservados en plásmidos) para complementar los resultados de dichas búsquedas. Sin embargo, estas estrategias continúan teniendo algunos sesgos al ser utilizadas con secuencias obtenidas de tecnologías de lecturas cortas. Algunos de estos problemas o desventajas se pueden observar en los resultados de secuenciación del genoma de *E. coli* DH5α conteniendo los plásmidos capturados a partir de las comunidades ambientales. En este caso pudimos determinar las secuencias plasmídicas pero no determinar qué genes de resistencia están vinculados a cada replicón. Es decir, que no podemos establecer la sintenia de los genes detectados como plasmídicos debido a que muchos de ellos se encuentran en contigs pequeños que no se han podido ensamblar en secuencias de mayor tamaño. Esto muchas veces se debe a que los genes que confieren ventajas adaptativas en plásmidos se encuentran en otros elementos genéticos móviles, asociados a plásmidos, que son ricos en secuencias repetidas como transposones y secuencias de inserción lo cual dificulta el ensamblado (Petrovski & Stanisich, 2011).

Una de las alternativas que se plantea como solución a esto es la secuenciación a través de lecturas largas. En este sentido, hay algunos trabajos realizados con secuenciación Nanopore, desarrollada por Oxford Nanopore Technologies Ltd. (Oxford, Inglaterra) en los cuales se logran obtener plásmidos completamente cerrados a partir de microorganismos provenientes de diferentes tipos de muestras (González-Escalona et al., 2019; Lemon et al., 2017; Taylor et al., 2019). Una de las principales desventajas de las tecnologías de lecturas largas es su baja precisión en la asignación de bases en la secuencia. Esto incorpora tasas de error cercanas al 12%, sin embargo, esto se puede mejorar aumentando la profundidad de secuenciación o complementando las lecturas largas con tecnologías de secuenciación más precisas como Illumina (Goodwin, McPherson, & McCombie, 2016). Al utilizar las tecnologías de lecturas largas, generalmente se logran cerrar los genomas, por lo cual la determinación de la presencia de plásmidos resulta una tarea trivial. Simplemente, a través del tamaño de las moléculas de ADN circularizadas o de la búsqueda de replicones se puede determinar si

una secuencia es plasmídica o no. Otra de las ventajas que posee esta tecnología de secuenciación es la rapidez con la cual se pueden obtener resultados de alta precisión. Esto ha permitido que se comiencen a desarrollar nuevos protocolos para que sea utilizada como herramienta de diagnóstico y vigilancia en el área clínica (Votintseva et al., 2017).

De todas formas, el desarrollo y utilización de herramientas bioinformáticas para la detección y análisis de secuencias plasmídicas en ensamblados genómicos o metagenómicos de lecturas cortas no es una tarea fútil. Existen varios proyectos a gran escala que, durante bastante tiempo, han generado cantidades muy importantes de este tipo de datos sobre diferentes microbiomas. Es el caso del Proyecto Microbioma Humano dependiente del National Institute of Health (McGuire et al., 2008); el proyecto del microbioma de la tierra (<u>http://www.earthmicrobiome.org/</u>) que se trata de un consorcio que busca caracterizar microbiomas terrestres de todo el planeta (Gilbert, Jansson, & Knight, 2014); el proyecto TARA oceans que, entre otros cometidos, estudia la diversidad de comunidades microbianas en los océanos (Tully, Graham, & Heidelberg, 2018); y por último el proyecto MetaSUB que tiene como objetivo la caracterización microbiana de diferentes ambientes urbanos en ciudades de todo el mundo (Consortium, 2016). Todos estos proyectos contienen datos disponibles de secuenciación de lecturas cortas de alta calidad, que pueden ser explorados y analizados para el estudio de plásmidos en diferentes ambientes. Este tipo de análisis a gran escala aún no se ha hecho y la principal limitante son los sesgos de las herramientas discutidos anteriormente. La herramienta que se presenta en este trabajo ha demostrado mejorar la recuperación de plásmidos, teniendo en cuenta la precisión y sensibilidad, respecto a cualquiera de los softwares que se encuentran publicados hasta el momento.

4.3 Análisis de metagenomas

A través del análisis metagenómico se logró detectar un gen de resistencia a tetraciclina codificado en un *contig* plasmídico, específicamente conteniendo el gen *tet31*. Este gen codifica para una bomba de eflujo y se ha encontrado en plásmidos de *Aeromonas salmonicida*, una bacteria Gram negativa al igual que *E. coli*. Además, el *contig* que contiene este gen no es lo suficientemente grande como para poder observar las características de movilidad y replicación del plásmido que lo contiene. Esto es un problema común del análisis de metagenomas al realizar búsquedas de secuencias plasmídicas. Debido a la gran cantidad de elementos repetidos y duplicados, los ensamblados *de novo* de *contigs* plasmídicos a partir de *reads* cortos tienden a ser fragmentados e incluso erróneos (Król et al., 2012). Esto también se había observado en la secuenciación del genoma de la cepa receptora de plásmidos en el ensayo de captura exógena.

El análisis de los metagenomas mostró que el recuento de plásmidos fue relativamente alto en todas las muestras. La cantidad de genes detectados que codifican para relaxasas

fue menor que la de genes de Proteínas Iniciadoras de la Replicación. Esto es esperable, ya que no todos los plásmidos tienen capacidad de movilizarse. Sin embargo, todos los plásmidos por definición deben contener uno o más replicones (Fernandez-Lopez et al., 2015). Por otra parte, la baja presencia de genes relaxasas en el metagenoma obtenido de HTP es algo que se debería continuar analizando. Vale destacar que en una comunidad ambiental antártica se ha encontrado recientemente una nueva forma de transferencia horizontal de plásmidos, a través de vesículas (Erdmann et al., 2017). Con este resultado no se puede descartar que en esta muestra los plásmidos tengan capacidad de movilización. Sería de interés estudiar las tasas de THG *in silico* en este metagenoma en particular.

En el metagenoma de HTP no se encontró ningún contig similar a los plásmidos reportados en bases de datos. Se sabe que uno de los problemas de la utilización de bases de datos para recuperar contigs plasmídicos es que éstas tienen un sesgo hacia plásmidos que se recuperan en el área clínica, que son los más estudiados. Esto sucede así porque históricamente se han buscado y secuenciado plásmidos presentes en estos ambientes (Arredondo-Alonso et al., 2017). No podemos descartar que debido a la baja calidad del ensamblado de esta muestra la cantidad de plásmidos recuperados sea menor. Sin embargo, hemos normalizado los datos respecto al recuento de genes de ARNr 16S recuperados a partir de cada ensamblado para poder compararlos. A su vez, el metagenoma proveniente de la muestra HTP representa un caso particular de un ambiente extremo, con poca influencia humana y poco estudiado. Por otro lado, nuestra estrategia de buscar ortólogos lejanos de proteínas iniciadoras de la replicación a través de su arquitectura de dominios debió aumentar la probabilidad de recuperar secuencias plasmídicas que no se encuentran en bases de datos. Esto se ve reflejado en la baja capacidad de clasificación en grupos de incompatibilidad de las PIR encontradas en cualquiera de los tres metagenomas. Sería de interés estudiar en mayor profundidad los genes de PIRs de estos plásmidos poco conocidos para obtener una idea de la divergencia evolutiva respecto a genes de PIRs ya caracterizados.

Al analizar los GRAs presentes en los tres metagenomas secuenciados se observaron diferencias considerables entre muestras. Los metagenomas de IA y HTP comparten GRAs cuya presencia en bacterias ambientales ya ha sido reportada previamente (Popowska et al., 2012), incluso en muestras del ambiente antártico con bajo impacto humano (Van Goethem et al., 2018). Por otro lado, en el metagenoma de BCAA se observa la presencia de varios genes determinantes de resistencia a macrólidos. Estos antibióticos están indicados para el tratamiento de infecciones del tracto respiratorio, incluso para enfermedades crónicas, lo cual podría seleccionar en mayor medida bacterias resistentes (Spagnolo, Fabbri, & Bush, 2013). Es importante destacar que se encontraron todos los mecanismos de resistencia descritos para este tipo de antibióticos como bombas de eflujo (*mef macrolide efflux system*), enzimas de modificación del sitio blanco ARNr 16S (*erm erithromycin resistance methylase*) y enzimas de modificación del antibiótico (*mphD macrolide phosphorilation enzyme*). Estos genes se encontraron tanto en contigs plasmídicos como cromosómicos.

Estos resultados se complementan con los obtenidos por Hernández et al. (2019), en cuyo trabajo se detectaron diferentes tipos de macrólidos en el ambiente antártico (eritromicina, claritromicina, clindamicina y metronidazol). En ese trabajo se tomaron muestras de agua de la zona costera cercana a zonas de descarga de efluentes de las bases científicas de China, Rusia y Chile durante la campaña 2016 y 2017. En base a ambos resultados se podría presumir que el consumo de macrólidos, el cual está indicado para infecciones del tracto respiratorio, podría ser alto en las bases antárticas. Esto se ve reflejado en la presencia de antibióticos y de genes de resistencia en el ambiente, que provienen directamente de los efluentes de las bases. Sería de interés contrastar esto con datos clínicos de los médicos de cada base y los tratamientos de antibióticos que se han indicado durantes estas campañas.

Por otro lado, en el metagenoma de la muestra IA identificamos algunos genes que codifican para β -lactamasas, como TEM-4. Estas variantes fueron descritas originalmente a partir de aislamientos de *E. coli* intrahospitalarios. Además, estas enzimas tienen la capacidad de hidrolizar cefalosporinas de tercera generación (Binh et al., 2008). A su vez, en el metagenoma BCAA, se detectó el gen que codifica para la enzima VEB-1 (*Vietnamese entero beta-lactamase*), la cual ha sido vinculada a brotes nosocomiales severos en diferentes partes del mundo, involucrando especialmente cepas de *Acinetobacter baumanii* resistentes a antibióticos (Gaind et al., 2016; Naas et al., 2006). Esta variante también ha sido descrita en brotes de *Pseudomonas aeruginosa* asociadas a un integrón, lo cual da cuenta de su capacidad de movilización (Naas et al., 1999). La circulación de este tipo de variantes en comunidades microbianas cercanas a las bases podría ser de interés para el personal médico de las mismas. Otro de los análisis que podría aportar datos interesantes sería ampliar el muestreo en la zona de BCAA y evaluar la abundancia de estos genes en dichas muestras.

La gran diversidad de GRAs obtenida en la muestra de BCAA tanto en secuencias plasmídicas como cromosómicas, puede ser explicada por contaminación fecal humana. Esto se ve evidenciado por la presencia de secuencias derivadas del fago *crAssphage* en el metagenoma de este sitio. Al igual que en metagenomas de muestras obtenidas de otros sitios con impacto humano, la presencia de genes determinantes de resistencia seguramente es consecuencia directa de la contaminación con bacterias resistentes que son parte del microbioma humano (Karkman, Pärnänen, & Larsson, 2019). A la luz de estos datos, es razonable asumir que la principal presión de selección a favor de estas bacterias resistentes ocurre en el intestino humano cuando se toman antibióticos y no en el ambiente donde son detectadas posteriormente. De todos modos, se debería confirmar esta hipótesis determinando las concentraciones de antibióticos en las muestras ambientales y el consumo de antibióticos de las personas que circulan por la base científica Artigas.

Por otra parte, la posibilidad de movilización observada en estos genes, tanto por su localización en plataformas genéticas móviles como por la realización de ensayos de conjugación, permite aventurar que estos GRAs podrían pasar a bacterias antárticas y volverse parte del reservorio natural de genes de resistencia en estos sitios. También se

conoce que las enterobacterias asociadas al microbioma humano pueden sobrevivir y mantenerse viables en el ambiente antártico, lo cual podría permitir el intercambio de información genética con la microbiota nativa (Hughes & Nobbs, 2004; Rabbia et al., 2016).

Se conoce que la microbiota antártica puede ser un reservorio de genes aún no descritos. Esto se ha explotado desde la biotecnología en la búsqueda de enzimas con diversas aplicaciones industriales (Martínez-Rosales et al., 2012). Sin embargo, este reservorio de genes también contiene una gran diversidad de GRAs que aún no han sido detectados en el área clínica pero que sabemos que confieren resistencia a antibióticos (Azziz et al., 2019). Estos genes no representan un peligro sanitario inmediato en la medida en que no lleguen a microorganismos capaces de habitar el microbioma humano. En este sentido, es importante minimizar las presiones selectivas en el ambiente que pueden operar a favor de estos genes. Esto pone en evidencia el potencial peligro que surge de la interacción entre microorganismos asociados al ser humano y este reservorio de GRAs dada la posibilidad de THG.

La conectividad o solapamiento entre microbiomas es uno de los conceptos que permite entender la dispersión de GRAs desde la perspectiva de *Una Salud*. Para que exista intercambio de material genético entre bacterias que habitan diferentes microbiomas es necesario que exista un solapamiento espacial y temporal que permita que se den eventos de conjugación, por ejemplo. Además, deben existir condiciones de viabilidad y crecimiento de las bacterias en cuestión (Baquero et al., 2019). Se ha descrito que existen algunas especies de bacterias que pueden habitar y adaptarse a más de un ambiente dentro de los cuales se incluye el microbioma humano. Es el caso de *E. coli*, para la cual se ha visto que algunos linajes pueden habitar y multiplicarse en ambientes naturales (Jang et al., 2017). Además, la mayoría de los GRAs que se han descrito para esta especie tienen un origen ambiental, por lo cual puede ser importante en el pasaje de GRAs desde el ambiente al microbioma humano (Hernando-Amado et al., 2019).

Otra especie importante en este sentido es *Klebsiella pneumoniae,* la cual es común en ambientes naturales. De hecho, estos organismos son capaces de fijar nitrógeno, y por otro lado, algunos linajes también son patógenos humanos severos (Holt et al., 2015). Esta especie ha sido fundamental en la incorporación de GRAs al microbioma humano y tiene una alta capacidad de albergar plásmidos en su genoma (Garcia-Fulgueiras et al., 2017; Hernández-García et al., 2019). Estas especies de bacterias asociadas a plásmidos de amplio espectro de hospedero pueden permitir el pasaje de genes entre microbiomas de diferentes ambientes. Es necesario reducir las condiciones de contaminación o solapamiento de microbiomas y las condiciones de selección de fenotipos de resistencia que son dos aspectos fundamentales de la adaptación de bacterias a la utilización de antibióticos en el área clínica.

Al analizar la presencia de GRBMs en el suelo antártico, vemos que una proporción muy baja se encuentra en plásmidos. Este tipo de genes operacionales, que precisan de pocas interacciones con otros genes para dar productos funcionales, se suelen transferir por THG a través de elementos genéticos móviles tales como plásmidos (Jain, Rivera, & Lake, 1999), permitiendo una adaptación rápida a las presiones selectivas del ambiente (Dziewit & Bartosik, 2014). Está ampliamente documentada la presencia de GRMs en elementos genéticos móviles (Ansari, Grohmann, and Malik 2008; Smalla et al. 2006), incluso en el ambiente ártico y antártico (Centurion et al., 2019; Møller et al., 2014). Sin embargo, el *costo de fitness* que acarrea tener estos genes en plásmidos es alto. Esto se debe, entre otras cosas, a la energía necesaria para mantener un plásmido replicándose en la célula y a la interferencia con la replicación del cromosoma (Loftie-Eaton et al., 2017).

En nuestro caso, los GRBMs detectados se encuentran, en su mayoría, en el cromosoma de los microorganismos de estas comunidades. Una de las explicaciones a esta tendencia podría ser que la presencia de metales como una presión selectiva constante del suelo antártico podría contribuir a que los GRBMs se fijen en cromosomas, aliviando así el costo de *fitness* generado al mantener estos GRBMs en plásmidos (Hall et al., 2016; Romaniuk et al., 2018). Esta tendencia ha sido predicha por modelos matemáticos que tienen en cuenta el costo de mantención de plásmidos y la capacidad de movilización intragenómica de los genes funcionales que se encuentran en los mismos (Bergstrom, Lipsitch, & Levin, 2000). Esta tendencia no se repite para GRAs. En cuyo caso se pueden encontrar genes en *contigs* plasmídicos, lo cual condice con la naturaleza más variable de las presiones selectivas en favor de estos genes.

Si bien tenemos evidencias de que los GRAs asociados a plásmidos podrían provenir principalmente de microorganismos asociados al microbioma humano, la interacción con ambientes naturales, como el suelo antártico, es fundamental debido a que este representa un sitio en el que nuevas variantes de GRAs pueden ser capturadas en elementos genéticos móviles. Para que esto ocurra, es fundamental la acción concertada de diversos elementos genéticos móviles como transposones, integrones y plásmidos. Por ello, es necesario continuar estudiando los mecanismos que regulan la THG en diversos ambientes y que permiten en última instancia la adaptación de bacterias a cambios ambientales como la presencia de antibióticos. A su vez, también es importante lograr identificar sitios a partir de los cuales puedan emerger nuevas variantes de GRAs que puedan tener impacto clínico. En este sentido, se debe reducir la presión de selección a favor de GRAs en el ambiente. Para ello es necesario rever los sistemas de tratamiento de efluentes tanto para eliminar residuos de antibióticos, así como para reducir la deposición de bacterias vinculadas al microbioma humano que puedan capturar nuevos GRAs presentes en resistomas naturales, además de ser una fuente de contaminación para el ecosistema antártico.

5 Bibliografía

- Aislabie, J. M., Novis, P. M., & Ferrari, B. (2014). Microbiology of Eutrophic (Ornithogenic and Hydrocarbon-Contaminated) Soil. In D. Cowan (Ed.), *Antarctic Terrestrial Microbiology* (pp. 91–112). https://doi.org/10.1007/978-3-642-45213-0
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Ansari, M. I., Grohmann, E., & Malik, A. (2008). Conjugative plasmids in multi-resistant bacterial isolates from Indian soil. *Journal of Applied Microbiology*, *104*(6), 1774–1781. https://doi.org/10.1111/j.1365-2672.2008.03736.x
- Antelo, V., Guerout, A. M., Mazel, D., Romero, V., Sotelo-Silveira, J., & Batista, S. (2018). Bacteria from Fildes Peninsula carry class 1 integrons and antibiotic resistance genes in conjugative plasmids. *Antarctic Science*, 30(1), 22–28. https://doi.org/10.1017/S0954102017000414
- Antipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016).
 PlasmidSPAdes: Assembling plasmids from whole genome sequencing data.
 Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493
- Arredondo-Alonso, S., van Schaik, W., Willems, R. J., & Schurch, A. C. (2016). On the (im)possibility to reconstruct plasmids from whole genome short-read sequencing data. *BioRxiv*, (im), 1–18. https://doi.org/http://dx.doi.org/10.1101/086744
- Arredondo-Alonso, S., Willems, R. J., van Schaik, W., & Schürch, A. C. (2017). On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. *Microbial Genomics*, 3(10). https://doi.org/10.1099/mgen.0.000128
- Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., ... Zagnitko, O. (2008). The RAST Server: rapid annotations using subsystems technology. *BMC Genomics*, *9*, 75. https://doi.org/10.1186/1471-2164-9-75
- Azziz, G., Giménez, M., Romero, H., Valdespino-castillo, P. M., Falcón, L., & Batista, S. (2019). Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats. *Frontiers in Environmental Science* and Engineering, 13(3), 1–12.
- Baquero, F., Tedim, A. S. P., & Coque, T. M. (2013). Antibiotic resistance shaping multi-level population biology of bacteria. *Frontiers in microbiology*, 4, 15.
- Baquero, F., Coque, T. M., Martínez, J., Aracil-gisbert, S., & Lanza, V. F. (2019). Gene Transmission in the One Health Microbiosphere and the Channels of Antimicrobial Resistance. *Frontiers in Microbiology*, *10*(December), 1–14. https://doi.org/10.3389/fmicb.2019.02892
- Beaber, J. W., Hochhut, B., & Waldor, M. K. (2004). SOS response promotes horizontal dissemination of antibiotic resistance genes. *Nature*, 427(January), 72–74. https://doi.org/10.1038/nature02241

- Bengtsson-Palme, J., Hartmann, M., Eriksson, K. M., Pal, C., Thorell, K., Larsson, D. G. J., & Nilsson, R. H. (2015). metaxa2: Improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. *Molecular Ecology Resources*, 15(6), 1403–1414. https://doi.org/10.1111/1755-0998.12399
- Bergstrom, C. T., Lipsitch, M., & Levin, B. R. (2000). Natural selection, infectious transfer and the existence conditions for bacterial plasmids. *Genetics*, *155*(4), 1505–1519.
- Binh, C. T. T., Heuer, H., Kaupenjohann, M., & Smalla, K. (2008). Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. *FEMS Microbiology Ecology*, *66*(1), 25–37. https://doi.org/10.1111/j.1574-6941.2008.00526.x
- Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. *Nature Reviews Microbiology*, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Genome analysis Trimmomatic : a flexible trimmer for Illumina sequence data. *Bioinformatics*, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
- Carattoli, A., Zankari, E., Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., ... Hasman, H. (2014). In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. *Antimicrobial Agents and Chemotherapy*, *58*(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14
- Cattoir, V., Poirel, L., Mazel, D., Soussy, C. J., & Nordmann, P. (2007). Vibrio splendidus as the source of plasmid-mediated QnrS-like quinolone resistance determinants [1]. *Antimicrobial Agents and Chemotherapy*, *51*(7), 2650–2651. https://doi.org/10.1128/AAC.00070-07
- Centurion, V. B., Delforno, T. P., Lacerda-Júnior, G. V, Duarte, A. W. F., Silva, L. J., Bellini, G. B., ... Oliveira, V. M. (2019). Unveiling resistome profiles in the sediments of an Antarctic volcanic island. *Environmental Pollution (Barking, Essex : 1987), 255*(Pt 2), 113240. https://doi.org/10.1016/j.envpol.2019.113240
- Cesareni, G., Helmer-Citterich, M., & Castagnoli, L. (1991). Control of ColE1 plasmid replication by antisense RNA. *Trends in Genetics : TIG*, 7(7), 230–235. https://doi.org/10.1016/0168-9525(91)90370-6
- Chan, P. T., Ohmori, H., Tomizawa, J., & Lebowitz, J. (1985). Nucleotide sequence and gene organization of ColE1 DNA. *The Journal of Biological Chemistry*, *260*(15), 8925–8935.
- Chattoraj, D. K. (2000). Control of plasmid DNA replication by iterons: no longer paradoxical. *Molecular Microbiology*, *37*(3), 467–476. https://doi.org/10.1046/j.1365-2958.2000.01986.x
- Chen, I., & Dubnau, D. (2004). DNA uptake during bacterial transformation. *Nature Reviews. Microbiology*, 2(3), 241–249. https://doi.org/10.1038/nrmicro844
- Clewell, D. B., Yagi, Y., Dunny, G. M., & Schultz, S. K. (1974). Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. *Journal of Bacteriology*, *117*(1), 283–289.
- Cohen, O., Gophna, U., & Pupko, T. (2011). The complexity hypothesis revisited: Connectivity Rather Than function constitutes a barrier to horizontal gene transfer. *Molecular Biology and Evolution*, *28*(4), 1481–1489. https://doi.org/10.1093/molbev/msq333

- Consortium, M. (2016). The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report. *Microbiome*, 4(1), 24. https://doi.org/10.1186/s40168-016-0168-z
- Convey, P. (2010). Terrestrial biodiversity in Antarctica Recent advances and future challenges. *Polar Science*, 4(2), 135–147. https://doi.org/10.1016/j.polar.2010.03.003
- Cowan, D. A. (2014). Antarctic Terrestrial Microbiology. In *Antarctic Terrestrial Microbiology*. https://doi.org/10.1007/978-3-642-45213-0
- Cox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. *International Journal of Medical Microbiology*, 303(6–7), 287–292. https://doi.org/10.1016/j.ijmm.2013.02.009
- Dagan, T., Artzy-randrup, Y., & Martin, W. (2008). Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. *PNAS*, *105*(29).
- Dahlberg, C., & Chao, L. (2003). Amelioration of the Cost of Conjugative Plasmid Carriage in Eschericha coli K12. *Genetics*, *165*(4), 1641–1649.
- Davies, J. (2006). Are antibiotics naturally antibiotics? *Journal of Industrial Microbiology and Biotechnology*, 33(7), 496–499. https://doi.org/10.1007/s10295-006-0112-5
- De Gelder, L., Williams, J. J., Ponciano, J. M., Sota, M., & Top, E. M. (2008). Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. *Genetics*, *178*(4), 2179–2190. https://doi.org/10.1534/genetics.107.084475
- Dealtry, S., Ding, G. C., Weichelt, V., Dunon, V., Schl??ter, A., Martini, M. C., ... Smalla, K. (2014). Cultivation-independent screening revealed hot spots of IncP-1, IncP-7 and IncP-9 plasmid occurrence in different environmental habitats. *PLoS ONE*, 9(2). https://doi.org/10.1371/journal.pone.0089922
- Dean, F. B., Nelson, J. R., Giesler, T. L., & Lasken, R. S. (2001). Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. *Genome Research*, *11*(6), 1095–1099. https://doi.org/10.1101/gr.180501
- Diene, S. M., & Rolain, J. M. (2014). Carbapenemase genes and genetic platforms in Gramnegative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. *Clinical Microbiology and Infection*, 20(9), 831–838. https://doi.org/10.1111/1469-0691.12655
- Dziewit, L., & Bartosik, D. (2014). Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. *Frontiers in Microbiology*, *5*(NOV), 1–14. https://doi.org/10.3389/fmicb.2014.00596
- Dziewit, L., Grzesiak, J., Ciok, A., Nieckarz, M., Zdanowski, M. K., & Bartosik, D. (2013). Sequence determination and analysis of three plasmids of Pseudomonas sp. GLE121, a psychrophile isolated from surface ice of Ecology Glacier (Antarctica). *Plasmid*, *70*(2), 254–262. https://doi.org/10.1016/j.plasmid.2013.05.007
- Eckhardt, T. (1978). A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. *Plasmid*, 1(4), 584–588. https://doi.org/10.1016/0147-619X(78)90016-1
- Eddy, S. R. (1998). Profile hidden Markov models. *Bioinformatics*, 14(9), 755–763. https://doi.org/10.1093/bioinformatics/14.9.755
- Eddy, S. R. (2011). Accelerated Profile HMM Searches. *PLoS Computational Biology*, 7(10), 1:16. https://doi.org/10.1371/journal.pcbi.1002195

- Elena, S. F., Ekunwe, L., Hajela, N., Oden, S. A., & Lenski, R. E. (1998). Distribution of fitness effects caused by random insertion mutations in Escherichia coli. *Genetica*, 102–103, 349–358. https://doi.org/10.1007/978-94-011-5210-5_28
- Erdmann, S., Tschitschko, B., Zhong, L., Raftery, M. J., & Cavicchioli, R. (2017). A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. *Nature Microbiology*, 2(10), 1446–1455. https://doi.org/10.1038/s41564-017-0009-2
- Escudero, A., Loot, C., Nivina, A., & Mazel, D. (2015). The Integron: Adaptation On Demand. In Mobile DNA III (pp. 139–161). https://doi.org/10.1128/microbiolspec.mdna3-0019-2014
- Fernandez-Lopez, R., Redondo, S., Garcillan-Barcia, M. P., & de la Cruz, F. (2017). Towards a taxonomy of conjugative plasmids. *Current Opinion in Microbiology*, 38(August), 106– 113. https://doi.org/10.1016/j.mib.2017.05.005
- Fernandez-Lopez, R., Redondo, S., Garcillan-Barcia, M. P., de la Cruz, F., Moura, A., Ara??jo, S., ... Handelsman, J. (2015). Genomics of microbial plasmids: Classification and identification based on replication and transfer systems and host taxonomy. *Frontiers in Microbiology*, 5(4), 3523–3525. https://doi.org/10.1128/AAC.49.8.3523
- Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., ... Punta, M. (2014). Pfam: The protein families database. *Nucleic Acids Research*, 42(D1), 222–230. https://doi.org/10.1093/nar/gkt1223
- Fleming, A. (1929). On the antibacterial action of cultures of a Penicillium, with special reference to their use in isolation of B. Influenzae. *British Journal of Experimental Pathology*, (10), 226–236.
- Forsberg, K. J., Patel, S., Gibson, M. K., Lauber, C. L., Knight, R., Fierer, N., & Dantas, G. (2014). Bacterial phylogeny structures soil resistomes across habitats. *Nature*, 509(7502), 612– 616. https://doi.org/10.1038/nature13377
- Francia, M. V., Varsaki, A., Garcillán-Barcia, M. P., Latorre, A., Drainas, C., & De La Cruz, F. (2004). A classification scheme for mobilization regions of bacterial plasmids. *FEMS Microbiology Reviews*, 28(1), 79–100. https://doi.org/10.1016/j.femsre.2003.09.001
- Fresia, P., Antelo, V., Salazar, C., Giménez, M., D'Alessandro, B., Afshinnekoo, E., ... Iraola, G. (2019). Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. *Microbiome*, 7(1), 1–9. https://doi.org/10.1186/s40168-019-0648-z
- Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: the agents of open source evolution. *Nat.Rev.Microbiol.*, *3*(1740-1526 (Print)), 722–732. https://doi.org/10.1038/nrmicro1235
- Gaind, R., Jain, S., Sehgal, R., Chellani, H. K., Kothari, C., Thukral, S. S., & Shamweel, A. (2016).
 VEB-1 extended-spectrum β-lactamase-producing multidrug-resistant Proteus mirabilis sepsis outbreak in a neonatal intensive care unit in India: clinical and diagnostic implications. *JMM Case Reports*, 3(4), 1–7. https://doi.org/10.1099/jmmcr.0.005056
- Galata, V., Fehlmann, T., Backes, C., & Keller, A. (2019). PLSDB : a resource of complete bacterial plasmids. *Nucleic Acids Research*, *47*(October 2018), 195–202. https://doi.org/10.1093/nar/gky1050
- Garcia-Fulgueiras, V., Araujo, L., Bado, I., Cordeiro, N. F., Mota, M. I., Laguna, G., ... Vignoli, R. (2017). Allodemic distribution of plasmids co-harbouring bla CTX-M-15 /aac(6')-Ib-cr/qnrB in Klebsiella pneumoniae is the main source of extended-spectrum β-lactamases in

Uruguay's paediatric hospital. *Journal of Global Antimicrobial Resistance*, *9*, 68–73. https://doi.org/10.1016/j.jgar.2017.01.008

- Garcillán-Barcia, M. P., Francia, M. V., & De La Cruz, F. (2009). The diversity of conjugative relaxases and its application in plasmid classification. *FEMS Microbiology Reviews*, *33*(3), 657–687. https://doi.org/10.1111/j.1574-6976.2009.00168.x
- Geer, L. Y., Domrachev, M., Lipman, D. J., & Bryant, S. H. (2002). CDART: Protein homology by domain architecture. *Genome Research*, *12*(10), 1619–1623. https://doi.org/10.1101/gr.278202
- Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome project: Successes and aspirations. *BMC Biology*, 12(1), 1–4. https://doi.org/10.1186/s12915-014-0069-1
- Giraldo, R., & Fernández-Tresguerres, M. E. (2004). Twenty years of the pPS10 replicon: Insights on the molecular mechanism for the activation of DNA replication in iteroncontaining bacterial plasmids. *Plasmid*, 52(2), 69–83. https://doi.org/10.1016/j.plasmid.2004.06.002
- Glick, B. R. (1995). Metabolic load and heterologous gene expression. *Biotechnology Advances*, 13(2), 247–261. https://doi.org/10.1016/0734-9750(95)00004-A
- Goh, E. B., Yim, G., Tsui, W., McClure, J., Surette, M. G., & Davies, J. (2002). Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. *Proceedings of the National Academy of Sciences of the United States of America*, 99(26), 17025–17030. https://doi.org/10.1073/pnas.252607699
- González-Escalona, N., Allard, M. A., Brown, E. W., Sharma, S., & Hoffmann, M. (2019). Nanopore sequencing for fast determination of plasmids, phages, virulence markers, and antimicrobial resistance genes in Shiga toxin-producing Escherichia coli. *PLoS ONE*, *14*(7), 1–13. https://doi.org/10.1371/journal.pone.0220494
- Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of nextgeneration sequencing technologies. *Nature Reviews Genetics*, *17*(6), 333–351. https://doi.org/10.1038/nrg.2016.49
- Gophna, U., Doolittle, W. F., & Charlebois, R. L. (2005). Weighted Genome Trees : Refinements and Applications ⁺. *Journal of Bacteriology*, *187*(4), 1305–1316. https://doi.org/10.1128/JB.187.4.1305
- Götz, A., Pukall, R., Smit, E., Tietze, E., Prager, R., Tschäpe, H., ... Smalla, K. (1996). Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. *Applied and Environmental Microbiology*, *62*(7), 2621–2628.
- Grohmann, E., Christie, P. J., Waksman, G., & Backert, S. (2017). Relaxases and plasmid transfer in Gram-Negative bacteria. In S. Backert and E. Grohmann (Ed.), *Type IV Secretion in Gram-Negative and Gram-Positive Bacteria* (pp. 61–92). https://doi.org/10.1007/978-3-319-75241-9
- Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). Genome analysis QUAST : quality assessment tool for genome assemblies. *Bioinformatics*, *29*(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
- Gutierrez, B., Escudero, J. A., Millan, A. S., Hidalgo, L., Carrilero, L., Ovejero, C. M., ... Gonzalez-Zorn, B. (2012). Fitness cost and interference of Arm/Rmt aminoglycoside resistance with the RsmF housekeeping methyltransferases. *Antimicrobial Agents and Chemotherapy*, 56(5), 2335–2341. https://doi.org/10.1128/AAC.06066-11

- Haines, A. S., Akhtar, P., Stephens, E. R., Jones, K., Thomas, C. M., Perkins, C. D., ... Thomas, C. M. (2006). Plasmids from freshwater environments capable of IncQ retrotransfer are diverse and include pQKH54, a new IncP-1 subgroup archetype. *Microbiology*, *9*, 2689–2701. https://doi.org/10.1099/mic.0.28941-0
- Hall, J. P. J., Wood, A. J., Harrison, E., & Brockhurst, M. A. (2016). Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. *Proceedings of the National Academy of Sciences of the United States of America*, 113(29), 8260–8265. https://doi.org/10.1073/pnas.1600974113
- Händel, N., Schuurmans, J. M., Feng, Y., Brul, S., & Kuile, H. (2014). Interaction between Mutations and Regulation of Gene Expression during Development of De Novo Antibiotic Resistance. *Antimicrobial Agents and Chemotherapy*, *58*(8), 4371–4379. https://doi.org/10.1128/AAC.02892-14
- Harr, B., & Schlötterer, C. (2006). Gene expression analysis indicates extensive genotypespecific crosstalk between the conjugative F-plasmid and the E. coli chromosome. BMC Microbiology, 6, 1–7. https://doi.org/10.1186/1471-2180-6-80
- Héritier, C., Poirel, L., & Nordmann, P. (2006). Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. *Clinical Microbiology and Infection*, 12(2), 123–130. https://doi.org/10.1111/j.1469-0691.2005.01320.x
- Hernández-García, M., Pérez-Viso, B., Navarro-San Francisco, C., Baquero, F., Morosini, M. I., Ruiz-Garbajosa, P., & Cantón, R. (2019). Intestinal co-colonization with different carbapenemase-producing Enterobacterales isolates is not a rare event in an OXA-48 endemic area. *E Clinical Medicine*, 15(xxxx), 72–79. https://doi.org/10.1016/j.eclinm.2019.09.005
- Hernández, F., Calisto-Ulloa, N., Gómez-Fuentes, C., Gómez, M., Ferrer, J., González-Rocha, G.,
 ... Montory, M. (2019). Occurrence of antibiotics and bacterial resistance in wastewater
 and sea water from the Antarctic. *Journal of Hazardous Materials*, *363*(October 2018),
 447–456. https://doi.org/10.1016/j.jhazmat.2018.07.027
- Hernando-Amado, S., Coque, T. M., Baquero, F., & Martínez, J. L. (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. *Nature Microbiology*, 4(9), 1432–1442. https://doi.org/10.1038/s41564-019-0503-9
- Holt, K. E., Wertheim, H., Zadoks, R. N., Baker, S., Whitehouse, C. A., Dance, D., ... Thomson, N. R. (2015). Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. *Proceedings of the National Academy of Sciences of the United States of America*, 112(27), E3574–E3581. https://doi.org/10.1073/pnas.1501049112
- Hudson, C. M., Bent, Z. W., Meagher, R. J., & Williams, K. P. (2014). Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. *PLoS ONE*, *9*(6). https://doi.org/10.1371/journal.pone.0099209
- Hughes, K. a., & Nobbs, S. J. (2004). Long-term survival of human faecal microorganisms on the Antarctic Peninsula. *Antarctic Science*, *16*(3), 293–297. https://doi.org/10.1017/S095410200400210X
- Hyatt, D., Chen, G.-L., LoCascio, P., Land, M., Lrimer, F., & Hauser, L. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics*, *11*(119), 1–8. https://doi.org/10.3389/fgene.2015.00348

- Imperio, T., Bargagli, R., & Marri, L. (2007). Detection of IncP replicon-specific regions in DNA from Antarctic microbiota. *Open Life Sciences*, *2*(3), 378–384. https://doi.org/10.2478/s11535-007-0025-y
- Jain, R., Rivera, M. C., & Lake, J. A. (1999). Horizontal gene transfer among genomes: the complexity hypothesis. *Proceedings of the National Academy of Sciences of the United States of America*, *96*(7), 3801–3806. https://doi.org/10.1073/pnas.96.7.3801
- Jang, J., Hur, H. G., Sadowsky, M. J., Byappanahalli, M. N., Yan, T., & Ishii, S. (2017). Environmental Escherichia coli: ecology and public health implications—a review. *Journal of Applied Microbiology*, 123(3), 570–581. https://doi.org/10.1111/jam.13468
- Jones, B. V. (2010). The human gut mobile metagenome. *Gut Microbes*, *1*(6), 415–431. https://doi.org/10.4161/gmic.1.6.14087
- Jones, B. V, & Marchesi, J. R. (2007). Transposon-aided capture (TRACA) of plasmids resident in the human gut mobile metagenome. *Nature Methods*, *4*(1), 55–61. https://doi.org/10.1039/b705657e
- Jørgensen, T. S., Xu, Z., Hansen, M. A., Sørensen, S. J., & Hansen, L. H. (2014). Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. *PLoS ONE*, 9(2), 1–9. https://doi.org/10.1371/journal.pone.0087924
- Kado, C. I., & Liu, S. T. (1981). Rapid procedure for detection and isolation of large and small plasmids. *Journal of Bacteriology*, *145*(3), 1365–1373.
- Kado, C., & Liu, S. T. (1981). Rapid procedure for detection and isolation of large and small plasmids. *Journal of Bacteriology*, *145*(3), 1365–1373.
- Karkman, A., Pärnänen, K., & Larsson, D. G. J. (2019). Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. *Nature Communications*, 10(1), 1–8. https://doi.org/10.1038/s41467-018-07992-3
- Kav, A. B., Sasson, G., Jami, E., Doron-Faigenboim, A., Benhar, I., & Mizrahi, I. (2012). Insights into the bovine rumen plasmidome. *Proceedings of the National Academy of Sciences of the United States of America*, 109(14), 5452–5457. https://doi.org/10.1073/pnas.1116410109
- Kopmann, C., Jechalke, S., Rosendahl, I., Groeneweg, J., Krögerrecklenfort, E., Zimmerling, U.,
 ... Smalla, K. (2013). Abundance and transferability of antibiotic resistance as related to
 the fate of sulfadiazine in maize rhizosphere and bulk soil. *FEMS Microbiology Ecology*,
 83(1), 125–134. https://doi.org/10.1111/j.1574-6941.2012.01458.x
- Krawczyk, P. S., Lipinski, L., & Dziembowski, A. (2018). PlasFlow : predicting plasmid sequences in metagenomic data using genome signatures. 46(6). https://doi.org/10.1093/nar/gkx1321
- Król, J. E., Penrod, J. T., McCaslin, H., Rogers, L. M., Yano, H., Stancik, A. D., ... Top, E. M. (2012).
 Role of IncP-1β plasmids pWDL7::rfp and pNB8c in chloroaniline catabolism as determined by genomic and functional analyses. *Applied and Environmental Microbiology*, *78*(3), 828–838. https://doi.org/10.1128/AEM.07480-11
- Lang, A. S., Zhaxybayeva, O., & Beatty, J. T. (2012). Gene transfer agents : phage-like elements of genetic exchange. *Nature Reviews Microbiology*, *10*(June). https://doi.org/10.1038/nrmicro2802
- Langmead, B., & Salzberg, S. (2013). Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923.Fast

