
Flow-based QoS forwarding strategy: a practical
implementation and evaluation

Santiago Bentancur, Martı́n Fernández Bon, Gabriel Gómez Sena, Claudina Rattaro, Ignacio Brugnoli
Facultad de Ingenierı́a

Universidad de la República
Montevideo, Uruguay

{sbentancur, mfbon, ggomez, crattaro, ibrugnoli}@fing.edu.uy

Abstract—During the last decade we have seen an explosive
growth in the deployment of cloud applications and services. In
this context, one of the challenges is Quality of Service (QoS)
management, which is the problem of allocating resources to the
applications to guarantee a service level along dimensions such as
performance, availability and reliability. Compared with the tra-
ditional best-effort service model based on BGP and the classical
tunnelling alternatives (like MPLS), software-defined-networking
(SDN) has the potential to provide a better QoS guarantee for
cloud applications and services due to its centralized control,
network-wide monitoring and flow-level scheduling. With this in
mind, we propose a QoS-aware overlay routing based on the
SDN architecture, which consists on the rewriting of IP address
and TCP/UDP ports in order to be able to force the packets to
follow the desired path on the overlay. We evaluate the proposal
through both simulations and practical implementation analysis.
In particular, we test our solution using two of the most popular
SDN controllers: ONOS and OpenDayLight.

Index Terms—Software Defined Network, Forwarding strategy,
ONOS, OpenDayLight, Quality of Service

I. INTRODUCTION

Providing end-to-end Quality of Service (QoS) at the global
Internet is known to be a difficult task because traffic follows
BGP routing policies which do not take QoS parameters into
account. As solutions involving changes to BGP protocol or
proposing an external protocol replacement are not likely to
be adopted, the main issue to provide end-to-end QoS is to
avoid BGP chosen paths if we can find alternative routes
with better performance metrics. Avoiding BGP paths can
be achieved with overlay networks which provide a way of
controlling Internet flows without involving changes to the
Internet Service Provider’s (ISP) infrastructure. By dynami-
cally optimizing routes at the overlay network, it is possible
to overcome connectivity disruptions due to BGP outages or
lack of quality of service up to a moderate number of nodes
[1] [2] [3].

Current cloud applications and services rely many times
on virtual servers at several datacenters distributed around
the world and often require high resilience and application-
dependent QoS. In this sense, the main use case for this
paper is to provide flow based QoS for several virtual servers
running at distant locations avoiding the collaboration of the
ISPs. Our approach for scalable, QoS-aware overlay routing
is based on the Software-defined networking (SDN) architec-
ture, which provides a centralized control of the forwarding

devices, adding flexibility, vendor independence and allowing
to perform routing decisions in an optimised way. Our solution
[4] allows to build a pure IP overlay network without the
need of classical tunnelling techniques like IP-in-IP or MPLS,
therefore providing a flexible, scalable and ISP independent
architecture. Once we decide which path a flow must follow on
the overlay to achieve the required QoS metrics, a forwarding
strategy must be pushed to the SDN switches. The proposed
strategy [5], as briefly described in Section III, is based on the
rewriting of IP address and TCP/UDP ports in order to be able
to force the packets to follow the desired path on the overlay.

Some preliminary results were published in our previous
articles [4] [6]. In this paper we present a more general
solution being our main contribution the implementation and
deployment in a real environment, integrating commercial
OpenFlow switches and considering two of the most popular
SDN controllers: Open Network Operating System (ONOS)
and OpenDayLight.

The rest of the paper is structured as follows. In Section II
we analyze some related works and in Section III we briefly
describe our flow-based QoS forwarding strategy. In Section
IV we introduce the SDN controllers and we present the main
characteristics of the simulated and real network implemen-
tations (for instance, we describe hardware, topology, etc).
In Section V we present our main results and additionally
we include some practical detected issues and its possible
solutions. Finally, we conclude in Section VI.

II. RELATED WORK

Performing traffic engineering by appling custom routing
policies on an overlay network has been proposed by various
authors. In [2] the overlay network uses IP-in-IP encapsulation
and the overlay propossed in [1] is based on overlay servers
which use a custom overlay header. The overlay propossed by
[7] also uses IP-in-IP encapsulation between dedicated overlay
servers. Any kind of tunneling technology on an overlay
network can provide the ability to perform traffic engineering.
On the other hand, we propose a pure IP overlay network
architecture avoiding any extra headers or encapsulation tech-
nique. The approach is feasible by making use of the SDN
technology, which enables a centralized control of the network
traffic. Moreover, the solution enables a fine grain flow based
QoS management.



