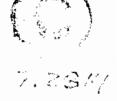


FACULTAD DE AGRONOMIA UNIVERSIDAD DE LA REPUBLICA

EVALUACION DE DISTINTAS TEMPERATURAS BASE PARA LA SUMA DE GRADOS DIA EN DIFERENTES CULTIVARES DE ARROZ

por


Fernando Gabriel CASTERA GALVAN
Johnny Adolfo FERNANDEZ RODRIGUEZ SANTANA

TESIS

1999

MONTEVIDEO

URUGUAY

UNIVERSIDAD DE LA REPUBLICA FACULTAD DE AGRONOMIA

EVALUACION DE DISTINTAS TEMPERATURAS BASE PARA LA SUMA DE GRADOS DIA EN DIFERENTES CULTIVARES DE ARROZ

Por FACULTAD DE AGDICACIDA

> DEPARTANT MTO DE DOCUMERCAMON A BIBLIOTECA

Fernando Gabriel CASTERA GALVAN
Johnny Adolfo FERNANDEZ RODRIGUEZ SANTANA

TESIS presentada como uno de los requisitos para obtener el título de Ingeniero Agrónomo. (Orientación Agrícola – Ganadera)

MONTEVIDEO URUGUAY 1999

Γesis aprobada por	Alrano Roll
Director:	Alvaro Roel Dellazoppa
	Nombre completo y firma
	Rodolfo Pedocchi
	Nombre completo y firma
	Pablo Chiara
	Nombre completo y firma
Fecha:	13 de Agosto de 1999
Autor:	Fernando Gabriel Casterá Galván Nombre completo y firma
-	Johnny Adolfo Fernández Rodriguez Santana Nombre completo y firma

AGRADECIMIENTOS

Un agradecimiento especial a nuestro director de tesis Alvaro Roel por su invalorable colaboración y amistad durante la elaboración del presente trabajo. Al personal del área de riego de INIA Treinta y Tres por su colaboración, apoyo y amistad durante la realización del trabajo.

A Olga Alvarez, Gloria Cossio y Verónica De Garzarain de INIA Treinta y Tres por su amistad y activa disposición en las consultas diarias.

A los Ingenieros Agrónomos Roberto Pedocchi y Pablo Chiara por sus disposiciones en la colaboración de este trabajo.

A los Grupos Técnicos de Arroz y Forrajeras, a todo el personal de INIA Treinta y Tres y Facultad de Agronomía que han contribuido de alguna manera en la realización de este trabajo.

A los Ingenieros Agrónomos Roberto Lima de la Empresa C.A.S.A y Hebert Mateo de la Empresa Agropecuaria del Este por sus valiosas disponibilidades para el aporte de datos para validar el trabajo.

Agradecimientos especiales a nuestros familiares y amigos por su magnífico esfuerzo y apoyo incondicional para concretar este trabajo.

Muchas gracias

TABLA DE CONTENIDO

	Página
PAGINA DE APROBACION	I
AGRADECIMIENTOS	II
LISTA DE CUADROS E ILUSTRACIONES	VII
I. <u>INTRODUCCION</u>	1
II. REVISION BIBLIOGRAFICA.	3
A. DESARROLLO DE LA PLANTA DE ARROZ	3
1. Aspectos generales	3
2. Etapas de crecimiento del cultivo	4
a. Etapa vegetativa	4
b. Etapa reproductiva	4
c. Etapa de llenado de grano y maduración	5
B. INFLUENCIA DE LA TEMPERATURA EN EL CULTIVO	5
1. Aspectos generales	5
2. Incidencia en la etapa vegetativa.	7
3. Incidencia en la etapa reproductiva	9
a. Iniciación de primordio floral	9
b. Embarrigado	10
c. Antesis	10
4. Incidencia en la etapa de maduración (llenado de grano)	10
C. INCIDENCIA DEL FOTOPERIODO	11
1. Aspectos generales.	11
2. Incidencia en la etapa vegetativa.	13
3. Incidencia en la etapa reproductiva	14
4. Incidencia en la etapa de maduración (llenado de grano)	15
D. CARACTERIZACION DE LOS GENOTIPOS INDICOS Y	
JAPONICOS	15
E. MODELOS DESARROLLADOS	17
1. <u>Utilización de los modelos</u>	17
2. Suma térmica	18
3. Estudios y antecedentes.	19
4. Métodos de cálculo de la temperatura base.	20
5. Fuentes de error en los modelos	23
6. Aplicaciones	25
III MATERIALES Y METODOS	28
A. UBICACIÓN	28
B. FUENTE DE DATOS	28
C. DISEÑO EXPERIMENTAL DE LOS ENSAYOS	29
D. CULTIVARES	29
1. Bluebelle	29