- Larsson, D. G. J. (2014). Antibiotics in the environment. *Upsala Journal of Medical Sciences*, *119*(2), 108–112. https://doi.org/10.3109/03009734.2014.896438
- Larsson, D. G. J., Andremont, A., Bengtsson-Palme, J., Brandt, K. K., de Roda Husman, A. M., Fagerstedt, P., ... Wernersson, A. S. (2018). Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. *Environment International*, 117(April), 132–138. https://doi.org/10.1016/j.envint.2018.04.041
- Lawrence, J. G., & Hendrickson, H. (2005). Genome evolution in bacteria : order beneath chaos. *Current Opinion in Microbiology*, (8), 572–578. https://doi.org/10.1016/j.mib.2005.08.005
- Lawrence, J. G., & Ochman, H. (2002). Reconciling the many faces of lateral gene transfer. *Trends in Microbiology*, *10*(1), 1–4. https://doi.org/10.1016/S0966-842X(01)02282-X
- Lee, H. H., Molla, M. N., Cantor, C. R., & Collins, J. J. (2010). Bacterial charity work leads to population-wide resistance. *Nature*, 467(7311), 82–85. https://doi.org/10.1038/nature09354
- Lemon, J. K., Khil, P. P., Frank, K. M., & Dekker, J. P. (2017). Rapid nanopore sequencing of plasmids and resistance gene detection in clinical isolates. *Journal of Clinical Microbiology*, 55(12), 3530–3543. https://doi.org/10.1128/JCM.01069-17
- Li, A. D., Li, L. G., & Zhang, T. (2015). Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants. *Frontiers in Microbiology*, 6(SEP). https://doi.org/10.3389/fmicb.2015.01025
- Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics*, 34(18), 3094–3100. https://doi.org/10.1093/bioinformatics/bty191
- Llosa, M., & De La Cruz, F. (2005). Bacterial conjugation: A potential tool for genomic engineering. *Research in Microbiology*, 156(1), 1–6. https://doi.org/10.1016/j.resmic.2004.07.008
- Loftie-Eaton, W., Bashford, K., Quinn, H., Dong, K., Millstein, J., Hunter, S., ... Top, E. M. (2017). Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. *Nature Ecology and Evolution*, 1(9), 1354–1363. https://doi.org/10.1038/s41559-017-0243-2
- Lorenz, M. G., & Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformation in the environment. *Microbiology and Molecular Biology Reviews*, 58(3), 563. Retrieved from http://mmbr.asm.org/cgi/content/abstract/58/3/563
- Mahnert, A., Moissl-Eichinger, C., Zojer, M., Bogumil, D., Mizrahi, I., Rattei, T., ... Berg, G. (2019). Man-made microbial resistances in built environments. *Nature Communications*, 10(1), 1–12. https://doi.org/10.1038/s41467-019-08864-0
- Martens, E., & Demain, A. L. (2017). The antibiotic resistance crisis, with a focus on the United States. *Journal of Antibiotics*, 70(5), 520–526. https://doi.org/10.1038/ja.2017.30
- Martínez-Rosales, C., Fullana, N., Musto, H., & Castro-Sowinski, S. (2012). Antarctic DNA moving forward: Genomic plasticity and biotechnological potential. *FEMS Microbiology Letters*, *331*(1), 1–9. https://doi.org/10.1111/j.1574-6968.2012.02531.x
- Martínez, J. L., Coque, T. M., & Baquero, F. (2014). What is a resistance gene? Ranking risk in resistomes. *Nature Publishing Group*, (December), 1–8.

https://doi.org/10.1038/nrmicro3399

- Martínez, J. L., Coque, T. M., Lanza, V. F., de la Cruz, F., & Baquero, F. (2017). Genomic and metagenomic technologies to explore the antibiotic resistance mobilome. *Annals of the New York Academy of Sciences*, *1388*(1), 26–41. https://doi.org/10.1111/nyas.13282
- Mcarthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., ... Wright, D. (2013). The Comprehensive Antibiotic Resistance Database. *Antimicrobial Agents and Chemotherapy*, *57*(7), 3348–3357. https://doi.org/10.1128/AAC.00419-13
- McGuire, A. L., Colgrove, J., Whitney, S. N., Diaz, C. M., Bustillos, D., & Versalovic, J. (2008). Ethical, legal, and social considerations in conducting the Human Microbiome Project. *Genome Research*, 18(12), 1861–1864. https://doi.org/10.1101/gr.081653.108
- Modi, R., & Adams, J. (1991). Coevolution in bacterial-plasmid populations. *Evolution*, 45(3), 656–667.
- Modi, R. I., Wilke, C. M., Rosenzweig, R. F., & Adams, J. (1991). Plasmid macro-evolution: selection of deletions during adaptation in a nutrient-limited environment. *Genetica*, 84(3), 195–202. https://doi.org/10.1007/BF00127247
- Møller, A. K., Barkay, T., Hansen, M. A., Norman, A., Hansen, L. H., Sørensen, S. J., ... Kroer, N. (2014). Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. *FEMS Microbiology Ecology*, *87*(1), 52–63. https://doi.org/10.1111/1574-6941.12189
- Naas, T., Coignard, B., Carbonne, A., Blanckaert, K., Bajolet, O., Bernet, C., ... Nordmann, P. (2006). VEB-1 extended-spectrum β-lactamase-producing Acinetobacter baumannii, France. *Emerging Infectious Diseases*, *12*(8), 1214–1222. https://doi.org/10.3201/eid1708.051547
- Naas, T., Poirel, L., Karim, A., & Nordmann, P. (1999). Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum β-lactamase VEB-1 in Pseudomonas aeruginosa. *FEMS Microbiology Letters*, *176*(2), 411–419. https://doi.org/10.1016/S0378-1097(99)00266-9
- Nesme, J., & Simonet, P. (2015). The soil resistome: A critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. *Environmental Microbiology*, 17(4), 913–930. https://doi.org/10.1111/1462-2920.12631
- Norman, A., Hansen, L. H., & Sorensen, S. J. (2009). Conjugative plasmids: vessels of the communal gene pool. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364(1527), 2275–2289. https://doi.org/10.1098/rstb.2009.0037
- Norman, Anders, Hansen, L. H., & Sørensen, S. J. (2009). Conjugative plasmids: vessels of the communal gene pool. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 364(1527), 2275–2289. https://doi.org/10.1098/rstb.2009.0037
- Novick, R. P., Richmond, M. H., & Hill, M. (1965). Nature and Interactions of the Genetic Elements Governing Penicillinase Synthesis in Staphylococcus aureus. *Journal of Bacteriology*, 90(2).
- Ochman, Howard and Davalos, L. (2006). The Nature and Dynamics of Bacterial Genomes Howard. *Science*, *1730*(311). https://doi.org/10.1126/science.1119966
- Ochman, H., Lawrence, J. G., & Groisman, E. a. (2000). Lateral gene transfer and the nature of bacterial innovation. *Nature*, 405(6784), 299–304. https://doi.org/10.1038/35012500

- Orlek, A., Phan, H., Sheppard, A. E., Doumith, M., Ellington, M., Peto, T., ... Stoesser, N. (2017). Ordering the mob: Insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids. *Plasmid*, *91*, 42–52. https://doi.org/10.1016/j.plasmid.2017.03.002
- Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., & Larsson, D. G. J. (2014). BacMet: Antibacterial biocide and metal resistance genes database. *Nucleic Acids Research*, 42(D1), 737–743. https://doi.org/10.1093/nar/gkt1252
- Partridge, S. R., Tsafnat, G., Coiera, E., & Iredell, J. R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons: Review article. *FEMS Microbiology Reviews*, *33*(4), 757–784. https://doi.org/10.1111/j.1574-6976.2009.00175.x
- Pawlowski, A. C., Wang, W., Koteva, K., Barton, H. A., McArthur, A. G., & Wright, G. D. (2016). A diverse intrinsic antibiotic resistome from a cave bacterium. *Nature communications*, 7, 13803.
- Peng, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). IDBA-UD : a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics*, 28(11), 1420–1428. https://doi.org/10.1093/bioinformatics/bts174
- Petrovski, S., & Stanisich, V. A. (2011). Embedded elements in the IncPβ plasmids R772 and R906 can be mobilized and can serve as a source of diverse and novel elements. *Microbiology*, *157*(6), 1714–1725. https://doi.org/10.1099/mic.0.047761-0
- Poirel, L., Liard, A., Nordmann, P., & Mammeri, H. (2005). Origin of Plasmid-Mediated Quinolone Resistance Determinant QnrA. *Antimicrobial Agents and Chemotherapy*, 49(8), 3523–3525. https://doi.org/10.1128/AAC.49.8.3523
- Popowska, M., Rzeczycka, M., Miernik, A., Krawczyk-Balska, A., Walsh, F., & Duffy, B. (2012). Influence of soil use on prevalence of tetracycline,streptomycin, and erythromycin resistance and associated resistance genes. *Antimicrobial Agents and Chemotherapy*, *56*(3), 1434–1443. https://doi.org/10.1128/AAC.05766-11
- R Core Team. (2008). R: A language and environment for statistical computing. *R Foundation* for Statistical Computing, 10(1), 11–18. https://doi.org/10.1108/eb003648
- Rabbia, V., Bello-Toledo, H., Jiménez, S., Quezada, M., Domínguez, M., Vergara, L., ... González-Rocha, G. (2016). Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area. *Polar Science*, *10*(2), 123–131. https://doi.org/10.1016/j.polar.2016.04.002
- Rawlings, D. E., & Tietze, E. (2001). Comparative Biology of IncQ and IncQ-Like Plasmids. *Microbiology and Molecular Biology Reviews*, 65(4), 481–496. https://doi.org/10.1128/mmbr.65.4.481-496.2001
- Revilla, C., Garcillán-Barcia, M. P., Fernández-López, R., Thomson, N. R., Sanders, M., Cheung, M., ... De La Cruz, F. (2008). Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. *Antimicrobial Agents and Chemotherapy*, 52(4), 1472–1480. https://doi.org/10.1128/AAC.00982-07
- Rice, L. B. (2006). Challenges in Identifying New Antimicrobial Agents Effective for Treating Infections with Acinetobacter baumannii and Pseudomonas aeruginosa. *Clinical Infectious Diseases*, 111(Suppl 2).
- Riesenfeld, C. S., Goodman, R. M., & Handelsman, J. (2004). Uncultured soil bacteria are a

reservoir of new antibiotic resistance genes. *Environmental Microbiology*, 6(9), 981–989. https://doi.org/10.1111/j.1462-2920.2004.00664.x

- Riquelme, N. A., Leon, M. F., Santander, J. A., & Robeson, J. P. (2019). Productive infection and transduction by bacteriophage P1 in the species Salmonella bongori. *Electronic Journal of Biotechnology*, *41*, 9–12. https://doi.org/10.1016/j.ejbt.2019.04.011
- Roberts, A. P. (2008). Revised Nomanclature of Transposable Genetic Elemts. *Plasmid*, 60(3), 1–12. https://doi.org/10.1016/j.plasmid.2008.08.001.Revised
- Roberts, M. C., & Schwarz, S. (2016). Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. *Journal of Environmental Quality*, 45(2), 576–592. https://doi.org/10.2134/jeq2015.04.0207
- Robertson, J., & Nash, J. H. E. (2018). MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. *Microbial Genomics*, *4*(8). https://doi.org/10.1099/mgen.0.000206
- Robinson, T. P., Bu, D. P., Carrique-Mas, J., Fèvre, E. M., Gilbert, M., Grace, D., ... Woolhouse, M. E. J. (2016). Antibiotic resistance is the quintessential One Health issue. *Transactions* of the Royal Society of Tropical Medicine and Hygiene, 110(7), 377–380. https://doi.org/10.1093/trstmh/trw048
- Romaniuk, K., Ciok, A., Decewicz, P., Uhrynowski, W., Budzik, K., Nieckarz, M., ... Dziewit, L. (2018). Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). *Polar Biology*, *41*(7), 1319–1333. https://doi.org/10.1007/s00300-018-2287-4
- Rozkov, A., Avignone-Rossa, C. A., Ertl, P. F., Jones, P., O'Kennedy, R. D., Smith, J. J., ... Bushell, M. E. (2004). Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnology and Bioengineering, 88(7), 909–915. https://doi.org/10.1002/bit.20327
- Sakai, H., & Komano, T. (1996). DNA replication of incq broad-host-range plasmids in gramnegative bacteria. *Bioscience, Biotechnology and Biochemistry*, *60*(3), 377–382. https://doi.org/10.1271/bbb.60.377
- Samuels, L., Lanka, E., & Davies, J. (2000). Conjugative juntions in RP4-mediated mating of Escherichia coli. *Journal of Bacteriology*, 182(10), 2709–2715. https://doi.org/10.1128/JB.182.10.2709-2715.2000
- Sánchez, M. B., & Martínez, J. L. (2012). Differential epigenetic compatibility of qnr antibiotic resistance determinants with the chromosome of Escherichia coli. *PLoS ONE*, *7*(5). https://doi.org/10.1371/journal.pone.0035149
- Seemann, T. (2014). Prokka : rapid prokaryotic genome annotation. *Bioinformatics*, *30*(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153
- Sen, D., Auwera, G. A. Van Der, Rogers, L. M., Thomas, C. M., Brown, C. J., & Top, E. M. (2011). Broad-Host-Range Plasmids from Agricultural Soils Have IncP-1 Backbones with Diverse Accessory Genes. *Applied and Environmental Microbiology*, 77(22), 7975–7983. https://doi.org/10.1128/AEM.05439-11
- Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. *Saudi Journal of Biological Sciences*, *22*(1), 90–101. https://doi.org/10.1016/j.sjbs.2014.08.002

- Shintani, M., Sanchez, Z. K., & Kimbara, K. (2015). Genomics of microbial plasmids: Classification and identification based on replication and transfer systems and host taxonomy. *Frontiers in Microbiology*, 6(MAR), 1–16. https://doi.org/10.3389/fmicb.2015.00242
- Siguier, P., Gourbeyre, E., Varani, A., Ton-hoang, B. A. O., & Chandler, M. (2015). Everyman's Guide to Bacterial Insertion Sequences. *Microbiology Spectrum*, 1–35.
- Sjöling, S., & Cowan, D. a. (2000). Detecting human bacterial contamination in Antarctic soils. *Polar Biology*, 23(9), 644–650. https://doi.org/10.1007/s003000000137
- Sköld, O. (2001). Resistance to trimethoprim and sulfonamides. *Veterinary research*, 32(3-4), 261-273.
- Smalla, K., Heuer, H., Gotz, A., Niemeyer, D., Krogerrecklenfort, E., & Tietze, E. (2000). Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. *Applied and Environmental Microbiology*, 66(11), 4854–4862. https://doi.org/10.1128/AEM.66.11.4854-4862.2000
- Smalla, Kornelia, Haines, A. S., Jones, K., Krögerrecklenfort, E., Heuer, H., Schloter, M., & Thomas, C. M. (2006). Increased abundance of IncP-1β plasmids and mercury resistance genes in mercury-polluted river sediments: First discovery of IncP-1β plasmids with a complex mer transposon as the sole accessory element. *Applied and Environmental Microbiology*, *72*(11), 7253–7259. https://doi.org/10.1128/AEM.00922-06
- Smalla, Kornelia, Jechalke, S., & Top, E. (2015). Plasmid detection, characterization and ecology. *Microbiology Spectrum*, 3(1), 1265–1272. https://doi.org/10.1002/cncr.29075.Familial
- Smillie, C., Garcillan-Barcia, M. P., Francia, M. V., Rocha, E. P. C., & de la Cruz, F. (2010). Mobility of Plasmids. *Microbiology and Molecular Biology Reviews*, 74(3), 434–452. https://doi.org/10.1128/MMBR.00020-10
- Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. *Nature*, 480(7376), 241–244. https://doi.org/10.1038/nature10571
- Smorawinska, M., Szuplewska, M., Zaleski, P., Wawrzyniak, P., Maj, A., Plucienniczak, A., & Bartosik, D. (2012). Mobilizable narrow host range plasmids as natural suicide vectors enabling horizontal gene transfer among distantly related bacterial species. *FEMS Microbiology Letters*, 326(1), 76–82. https://doi.org/10.1111/j.1574-6968.2011.02432.x
- Snesrud, E., He, S., Chandler, M., Dekker, J. P., Hickman, A. B., McGann, P., & Dyda, F. (2016). A model for transposition of the colistin resistance gene mcr-1 by ISApl1. *Antimicrobial Agents and Chemotherapy*, 60(11), 6973–6976. https://doi.org/10.1128/AAC.01457-16
- Solar, G., Giraldo, R., Ruiz-Echeberria, M., Espinosa, M., & Díaz-Orejas, M. (1998). Replication and control of bacterial plasmids. *Microbiology and Molecular Biology Reviews*, 62(July), 434–464.
- Soucy, S. M., Huang, J., & Gogarten, J. P. (2015). Horizontal gene transfer: building the web of life. *Nature Reviews Genetics*, *16*(8), 472–482. https://doi.org/10.1038/nrg3962
- Spagnolo, P., Fabbri, L. M., & Bush, A. (2013). Long-term macrolide treatment for chronic respiratory disease. *European Respiratory Journal*, 42(1), 239–251. https://doi.org/10.1183/09031936.00136712

- Szczepanowski, R., Bekel, T., Goesmann, A., Krause, L., Krömeke, H., Kaiser, O., ... Schlüter, A. (2008). Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454pyrosequencing technology. *Journal of Biotechnology*, *136*(1–2), 54–64. https://doi.org/10.1016/j.jbiotec.2008.03.020
- Tang, Y., Shen, P., Liang, W., Jin, J., & Jiang, X. (2017). A putative multi-replicon plasmid coharboring beta-lactamase genes blaKPC-2, blaCTX-M-14 and blaTEM-1 and trimethoprim resistance gene dfrA25 from a Klebsiella pneumoniae sequence type (ST) 11 strain in China. *PLoS ONE*, *12*(2), 1–9. https://doi.org/10.1371/journal.pone.0171339
- Taylor, T. L., Volkening, J. D., DeJesus, E., Simmons, M., Dimitrov, K. M., Tillman, G. E., ... Afonso, C. L. (2019). Rapid, multiplexed, whole genome and plasmid sequencing of foodborne pathogens using long-read nanopore technology. *Scientific Reports*, *9*(1), 1– 11. https://doi.org/10.1038/s41598-019-52424-x
- Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. *Nat.Rev.Microbiol.*, *3*(1740-1526 (Print)), 711–721. https://doi.org/10.1038/nrmicro1234
- Tully, B. J., Graham, E. D., & Heidelberg, J. F. (2018). The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. *Scientific Data*, *5*, 1–8. https://doi.org/10.1038/sdata.2017.203
- Van Goethem, M. W., Pierneef, R., Bezuidt, O. K. I., Van De Peer, Y., Cowan, D. A., & Makhalanyane, T. P. (2018). A reservoir of "historical" antibiotic resistance genes in remote pristine Antarctic soils. *Microbiome*, 6(1), 1–12. https://doi.org/10.1186/s40168-018-0424-5
- Van Hoek, A. H. A. M., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. M. (2011). Acquired antibiotic resistance genes: An overview. *Frontiers in Microbiology*, 2(SEP), 1–27. https://doi.org/10.3389/fmicb.2011.00203
- Vero, S., Garmendia, G., González, M. B., Bentancur, O., & Wisniewski, M. (2013). Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Research, 13(2), 189–199. https://doi.org/10.1111/1567-1364.12021
- Vetting, M., Magnet, S., Nieves, E., Roderick, S., & Blanchard, J. (2004). A Bacterial Acetyltransferase Capable of Regioselective N-Acetylation of Antibiotics and Histones. *Chemistry and Biology*, *11*, 565–573. https://doi.org/10.1016/j.chembiol .2004.03.017
- Vetting, M. W., Hegde, S. S., Wang, M., Jacoby, G. A., Hooper, D. C., & Blanchard, J. S. (2011). Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. *Journal of Biological Chemistry*, 286(28), 25265–25273. https://doi.org/10.1074/jbc.M111.226936
- Vladar, E. K., Lee, Y. L., Stearns, T., & Axelrod, J. D. (2016). Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. *MedChemComm*, 7(1), 37–54. https://doi.org/10.1016/bs.mcb.2015.01.016.Observing
- Votintseva, A. A., Bradley, P., Pankhurst, L., Del Ojo Elias, C., Loose, M., Nilgiriwala, K., ... Iqbal, Z. (2017). Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. *Journal of Clinical Microbiology*, 55(5), 1285–1298. https://doi.org/10.1128/JCM.02483-16

Warburton, P. J., Allan, E., Hunter, S., Ward, J., Booth, V., Wade, W. G., & Mullany, P. (2011).

Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease, using transposon-aided capture (TRACA). *FEMS Microbiology Ecology*, *78*(2), 349–354. https://doi.org/10.1111/j.1574-6941.2011.01166.x

- Wattam, A. R., Abraham, D., Dalay, O., Disz, T. L., Driscoll, T., Gabbard, J. L., ... Sobral, B. W. (2014). PATRIC, the bacterial bioinformatics database and analysis resource. *Nucleic Acids Research*, 42(November 2013), 581–591. https://doi.org/10.1093/nar/gkt1099
- Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., ... Stevens, R. L. (2017). Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. *Nucleic Acids Research*, 45(D1), D535–D542. https://doi.org/10.1093/nar/gkw1017
- Webber, M. A., & Piddock, L. J. V. (2003). The importance of efflux pumps in bacterial antibiotic resistance. *Journal of Antimicrobial Chemotherapy*, *51*(1), 9–11. https://doi.org/10.1093/jac/dkg050
- Werren, J. H. (2011). Selfish genetic elements, genetic conflict, and evolutionary innovation. Proceedings of the National Academy of Sciences of the United States of America, 108(SUPPL. 2), 10863–10870. https://doi.org/10.1073/pnas.1102343108
- Womble, D. D., Taylor, D. P., & Rownd, R. H. (1977). Method for obtaining more accurate covalently closed circular plasmid to chromosome ratios from bacterial lysates by dye buoyant density centrifugation. *Journal of Bacteriology*, *130*(1), 148–153.
- Wooley, J. C., Godzik, A., & Friedberg, I. (2010). A primer on metagenomics. *PLoS Computational Biology*, 6(2). https://doi.org/10.1371/journal.pcbi.1000667
- Wright, G. D. (2010). Antibiotic resistance in the environment: A link to the clinic? *Current Opinion in Microbiology*, *13*(5), 589–594. https://doi.org/10.1016/j.mib.2010.08.005
- Xi, C., Lambrecht, M., Vanderleyden, J., & Michiels, J. (1999). Bi-functional gfp and gusAcontining mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. *Journal of Microbiological Methods*, *35*, 85–92.
- Xu, W., Zhang, G., Li, X., Zou, S., Li, P., Hu, Z., & Li, J. (2007). Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. *Water Research*, 41(19), 4526–4534. https://doi.org/10.1016/j.watres.2007.06.023
- Zhang, T., Zhang, X.-X., & Ye, L. (2011). Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. *PloS One*, *6*(10), e26041. https://doi.org/10.1371/journal.pone.0026041
- Zhou, F., & Xu, Y. (2010). cBar: A computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. *Bioinformatics*, 26(16), 2051–2052. https://doi.org/10.1093/bioinformatics/btq299

6 Anexos

Top10 Top10 Hyper 1 kb 10 kb 2 kb

Figura S1. **A)** Electroforesis en gel de agarosa para la visualización de la *midiprep* realizada a la cepa DH5α receptora del ensayo de captura exógena de plásmidos. **B)** Electroforesis en gel de agarosa de *midiprep* realizada a clones transconjugantes de la cepa Top10.

В

Soluciones utilizadas

Medio LB (Luria Bertani)
NaCl 5 gr.
BactoTriptona 5 gr.
Extracto de levadura 3 gr.
Agar 15 gr.
Agua Csp. 1L

Ácido acético glacial	1X
Tris	40 mM
EDTA	2 mM
Agua	1 L
Ph = 7,6	

Tabla S1. Alineamientos de secuencias repetidas encontradas en bases de datos de plásmidos y cromosomas.

Subject	Query	Identidad	Alineamient	Gaps	Largo	Largo	E-
			0		query	subject	value
ref NZ_HG938354. 1	HG9383 54	100	1807065	0	180706 5	1807065	0
ref NC_019765.1	CP0036 54	100	309296	0	309296	309296	0
ref NC_019749.1	CP0036 55	100	108587	0	108587	108587	0
ref NC_019750.1	CP0036 56	100	67557	0	67557	67557	0
ref NC_020052.1	CP0036 57	100	12398	0	12398	12398	0
ref NC_019766.1	CP0036 58	100	5943	0	5943	5943	0
ref NC_019953.1	FO2035 23	100	5328	0	5328	5328	0
ref NC_019012.1	HE7966 84	100	161819	0	161819	161819	0
ref NC_019727.1	CP0036 11	100	80757	0	80757	80757	0
ref NC_019728.1	CP0036 12	100	56464	0	56464	56464	0
ref NC_019752.1	CP0036 13	100	55337	0	55337	55337	0
ref NC_019698.1	CP0036 02	100	31019	0	31019	31019	0
ref NC_019733.1	CP0036 21	100	54978	0	54978	54978	0
ref NC_019734.1	CP0036 22	100	53213	0	53213	53213	0
ref NC_019754.1	CP0036 23	100	50800	0	50800	50800	0
ref NC_019735.1	CP0036 24	100	44285	0	44285	44285	0
ref NC_019736.1	CP0036 25	100	39142	0	39142	39142	0
ref NC_019755.1	CP0036 26	100	29492	0	29492	29492	0

ref NC_019737.1	CP0036 27	100	28455	0	28455	28455	0
ref NC_019756.1	CP0036 28	100	4488	0	4488	4488	0
ref NC_019746.1	CP0036 47	100	204466	0	204466	204466	0
ref NC_020051.1	CP0036 48	100	201822	0	201822	201822	0
ref NC_019759.1	CP0036 49	100	30787	0	30787	30787	0
ref NC_019747.1	CP0036 50	100	14187	0	14187	14187	0
ref NC_019739.1	CP0036 31	100	146045	0	146045	146045	0
ref NC_019760.1	CP0036 32	100	93032	0	93032	93032	0
ref NC_019740.1	CP0036 33	100	92471	0	92471	92471	0
ref NC_019761.1	CP0036 34	100	50464	0	50464	50464	0
ref NC_019741.1	CP0036 35	100	38468	0	38468	38468	0
ref NC_019742.1	CP0036 36	100	28816	0	28816	28816	0
ref NC_019762.1	CP0036 37	100	25982	0	25982	25982	0
ref NC_019743.1	CP0036 38	100	20803	0	20803	20803	0
ref NC_019691.1	CP0035 95	100	63272	0	63272	63272	0
ref NC_019692.1	CP0035 96	100	10210	0	10210	10210	0
ref NC_019397.1	CP0039 27	100	213808	0	213808	213808	0
ref NC_019730.1	CP0036 16	100	260268	0	260268	260268	0
ref NC_019731.1	CP0036 17	100	150927	0	150927	150927	0
ref NC_019764.1	CP0036 18	100	74236	0	74236	74236	0
ref NC_019681.1	CP0035 59	100	23223	0	23223	23223	0
ref NC_019699.1	CP0035 98	100	370830	0	370830	370830	0
ref NC_019696.1	CP0035 99	100	2779	0	2779	2779	0
ref NC_019772.1	CP0036 60	100	219925	0	219925	219925	0
ref NC_020157.1	CP0036 61	100	177682	0	177682	177682	0
ref NC_019773.1	CP0036 62	100	128780	0	128780	128780	0
ref NC_019774.1	CP0036 63	100	97606	0	97606	97606	0
ref NC_020056.1	CP0036 64	100	20633	0	20633	20633	0
ref NC_019775.1	CP0036 65	100	22823	0	22823	22823	0
ref NC_019679.1	CP0035 50	100	26836	0	26836	26836	0
ref NC_019686.1	CP0035 51	100	3474	0	3474	3474	0

ref NC_013930.1	NC_013 930	100	240256	0	240256	240256	0
ref NC_019428.1	CP0032 86	100	80384	0	80384	80384	0
ref NC_019429.1	CP0032 87	100	56037	0	56037	56037	0
ref NC_019440.1	CP0032 88	100	20025	0	20025	20025	0
ref NC_019744.1	CP0036 44	100	154332	0	154332	154332	0
ref NC_019758.1	CP0036 45	100	20876	0	20876	20876	0
ref NC_019700.1	CP0036 08	100	64128	0	64128	64128	0
ref NC_019694.1	CP0036 09	100	50699	0	50699	50699	0
ref NC_020060.1	CP0040 16	100	216610	0	216610	216610	0
ref NC_020061.1	CP0040 17	100	549467	0	549467	549467	0
ref NC_020062.1	CP0040 18	100	2083197	0	208319 7	2083197	0
ref NC_019387.1	CP0032 50	100	271713	0	271713	271713	0
ref NC_019388.1	CP0032 51	100	57223	0	57223	57223	0
ref NC_017858.1	CP0033 81	100	47825	0	47825	47825	0
ref NC_019941.1	CP0030 52	100	88600	0	88600	88600	0
ref NC_019690.1	CP0035 93	100	328634	0	328634	328634	0
ref NC_014718.1	NC_014 718	100	822304	0	822304	822304	0
ref NC_019789.1	CP0033 83	100	556630	0	556630	556630	0
ref NC_019790.1	CP0033 84	100	75245	0	75245	75245	0

 Tabla S2.Plásmidos utilizados para la generación de modelos ocultos de Markov para la clasificación en grupos de incompatibilidad de plásmidos de bacterias Gram-negativas.

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibili dad	МОВ
NC_01938 0	Aeromonas hydrophila plasmid pR148, complete sequence	165906	IncA/C	MOBH
NC_01288 5	Aeromonas hydrophila plasmid pRA1, complete sequence	143963	IncA/C	MOBH
NC_00934 9	Aeromonas salmonicida subsp. salmonicida A449 plasmid 4, complete sequence	166749	IncA/C	MOBH
NC_01725 8	Buchnera aphidicola str. Ak (Acyrthosiphon kondoi) plasmid pTrp, complete sequence	3645	IncA/C	-
NC_02018 0	Enterobacter aerogenes EA1509E plasmid pEA1509_A, complete sequence	162202	IncA/C	MOBH
NC_01906 6	Escherichia coli plasmid pAPEC1990_61, complete sequence	161081	IncA/C	MOBH
NC_01269 2	Escherichia coli plasmid pAR060302, complete sequence	166530	IncA/C	MOBH
NC_01269 0	Escherichia coli plasmid peH4H, complete sequence	148105	IncA/C	MOBH

Número do accoso	Plásmido y hospedero	Tamaño	Incompatibili	МОВ
NC_01899	Escherichia coli plasmid pNDM-1_Dok01, complete sequence	195560	IncA/C	MOBH
4 NC_01906 9	Escherichia coli plasmid pNDM10505, complete sequence	166744	IncA/C	MOBH
NC_01906	Escherichia coli plasmid pPG010208, complete sequence	135803	IncA/C	MOBH
NC_01288 6	Escherichia coli plasmid pRAx, complete sequence	52637	IncA/C	-
NC_01764 5	Escherichia coli UMNK88 plasmid pUMNK88, complete sequence	160573	IncA/C	MOBH
NC_01915 8	Klebsiella pneumoniae plasmid pNDM10469, complete sequence	137813	IncA/C	MOBH
NC_01915 3	Klebsiella pneumoniae plasmid pNDM-KN, complete sequence	162746	IncA/C	MOBH
NC_01697 6	Klebsiella pneumoniae plasmid pR55, complete sequence	170810	IncA/C	MOBH
NC_01683 9	Klebsiella pneumoniae subsp. pneumoniae HS11286 plasmid pKPHS3, complete sequence	105974	IncA/C	-
NC_00861 3	Photobacterium damselae subsp. piscicida plasmid pP91278, complete sequence	131520	IncA/C	MOBH
NC_00861 2	Photobacterium damselae subsp. piscicida plasmid pP99-018, complete sequence	150157	IncA/C	MOBH
NC_01697 4	Providencia stuartii plasmid pMR0211, complete sequence	178277	IncA/C	MOBH
NC_01269 3	Salmonella enterica plasmid pAM04528, complete sequence	158213	IncA/C	MOBH
NC_01910 7	Salmonella enterica subsp. enterica serovar Dublin plasmid pSD_174, complete sequence	173673	IncA/C	MOBH
NC_01912 1	Salmonella enterica subsp. enterica serovar Heidelberg plasmid pSH111_166, complete sequence	165791	IncA/C	MOBH
NC_01911 6	Salmonella enterica subsp. enterica serovar Heidelberg plasmid pSH163_135, complete sequence	135168	IncA/C	MOBH
NC_01911 8	Salmonella enterica subsp. enterica serovar Heidelberg plasmid pSH696_135, complete sequence	135423	IncA/C	MOBH
NC_00914 0	Salmonella enterica subsp. enterica serovar Newport str. SL254 plasmid pSN254, complete sequence	176473	IncA/C	MOBH
NC_01417 0	Xenorhabdus nematophila ATCC 19061 plasmid XNC1_p, complete sequence	155327	IncA/C	MOBH
NC_00914 1	Yersinia pestis biovar Orientalis str. IP275 plasmid pIP1202, complete sequence	182913	IncA/C	MOBH
NC_00913 9	Yersinia ruckeri YR71 plasmid pYR1, complete sequence	158038	IncA/C	MOBH
NC_01484 3	Escherichia coli plasmid p3521, complete sequence	110416	IncB/O	MOBP
NC_01899 5	Escherichia coli plasmid pHUSEC41-1, complete sequence	91942	IncB/O	MOBP
NC_02237 1	Escherichia coli PMV-1 pHUSEC411like plasmid, complete sequence	98864	IncB/O	MOBP
NC_00942 5	Enterobacter sp. 638 plasmid pENTE01, complete sequence	157749	IncFII(RepA1)	MOBF
NC_00252 5	Escherichia coli K-12 plasmid R721, complete sequence	75582	IncFII(RepA1)	MOBP
NC_02252 0	Klebsiella pneumoniae plasmid pBK15692, complete sequence	77801	IncFII(RepA1)	-
NC_02253 4	Plautia stali symbiont plasmid pPstS2 DNA, complete genome	38222	IncFII(RepA1)	-
NC_02030 6	Salmonella enterica subsp. enterica serovar Javiana str. CFSAN001992 plasmid pCFSAN001992_1, complete sequence	24012	IncFII(RepA1)	-
NC_01438 3	Escherichia coli plasmid pEC_Bactec, complete sequence	92970	IncFII(RepA4)	MOBP
NC_01913 7	Salmonella enterica subsp. enterica serovar Derby plasmid pSD107, complete sequence	107637	IncFII(RepA4)	MOBP
NC_01767 5	Salmonella enterica subsp. enterica serovar Typhimurium str. ST4/74 plasmid TY474p2, complete sequence	86908	IncFII(RepA4)	MOBP
NC_02302 4	Cronobacter sakazakii CMCC 45402 plasmid p1, complete sequence	126488	IncFI(RepB)	-
NC_01328 3	Cronobacter turicensis z3032 plasmid pCTU1, complete sequence	138339	IncFI(RepB)	-

Número	Plásmido y hospedero	Tamaño	Incompatibili	МОВ
NC_01472	Edwardsiella tarda strain CK41 plasmid pCK41, complete sequence	72832	dad IncFI(RepB)	MOBC
5 NC_02391	Escherichia coli H89 plasmid pECOH89, complete sequence	111741	IncFI(RepB)	-
NC_01191	Escherichia coli LF82 plasmid plLF82, complete sequence	108379	IncFI(RepB)	-
NC_01335	Escherichia coli O103:H2 str. 12009 plasmid pO103, complete	75546	IncFI(RepB)	MOBF
NC_01865	Escherichia coli O104:H4 str. 2009EL-2050 plasmid p09EL50, complete	109274	IncFI(RepB)	-
NC_02027	Escherichia coli O25b:H4-ST131 str. EC958 strain ST131 plasmid pllE186-2. complete sequence	137728	IncFI(RepB)	MOBF
NC_01394 2	Escherichia coli O55:H7 str. CB9615 plasmid pO55, complete sequence	66001	IncFI(RepB)	-
NC_01765 7	Escherichia coli O55:H7 str. RM12579 plasmid p12579_2, complete sequence	66078	IncFI(RepB)	-
NC_01141 6	Escherichia coli SE11 plasmid pSE11-3, complete sequence	60555	IncFI(RepB)	-
NC_01764 0	Escherichia coli UMNK88 plasmid pUMNK88_Ent, complete sequence	81475	IncFI(RepB)	MOBF
NC_01128 2	Klebsiella pneumoniae 342 plasmid pKP187, complete sequence	187922	IncFI(RepB)	-
NC_00524 9	Klebsiella pneumoniae CG43 plasmid pLVPK, complete sequence	219385	IncFI(RepB)	-
NC_01754 1	Klebsiella pneumoniae KCTC 2242 plasmid pKCTC2242, complete sequence	202852	IncFI(RepB)	-
NC_00662 5	Klebsiella pneumoniae NTUH-K2044 plasmid pK2044, complete sequence	224152	IncFI(RepB)	-
NC_01683 8	Klebsiella pneumoniae subsp. pneumoniae HS11286 plasmid pKPHS1, complete sequence	122799	IncFI(RepB)	-
NC_01753 3	Pantoea ananatis AJ13355 plasmid pEA320, complete sequence	321744	IncFI(RepB)	-
NC_01681 7	Pantoea ananatis LMG 5342 plasmid pPANA10, complete sequence	302599	IncFI(RepB)	-
NC_01755 3	Pantoea ananatis PA13 plasmid PAGR_p, complete sequence	280753	IncFI(RepB)	-
NC_01483 8	Pantoea sp. At-9b plasmid pPAT9B01, complete sequence	793953	IncFI(RepB)	-
NC_01456 1	Pantoea vagans C9-1 plasmid pPag1, complete sequence	167983	IncFI(RepB)	-
NC_01425 8	Pantoea vagans C9-1 plasmid pPag3, complete sequence	529676	IncFI(RepB)	-
NC_01296 1	Photorhabdus asymbiotica plasmid pPAU1, complete sequence	29330	IncFI(RepB)	-
NC_01681 9	Rahnella aquatilis CIP 78.65 = ATCC 33071 plasmid pRahaq202, complete sequence	115487	IncFI(RepB)	-
NC_00685 6	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67 plasmid pSC138, complete sequence	138742	IncFI(RepB)	MOBP
NC_01109 2	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633 plasmid pCVM19633_110, complete sequence	110227	IncFI(RepB)	MOBC
NC_00338 5	Salmonella enterica subsp. enterica serovar Typhi str. CT18 plasmid pHCM2, complete sequence	106516	IncFI(RepB)	-
NC_02237 2	Salmonella enterica subsp. enterica serovar Typhimurium plasmid pYT3 DNA, complete sequence	121723	IncFI(RepB)	MOBH
NC_01716 9	Yersinia pestis A1122 plasmid unnamed, complete sequence	96210	IncFI(RepB)	-
NC_01015 8	Yersinia pestis Angola plasmid pMT-pPCP, complete sequence	114570	IncFI(RepB)	-
NC_00812 0	Yersinia pestis Antiqua plasmid pMT, complete sequence	96471	IncFI(RepB)	-
NC_01726 6	Yersinia pestis biovar Medievalis str. Harbin 35 plasmid pMT, complete sequence	99286	IncFI(RepB)	-
NC_00581 5	Yersinia pestis biovar Microtus str. 91001 plasmid pMT1, complete sequence	106642	IncFI(RepB)	-
NC_00959 6	Yersinia pestis CA88-4125 plasmid pMT1, complete sequence	96210	IncFI(RepB)	-
NC_00313	Yersinia pestis CO92 plasmid pMT1, complete sequence	96210	IncFI(RepB)	-