III. FORWARDING STRATEGY OVERVIEW

Fig. 1 represents a simplified overlay network with four
points of presence (blue circles, PoPi) interconnected by the
ISP’s routers (orange, Ri). As stated, it is possible that the
green path may have better QoS metrics than the straightfor-
ward BGP path. The proposed forwarding strategy allows any
selected TCP or UDP flow to be forwarded through the desired
path just by modifying the packet headers, without affecting
the MTU nor managing any tunnels. Based on the SDN
paradigm, which provides a centralized view of the network,
we can take global decisions at the SDN Controller level
and instruct the OpenFlow switches at the overlay network
to perform the desired actions on the traffic.

Fig. 1. Overlay topology with four points of presence and alternative path.

Let us now expose the proposed algorithm. If we want
to forward the traffic from host H11 to host H31 through
OpenFlow switch S2 (Fig. 1), the main idea is to change the
packet destination IP address at switch S1 to an IP address
belonging to switch S2. When the packet arrives at switch
S2, the destination IP address is changed again to the final
destination IP address H31. To fully implement this initial
idea, a more general and complex forwarding strategy is
needed. Considering the reverse path filtering [8] configuration
surely enabled at the provider routers Ri and also to be
able to provide the ability of managing individual TCP or
UDP flows, the proposed strategy includes the modification
or both source and destination IP address, and also both
source and destination L4 ports on the way. The change of
IP addresses on the way will allow the packets to follow
the desired path, the source L4 port is used to carry the
local identification of the specific routing policy applied, and
the destination L4 port enables the retrieval of the original
headers at the last OpenFlow switch (in the example S3).
The detailed explanation and justification of the flexible and

scalable proposed solution to provide fine grain flow QoS
management are primary presented in [5] and will be also
addressed in other articles.

To illustrate the idea more clearly, suppose a particular UDP
flow from H11 (ephemeral port 1024) to H31 port 1200,
wants to be routed through the green path shown in Fig. 1.
Using the proposed forwarding strategy a packet belonging to
this flow will appear at the network links as is shown in Table
I.

TABLE I
UDP FLOW FROM H11:1024 TO H31:1200

H11 Host S1 to S2 link S2 to S3 link H31 Host
Src IP 172.16.1.1 172.16.1.253 172.16.2.253 172.16.1.1
Dst IP 172.16.3.1 172.16.2.253 172.16.3.253 172.16.3.1

Protocol UDP UDP UDP UDP
Src port 1024 1500 1501 1024
Dst port 1200 4000 4000 1200

As shown, the source and destination IP address are being
changed on the way in order to make the packets follow the
desired path. Source ports on the way work like virtual circuit
identifiers (in the example 1500 for the S1-S2 link and 1501
for the S2-S3 link) and destination port (4000 in the example)
indexes a global table at the controller level needed to retrieve
the original headers of each flow at the final switch. It is
essential to be noted that the arriving packet at destination
host H31 will have the initial headers originated at host H11,
therefore the forwarding strategy is transparent to the end-
points.

IV. IMPLEMENTATION AND DEMONSTRATION

The solution is implemented over two Controllers, Open
Network Operating System (ONOS) [9] and OpenDayLight
(ODL) [10], chosen by its market adoption and features.
Before introducing the demonstration results, let us now
describe those controllers and some details of our technical
implementation.

A. SDN Controllers

There is a variety of controllers and platforms to consider
when selecting an SDN strategy, some of the well known
projects are NOX, POX, Floodlight, ODL, ONOS and RYU.
Because of their popularity [11], great level of documentation,
the vast number of features and the ease for the development
of new applications, we choose ODL and ONOS for this
deployment [12] [13].

1) Open Network Operating System: The proposed for-
warding strategy has been developed as an application running
over ONOS called Overlay Network Routing Application (ON-
RApp) to perform the automatic management of the overlay
topology and the route management processes, besides other
functions (visit Github project link in [14]). The ONRApp
application creates an abstraction layer between the SDN
application plane and the complex process of implementing the
forwarding policies as well as other network functionalities.
The implemented services are exposed by ONRApp through a



REST API so that external entities can automatize and manage
all the required functions through POST and GET methods
using JSON format for sending and receiving parameters. The
ONOS version used for this work is 2.1.0.

2) OpenDayLight: ODL project is another open-source
platform that uses open protocols to provides a centralized
control and monitoring of the network devices [10]. We have
not developed an analogous ONRApp based on ODL yet, so
in this case we have worked with static switch configurations.
The ODL version used for this work is Beryllium-SR4.