	2. <u>El Paso 144</u>	30
	3. INIA Tacuarí	30
	4. INIA Caraguatá	30
	5. <u>INIA Cuaró</u>	31
	6. <u>Línea experimental 1130</u>	31
	E. DETERMINACION DE REGISTROS	32
	F. FUENTES DE DATOS CLIMATICOS	33
	G. METODOLOGIA EMPLEADA	34
	H. ANALISIS ESTADISTICO	36
	1. Relación entre temperatura y duración del ciclo para cada	
	<u>variedad</u>	36
	2. Relación entre horas de sol reales y duración del ciclo para cada	
	variedad	36
	3. Relación entre desarrollo equivalente y temperatura para cada	
	variedad	37
	4. Relación entre temperatura y Grados Día Acumulados para cada	
	temperatura base en cada etapa de las variedades.	37
	I. FUENTES DE DATOS PARA LA VALIDACION DE LA	
	METODOLOGIA	38
IV.	. <u>RESULTADOS Y DISCUSION</u>	39
	A. INCIDENCIA DE LA TEMPERATURA Y LAS HORAS DE SOL	
	EN EL CICLO PARA CADA VARIEDAD DE ARROZ	39
	Aspectos generales.	39
	2. Variedad Bluebelle	40
	3. Variedad El Paso 144	42
	4. Variedad INIA Tacuari	44
	5. Variedad INIA Caraguatá.	46
	6. Variedad INIA Cuaró	48
	7. Linea experimental 1130	50
	B. ESTUDIO DE LAS TEMPERATURAS BASE EN LAS	
	DIFERENTES VARIEDADES	52
	1. Siembra a floración	53
	a. Variedad Bluebelle	53
	b. Variedad El Paso 144	57
	c. Variedad INIA Tacuarí	61
	d. Variedad INIA Caraguatá	64
	e. Variedad INIA Cuaró	68
	f. Línea experimental 1130	71
	2 Floración a madurez fisiológica.	75
	a. Variedad Bluebelle	75
	b. Variedad El Paso 144	78
	c. Variedad INIA Tacuarí	79
	d. Variedad INIA Caraguatá	82

e. Variedad INIA Cuaró	84
f. Linea experimental 1130	86
3. Siembra a madurez fisiológica.	88
a. Variedad Bluebelle	88
b. Variedad El Paso 144	91
c. Variedad INIA Tacuarí	93
d. Variedad INIA Caraguatá	96
e. Variedad INIA Cuaró	98
f. Línea experimental 1130	100
C. GRADOS DIA ACUMULADOS PARA CADA VARIEDAD	102
1 Siembra a floración	102
2. Floración a madurez fisiológica.	104
3. Siembra a madurez fisiológica	105
D. ENSAYO BIOCLIMATICO	106
1. Emergencia a primordio floral	106
2. Primordio floral a floración.	108
3. Emergencia a floración	109
E EVOLUCION DE LA TASA DE LLENADO DE GRANO Y	
DETERMINACION DE LA MADUREZ FISIOLOGICA	110
1. Evolución del llenado de grano en la fecha de siembra normal	111
 Evolución del llenado de grano en la fecha de siembra tardía 	113
3. Comparación de ambas fechas de siembra	116
F. VALIDACION DE LA METODOLOGIA	119
1. <u>El Paso 144</u>	120
2. INIA Tacuarí	122
V. <u>CONCLUSIONES</u>	127
VI. <u>RESUMEN</u>	129
VII. <u>SUMMARY</u>	131
VIII BIBLIOGRAFIA	133
IX. ANEXO	136