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibili dad	MOB
NC_01715 5	Yersinia pestis D106004 plasmid pMT1, complete sequence	94249	IncFI(RepB)	-
NC_01715 8	Yersinia pestis D182038 plasmid pMT1, complete sequence	96046	IncFI(RepB)	-
NC_00483 8	Yersinia pestis KIM plasmid pMT-1, complete sequence	100990	IncFI(RepB)	-
NC_00811 8	Yersinia pestis Nepal516 plasmid pMT, complete sequence	100918	IncFI(RepB)	-
NC_00483 5	Yersinia pestis strain KIM5 plasmid pMT1, complete sequence	100984	IncFI(RepB)	-
NC_01402 2	Yersinia pestis Z176003 plasmid pMT1, complete sequence	94251	IncFI(RepB)	-
NC_02149 2	Enterobacter sp. R4-368 plasmid pENT01, complete sequence	116007	IncFI(RepE)	-
NC_02296 3	Erwinia piriflorinigrans CFBP 5888 plasmid pEPIR37 complete sequence	37376	IncFI(RepE)	-
NC_01069 3	Erwinia tasmaniensis Et1/99 plasmid pET46, complete sequence	46159	IncFI(RepE)	MOBP
NC_02159 4	Serratia plymuthica 4Rx13 plasmid p75, complete sequence	75721	IncFI(RepE)	MOBF
NC_00947 6	Aeromonas bestiarum 5S9 plasmid pAb5S9, complete sequence	24716	IncP-6	MOBQ
NC_01091 9	Aeromonas hydrophila plasmid pRA3, complete sequence	45909	IncP-6	MOBP
NC_01979 8	Bacterium 72B plasmid pTOR_01, complete sequence	20914	IncP-6	-
NC_01883 0	Bordetella parapertussis Bpp5 plasmid BPP5P1, complete sequence	12195	IncP-6	-
NC_01350 9	Edwardsiella tarda EIB202 plasmid pEIB202, complete sequence	43703	IncP-6	-
NC_02092 0	Erwinia amylovora CFBP 2585 plasmid pEA3, complete sequence	29585	IncP-6	-
NC_00834 2	Nitrosomonas eutropha C91 plasmid2, complete sequence	55635	IncP-6	MOBP
NC_00973 9	Pseudomonas aeruginosa plasmid pMATVIM-7, complete sequence	24179	IncP-6	MOBP
NC_00710 0	Pseudomonas aeruginosa plasmid Rms149, complete sequence	57121	IncP-6	MOBP
NC_02234 6	Pseudomonas aeruginosa strain ST308 plasmid pCOL-1, complete sequence	31529	IncP-6	MOBP
NC_01926 7	Serratia marcescens plasmid pRIO-5, complete sequence	12957	IncP-6	-
NC_01921 6	Uncultured bacterium plasmid pRSB105, complete sequence	57137	IncP-6	MOBP
NC_01755 6	Xanthomonas albilineans GPE PC73 plasmid plasmII, complete sequence	31555	IncP-6	MOBF
NC_01605 3	Xanthomonas arboricola pv. pruni str. CFBP 5530 plasmid pXap41, complete sequence	41102	IncP-6	-
NC_01936 0	Citrobacter freundii plasmid pNDM-CIT, complete sequence	288920	IncH	MOBH
NC_02302 5	Cronobacter sakazakii CMCC 45402 plasmid p2, complete sequence	55913	IncH	-
NC_02026 1	Cronobacter sakazakii Sp291 plasmid pSP291-2, complete sequence	52134	IncH	-
NC_01328 5	Cronobacter turicensis z3032 plasmid pCTU3, complete sequence	53842	IncH	-
NC_02123 8	Klebsiella pneumoniae strain Kpn-1433 plasmid pKP1433, complete sequence	55417	IncH	-
NC_01484 2	Pantoea sp. At-9b plasmid pPAT9B05, complete sequence	116877	IncH	-
NC_00998 1	Salmonella enterica subsp. enterica serovar Choleraesuis plasmid pMAK1, complete sequence	208409	IncH	MOBH
NC_01141 9	Escherichia coli SE11 plasmid pSE11-1, complete sequence	100021	Incl	MOBP
NC_00978 8	Escherichia coli E24377A plasmid pETEC_73, complete sequence	70609	IncK	MOBP
NC_01447 7	Escherichia coli plasmid pCT, complete sequence	93629	IncK	MOBP

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibili dad	МОВ
NC_01906	Escherichia coli plasmid pPWD4_103, complete sequence	103297	IncK	MOBP
NC_02123 1	Klebsiella pneumoniae plasmid pKRH, complete sequence	113685	IncK	MOBC, MOBF
NC_01911	Salmonella enterica subsp. enterica serovar Typhimurium plasmid	91369	IncK	MOBP
NC_00446 4	Citrobacter freundii plasmid pCTX-M3, complete sequence	89468	IncL/M	MOBP
NC_01936 8	Enterobacter cloacae plasmid pEl1573, complete sequence	87731	IncL/M	MOBP
NC_01934 6	Enterobacter cloacae plasmid pNE1280, complete sequence	66531	IncL/M	MOBP
NC_00524 6	Erwinia amylovora LebB66 plasmid pEL60, complete sequence	60145	IncL/M	MOBP
NC_01906 3	Escherichia coli plasmid pNDM-HK, complete sequence	88803	IncL/M	MOBP
NC_01164 1	Klebsiella pneumoniae plasmid pCTXM360, complete sequence	68018	IncL/M	MOBP
NC_02148 8	Klebsiella pneumoniae plasmid pKPoxa-48N1, complete sequence	62592	IncL/M	MOBP
NC_01915 4	Klebsiella pneumoniae plasmid pOXA-48, complete sequence	61881	IncL/M	MOBP
NC_01988 9	Klebsiella pneumoniae strain 601 plasmid pNDM-OM, complete sequence	87185	IncL/M	MOBP
NC_02302 7	Klebsiella pneumoniae strain E71T plasmid, complete sequence	63578	IncL/M	MOBP
NC_02107 8	Klebsiella pneumoniae strain Kp002 plasmid pJEG011, complete sequence	71446	IncL/M	MOBP
NC_01934 4	Serratia marcescens plasmid R830b, complete sequence	81793	IncL/M	MOBP
NC_01923 4	Yersinia enterocolitica (type O:8) plasmid pYV-WA314, complete sequence	66845	IncL/M	-
NC_00501 7	Yersinia enterocolitica 8081 plasmid pYVe8081, complete sequence	67720	IncL/M	-
NC_00456 4	Yersinia enterocolitica plasmid pYVa127/90, complete sequence	66591	IncL/M	-
NC_00879 1	Yersinia enterocolitica subsp. enterocolitica 8081 plasmid pYVe8081, complete sequence	67721	IncL/M	-
NC_01175 9	Yersinia pseudotuberculosis pGDT4 plasmid	94967	IncL/M	MOBP
NC_01899 9	Erwinia amylovora ACW56400 plasmid EaACW_pEI70, complete sequence	65840	IncN	-
NC_01931 0	Erwinia amylovora plasmid pEM65, complete sequence	65150	IncN	-
NC_01430 4	Erwinia billingiae Eb661 plasmid pEB102, complete sequence	102323	IncN	-
NC_01908 7	Escherichia coli O25b:H4-ST131 str. EC958 plasmid pKC396, complete sequence	44216	IncN	MOBF
NC_02198 0	Escherichia coli plasmid pEC386IL genomic sequence	6489	IncN	-
NC_01909 8	Escherichia coli plasmid pHHA45, complete sequence	39510	IncN	MOBF
NC_02237 4	Escherichia coli plasmid pHKU1, complete sequence	54373	IncN	MOBF
NC_01423 1	Escherichia coli plasmid pKC394, complete sequence	53207	IncN	MOBF
NC_00913 1	Escherichia coli plasmid pLEW517, complete sequence	65288	IncN	MOBF
NC_00913 2	Escherichia coli plasmid pLEW517, complete sequence	63946	IncN	MOBF
NC_00768 2	Escherichia coli plasmid pMUR050, complete sequence	56634	IncN	MOBF
NC_02237 5	Escherichia coli plasmid pNDM-BTR, complete sequence	59395	IncN	MOBF
NC_01903 3	Escherichia coli plasmid pQNR2078, complete sequence	42379	IncN	MOBF
NC_01908 2	Escherichia coli plasmid pZS50, complete sequence	51556	IncN	MOBF

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibili dad	МОВ
NC_02391	Escherichia coli strain EcNDM0 plasmid pEcNDM0, complete	53416	IncN	MOBF
NC_02390	Escherichia coli strain EcNDM1 plasmid pEcNDM1, complete	58228	IncN	MOBF
NC_01420	Klebsiella oxytoca KOX105 plasmid pKOX105, complete sequence	54641	IncN	MOBF
NC_02166 4	Klebsiella pneumoniae FCF1305 plasmid pKPC_FCF13/05, complete sequence	53081	IncN	MOBF
NC_02166 0	Klebsiella pneumoniae FCF3SP plasmid pKPC_FCF/3SP, complete sequence	54605	IncN	MOBF
NC_01138 5	Klebsiella pneumoniae plasmid 12, complete sequence	75617	IncN	MOBF
NC_01138 3	Klebsiella pneumoniae plasmid 9, complete sequence	70655	IncN	MOBF
NC_01916 6	Klebsiella pneumoniae plasmid pIMP-HZ1, complete sequence	50775	IncN	MOBF
NC_02008 8	Klebsiella pneumoniae plasmid pK18An, complete sequence	51160	IncN	MOBF
NC_02162 2	Klebsiella pneumoniae plasmid pK45-67VIM complete sequence	56171	IncN	MOBF
NC_02135 8	Klebsiella pneumoniae plasmid pKP53IL genomic sequence	6502	IncN	-
NC_01161 7	Klebsiella pneumoniae plasmid pKP96, complete sequence	67850	IncN	MOBF
NC_01988 8	Klebsiella pneumoniae strain BK31551 plasmid pBK31551, complete sequence	83712	IncN	MOBF
NC_00998 0	Salmonella enterica subsp. enterica serovar Dublin plasmid pMAK2, complete sequence	61571	IncN	MOBF
NC_00329 2	Salmonella enterica subsp. enterica serovar Typhimurium plasmid R46, complete sequence	50969	IncN	MOBF
NC_01912 4	Salmonella enterica subsp. enterica serovar Virchow plasmid pVQS1, complete sequence	40995	IncN	MOBF
NC_00579 3	Achromobacter denitrificans plasmid pEST4011, complete sequence	76958	IncP-1	MOBP
NC_01464 1	Achromobacter xylosoxidans A8 plasmid pA81, complete sequence	98156	IncP-1	MOBP
NC_00876 6	Acidovorax sp. JS42 plasmid pAOVO02, complete sequence	63609	IncP-1	MOBP
NC_01491 1	Alicycliphilus denitrificans BC plasmid pALIDE02, complete sequence	78982	IncP-1	MOBP
NC_00845 9	Bordetella pertussis plasmid pBP136 DNA, complete sequence	41268	IncP-1	MOBP
NC_00838 5	Burkholderia cepacia AMMD plasmid 1, complete sequence	43581	IncP-1	MOBP
NC_01937 8	Burkholderia cepacia plasmid pIJB1, complete sequence	99001	IncP-1	MOBP
NC_01936 9	Burkholderia cepacia plasmid pYS1, complete sequence	82988	IncP-1	MOBP
NC_02107 7	Comamonas sp. 7D-2 plasmid pBHB, complete sequence	119225	IncP-1	MOBP
NC_01093 5	Comamonas testosteroni CNB-1 plasmid pCNB, complete sequence	91181	IncP-1	MOBP
NC_01697 8	Comamonas testosteroni plasmid pl2, complete sequence	84204	IncP-1	MOBP
NC_01696 8	Comamonas testosteroni plasmid pTB30, complete sequence	79291	IncP-1	MOBP
NC_00508 8	Delftia acidovorans B plasmid pUO1, complete sequence	67066	IncP-1	MOBP
NC_01928 3	Delftia acidovorans plasmid pC1-1, complete sequence	74280	IncP-1	MOBP
NC_01926 3	Delftia acidovorans plasmid pLME1, complete sequence	77429	IncP-1	MOBP
NC_01926 4	Delftia acidovorans plasmid pNB8c, complete sequence	60421	IncP-1	MOBP
NC_01931 2	Delftia sp. KV29 plasmid pKV29, complete sequence	61669	IncP-1	MOBP
NC_00173 5	Enterobacter aerogenes plasmid R751, complete sequence	53423	IncP-1	MOBP

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibili dad	МОВ
NC_01750 8	Marinobacter adhaerens HP15 plasmid pHP-42, complete sequence	42349	IncP-1	MOBP
NC_01785 8	Methylophaga sp. JAM7 plasmid unnamed, complete sequence	47825	IncP-1	MOBP
NC_02099 4	Mycobacterium abscessus subsp. bolletii INCQS 00594 plasmid pMAB01. complete sequence	56267	IncP-1	MOBP
NC_00162 1	Pseudomonas aeruginosa plasmid Birmingham IncP-alpha, complete sequence	60099	IncP-1	MOBP
NC_00835 7	Pseudomonas aeruginosa plasmid pBS228, complete sequence	89147	IncP-1	MOBP
NC_00495 6	Pseudomonas sp. ADP atrazine catabolic plasmid pADP-1, complete sequence	108845	IncP-1	MOBP
NC_01931 8	Ralstonia pickettii plasmid p712, complete sequence	62798	IncP-1	MOBP
NZ_CM00 1472	Salmonella enterica subsp. houtenae str. ATCC BAA-1581 plasmid pSEHO0A1, complete sequence, whole genome shotgun sequence	42340	IncP-1	MOBP
NC_00827 2	Uncultured bacterium IncP-1 plasmid pKJK5 complete sequence	54383	IncP-1	MOBP
NC_00484 0	Uncultured bacterium plasmid pB10, complete sequence	64508	IncP-1	MOBP
NC_01902 2	Uncultured bacterium plasmid PB11, complete sequence	66911	IncP-1	MOBP
NC_00343 0	Uncultured bacterium plasmid pB4, complete sequence	79370	IncP-1	MOBP
NC_01902 0	Uncultured bacterium plasmid PB5, complete sequence	64696	IncP-1	MOBP
NC_01902 1	Uncultured bacterium plasmid PSP21, complete sequence	72683	IncP-1	MOBP
NC_01932 0	Variovorax sp. DB1 plasmid pDB1, complete sequence	65269	IncP-1	MOBP
NC_01658 6	Azospirillum lipoferum 4B plasmid AZO_p2, complete sequence	750123	IncP-2	-
NC_01572 7	Cupriavidus necator N-1 plasmid pBB1, complete sequence	1499175	IncP-2	-
NC_01012 3	Gluconacetobacter diazotrophicus PAI 5 plasmid pGDIPaI5II, complete sequence	16610	IncP-2	MOBP
NC_01462 1	Ketogulonicigenium vulgare Y25 plasmid pYP1, complete sequence	268675	IncP-2	-
NC_01738 6	Ketogulonigenium vulgarum WSH-001 plasmid 1, complete sequence	267986	IncP-2	-
NC_00875 7	Polaromonas naphthalenivorans CJ2 plasmid pPNAP01, complete sequence	353291	IncP-2	MOBP
NC_02234 4	Pseudomonas aeruginosa plasmid pOZ176, complete sequence	500839	IncP-2	-
NC_00531 2	Actinobacillus pleuropneumoniae plasmid pMS260, complete sequence	8124	IncP-4	MOBQ
NC_00263 6	Dichelobacter nodosus plasmid DN1	5112	IncP-4	MOBQ
NC_01200 6	Enterobacter cloacae plasmid pCHE-A, complete sequence	7560	IncP-4	MOBQ
NZ_AFYG 01000108	Escherichia coli XH001 plasmid pVZ321-thrLABC, whole genome shotgun sequence	16124	IncP-4	MOBQ
NC_01602 2	Gluconacetobacter xylinus NBRC 3288 plasmid pGXY040, complete sequence	4776	IncP-4	-
NC_01926 0	Mannheimia haemolytica plasmid pMh1405, complete sequence	7674	IncP-4	MOBQ
NC_01603 6	Morganella morganii strain M203 plasmid R485 complete sequence	61093	IncP-4	-
NC_01137 8	Pasteurella multocida plasmid pCCK1900, complete sequence	10226	IncP-4	MOBQ
NC_00876 4	Polaromonas naphthalenivorans CJ2 plasmid pPNAP08, complete sequence	6459	IncP-4	MOBP
NC_01990 6	Pseudomonas putida HB3267 plasmid pPC9, complete sequence	80360	IncP-4	MOBF
NC_01310 4	Salmonella enterica subsp. enterica serovar Typhimurium plasmid pSRC15, complete sequence	8688	IncP-4	MOBQ
NC_01771 9	Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 plasmid pRSF1010_SL1344, complete sequence	8688	IncP-4	MOBQ

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibili dad	МОВ
NC_01685 9	Salmonella enterica subsp. enterica serovar Typhimurium str. ST4/74 plasmid TV474p3_complete seguence	8688	IncP-4	MOBQ
NC_01686 2	Salmonella enterica subsp. enterica serovar Typhimurium str. T000240 plasmid pSTMDT12_S_complete sequence	8670	IncP-4	MOBQ
NC_02115	Salmonella enterica subsp. enterica sequence	11067	IncP-4	MOBQ
NC_00252	Uncultured eubacterium plE1115 plasmid plE1115, complete	10687	IncP-4	MOBQ
4 NC_00497 2	Uncultured eubacterium plasmid plE1130, complete sequence	10687	IncP-4	MOBQ
NC_00827	Pseudomonas putida MT53 plasmid pWW53, complete sequence	107929	IncP-7	-
NC_01183	Pseudomonas putida plasmid pCAR1.2, complete sequence	200231	IncP-7	MOBH
NC_01412 4	Pseudomonas putida plasmid pDK1, complete sequence	128921	IncP-7	MOBH
NC_02150 6	Pseudomonas resinovorans NBRC 106553 plasmid pCAR1.3 DNA, complete genome	198965	IncP-7	MOBH
NC_00444 4	Pseudomonas resinovorans plasmid pCAR1, complete sequence	199035	IncP-7	MOBH
NC_00524 4	Pseudomonas sp. ND6 plasmid pND6-1, complete sequence	101858	IncP-7	-
NC_01267 4	Pseudomonas fluorescens strain PC20 plasmid pNAH20, complete sequence	83042	IncP-9	MOBF
NC_00499 9	Pseudomonas putida NCIB 9816-4 plasmid pDTG1, complete sequence	83042	IncP-9	MOBF
NC_00792 6	Pseudomonas putida plasmid NAH7, complete sequence	82232	IncP-9	MOBF
NC_00335 0	Pseudomonas putida plasmid pWW0, complete sequence	116580	IncP-9	MOBF
NC_01664 4	Pseudomonas sp. MC1 plasmid KOPRI126573, complete sequence	81814	IncP-9	MOBF
NC_00531 2	Actinobacillus pleuropneumoniae plasmid pMS260, complete sequence	8124	IncQ	MOBQ
NC_00263 6	Dichelobacter nodosus plasmid DN1	5112	IncQ	MOBQ
NC_01200 6	Enterobacter cloacae plasmid pCHE-A, complete sequence	7560	IncQ	MOBQ
NZ_AFYG 01000108	Escherichia coli XH001 plasmid pVZ321-thrLABC, whole genome shotgun sequence	16124	IncQ	MOBQ
NC_01602 2	Gluconacetobacter xylinus NBRC 3288 plasmid pGXY040, complete sequence	4776	IncQ	-
NC_01926 0	Mannheimia haemolytica plasmid pMh1405, complete sequence	7674	IncQ	MOBQ
NC_01603 6	Morganella morganii strain M203 plasmid R485 complete sequence	61093	IncQ	-
NC_01137 8	Pasteurella multocida plasmid pCCK1900, complete sequence	10226	IncQ	MOBQ
NC_00876 4	Polaromonas naphthalenivorans CJ2 plasmid pPNAP08, complete sequence	6459	IncQ	MOBP
NC_01990 6	Pseudomonas putida HB3267 plasmid pPC9, complete sequence	80360	IncQ	MOBF
NC_01310 4	Salmonella enterica subsp. enterica serovar Typhimurium plasmid pSRC15, complete sequence	8688	IncQ	MOBQ
NC_01771 9	Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 plasmid pRSF1010_SL1344, complete sequence	8688	IncQ	MOBQ
NC_01685 9	Salmonella enterica subsp. enterica serovar Typhimurium str. ST4/74 plasmid TY474p3, complete sequence	8688	IncQ	MOBQ
NC_01686 2	Salmonella enterica subsp. enterica serovar Typhimurium str. T000240 plasmid pSTMDT12_S, complete sequence	8670	IncQ	MOBQ
NC_02115 6	Salmonella enterica subsp. enterica serovar Typhimurium str. U288 plasmid pSTU288-2, complete sequence	11067	IncQ	MOBQ
NC_00252 4	Uncultured eubacterium plE1115 plasmid plE1115, complete sequence	10687	IncQ	MOBQ
NC_00497 3	Uncultured eubacterium plasmid plE1130, complete sequence	10687	IncQ	MOBQ
NC_02089 3	Klebsiella pneumoniae plasmid pKPC-LK30, complete sequence	86518	IncR	-

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibili dad	МОВ
NC_00965	Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid	88582	IncR	-
NC_01912 6	Salmonella enterica subsp. indica plasmid pSARC14-41, complete sequence	43577	IncR	-
NC_02165 5	Klebsiella pneumoniae plasmid pKpQIL-LS6, complete sequence	78227	IncT	-
NC_02165 6	Klebsiella pneumoniae plasmid pKpQIL-SC29, complete sequence	48790	IncT	MOBC
NC_01064 3	Providencia rettgeri plasmid R7K, complete sequence	39792	IncW	MOBF
NC_01071 6	Salmonella enterica subsp. enterica serovar Dublin plasmid IncW pIE321, complete sequence	38150	IncW	MOBF
NC_00998 2	Salmonella enterica subsp. enterica serovar Dublin plasmid pMAK3, complete sequence	39924	IncW	MOBF
NC_01908 3	Escherichia coli plasmid pEC14_35, complete sequence	34945	IncX	-
NC_00592 3	Escherichia coli plasmid pFL129, complete sequence	6464	IncX	-
NC_01904 7	Escherichia coli plasmid pNGX2-QnrS1, complete sequence	34294	IncX	-
NC_01173 9	Escherichia coli UMN026 plasmid p2ESCUM, complete sequence	33809	IncX	MOBP
NC_01989 9	Klebsiella pneumoniae strain BK31567 plasmid pBK31567, complete sequence	47387	IncX	-
NC_01072 0	Escherichia coli 53638 plasmid p53638_75, complete sequence	75089	IncZ	MOBF
NC_00978 6	Escherichia coli E24377A plasmid pETEC_80, complete sequence	79237	IncZ	-
NC_01423 2	Escherichia coli ETEC 1392/75 plasmid p1081, complete sequence	101857	IncZ	MOBF
NC_01772 2	Escherichia coli ETEC H10407 plasmid p666, complete sequence	66681	IncZ	MOBF
NC_01350 7	Escherichia coli ETEC H10407 plasmid pEntH10407, complete sequence	67094	IncZ	MOBF
NC_01336 6	Escherichia coli O111:H- str. 11128 plasmid pO111_3, complete sequence	77690	IncZ	MOBF
NC_01336 2	Escherichia coli O26:H11 str. 11368 plasmid pO26_2, complete sequence	63365	IncZ	MOBF
NC_01909 4	Escherichia coli plasmid p417H-90, complete sequence	79478	IncZ	MOBF
NC_01903 7	Escherichia coli plasmid pChi7122-2, complete sequence	82676	IncZ	MOBF
NC_02233 3	Escherichia coli plasmid pCss165Kan DNA, complete genome, strain: 4266 delta cssB::Km	165311	IncZ	MOBF
NC_01438 2	Escherichia coli plasmid pEC_B24, complete sequence	73801	IncZ	MOBF
NC_02299 2	Escherichia coli plasmid pO111-CRL-115, complete sequence	115452	IncZ	MOBP
NC_02299 6	Escherichia coli plasmid pO26-CRL-125, complete sequence	124908	IncZ	MOBP
NC_02331 5	Escherichia coli strain EQ011 plasmid pEQ011, complete sequence	85507	IncZ	MOBF
NZ_CM00 1145	Escherichia fergusonii ECD227 plasmid pECD227_46, whole genome shotgun sequence	45663	IncZ	MOBP
NC_01107 8	Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188 plasmid pCVM29188_46, complete sequence	46121	IncZ	MOBP
NC_01934 3	Salmonella sp. 96A-29192 plasmid p96A29192-65, complete sequence	67727	IncZ	-
NC_01066 0	Shigella boydii CDC 3083-94 plasmid pBS512_211, complete sequence	210919	IncZ	-
NC_00269 8	Shigella flexneri 5a virulence plasmid pWR501, complete sequence	221851	IncZ	MOBF
NC_01919 7	Shigella flexneri plasmid pSF5, complete sequence	136694	IncZ	-
NC_01925 4	Shigella sp. MO17 plasmid pMO17_54, complete sequence	54291	IncZ	-

Tabla S3. Plásmidos utilizados a partir de los cuales se extrajeron las proteínas PIR para armar modelos ocultos de Markov para la clasificación en grupos de incompatibilidad de plásmidos de bacterias Gram-positivas con *plaSquid*.

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_021060	Staphylococcus aureus M1 plasmid pSK67-M1, complete sequence	27439	Inc1	-
NC_010077	Staphylococcus aureus plasmid EDINA, complete sequence	34986	Inc1	-
NC_018974	Staphylococcus aureus plasmid p18811-P03, complete sequence	27070	Inc1	-
NC_018976	Staphylococcus aureus plasmid p19321-P03, complete sequence	27425	Inc1	-
NC_013319	Staphylococcus aureus plasmid pl258, complete sequence	29254	Inc1	-
NC_014369	Staphylococcus aureus plasmid pSK1, complete sequence	28150	Inc1	-
NC_013347	Staphylococcus aureus plasmid pSK62, complete sequence	22694	Inc1	-
NC_019010	Staphylococcus aureus plasmid pSK67, complete sequence	27439	Inc1	-
NC_013352	Staphylococcus aureus plasmid pSK76, complete sequence	23983	Inc1	-
NC_010419	Staphylococcus aureus plasmid pTZ2162, complete sequence	35380	Inc1	MOBV, MOBV, MOBV
NC_018972	Staphylococcus aureus plasmid pWBG744, complete sequence	27268	Inc1	-
NC_013325	Staphylococcus aureus plasmid pWBG745, complete sequence	38204	Inc1	-
NC_013321	Staphylococcus aureus plasmid SAP017A, complete sequence	32650	Inc1	-
NC_019007	Staphylococcus aureus plasmid SAP048A, complete sequence	27268	Inc1	-
NC_013333	Staphylococcus aureus plasmid SAP055A, complete sequence	20453	Inc1	-
NC_013335	Staphylococcus aureus plasmid SAP060A, complete sequence	22987	Inc1	-
NC_019008	Staphylococcus aureus plasmid SAP074A, complete sequence	27268	Inc1	-
NC_013340	Staphylococcus aureus plasmid SAP076A, complete sequence	35114	Inc1	MOBV

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_018965	Staphylococcus aureus plasmid SAP077A, complete sequence	35510	Inc1	MOBV
NC_019009	Staphylococcus aureus plasmid SAP078A, complete sequence	35508	Inc1	MOBV
NC_013349	Staphylococcus aureus plasmid SAP099B, complete sequence	16428	Inc1	-
NC_017350	Staphylococcus aureus subsp. aureus 11819-97 plasmid p11819-97, complete sequence	22317	Inc1	-
NC_022126	Staphylococcus aureus subsp. aureus 55/2053 plasmid, complete sequence	20449	Inc1	-
NC_017344	Staphylococcus aureus subsp. aureus ECT-R 2 plasmid pLUH02, complete sequence	27271	Inc1	-
NC_002774	Staphylococcus aureus subsp. aureus Mu50 plasmid VRSAp, complete sequence	25107	Inc1	MOBQ
NC_010066	Staphylococcus aureus subsp. aureus USA300_TCH959 plasmid pUSA300HOUMS, complete sequence	20413	Inc1	-
NC_005005	Staphylococcus epidermidis ATCC 12228 plasmid pSE- 12228-04, complete sequence	17261	Inc1	MOBQ
NC_005004	Staphylococcus epidermidis ATCC 12228 plasmid pSE- 12228-05, complete sequence	24365	Inc1	-
NC_013393	Staphylococcus epidermidis plasmid pSK105, complete sequence	23263	Inc1	-
NC_022618	Staphylococcus epidermidis plasmid pSWS47, isolate 47, complete sequence	28743	Inc1	MOBP, MOBV
NC_013374	Staphylococcus epidermidis plasmid SAP045A, complete sequence	37564	Inc1	-
NC_013378	Staphylococcus epidermidis plasmid SAP105B, complete sequence	16775	Inc1	-
NC_013379	Staphylococcus epidermidis plasmid SAP106A, complete sequence	38556	Inc1	-
NC_013382	Staphylococcus epidermidis plasmid SAP107B, complete sequence	10445	Inc1	-
NC_013383	Staphylococcus epidermidis plasmid SAP110A, complete sequence	24711	Inc1	-
NC_006663	Staphylococcus epidermidis RP62A plasmid pSERP, complete sequence	27310	Inc1	MOBP
NC_016643	Staphylococcus saprophyticus subsp. saprophyticus plasmid pSSAP2. complete sequence	36907	Inc1	-
NC_013387	Staphylococcus sp. CDC25 plasmid SAP018A, complete sequence	32487	Inc1	-
NC_013373	Staphylococcus sp. CDC3 plasmid SAP020A, complete sequence	64909	Inc1	-
NC_005207	Staphylococcus warneri plasmid pPI-1, complete sequence	30201	Inc1	-
NC_020274	Staphylococcus warneri SG1 plasmid clone pvSw1 genomic sequence	13186	Inc1	-
NC_017024	Enterococcus faecium Aus0004 plasmid AUS0004_p3, complete sequence	4119	Inc4	-
NC_021996	Enterococcus faecium Aus0085 plasmid p5, complete sequence	4072	Inc4	-
NC_021990	Enterococcus faecium Aus0085 plasmid p6, complete sequence	2189	Inc4	-
NC_010330	Enterococcus faecium plasmid pRI1, complete sequence	6038	Inc4	MOBV
NC_022881	Enterococcus mundtii QU 25 plasmid pQY003 DNA, complete genome	2584	Inc4	-
NC_023070	Exiguobacterium sp. S3-2 plasmid pMC4, complete sequence	1813	Inc4	-
NC_009751	Lactococcus lactis subsp. lactis K214 plasmid pK214, complete sequence	29871	Inc4	MOBQ, MOBV
NC_003201	Oenococcus oeni plasmid pRS2, complete sequence	2544	Inc4	MOBV
NC_019969	Prevotella dentalis DSM 3688 plasmid pPREDE02, complete sequence	4175	Inc4	-
NC_002129	Staphylococcus aureus plasmid pC221, complete sequence	4557	Inc4	-
NC_006977	Staphylococcus aureus plasmid pC221, complete sequence	4555	Inc4	MOBP
NC_010111	Staphylococcus aureus plasmid p124, complete sequence	4555	Inc4	MOBP
NC_013309	sequence	4439	Inc4	MOBV

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_020237	Staphylococcus hyicus plasmid pSTE1 complete sequence	11951	Inc4	MOBP, MOBV
NC_002093	Staphylococcus lugdunensis strain 995 cadmium resistance plasmid pLUG10, complete sequence	3117	Inc4	-
NC_006974	Staphylococcus sciuri subsp. sciuri plasmid pACK6, complete sequence	4431	Inc4	-
NC_020165	Staphylococcus warneri SG1 plasmid pSZ4, complete sequence	4374	Inc4	-
NC_013164	Anaerococcus prevotii DSM 20548 plasmid pAPRE01, complete sequence	115566	Inc7	MOBQ
NC_020820	Lactobacillus brevis KB290 plasmid pKB290-1 DNA, complete genome	42449	Inc7	-
NC_018611	Lactobacillus buchneri CD034 plasmid pCD034-3, complete sequence	56473	Inc7	MOBQ
NC_008502	Lactobacillus casei ATCC 334 plasmid 1, complete sequence	29061	Inc7	MOBQ
NC_021722	Lactobacillus casei LOCK919 plasmid pLOCK919, complete sequence	29768	Inc7	-
NZ_AVAB01 000111	Lactobacillus fermentum MTCC 8711 plasmid pLF02 contig111, whole genome shotgun sequence, complete sequence	64519	Inc7	-
NC_017468	Lactobacillus helveticus H10 plasmid pH10, complete sequence	26484	Inc7	MOBQ
NC_022123	Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 2, complete sequence	62119	Inc7	-
NC_021517	Lactobacillus plantarum 16 plasmid Lp16E, complete sequence	40147	Inc7	MOBQ
NC_013200	Lactobacillus rhamnosus Lc 705 plasmid pLC1, complete sequence	64508	Inc7	-
NC_010901	Lactococcus lactis plasmid pNP40, complete sequence	64980	Inc7	MOBP
NC_021552	Staphylococcus aureus CA-347 plasmid, complete sequence	24653	Inc7	MOBP, MOBV
NC_019150	Staphylococcus aureus plasmid p18805-P03, complete sequence	27069	Inc7	-
NC_018956	Staphylococcus aureus plasmid p18806-P03, complete sequence	27068	Inc7	-
NC_018957	Staphylococcus aureus plasmid p18807-P03, complete sequence	26972	Inc7	-
NC_018959	Staphylococcus aureus plasmid p18808-P03, complete sequence	27059	Inc7	-
NC_018961	Staphylococcus aureus plasmid p18809-P03, complete sequence	27068	Inc7	-
NC_018963	Staphylococcus aureus plasmid p18810-P03, complete sequence	27067	Inc7	-
NC_013550	Staphylococcus aureus plasmid pBORa53, complete sequence	17334	Inc7	-
NC_007931	Staphylococcus aureus plasmid pSA1379, complete sequence	22787	Inc7	-
NC_005127	Staphylococcus aureus plasmid pUB101, complete sequence	21845	Inc7	-
NC_013327	Staphylococcus aureus plasmid pWBG749, complete sequence	38087	Inc7	-
NC_013292	Staphylococcus aureus plasmid pWBG752, complete sequence	24654	Inc7	MOBV
NC_013289	Staphylococcus aureus plasmid SAP015A, complete sequence	27068	Inc7	-
NC_013322	Staphylococcus aureus plasmid SAP019A, complete sequence	27435	Inc7	MOBV
NC_013324	Staphylococcus aureus plasmid SAP027A, complete sequence	29646	Inc7	-
NC_013294	Staphylococcus aureus plasmid SAP046A, complete sequence	27068	Inc7	-
NC_013296	Staphylococcus aureus plasmid SAP049A, complete sequence	25022	Inc7	-
NC_013298	Staphylococcus aureus plasmid SAP050A, complete sequence	27067	Inc7	-
NC_013299	Staphylococcus aureus plasmid SAP051A, complete sequence	23059	Inc7	-

Número de	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_013338	Staphylococcus aureus plasmid SAP068A, complete sequence	50500	Inc7	-
NC_013339	Staphylococcus aureus plasmid SAP069A, complete sequence	42198	Inc7	-
NC_013343	Staphylococcus aureus plasmid SAP080A, complete sequence	43892	Inc7	-
NZ_AUPU01 000021	Staphylococcus aureus S123 plasmid pS123a contig021, whole genome shotgun sequence, complete sequence	14896	Inc7	-
NC_023278	Staphylococcus aureus strain SA268 plasmid pSA268, complete sequence	20269	Inc7	-
NC_009619	Staphylococcus aureus subsp. aureus JH1 plasmid pSJH101, complete sequence	30429	Inc7	-
NC_009477	Staphylococcus aureus subsp. aureus JH9 plasmid pSJH901, complete sequence	30429	Inc7	-
NC_003140	Staphylococcus aureus subsp. aureus N315 plasmid pN315, complete sequence	24653	Inc7	MOBV
NC_020535	Staphylococcus aureus subsp. aureus ST228 plasmid pI5S5 complete sequence, isolate 16125	37285	Inc7	-
NC_007792	Staphylococcus aureus subsp. aureus USA300_FPR3757 plasmid pUSA03, complete sequence	37136	Inc7	MOBQ
NC_010063	Staphylococcus aureus subsp. aureus USA300_TCH1516 plasmid pUSA300HOUMR, complete sequence	27041	Inc7	-
NC_013377	Staphylococcus epidermidis plasmid SAP105A, complete sequence	26236	Inc7	-
NC_013389	Staphylococcus epidermidis plasmid SAP108A, complete sequence	24518	Inc7	-
NC_007352	Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305 plasmid pSSP2, complete sequence	22870	Inc7	MOBV
NC_015432	Staphylococcus saprophyticus subsp. saprophyticus MS1146 plasmid pSSAP1, complete sequence	66104	Inc7	-
NC_009130	Staphylococcus sp. 693-2 plasmid pLEW6932, complete sequence	51514	Inc7	-
NC_020266	Staphylococcus warneri SG1 plasmid clone pvSw4 genomic sequence	19866	Inc7	-
NC_021657	Staphylococcus aureus Bmb9393 plasmid pBmb9393, complete genome	2908	Inc8	-
NC_019140	Staphylococcus aureus plasmid pDLK2, complete sequence	2908	Inc8	-
NC_013314	Staphylococcus aureus plasmid SAP065A, complete sequence	2908	Inc8	-
NZ_AUPW0 1000021	Staphylococcus aureus S94 plasmid pS94a contig021, whole genome shotgun sequence, complete sequence	5442	Inc8	-
NC_020183	Staphylococcus aureus subsp. aureus ST398 plasmid pUR3912, isolate C3912 complete sequence	6176	Inc8	-
NC_023059	Exiguobacterium sp. S3-2 plasmid pMC5, complete sequence	1742	Inc9	-
NC_012552	Lactobacillus johnsonii F19785 plasmid p9785S, complete sequence	3471	Inc9	-
NC_011998	Macrococcus caseolyticus JCSC5402 plasmid pMCCL4, complete sequence	3417	Inc9	-
NC_002096	Staphylococcus aureus plasmid pKH7, complete sequence	4118	Inc9	MOBV
NC_013391	Staphylococcus epidermidis plasmid SAP108C, complete sequence	4572	Inc9	-
NZ_ASXA01 000016	Streptococcus tigurinus 2426 plasmid pST2426 contig016, whole genome shotgun sequence, complete sequence	2491	Inc9	-
NC_010078	Weissella cibaria plasmid pKLCA, complete sequence	1490	Inc9	-
NC_005000	Enterococcus faecium U37 plasmid pRUM, complete sequence	24873	Inc10	MOBP
NC_005243	Staphylococcus aureus plasmid pC223, complete sequence	4608	Inc10	MOBP
NC_019141	Staphylococcus aureus plasmid pCPS32, complete sequence	5718	Inc10	-
NC_011605	Staphylococcus aureus plasmid SAP084A, complete	5713	Inc10	MOBP
NC_013306	sequence Stanbulgeoccus aureus plasmid SAD000A complete	4595	Inc10	-
NC_013308	Sequence	4595	Inc10	-
NC_013394	Staphylococcus epidermidis plasmid pSK103, complete sequence	4607	Inc10	-