As a first step, using Mininet emulator [15] a network
composed of interconnected OpenFlow switches was created
and its flow tables were statically configured using ODL. We
conclude that to properly configure a network environment
using ODL, we have to enable some features to expand its
networking capabilities [10], as ODL has no pre-installed
features by default. In particular, the features that need to
be enabled are: odl-OpenFlowplugin-all, odl-restconf and odl-
l2switch-all. Those features allow the use of OpenFlowplugin,
an ODL related project [16], which enables a REST API
running over HTTP, which allows access to data defined
in YANG (RFC 7950) and provides classic L2 (Ethernet)
forwarding across connected OpenFlow switches.

The ODL controller provides two RESTCONF interfaces
(RFC 8040) in order to program the OpenFlow devices: the
Configuration Datastore and the RPC Operations. As the last
one is not persistent, we use the Configuration Datastore [16]
which accepts requests in both JSON or XML format, using
the former for the current implementation.

B. Emulated Overlay network

The topology represented in Fig. 1 is emulated with Mininet
[15] and the test consist in being able to forward UDP and
TCP packet streams through different paths on the overlay
network. Before getting into the details of the traffic types
evaluated, it is important to introduce the concept of Overlay
Network Routing Policy (ONRP). This is the rule that defines
which path will follow certain type of traffic, defined by the
following expression:

ONRP = {ONRP id, Priority,

Src Subnet,Dst Subnet,

Src Port,Dst Port,

L4 Protocol, Path,ONAT Id}

(1)

It can be seen that each ONRP is identified by an identifier
called ONRP id and it is specified by the origin and desti-
nation sub-networks, the layer 4 ports, a sequence of points
of presence that the matching traffic must follow from origin
to destination and an associated priority. Assigning a level of
priority to each ONRP improves the flexibility of the solution
to implement complex routing scenarios. Table II shows 5
ONRPs created in a test environment to validate the flow
identification algorithm. As it can be appreciated, it is possible
not to specify some fields such as source port, destination
port and layer 4 protocol. In these cases, the priority field is

particularly important since, for example, if the host located at
PoP1 whose IP address is 172.16.1.2 sends traffic to the host
located at PoP3 whose IP address is 172.16.3.2, with source
port 40005 and destination port 40006, it would be impossible
to decide whether the matching ONRP is ONRP 1 or ONRP
5.

To validate the proper forwarding of the different flows, a
sniffer is used to view the incoming traffic at any desired point
of the network.

C. Real Overlay network

To validate the forwarding algorithm in a real scenario,
a testbed with commercial switches is deployed. Fig. 2 and
Fig. 3 show the main components of our real scenario.

Fig. 2. Implemented Overlay topology.

1) Internet network is implemented by three Mikrotik
RouterBOARD 433AH (R1, R2 and R3).

2) Overlay network is implemented with a Pica8 switch
(model P3297, PicOS version 2.6.4 [17]) supporting
OpenFlow 1.3. Three bridges are created, so as to
provide three logic switches (S1, S2 and S3) one for
each point of presence.

3) Controllers, one PC with ODL and another with ONOS.
4) Private network (clients H11, H21, H31, etc) are im-

plemented with laptops.

Fig. 3. Testbed scenario.

Two main representative scenarios for validating the for-
warding strategy are deployed: (1) Basic Algorithm Validation



TABLE II
ONRPS IMPLEMENTED TO VALIDATE THE FORWARDING ALGORITHM IN THE SIMULATED NETWORK.

ONRP id 1 2 3 4 5
Src Subnet 172.16.1.2/32 172.16.1.2/32 172.16.1.2/32 172.16.1.0/24 172.16.1.0/24
Dst Subnet 172.16.3.2/32 172.16.3.2/32 172.16.3.2/32 172.16.3.2/32 172.16.3.0/24

Protocol UDP UDP UDP TCP *
Src port 40005 40003 40002 4300 *
Dst port 40006 40004 40003 80 *

Path S1,S3 S1,S2,S4,S3 S1,S2,S3 S1,S2,S4,S3 S1,S2,S3
Priority 8224 8224 8224 4120 792

and (2) Flow Identification. Both are tested using ONOS and
ODL Controllers. In (1) we generate UDP traffic according
to Table III and the forwarding policy according to the green
path illustrated in Fig. 2. On the other hand, in (2) we generate
different traffic flows according to Table V.