LISTA DE CUADROS Y GRAFICAS

Cuadro	o Nº	Página
1	Temperaturas críticas máximas, mínimas y óptimas (en ° C) en diferentes etapas de desarrollo de la planta de arroz	6
2	Inducciones fenológicas para cultivares de arroz de madurez temprana, intermedia y tardía	8
3	Respuesta al fotoperíodo y temperatura de variedades de arroz en diferentes regiones.	12
4	Unidades térmicas acumuladas en base 10° C registradas por Roel y Blanco en 1993 y Deambrosi et al. en 1997	20
5	Número de zafras y de siembras presentes para cada variedad extraídos del PMGA.	28
6	Número de zafras y de siembras presentes para cada variedad extraídos del ensayo Bioclimático	29
7	Duración promedio de las etapas en días para las variedades estudiadas, datos del P.M.G.A. de la zafra 86/87 a la 97/98	32
8	Coeficientes de correlación (R) de las dos variables climáticas (temperatura media del ciclo y horas de sol) con la duración del ciclo en días	39
9	Resumen de resultados obtenidos en Bluebelle para la fase siembra a floración.	53
10	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de Bluebelle en la fase siembra a floración	56
11	Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en Bluebelle (n = 50)	57
12	Resumen de resultados obtenidos en El Paso 144 para el ciclo siembra a floración	58

Cuadro Nº		Página
13	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de El Paso 144 en el ciclo siembra a floración.	60
14	Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en El Paso 144 (n = 47)	61
15	Resumen de resultados obtenidos en INIA Tacuarí para el ciclo siembra a floración.	61
16	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Tacuarí en el ciclo siembra a floración	63
17	Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en INIA Tacuarí (n = 35)	64
18	Resumen de resultados obtenidos en INIA Caraguatá para el ciclo siembra a floración.	65
19	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Caraguatá en el ciclo siembra a floración	66
20	Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en INIA Caraguatá (n = 30)	67
21	Resumen de resultados obtenidos en INIA Cuaró para el ciclo siembra a floración.	68
22	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Cuaró en el ciclo siembra a floración	70
23	Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en INIA Cuaró (n = 13)	71

Cuada	ro N°	Página
24	Resumen de resultados obtenidos en L 1130 para el ciclo siembra a floración.	71
25	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de L 1130 en el ciclo siembra a floración	73
26	Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en L 1130 (n = 18)	74
27	Resumen de resultados obtenidos en Bluebelle para el ciclo floración a madurez fisiológica	76
28	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de Bluebelle en el ciclo floración a madurez fisiológica	77
29	Resumen de resultados obtenidos en El Paso 144 para el ciclo floración a madurez fisiológica	78
30	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de El Paso 144 en el ciclo floración a madurez fisiológica	7 9
31	Resumen de resultados obtenidos en INIA Tacuarí para el ciclo floración a madurez fisiológica	80
32	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Tacuarí en el ciclo floración a madurez fisiológica	81
33	Resumen de resultados obtenidos en INIA Caraguatá para el ciclo floración a madurez fisiológica.	82
34	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA	02
	Caraguatá en el ciclo floración a madurez fisiológica	83