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_019230	Bacillus sp. 24 plasmid pBHS24, complete sequence	5031	Inc11	MOBV
NC_019282	Bacillus sp. DMV2 plasmid pDMV2, complete sequence	5031	Inc11	MOBV
NC_019270	Bhargavaea cecembensis plasmid pBSDMV46A, complete sequence	5031	Inc11	MOBV
NC_006427	Enterococcus faecium plasmid pJB01, complete sequence	2235	Inc11	-
NC_019565	Helicobacter pylori Aklavik86 plasmid p2HPAKL86, complete sequence	1634	Inc11	-
NC_001843	Helicobacter pylori plasmid pHP489, complete plasmid sequence	1222	Inc11	-
NC_014162	Helicobacter pylori strain AL236 plasmid pAL236-2, complete sequence	1448	Inc11	-
NC_014163	Helicobacter pylori strain AL236 plasmid pAL236-5, complete sequence	1216	Inc11	-
NC_004985	Lactobacillus acidophilus plasmid pLA106 DNA, complete sequence	2862	Inc11	MOBV
NC_012548	Lactobacillus brevis plasmid pLB925A01, complete sequence	1815	Inc11	-
NC_016034	Lactobacillus buchneri CD034 plasmid pCD034-2, complete sequence	2707	Inc11	MOBV
NC_017466	Lactobacillus casei strain TISTR1341 plasmid pRCEID2.9, complete sequence	2952	Inc11	MOBV
NC_011798	Lactobacillus farciminis KCTC 3681 plasmid pLF24, complete sequence	2396	Inc11	-
NC_021574	Lactobacillus paracasei plasmid pLP5403, complete sequence	1788	Inc11	-
NC_019669	Lactobacillus paracasei plasmid pWCZ, complete sequence	3078	Inc11	MOBV
NC_013952	Lactobacillus paracasei TXW plasmid pTXW, complete sequence	3178	Inc11	MOBV
NC_006399	Lactobacillus plantarum BIFI-38 plasmid pPB1, complete sequence	2899	Inc11	MOBV
NC_010098	Lactobacillus plantarum plasmid pA1, complete sequence	2820	Inc11	MOBV
NC_012628	Lactobacillus plantarum plasmid pLFE1, complete sequence	4031	Inc11	MOBV
NC_014627	Lactobacillus plantarum plasmid pLPI8, complete sequence	1806	Inc11	-
NC_013789	Lactobacillus plantarum plasmid pXY3, complete sequence	2968	Inc11	-
NC_019900	Lactobacillus plantarum strain BFE 5092 plasmid pMRI 5.2, complete sequence	5206	Inc11	MOBP, MOBV
NC_006376	Lactobacillus plantarum WCFS1 plasmid pWCFS102, complete sequence	2365	Inc11	-
NC_014936	Lactobacillus reuteri strain K50 plasmid pK50-2, complete sequence	1866	Inc11	-
NC_011223	Lactobacillus rhamnosus HN001 plasmid pLR001, complete sequence	8754	Inc11	-
NC_010936	Lactobacillus sakei plasmid pYSI8, complete sequence	4973	Inc11	MOBV
NC_011652	Lactobacillus sakei strain BM5 plasmid pYC2, complete sequence	1970	Inc11	-
NC_010375	Lactobacillus sakei strain Rits9 plasmid pLS55, complete sequence	5031	Inc11	MOBV
NC_016981	Lactococcus garvieae 21881 plasmid pGL2 complete sequence	4572	Inc11	MOBV
NC_004930	Lactococcus lactis cremoris P8-2-47 plasmid pBM02, complete sequence	3854	Inc11	MOBV
NC_002798	Lactococcus lactis DCH-4 plasmid pSRQ700, complete sequence	7784	Inc11	-
NC_004981	Lactococcus lactis ML8 plasmid pCL2.1, complete sequence	2047	Inc11	-
NC_011610	Lactococcus lactis plasmid pKL001, complete sequence	6068	Inc11	-
NC_002192	Lactococcus lactis plasmid pWV01, complete sequence	2178	Inc11	-
NC_008507	Lactococcus lactis subsp. cremoris SK11 plasmid 5, complete sequence	14206	Inc11	-
NC_017488	Lactococcus lactis subsp. lactis CV56 plasmid pCV56E, complete sequence	2262	Inc11	-
NC_013783	Lactococcus lactis subsp. lactis plasmid pAR141, complete sequence	1594	Inc11	-

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_014135	Leuconostoc kimchii IMSNU 11154 plasmid LkipL48, complete sequence	3196	Inc11	MOBV
NC_004992	Leuconostoc lactis plasmid pCl411, complete sequence	2926	Inc11	-
NC_019353	Leuconostoc mesenteroides subsp. mesenteroides plasmid	3370	Inc11	MOBV
NC_019787	Mycoplasma capricolum subsp. capricolum strain Anses 11186 plasmid pMG2D-1, complete sequence	1672	Inc11	-
NC_019794	Mycoplasma capricolum subsp. capricolum strain Anses 14250 plasmid pMG2A-1. complete sequence	1573	Inc11	-
NC_019788	Mycoplasma capricolum subsp. capricolum strain Anses	1732	Inc11	-
NC_019786	Mycoplasma cottewii strain Anses 15104 plasmid pMG2E-1, complete sequence	1041	Inc11	-
NC_019795	Mycoplasma cottewii strain VIS plasmid pMG2C-1, complete sequence	1565	Inc11	-
NC_002569	Mycoplasma leachii plasmid pBG7AU, complete sequence	1022	Inc11	-
NC_015407	Mycoplasma mycoides subsp. capri LC str. 95010 plasmid pMmc-95010, complete sequence	1840	Inc11	-
NC_019796	Mycoplasma mycoides subsp. capri strain Anses 14227 plasmid pMG1A-1, complete sequence	1865	Inc11	-
NC_019784	Mycoplasma mycoides subsp. capri strain Anses 4343 plasmid pMG1C-1, complete sequence	1770	Inc11	-
NC_019797	Mycoplasma yeatsii strain Anses 11181 plasmid pMG2F-1, complete sequence	1656	Inc11	-
NC_019785	Mycoplasma yeatsii strain GIH plasmid pMG2B-1, complete sequence	1573	Inc11	-
NC_010875	Paenibacillus larvae plasmid pMA67, complete sequence	5030	Inc11	MOBV
NC_022577	Paenibacillus larvae plasmid pPL373, complete sequence	5030	Inc11	MOBP, MOBV
NC_022574	Paenibacillus larvae plasmid pPL374, complete sequence	5026	Inc11	MOBP, MOBV
NC_022573	Paenibacillus larvae plasmid pPL395, complete sequence	5030	Inc11	MOBP, MOBV
NC_016635	Pediococcus claussenii ATCC BAA-344 plasmid pPECL-1, complete sequence	1815	Inc11	-
NC_001382	Plasmid pADB201 (from Mycoplasma mycoides), complete genome	1717	Inc11	-
NC_014015	Sporosarcina ureae plasmid pSU1 strain DMV4, complete sequence	5031	Inc11	MOBV
NC_019142	Staphylococcus aureus plasmid pCPS49, complete sequence	5292	Inc11	MOBV
NC_013969	Staphylococcus aureus plasmid pDLK3, complete sequence	1365	Inc11	-
NC_005908	Staphylococcus aureus plasmid pE194, complete sequence	3728	Inc11	MOBP, MOBV
NC_013345	Staphylococcus aureus plasmid SAP085B, complete sequence	3961	Inc11	MOBV
NC_001380	Streptococcus agalactiae plasmid pLS1, complete sequence	4408	Inc11	MOBV
NC_010096	Streptococcus agalactiae plasmid pMV158, complete sequence	5541	Inc11	MOBV
NC_015973	Streptococcus agalactiae strain GB2001 plasmid pGB2001, complete sequence	4967	Inc11	MOBV
NC_015971	Streptococcus agalactiae strain GB2002 plasmid pGB2002, complete sequence	6825	Inc11	MOBV
NC_019370	Streptococcus dysgalactiae subsp. equisimilis plasmid p5580, complete sequence	4950	Inc11	MOBV
NC_010907	Streptococcus dysgalactiae subsp. equisimilis plasmid pSdyT132, complete sequence	3578	Inc11	-
NC_010260	Streptococcus dysgalactiae subsp. equisimilis plasmid pW2580, complete sequence	3043	Inc11	-
NC_010423	Streptococcus pyogenes isolate 9116-03 plasmid pRW35, complete sequence	4968	Inc11	MOBP, MOBV
NC_010230	Streptococcus pyogenes plasmid pDN281, complete sequence	3041	Inc11	-
NC_019252	Streptococcus pyogenes plasmid pGA2000, complete sequence	4967	Inc11	MOBV
NC_022077	Streptococcus pyogenes strain A852 plasmid pA852, complete sequence	2644	Inc11	-

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NZ_AGBV01	Streptococcus salivarius M18 plasmid pSsal-M18, whole	183037	Inc11	-
NC_002140	Streptococcus suis plasmid pSSU1 DNA, complete sequence	4975	Inc11	MOBV
NC_002776	Streptococcus thermophilus plasmid pER13, complete	4139	Inc11	MOBV
NC_004958	Streptococcus thermophilus plasmid pSMQ172, complete sequence	4230	Inc11	MOBV
NC_017193	Arcobacter sp. L plasmid pABL, complete sequence	1989	Inc13	-
NC_020273	Bacillus amyloliquefaciens IT-45 plasmid pBA45-1, whole	8009	Inc13	MOBP,
NC_017189	Bacillus amyloliquefaciens LL3 plasmid pMC1, complete	6758	Inc13	-
NC_014104	Bacillus amyloliquefaciens plasmid pBSG3, complete sequence	8439	Inc13	MOBV
NC_001705	Bacillus cereus plasmid pBC16, complete sequence	4630	Inc13	MOBV, MOBV
NC_005311	Bacillus licheniformis plasmid pFL5, complete plasmid sequence	9150	Inc13	МОВР
NC_005308	Bacillus licheniformis plasmid pFL7, complete plasmid sequence	7853	Inc13	МОВР
NC_001858	Bacillus pumilus plasmid pPL10, complete plasmid sequence	7028	Inc13	-
NC_004932	Bacillus pumilus plasmid pPL7065, complete sequence	7607	Inc13	-
NC_013534	Bacillus pumilus plasmid pPZZ84, complete sequence	6817	Inc13	-
NC_002675	Bacillus sp. B-3 plasmid pA01 DNA, complete genome	3325	Inc13	-
NC_014617	Bacillus sp. JAMB750 plasmid pJAM1 DNA, complete sequence	4892	Inc13	-
NZ_APAS01 000019	Bacillus stratosphericus LAMA 585 plasmid pBSt1, complete sequence, whole genome shotgun sequence	7671	Inc13	-
NC_002075	Bacillus subtilis plasmid p1414, complete plasmid sequence	7949	Inc13	MOBV
NC_006825	Bacillus subtilis plasmid pBS608, complete sequence	6611	Inc13	MOBV
NC_007956	Bacillus subtilis plasmid pLS30 DNA, complete sequence	6610	Inc13	MOBV
NC_001765	Bacillus subtilis plasmid pTA1015, complete sequence	5807	Inc13	MOBV
NC_001764	Bacillus subtilis plasmid pTA1040, complete sequence	7837	Inc13	-
NC_001766	Bacillus subtilis plasmid pTA1060, complete sequence	8737	Inc13	MOBV
NZ_ANIP010 00001	Bacillus subtilis S1-4 plasmid pSU01, whole genome shotgun sequence, complete sequence	6609	Inc13	MOBP, MOBV
NC_013537	Bacillus subtilis strain ATCC 15841 plasmid pPL1, complete sequence	6704	Inc13	MOBV
NC_017194	Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S, complete sequence	5838	Inc13	MOBV
NC_018882	Bacillus thuringiensis Bt407 plasmid BTB_7p, complete sequence	7635	Inc13	MOBV
NC_018886	Bacillus thuringiensis Bt407 plasmid BTB_9p, complete sequence	8513	Inc13	MOBV
NC_007203	Bacillus thuringiensis plasmid pDAN-involved, complete sequence	6909	Inc13	-
NC_017209	Bacillus thuringiensis serovar chinensis CT-43 plasmid pCT14, complete sequence	14860	Inc13	-
NC_017211	Bacillus thuringiensis serovar chinensis CT-43 plasmid pCT8252, complete sequence	8252	Inc13	MOBV
NC_017207	Bacillus thuringiensis serovar chinensis CT-43 plasmid pCT8513, complete sequence	8513	Inc13	MOBV
NC_020243	Bacillus thuringiensis serovar kurstaki str. HD73 plasmid pHT7, complete sequence	7635	Inc13	MOBP, MOBV
NC_020241	Bacillus thuringiensis serovar kurstaki str. HD73 plasmid pHT8_1, complete sequence	8513	Inc13	MOBP, MOBV
NC_011796	Bacillus thuringiensis serovar kurstaki str. YBT-1520 plasmid pBMB7635, complete sequence	7635	Inc13	MOBV
NC_001272	Bacillus thuringiensis serovar kurstaki str. YBT-1520 plasmid pBMB9741, complete sequence	6578	Inc13	MOBV
NC_020377	Bacillus thuringiensis serovar thuringiensis str. IS5056 plasmid pIS56-8, complete sequence	8251	Inc13	MOBP, MOBV

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_002091	Bacillus thuringiensis sv israelensis plasmid pTX14-1, complete sequence	5415	Inc13	MOBV
NC_004335	Bacillus thuringiensis sv thuringiensis H1.1 plasmid pGI1, complete sequence	8254	Inc13	MOBV
NC_015509	Bhargavaea sp. DMV9 plasmid pBSDMV9, complete sequence	5108	Inc13	MOBV
NZ_AKYF010 00029	Brevibacillus brevis X23 plasmid pLS30 ps_contig, whole genome shotgun sequence, complete sequence	6609	Inc13	MOBP, MOBV
NC_019696	Chroococcidiopsis thermalis PCC 7203 plasmid pCHRO.02, complete sequence	2779	Inc13	-
NZ_CM0014 80	Clostridium perfringens F262 plasmid pF262C, complete sequence, whole genome shotgun sequence	4809	Inc13	-
NC_021652	Clostridium thermocellum strain BL21 plasmid pEBM107, complete sequence	9896	Inc13	MOBP, MOBV
NC_021653	Clostridium thermocellum strain BL21 plasmid pEBM113, complete sequence	9892	Inc13	MOBP, MOBV
NC_021665	Clostridium thermocellum strain BL21 plasmid pEBM130, complete sequence	9957	Inc13	MOBP, MOBV
NC_019756	Crinalium epipsammum PCC 9333 plasmid pCRI9333.08, complete sequence	4488	Inc13	-
NC_010863	Cylindrospermum sp. A1345 plasmid pCYLM02, complete	4359	Inc13	-
NC_005013	Enterococcus faecalis DS5 plasmid pAMalpha1, complete	9759	Inc13	MOBV
NC_017023	Enterococcus faecium Aus0004 plasmid AUS0004_p2,	3847	Inc13	-
NC_017961	Enterococcus faecium DO plasmid 1, complete sequence	36262	Inc13	MOBV
NC_019051	Escherichia coli plasmid pAm05WL6211, complete sequence	6211	Inc13	-
NC_019052	Escherichia coli plasmid pAm08CQ6130, complete sequence	6130	Inc13	-
NC_013652	Escherichia coli plasmid pPM18, complete sequence	2330	Inc13	-
NC_013091	Francisella philomiragia plasmid pF242, complete sequence	3936	Inc13	-
NC_010331	Francisella philomiragia subsp. philomiragia ATCC 25017 plasmid pFPHI01, complete sequence	3936	Inc13	-
NC_022993	Geobacillus sp. 610 plasmid pGTD7, complete sequence	3279	Inc13	-
NC_017670	Halobacillus halophilus DSM 2266 plasmid PL3, complete sequence	3329	Inc13	-
NC_014164	Lactobacillus acidipiscis cryptic plasmid pLAC1, complete sequence, strain ACA-DC 1533	3478	Inc13	MOBV
NC_012549	Lactobacillus brevis plasmid pLB925A02, complete sequence	3524	Inc13	MOBV
NC_014919	Lactobacillus brevis strain D11 plasmid pSD11, complete sequence	3225	Inc13	MOBV
NC_016035	Lactobacillus buchneri CD034 plasmid pCD034-1, complete sequence	3424	Inc13	MOBV
NC_010242	Lactobacillus casei plasmid pSMA23, complete sequence	3497	Inc13	MOBV
NC_012722	Lactobacillus pentosus p1-4 plasmid complete sequence, strain F121-1	2424	Inc13	-
NC_002123	Lactobacillus plantarum L137 plasmid pLTK2, complete sequence	2295	Inc13	-
NC_009666	Lactobacillus plantarum M4 plasmid pM4, complete sequence	3320	Inc13	MOBV
NC_001370	Lactobacillus plantarum plasmid pC30il, complete sequence	2140	Inc13	-
NC_019372	Lactobacillus plantarum plasmid pG6301, complete sequence	3516	Inc13	MOBV
NC_012220	Lactobacillus plantarum plasmid pLD1, complete sequence	2112	Inc13	-
NC_003893	Lactobacillus plantarum plasmid pLP2000, complete sequence	2061	Inc13	-
NC_011497	Lactobacillus plantarum plasmid pLP2111, complete sequence	2111	Inc13	-
NC_011136	Lactobacillus plantarum plasmid pLR1, complete sequence	2066	Inc13	-
NC_019321	Lactobacillus plantarum plasmid pR18, complete sequence	3211	Inc13	-
NC_006375	Lactobacillus plantarum WCFS1 plasmid pWCFS101, complete sequence	1917	Inc13	-

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_001757	Lactobacillus reuteri 100-23 plasmid pGT232, complete seguence	5113	Inc13	-
NC_004532	Lactobacillus reuteri endogenous plasmid, complete sequence	4523	Inc13	-
NC_003528	Lactobacillus reuteri plasmid pTE44, complete sequence	4523	Inc13	-
NC_004922	Lactococcus lactis lactis BGMN1-5 plasmid pMN5, complete	5670	Inc13	-
NC_004980	Lactococcus lactis plasmid pWC1, complete sequence	2846	Inc13	-
NC_022587	Lactococcus lactis subsp. lactis KLDS 4.0325 strain Lactococcus lactis subsp. lactis strain plasmid 1, complete	4094	Inc13	-
NC_021513	Listeria innocua strain TTS-2011 plasmid pDB2011,	7641	Inc13	MOBP,
NC_005242	Lysinibacillus sphaericus plasmid pLG, complete sequence	11066	Inc13	-
NC_011997	Macrococcus caseolyticus JCSC5402 plasmid pMCCL3,	2131	Inc13	-
NC_012003	Macrococcus caseolyticus JCSC5402 plasmid pMCCL8,	2968	Inc13	-
 NC 002094	complete sequence Marinococcus halophilus plasmid pPL1, complete sequence	3874	Inc13	MOBV
- NC 002060	Microcystis aeruginosa small plasmid pMA1 DNA, complete	2287	Inc13	-
NC 010915	sequence (encoding replication protein, complete cds) Paenibacillus popilliae plasmid pBP68, complete sequence	6670	Inc13	
NC 016606	Pediococcus claussenii ATCC BAA-344 plasmid pPECL-2,	2450	Inc12	
NC_007502	complete sequence Pediococcus damnosus plasmid pF8801, complete sequence	2450	Inc13	
NC_007593	Pediococcus pentosaceus plasmid pPS1, complete seguence	2721	Inc13	MOBA
NC_000E17	Psychrobacter sp. PRwf-1 plasmid pRWF102, complete	2721	Inc13	-
NC_009517	sequence Salmonella enterica subsp. enterica serovar Dublin plasmid	2117	Inc13	-
NC_015392	pSD853_7.9, complete sequence	7860	Inc13	MOBV
NC_005002	Salmonella enterica subsp. enterica serovar Enteritidis plasmid pB, complete sequence	1983	Inc13	-
NC_019127	Salmonella enterica subsp. enterica serovar Enteritidis plasmid pVCM01, complete sequence	1981	Inc13	-
NC_021927	Salmonella enterica subsp. enterica serovar Enteritidis strain S1744 plasmid pl. complete sequence	2096	Inc13	-
NC_017072	Selenomonas ruminantium subsp. lactilytica TAM6421 plasmid pSRC9, complete sequence	2614	Inc13	-
NC_010656	Shigella boydii CDC 3083-94 plasmid pBS512_2, complete sequence	2089	Inc13	-
NC_016824	Shigella sonnei 53G plasmid C, complete sequence	2089	Inc13	-
NC_001378	Shigella sonnei plasmid pKYM, complete sequence	2083	Inc13	-
NC_009347	Shigella sonnei Ss046 plasmid pSS046_spC, complete sequence	2101	Inc13	-
NC_016054	Staphylococcus arlettae strain 2-144 plasmid pSS-03, complete sequence	7122	Inc13	MOBV
NC_018958	Staphylococcus aureus plasmid p18807-P01, complete sequence	3125	Inc13	-
NC_018960	Staphylococcus aureus plasmid p18808-P01, complete sequence	3125	Inc13	-
NC_018975	Staphylococcus aureus plasmid p18811-P01, complete sequence	3125	Inc13	-
NC_010687	Staphylococcus aureus plasmid pKH12, complete sequence	3011	Inc13	-
NC_010428	Staphylococcus aureus plasmid pKH14, complete sequence	3124	Inc13	-
NC_010684	Staphylococcus aureus plasmid pKH21, complete sequence	2531	Inc13	-
NC_019144	Staphylococcus aureus plasmid pMSA16, complete sequence	7054	Inc13	MOBV
NC_004562	Staphylococcus aureus plasmid pNVH01, complete sequence	2650	Inc13	-
NC_007928	Staphylococcus aureus plasmid pSA1308, complete sequence	2756	Inc13	-
NC_001384	Staphylococcus aureus plasmid pUB110, complete sequence	4548	Inc13	MOBV

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_019146	Staphylococcus aureus plasmid pUR5425, complete sequence	2690	Inc13	-
NC_013350	Staphylococcus aureus plasmid pWBG754, complete	2241	Inc13	-
NC_019011	Staphylococcus aureus plasmid pWBG764, complete	2397	Inc13	-
NC_013295	Staphylococcus aureus plasmid SAP046B, complete	3125	Inc13	-
NC_013331	Staphylococcus aureus plasmid SAP047A, complete	28974	Inc13	MOBV
NC_013297	Staphylococcus aureus plasmid SAP049B, complete	3125	Inc13	-
NC_013300	Staphylococcus aureus plasmid SAP051B, complete	3125	Inc13	-
NC_013302	Staphylococcus aureus plasmid SAP070A, complete	3011	Inc13	-
NZ_AUPS01	Staphylococcus aureus S1 plasmid pS1d contig033, whole	2649	Inc13	-
NZ_AUPT01	Staphylococcus aureus S130 plasmid pS130a contig023,	8882	Inc13	MOBP,
000023	whole genome shotgun sequence, complete sequence Staphylococcus aureus SA5 plasmid pKH3, complete	2070	Inc13	MOBA
NC_005020	sequence Staphylococcus aureus SK6575 plasmid SAP104A, complete	2373	IIICIS	-
NC_013375	sequence	3011	Inc13	-
NC_022227	complete sequence	3332	Inc13	-
NC_017346	Staphylococcus aureus subsp. aureus ECT-R 2 plasmid pLUH01, complete sequence	2241	Inc13	-
NC_017348	Staphylococcus aureus subsp. aureus LGA251 plasmid pLGA251, complete sequence	2993	Inc13	-
NC_014156	Staphylococcus aureus subsp. aureus ST398 plasmid pKKS627. complete sequence	6242	Inc13	MOBV
NC_013034	Staphylococcus aureus subsp. aureus ST398 plasmid pKKS825. complete sequence	14362	Inc13	MOBV
NC_017336	Staphylococcus aureus subsp. aureus ST398 plasmid pS0385-3. complete seguence	3158	Inc13	-
NZ_AKYW01	Staphylococcus aureus subsp. aureus str. Newbould 305 nasmid nNewbould 305, whole genome shotgun sequence	3379	Inc13	-
NC_017332	Staphylococcus aureus subsp. aureus TW20 plasmid	3011	Inc13	-
NC_007790	Staphylococcus aureus subsp. aureus USA300_FPR3757	3125	Inc13	-
NC_012417	Staphylococcus aureus subsp. aureus USA300_TCH1516	3125	Inc13	-
NC_022605	Staphylococcus aureus subsp. aureus Z172 plasmid	3011	Inc13	-
- NC 007768	p2172_2, complete sequence Staphylococcus chromogenes plasmid pLNU1, isolate TS1	2361	Inc13	-
_ NC_007771	Staphylococcus chromogenes plasmid pLNU4, isolate KNS48	2561	Inc13	-
NC_008354	Staphylococcus chromogenes plasmid pLNU9 (naturally	3783	Inc13	-
NC_008352	Staphylococcus chromogenes pLNU8 plasmid	2278	Inc13	-
NC_008356	Staphylococcus epidermidis plasmid pLNU6, complete sequence	2546	Inc13	-
NC_013395	Staphylococcus epidermidis plasmid pSK108, complete sequence	2418	Inc13	-
NC_013372	Staphylococcus epidermidis plasmid SAP016A, complete sequence	43807	Inc13	MOBV
NC_013392	Staphylococcus epidermidis plasmid SAP108D, complete sequence	2422	Inc13	-
NC_007169	Staphylococcus haemolyticus JCSC1435 plasmid pSHaeA, complete sequence	2300	Inc13	-
NC_007770	Staphylococcus haemolyticus plasmid pLNU3, isolate coa101	2591	Inc13	-
NC_008353	Staphylococcus haemolyticus pLNU7 plasmid	2602	Inc13	-
NC_016139	Staphylococcus hyicus plasmid p9811071-1, complete	4019	Inc13	MOBV
NC_007621	Staphylococcus saprophyticus pSES22 plasmid, isolate 44	4040	Inc13	MOBV

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_015176	Staphylococcus simulans bv. staphylolyticus strain NRRL B- 2628 plasmid pACK5, complete sequence	3191	Inc13	-
NC_007769	Staphylococcus simulans plasmid pLNU2, isolate 184/61	2841	Inc13	-
NC_008351	Staphylococcus simulans pLNU5 plasmid	2531	Inc13	-
NC_005022	Streptococcus pneumoniae D39 plasmid pDP1, complete sequence	3161	Inc13	MOBV
NZ_CM0018 36	Streptococcus pneumoniae PCS8235 plasmid pPCS8235, complete sequence, whole genome shotgun sequence	3148	Inc13	-
NC_005021	Streptococcus pneumoniae plasmid pSMB1, complete sequence	3162	Inc13	MOBV
NC_008350	Streptococcus pneumoniae pSpnP1 plasmid	5413	Inc13	-
NC_006130	Streptococcus pyogenes 71-724 plasmid pDN571, complete sequence	3351	Inc13	-
NC_022076	Streptococcus pyogenes strain A996 plasmid pA996, complete sequence	3620	Inc13	-
NC_005098	Streptococcus thermophilus 2783 plasmid pt38, complete sequence	2911	Inc13	-
NC_008501	Streptococcus thermophilus LMD-9 plasmid 2, complete sequence	3361	Inc13	-
NC_019231	Streptococcus thermophilus plasmid pK1002C2, complete sequence	3377	Inc13	-
NC_019232	Streptococcus thermophilus plasmid pK2007C6, complete sequence	2980	Inc13	-
NC_000937	Streptococcus thermophilus ST135 plasmid pER35, complete sequence	9531	Inc13	-
NC_000938	Streptococcus thermophilus ST136 plasmid pER36, complete sequence	3498	Inc13	-
NC_004747	Streptococcus thermophilus ST2-1 plasmid pND103, complete sequence	3531	Inc13	-
NC_004968	Streptococcus thermophilus ST371 plasmid pER371, complete sequence	2672	Inc13	-
NC_020289	Synechocystis sp. PCC 6803 plasmid pCA2.4_M, complete sequence	2378	Inc13	-
NC_010914	Weissella cibaria plasmid pKW2126, complete sequence	2126	Inc13	-
NC_001845	Zymomonas mobilis ATCC10988 plasmid pZMO1, complete sequence	1680	Inc13	-
NC_019019	Zymomonas mobilis plasmid pZMN1-1, complete sequence	1643	Inc13	-
NC_011363	Zymomonas mobilis subsp. mobilis ATCC 10988 plasmid pZMO1, complete sequence	1651	Inc13	-
NC_019198	Zymomonas mobilis subsp. mobilis NCIMB 11163 plasmid pZMO1A, complete sequence	1647	Inc13	-
NC_019210	Zymomonas mobilis subsp. mobilis plasmid pZMO1B, complete sequence	1646	Inc13	-
NC_010291	Enterococcus faecium plasmid pJS42, complete sequence	4147	Inc14	MOBV
NC_006822	Leuconostoc citreum plasmid pIH01, complete sequence	1822	Inc14	-
NC_006145	Leuconostoc mesenteroides mesenteroides FR52 plasmid pFR18, complete sequence	1828	Inc14	-
NC_012000	Macrococcus caseolyticus JCSC5402 plasmid pMCCL5, complete sequence	4398	Inc14	-
NC_019961	Prevotella dentalis DSM 3688 plasmid pPREDE01, complete sequence	4946	Inc14	-
NC_001763	Staphylococcus aureus plasmid J3358, complete sequence	6024	Inc14	MOBV
NC_023313	Staphylococcus aureus plasmid pDJ91S, complete sequence	3928	Inc14	MOBP, MOBV
NC_010262	Staphylococcus aureus plasmid pKH16, complete sequence	4442	Inc14	MOBV
NC_010284	Staphylococcus aureus plasmid pKH17, complete sequence	4441	Inc14	MOBV
NC_001391	Staphylococcus aureus plasmid pNS1, complete sequence	3879	Inc14	MOBV
NC_005564	Staphylococcus aureus plasmid pS194, complete sequence	4397	Inc14	MOBP
NC_023385	Staphylococcus aureus plasmid pSWS2889, strain MRSA ST398, isolate 1110902889	3898	Inc14	MOBP, MOBV
NC_001393	Staphylococcus aureus plasmid pT181, complete sequence	4439	Inc14	MOBV

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_013336	Staphylococcus aureus plasmid SAP060B, complete sequence	4498	Inc14	MOBV
NC_013307	Staphylococcus aureus plasmid SAP085A, complete sequence	4439	Inc14	MOBV
NC_013311	Staphylococcus aureus plasmid SAP094A, complete sequence	4439	Inc14	MOBV
NC_013312	Staphylococcus aureus plasmid SAP095B, complete sequence	4439	Inc14	MOBV
NZ_AUPS01 000031	Staphylococcus aureus S1 plasmid pS1c contig031, whole genome shotgun sequence, complete sequence	3899	Inc14	MOBP, MOBV
NZ_AUPU01 000024	Staphylococcus aureus S123 plasmid pS123b contig024, whole genome shotgun sequence, complete sequence	4397	Inc14	-
NC_006629	Staphylococcus aureus subsp. aureus COL plasmid pT181, complete sequence	4440	Inc14	MOBV
NC_013452	Staphylococcus aureus subsp. aureus ED98 plasmid pT181, complete seguence	4440	Inc14	MOBV
NC_017334	Staphylococcus aureus subsp. aureus ST398 plasmid	5246	Inc14	MOBV
NC_017335	Staphylococcus aureus subsp. aureus ST398 plasmid	4381	Inc14	-
NC_007791	Staphylococcus aureus subsp. aureus USA300_FPR3757	4439	Inc14	MOBV
NC_005008	Staphylococcus epidermidis ATCC 12228 plasmid pSE- 12228-01 complete seguence	4439	Inc14	MOBV
NC_005007	Staphylococcus epidermidis ATCC 12228 plasmid pSE-	4679	Inc14	MOBP
NC_006871	Staphylococcus lentus plasmid pSTE2, complete sequence	6913	Inc14	MOBV
NC_013033	Staphylococcus simulans bv. staphylolyticus plasmid pACK4, complete sequence	3592	Inc14	-
NC_002146	Bacillus anthracis plasmid pXO2, complete sequence	96231	Inc18	-
NC_012655	Bacillus anthracis str. A0248 plasmid pXO2, complete sequence	94830	Inc18	-
NZ_ABLB010 00068	Bacillus anthracis str. A0389 plasmid pXO2, whole genome shotgun sequence	94800	Inc18	-
NC_003981	Bacillus anthracis str. A2012 plasmid pXO2, complete sequence	94829	Inc18	-
NC_007323	Bacillus anthracis str. 'Ames Ancestor' plasmid pXO2, complete sequence	94830	Inc18	-
NZ_AMDT01 000056	Bacillus anthracis str. BF1 plasmid pXO2, whole genome shotgun sequence	94741	Inc18	-
NC_012577	Bacillus anthracis str. CDC 684 plasmid pX02, complete sequence	94875	Inc18	-
NC_017727	Bacillus anthracis str. H9401 plasmid BAP2, complete sequence	94824	Inc18	-
NC_014332	Bacillus cereus biovar anthracis str. CI plasmid pCI-XO2, complete sequence	94469	Inc18	-
NC_018499	Bacillus cereus FRI-35 plasmid p03, complete sequence	36273	Inc18	-
NZ_ADWW0 1000012	Bacillus methanolicus MGA3 plasmid pBM69, whole genome shotgun sequence	68997	Inc18	-
NC_018879	Bacillus thuringiensis Bt407 plasmid BTB_78p, complete sequence	77895	Inc18	-
NC_018488	Bacillus thuringiensis HD-771 plasmid p04, complete sequence	65470	Inc18	-
NC_009841	Bacillus thuringiensis plasmid pBMB67, complete sequence	67159	Inc18	-
NC_017205	Bacilius thuringiensis serovar chinensis CT-43 plasmid pCT72, complete sequence	72074	Inc18	-
NC_006578	Bacillus thuringiensis serovar konkukian str. 97-27 plasmid pBT9727, complete sequence	77112	Inc18	-
NC_020240	Bacillus thuringiensis serovar kurstaki str. HD73 plasmid pAW63, complete sequence	71777	Inc18	-
NC_023074	Bacillus thuringiensis serovar tenebrionis str. YBT-1765 plasmid pBMB165, complete sequence	77627	Inc18	-
NC_020382	Bacillus thuringiensis serovar thuringiensis str. IS5056 plasmid pIS56-68, complete sequence	68616	Inc18	-
NC_010181	Bacillus weihenstephanensis KBAB4 plasmid pBWB402, complete sequence	75107	Inc18	-

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_018222	Enterococcus faecalis D32 plasmid EFD32pA, complete	12893	Inc18	-
NC_018223	Enterococcus faecalis D32 plasmid EFD32pB, complete sequence	62162	Inc18	-
NC_013514	Enterococcus faecalis plasmid pAMbeta1, complete	27815	Inc18	MOBQ
NC_014726	Enterococcus faecalis plasmid pTW9, complete sequence	85068	Inc18	-
NC_014475	Enterococcus faecalis plasmid pWZ1668, complete sequence	48365	Inc18	MOBQ
NC_019284	Enterococcus faecalis plasmid pWZ7140, complete sequence	47277	Inc18	MOBQ
NC_019213	Enterococcus faecalis plasmid pWZ909, complete sequence	42602	Inc18	MOBQ
NC_004669	Enterococcus faecalis V583 plasmid pTEF1, complete sequence	66320	Inc18	МОВС
NC_004670	Enterococcus faecalis V583 plasmid pTEF3, complete sequence	17963	Inc18	-
NC_021988	Enterococcus faecium Aus0085 plasmid p3, complete sequence	31004	Inc18	-
NC_017962	Enterococcus faecium DO plasmid 2, complete sequence	66247	Inc18	-
NC_020208	Enterococcus faecium NRRL B-2354 plasmid pNB2354_1, complete sequence	214319	Inc18	-
NC_010880	Enterococcus faecium plasmid pEF1, complete sequence	21344	Inc18	-
NC_007594	Enterococcus faecium plasmid pHT beta, complete sequence	52890	Inc18	-
NC_016009	Enterococcus faecium plasmid pM7M2, complete sequence	19557	Inc18	MOBV
NC_011364	Enterococcus faecium plasmid pMG1, complete sequence	65029	Inc18	-
NC_016967	Enterococcus faecium plasmid pZB18, complete sequence	68058	Inc18	-
NC_022883	Enterococcus mundtii QU 25 plasmid pQY082 DNA, complete genome	82213	Inc18	-
NC_022879	Enterococcus mundtii QU 25 plasmid pQY182 DNA, complete genome	181920	Inc18	-
NC_010608	Exiguobacterium arabatum pEspB plasmid	38945	Inc18	-
NC_012551	Lactobacillus brevis plasmid pLB925A04, complete sequence	65037	Inc18	-
NZ_AVAB01 000114	Lactobacillus fermentum MTCC 8711 plasmid pLF05 contig114, whole genome shotgun sequence	31562	Inc18	MOBQ
NC_021527	Lactobacillus plantarum 16 plasmid Lp16G, complete sequence	51857	Inc18	-
NC_021519	Lactobacillus plantarum 16 plasmid Lp16H, complete sequence	74078	Inc18	-
NC_011225	Lactobacillus rhamnosus HN001 plasmid pLR002, complete sequence	31548	Inc18	MOBQ
NC_015979	Lactobacillus sanfranciscensis TMW 1.1304 plasmid pLS1, complete sequence	58739	Inc18	-
NC_010540	Lactococcus garvieae plasmid pKL0018 DNA, complete sequence	20034	Inc18	-
NC_014496	Listeria grayi plasmid pLGUG1, complete sequence	79249	Inc18	-
NC_013767	Listeria monocytogenes 08-5578 plasmid pLM5578, complete sequence	77054	Inc18	-
NZ_CM0014 70	Listeria monocytogenes FSL J1-208 plasmid pLMIV, complete sequence, whole genome shotgun sequence	77825	Inc18	-
NC_018888	Listeria monocytogenes serotype 7 str. SLCC2482 plasmid pLM7UG1, complete sequence	50100	Inc18	-
NC_018889	Listeria monocytogenes SLCC2372 plasmid pLM1-2cUG1, complete sequence	50100	Inc18	-
NC_014495	Listeria monocytogenes SLCC2755 plasmid pLM1-2bUG1, complete sequence	57780	Inc18	-
NC_022046	Listeria monocytogenes strain J1776 plasmid, complete sequence	55804	Inc18	-
NC_022047	Listeria monocytogenes strain J1817 plasmid, complete sequence	55804	Inc18	-
NC_022051	Listeria monocytogenes strain J1926 plasmid, complete sequence	55803	Inc18	-

Número de acceso	Plásmido y hospedero	Tamaño	Incompatibilidad	МОВ
NC_014255	Listeria monocytogenes strain Lm1 plasmid pLM33, complete sequence	32307	Inc18	-
NC_021828	Listeria monocytogenes strain R2-502 plasmid, complete sequence	57557	Inc18	-
NC_011995	Macrococcus caseolyticus JCSC5402 plasmid pMCCL1, complete sequence	15667	Inc18	-
NC_011996	Macrococcus caseolyticus JCSC5402 plasmid pMCCL2, complete sequence	80545	Inc18	-
NC_015517	Melissococcus plutonius ATCC 35311 plasmid pMP1, complete sequence	177718	Inc18	-
NC_018265	Melissococcus plutonius DAT561 plasmid 1, complete sequence	199075	Inc18	-
NC_010864	Pediococcus acidilactici plasmid pEOC01, complete sequence	11661	Inc18	-
NC_016607	Pediococcus claussenii ATCC BAA-344 plasmid pPECL-4, complete sequence	23136	Inc18	MOBQ
NC_017019	Pediococcus claussenii ATCC BAA-344 plasmid pPECL-8, complete sequence	33246	Inc18	MOBQ
NC_021076	Staphylococcus aureus strain 004-737X plasmid pSA737, complete sequence	39287	Inc18	-
NC_020227	Staphylococcus aureus strain CH-91 plasmid pCH91, complete sequence	17515	Inc18	-
NC_002136	Streptococcus agalactiae plasmid pGB3634, complete sequence	5842	Inc18	-
NC_012923	Streptococcus suis BM407 plasmid pBM407, complete sequence	24579	Inc18	-

Tabla S4. Plásmidos a partir de los cuales se extrajeron las relaxasas para crear los modelos ocultos de Markov para clasificación de relaxasas en *plaSquid*.