V. EXPERIMENTS AND EVALUATION

The results obtained in the real overlay network are exposed
below. The results over the simulated scenario are totally
analogous but using a more complex topology and therefore
considering a greater variety of paths (see for instance the
ONOS simulated results in [5]).

A. Basic Algorithm Validation

In this basic proof, one ONRP is implemented (see Table
III).

TABLE III
ONRP FOR BASIC ALGORITHM VALIDATION.

Src IP Dest. IP Src. port Dest. port Path
172.16.1.1 172.16.3.1 43000 8080 S1-S2-S3

TABLE IV
BASIC ALGORITHM VALIDATION: UDP FLOW FROM H11:43000 TO

H31:8080.

H11 Host S1 to S2 link S2 to S3 link H31 Host
Src IP 172.16.1.1 172.16.1.253 172.16.2.253 172.16.1.1
Dst IP 172.16.3.1 172.16.2.253 172.16.3.253 172.16.3.1

Protocol UDP UDP UDP UDP
Src port 43000 1 1 43000
Dst port 8080 1 1 8080

First of all, in Figs. 4, 5 and 6 we show the flow table
entries at each OpenFlow switch, determined by the desired
forwarding policy. On the other hand, in Figs. 7, 8, 9, 10 and
11 we show traffic captures at H11, R1, R2, R3 and H31
respectively, where we can observe how packets are modified
by the OpenFlow switches.

Fig. 4. Flow table entry at switch S1.

Fig. 5. Flow table entry at switch S2.

Fig. 6. Flow table entry at switch S3.

In this test, the packet match fields identifying the flow are
source-destination IP addresses and ports; then the flow rules
may be interpreted as follows. If a packet matches the flow
table entry of S1 (in other words source IP is 172.16.1.1,
destination IP is 172.16.3.1, source port is 43000 and des-
tination port is 8080), then IP addresses and ports will be
changed according to the corresponding action. In this sense,
we can observe Figs. 7 and 8. The first one shows the original
traffic generated at H11 and the second one reflects the traffic
forwarder by R1. Packets to R1 arrive with 172.16.1.253:1
and 172.16.2.253:1 as Source IP:port and Destination IP: port
respectively. Due to the destination address, R1 forwards that
traffic to R2.

Fig. 7. Traffic capture in H11. This traffic arrives to S1.

Fig. 8. Traffic capture in R1. Traffic modified by S1.

In Fig. 9 we show a traffic capture at R2 in the interface
connected to S2 (traffic from R2 to S2 and vice-verse). Traffic
from R1 (with the tuple 172.16.1.253:1 and 172.16.2.253:1 as



source and destination parameters) is forwarded to S2 and
then this switch applies the action that is defined in its flow
table (see Fig. 5): IP address are changed and the traffic is
sending through the same interface that was received.

Fig. 9. Traffic capture in R2. Traffic from R2 to S2 and vice-verse.

Finally, in Fig. 10 and Fig. 11 we show the traffic outbound
R3 and traffic that effectively arrives to H31. As expected,
captures in H11 and H31 show the same traffic characteristics.

Fig. 10. Traffic capture in R3. Traffic from R3 to S3, before S3 applies the
correspondent actions.

Fig. 11. Traffic capture in H31.

B. Flow Identification test

For the second proof we use the same topology described
in Fig. 2 and we implement three different ONRPs:

• ONRP 1: UDP traffic from subnet 172.16.1.1/32 to subnet
172.16.3.1/32 with source port 43000 and destination port
8080 is routed through S1-S2-S3 path.

• ONRP 2: UDP traffic from subnet 172.16.1.0/24 to subnet
172.16.2.0/24 with any source port and destination port
900 is routed through S1-S2 path. This policy shares a
”link” with ONRP 1.

• ONRP 3: UDP traffic from subnet 172.16.1.0/24 to subnet
172.16.3.0/24 with any source port and any destination
port is routed through S1-S3 path.

To test this scenario we generate four flows according to
Table V. Observe that flow 1 belongs to ONRP 1, flow 2 to
ONRP 2 and flow 3 and flow 4 belong to ONRP 3. It should
be noted that no port is specified in the last policy, so different
flows can be generated that match ONRP 3.