Cuadro Nº		Página
35	Resumen de resultados obtenidos en INIA Cuaró para el ciclo floración a madurez fisiológica	84
36	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Cuaró en el ciclo floración a madurez fisiológica	85
37	Resumen de resultados obtenidos en L 1130 para el ciclo floración a madurez fisiológica.	86
38	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de L 1130 en el ciclo floración a madurez fisiológica	87
39	Resumen de resultados obtenidos en Bluebelle para el ciclo siembra a madurez fisiológica.	88
40	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de Bluebelle en el ciclo siembra a madurez fisiológica	90
41	Resumen de resultados obtenidos en El Paso 144 para el ciclo siembra a madurez fisiológica.	91
42	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de El Paso 144 en el ciclo siembra a madurez fisiológica	93
43	Resumen de resultados obtenidos en INIA Tacuarí para el ciclo siembra a madurez fisiológica	93
44	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Tacuarí en el ciclo siembra a madurez fisiológica	95
45	Resumen de resultados obtenidos en INIA Caraguatá para el ciclo siembra a madurez fisiológica	96

Cuadro	N°	Página
46	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Caraguatá en el ciclo siembra a madurez fisiológica	97
47	Resumen de resultados obtenidos en INIA Cuaró para el ciclo siembra a madurez fisiológica	98
48	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Cuaró en el ciclo siembra a madurez fisiológica	100
49	Resumen de resultados obtenidos en L 1130 para el ciclo siembra a madurez fisiológica	100
50	Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de L 1130 en el ciclo siembra a madurez fisiológica.	102
51	Grados Día Acumulados, Temperatura base, desvío en días, coeficiente de variación y la relación con la temperatura en cada variedad para la etapa siembra a floración	103
52	Grados Día Acumulados, Temperatura base, desvío en días y coeficiente de variación en cada variedad para la etapa floración a madurez fisiológica.	105
53	Grados Día Acumulados, Temperatura base, desvío en días y coeficiente de variación en cada variedad para la etapa siembra a madurez fisiológica.	106
54	Resumen de los resultados de desvío en días y coeficiente de variación para cada variedad en la etapa emergencia a primordio floral	107
55	Resumen de los resultados de desvío en días y coeficiente de variación para cada variedad en la etapa primordio floral a floración	108
56	Resumen de los resultados de desvío en días y coeficiente de variación para cada variedad en la etapa emergencia a floración	109

Cuadi	ro Nº	Página
57	Grados Día Acumulados (Tb = 0°) y desvío en días de las etapas emergencia a primordio, primordio a floración y emergencia a floración de las variedades estudiadas	110
58	Temperaturas promedio (° C) de los 10 primeros DPF a las que fueron sometidos los distintos cultivares en las dos fechas de siembra.	117
59	Rendimientos de cosecha (en kg/há), % de grano verde y día de cosecha post floración de las diferentes variedades utilizadas en la fecha de siembra normal.	118
60	Rendimientos de cosecha (en kg/há), % de grano verde y dia de cosecha post floración de las diferentes variedades utilizadas en la siembra tardía	118
61	Grupos y números de chacras por variedad	119
62	GDA y dd promedios y porcentaje de situaciones comerciales dentro del promedio histórico para la variedad El Paso 144 de la fase siembra a floración.	120
63	GDA y dd promedios y porcentaje de situaciones comerciales dentro del promedio histórico para la variedad INIA Tacuarí de la fase siembra a floración	120
64	Datos de chacras comerciales del grupo Nº 1 para El Paso 144	121
65	Datos de chacras comerciales del grupo Nº 2 para El Paso 144	122
66	Datos de chacras comerciales del grupo Nº 1 para INIA Tacuarí	124
67	Datos de chacras comerciales del grupo N º 2 para INIA Tacuarí	125