Número	Plásmido y hospedero	Tamañ	Incompatibilid	МОВ
de acceso		0	ad	
NC_0097 79	Cronobacter sakazakii ATCC BAA-894 plasmid pESA2, complete sequence	31208	-	MOBC
NC_0073 92	Spiroplasma citri plasmid pSci6	35318	-	MOBC
NC_0216 66	Klebsiella pneumoniae plasmid CoIE-LS6, complete sequence	14709	-	MOBC
NC_0103 99	Clavibacter michiganensis subsp. sepedonicus plasmid pCS1, complete sequence	50350	-	MOBC
NC_0073 88	Spiroplasma citri pSci2 plasmid	14407	-	MOBC
NC_0073 91	Spiroplasma citri pSci5 plasmid	27778	-	MOBC
NC_0064 00	Spiroplasma kunkelii CR2-3x plasmid pSKU146, complete sequence	14615	-	MOBC
NC_0073 89	Spiroplasma citri pSci3 plasmid	19325	-	MOBC
NC_0021 19	Escherichia coli K-12 P678-54 plasmid CloDF13, complete sequence	9957	-	MOBC
NC_0132 84	Cronobacter turicensis z3032 plasmid pCTU2, complete sequence	22448	-	MOBC
NC_0058 14	Yersinia pestis biovar Microtus str. 91001 plasmid pCRY, complete sequence	21742	-	MOBC
NC_0073 87	Spiroplasma citri pSci1 plasmid	12989	-	MOBC
NC_0110 92	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633 plasmid pCVM19633_110, complete sequence	110227	IncFI(RepB)	MOBC
NC_0061 54	Yersinia pseudotuberculosis IP 32953 plasmid pYptb32953, complete sequence	27702	-	MOBC
NC_0026 30	Enterococcus faecalis plasmid pAM373, complete sequence	36804	-	MOBC
NC_0216 56	Klebsiella pneumoniae plasmid pKpQIL-SC29, complete sequence	48790	IncT	MOBC

Número	Plásmido v hosnedero	Tamañ	Incompatibilid	MOB
de acceso		0	ad	NICD
NC_0191 56	Klebsiella pneumoniae plasmid pAAC154, complete sequence	15101	-	MOBC
NC_0201 82	Enterobacter aerogenes EA1509E plasmid pEA1509_B	9294	-	MOBC
NC_0027 57	Streptococcus mutans UA140 plasmid pUA140, complete sequence	5640	-	MOBC
NC_0113 15	Aliivibrio salmonicida LFI1238 plasmid pVSAL54, complete sequence	5360	-	MOBC
NC_0225 33	Plautia stali symbiont plasmid pPstS1 DNA, complete genome	19174	-	MOBC
NC_0220 83	Klebsiella pneumoniae JM45 plasmid p2, complete sequence	12207	-	MOBC
NC_0046 69	Enterococcus faecalis V583 plasmid pTEF1, complete sequence	66320	Inc18	MOBC
NZ_AKKM 01000049	Providencia alcalifaciens Dmel2 plasmid pPALC1, complete sequence, whole genome shotgun sequence	14114	-	MOBC
NC_0113 82	Klebsiella pneumoniae plasmid 15S, complete sequence	23753	-	MOBC
NC_0028 10	Streptococcus mutans LM7 plasmid pLM7, complete sequence	5658	-	MOBC
NC_0097 93	Citrobacter koseri ATCC BAA-895 plasmid pCKO3, complete sequence	9294	-	MOBC
NC_0113 42	Bacillus cereus H3081.97 plasmid pH308197_29, complete sequence	29189	-	MOBC
NC_0101 12	Vibrio sp. 23023 plasmid p23023, complete sequence	52527	-	MOBC
NC_0147 25	Edwardsiella tarda strain CK41 plasmid pCK41, complete sequence	72832	IncFI(RepB)	MOBC
NC_0091 39	Yersinia ruckeri YR71 plasmid pYR1, complete sequence	158038	IncA/C	MOBH
NC_0087 39	Marinobacter aquaeolei VT8 plasmid pMAQU02, complete sequence	213290	-	MOBH
NC_0168 25	Salmonella enterica subsp. enterica serovar Typhi str. P-stx-12 plasmid unnamed, complete sequence	181431	IncFI(RepE), IncH	MOBH
NC_0217 09	Alteromonas macleodii str. 'English Channel 615' plasmid, complete sequence	200847	-	MOBH
NC_0176 45	Escherichia coli UMNK88 plasmid pUMNK88, complete sequence	160573	IncA/C	MOBH
NC_0079 01	Rhodoferax ferrireducens T118 plasmid1, complete sequence	257447	-	MOBH
NC_0139 30	Thioalkalivibrio sp. K90mix plasmid pTK9001, complete sequence	240256	-	MOBH
NC_0215 06	Pseudomonas resinovorans NBRC 106553 plasmid pCAR1.3 DNA, complete genome	198965	IncP-7	MOBH
NC_0085 73	Shewanella sp. ANA-3 plasmid 1, complete sequence	278942	-	MOBH
NC_0232 77	Escherichia coli strain 63743 plasmid pEQ2, complete sequence	287616	IncFI(RepE), IncH	MOBH
NC_0052 11	Serratia marcescens plasmid R478, complete sequence	274762	IncH, IncS_HI2	MOBH
NC_0126 90	Escherichia coli plasmid peH4H, complete sequence	148105	IncA/C	MOBH
NC_0223 77	Escherichia coli strain SCEC2 plasmid pSCEC2, complete sequence	135615	IncA/C (=IncP- 3)	MOBH
NC_0179 58	Tistrella mobilis KA081020-065 plasmid pTM3, complete sequence	112696 2	-	MOBH
NC_0169 80	Klebsiella pneumoniae plasmid pNDM-MAR, complete sequence	267242	-	MOBH
NC_0023 05	Salmonella typhi plasmid R27, complete sequence	180461	IncFI(RepE), IncH	MOBH
NC_0126 93	Salmonella enterica plasmid pAM04528, complete sequence	158213	IncA/C	MOBH
NC_0193 80	Aeromonas hydrophila plasmid pR148, complete sequence	165906	IncA/C	MOBH
NC_0191 58	Klebsiella pneumoniae plasmid pNDM10469, complete sequence	137813	IncA/C	MOBH
NC_0091 28	Corynebacterium sp. L2-79-05 plasmid pLEW279a, complete sequence	34606	pCG1/pNG2	MOBF

Número de acceso	Plásmido y hospedero	Tamañ o	Incompatibilid ad	МОВ
NC_0091 32	Escherichia coli plasmid pLEW517, complete sequence	63946	IncN	MOBF
NC_0068 55	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67 plasmid pSCV50, complete sequence	49558	IncFI(RepB), pCD1	MOBF
NC_0066 71	Escherichia coli A2363 plasmid pAPEC-O2-R, complete sequence	101375	IncFII(RepA4), IncZ	MOBF
NC_0222 35	Sphingomonas sp. ERG5 plasmid pCADAB1, complete sequence	138306	pNL1	MOBF
NZ_AKV W010000 06	Rhodobacter sphaeroides 2.4.1 plasmid D cont1.6, whole genome shotgun sequence, complete sequence	100819	RepABC(pRiAb)	MOBF
NC_0103 77	Yersinia enterocolitica plasmid pYE854, complete sequence	95499	-	MOBF
NC_0099 32	Acaryochloris marina MBIC11017 plasmid pREB7, complete sequence	155110	-	MOBF
NC_0099 99	Shewanella baltica OS195 plasmid pS19502, complete sequence	75508	-	MOBF
NC_0220 78	Klebsiella pneumoniae JM45 plasmid p1, complete sequence	317154	IncFI(RepB), IncFII(RepA4), IncR, pCD1	MOBF
NC_0190 95	Escherichia coli plasmid pXZ, complete sequence	76635	IncFII(RepA4), IncZ	MOBF
NC_0225 70	Salmonella enterica subsp. enterica serovar Typhimurium DT104 plasmid pDT104, complete genome	94034	IncFI(RepB), pCD1	MOBF
NC_0024 83	Escherichia coli K-12 plasmid F DNA, complete sequence	99159	IncFI(RepB), IncFI(RepE)	MOBF
NC_0201 22	Citrobacter freundii strain CFSTE plasmid pN-Cit, complete sequence	34826	-	MOBF
NC_0105 41	Cyanothece sp. ATCC 51142 plasmid B, complete sequence	31856	-	MOBF
NC_0099 33	Acaryochloris marina MBIC11017 plasmid pREB8, complete sequence	120693	-	MOBF
NC_0142 08	Klebsiella oxytoca KOX105 plasmid pKOX105, complete sequence	54641	IncN	MOBF
NC_0091 31	Escherichia coli plasmid pLEW517, complete sequence	65288	IncN	MOBF
NC_0200 88	Klebsiella pneumoniae plasmid pK18An, complete sequence	51160	IncN	MOBF
NC_0079 41	Escherichia coli UTI89 plasmid pUTI89, complete sequence	114230	IncFI(RepB), IncZ, CoIE2/E3	MOBF
NC_0094 26	Novosphingobium aromaticivorans DSM 12444 plasmid pNL1, complete sequence	184462	pNL1	MOBF
NZ_AFDL 01000006	Acinetobacter baumannii OIFC143 plasmid pOIFC143-70, whole genome shotgun sequence	69518	-	MOBF
NC_0215 01	Klebsiella oxytoca E718 plasmid pKOX_NDM1, complete sequence	110781	IncFI(RepB), pCD1	MOBF
NC_0076 07	Shigella dysenteriae Sd197 plasmid pSD1_197, complete sequence	182726	IncFII(RepA4), IncZ, IncZ	MOBF
NC_0026 38	Salmonella enterica enterica sv Choleraesuis RF-1 plasmid pKDSC50, complete sequence	49503	IncFI(RepB), pCD1	MOBF
NC_0105 80	Beijerinckia indica subsp. indica ATCC 9039 plasmid pBIND01, complete sequence	181736	-	MOBF
NC_0133 54	Escherichia coli O103:H2 str. 12009 plasmid pO103, complete sequence	75546	IncFI(RepB)	MOBF
NC_0111 51	Rhodococcus equi plasmid pVAPA1037, complete sequence	80610	-	MOBF
NC_0066 72	Gluconobacter oxydans 621H plasmid pGOX1, complete sequence	163186	-	MOBF
NC_0039 22	Xanthomonas axonopodis pv. citri str. 306 plasmid pXAC64, complete sequence	64920	-	MOBF
NC_0032 92	Salmonella enterica subsp. enterica serovar Typhimurium plasmid R46, complete sequence	50969	IncN	MOBF
NC_0104 92	Arthrobacter sp. Chr15 plasmid pChr15, complete sequence	49633	-	MOBF
NC_0100 70	Burkholderia multivorans ATCC 17616 plasmid pBMUL01, complete sequence	167422	-	MOBF
NC_0193 90	Klebsiella pneumoniae plasmid pKPN_CZ, complete sequence	207819	IncFI(RepB), pCD1, IncT/Phage P1	MOBF

Número de acceso	Plásmido y hospedero	Tamañ o	Incompatibilid ad	МОВ
NC_0216 22	Klebsiella pneumoniae plasmid pK45-67VIM complete sequence	56171	IncN	MOBF
NC_0176 40	Escherichia coli UMNK88 plasmid pUMNK88_Ent, complete sequence	81475	IncFI(RepB)	MOBF
NC_0053 27	Escherichia coli plasmid pC15-1a, complete sequence	92353	IncFII(RepA4), IncZ	MOBF
NC_0217 31	Acinetobacter baumannii BJAB0868 plasmid p2BJAB0868, complete sequence	70167	-	MOBF
NC_0063 23	Yersinia pestis plasmid pG8786, complete sequence	137036	IncFI(RepB), pCD1	MOBF
NC_0171 66	Acinetobacter baumannii TCDC-AB0715 plasmid p2ABTCDC0715, complete sequence	70894	-	MOBF
NC_0086 97	Nocardioides sp. JS614 plasmid pNOCA01, complete sequence	307814	-	MOBF
NC_0168 55	Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S plasmid unnamed, complete sequence	93832	IncFI(RepB), pCD1	MOBF
NC_0143 84	Escherichia coli plasmid pEC_L8, complete sequence	118525	IncFI(RepE), IncFII(RepA4), IncZ	MOBF
NC_0171 63	Acinetobacter baumannii 1656-2 plasmid ABKp1, complete sequence	74451	-	MOBF
NC_0127 20	Burkholderia glumae BGR1 plasmid bglu_3p, complete sequence	141067	-	MOBF
NC_0190 72	Escherichia coli plasmid pHK08, complete sequence	69812	IncFII(RepA4), IncZ	MOBF
NC_0107 16	Salmonella enterica subsp. enterica serovar Dublin plasmid IncW pIE321, complete sequence	38150	IncW	MOBF
NC_0048 51	Shigella flexneri 2a str. 301 plasmid pCP301, complete sequence	221618	IncFII(RepA4), IncZ	MOBF
NC_0087 65	Acidovorax sp. JS42 plasmid pAOVO01, complete sequence	72689	-	MOBF
NC_0202 78	Escherichia coli strain 3A11 plasmid pHN3A11, complete sequence	76626	IncFII(RepA4), IncZ	MOBF
NC_0079 26	Pseudomonas putida plasmid NAH7, complete sequence	82232	IncP-9	MOBF
NC_0099 82	Salmonella enterica subsp. enterica serovar Dublin plasmid pMAK3, complete sequence	39924	IncW	MOBF
NC_0150 58	Granulicella tundricola plasmid pACIX903, complete sequence	188167	-	MOBF
NC_0223 75	Escherichia coli plasmid pNDM-BTR, complete sequence	59395	IncN	MOBF
NC_0178 48	Acinetobacter baumannii MDR-TJ plasmid pABTJ1, complete sequence	77528	-	MOBF
NC_0106 06	Acinetobacter baumannii ACICU plasmid pACICU2, complete sequence	64366	-	MOBF
NC_0190 98	Escherichia coli plasmid pHHA45, complete sequence	39510	IncN	MOBF
NC_0190 82	Escherichia coli plasmid pZS50, complete sequence	51556	IncN	MOBF
NC_0191 66	Klebsiella pneumoniae plasmid pIMP-HZ1, complete sequence	50775	IncN	MOBF
NC_0047 19	Streptomyces avermitilis MA-4680 plasmid SAP1, complete sequence	94287	TapR1, TpgR1	MOBF
NC_0158 72	Escherichia coli plasmid p271A, complete sequence	35947	-	MOBF
NC_0076 82	Escherichia coli plasmid pMUR050, complete sequence	56634	IncN	MOBF
NC_0114 13	Escherichia coli SE11 plasmid pSE11-2, complete sequence	91158	IncFII(RepA1), IncR	MOBF
NC_0147 23	Burkholderia rhizoxinica HKI 454 plasmid pBRH02, complete sequence	172525	-	MOBF
NZ_AFET0 1000005	Escherichia coli AA86 plasmid pAA86S, whole genome shotgun sequence	64789	IncFII(RepA4), IncZ	MOBF
NC_0106 30	Nostoc punctiforme PCC 73102 plasmid pNPUN03, complete sequence	123028	-	MOBF
NC_0073 85	Shigella sonnei Ss046 plasmid pSS_046, complete sequence	214396	IncFII(RepA4), IncZ	MOBF
NC_0190 87	Escherichia coli O25b:H4-ST131 str. EC958 plasmid pKC396, complete sequence	44216	IncN	MOBF
N2_CM00 Xanthomonas alfalfae subsp. alfalfae CFBP 3836 plasmid unnamed1 34378 - MOBF Z262 Xaf-CFBP3836-G1-Mol002p1, whole genome shotgun sequence 103624 IncFII(RepA4), IncZ MOBF Q1000004 shotgun sequence 83540 - MOBF Q1000004 shotgun sequence 79478 IncZ MOBF Q1000004 shotgun sequence 79478 IncZ MOBF Q1010000 Salmonella enterica subsp. enterica serovar Typhimurium str. 798 93877 IncFI(RepB), DCD1 MOBF Q1010000000000000000000000000000000000				
--				
Zab.Z. MC 407 Bis As 0-01-MOLUQ PJ, Whole genome shortgun sequence103624IncFli[(RepA4)], IncZMOBF0100004shortgun sequence103624IncFli[(RepA4)], IncZMOBF0100004shortgun sequence83540-MOBF010104Escherichia coli plasmid p17H-90, complete sequence79478IncZMOBF010104Salmonella enterica subsp. enterica serovar Typhimurium str. 79893877IncFli[(RepB4)], pCD1MOBF011Salmonella enterica subsp. enterica serovar Typhimurium str. 79893877IncFli[(RepB4)], pCD1MOBF012Streptomyces sp. F11 plasmid pFP11, complete sequence35159-MOBF012Streptomyces sp. F11 plasmid pFP11, complete sequence34346-MOBF012Salmonella enterica OU7025 plasmid pOU1113, complete sequence80156pCD1MOBF012Salmonella enterica Subsp. enterica serovar Typhimurium plasmid132842IncFli[(RepA4)], mOBF013Salmonella enterica Subsp. enterica serovar Typhimurium plasmid132842IncFli[(RepA4)], mOBF013Salmonella enterica subsp. enterica serovar Typhimurium plasmid132842IncFli[(RepB4)], mOBF014Salmonella enterica subsp. enterica serovar Typhimurium plasmid132842IncFli[(RepB4)], mOBF015Solfon Solfon				
01000004 0100004shotgun sequenceInc2NC 0113Aliivibrio salmonicida LF1238 plasmid pVSAL840, complete sequence83540-MOBFNC 0107Escherichia coli plasmid p417H-90, complete sequence79478Inc2MOBFNC 0107Salmonella enterica subsp. enterica serovar Typhimurium str. 79893877Inc7(RepB), pCD1MOBFNC 00093Mycobacterium gilvum PYR-GCK plasmid pMFLV03, complete sequence16660PMUM001MOBFNC 00091Streptomyces sp. F11 plasmid pFP11, complete sequence134346-MOBFNC 0127Burkholderia glumae BGR1 plasmid bglu_4p, complete sequence134346-MOBFNC 0127Salmonella enterica OU7025 plasmid pOU1113, complete sequence80156pCD1MOBFNC 0170Salmonella enterica OU7025 plasmid pOEG, complete sequence66681Inc2MOBFNC 0170Salmonella enterica Subsp. enterica serovar Typhimurium plasmid132842IncFI(RepB), pCD1MOBFNC 0170Salmonella enterica Subsp. enterica serovar Typhimurium plasmid132842IncFI(RepB), pCD1MOBFNC 0170Salmonella enterica Subsp. enterica serovar Typhimurium plasmid132842IncFI(RepB), pCD1MOBFNC 0058Photobacterium profundum SSP plasmid pPBPR1, complete sequence15100pCG1/PNG2MOBFNC 0059Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371IncFI(RepB), pCG1/PNG2MOBFNC 0049Corynebacterium sp. KMS plasmid pMKMS01, complete sequence302089<				
NC_011Anitylin Saminonicus Sintonicus P11215 plasmid pV34CB40; Cumplete sequence50.40F.MODINC_0120Salmonella enterica subsp. enterica serovar Typhimurium str. 79893877InCFI (RepB), pCD1MOBFS4plasmid p798_93, complete sequence16660pMUM001MOBFNC_0093Mycobacterium gilvum PYR-GCK plasmid pMFLV03, complete sequence16660pMUM001MOBFNC_0012Streptomyces sp. F11 plasmid pF911, complete sequence33159-MOBFNC_0023Streptomyces sp. F11 plasmid pF911, complete sequence314346-MOBFNC_0127Burkholderia glumae BGR1 plasmid pG01113, complete sequence80156pCD1MOBFNC_0127Salmonella enterica 0U7025 plasmid pG66, complete sequence66681IncZMOBFNC_0190Salmonella enterica subsp. enterica serovar Typhimurium plasmid132842InCFI (RepB), pCD1MOBFNC_0190Salmonella enterica subsp. enterica serovar Typhimurium plasmid132842InCFI (RepB), pCD1MOBFNC_0105Corynebacterium giptamid pSP alsmid pBPR1, complete sequence15100pCG1/pNG2MOBFNC_0053Legionella pneumophila str. Paris plasmid pPBPR1, complete sequence44694-MOBFNC_0054Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence51205IncN (IncR)MOBFNC_0047Salmonella enterica subsp. enterica serovar Typhimurium str. S1134493842IncFI (RepB), pCD1MOBFNC_0055Escherichia coli IncN plasmid pG64, complet				
NC_0130Escherichia coli plasmid p417H-90, complete sequence79478Inc2MOBF94Salmonella enterica subsp. enterica serovar Typhimurium str. 79893877IncFI(RepB), pCD1MOBF54Mycobatterium gilvum PYR-GCK plasmid pMFLV03, complete sequence16660pMUM001MOBF11Burkholderia glumae BGR1 plasmid pFP11, complete sequence134346-MOBF12Burkholderia glumae BGR1 plasmid bglu_4p, complete sequence134346-MOBF13Salmonella enterica OU7025 plasmid pOU1113, complete sequence94289IncFII(RepA4), Inc2MOBF10Salmonella enterica OU7025 plasmid pOU1113, complete sequence66681Inc2MOBF00Salmonella enterica subsp. enterica serovar Typhimurium plasmid132842IncFII(RepB4), pCD1MOBF10DYT2, complete sequence66681Inc2MOBF01PT2, complete sequence15100pCG1/pNG2MOBF02Corynebacterium diphtheriae plasmid pNG2, complete sequence80033-MOBF01PT2, complete sequence131885-MOBF02Corynebacterium glutamicum StS9 plasmid pPBPR1, complete sequence80033-MOBF05Salmonella pneumophila str. Paris plasmid pLPP, complete sequence131885-MOBF05Scherichia coli IncN plasmid N3, complete sequence131885-MOBF05Scherichia coli IncN plasmid pKMS01, complete sequence302089-MOBF05Scherichia coli IncN pla				
NC_0170Salmonella enterica subsp. enterica serovar Typhimurium str. 79893877IncFI(RepB), pCD1MOBFS4pbamid p78_93, complete sequence16660pMUM001MOBFNC_0093Mycobacterium gilvum PYR-GCK plasmid pMFLV03, complete sequence15159-MOBFNC_0017Burkholderia glumae BGR1 plasmid bglu_4p, complete sequence134346-MOBFNC_0018Escherichia coli plasmid NR1, complete sequence13436pCD1MOBFNC_0017Salmonella enterica OU7025 plasmid pOU1113, complete sequence80156pCD1MOBFNC_0177Escherichia coli ETEC H10407 plasmid p666, complete sequence66681IncZMOBFNC_0109Salmonella enterica subsp. enterica serovar Typhimurium plasmid132822IncFI(RepB), pCD1MOBFNC_0109Salmonella enterica subsp. enterica serovar Typhimurium plasmid13282IncFI(RepB), pCD1MOBFNC_0109Salmonella enterica subsp. enterica serovar Typhimurium plasmid13282IncFI(RepB), pCD1MOBFNC_0109Selmonella enterica subsp. enterica serovar Typhimurium plasmid13282IncFI(RepB), pCD1MOBFNC_0109Entwinia tasmaniensis Et1/99 plasmid pFBP, complete sequence80033-MOBFNC_0016Erwinia tasmaniensis Et1/99 plasmid pLPP, complete sequence302089-MOBFNC_0020Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence302089-MOBFNC_0031Ngcobacterium glutamicum strain ATCC31830 R-plasmid pCG4, comple				
NC_0093 41Mycobacterium gilvum PYR-GCK plasmid pMFLV03, complete sequence16600pMUM001MOBFMC_0069 11Streptomyces sp. F11 plasmid pFP11, complete sequence35159-MOBFNC_0091 23Burkholderia glumae BGR1 plasmid bglu_4p, complete sequence134346-MOBFNC_0092 33Escherichia coli plasmid NR1, complete sequence94289IncFII(RepA), IncZMOBFNC_0072 20 20Salmonella enterica OU7025 plasmid pOU1113, complete sequence66611IncZMOBFNC_0177 21 22Escherichia coli ETEC H10407 plasmid p666, complete sequence66611IncZMOBFNC_0109 22Salmonella enterica subsp. enterica serovar Typhimurium plasmid pYT2, complete sequence132822IncFI(RepB), PCO11MOBFNC_0050 10Corynebacterium diphtheriae plasmid pNG2, complete sequence80033-MOBFNC_0050 11Erwinia tasmaniensis E11/99 plasmid pPBPR1, complete sequence80033-MOBFNC_0051 15Escherichia coli InCN plasmid N3, complete sequence13185-MOBFNC_0052 10Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, plasmid pS1T_S11344, complete sequence30208-MOBFNC_0053 10Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, plasmid pS1T_S11344, complete sequence30208-MOBFNC_0054 10Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, plasmid pS1T_S1344, complete sequence67025IncFI(RepB), pCO1MOBFNC_0057 10 </td				
NC_0069 11Streptomyces sp. F11 plasmid pFP11, complete sequence35159-MOBFNC_0127 25Burkholderia glumae BGR1 plasmid bglu_4p, complete sequence134346-MOBFNC_0091 33Escherichia coli plasmid NR1, complete sequence94289IncFII(RepA4), IncZMOBFNC_0072 08Salmonella enterica OU7025 plasmid p666, complete sequence80156pCD1MOBFNC_0177 22Escherichia coli ETEC H10407 plasmid p666, complete sequence66681IncZMOBFNC_0190 01Salmonella enterica subsp. enterica serovar Typhimurium plasmid pYT2, complete sequence132842IncFI(RepB), pCD1MOBFNC_0105 01Corynebacterium diphtheriae plasmid pNG2, complete sequence80033-MOBFNC_0106 01Erwinia tasmaniensis Et1/99 plasmid pET45, complete sequence80033-MOBFNC_0105 05Escherichia coli IncN plasmid pLPA, complete sequence131885-MOBFNC_0105 05Escherichia coli IncN plasmid pXIS0, complete sequence131885-MOBFNC_0107 05Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344320289MOBFNC_0107 05Scherichia coli IncN plasmid pKMS01, complete sequence320289MOBFNC_0177 07Salmonella enterica subsp. enterica serovar Typhimurium str. SL134438422IncFI(RepB), pCD1MOBFNC_0109 07000Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, pCD12302089M				
NC_0127 25Burkholderia glumae BGR1 plasmid bglu_4p, complete sequence134346-MOBFNC_0091 33Escherichia coli plasmid NR1, complete sequence94289IncFII(RepA4), IncZMOBFNC_0072 08Salmonella enterica OU7025 plasmid pOU1113, complete sequence80156pCD1MOBFNC_0177 22Escherichia coli ETEC H10407 plasmid p666, complete sequence66681IncZMOBFNC_0109 01Salmonella enterica subsp. enterica serovar Typhimurium plasmid pYT2, complete sequence132842IncFI(RepB), pCD1MOBFNC_0058 01Photobacterium diphtheriae plasmid pNG2, complete sequence80033-MOBFNC_0058 99Photobacterium profundum SS9 plasmid pET45, complete sequence80033-MOBFNC_0106 99Legionella pneumophila str. Paris plasmid pLPP, complete sequence44694-MOBFNC_0049 99Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence302089-MOBFNC_0049 01Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence302089-MOBFNC_0047 020Salmonella enterica subsp. enterica serovar Typhimurium str. SL13443842IncFI(RepB), pCD1MOBFNC_0059Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence302089-MOBFNC_0049Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence302089-MOBFNC_0050Salmonella enterica subsp. enterica serovar Typ				
NC_0091 33Escherichia coli plasmid NR1, complete sequence94289 IncZIncZMOBF IncZNC_0070 20Salmonella enterica OU7025 plasmid pOU1113, complete sequence66681IncZMOBFNC_0177 21Escherichia coli ETEC H10407 plasmid p666, complete sequence66681IncZMOBFNC_0100 22Salmonella enterica subsp. enterica serovar Typhimurium plasmid pYT2, complete sequence132842IncFI(RepB), pCD1MOBFNC_0050 01Corynebacterium diphtheriae plasmid pNG2, complete sequence80033-MOBFNC_0051 91Photobacterium profundum SS9 plasmid pPBPR1, complete sequence80033-MOBFNC_0053 95 95Erwinia tasmaniensis Et1/99 plasmid pET45, complete sequence44694-MOBFNC_0155 95 95 95 95Escherichia coli IncN plasmid N3, complete sequence131885-MOBFNC_0155 95 95 95 95Escherichia coli IncN plasmid N3, complete sequence302089-MOBFNC_0063 95 95 95Mycobacterium gutamicum strain ATCC31830 R-plasmid pCG4, complete sequence302089-MOBFNC_0077 91 91 92 92 92Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 91NOBF 91 91 91 91 91 91 91 91 91				
NC_0072 08Salmonella enterica OU7025 plasmid pOU1113, complete sequence80156pCD1MOBFNC_0177 27Escherichia coli ETEC H10407 plasmid p666, complete sequence66681IncZMOBFNC_0190 07Salmonella enterica subsp. enterica serovar Typhimurium plasmid pYT2, complete sequence132842IncFI(RepB), pCD1MOBFNC_0050 07Corynebacterium diphtheriae plasmid pNG2, complete sequence80033-MOBFNC_0058 01Photobacterium profundum SS9 plasmid pPBPR1, complete sequence80033-MOBFNC_0050 99Erwinia tasmaniensis Et1/99 plasmid pET45, complete sequence44694-MOBFNC_0063 99Legionella pneumophila str. Paris plasmid pLPP, complete sequence13185-MOBFNC_0057 99Escherichia coli IncN plasmid N3, complete sequence54205IncN (IncR)MOBFNC_0058 99Mycobacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371pCG1/pNG2MOBFNC_0057 03Mycobacterium sp. KMS plasmid pDIX2A-G7, complete sequence302089-MOBFNC_0177 04Salmonella enterica subsp. enterica serovar Typhimurium str. SL134493842IncFI(RepB), pCD1MOBFNC_0094 04Acidiphilium cryptum JF-5 plasmid pACRY03, complete sequence70382IncFI(RepA), pCD1MOBFNC_0094 050Acidiphilium cryptum JF-5 plasmid pACRY03, complete sequence88953-MOBFNC_0109 050Escherichia coli plasmid pHK09, complete sequence70382				
NC_0177 22Escherichia coli ETEC H10407 plasmid p666, complete sequence66681IncZMOBFNC_0190 pYT2, complete sequenceSalmonella enterica subsp. enterica serovar Typhimurium plasmid pYT2, complete sequence132842IncFI(RepB), pCD1MOBFNC_0050 01Corynebacterium diphtheriae plasmid pNG2, complete sequence15100PCG1/pNG2MOBFNC_0058 9Photobacterium profundum SS9 plasmid pPBPR1, complete sequence80033-MOBFNC_0050 9Erwinia tasmaniensis Et1/99 plasmid pET45, complete sequence44694-MOBFNC_0053 9Legionella pneumophila str. Paris plasmid pLPP, complete sequence131885-MOBFNC_0054 9Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371PCG1/pNG2MOBFNC_0049 0Corynebacterium sp. KMS plasmid pMKMS01, complete sequence302089-MOBFNC_0177 0Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 plasmid pSLT_SL1344, complete sequence302089-MOBFNC_0094 69Acidiphilium cryptum JF-5 plasmid pACRY03, complete sequence70382IncFI(RepB), pCD1MOBFNC_0095 71Escherichia coli plasmid pHK09, complete sequence70382IncFII(RepA4), IncZMOBFNC_0094 71Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome13838-MOBFNC_0195 75Shewanella baltica OS678 plasmid pLDNY2 NY-23_P2, whole genome13838-MOBFNC_0196 75Shewanella				
NC_0190 01Salmonella enterica subsp. enterica serovar Typhimurium plasmid pYT2, complete sequence132842IncFI(RepB), pCD1MOBF pCD1NC_0050 01Corynebacterium diphtheriae plasmid pNG2, complete sequence15100pCG1/pNG2MOBF01Photobacterium profundum SS9 plasmid pPBPR1, complete sequence80033-MOBF71Profundum SS9 plasmid pET45, complete sequence44694-MOBF99Science131885-MOBF02Legionella pneumophila str. Paris plasmid pLPP, complete sequence54205IncN (IncR)MOBF99Scherichia coli IncN plasmid N3, complete sequence54205IncN (IncR)MOBF99Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371pCG1/pNG2MOBF01MOBFOSalmonella enterica subsp. enterica serovar Typhimurium str. SL134493842IncFI(RepB), pCD1MOBF02Jaimid pSLT_SL1344, complete sequence302089-MOBF00020sequence, whole genome shotgun sequence67025-MOBF01Scherichia coli plasmid pHK09, complete sequence70382IncFI(RepB), pCD1MOBF02Scherichia coli plasmid pHK09, complete sequence88953-MOBF02Scherichia coli plasmid pHK09, complete sequence70382IncFI(RepA4), IncZMOBF03Scherichia coli plasmid pHK09, complete sequence88953-MOBF040010SequenceScherichia coli plasmid pHK09, co				
OC 0050 Corynebacterium diphtheriae plasmid pNG2, complete sequence15100 pCG1/pNG2MOBF01NC 0058 Photobacterium profundum SS9 plasmid pPBPR1, complete sequence80033-MOBF71NC 0106Erwinia tasmaniensis Et1/99 plasmid pET45, complete sequence44694-MOBF9Legionella pneumophila str. Paris plasmid pLPP, complete sequence13185-MOBF05Escherichia coli IncN plasmid N3, complete sequence13185-MOBF05Scherichia coli IncN plasmid N3, complete sequence54205IncN (IncR)MOBF06Orynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371pCG1/pNG2MOBF07Mycobacterium sp. KMS plasmid pMKMS01, complete sequence302089-MOBF03NC_0177Salmonella enterica subsp. enterica serovar Typhimurium str. SL134493842IncFI(RepB), pCD1MOBF00Acidiphilium cryptum JF-5 plasmid pACRY03, complete sequence67025-MOBF00Sequence, whole genome shotgun sequence70382IncFI(RepA), IncZMOBF01Acidiphilium cryptum JF-5 plasmid pLDNY2 NY-23_P2, whole genome shotgun sequence30698-MOBF02_C0169Shewanella baltica OS678 plasmid pSBAL67801, complete sequence80698-MOBF03N2_C0169Shewanella baltica OS678 plasmid pSBAL67801, complete sequence80698-MOBF				
NC_0058 71Photobacterium profundum SS9 plasmid pPBPR1, complete sequence80033-MOBF71NC_0106 99Erwinia tasmaniensis Et1/99 plasmid pET45, complete sequence44694-MOBF99Legionella pneumophila str. Paris plasmid pLPP, complete sequence131885-MOBFNC_0053Legionella pneumophila str. Paris plasmid pLPP, complete sequence131885-MOBFNC_0054Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371pCG1/pNG2MOBFNC_0057Mycobacterium sp. KMS plasmid pMKMS01, complete sequence302089-MOBF03Salmonella enterica subsp. enterica serovar Typhimurium str. SL134493842IncFI(RepB), pCD1MOBF00Acinetobacter baumannii IS-123 plasmid pIS123-67, complete67025-MOBF00Sequence, whole genome shotgun sequence88953-MOBF00Sequence, whole genome shotgun sequence70382IncFII(RepA4), IncZMOBF01Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome shotgun sequence13838-MOBF02NC_0169Shewanella baltica OS678 plasmid pSBAL67801, complete sequence80698-MOBF05Subwanella baltica OS678 plasmid pSBAL67801, complete sequence60230-MOBF05Subwanella baltica OS678 plasmid pSBAL67801, complete sequence80698-MOBF05Subwanella baltica OS678 plasmid pSBAL67801, complete sequence80698-MOBF <tr< td=""></tr<>				
NC_0106 99Erwinia tasmaniensis Et1/99 plasmid pET45, complete sequence44694-MOBF99NC_0063 65Legionella pneumophila str. Paris plasmid pLPP, complete sequence131885-MOBF65Escherichia coli IncN plasmid N3, complete sequence54205IncN (IncR)MOBF99Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371pCG1/pNG2MOBFNC_0049Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence302089-MOBF03Mycobacterium sp. KMS plasmid pMKMS01, complete sequence302089-MOBF03Salmonella enterica subsp. enterica serovar Typhimurium str. SL134493842IncFI(RepB), pCD1MOBF02Salmonella enterica subsp. enterica serovar Typhimurium str. SL134493842IncFI(RepB), pCD1MOBF000020sequence, whole genome shotgun sequence67025-MOBF000020Sequence, whole genome shotgun sequence70382IncFII(RepA4), IncZMOBF01Escherichia coli plasmid pHK09, complete sequence70382IncFII(RepA4), IncZMOBF02Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome shotgun sequence138338-MOBF05Shewanella baltica OS678 plasmid pSAL67801, complete sequence Shotgun sequence80698-MOBF05Sitewanella baltica OS678 plasmid p148513 eleverid d whole62320-MOBF				
NC_0063 65Legionella pneumophila str. Paris plasmid pLPP, complete sequence131885-MOBFNC_0155 99Escherichia coli IncN plasmid N3, complete sequence54205IncN (IncR)MOBFNC_0049 45Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371pCG1/pNG2MOBFNC_0087 03Mycobacterium sp. KMS plasmid pMKMS01, complete sequence302089-MOBFNC_0177 03Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 plasmid pSLT_SL1344, complete sequence93842IncFI(RepB), pCD1MOBFNC_0177 000020Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 plasmid pSLT_SL1344, complete sequence67025-MOBFNC_0094 69Acinetobacter baumannii IS-123 plasmid pIS123-67, complete sequence, whole genome shotgun sequence67025-MOBFNC_0094 69Acidiphilium cryptum JF-5 plasmid pACRY03, complete sequence sequence88953-MOBFNC_0190 71Escherichia coli plasmid pHK09, complete sequence70382IncFII(RepA4), IncZMOBFNZ_CM00 75Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome shotgun sequence138338-MOBFNZ_0169 75Shewanella baltica OS678 plasmid pSBAL67801, complete sequence 8069880698-MOBF				
NC_0155 99Escherichia coli IncN plasmid N3, complete sequence54205IncN (IncR)MOBF99Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371pCG1/pNG2MOBFNC_0087 03Mycobacterium sp. KMS plasmid pMKMS01, complete sequence302089-MOBFNC_0177 03Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 plasmid pSLT_SL1344, complete sequence93842IncFI(RepB), pCD1MOBFNC_0070 03Acinetobacter baumannii IS-123 plasmid pIS123-67, complete sequence, whole genome shotgun sequence67025-MOBFNC_0094 09Acidiphilium cryptum JF-5 plasmid pACRY03, complete sequence sequence88953-MOBFNC_0190 17Escherichia coli plasmid pHK09, complete sequence70382IncFII(RepA4), IncZMOBFNZ_CM00 05Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome shotgun sequence138338-MOBFNZ_C0169 05Shewanella baltica OS678 plasmid pSBAL67801, complete sequence80698-MOBFNZ_0169Shewanella baltica OS678 plasmid pSBAL67801, complete sequence80698-MOBF				
NC_0049Corynebacterium glutamicum strain ATCC31830 R-plasmid pCG4, complete sequence29371pCG1/pNG2MOBFNC_0087Mycobacterium sp. KMS plasmid pMKMS01, complete sequence plasmid pSLT_SL1344, complete sequence302089-MOBF03NC_0177Salmonella enterica subsp. enterica serovar Typhimurium str. SL134493842IncFI(RepB), pCD1MOBF20plasmid pSLT_SL1344, complete sequence67025-MOBF000020sequence, whole genome shotgun sequence67025-MOBF000020sequence, whole genome shotgun sequence88953-MOBF000020Sequence, whole genome shotgun sequence70382IncFII(RepA4), IncZMOBF017Escherichia coli plasmid pHK09, complete sequence70382IncFII(RepA4), IncZMOBF1375shotgun sequence138338-MOBF1375Shewanella baltica OS678 plasmid pSBAL67801, complete sequence80698-MOBF050				
NC_0087 03Mycobacterium sp. KMS plasmid pMKMS01, complete sequence302089-MOBF03Salmonella enterica subsp. enterica serovar Typhimurium str. SL134493842IncFI(RepB), pCD1MOBF20plasmid pSLT_SL1344, complete sequence67025-MOBFNZ_ALII01Acinetobacter baumannii IS-123 plasmid pIS123-67, complete sequence, whole genome shotgun sequence67025-MOBF000020sequence, whole genome shotgun sequence67025-MOBF00020sequence, whole genome shotgun sequence88953-MOBF00020Secherichia coli plasmid pHK09, complete sequence70382IncFII(RepA4), IncZMOBF01Scherichia coli plasmid pLDNY2 NY-23_P2, whole genome shotgun sequence138338-MOBF02Shewanella baltica OS678 plasmid pSBAL67801, complete sequence So80698-MOBF0505050505050505050505050505				
NC_0177 Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 93842 IncFI(RepB), pCD1 MOBF 20 plasmid pSLT_SL1344, complete sequence 67025 - MOBF NZ_ALII01 Acinetobacter baumannii IS-123 plasmid pIS123-67, complete 67025 - MOBF 000020 sequence, whole genome shotgun sequence 67025 - MOBF 00020 sequence, whole genome shotgun sequence 88953 - MOBF 69 - MOBF - MOBF 69 - MOBF - MOBF 71 Escherichia coli plasmid pHK09, complete sequence 70382 IncFII(RepA4), IncZ MOBF 71 Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome 138338 - MOBF 1375 shotgun sequence 80698 - MOBF 05 - MOBF - MOBF 05 - MOBF - - 05 - MOBF - - - 05 - MOBF - - - -				
NZ_ALII01 Acinetobacter baumannii IS-123 plasmid plS123-67, complete 67025 - MOBF 000020 sequence, whole genome shotgun sequence 88953 - MOBF NC_0094 Acidiphilium cryptum JF-5 plasmid pACRY03, complete sequence 88953 - MOBF 69 - MOBF - - MOBF 71 Escherichia coli plasmid pHK09, complete sequence 70382 IncFII(RepA4), IncZ MOBF 71 Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome shotgun sequence 138338 - MOBF 1375 shotgun sequence Shewanella baltica OS678 plasmid pSBAL67801, complete sequence 80698 - MOBF 05 - MOBF - - MOBF 05 - MOBF -				
NC_0094 Acidiphilium cryptum JF-5 plasmid pACRY03, complete sequence 88953 - MOBF 69 NC_0190 Escherichia coli plasmid pHK09, complete sequence 70382 IncFII(RepA4), IncZ MOBF 71 IncZ IncZ IncFII(RepA4), IncZ MOBF NZ_CM00 Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome shotgun sequence 138338 - MOBF 1375 shotgun sequence Shewanella baltica OS678 plasmid pSBAL67801, complete sequence 80698 - MOBF 05 VZ_AFCV Aziaztabaztar baumanzii 2000 plasmid n1ABCT3 plasmid 1 whole C3320 MOBF				
NC_0190 Escherichia coli plasmid pHK09, complete sequence 70382 IncFII(RepA4), IncZ MOBF 71 NZ_CM00 Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome shotgun sequence 138338 - MOBF 1375 shotgun sequence 80698 - MOBF 05 Shewanella baltica OS678 plasmid pSBAL67801, complete sequence 80698 - MOBF 05 VZ_AFCV Aziazzabazter baumanzii 2000 plasmid p1ABCT3 plasmid y ut al. C3320 MOBF				
NZ_CM00 Fluoribacter dumoffii NY 23 plasmid pLDNY2 NY-23_P2, whole genome 138338 MOBF 1375 shotgun sequence NC_0169 Shewanella baltica OS678 plasmid pSBAL67801, complete sequence 80698 MOBF 05 NZ_COV Aziastabastar baumanii 2000 plasmid p1ABCT3 plasmid 14 McT3 C2220 MOBF				
NC_0169 Shewanella baltica OS678 plasmid pSBAL67801, complete sequence 80698 - MOBF 05 NZ Aciasto haster have an in a complete sequence 60220 MOBF				
NZ AFOV Asingtoheater houmannii 2000 plagmid n1ABST2 plagmid whole (2220)				
INZ_ACUT ACINECODACTER DAUMANNII 3990 plasmid plabsi z plasmid 1, whole 63320 - MOBF				
NC_0113 Klebsiella pneumoniae plasmid 9, complete sequence 70655 IncN MOBF 92				
NC_0118 Cyanothece sp. PCC 7425 plasmid pP742501, complete sequence 196837 - MOBF				
NC_0175 Xanthomonas albilineans GPE PC73 plasmid plasmll, complete 31555 IncP-6 MOBF				
NC_0083 Sphingomonas sp. KA1 plasmid pCAR3 DNA, complete sequence 254797 pNL1 MOBF				
NC_0111 Rhodococcus equi plasmid pVAPB1593, complete sequence 79251 - MOBF				
NC_0106 Mycobacterium marinum M plasmid pMM23, complete sequence 23317 pCLP MOBF 04				
NC_0099 Salmonella enterica subsp. enterica serovar Dublin plasmid pMAK2, 61571 IncN MOBF 80 complete sequence				
NC_0096 Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid 107576 pCD, MOBF				