As an example, following we explain S1 rules and its local
identifiers (see summary in Table VI). Also in Fig. 12 we
present a traffic capture in R1. For flow 1, src port = 0 and
dst port = 1 are used as local identifiers in [PoP1,PoP2] path,
on the other hand for flow 2 (as it belongs to another policy),

TABLE V
FLOW IDENTIFICATION: UDP FLOWS FROM H11.

flow 1 flow 2 flow 3 flow 4
Src IP 172.16.1.1 172.16.1.1 172.16.1.1 172.16.1.1
Dst IP 172.16.3.1 172.16.2.1 172.16.3.1 172.16.3.1

Protocol UDP UDP UDP UDP
Src port 43000 100 1000 2000
Dst port 8080 900 8080 8080

Path S1,S2,S3 S1,S2 S1,S3 S1,S3

src port = 1 and dst port = 1 are used. Note that both flows
have to go through the link [PoP1,PoP2] and according to
the local identifier (src port) it is possible to differentiate both
flows. For flow 3, since it belongs to another policy and it has
to travel on the link [PoP1,PoP3], src port = 2 and the dst
port = 1 are used. So far all flows belong to different policies
and have been successfully identified. In the case that they
belong to the same policy, as is the case of flow 3 and flow
4, it is necessary to be able to differentiate them. To achieve
this, the src port = 2 is configured for flow 4 indicating that
they belong to the same policy but now the dst port = 2 is
configured in order to differentiate both flows.

TABLE VI
SUMMARY OF FLOW LOCAL IDENTIFIERS IN SWITCH S1.

flow Src. port Dest. port ONRP
1 0 1 1
2 1 1 2
3 2 1 3
4 2 2 3

Fig. 12. Traffic modified by S1 captured at R1.

C. Practical issues and its solutions

During the validation and evaluation process, we have found
some misbehaviour of the commercial OpenFlow switches
(besides the Pica8, we have also tried to use two HP A5500-
24G-4SFP HI, Software Version 5.20.99 but without success).

1) INPORT feature: Besides changing the source and des-
tination IP address and source port for bounced packets, as
explained in Section III, it is necessary to force the intermedi-
ate switches (for instance S2 in Fig. 3) to forward the packets
through the same interface they arrived. To solve this issue,
OpenFlow provides the “INPORT” and the “ALL” forwarding
schemes [18], but the second option implies a flooding in
all the interfaces thus representing an obvious performance
penalty. In the simulated-environment, “INPORT’ works com-
pletely successful. However, in the real one we need to use
the “ALL” forwarding scheme.



2) Cookies unique identification: In section B.11.11 of the
OpenFlow specification version 1.5 it is stated that: “Having
the cookie in the packet-in enables the controller to more
efficiently classify packet-in, rather than having to match the
packet against the full flow table”. The ONOS controller uses
this idea by setting an application identifier in the 12 most
significant bits of the cookie so that it can easily identify which
application installed the flow entry that provoked a certain
PACKET IN.

Using the same concept, we configured the ONRP id in
the remaining 48 bits of the cookie in order to simplify the
matching process at the controller level [5]. In particular, this
meant the existence of multiple flow entries with the same
exact cookie value. Although this might seam wrong, we were
not able to find any theoretical mistake based on the OpenFlow
specification. Moreover, the testing done with the Mininet
emulator, which uses switches OpenVSwitch version 2.9.2,
where completely successful. However, during the execution
in the real-environment testing bench, we encountered that
the HP A5500 Switches implemented a flow entry duplication
filter based on the cookie value. This made our implementation
completely useless, therefore in order to solve this problem,
we reduced the ONRP id size from 48 bits to 16 bits and we
used the 32 remaining bits to uniquely differentiate every flow
entry installed.

3) ODL and HP A5500: During the real network experi-
ments we detected a communication problem between ODL
and switches HP A5500. We believe that is strongly related
with the switch firmware version. For this reason, the real
overlay network only includes a Pica8 OpenFlow switch.

4) ARP for switches: As the OpenFlow switches need to
have an IP address assigned in order to receive and process
packets matching the ONRPs, it is necessary to solve the
ARP requests and replies. For instance, when R2 receives a
packet destined to S2 switch IP address, it will send an ARP
request to obtain the required MAC address. In the case of
the complete application developed for the ONOS controller,
we implement a module which implements the required ARP
message handling [5]. For the tests performed with the ODL
controller, we use additional laptops configured with the same
IP address associated to the switches just to provide the needed
responses to ARP requests. Subsequent messages sent by the
routers to the MAC address of those additional laptops are
handled by the OpenFlow switch, avoiding forwarding the
traffic to the laptop and enabling to bounce the packets back
to the router.

VI. CONCLUSIONS

We demonstrate that the proposed forwarding strategy for
flow-based QoS forwarding can be properly implemented over
a SDN architecture considering the benefits of a software
implementation at a centralized point of the network.