Gráfico	N°	Página
1	Evolución de la TMC en función del atraso de la fecha de siembra	40
2	Duración de la fase siembra a floración en función de la TMC en la variedad Bluebelle	41
3	Duración de la fase siembra a floración en función de las horas de sol reales promedio (HS) para la variedad Bluebelle	42
4	Duración de la fase siembra a floración en función de la TMC para la variedad El Paso 144	43
5	Duración de la fase siembra a floración en función de las HS en la variedad El Paso 144.	44
6	Duración de la fase siembra a floración en función de la TMC para la variedad INIA Tacuari	45
7	Duración de la fase siembra a floración en función de las HS para la variedad INIA Tacuarí	46
8	Duración de la fase siembra a floración en función de la TMC para la variedad INIA Caraguatá	47
9	Duración de la fase siembra a floración en función de las HS para la variedad INIA Caraguatá.	48
10	Duración de la fase siembra a floración en función de la TMC para la variedad INIA Cuaró	49
11	Duración de la fase siembra a floración en función de las HS para la variedad INIA Cuaró.	50
12	Duración de la fase siembra a floración en función de la TMC para la Línea 1130	51
13	Duración de la fase siembra floración en función de las HS para la Línea 1130.	51

Gráfic	co N°	Página
14	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en Bluebelle de siembra a floración.	54
15	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad Bluebelle.	55
16	Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para Bluebelle (n =50)	57
17	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en El Paso 144 de siembra a floración.	58
18	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad El Paso 144	59
19	Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para El Paso 144 $(n = 47)$	60
20	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Tacuarí de siembra a floración	62
21	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad INIA Tacuarí	63
22	Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para INIA Tacuarí (n = 35)	64
23	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Caraguatá de siembra a floración	65
24	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad INIA Caraguatá	66
25 ₋	Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para INIA Caraguatá (n = 30)	67

Gráfic	to N°	Página
2 6	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Cuaró de siembra a floración.	69
27	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad INIA Cuaró	69
28	Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para INIA Cuaró (n = 13)	70
29	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en L 1130 de siembra a floración.	72
30	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad L 1130	73
31	Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para L 1130 (n = 18)	74
32	Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad Bluebelle	77
33	Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad El Paso 144	79
34	Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad INIA Tacuarí	81
35	Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad INIA Caraguatá.	83
36	Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad INIA Cuaró	85
37	Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad L 1130	87

Gráfico	o N°	Página
38	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en Bluebelle de siembra a madurez fisiológica.	89
39	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad Bluebelle	90
40	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en El Paso 144 de siembra a madurez fisiológica.	92
41	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad El Paso 144	92
42	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Tacuarí de siembra a madurez fisiológica	94
43	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad INIA Tacuarí	95
44	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Caraguatá de siembra a madurez fisiológica	96
45	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad INIA Caraguatá	97
46	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Cuaró de siembra a madurez fisiológica.	99
47	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad INIA Cuaró	99
48	Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en L 1130 de siembra a madurez fisiológica.	101
	visition a magazine motorogram	101

Gráfico	o N°	Página
49	Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad L 1130	101
50	Comportamiento de los desvíos en días para cada variedad en la etapa siembra a floración.	104
51	Evolución de la tasa diaria de llenado de 1000 granos (en gramos/día) del período después del 50% de floración para la siembra en la fecha normal.	112
52	Incremento en peso de 1000 granos (en gramos) por período para la siembra en fecha normal.	112
53	Evolución del peso de 1000 granos (en gramos) después del 50% de floración para la siembra en fecha normal	113
54	Evolución de la tasa diaria de llenado de grano (en gramos/día) del período después del 50% de floración para la siembra tardía	114
55	Incremento en peso de 1000 granos (en gramos) por período para la siembra tardía.	115
56	Evolución del peso de 1000 granos (en gramos) después del 50% de floración para la siembra tardía	115
57	Evolución del peso de 1000 granos en la variedad INIA Tacuarí en las fechas de siembra normal y tardía.	116
58	Evolución del peso de 1000 granos en la variedad El Paso 144 en las fechas de siembra normal y tardía	117
59	Desvío en días de cada chacra de los grupos 1 y 2 para El Paso 144	122
60	Desvío en días de cada chacra de los grupos 1 y 2 para INIA Tacuarí	126

I. INTRODUCCIÓN.

A partir de la década del 70, la producción arrocera ha logrado un gran dinamismo e importancia económica nacional tanto por su aumento en área como en rendimiento. Esto se debe en parte a la introducción de nuevas variedades, desarrollo de información y adopción de nuevas tecnologías.