Número de acceso	Plásmido y hospedero	Tamañ o	Incompatibilid ad	МОВ
NC_0093 78	Yersinia pestis Pestoides F plasmid MT, complete sequence	137010	IncFI(RepB), pCD1	MOBF
NZ_AFDB 02000004	Acinetobacter baumannii Naval-81 plasmid pNaval81-67, complete sequence, whole genome shotgun sequence	67012	-	MOBF
NC_0153 82	Burkholderia gladioli BSR3 plasmid bgla_1p, complete sequence	276215	-	MOBF
NC_0106 79	Burkholderia phytofirmans PsJN plasmid pBPHYT01, complete sequence	121122	-	MOBF
NC_0145 34	Cyanothece sp. PCC 7822 plasmid Cy782202, complete sequence	473846	-	MOBF
NC_0160 39	Escherichia coli plasmid pHK17a, complete sequence	70060	IncFII(RepA4), IncZ	MOBF
NC_0053 07	Gordonia westfalica strain DSM44215T plasmid pKB1 complete genome	101016	-	MOBF
NC_0047 68	Bifidobacterium longum RW041 plasmid pNAC3, complete sequence	10224	pNAC3, pNAC3	MOBF
NC_0051 28	Vibrio vulnificus YJ016 plasmid pYJ016, complete sequence	48508	-	MOBF
NZ_CM00 1154	Salmonella enterica subsp. enterica serovar Gallinarum str. 9 plasmid unnamed, complete sequence, whole genome shotgun sequence	87371	pCD1	MOBF
NC_0143 82	Escherichia coli plasmid pEC_B24, complete sequence	73801	IncZ	MOBF
NC_0181 41	Legionella pneumophila subsp. pneumophila str. Lorraine plasmid pLELO. complete sequence	150432	-	MOBF
NC_0151 54	Klebsiella pneumoniae plasmid pc15-k, complete sequence	95626	IncFI(RepB), pCD1	MOBF
NC_0239 10	Escherichia coli strain EcNDM0 plasmid pEcNDM0, complete sequence	53416	IncN	MOBF
NC_0190 73	Escherichia coli plasmid pHN7A8, complete sequence	76878	IncFII(RepA4), IncZ	MOBF
NC_0043 20	Corynebacterium efficiens YS-314 plasmid pCE3, complete sequence	48672	pGA2	MOBF
NC_0049 34	Streptomyces violaceoruber strain SANK95570 plasmid pSV2, complete sequence	96742	pFLR2, TapR1, TpgR1	MOBF
NC_0106 14	Vibrio tapetis plasmid pVT1, complete sequence	82266	-	MOBF
NC_0020 33	Novosphingobium aromaticivorans plasmid pNL1, complete sequence	184457	pNL1	MOBF
NC_0159 72	Serratia marcescens plasmid pSM22, complete sequence	43190	-	MOBF
NC_0219 97	Escherichia coli plasmid pEC386IL genomic sequence	39324	-	MOBF
NC_0073 65	Escherichia coli EH41 plasmid pO113, complete sequence	165548	IncFI(RepB), Incl	MOBP
NC_0149 11	Alicycliphilus denitrificans BC plasmid pALIDE02, complete sequence	78982	IncP-1	MOBP
NC_0113 50	Escherichia coli O157:H7 str. EC4115 plasmid pO157, complete sequence	94644	IncFI(RepB), IncFI(RepE), IncZ	MOBP
NC_0083 86	Roseobacter denitrificans plasmid pTB1, complete sequence	106469	-	MOBP
NC_0083 85	Burkholderia cepacia AMMD plasmid 1, complete sequence	43581	IncP-1	MOBP
NC_0052 47	Erwinia amylovora UTRJ2 plasmid pEU30, complete sequence	30314	-	MOBP
NC_0085 37	Arthrobacter sp. FB24 plasmid 1, complete sequence	159538	-	MOBP
NC_0087 64	Polaromonas naphthalenivorans CJ2 plasmid pPNAP08, complete sequence	6459	IncP-4	MOBP
NC_0092 28	Burkholderia vietnamiensis G4 plasmid pBVIE04, complete sequence	107231	-	MOBP
NC_0068 28	Haemophilus parasuis HS1543 plasmid pHS-Tet, complete sequence	5147	-	MOBP
NC_0151 80	Acidiphilium multivorum AIU301 plasmid pACMV5, complete sequence	14328	-	MOBP
NC_0129 19	Photobacterium damselae subsp. piscicida plasmid pP9014 DNA, complete sequence	55851	-	MOBP
NC_0097 39	Pseudomonas aeruginosa plasmid pMATVIM-7, complete sequence	24179	IncP-6	MOBP

Número de acceso	Plásmido y hospedero	Tamañ o	Incompatibilid ad	МОВ
NC_0099 57	Dinoroseobacter shibae DFL 12 plasmid pDSHI03, complete sequence	126304	RepABC(pRiAb)	MOBP
NC_0209 94	Mycobacterium abscessus subsp. bolletii INCQS 00594 plasmid pMAB01. complete sequence	56267	IncP-1	MOBP
NC_0113 70	Rhizobium leguminosarum bv. trifolii WSM2304 plasmid pRLG203, complete sequence	308747	RepABC(pRiAb)	MOBP
NC_0131	Candidatus Accumulibacter phosphatis clade IIA str. UW-1 plasmid	167595	-	MOBP
NC_0050	Enterococcus faecium U37 plasmid pRUM, complete sequence	24873	Inc10	MOBP
NC_0114	Escherichia coli SE11 plasmid pSE11-4, complete sequence	6929	-	MOBP
NC_0100	Actinobacillus pleuropneumoniae plasmid p9555, complete sequence	5673	-	MOBP
NC_0110	Salmonella enterica subsp. enterica serovar Heidelberg str. SL476	91374	IncFII(RepA4),	MOBP
NC_0230	Klebsiella pneumoniae strain E71T plasmid, complete sequence	63578	IncL/M	MOBP
NC_0196	Chamaesiphon minutus PCC 6605 plasmid pCHA6605.02, complete	31019	-	MOBP
NC_0012	Pediococcus pentosaceus ATCC43200 plasmid pMD136, complete	19515	-	MOBP
NC_0083	Pseudomonas aeruginosa plasmid pBS228, complete sequence	89147	IncP-1	MOBP
NC_0045	Lactobacillus fermentum plasmid pLME300	19389	-	MOBP
NC_0087	Campylobacter jejuni subsp. jejuni 81-176 plasmid pVir, complete	37473	-	MOBP
NC_0191	Salmonella enterica subsp. enterica serovar Heidelberg plasmid	86586	IncFII(RepA4),	MOBP
NC_0031	Aeromonas salmonicida plasmid pRAS3.2, complete sequence	11823	pTF-FC2	MOBP
NC_0070	Actinobacillus porcitonsillarum pKMA757 plasmid	4556	-	MOBP
NC_0101	Gluconacetobacter diazotrophicus PAI 5 plasmid pGDIPal5II, complete	16610	IncP-2	MOBP
NC_0048	Haemophilus influenzae biotype aegyptius plasmid pF3031, complete	32433	-	MOBP
NC_0030	Agrobacterium fabrum str. C58 plasmid Ti, complete sequence	214233	RepABC(pRiAb)	MOBP
NC_0026	Mannheimia haemolytica R122 plasmid pMHSCS1, complete sequence	4992	-	MOBP
NC_0087	Campylobacter jejuni subsp. jejuni 81-176 plasmid pTet, complete	45025	-	MOBP
NC_0192	Burkholderia pseudomallei plasmid pPHB194, complete sequence	13482	-	MOBP
NC_0072	Haemophilus influenzae biotype aegyptius plasmid pF1947, complete	32628	-	MOBP
NC_0176	Escherichia coli UMNK88 plasmid pUMNK88_91, complete sequence	90868	IncFII(RepA4),	MOBP
NC_0069	Mannheimia haemolytica 3259 plasmid pCCK3259, complete sequence	5317	-	MOBP
NC_0117	Escherichia coli UMN026 plasmid p2ESCUM, complete sequence	33809	IncX	MOBP
NC_0026	Mesorhizobium loti MAFF303099 plasmid pMLb, complete sequence	208315	IncP-2, RepABC	MOBP
NC_0052	Erwinia amylovora LebB66 plasmid pEL60, complete sequence	60145	IncL/M	MOBP
NC_0219 18	Cycloclasticus zancles 7-ME plasmid p7ME01, complete sequence	42347	IncP (=IncP-1)	MOBP
NC_0061 43	Aeromonas caviae plasmid pFBAOT6, complete sequence	84749	IncG/U (=IncP- 6)	MOBP
NC_0085 03	Lactococcus lactis subsp. cremoris SK11 plasmid 1, complete sequence	14041	-	MOBP
NC_0133 69	Escherichia coli O26:H11 str. 11368 plasmid pO26_1, complete sequence	85167	IncFI(RepB), Incl	MOBP
NC_0103	Laribacter hongkongensis plasmid pHLHK22, complete sequence	15665	-	MOBP

Número de acceso	Plásmido y hospedero	Tamañ o	Incompatibilid ad	МОВ
NC_0074	Anabaena variabilis ATCC 29413 plasmid C, complete sequence	300758	-	MOBP
NC_0109 29	Agrobacterium tumefaciens Ti plasmid pTiBo542, complete sequence	244978	RepABC(pRiAb)	MOBP
NC_0059 10	Hafnia alvei plasmid pAlvA, complete sequence	5113	-	MOBP
NC_0087 57	Polaromonas naphthalenivorans CJ2 plasmid pPNAP01, complete sequence	353291	IncP-2	MOBP
NC_0233 29	Escherichia coli strain B3804 plasmid pIFM3804, complete sequence	104399	IncFII(RepA4), IncK	MOBP
NC_0105 09	Methylobacterium radiotolerans JCM 2831 plasmid pMRAD02, complete sequence	47003	-	MOBP
NC_0107 95	Actinobacillus pleuropneumoniae plasmid pHB0503, complete	15079	-	MOBP
NC_0108	Campylobacter fetus subsp. venerealis plasmid pCFV108, complete	3724	-	MOBP
NC_0118	Arthrobacter chlorophenolicus A6 plasmid pACHL02, complete	158475	-	MOBP
NC_0096	Actinobacillus pleuropneumoniae pARD3079 plasmid	4065	-	MOBP
NC_0176 37	Escherichia coli W plasmid pRK1, complete sequence	102536	IncFII(RepA4), IncK	MOBP
NC_0053	Bacillus licheniformis plasmid pFL5, complete plasmid sequence	9150	Inc13	MOBP
NC_0087	Arthrobacter aurescens TC1 plasmid TC2, complete sequence	300725		MOBP
NC_0190 97	Escherichia coli plasmid Plm, complete sequence	98809	-	MOBP
NC_0070 98	Actinobacillus pleuropneumoniae pKMA2425 plasmid	3156	-	MOBP
NC_0096	Ochrobactrum anthropi ATCC 49188 plasmid pOANT01, complete sequence	170351	RepABC(pRiAb)	MOBP
NC_0094 70	Acidiphilium cryptum JF-5 plasmid pACRY04, complete sequence	37415	-	MOBP
NC_0158 52	Acidithiobacillus caldus SM-1 plasmid pLAtc1, complete sequence	9778	IncP-4, pTF-FC2	MOBP
NC_0097 96	Campylobacter concisus 13826 plasmid pCCON16, complete sequence	16457	-	MOBP
NC_0117 23	Cyanothece sp. PCC 8801 plasmid pP880102, complete sequence	40786	-	MOBP
NC_0083	Nitrosomonas eutropha C91 plasmid1, complete sequence	65132	-	MOBP
NC_0198 89	Klebsiella pneumoniae strain 601 plasmid pNDM-OM, complete sequence	87185	IncL/M	MOBP
NC_0030	Salmonella choleraesuis 79500 plasmid pSFD10, complete sequence	4091	-	MOBP
NC_0088	Rhodococcus rhodochrous plasmid pNC500 DNA, complete sequence	7637	pREC2	MOBP
NC_0087	Polaromonas naphthalenivorans CJ2 plasmid pPNAP06, complete sequence	21611		MOBP
NC_0192	Delftia acidovorans plasmid pNB8c, complete sequence	60421	IncP-1	MOBP
NC_0076	Nitrosospira multiformis ATCC 25196 plasmid 1, complete sequence	18871	-	MOBP
NC_0109	Helicobacter pylori strain CCUG 17874 plasmid pHP666, complete	8108	-	MOBP
NC_0106 97	Erwinia tasmaniensis Et1/99 plasmid pET49, complete sequence	48751	-	MOBP
NC_0210 77	Comamonas sp. 7D-2 plasmid pBHB, complete sequence	119225	IncP-1	MOBP
NC_0068 24	Azoarcus sp. EbN1 plasmid 2, complete sequence	223670	-	MOBP
NC_0152 21	Nitrosomonas sp. AL212 plasmid pNAL21202, complete sequence	63790	-	MOBP
NC_0186 59	Escherichia coli O104:H4 str. 2011C-3493 plasmid pESBL-EA11, complete sequence	88544	IncFII(RepA4), IncK	MOBP
NC_0106	Pseudoalteromonas sp. 643A plasmid pKW1, complete sequence	4583	-	MOBP

Número	Plásmido y hospedero	Tamañ	Incompatibilid	МОВ
NC 0175	Marinobacter adhaerens HP15 plasmid pHP-42. complete sequence	o 42349	ad IncP-1	MOBP
08 NC 0143	Escherichia coli plasmid pEC Bactec, complete sequence	92970	IncEll(RepA4)	MOBP
83		52570		
NC_0061 40	Desulfotalea psychrophila LSv54 plasmid small, complete sequence	14664	-	MOBP
NC_0131 20	Escherichia coli plasmid pEK204, complete sequence	93732	IncB/O, IncFII(RepA4)	MOBP
NC_0094 32	Rhodobacter sphaeroides ATCC 17025 plasmid pRSPA04, complete sequence	36198	-	MOBP
NC_0068 30	Achromobacter xylosoxidans A8 plasmid pA81, complete sequence	98192	IncP (=IncP-1)	MOBP
NC_0059 19	Pseudomonas syringae pv. maculicola strain ES4326 plasmid pPMA4326B, complete sequence	40110	-	MOBP
NZ_CM00 1145	Escherichia fergusonii ECD227 plasmid pECD227_46, whole genome shotgun sequence	45663	IncZ	MOBP
NC_0175	Neisseria gonorrhoeae TCDC-NG08107 plasmid pNGTCDC08107,	39054	-	MOBP
10 NC 0070	complete sequence	1211		MORD
99		4244	-	NIOBP
NC_0094 96	Clostridium botulinum A str. A ICC 3502 plasmid pBO13502, complete sequence	16344		MOBP
NC_0109 41	Actinobacillus pleuropneumoniae serovar 7 str. AP76 plasmid ABB7_B, complete sequence	4236	-	MOBP
NC_0214 88	Klebsiella pneumoniae plasmid pKPoxa-48N1, complete sequence	62592	IncL/M	MOBP
NC_0059 17	Helicobacter pylori plasmid pAL202, complete sequence	12120	-	MOBP
NC_0205 22	Legionella pneumophila subsp. pneumophila LPE509 plasmid unnamed, complete sequence	73490	-	MOBP
NC_0108 98	Escherichia coli plasmid pIGRW12, complete sequence	4995	-	MOBP
NC_0104 85	Escherichia coli SMS-3-5 plasmid pSMS35_8, complete sequence	8909	-	MOBP
NC_0061 35	Campylobacter jejuni subsp. jejuni 81-176 plasmid pTet, complete sequence	45205	-	MOBP
NC_0095 16	Psychrobacter sp. PRwf-1 plasmid pRWF101, complete sequence	13956	-	MOBP
NC_0057 93	Achromobacter denitrificans plasmid pEST4011, complete sequence	76958	IncP-1	MOBP
NC_0211 98	Klebsiella pneumoniae subsp. pneumoniae KPX plasmid pKPX-1 DNA, complete sequence	250444	IncFI(RepB), IncT/Phage P1	MOBP
NC_0059 18	Pseudomonas syringae pv. maculicola strain ES4326 plasmid pPMA4326A, complete sequence	46697	-	MOBP
NC_0113 51	Escherichia coli O157:H7 str. EC4115 plasmid pEC4115, complete sequence	37452	-	MOBP
NC_0063 62	Nocardia farcinica IFM 10152 plasmid pNF1, complete sequence	184026	-	MOBP
NC_0109 19	Aeromonas hydrophila plasmid pRA3, complete sequence	45909	IncP-6	MOBP
NC_0218 13	Salmonella enterica subsp. enterica serovar Heidelberg str. CFSAN002069 plasmid pCFSAN002069 01. complete sequence	110363	IncFII(RepA4), IncK	MOBP
NC_0046 32	Pseudomonas syringae pv. tomato str. DC3000 plasmid pDC3000B, complete sequence	67473	-	MOBP
NC_0161 08	Methylomicrobium alcaliphilum 20Z plasmid MEALZ_p, complete sequence	128415	-	MOBP
NC_0018 48	Salmonella enterica enterica sv Berta plasmid pBERT, complete sequence	4656	-	MOBP
NC_0139	Erwinia amylovora ATCC 49946 plasmid 2, complete sequence	71487	-	MOBP
NC_0138	Azospirillum sp. B510 plasmid pAB510e, complete sequence	537299	-	MOBP
NC_0179	Mycobacterium abscessus subsp. bolletii F1725 plasmid BRA100, complete seguence	56265	IncP (=IncP-1)	MOBP
NC_0026	Proteus vulgaris plasmid pPvu1, complete sequence	4675	-	MOBP
NC_0117 37	Cyanothece sp. PCC 7424 plasmid pP742402, complete sequence	197705	-	MOBP

Número de acceso	Plásmido y hospedero	Tamañ	Incompatibilid ad	МОВ
NC_0114	Escherichia coli SE11 plasmid pSE11-5, complete sequence	5366	-	MOBP
NC_0025 25	Escherichia coli K-12 plasmid R721, complete sequence	75582	IncFII(RepA1)	MOBP
NC_0110	Prosthecochloris aestuarii DSM 271 plasmid pPAES01, complete	66772	-	MOBP
NC_0193 78	Burkholderia cepacia plasmid pIJB1, complete sequence	99001	IncP-1	MOBP
NC_0100 09	Bacillus megaterium QM B1551 plasmid pBM200, complete sequence	9098	-	MOBP
NC_0009 23	Acinetobacter sp. SUN resistance plasmid pRAY, complete genome	6076	-	MOBP
NC_0050 88	Delftia acidovorans B plasmid pUO1, complete sequence	67066	IncP-1	MOBP
NC_0049 50	Helicobacter pylori plasmid pHel4 complete sequence	10970	-	MOBP
NC_0021 37	Lactococcus lactis cremoris NIZO B40 plasmid pNZ4000, complete sequence	42810	-	MOBP
NC_0049 25	Aeromonas salmonicida salmonicida A449 plasmid pAsa2, complete sequence	5247	-	MOBP
NC_0050 12	Campylobacter jejuni subsp. jejuni 81-176 plasmid pVir, complete sequence	37468	-	MOBP
NC_0191	Salmonella enterica subsp. enterica serovar Derby plasmid pSD107, complete sequence	107637	IncFII(RepA4)	MOBP
NC_0192	Delftia acidovorans plasmid pLME1, complete sequence	77429	IncP-1	MOBP
NC_0094 75	Bradyrhizobium sp. BTAi1 plasmid pBBta01, complete sequence	228826	RepABC(pRiAb)	MOBP
NC_0097	Escherichia coli E24377A plasmid pETEC_73, complete sequence	70609	IncK	MOBP
NC_0068	Bacteroides fragilis NCTC 9343 plasmid pBF9343, complete sequence	36560	-	MOBP
NC_0141 05	Neisseria gonorrhoeae plasmid pEP5289, complete sequence	42004	-	MOBP
NC_0147	Marivirga tractuosa DSM 4126 plasmid pFTRAC01, complete sequence	4916	-	MOBP
NC_0085 05	Lactococcus lactis subsp. cremoris SK11 plasmid 3, complete sequence	74750	-	MOBP
NC_0015 20	Acidithiobacillus ferrooxidans pTF4.1 plasmid complete genome	4104	-	MOBP
NC_0109 00	Moraxella bovis Epp63 plasmid pMBO-2, complete sequence	27075	-	MOBP
NC_0129 70	Methylovorus glucosetrophus SIP3-4 plasmid pMsip01, complete sequence	76680	-	MOBP
NC_0190 43	Escherichia coli plasmid pND11_107, complete sequence	107138	IncFII(RepA4), IncK	MOBP
NC_0071 41	Campylobacter jejuni subsp. jejuni 81-176 plasmid pTet, complete sequence	45210	-	MOBP
NC_0189 95	Escherichia coli plasmid pHUSEC41-1, complete sequence	91942	IncB/O	MOBP
NC_0239 07	Escherichia coli strain HS102707 plasmid pHS102707, complete sequence	69453	IncP (=IncP-1)	MOBP
NC_0095	Fusobacterium nucleatum subsp. polymorphum ATCC 10953 plasmid	11934	-	MOBP
NC_0097 13	Campylobacter hominis ATCC BAA-381 plasmid pCH4, complete sequence	3678	-	MOBP
NC_0226	Escherichia coli JJ1886 plasmid pJJ1886_4, complete sequence	55956	IncP (=IncP-1)	MOBP
NC_0080 52	Campylobacter jejuni plasmid pCJ1170, complete sequence	4381	-	MOBP
NC_0148 43	Escherichia coli plasmid p3521, complete sequence	110416	IncB/O	MOBP
NC_0111 31	Moraxella catarrhalis strain E22 plasmid pLQ510, complete sequence	12084	-	MOBP
NC_0114 18	Escherichia coli plasmid pEC278, complete sequence	4669	-	MOBP
NC_0106 93	Erwinia tasmaniensis Et1/99 plasmid pET46, complete sequence	46159	IncFI(RepE)	MOBP

Número de acceso	Plásmido y hospedero	Tamañ o	Incompatibilid ad	МОВ
NC_0145 03	Cyanothece sp. PCC 7822 plasmid Cy782204, complete sequence	47550	-	MOBP
NC_0075 15	Geobacter metallireducens GS-15 plasmid unnamed, complete sequence	13762	-	MOBP
NC_0103	Collimonas fungivorans plasmid pTer331, complete sequence	40457	PromA	MOBP
NC_0068 27	Enterococcus faecalis plasmid pCF10, complete sequence	67673	-	MOBP
NC_0146 41	Achromobacter xylosoxidans A8 plasmid pA81, complete sequence	98156	IncP-1	MOBP
NC_0043 38	Aeromonas salmonicida subsp. salmonicida pAsal1 plasmid	6371	-	MOBP
NC_0040 58	Haemophilus influenzae biotype aegyptius BPF plasmid pF3028, complete sequence	32379	-	MOBP
NC_0073 37	Ralstonia eutropha JMP134 plasmid 1, complete sequence	87688	IncP (=IncP-1)	MOBP
NC_0191 23	Salmonella enterica subsp. enterica serovar Heidelberg plasmid pSH1148 107. complete sequence	106833	IncFII(RepA4), IncK	MOBP
NC_0114 99	Helicobacter pylori P12 plasmid HPP12, complete sequence	10225	-	MOBP
NC_0131 76	Pseudomonas putida plasmid pW2, complete sequence	76494	-	MOBP
NC_0110	Salmonella enterica subsp. enterica serovar Heidelberg str. SL476	3373	-	MOBP
NC_0109	Actinobacillus pleuropneumoniae serovar 7 str. AP76 plasmid APP7_C,	3533	-	MOBP
40 NC_0187	Emticicia oligotrophica DSM 17448 plasmid pEMTOL01, complete	190222	-	MOBP
42 NC_0178	sequence Methylophaga sp. JAM7 plasmid unnamed, complete sequence	47825	IncP-1	MOBP
58 NC_0103	Finegoldia magna ATCC 29328 plasmid pFMC, complete sequence	189163	-	MOBP
71 NC_0049	Micrococcus sp. 28 plasmid pSD10, complete sequence	50709	-	MOBP
NC_0210 78	Klebsiella pneumoniae strain Kp002 plasmid pJEG011, complete sequence	71446	IncL/M	MOBP
NC_0190 99	Salmonella enterica plasmid pNF1358, complete sequence	99331	IncB/O, IncFII(RepA4)	MOBP
NC_0049 24	Aeromonas salmonicida salmonicida A449 plasmid pAsa3, complete sequence	5616	-	MOBP
NC_0105 43	Cyanothece sp. ATCC 51142 plasmid D, complete sequence	10244	-	MOBP
NC_0017 74	Pasteurella multocida Pm1096 plasmid plG1, complete sequence	5360	-	MOBP
NC_0190 44	Escherichia coli plasmid pND12_96, complete sequence	92290	IncFII(RepA4), IncK	MOBP
NC_0193 12	Delftia sp. KV29 plasmid pKV29, complete sequence	61669	IncP-1	MOBP
NC_0106 27	Burkholderia phymatum STM815 plasmid pBPHY02, complete sequence	595108	-	MOBP
NC_0229 96	Escherichia coli plasmid pO26-CRL-125, complete sequence	124908	IncZ	MOBP
NC_0110 78	Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188 plasmid pCVM29188, 46. complete sequence	46121	IncZ	MOBP
NC_0108 84	Helicobacter pylori strain 69 plasmid pHP69, complete sequence	9153	-	MOBP
NC_0085 38	Arthrobacter sp. FB24 plasmid 2, complete sequence	115507	-	MOBP
NC_0144 77	Escherichia coli plasmid pCT, complete sequence	93629	IncK	MOBP
NC_0079 59	Nitrobacter hamburgensis X14 plasmid 1, complete sequence	294829	RepABC(pRiAb)	MOBP
NC_0097 94	Citrobacter koseri ATCC BAA-895 plasmid pCKO2, complete sequence	5601	-	MOBP
NC_0114 19	Escherichia coli SE11 plasmid pSE11-1, complete sequence	100021	Incl	MOBP
NC_0233 22	Acinetobacter bereziniae strain CHI-40-1 plasmid pNDM-BJ01, complete sequence	45826	-	MOBQ