The main challenges we faced were related to behaviour of
the commercial switches available to implement the testbed
as reported in Section V-C, probably caused by outdated
hardware or firmware.

We hope to be able to do further testing with other commer-
cial OpenFlow switches and it will be also useful to analyze
the implementation of a complete application to run over ODL
controller.

ACKNOWLEDGMENT

This work was partially supported by ANII-FMV project
”Routing and metrology in Overlay Networks using the Soft-
ware Defined Network paradigm”.

The authors would like to thank Diego Mazzuco for his time
to solve different issues of ONOS development.

REFERENCES

[1] B. D. Vleeschauwer, F. D. Turck, B. Dhoedt, P. Demeester, M. Wijnants,
and W. Lamotte, “End-to-end QoE Optimization Through Overlay
Network Deployment,” in Information Networking, 2008. ICOIN 2008.,
Jan 2008.

[2] D. G. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
Overlay Networks,” in 18th ACM SOSP, 2001.

[3] H. Zhang, L. Tang, and J. Li, “Impact of Overlay Routing on End-to-
End Delay,” in Computer Communications and Networks, 2006. ICCCN
2006., 2006.

[4] P. Belzarena, G. G. Sena, I. Amigo, and S. Vaton, “Sdn-
based overlay networks for qos-aware routing,” in Proceedings
of the 2016 Workshop on Fostering Latin-American Research
in Data Communication Networks, ser. LANCOMM ’16. New
York, NY, USA: ACM, 2016, pp. 19–21. [Online]. Available:
http://doi.acm.org/10.1145/2940116.2940121

[5] I. Brugnoli, M. Fernández, and D. Mazzuco, “Overlay network routing
application (onrapp) (undergraduate tesis) universidad de la república
(uruguay). facultad de ingenierı́a. iie,” jun 2019. [Online]. Available:
https://iie.fing.edu.uy/publicaciones/2019/BFM19

[6] I. Amigo, G. G. Sena, M. Chami, and P. Belzarena, “An sdn-based
approach for qos and reliability in overlay networks,” in Network
Traffic Measurement and Analysis Conference, TMA 2018, Vienna,
Austria, June 26-29, 2018, 2018, pp. 1–2. [Online]. Available:
https://doi.org/10.23919/TMA.2018.8506581

[7] O. Brun, L. Wang, and E. Gelenbe, “Big Data for Autonomic
Intercontinental Overlays,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 3, pp. pp.575 – 583, 2016. [Online].
Available: https://hal.laas.fr/hal-01461990

[8] T. U. PENGUIN, “rp filter and lpic-3 linux security.” [Online].
Available: https://www.theurbanpenguin.com/rp filter-and-lpic-3-linux-
security/

[9] ONF, “Onos: github repository.” [Online]. Available:
https://github.com/opennetworkinglab/onos

[10] OpenDaylight, “Documentation release beryllium.” [Online]. Avail-
able: https://buildmedia.readthedocs.org/media/pdf/opendaylight/stable-
beryllium/opendaylight.pdf

[11] F. Pakzad, “Comparison of software defined networking
(sdn) controllers. part 7: Comparison and product rating.”
[Online]. Available: https://aptira.com/comparison-of-software-defined-
networking-sdn-controllers-part-7-comparison-and-product-rating/

[12] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “Sdn controllers:
A comparative study,” in 2016 18th Mediterranean Electrotechnical
Conference (MELECON), April 2016, pp. 1–6.

[13] M. Darianian, C. Williamson, and I. Haque, “Experimental evaluation of
two openflow controllers,” in 2017 IEEE 25th International Conference
on Network Protocols (ICNP), Oct 2017, pp. 1–6.

[14] I. Brugnoli, M. Fernández, and D. Mazzuco, “Onrapp: Overlay
network routing application (git repository),” 2019. [Online]. Available:
https://gitlab.fing.edu.uy/tesis/onra/

[15] Mininet, “Mininet.” [Online]. Available: http://mininet.org/download/
[16] OpenDaylight, “Odl openflowplugin release master.” [On-

line]. Available: https://buildmedia.readthedocs.org/media/pdf/odl-
openflowplugin/stable-oxygen/odl-openflowplugin.pdf

[17] Pica8, “Picos support for openflow 1.3.” [Online]. Available:
https://docs.pica8.com/display/PicOS21116cg/

[18] ONF, “Openflow switch specification version 1.3.0 (wire protocol
0x04).” [Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.3.0.pdf