Dis LickaDis AutoDis AutoDis CollageGeobacillus stearothermophilus plasmid pGS18, strain 1862830Rep[hi]COLDis CollageGeobacillus stearothermophilus plasmid pD11, 4 cont[s800000, whole7233Coll2/Coll3M080Dis CollageDisulfosporotinus acidiphilus S14 plasmid pDESACLO2, complete3897-M080NC 0219Lactobacillus plantarum ZJ316 plasmid pDFS7367.01, complete sequence32833-M080NC 0219Lactobacillus plantarum ZJ316 plasmid pDFS7367.01, complete sequence28543-M080NC 0300Sphingopyxis alaskensis RB2256 P plasmid pAP26-030, complete328634-M080NC 0111Acetobacter pasteurianus IFO 3233-26 plasmid pAP26-030, complete39961pUT1M080NC 0113Anaerococcus prevoil DSM 02548 plasmid pAP26-030, complete39952-M080NC 0114Lactococcus albus 7 plasmid pDVA2405, complete sequence115566Inr7M080NC 0113Anaerococcus albus 7 plasmid pDVA2405, complete sequence39592-M080NC 0114Lactococcus albus 7 plasmid pDVA2405, complete sequence39072pUT11M080NC 0118Bacillus careus H3081.97 plasmid pD1832, complete sequence39502-M080NC 0118Bacillus careus H3081.97 plasmid pD18325, complete sequence72702-M080NC 0118Bacillus careus H3081.97 plasmid pD183127, acomplete sequence7270-M080NC 0118Bacillus careus H3081.97 plasmid pD183127, acomplete sequence48913RepA	Número	Plásmido y hospedero	Tamañ	Incompatibilid	МОВ
12 AVE Escherichis coll 95/B1 plasmid pD111_4 contjet800000, whole 7233 ColE2/ColE3 MO8Q NC 0100212 promes horgus macquence, complete sequence 3897 - MO8Q NC 0100312 promes horgus macquence, complete sequence 31853 - MO8Q NC 0107 equence 328534 - MO8Q NC 0108 Sphingopyxis alaskens is PEC 7367 plasmid pPSF7367.01, complete sequence 328534 - MO8Q NC 0105 Agrobacterium tumefaciens plasmid pAPE4015, complete sequence 176574 RepA8C(pRub) MO8Q NC 0107 Acetobacter pasteurinans IFO 3283-26 plasmid pAPA26-030, complete 19061 pU11 MO8Q NC 0117 Cynonthece so, PCC 7424 plasmid pPT42405, complete sequence 18083 - MO8Q NC 0113 Anaerococcus prevoti D5M 20548 plasmid pAPAE01, omplete sequence 18052 - MO8Q NC 0108 Escherichia coll plasmid pHUMAL04, complete sequence 80502 pU111 MO8Q NC 0108 Scherichia coll plasmid pH06828-2, complete sequence 6750 ColE2/ColE3 MO8Q NC	NC_0104	Geobacillus stearothermophilus plasmid pGS18, strain 18	62830	Rep(pBt40)	MOBQ
NC 0130 Desuftsporraisms acidiphilus SJ4 plasmid pDESACL02, complete 3897 - M08Q NC 0219 Lactobacillus plantarum ZJ316 plasmid pDESACL02, complete sequence 41508 - M08Q NC 0139 Eactobacillus plantarum ZJ316 plasmid pDES7367.01, complete 328514 - M08Q NC 0130 Sphingopyxis alaskensis RB2256 F plasmid, complete sequence 176574 RepABC(pRIAb) M08Q NC 0137 Agrobacterium tumefaciens plasmid pA0F64/95, complete sequence 18033 - M08Q NC 0137 Acetobacter pasteurianus IFO 3283-26 plasmid pAPA26-030, complete 49961 pUT1 M08Q NC 0131 Ameeroscocus prevetti DSM 20548 plasmid pAPRED1, complete sequence 18053 - M08Q NC 0134 Ruminococcus aluts 7 plasmid pRUMAL04, complete sequence 4200 - M08Q NC 0138 Escherichia coli plasmid pIGMS5, complete sequence 4201 - M08Q NC 0138 Escherichia coli plasmid pIGMS2, complete sequence 4201 - M08Q NC 0138 Escherichia coli plasmid pIGMS2, complete sequence 4201 - M08Q NC 0138 Escherichia coli plasmid pIGMS2, complete sequence	NZ_AWFJ 01000122	Escherichia coli 95JB1 plasmid pO111_4 contig48000000, whole genome shotgun sequence, complete sequence	7233	ColE2/ColE3	MOBQ
67 sequence 41508 - MOBQ 12 Nore 41508 - MOBQ 12 Nore 41508 - MOBQ 12 Specianabaena sp. PCC 7367 plasmid pPS7367.01, complete sequence 328634 - MOBQ 00 Splingopvid slakensis R82256 F plasmid, complete sequence 28543 - MOBQ 01 Acetobacter patterianus IFO 3283-26 plasmid pAPA26-030, complete 49961 pUT1 MORQ 02 Acetobacter patterianus IFO 3283-26 plasmid pAPA26-030, complete 80083 - MORQ 03 Anaerococcus prevotil DSM 20548 plasmid pAPR01, complete sequence 11556 Inc7 MORQ 04 sequence 12001 MORQ - MORQ 05 Anaerococcus are proviti DSM 20548 plasmid pGDS, complete sequence 8607 pUT1 MORQ 04 sequence 4201 - MORQ 05 Anaerococus are proviti DSM 20548 plasmid pAS06197, 73, complete sequence 4201 . MORQ 05 Baclius cereus areaus MDS0 plasmid pH	NC_0180	Desulfosporosinus acidiphilus SJ4 plasmid pDESACI.02, complete	3897	-	MOBQ
NC.0169Preculariabeana sp. PCC 7367 plasmid pPST367.01, complete328514-MORQNC.0080Sphingopyxis alaskensis RB2256 F plasmid, complete sequence28543-MORQNC.0171Acetobacter juant umefaciens plasmid pAoF64/95, complete sequence176574RepABC(pRiAb)MORQNC.0171Acetobacter pasteurianus IFO 3283-26 plasmid pAPA26-030, complete80033-MORQNC.0117Acetobacter pasteurianus IFO 3283-26 plasmid pAPRE01, complete sequence18033-MORQNC.0117Aneerococcus prevotii DSM 20548 plasmid pAPRE01, complete80052-MORQNC.0128Lactococcus latels subsp. cremoris UC509.9 plasmid pCIS8, complete80052-MORQNC.0128Escherichia coli plasmid pIGMS5, complete sequence7420-MORQNC.0128Escherichia coli plasmid pIGMS5, complete sequence7272-MORQNC.0128Escherichia coli plasmid pMG828-2, complete sequence72792-MORQNC.0128Ribiobium leguminosarum bv. rifolii WSM1325 plasmid pR132501,23824RepABC(pRIAb)MORQNC.0128Ribiobium leguminosarum bv. rifolii WSM1325 plasmid pR132501238924RepABC(pRIAb)MORQNC.0128Ribiobium leguminosarum bv. rifolii WSM1325 plasmid pR132501238924RepABC(pRIAb)MORQNC.0128Ribiobium leguminosarum bv. rifolii WSM1325 plasmid pR132501RepABC(pRIAb)MORQNC.0128Ribiobium leguminosarum bv. rifolii WSM1325 plasmid pR13250RepABC(pRIAb)MORQNC.0128Ribiobium l	67 NC_0219 12	sequence Lactobacillus plantarum ZJ316 plasmid pLP-ZJ103, complete sequence	41508	-	MOBQ
NC_0280Sphingopyxis alaskensis RB2256 F plasmid, complete sequence28543-MO8Q36NC_0155Agrobacterium tumefaciens plasmid pAOF64/95, complete sequence176574RepABC(pRiAb)MO8Q55NC_0117Acetobacter pasteurianus IFO 3283-26 plasmid pAPA26-030, complete49961pUT1MO8Q47yanothece sp. PCC 7424 plasmid pP742405, complete sequence18083-MO8Q33Anaerococcus prevotil DSM 20548 plasmid pAPRE01, complete115566Inc7MO8Q64sequence7420-MO8Q70C1014Extoroccus latis subsp. cremoris UC509.9 plasmid pCIS8, complete80592-MO8Q70Bacillous albus 7 plasmid pRUMAL04, complete sequence7420Coll21MO8Q70Bacillous creus albus 7 plasmid pRUMAL04, complete sequence7420-MO8Q71Bacillous creus H3081.97 plasmid pRUMAL04, complete sequence7279-MO8Q73Bacillous creus H3081.97 plasmid pH308197_73, complete sequence72792-MO8Q74sequence72792-MO8Q75C012Z/C0123RepABC(pRiAb)MO8Q74sequence72792-MO8Q74sequence72792-MO8Q74sequence72792-MO8Q75Rhizobium leguminosarum bv. trifoli WSM325 plasmid VRSAp, complete25107Inc176Salmonella enterica subsp. enterica serovar Bovismorbificans plasmid4270-MO8Q <t< td=""><td>NC_0196</td><td>Pseudanabaena sp. PCC 7367 plasmid pPSE7367.01, complete sequence</td><td>328634</td><td>-</td><td>MOBQ</td></t<>	NC_0196	Pseudanabaena sp. PCC 7367 plasmid pPSE7367.01, complete sequence	328634	-	MOBQ
NC 0195 Agrobacterium tumefaciens plasmid pAOF64/95, complete sequence 176574 RepABC(pRiAb) MORQ NC 0117 Acetobacter pasteurianus IFO 3283-26 plasmid pAPA26-030, complete 49961 pUT1 MORQ NC 0117 Caronbtec sep. PCC 7424 plasmid pP742405, complete sequence 18083 - MORQ NC 0131 Anaerococcus prevotii DSM 20548 plasmid pAPRE01, complete 115566 Inc7 MORQ NC 0134 Anaerococcus alus 5, cremoris UC509.9 plasmid pCIS8, complete 80072 - MORQ NC 01078 Jannaschia sp. CC51 plasmid pRUMAL04, complete sequence 66072 OIF2/CoIE3 MORQ NC 0108 Escherichia coli plasmid pIG828-2, complete sequence 4091 - MORQ NC 0108 Escherichia coli plasmid pMG828-2, complete sequence 4297 - MORQ NC 0128 Rhizobium leguminosarum bu. trifolii WSM1325 plasmid PI32501, 2810 Inc1 MORQ NC 0128 Rhizobium leguminosarum bu. vicia 3841 plasmid PK140, complete 2101 Inc1 MORQ NC 0026 Dichelobacter nodosus plasmid pK150, complete sequence 2101 Inc1 MORQ	NC_0080 36	Sphingopyxis alaskensis RB2256 F plasmid, complete sequence	28543	-	MOBQ
NC_0171 Acetobacter pasteurianus IFO 3283-26 plasmid pAPA26-030, complete 49961 pUT1 MORQ NC_0131 Cyanothece sp. PCC 7424 plasmid pP742405, complete sequence 18083 - MORQ NC_0131 Anaerococcus prevotii DSM 20548 plasmid pAPRE01, complete 115566 Inc7 MORQ NC_0142 Lactococcus albus 7 plasmid pRUMAL04, complete sequence 7420 - MORQ NC_0078 Jannaschia sp. CS1 plasmid pRUMAL04, complete sequence 6750 ColE2/ColE3 MORQ NC_0108 Escherichia coli plasmid pIGMS5, complete sequence 6750 ColE2/ColE3 MORQ NC_0108 Escherichia coli plasmid pH308197_73, complete sequence 72792 - MORQ NC_0113 Bacillus cereus H3081.97 plasmid pH308197_73, complete sequence 72792 - MORQ NC_0128 Rhizobium leguminosarum bv. trifolii WSM1325 plasmid pH312501, 828924 RepABC(pRiAb) MORQ NC_0128 Rhizobium leguminosarum bv. trifolii WSM1325 plasmid pR13200, 828924 RepABC(pRiAb) MORQ NC_0128 Salmonella enterica subsp. atterica serovar Poyhimurium str. SL344 8688 I	NC_0195 55	Agrobacterium tumefaciens plasmid pAoF64/95, complete sequence	176574	RepABC(pRiAb)	MOBQ
NC_0117 31Cyanothece sp. PCC 7424 plasmid pP742405, complete sequence18083-MORQ33Anaerococcus prevotii DSM 20548 plasmid pAPRE01, complete115566Inc7MORQ64sequence80592-MORQ30Control calctos cus clastis subsp. cremoris UC509.9 plasmid pCIS8, complete80592-MORQ30Jannaschia sp. CC51 plasmid pRUMAL04, complete sequence7420pUT1MORQ70Jannaschia sp. CC51 plasmid pGMS5, complete sequence6750ColE2/ColE3MORQ80Scherichia coli plasmid pGMS5, complete sequence4091-MORQ70Bacillus cereus H3081.97 plasmid pH308197_73, complete sequence2729-MORQ70Ritzobium leguminosarum bv. trifoli WSM1325 plasmid pR132501, sequence288924RepABC(pRiAb)MORQ71Staphylococcus aureus subsp. aureus Mu50 plasmid VRSAp, complete25107Inc1MORQ72Staphylococcus aureus subsp. enterica serovar Bovismorbificans plasmid4270-MORQ73Salmonella enterica subsp. enterica serovar Bovismorbificans plasmid4270-MORQ74plasmid pR51010_51344, complete sequence25107IncP-4MORQ75Salmonella enterica subsp. enterica serovar Typhimurium str.513448688InCP-4MORQ76Salmonella enterica subsp. enterica serovar Typhimurium str.513441625-MORQ76Salmonella enterica subsp. enterica serovar Typhimurium str.513441625-MORQ	NC_0171 47	Acetobacter pasteurianus IFO 3283-26 plasmid pAPA26-030, complete sequence	49961	pUT1	MOBQ
NC_0131 64Anaerococcus prevoti DSM 20548 plasmid pAPRE01, complete115566Inc7MO8Q64sequenceNC_0194Lactococcus lattis subsp. cremoris UC509.9 plasmid pCIS8, complete80592-MO8Q30SequenceNC_0078Jannaschia sp. CC51 plasmid pRUMAL04, complete sequence7420-MO8Q70Jannaschia sp. CC51 plasmid pGISS, complete sequence86072pUT1MO8Q80Scherichia coli plasmid pGISS, complete sequence4091-MO8Q81Scherichia coli plasmid pMG828-2, complete sequence72792-MO8Q82Reichia coli plasmid pH308197_73, complete sequence72792-MO8Q70Staphylococcus aureus subsp. aureus MU50 plasmid pR132501, sequence828924RepABC(pRiAb)MO8Q81Staphylococcus aureus subsp. aureus MU50 plasmid pR132501, sequence25107Inc1MO8Q81Staphylococcus aureus subsp. enterica seroar Bovismorbificans plasmid p1200707, complete sequence488135RepABC(pRiAb)MO8Q97p200707, complete sequence5112IncP-4MO8Q96Dichelobacter nodosus plasmid pK120_9 DNA, complete genome5866-MO8Q96Sphingomonas sp. MM-1 plasmid pK200-9 DNA, complete sequence275840pCHQ1MO8Q97Dichelobacter nadosus plasmid pK120_9 ONA, complete sequence275840pCHQ1MO8Q96Sphingomonas sp. MM-1 plasmid pK50, complete sequence4960pK150MO8Q97Sphingomonas sp. MM-1	NC_0117 33	Cyanothece sp. PCC 7424 plasmid pP742405, complete sequence	18083	-	MOBQ
NC 0.194 30Lactococcus altus subsp. cremoris UC509.9 plasmid pCIS8, complete80592-MORQ30Ruminococcus altus 7 plasmid pRUMAL04, complete sequence7420-MORQ70Jannaschia sp. CC51 plasmid1, complete sequence86072pUT1MORQ80Escherichia coli plasmid pIGMS5, complete sequence4091-MORQ81Scherichia coli plasmid pIGMS2, complete sequence7270-MORQ82Scherichia coli plasmid pMG828-2, complete sequence72792-MORQ83Bacillus cereus H3081.97 plasmid pH308197_73, complete sequence72792-MORQ84Complete sequence72792Inc1MORQ84Scherichia coli plasmid pVIS081325 plasmid pR132501, sequence828924RepABC(pRiAb)MORQ80Staphylococcus aureus subsp. aureus Mu50 plasmid VRSAp, complete25107Inc1MORQ74ScaunceSalmonella enterica subsp. enterica serovar Bovismorbificans plasmid4270-MORQ97Jalmonella enterica subsp. enterica serovar Typhimurium str. SL13448688InCP-4MORQ97Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344Scaence-MORQ97Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344Scaence-MORQ97Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344Scaence-MORQ97Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344Scaence-MORQ <td>NC_0131 64</td> <td>Anaerococcus prevotii DSM 20548 plasmid pAPRE01, complete sequence</td> <td>115566</td> <td>Inc7</td> <td>MOBQ</td>	NC_0131 64	Anaerococcus prevotii DSM 20548 plasmid pAPRE01, complete sequence	115566	Inc7	MOBQ
NC_0148 27Ruminococcus albus 7 plasmid pRUMAL04, complete sequence7420MOBQ27Jannaschia sp. CC51 plasmid1, complete sequence86072pUT1MOBQ01Escherichia coli plasmid pIGMS5, complete sequence6750ColE2/ColE3MOBQ83Escherichia coli plasmid pMG828-2, complete sequence4091-MOBQ70Bacillus cercus H3081.97 plasmid pH308197_73, complete sequence72792-MOBQ71Rhizobium leguminosarum bv. trifolli WSM1325 plasmid pR132501, sequence828924RepABC(pRiAb)MOBQ74Salmonella enterica subsp. aureus Mu50 plasmid VRSAp, complete sequence25107Inc1MOBQ74Salmonella enterica subsp. enterica serovar Bovismorbificans plasmid p2007057, complete sequence4270-MOBQ75Dichelobacter nodosus plasmid pR290-9 DNA, complete genome5866-MOBQ76Coltabacter nodosus plasmid pBPO, complete sequence27540pCHQ1MOBQ76Complete sequence27540pCHQ1MOBQ76Contebacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence70570-MOBQ78Cattobacter radioresistens WC-A-157 plasmid pMF22, complete sequence21288-MOBQ78Acinetobacter radioresistens WC-A-157 plasmid pMCA157-71, complete sequence70570-MOBQ78Acinetobacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence70570-MOBQ78Acinetobacter radioresistens WC-A-157 plasmid pM	NC_0194 30	Lactococcus lactis subsp. cremoris UC509.9 plasmid pCIS8, complete sequence	80592	-	MOBQ
NC_0078 01Jannaschia sp. CCS1 plasmid J, complete sequence86072 870PUT1MOBQNC_0108 83Escherichia coli plasmid pIGMS5, complete sequence6750ColE2/ColE3MOBQNC_0108 	NC_0148	Ruminococcus albus 7 plasmid pRUMAL04, complete sequence	7420	-	MOBQ
NC_0108 83Escherichia coli plasmid pIGMS5, complete sequence6750ColE2/ColE3MOBQNC_0084 87Escherichia coli plasmid pMG828-2, complete sequence4091-MOBQNC_0113 87Bacillus cereus H3081.97 plasmid pH308197_73, complete sequence72792-MOBQNC_0128 84 84Rhizobium leguminosarum bv. trifoli WSM1325 plasmid pR132501, sequence828924RepABC(pRiAb)MOBQNC_0027 84 84 84 80Staphylococcus aureus subsp. aureus Mu50 plasmid VRSAp, complete sequence25107Inc1MOBQNC_0118 91 92007057, complete sequence488135RepABC(pRiAb)MOBQNC_0118 92 9207057, complete sequence488135RepABC(pRiAb)MOBQNC_0118 92 9207057, complete sequence488135RepABC(pRiAb)MOBQNC_0126 92Dichelobacter nodosus plasmid DN15112IncP-4MOBQNC_0208 92 93 93Lactobacillus brevis KB290 plasmid pKB290-9 DNA, complete genome 93 935866-MOBQNC_0205 94 94Sphingomonas sp. MM-1 plasmid pISP0, complete sequence4892pCHQ1MOBQNC_0204 94Bifidobacterium sp. A24 plasmid pBIFA24, complete sequence4892pKI50MOBQNC_0101 94Bifidobacterium sp. A24 plasmid pKI50, complete sequence4960pKI50MOBQNC_0103 94Acinetobacter radioresistens WC-A-157 plasmid pWCA157-71, 7057070570-MOBQNC_0103 93 94Lactobacillus paracasei subsp. cremoris plasmid pAF22,	NC_0078	Jannaschia sp. CCS1 plasmid1, complete sequence	86072	pUT1	MOBQ
NC_0084 87Escherichia coli plasmid pMG828-2, complete sequence4091-MOBQ87MORQ777MOBQ37Bacillus cereus H3081.97 plasmid pH308197_73, complete sequence72792-MOBQ37Rhizobium leguminosarum bv. trifolii WSM1325 plasmid pR132501, complete sequence828924RepABC(pRIAb)MOBQNC_0027Staphylococcus aureus subsp. aureus Mu50 plasmid VRSAp, complete sequence25107Inc1MOBQNC_0033Rhizobium leguminosarum bv. viciae 3841 plasmid pR110, complete sequence488135RepABC(pRIAb)MOBQNC_0118Salmonella enterica subsp. enterica serovar Bovismorbificans plasmid plasmid pR51010_S11344, complete sequence48070-MOBQNC_0127Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 plasmid pR51010_S11344, complete sequence8668IncP-4MOBQNC_02026Dichelobacter nodosus plasmid pKB20-9 DNA, complete genome 58665866-MOBQNC_02031Lactobacillus brevis KB290 plasmid pKB20-9 DNA, complete sequence275840pCHQ1MOBQNC_0103Salmonella enterica subsp. enterica supplex esquence275840pCHQ1MOBQNC_0103Salmonella enterica subsp. enterica supplex esquence275840pCHQ1MOBQNC_0104Bifidobacterium sp. A24 plasmid pKI50, complete sequence7070-MOBQNC_0103Cautobacter radioresistens WC-A-157 plasmid pWCA157-71, 70707070-MOBQNC_0133Caulobacter radioresistens WC-A-157 plasmid pWCA157-71,	NC_0108	Escherichia coli plasmid pIGMS5, complete sequence	6750	ColE2/ColE3	MOBQ
NC_0113 07Bacillus cereus H3081.97 plasmid pH308197_73, complete sequence72792-MOBQ37 37Rhizobium leguminosarum bv. trifolii WSM1325 plasmid pR132501, complete sequence828924RepABC(pRiAb)MOBQ48 48 48Staphylococcus aureus subsp. aureus Mu50 plasmid VRSAp, complete sequence25107Inc1MOBQNC_0028 48 49Rhizobium leguminosarum bv. viciae 3841 plasmid pR110, complete sequence488135RepABC(pRiAb)MOBQNC_0178 50 40Salmonella enterica subsp. enterica serovar Bovismorbificans plasmid p2007057, complete sequence4270-MOBQ97 911nc1 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 9181892 91 91 91 91 91 91 91 91 91 911nc1 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 9110001 91 91 91 91 <td>NC_0084</td> <td>Escherichia coli plasmid pMG828-2, complete sequence</td> <td>4091</td> <td>-</td> <td>MOBQ</td>	NC_0084	Escherichia coli plasmid pMG828-2, complete sequence	4091	-	MOBQ
NC_0128 48Rhizobium leguminosarum bv. trifolii WSM1325 plasmid pR132501, complete sequence828924 82924RepABC(pRiAb) 	NC_0113	Bacillus cereus H3081.97 plasmid pH308197_73, complete sequence	72792	-	MOBQ
NC_0027 74Staphylococcus aureus subsp. aureus Mu50 plasmid VRSAp, complete sequence25107Inc1MOBQNC_0033 81Rhizobium leguminosarum bv. viciae 3841 plasmid pRL10, complete sequence488135RepABC(pRiAb)MOBQNC_0118 97Salmonella enterica subsp. enterica serovar Bovismorbificans plasmid plasmid pRSF1010_SL1344, complete sequence4270-MOBQNC_0127 9Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 plasmid pRSF1010_SL1344, complete sequence5112IncP-4MOBQNC_0206 9Dichelobacter nodosus plasmid DN15112IncP-4MOBQ66Sphingomonas sp. MM-1 plasmid pISP0, complete sequence275840pCHQ1MOBQ74Sifidobacterium sp. A24 plasmid pBIFA24, complete sequence4920pKJ50MOBQ75Sphingomonas sp. MM-1 plasmid pVCA157-71, complete sequence70770-MOBQ76Bifidobacterium sp. A24 plasmid pKJ50, complete sequence4920pKJ50MOBQ76Lactococcus lactis subsp. cremoris plasmid pAF22, complete sequence22388-MOBQ78Lactococcus lactis subsp. paracasei 8700:2 plasmid 1, complete sequence24207-MOBQ79Salmonella enterica subsp. paracasei 8700:2 plasmid 1, complete sequence8422-MOBQ70Succoccus lactis subsp. paracasei 8700:2 plasmid 1, complete sequence24207-MOBQ70Succoccus lactis subsp. paracasei 8700:2 plasmid 1, complete sequence24207-MOBQ73 <td>NC_0128</td> <td>Rhizobium leguminosarum bv. trifolii WSM1325 plasmid pR132501, complete sequence</td> <td>828924</td> <td>RepABC(pRiAb)</td> <td>MOBQ</td>	NC_0128	Rhizobium leguminosarum bv. trifolii WSM1325 plasmid pR132501, complete sequence	828924	RepABC(pRiAb)	MOBQ
NC_0083 81Rhizobium leguminosarum bv. viciae 3841 plasmid pRL10, complete sequence488135RepABC(pRiAb)MOBQNC_0118 97Salmonella enterica subsp. enterica serovar Bovismorbificans plasmid plasmid pRSF1010_SL1344, complete sequence4270-MOBQNC_0026Dichelobacter nodosus plasmid DN15112IncP-4MOBQ06Dichelobacter nodosus plasmid DN15112IncP-4MOBQ07Splingomonas sp. MM-1 plasmid ptSP0, complete sequence275840pCHQ1MOBQ07Splingomonas sp. MM-1 plasmid ptSP0, complete sequence4892pKJ50MOBQ07Splingomonas sp. MM-1 plasmid ptSP0, complete sequence4892pKJ50MOBQ07Splingomonas sp. MM-1 plasmid ptSP0, complete sequence4892pKJ50MOBQ07Couplete sequence, whole genome shotgun sequence4892pKJ50MOBQ08Couplete sequence, whole genome shotgun sequence4960pKJ50MOBQ08Couplete sequence, whole genome shotgun sequence22388-MOBQ08Caulobacter sp. K31 plasmid pCAUL02, complete sequence22388-MOBQ07Sauroccus lactis subsp. paracasei 8700:2 plasmid 1, complete24207-MOBQ02Couplete sequence8422-MOBQ03Caulobacter baumannii Naval-18 plasmid pNDM-AB, complete24207-MOBQ04Sequence177878-MOBQ05Acinetobacter baumannii GF216 plasmid pNDM-AB, complete4708- <td>NC_0027</td> <td>Staphylococcus aureus subsp. aureus Mu50 plasmid VRSAp, complete</td> <td>25107</td> <td>Inc1</td> <td>MOBQ</td>	NC_0027	Staphylococcus aureus subsp. aureus Mu50 plasmid VRSAp, complete	25107	Inc1	MOBQ
NC_0118 97Salmonella enterica subsp. enterica serovar Bovismorbificans plasmid p2007057, complete sequence4270MOBQ97Salmonella enterica subsp. enterica serovar Typhimurium str. SL13448688InCP-4MOBQ91plasmid pR51010_SL1344, complete sequence5112InCP-4MOBQNC_0026Dichelobacter nodosus plasmid DN15112InCP-4MOBQ36Lactobacillus brevis KB290 plasmid pKB290-9 DNA, complete genome5866-MOBQ25Sphingomonas sp. MM-1 plasmid pISP0, complete sequence275840pCHQ1MOBQ42Roitebacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence70570-MOBQNC_0103Catretobacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence70570-MOBQNC_0103Lactoocccus lactis subsp. cremoris plasmid pA52, complete sequence4960pKJ50MOBQ78-MOBQ-MOBQ70-MOBQ-MOBQ78-MOBQ70-MOBQ70-MOBQ70-MOBQ70-MOBQ70-MOBQ70-MOBQ70-MOBQ70-MOBQ70-Calobacter baumania pCAUL02, complete se	NC_0083 81	Rhizobium leguminosarum bv. viciae 3841 plasmid pRL10, complete sequence	488135	RepABC(pRiAb)	MOBQ
NC_0177 19Salmonella enterica subsp. enterica serovar Typhimurium str. SL13448688IncP-4MOBQ19plasmid pRSF1010_SL1344, complete sequence5112IncP-4MOBQ36incP-4MOBQ36Lactobacillus brevis KB290 plasmid pKB290-9 DNA, complete genome5866-MOBQ25Sphingomonas sp. MM-1 plasmid pISP0, complete sequence275840pCHQ1MOBQ42Bifidobacterium sp. A24 plasmid pBIFA24, complete sequence4892pKJ50MOBQ64Acinetobacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence70570-MOBQ78Bifidobacterium longum KJ plasmid pKJ50, complete sequence4960pKJ50MOBQ78Saluobacterium longum KJ plasmid pAF22, complete sequence22388-MOBQ78Lactooccus lactis subsp. cremoris plasmid pAF22, complete sequence24207-MOBQ78Caulobacter sp. K31 plasmid pCAUL02, complete sequence177878-MOBQ79Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete8422-MOBQ70Acinetobacter baumannii Naval-18 plasmid pNM-AB, complete8422-MOBQ71Acinetobacter baumannii Strain GF216 plasmid pNM-AB, complete8422-MOBQ72Acinetobacter baumannii Strain GF216 plasmid pNM-AB, complete8422-MOBQ73SequenceAcinetobacter daizotrophicus PA15 plasmid pDIA-AB, complete8422-MOBQ74sequence<	NC_0118 97	Salmonella enterica subsp. enterica serovar Bovismorbificans plasmid p2007057, complete sequence	4270	-	MOBQ
NC_0026Dichelobacter nodosus plasmid DN15112IncP-4MOBQ36NC_0208Lactobacillus brevis KB290 plasmid pKB290-9 DNA, complete genome5866-MOBQ25Sphingomonas sp. MM-1 plasmid pISP0, complete sequence275840pCHQ1MOBQ42NC_0101Bifidobacterium sp. A24 plasmid pBIFA24, complete sequence4892pKJ50MOBQ64Acinetobacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence, whole genome shotgun sequence70070-MOBQNC_0049Bifidobacterium longum KJ plasmid pKJ50, complete sequence4960pKJ50MOBQ78Rococcus lactis subsp. cremoris plasmid pAF22, complete sequence22388-MOBQ81Caulobacter sp. K31 plasmid pCAUL02, complete sequence177878-MOBQ10SequenceNC_0221Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete sequence24207-MOBQ12Acinetobacter baumannii Naval-18 plasmid pNaval18-8.4, complete sequence8422-MOBQ13SequenceMOBQ-MOBQ14sequence47098-MOBQ15sequence16575-MOBQ16Sequence16575-MOBQ18Sequence16575-MOBQ19Sequence16575-MOBQ10Sequence16575-MOBQ14sequence16575-MOBQ15Sequence16575<	NC_0177 19	Salmonella enterica subsp. enterica serovar Typhimurium str. SL1344 plasmid pRSF1010 SL1344. complete sequence	8688	IncP-4	MOBQ
NC_0208 25Lactobacillus brevis KB290 plasmid pKB290-9 DNA, complete genome5866-MOBQ25Sphingomonas sp. MM-1 plasmid pISP0, complete sequence275840pCHQ1MOBQ42Bifidobacterium sp. A24 plasmid pBIFA24, complete sequence4892pKJ50MOBQ64Acinetobacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence, whole genome shotgun sequence700001-MOBQNC_0049Bifidobacterium longum KJ plasmid pKJ50, complete sequence4960pKJ50MOBQ78Lactococcus lactis subsp. cremoris plasmid pAF22, complete sequence22388-MOBQNC_0103Caulobacter sp. K31 plasmid pCAUL02, complete sequence177878-MOBQ14sequence24207-MOBQ12Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete24207-MOBQ14sequence8422-MOBQ15Acinetobacter baumannii Naval-18 plasmid pNaval18-8.4, complete8422-MOBQ18sequence10001-MOBQ18sequence16575-MOBQ18sequence16575-MOBQ18Guconacetobacter denitrificans plasmid pTB3, complete sequence27455-MOBQ18Guconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete27455-MOBQ18Guconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete27455-MOBQ18Sequence16575-M	NC_0026	Dichelobacter nodosus plasmid DN1	5112	IncP-4	MOBQ
NC_0205 42Sphingomonas sp. MM-1 plasmid pISP0, complete sequence 42275840 84892pCHQ1MOBQ 42NC_0101 64Bifidobacterium sp. A24 plasmid pBIFA24, complete sequence 644892pKJ50MOBQNZ_ALIR0 1000019Acinetobacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence, whole genome shotgun sequence70570-MOBQNC_0049 78Bifidobacterium longum KJ plasmid pKJ50, complete sequence 784960pKJ50MOBQNC_0193 51Lactococcus lactis subsp. cremoris plasmid pAF22, complete sequence 5122388-MOBQNC_0103 33Caulobacter sp. K31 plasmid pCAUL02, complete sequence sequence177878-MOBQNC_0221 42Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete sequence24207-MOBQNZ_AFDA 02000008Acinetobacter baumannii Naval-18 plasmid pNaval18-8.4, complete sequence8422-MOBQNC_0208 86Acinetobacter baumannii strain GF216 plasmid pNDM-AB, complete 8847098-MOBQNC_0083 86Roseobacter denitrificans plasmid pTB3, complete sequence 8816575-MOBQNC_0113 67Gluconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete sequence27455-MOBQ	NC_0208 25	Lactobacillus brevis KB290 plasmid pKB290-9 DNA, complete genome	5866	-	MOBQ
NC_0101 64Bifidobacterium sp. A24 plasmid pBIFA24, complete sequence4892 4892pKJ50MOBQNZ_ALIR0 1000019Acinetobacter radioresistens WC-A-157 plasmid pWCA157-71, 	NC_0205 42	Sphingomonas sp. MM-1 plasmid pISP0, complete sequence	275840	pCHQ1	MOBQ
NZ_ALIR0 1000019Acinetobacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence, whole genome shotgun sequence70570-MOBQNC_0049 78Bifidobacterium longum KJ plasmid pKJ50, complete sequence4960pKJ50MOBQNC_0193 	NC_0101 64	Bifidobacterium sp. A24 plasmid pBIFA24, complete sequence	4892	рКЈ50	MOBQ
NC_0049Bifidobacterium longum KJ plasmid pKJ50, complete sequence4960pKJ50MOBQNC_0193Lactococcus lactis subsp. cremoris plasmid pAF22, complete sequence22388-MOBQS1Caulobacter sp. K31 plasmid pCAUL02, complete sequence177878-MOBQNC_0221Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete24207-MOBQNC_0221Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete24207-MOBQ14sequence2200008sequence8422-MOBQNC_0208Acinetobacter baumannii Naval-18 plasmid pNaval18-8.4, complete8422-MOBQNC_0208Acinetobacter baumannii strain GF216 plasmid pNDM-AB, complete47098-MOBQ18sequence16575-MOBQNC_0083Roseobacter denitrificans plasmid pTB3, complete sequence16575-MOBQNC_0113Gluconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete27455-MOBQ	NZ_ALIR0 1000019	Acinetobacter radioresistens WC-A-157 plasmid pWCA157-71, complete sequence, whole genome shotgun sequence	70570	-	MOBQ
NC_0193 51Lactococcus lactis subsp. cremoris plasmid pAF22, complete sequence22388-MOBQS1Caulobacter sp. K31 plasmid pCAUL02, complete sequence177878-MOBQNC_0221 4Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete sequence24207MOBQNZ_AFDA 0200008Acinetobacter baumannii Naval-18 plasmid pNaval18-8.4, complete sequence8422-MOBQNC_0208 18Acinetobacter baumannii strain GF216 plasmid pNDM-AB, complete 	NC_0049 78	Bifidobacterium longum KJ plasmid pKJ50, complete sequence	4960	рКЈ50	MOBQ
NC_0103 33Caulobacter sp. K31 plasmid pCAUL02, complete sequence177878-MOBQNC_0221 14Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete sequence24207-MOBQNZ_AFDA 	NC_0193 51	Lactococcus lactis subsp. cremoris plasmid pAF22, complete sequence	22388	-	MOBQ
NC_0221 Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete 24207 - MOBQ 14 sequence - MOBQ NZ_AFDA Acinetobacter baumannii Naval-18 plasmid pNaval18-8.4, complete 8422 - MOBQ 02000008 sequence, whole genome shotgun sequence - MOBQ NC_0208 Acinetobacter baumannii strain GF216 plasmid pNDM-AB, complete 47098 - MOBQ 18 sequence - MOBQ - MOBQ NC_0083 Roseobacter denitrificans plasmid pTB3, complete sequence 16575 - MOBQ NC_0113 Gluconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete 27455 - MOBQ 67 sequence - - MOBQ	NC_0103 33	Caulobacter sp. K31 plasmid pCAUL02, complete sequence	177878	-	MOBQ
NZ_AFDA 0200008Acinetobacter baumannii Naval-18 plasmid pNaval18-8.4, complete sequence, whole genome shotgun sequence8422-MOBQNC_0208 18Acinetobacter baumannii strain GF216 plasmid pNDM-AB, complete sequence47098-MOBQNC_0083 88Roseobacter denitrificans plasmid pTB3, complete sequence16575-MOBQNC_0113 67Gluconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete 	NC_0221 14	Lactobacillus paracasei subsp. paracasei 8700:2 plasmid 1, complete sequence	24207	-	MOBQ
NC_0208 Acinetobacter baumannii strain GF216 plasmid pNDM-AB, complete 47098 - MOBQ 18 sequence 16575 - MOBQ NC_0083 Roseobacter denitrificans plasmid pTB3, complete sequence 16575 - MOBQ 88 - - MOBQ - MOBQ NC_0113 Gluconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete 27455 - MOBQ 67 sequence - - - - -	NZ_AFDA 02000008	Acinetobacter baumannii Naval-18 plasmid pNaval18-8.4, complete sequence, whole genome shotgun sequence	8422	-	MOBQ
NC_0083 88 Roseobacter denitrificans plasmid pTB3, complete sequence 16575 MOBQ NC_0113 Gluconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete 27455 MOBQ 67 sequence 27455 MOBQ	NC_0208 18	Acinetobacter baumannii strain GF216 plasmid pNDM-AB, complete sequence	47098	-	MOBQ
NC_0113 Gluconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete 27455 - MOBQ 67 sequence	NC_0083 88	Roseobacter denitrificans plasmid pTB3, complete sequence	16575	-	MOBQ
	NC_0113 67	Gluconacetobacter diazotrophicus PA1 5 plasmid pGDIA01, complete sequence	27455	-	MOBQ

Número	Plásmido y hospedero	Tamañ	Incompatibilid	МОВ
NC_0108	Actinobacillus pleuropneumoniae isolate 12494 plasmid p12494, complete sequence	14393	- -	MOBQ
NC_0190 91	Escherichia coli plasmid pASL01a, complete sequence	27072	IncP-4, CoIE2/E3	MOBQ
NZ_AFSD	Agrobacterium tumefaciens F2 plasmid unnamed p1, complete	105065	-	MOBQ
NC_0050 05	sequence, whole genome shotgun sequence Staphylococcus epidermidis ATCC 12228 plasmid pSE-12228-04, complete sequence	17261	Inc1	MOBQ
NC_0135	Acinetobacter baumannii plasmid pMMCU2, complete sequence	10270	-	MOBQ
NC_0009 14	Sinorhizobium fredii NGR234 plasmid pNGR234a, complete sequence	536165	RepABC(pRiAb)	MOBQ
NC_0117 34	Cyanothece sp. PCC 7424 plasmid pP742406, complete sequence	15219	-	MOBQ
NC_0068 26	Sphingobium xenophagum QYY plasmid pSx-Qyy, complete sequence	5683	pUT2	MOBQ
NC_0025 24	Uncultured eubacterium pIE1115 plasmid pIE1115, complete sequence	10687	IncP-4	MOBQ
NC_0212 40	Paracoccus marcusii strain DSM 11574 plasmid pMARC3, complete sequence	10672	pUT2	MOBQ
NC_0154 20	Lactobacillus buchneri NRRL B-30929 plasmid pLBUC01, complete sequence	52697	-	MOBQ
NC_0151 89	Acidiphilium multivorum AIU301 plasmid pACMV7, complete sequence	5178	Rep20	MOBQ
NC_0226 49	Escherichia coli JJ1886 plasmid pJJ1886_2, complete sequence	5167	ColE2/ColE3	MOBQ
NC_0171 02	Acetobacter pasteurianus IFO 3283-32 plasmid pAPA32-040, complete sequence	3204	-	MOBQ
NC_0084 89	Escherichia coli plasmid pMG828-4, complete sequence	7462	ColE2/ColE3	MOBQ
NC_0146 34	Ilyobacter polytropus DSM 2926 plasmid pILYOP02, complete sequence	124226	-	MOBQ
NC_0076 17	Nitrosospira multiformis ATCC 25196 plasmid 3, complete sequence	14159	-	MOBQ
NC_0084 45	Enterococcus faecalis RE25 plasmid pRE25, complete sequence	50237	Inc18, Inc18, Inc9	MOBQ
NC_0019 49	Lactococcus lactis DPC3147 plasmid pMRC01, complete sequence	60232	-	MOBQ
NC_0156 03	Lactobacillus kefiranofaciens ZW3 plasmid pWW2, complete sequence	46296	-	MOBQ
NC_0160 28	Gluconacetobacter xylinus NBRC 3288 plasmid pGXY030, complete sequence	28572	pUT1	MOBQ
NC_0049 73	Uncultured eubacterium plasmid plE1130, complete sequence	10687	IncP-4	MOBQ
NC_0192 92	Pseudomonas savastanoi plasmid pPsv48C, complete sequence	42103	-	MOBQ
NC_0205	Sphingomonas sp. MM-1 plasmid pISP4, complete sequence	33183	-	MOBQ
NC_0030 78	Sinorhizobium meliloti 1021 plasmid pSymB, complete sequence	168333 3	RepABC(pRiAb)	MOBQ
NC_0079 61	Nitrobacter hamburgensis X14 plasmid 3, complete sequence	121408	RepABC(pRiAb)	MOBQ
NC_0145	Lactobacillus plantarum subsp. plantarum ST-III plasmid pST-III, complete sequence	53560	-	MOBQ
NC_0133 67	Escherichia coli O111:H- str. 11128 plasmid pO111_4, complete sequence	8140	ColE2/ColE3	MOBQ
NC_0042	Bifidobacterium longum DJO10A plasmid pDOJH10S, complete	3661	pDOJH10S	MOBQ
NC_0211	Salmonella enterica subsp. enterica serovar Typhimurium str. U288	11067	IncP-4	MOBQ
NC_0171	Acetobacter pasteurianus IFO 3283-26 plasmid pAPA26-040, complete	3204	-	MOBQ
NC_0171	Acetobacter pasteurianus IFO 3283-32 plasmid pAPA32-030, complete	49961	pUT1	MOBQ
NC_0020	Salmonella enterica subsp. enterica serovar Typhimurium plasmid	9263	pSC101	MOBQ
NC_0132 12	Acetobacter pasteurianus IFO 3283-01 plasmid pAPA01-030, complete sequence	49961	pUT1	MOBQ

Número de acceso	Plásmido y hospedero	Tamañ	Incompatibilid ad	МОВ
NC_0115	Candidatus Azobacteroides pseudotrichonymphae genomovar. CFP2	4149	-	MOBQ
NC_0082	Sphingobium yanoikuyae plasmid pYAN-2 DNA, complete sequence	4924	-	MOBQ
NC_0096	Sinorhizobium medicae WSM419 plasmid pSMED01, complete	157095	RepABC(pRiAb)	MOBQ
NC_0215 16	Lactobacillus plantarum 16 plasmid Lp16C, complete sequence	27282	-	MOBQ
NC_0151 88	Acidiphilium multivorum AIU301 plasmid pACMV4, complete sequence	40588	-	MOBQ
NC_0045 27	Rhodobacter blasticus plasmid pMG160 DNA, complete sequence	3431	-	MOBQ
NC_0192 75	Psychrobacter sp. DAB_AL32B plasmid pP32BP1, complete sequence	4599	-	MOBQ
NC_0192 89	Paracoccus haeundaensis plasmid pHAE1, complete sequence	5301	-	MOBQ
NC_0119 94	Agrobacterium radiobacter K84 plasmid pAgK84, complete sequence	44420	-	MOBQ
NC_0066 74	Gluconobacter oxydans 621H plasmid pGOX3, complete sequence	14547	pUT1	MOBQ
NC_0131 04	Salmonella enterica subsp. enterica serovar Typhimurium plasmid pSRC15, complete sequence	8688	IncP-4	MOBQ
NZ_AVAB 01000115	Lactobacillus fermentum MTCC 8711 plasmid pLF06 contig115, whole	46594	-	MOBQ
NC_0219	Lactobacillus plantarum ZJ316 plasmid pLP-ZJ102, complete sequence	39116	-	MOBQ
NZ_AFDA	Acinetobacter baumannii Naval-18 plasmid pNaval18-5.7, complete	5676	-	MOBQ
NC_0108	Escherichia coli plasmid plGWZ12, complete sequence	4072	-	MOBQ
NC_0104	Acinetobacter baumannii AYE plasmid p1ABAYE, complete sequence	5644	-	MOBQ
NC_0143	Nitrosococcus watsoni C-113 plasmid pNWAT02, complete sequence	5611	-	MOBQ
NC_0071 11	Rickettsia felis URRWXCal2 plasmid pRFdelta, complete sequence	39263	-	MOBQ
NC_0212 34	Lactobacillus plantarum subsp. plantarum P-8 plasmid LBPp4, complete sequence	30687	-	MOBQ
NC_0069 97	Bifidobacterium longum plasmid pMG1, complete sequence	3682	pNAC2	MOBQ
NC_0075 05	Xanthomonas campestris pv. vesicatoria str. 85-10 plasmid pXCV19, complete sequence	19146	-	MOBQ
NC_0084 99	Lactobacillus brevis ATCC 367 plasmid 2, complete sequence	35595	-	MOBQ
NC_0208 27	Lactobacillus brevis KB290 plasmid pKB290-6 DNA, complete genome	11627	-	MOBQ
NC_0108 57	Bifidobacterium longum plasmid p6043A, complete sequence	4896	рКЈ50	MOBQ
NC_0128 82	Escherichia coli plasmid pCoIE8, complete sequence	6751	ColE2/ColE3	MOBQ
NC_0205 62	Sphingomonas sp. MM-1 plasmid pISP1, complete sequence	172140	pNL2	MOBQ
NC_0192 84	Enterococcus faecalis plasmid pWZ7140, complete sequence	47277	Inc18	MOBQ
NC_0083	Rhizobium leguminosarum bv. viciae 3841 plasmid pRL8, complete	147463	RepABC(pRiAb)	MOBQ
NC_0168	Salmonella enterica subsp. enterica serovar Typhimurium str. ST4/74 plasmid TY474n3_complete sequence	8688	IncP-4	MOBQ
NC_0087	Polaromonas naphthalenivorans CJ2 plasmid pPNAP07, complete	9898	-	MOBQ
NC_0204	Shigella sonnei plasmid pDPT3, complete sequence	8338	ColE2/ColE3	MOBQ
NC_0215	Escherichia coli strain CGB40 plasmid pCGB40, complete sequence	4269	-	MOBQ
25 NC_0044	Bifidobacterium longum VMKB44 plasmid pB44, complete sequence	3624	pNAC2	MOBQ
NC_0097	Escherichia coli plasmid pIGJC156, complete sequence	5146	ColE2/ColE3	MOBQ

Número de acceso	Plásmido y hospedero	Tamañ	Incompatibilid ad	МОВ
NC_0166	Pediococcus claussenii ATCC BAA-344 plasmid pPECL-4, complete	23136	Inc18	MOBQ
NC_0086	Acidiphilium multivorum strain JCM8867 plasmid pAM5, complete	5161	Rep20	MOBQ
NZ_CM00	Acinetobacter calcoaceticus subsp. anitratus XM1570 plasmid pXM1,	47274	-	MOBQ
NC_0193 56	Paracoccus marcusii plasmid pMOS6, complete sequence	7672	-	MOBQ
NC_0190 38	Escherichia coli plasmid pChi7122-4, complete sequence	4300	ColE2/ColE3	MOBQ
NC_0160 00	Sphingobium chungbukense strain DJ77 plasmid pSY2, complete sequence	18779	pUT1	MOBQ
NZ_ASTI0 1000039	Lactobacillus sakei subsp. sakei LS25 plasmid pLS25-1, whole genome shotgun sequence	20510	-	MOBQ
NC_0190	Escherichia coli plasmid p838C-R1, complete sequence	30016	ColE2/ColE3	MOBQ
NC_0026 35	Bifidobacterium longum KJ plasmid pKJ36, complete sequence	3625	pNAC2	MOBQ
NC_0171 42	Acetobacter pasteurianus IFO 3283-03 plasmid pAPA03-040, complete sequence	3204	-	MOBQ
NC_0117	Methylobacterium extorquens CM4 plasmid pMCHL01, complete	380207	RepABC(pRiAb)	MOBQ
NC_0040 41	Rhizobium etli CFN 42 symbiotic plasmid p42d, complete sequence	371254	RepABC(pRiAb)	MOBQ
NC_0219	Acetobacter pasteurianus 386B plasmid Apa386Bp6, complete	6548	-	MOBQ
NC_0050 13	Enterococcus faecalis DS5 plasmid pAMalpha1, complete sequence	9759	Inc13	MOBV
NC_0017 65	Bacillus subtilis plasmid pTA1015, complete sequence	5807	Inc13	MOBV
NC_0186	Cardinium endosymbiont cEper1 of Encarsia pergandiella plasmid	57800	-	MOBV
NC_0197	Microcoleus sp. PCC 7113 plasmid pMIC7113.01, complete sequence	146045	-	MOBV
NC_0117 76	Bacillus cereus AH820 plasmid pAH820_3, complete sequence	3091	-	MOBV
NC_0168 21	Leuconostoc mesenteroides subsp. mesenteroides J18 plasmid pKLE03, complete sequence	24548	-	MOBV
NC_0102 42	Lactobacillus casei plasmid pSMA23, complete sequence	3497	Inc13	MOBV
NC_0141	Bacillus amyloliquefaciens plasmid pBSG3, complete sequence	8439	Inc13	MOBV
NC_0075 93	Pediococcus damnosus plasmid pF8801, complete sequence	5558	Inc13	MOBV
NC_0081 53	Human gut plasmid pTRACA17, complete sequence	2745	-	MOBV
NC_0173	Staphylococcus aureus subsp. aureus ST398 plasmid pS0385-1,	5246	Inc14	MOBV
NC_0132	Staphylococcus aureus plasmid pWBG750, complete sequence	20653	-	MOBV
NC_0102	Bacillus thuringiensis plasmid pFR12, complete sequence	12095	-	MOBV
NC_0191	Haemophilus influenzae plasmid pLFH64, complete sequence	5458	pFA3	MOBV
82 NC_0045 28	Leuconostoc citreum pLC22R plasmid, complete genome	9935	-	MOBV
NC_0073	Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305	22870	Inc7	MOBV
NC_0167 74	Bacillus cereus NC7401 plasmid pNC4, complete sequence	3091	-	MOBV
NC_0059 20	Pseudomonas syringae pv. maculicola strain ES4326 plasmid	4833	-	MOBV
NC_0193	UNVERIFIED: Leuconostoc mesenteroides subsp. mesenteroides	20721	-	MOBV
NC_0071	Bacillus cereus E33L plasmid pE33L8, complete sequence	8191	-	MOBV
NC_0157	Weissella koreensis KACC 15510 plasmid WKp2903, complete sequence	18992	-	MOBV

Número	Plásmido y hospedero	Tamañ	Incompatibilid	МОВ
NC_0057	Bacillus mycoides pBMY1 plasmid	o 3476	ad -	MOBV
03 NC_0133	Staphylococcus aureus plasmid SAP094A, complete sequence	4439	Inc14	MOBV
11 NC_0125	Staphylococcus aureus plasmid pGO1, complete sequence	54000	Inc13, Inc7	MOBV
47 NC_0059 22	Pseudomonas syringae pv. maculicola strain ES4326 plasmid	4217	-	MOBV
NC_0043	Bartonella grahamii pBGR2 cryptic plasmid	2723	-	MOBV
NC_0117 71	Bacillus cereus AH820 plasmid pAH820_10, complete sequence	10915	-	MOBV
NC_0050 22	Streptococcus pneumoniae D39 plasmid pDP1, complete sequence	3161	Inc13	MOBV
NC_0109 36	Lactobacillus sakei plasmid pYSI8, complete sequence	4973	Inc11	MOBV
NC_0141 31	Leuconostoc kimchii IMSNU 11154 plasmid LkipL4701, complete sequence	21055	-	MOBV
NC_0133 12	Staphylococcus aureus plasmid SAP095B, complete sequence	4439	Inc14	MOBV
NC_0096 24	Actinobacillus porcitonsillarum pKMA202 plasmid	13425	-	MOBV
NC_0191 86	Haemophilus influenzae plasmid pJ612, complete sequence	5048	pFA3	MOBV
NC_0068 69	Bacillus mycoides pSin9.7 plasmid	9698	-	MOBV
NC_0084 96	Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 plasmid pLEUM1, complete sequence	37367	-	MOBV
NC_0133 09	Staphylococcus aureus plasmid SAP093A, complete sequence	4439	Inc4	MOBV
NC_0134 52	Staphylococcus aureus subsp. aureus ED98 plasmid pT181, complete sequence	4440	Inc14	MOBV
NC_0063 99	Lactobacillus plantarum BIFI-38 plasmid pPB1, complete sequence	2899	Inc11	MOBV
NC_0017 66	Bacillus subtilis plasmid pTA1060, complete sequence	8737	Inc13	MOBV
NC_0106 21	Lactobacillus reuteri strain ATCC 55730 plasmid pLR585, complete sequence	14173	-	MOBV
NC_0133 36	Staphylococcus aureus plasmid SAP060B, complete sequence	4498	Inc14	MOBV
NC_0020 96	Staphylococcus aureus plasmid pKH7, complete sequence	4118	Inc9	MOBV
NC_0017 63	Staphylococcus aureus plasmid J3358, complete sequence	6024	Inc14	MOBV
NC_0174 66	Lactobacillus casei strain TISTR1341 plasmid pRCEID2.9, complete sequence	2952	Inc11	MOBV
NC_0188 82	Bacillus thuringiensis Bt407 plasmid BTB_7p, complete sequence	7635	Inc13	MOBV
NC_0140 15	Sporosarcina ureae plasmid pSU1 strain DMV4, complete sequence	5031	Inc11	MOBV
NC_0194 26	Halomonas sp. ZM3 plasmid pZM3H1, complete sequence	31370	-	MOBV
NC_0161 39	staphylococcus hylicus plasmid p9811071-1, complete sequence	4019	Inc13	MOBV
NC_0141 32	Leuconostoc kimchii INISNU 11154 plasmid LkipL4704, complete sequence	23275	-	MOBV
NC_0188 84	Bacillus thuringiensis Bt407 plasmid BTB_5p, complete sequence	5518	-	MOBV
NC_0057 04	Bacillus mycoides cryptic plasmid pBMYdx	3377	-	MOBV
NC_0100 96	Streptococcus agalactiae plasmid pMV158, complete sequence	5541	Inc11	MOBV
NC_0113 40	Bacillus cereus H3081.97 plasmid pH308197_11, complete sequence	11567	-	MOBV
NC_0191 83	Haemophilus influenzae plasmid pLFS5, complete sequence	4846	pFA3	MOBV
NC_0013 93	Staphylococcus aureus plasmid pT181, complete sequence	4439	Inc14	MOBV

Número de acceso	Plásmido y hospedero	Tamañ	Incompatibilid ad	МОВ
NC_0114 06	Klebsiella pneumoniae plasmid pIGMS31, complete sequence	2520	-	MOBV
NC_0195 58	Planococcus citreus plasmid pNM11, complete sequence	11383	-	MOBV
NC_0116 57	Bacillus cereus AH187 plasmid pAH187_3, complete sequence	3091	-	MOBV
NC_0043 35	Bacillus thuringiensis sv thuringiensis H1.1 plasmid pGI1, complete sequence	8254	Inc13	MOBV
NC_0066 29	Staphylococcus aureus subsp. aureus COL plasmid pT181, complete sequence	4440	Inc14	MOBV
NC_0133 13	Staphylococcus aureus plasmid pWBG763, complete sequence	20730	-	MOBV
NC_0049 65	Sinorhizobium meliloti plasmid pRm1132f, complete sequence	7212	-	MOBV
NC_0133 04	Staphylococcus aureus plasmid SAP073A, complete sequence	20729	-	MOBV
NC_0191 42	Staphylococcus aureus plasmid pCPS49, complete sequence	5292	Inc11	MOBV
NC_0020 75	Bacillus subtilis plasmid p1414, complete plasmid sequence	7949	Inc13	MOBV
NC_0069	Oenococcus oeni M1 plasmid pOM1, complete sequence	3926	-	MOBV
NC_0113 41	Bacillus cereus H3081.97 plasmid pH308197_10, complete sequence	10077	-	MOBV
NC_0168	Leuconostoc mesenteroides subsp. mesenteroides J18 plasmid pKLE04, complete sequence	19293	-	MOBV
NC_0197 52	Calothrix sp. PCC 6303 plasmid pCAL6303.03, complete sequence	55337	-	MOBV
NC_0135	Bacillus subtilis strain ATCC 15841 plasmid pPL1, complete sequence	6704	Inc13	MOBV
NC_0032	Nostoc sp. PCC 7120 plasmid pCC7120delta, complete sequence	55414	-	MOBV
NC_0189	Staphylococcus aureus plasmid SAP077A, complete sequence	35510	Inc1	MOBV
NC_0071 04	Bacillus cereus E33L plasmid pE33L5, complete sequence	5108	-	MOBV
NC_0133	Staphylococcus aureus plasmid SAP085B, complete sequence	3961	Inc11	MOBV
NC_0173 39	Staphylococcus aureus subsp. aureus JKD6159 plasmid pSaa6159, complete sequence	20730	-	MOBV
NC_0189	Staphylococcus aureus plasmid p18809-P04, complete sequence	28404	-	MOBV
NC_0160	Staphylococcus arlettae strain 2-144 plasmid pSS-03, complete	7122	Inc13	MOBV
NC_0172	Bacillus thuringiensis serovar chinensis CT-43 plasmid pCT9547, complete sequence	9547		MOBV
NC_0109	Alpha proteobacterium endosymbiont of Amoeba proteus plasmid	3869	-	MOBV
NC_0126	Lactobacillus plantarum plasmid pLFE1, complete sequence	4031	Inc11	MOBV
NC_0043	Bacillus thuringiensis 4Q2 plasmid pTX14-2, complete sequence	6829	-	MOBV
NC_0021	Streptococcus suis plasmid pSSU1 DNA, complete sequence	4975	Inc11	MOBV
NC_0132	Staphylococcus aureus plasmid pWBG752, complete sequence	24654	Inc7	MOBV
NC_0160	Enterococcus faecium plasmid pM7M2, complete sequence	19557	Inc18	MOBV
NC_0158	Streptococcus pseudopneumoniae IS7493 plasmid pDRPIS7493, complete sequence	4727	-	MOBV
NC_0153	Salmonella enterica subsp. enterica serovar Dublin plasmid	7860	Inc13	MOBV
NC_0172	Bacillus thuringiensis serovar chinensis CT-43 plasmid pCT8252, complete sequence	8252	Inc13	MOBV
NC_0030	Oenococcus oeni plasmid pRS3, complete sequence	3948	-	MOBV
NC_0192 52	Streptococcus pyogenes plasmid pGA2000, complete sequence	4967	Inc11	MOBV

Número de acceso	Plásmido y hospedero	Tamañ O	Incompatibilid ad	МОВ
NC_0077 91	Staphylococcus aureus subsp. aureus USA300_FPR3757 plasmid pUSA02, complete sequence	4439	Inc14	MOBV
NC_0068 25	Bacillus subtilis plasmid pBS608, complete sequence	6611	Inc13	MOBV
NC_0032 70	Nostoc sp. PCC 7120 plasmid pCC7120epsilon, complete sequence	40340	-	MOBV
NC_0013 84	Staphylococcus aureus plasmid pUB110, complete sequence	4548	Inc13	MOBV
NC_0063 74	Bartonella grahamii cryptic plasmid pBRG1	2725	-	MOBV
NC_0133 31	Staphylococcus aureus plasmid SAP047A, complete sequence	28974	Inc13	MOBV
NC_0141 33	Leuconostoc kimchii IMSNU 11154 plasmid LkipL4719, complete sequence	21924	-	MOBV
NC_0141 35	Leuconostoc kimchii IMSNU 11154 plasmid LkipL48, complete sequence	3196	Inc11	MOBV
NC_0113 38	Bacillus cereus H3081.97 plasmid pH308197_3, complete sequence	3424	-	MOBV
NC_0021 32	Flavobacterium sp. KP1 plasmid pFL1, complete sequence	2311	-	MOBV
NC_0141 64	Lactobacillus acidipiscis cryptic plasmid pLAC1, complete sequence, strain ACA-DC 1533	3478	Inc13	MOBV
NC_0020 91	Bacillus thuringiensis sv israelensis plasmid pTX14-1, complete sequence	5415	Inc13	MOBV
NC_0193 70	Streptococcus dysgalactiae subsp. equisimilis plasmid p5580, complete sequence	4950	Inc11	MOBV
NC_0031 40	Staphylococcus aureus subsp. aureus N315 plasmid pN315, complete sequence	24653	Inc7	MOBV
NC_0193 19	Paracoccus marcusii plasmid pMOS2, complete sequence	6410	Rep20	MOBV
NC_0132 93	Staphylococcus aureus plasmid pWBG757, complete sequence	20730	-	MOBV

Tabla S5. Plásmidos presentes en genomas de referencia utilizados para la comparación de Plassquid con otras herramientas

Nombre y hospedero del plásmidoTamañogi 1008423447 gb CP014450.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed1, complete sequence189452gi 1008423628 gb CP014451.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed2, complete sequence63692gi 1008423686 gb CP014452.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed3, complete sequence39138gi 1033167582 ref NZ_CP014756.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-04f, complete sequence121030gi 1033167583 ref NZ_CP014757.1 Klebsiella pneumoniae strain AATZP plasmid pNDM-1fa, complete sequence54064gi 1033023972 ref NZ_CP014775.1 Aeromonas veronii strain AVNIH1 plasmid pASP-a58, complete sequence198307gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S DNA, complete genome5838gi 470157235 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete sequence4109		
gi 1008423447 gb CP014450.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed1, complete sequence189452gi 1008423628 gb CP014451.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed2, complete sequence63692gi 1008423686 gb CP014452.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed3, complete sequence39138gi 1033167582 ref NZ_CP014756.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-04f, complete sequence121030gi 1033167583 ref NZ_CP014757.1 Klebsiella pneumoniae strain AATZP plasmid pNDM-1fa, complete sequence54064gi 1033167584 ref NZ_CP014757.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-041, complete sequence38384gi 1033167584 ref NZ_CP014757.1 Aeromonas veronii strain AVNIH1 plasmid pASP-a58, complete sequence198307gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST1955 DNA, complete genome gi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete sequence4109gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete sequence85023	Nombre y hospedero del plásmido	Tamaño
gi 1008423628 gb CP014451.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed2, complete sequence63692gi 1008423686 gb CP014452.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed3, complete sequence39138gi 1033167582 ref NZ_CP014756.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-04f, complete sequence121030gi 1033167583 ref NZ_CP014757.1 Klebsiella pneumoniae strain AATZP plasmid pNDM-1fa, complete sequence54064gi 1033167584 ref NZ_CP014758.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-041, complete sequence38384gi 1033023972 ref NZ_CP014775.1 Aeromonas veronii strain AVNIH1 plasmid pASP-a58, complete sequence198307gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S DNA, complete genome5838gi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete sequence4109gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete sequence85023	gi 1008423447 gb CP014450.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed1, complete sequence	189452
gi 1008423686 gb CP014452.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed3, complete sequence39138gi 1033167582 ref NZ_CP014756.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-04f, complete sequence121030gi 1033167583 ref NZ_CP014757.1 Klebsiella pneumoniae strain AATZP plasmid pNDM-1fa, complete sequence54064gi 1033167584 ref NZ_CP014758.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-041, complete sequence38384gi 1033023972 ref NZ_CP014775.1 Aeromonas veronii strain AVIIH1 plasmid pASP-a58, complete sequence198307gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S DNA, complete genome5838gi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete sequence4109gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete sequence85023	gi 1008423628 gb CP014451.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed2, complete sequence	63692
gi 1033167582 ref NZ_CP014756.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-04f, complete sequence121030gi 1033167583 ref NZ_CP014757.1 Klebsiella pneumoniae strain AATZP plasmid pNDM-1fa, complete sequence54064gi 1033167584 ref NZ_CP014758.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-041, complete sequence38384gi 1033023972 ref NZ_CP014775.1 Aeromonas veronii strain AVNIH1 plasmid pASP-a58, complete sequence198307gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S DNA, complete genome5838gi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete sequence4109gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete sequence85023	gi 1008423686 gb CP014452.1 Enterococcus faecium strain ATCC 700221 plasmid unnamed3, complete sequence	39138
gi 1033167583 ref NZ_CP014757.1 Klebsiella pneumoniae strain AATZP plasmid pNDM-1fa, complete sequence54064gi 1033167584 ref NZ_CP014758.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-041, complete sequence38384gi 1033023972 ref NZ_CP014775.1 Aeromonas veronii strain AVNIH1 plasmid pASP-a58, complete sequence198307gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S DNA, complete genome5838gi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete sequence4109gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete sequence85023	gi 1033167582 ref NZ_CP014756.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-04f, complete sequence	121030
gi 1033167584 ref NZ_CP014758.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-041, complete sequence38384gi 1033023972 ref NZ_CP014775.1 Aeromonas veronii strain AVNIH1 plasmid pASP-a58, complete sequence198307gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S DNA, complete genome5838gi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete 	gi 1033167583 ref NZ_CP014757.1 Klebsiella pneumoniae strain AATZP plasmid pNDM-1fa, complete sequence	54064
gi 1033023972 ref NZ_CP014775.1 Aeromonas veronii strain AVNIH1 plasmid pASP-a58, complete sequence198307gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S DNA, complete genome5838gi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete sequence4109gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete 	gi 1033167584 ref NZ_CP014758.1 Klebsiella pneumoniae strain AATZP plasmid pKPN-041, complete sequence	38384
gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S5838DNA, complete genomegi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete4109gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete85023gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete85023	gi 1033023972 ref NZ_CP014775.1 Aeromonas veronii strain AVNIH1 plasmid pASP-a58, complete sequence	198307
gi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete 4109 sequence gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete 85023 sequence 85023	gi 428277405 ref NC_017194.1 Bacillus subtilis subsp. natto BEST195 plasmid pBEST195S DNA, complete genome	5838
gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete 85023 sequence	gi 470157219 ref NC_020523.1 Corynebacterium callunae DSM 20147 plasmid pCC1, complete sequence	4109
	gi 470157235 ref NC_020553.1 Corynebacterium callunae DSM 20147 plasmid pCC2, complete sequence	85023

Nombre y hospedero del plásmido	Tamaño
gi 828921800 gb CP011585.1 Enterobacter asburiae strain CAV1043 plasmid pCAV1043-1919, complete sequence	1919
gi 828921803 gb CP011586.1 Enterobacter asburiae strain CAV1043 plasmid pCAV1043-10, complete sequence	10403
gi 828921812 gb CP011587.1 Enterobacter asburiae strain CAV1043 plasmid pCAV1043-51, complete sequence	51321
gi 828921864 gb CP011588.1 Enterobacter asburiae strain CAV1043 plasmid pCAV1043-58, complete sequence	58427
gi 828921939 gb CP011589.1 Enterobacter asburiae strain CAV1043 plasmid pKPC_CAV1043, complete sequence	59138
gi 828922004 gb CP011590.1 Enterobacter asburiae strain CAV1043 plasmid pCAV1043-97, complete sequence	96842
gi 828927103 gb CP011592.1 Klebsiella oxytoca strain CAV1099 plasmid pCAV1099-5410, complete sequence	5410
gi 828927110 gb CP011593.1 Klebsiella oxytoca strain CAV1099 plasmid pCAV1099-69, complete sequence	68910
gi 828927201 gb CP011594.1 Klebsiella oxytoca strain CAV1099 plasmid pCAV1099-111, complete sequence	111395
gi 828927324 gb CP011595.1 Klebsiella oxytoca strain CAV1099 plasmid pKPC_CAV1099, complete sequence	113105
gi 828927436 gb CP011596.1 Klebsiella oxytoca strain CAV1099 plasmid pCAV1099-114, complete sequence	113992
gi 828933424 gb CP011598.1 Kluyvera intermedia strain CAV1151 plasmid pKPC_CAV1151, complete sequence	43621
gi 828933472 gb CP011599.1 Kluyvera intermedia strain CAV1151 plasmid pCAV1151-83, complete sequence	82986
gi 828933578 gb CP011600.1 Kluyvera intermedia strain CAV1151 plasmid pCAV1151-215, complete sequence	215092
gi 828933802 gb CP011601.1 Kluyvera intermedia strain CAV1151 plasmid pCAV1151-296, complete sequence	295619
gi 959190081 gb CP013321.1 Klebsiella pneumoniae strain CAV1193 plasmid pCAV1193-3741, complete sequence	3741
gi 959190086 gb CP013323.1 Klebsiella pneumoniae strain CAV1193 plasmid pCAV1193-258, complete sequence	257944
gi 959190351 gb CP013324.1 Klebsiella pneumoniae strain CAV1193 plasmid pCAV1193-166, complete sequence	166486
gi 959190550 gb CP013325.1 Klebsiella pneumoniae strain CAV1193 plasmid pKPC_CAV1193, complete sequence	49565
gi 959195734 gb CP013326.1 Klebsiella pneumoniae strain CAV1193 plasmid pCAV1193-78, complete sequence	77808
gi 828895818 gb CP011569.1 Enterobacter cloacae strain CAV1311 plasmid pCAV1311-3223, complete sequence	3223
gi 828895823 gb CP011570.1 Enterobacter cloacae strain CAV1311 plasmid pCAV1311-34, complete sequence	33610
gi 828895865 gb CP011571.1 Enterobacter cloacae strain CAV1311 plasmid pKPC_CAV1311, complete sequence	90452
gi 828900768 gb CP011573.1 Enterobacter aerogenes strain CAV1320 plasmid pKPC_CAV1320, complete sequence	13981
gi 828939380 gb CP011603.1 Citrobacter freundii strain CAV1321 plasmid pCAV1321-1916, complete sequence	1916
gi 828939384 gb CP011604.1 Citrobacter freundii strain CAV1321 plasmid pCAV1321-3223, complete sequence	3223
gi 828939390 gb CP011605.1 Citrobacter freundii strain CAV1321 plasmid pCAV1321-3820, complete sequence	3820
gi 828939395 gb CP011606.1 Citrobacter freundii strain CAV1321 plasmid pCAV1321-4310, complete sequence	4310
gi 828939401 gb CP011607.1 Citrobacter freundii strain CAV1321 plasmid pCAV1321-4938, complete sequence	4938
gi 828939407 gb CP011608.1 Citrobacter freundii strain CAV1321 plasmid pKPC_CAV1321-45, complete sequence	44846
gi 828939458 gb CP011609.1 Citrobacter freundii strain CAV1321 plasmid pCAV1321-71, complete sequence	70610
gi 828939549 gb CP011610.1 Citrobacter freundii strain CAV1321 plasmid pCAV1321-135, complete sequence	135117
gi 828939693 gb CP011611.1 Citrobacter freundii strain CAV1321 plasmid pKPC_CAV1321- 244, complete sequence	243709
gi 828945252 gb CP011613.1 Klebsiella oxytoca strain CAV1335 plasmid pCAV1335-5410, complete sequence	5410
gi 828945263 gb CP011614.1 Klebsiella oxytoca strain CAV1335 plasmid pCAV1335-92, complete sequence	92095
gi 828945376 gb CP011615.1 Klebsiella oxytoca strain CAV1335 plasmid pKPC_CAV1335, complete sequence	113105

Nombre y hospedero del plásmido	Tamaño
gi 828945491 gb CP011616.1 Klebsiella oxytoca strain CAV1335 plasmid pCAV1335-118, complete sequence	117623
gi 828945622 gb CP011617.1 Klebsiella oxytoca strain CAV1335 plasmid pCAV1335-115, complete sequence	115319
gi 828952157 gb CP011619.1 Klebsiella pneumoniae strain CAV1344 plasmid pCAV1344-3741, complete sequence	3741
gi 828952164 gb CP011620.1 Klebsiella pneumoniae strain CAV1344 plasmid pCAV1344-40, complete sequence	39554
gi 828952208 gb CP011621.1 Klebsiella pneumoniae strain CAV1344 plasmid pCAV1344-78, complete sequence	77808
gi 828952302 gb CP011622.1 Klebsiella pneumoniae strain CAV1344 plasmid pKPC_CAV1344, complete sequence	176497
gi 828952515 gb CP011623.1 Klebsiella pneumoniae strain CAV1344 plasmid pCAV1344-250, complete sequence	250396
gi 828958913 gb CP011634.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-228, complete sequence	227680
gi 828959145 gb CP011635.1 Klebsiella oxytoca strain CAV1374 plasmid pKPC_CAV1374, complete sequence	332956
gi 828958465 gb CP011625.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-1919, complete sequence	1919
gi 828958469 gb CP011626.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-6538, complete sequence	6538
gi 828958474 gb CP011627.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-14, complete sequence	14274
gi 828958486 gb CP011628.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-16, complete sequence	16069
gi 828958505 gb CP011629.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-34, complete sequence	33610
gi 828958545 gb CP011630.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-49, complete sequence	49200
gi 828958596 gb CP011631.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-54, complete sequence	53596
gi 828958653 gb CP011632.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-84, complete sequence	83652
gi 828958755 gb CP011633.1 Klebsiella oxytoca strain CAV1374 plasmid pCAV1374-150, complete sequence	150318
gi 828905883 gb CP011575.1 Klebsiella pneumoniae strain CAV1392 plasmid pKPC_CAV1392, complete sequence	43621
gi 828905932 gb CP011576.1 Klebsiella pneumoniae strain CAV1392 plasmid pCAV1392-50, complete sequence	49832
gi 828905996 gb CP011577.1 Klebsiella pneumoniae strain CAV1392 plasmid pCAV1392-131, complete sequence	130719
gi 828911489 gb CP011579.1 Enterobacter cloacae strain CAV1411 plasmid pCAV1411-34, complete sequence	33610
gi 828911534 gb CP011580.1 Enterobacter cloacae strain CAV1411 plasmid pKPC_CAV1411, complete sequence	90452
gi 828965719 gb CP011637.1 Serratia marcescens strain CAV1492 plasmid pCAV1492-3223, complete sequence	3223
gi 828965723 gb CP011638.1 Serratia marcescens strain CAV1492 plasmid pCAV1492-6393, complete sequence	6393
gi 828965729 gb CP011639.1 Serratia marcescens strain CAV1492 plasmid pKPC_CAV1492, complete sequence	69158
gi 828965798 gb CP011640.1 Serratia marcescens strain CAV1492 plasmid pCAV1492-73, complete sequence	73100
gi 828965887 gb CP011641.1 Serratia marcescens strain CAV1492 plasmid pCAV1492-199, complete sequence	199444
gi 828971490 gb CP011643.1 Klebsiella pneumoniae strain CAV1596 plasmid pCAV1596-2927, complete sequence	2927
gi 828971497 gb CP011644.1 Klebsiella pneumoniae strain CAV1596 plasmid pCAV1596-41, complete sequence	40939
gi 828971542 gb CP011645.1 Klebsiella pneumoniae strain CAV1596 plasmid pKPC_CAV1596- 78, complete sequence	77801
gi 828971628 gb CP011646.1 Klebsiella pneumoniae strain CAV1596 plasmid pKPC_CAV1596- 97, complete sequence	96702
gi 828916677 gb CP011582.1 Enterobacter cloacae strain CAV1668 plasmid pKPC_CAV1668, complete sequence	43433
gi 828916727 gb CP011583.1 Enterobacter cloacae strain CAV1668 plasmid pCAV1668-85, complete sequence	85187
gi 828977532 gb CP011648.1 Enterobacter cloacae strain CAV1669 plasmid pCAV1669-34, complete sequence	33610
gi 828977575 gb CP011649.1 Enterobacter cloacae strain CAV1669 plasmid pKPC_CAV1669, complete sequence	90452

	- ~
Nombre y hospedero del plàsmido	Tamaño
gi 828982636 gb CP011651.1 Citrobacter freundii strain CAV1741 plasmid pCAV1741-1916, complete sequence	1916
gi 828982639 gb CP011652.1 Citrobacter freundii strain CAV1741 plasmid pCAV1741-3223, complete sequence	3223
gi 828982645 gb CP011653.1 Citrobacter freundii strain CAV1741 plasmid pCAV1741-16, complete sequence	16257
gi 828982668 gb CP011654.1 Citrobacter freundii strain CAV1741 plasmid pCAV1741-101, complete sequence	100873
gi 828982776 gb CP011655.1 Citrobacter freundii strain CAV1741 plasmid pCAV1741-110, complete seguence	109688
gi 828982914 gb CP011656.1 Citrobacter freundii strain CAV1741 plasmid pKPC_CAV1741, complete sequence	129196
gi 752806468 ref NZ_CP007558.1 Citrobacter freundii CFNIH1 plasmid pKEC-a3c, complete sequence	272297
gi 764910723 ref NZ_CP008824.1 Enterobacter cloacae ECNIH2 plasmid pKEC-39c, complete sequence	319976
gi/764911390 ref NZ_CP008825.1 Enterobacter cloacae ECNIH2 plasmid pKPC-272, complete sequence	282439
gi 764911497 ref NZ_CP008826.1 Enterobacter cloacae ECNIH2 plasmid pKPC-f91, complete sequence	47290
gi/749295309 ref NZ_CP008898.1 Enterobacter cloacae ECNIH3 plasmid pENT-576, complete sequence	62247
gi 749295313 ref NZ_CP008899.1 Enterobacter cloacae ECNIH3 plasmid pENT-8a4, complete sequence	255013
gi 749295351 ref NZ_CP008900.1 Enterobacter cloacae ECNIH3 plasmid pENT-d4a, complete sequence	60388
gi 749295352 ref NZ_CP008901.1 Enterobacter cloacae ECNIH3 plasmid pKPC-47e, complete sequence	50333
gi 1039515083 ref NZ_CP015160.1 Escherichia coli strain Eco889 plasmid pECO-fce, complete sequence	212180
gi 1039515084 ref NZ_CP015161.1 Escherichia coli strain Eco889 plasmid pECO-93a, complete sequence	88023
gi 749295354 ref NZ_CP008906.1 Enterobacter cloacae ECR091 plasmid pENT-08e, complete sequence	176943
gi 749295356 ref NZ_CP008907.1 Enterobacter cloacae ECR091 plasmid pENT-4bd, complete sequence	111227
gi 749295357 ref NZ_CP008908.1 Enterobacter cloacae ECR091 plasmid pKPC-47e, complete sequence	50333
gi 556555082 ref NC_022649.1 Escherichia coli JJ1886 plasmid pJJ1886_2, complete sequence	5167
gi 556555098 ref NC_022650.1 Escherichia coli JJ1886 plasmid pJJ1886_4, complete sequence	55956
gi 556555179 ref NC_022651.1 Escherichia coli JJ1886 plasmid pJJ1886_5, complete sequence	110040
gi 556579581 ref NC_022661.1 Escherichia coli JJ1886 plasmid pJJ1886_1, complete sequence	1552
gi 556579591 ref NC_022662.1 Escherichia coli JJ1886 plasmid pJJ1886_3, complete sequence	5631
gi 1006701338 gb CP014317.1 Escherichia coli JJ1887 plasmid pJJ1887-1, complete sequence	1552
gi 1006701341 gb CP014318.1 Escherichia coli JJ1887 plasmid pJJ1887-2, complete sequence	5167
gi 1006701348 gb CP014319.1 Escherichia coli JJ1887 plasmid pJJ1887-3, complete sequence	5631
gil1006701360lgblCP014320.1l Escherichia coli JJ1887 plasmid pJJ1887-5. complete seguence	130603
gil1006701503[gb]CP014321 1] Escherichia coli .L1887 plasmid p.L1887-4 complete sequence	107507
gi 757718048 ref NZ_CP008789.1 Klebsiella oxytoca KONIH1 plasmid pKOX-137, complete	133397
sequence gi 757718062 ref NZ_CP008790.1 Klebsiella oxytoca KONIH1 plasmid pKOX-86d, complete sequence	193725
gi[757718126 ref NZ_CP008791.1 Klebsiella oxytoca KONIH1 plasmid pKPC-727, complete	205586
gi 1039487545 ref NZ_CP015026.1 Klebsiella pneumoniae strain Kpn223 plasmid pKPN-065, complete sequence	170926
gi 1039504623 ref NZ_CP015131.1 Klebsiella pneumoniae strain Kpn555 plasmid pKPN-7c3, complete sequence	142858
gi 1039504630 ref NZ_CP015132.1 Klebsiella pneumoniae strain Kpn555 plasmid pKPN-d90, complete sequence	224457
gi 1039504643 ref NZ_CP015133.1 Klebsiella pneumoniae strain Kpn555 plasmid pKPN-d6b, complete sequence	26450
gi 749296014 ref NZ_CP007728.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH10 plasmid pAAC154-a50, complete sequence	15096

Nombre y hospedero del plásmido	Tamaño
gi 749296015 ref NZ_CP007729.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH10 plasmid pKPN-498, complete sequence	243824
gi 749296016 ref NZ_CP007730.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH10 plasmid pKpQIL-6e6, complete sequence	113639
gi[749295863]ref NZ_CP008828.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH1 plasmid pAAC154-a50, complete sequence	15096
gi 749295864 ref NZ_CP008829.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH1 plasmid pKPN-498, complete sequence	243824
gi[749295865]ref NZ_CP008830.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH1 plasmid pKpQIL-6e6, complete sequence	113639
gi 749296008 ref NZ_CP008798.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH24 plasmid pKPC-484, complete sequence	85473
gi 749296010 ref NZ_CP008799.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH24 plasmid pKPN-819, complete sequence	58050
gi 749296012 ref NZ_CP008800.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH24 plasmid pKPN-e44, complete sequence	194877
gi 757691820 ref NZ_CP007732.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH27 plasmid pKEC-dc3, complete sequence	268334
gi 757691877 ref NZ_CP007733.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH27 plasmid pKPN-068, complete sequence	80411
gi 757692139 ref NZ_CP007734.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH27 plasmid pKPN-262, complete sequence	338850
gi 757692273 ref NZ_CP007735.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH27 plasmid pKPN-a41, complete sequence	89770
gi 757692375 ref NZ_CP007736.1 Klebsiella pneumoniae subsp. pneumoniae KPNIH27 plasmid pKPN-b0b, complete sequence	113440
gi 1040187112 ref NZ_CP014648.1 Klebsiella pneumoniae strain KPNIH36 plasmid pKPN-821, complete sequence	40448
gi 1040187127 ref NZ_CP014649.1 Klebsiella pneumoniae strain KPNIH36 plasmid pKPN-fff, complete sequence	133484
gi 1040187156 ref NZ_CP014650.1 Klebsiella pneumoniae strain KPNIH36 plasmid pKpQIL- 6e6, complete sequence	113639
gi 1039435159 ref NZ_CP014763.1 Klebsiella pneumoniae strain KPNIH39 plasmid pKPN-332, complete sequence	284894
gi 1039435160 ref NZ_CP014764.1 Klebsiella pneumoniae strain KPNIH39 plasmid pKPN-704, complete sequence	36707
gi 1039435161 ref NZ_CP014765.1 Klebsiella pneumoniae strain KPNIH39 plasmid pKpQIL- 9b8, complete sequence	106559
gi 749295880 ref NZ_CP008930.1 Klebsiella pneumoniae strain PMK1 plasmid pPMK1-A, complete sequence	187571
gi 749295932 ref NZ_CP008931.1 Klebsiella pneumoniae strain PMK1 plasmid pPMK1-B, complete sequence	111693
gi 749295942 ref NZ_CP008932.1 Klebsiella pneumoniae strain PMK1 plasmid pPMK1-C, complete sequence	69947
gi 749295989 ref NZ_CP008933.1 Klebsiella pneumoniae strain PMK1 plasmid pPMK1-NDM, complete sequence	304526
gi 77390343 gb CP000146.1 Rhodobacter sphaeroides 2.4.1 plasmid C, complete sequence	105284
gi 484336769 ref NZ_AKVW01000003.1 Rhodobacter sphaeroides 2.4.1 plasmid Ax, complete sequence, whole genome shotgun sequence	124310
gi 484336777 ref NZ_AKVW01000007.1 Rhodobacter sphaeroides 2.4.1 plasmid Dx, complete sequence, whole genome shotgun sequence	52135
gi 552530711 ref NC_007488.2 Rhodobacter sphaeroides 2.4.1 plasmid B, complete sequence	114179
gi 552530953 ref NC_007490.2 Rhodobacter sphaeroides 2.4.1 plasmid D, complete sequence	100827
gi 684199956 gb CP008919.1 Providencia stuartii strain ATCC 33672 plasmid, complete sequence	48866

Y de escuchar el mundo ya está cansado, hay que empezar si queremos cambiar algo, No hay más tiempo que perder...