El sector arrocero presenta un carácter exportador, destinando más del 90 % de su producción al mercado externo, reconocido en el ámbito internacional por la calidad del producto.

El comercio en el ámbito regional adquiere gran importancia a través del Mercosur, ya que Brasil representa un comprador importante de las exportaciones de arroz del país. Por otra parte, la participación de Argentina en el comercio regional, lo transforma al país en un gran competidor del rubro.

El número de productores arroceros es bajo aunque en los últimos años se ha incrementado. Actualmente hay entre 700 y 800 cultivadores que poseen en promedio unas 210 hectáreas.

La zona Este tradicionalmente arrocera representa el 75 % del área sembrada. En la actualidad el cultivo se ha expandido más allá de esta zona del país, hacia las zonas Norte y Centro-Norte, donde a pesar de su topografía ondulada, se dan condiciones climáticas más favorables para el desarrollo del cultivo. Esto se debe a que carecen en gran medida del factor depresivo de las bajas temperaturas, a su vez poseen suelos más fértiles y de menor historia agrícola.

Continuar obteniendo altos rendimientos y mejorar la calidad del arroz, permitirán lograr mayor competitividad frente a otros países. En tal sentido, la Estación Experimental de INIA Treinta y Tres por medio de la investigación, ha sido en gran parte responsable de los avances obtenidos a lo largo del desarrollo del sector.

En la zafra 1998-99 se estimó un área sembrada en el entorno de 205.000 hectáreas (14 % mayor a la anterior) con una producción total de 1.275.000 toneladas de arroz cáscara (34 % mayor a la anterior) y un rendimiento promedio estimado de 6.219 kilogramos de arroz sano, seco y limpio por hectárea sembrada. Las variedades de mayor importancia, en cuanto a superficie sembrada, fueron El Paso 144 e INIA Tacuarí ocupando el 90 % del área (60 y 30 % respectivamente).

El principal objetivo de este trabajo fue determinar la temperatura base para el cálculo de Grados Día en seis cultivares y líneas. Además validar una metodología que

se muestra como una herramienta muy importante en la planificación de estrategias de manejo del cultivo. La predicción de los eventos fenológicos ayuda a un eficiente manejo de los recursos limitantes para el cultivo.

II. REVISIÓN BIBLIOGRÁFICA.

A. DESARROLLO DE LA PLANTA DE ARROZ.

1. Aspectos generales.

Hay dos especies de arroz cultivadas, *Oryza sativa L.* (arroz común) y *O. glaberrina* Steud (arroz africano). Oryza sativa se encuentra en regiones tropicales del mundo y templadas (Uruguay se encuentra en el extremo Sur de dicha región) comprendiendo alrededor de 25 especies de las cuales surgen las variedades utilizadas en la agricultura (Grist). Es probablemente originada en el área que enmarca el Sur de Asia, Sureste de Asia y China donde las especies salvajes vienen siendo cultivadas por más de 9000 años. O. glaberrina es indígena en Africa tropical oeste y probablemente originada 1500 años a.c.

Chang (1976) citado por McDonald, propuso que el género *Oryza* originado en el continente Gondwana, con la división de éste, se distribuyó ampliamente por los húmedos trópicos de Africa, América del Sur y Suroeste de Asia y Oceanía. Especuló que estas dos variedades tienen un progenitor en común que es *O. perennis*, en un pasado distante y evolucionaron independientemente de perennes a cultivo anual. La especie asiática tuvo una mayor diferenciación y diversificación de las anuales en respuesta a la dispersión en un amplio rango de latitudes, que las africanas, las salvajes de América del Sur y Oceanía por la menor dispersión o presión de cultivo.

Con considerable importancia se desarrollaron tres razas: japónicas, índica y javánica. Las cuales pueden ser agrupadas por: la esterilidad del híbrido, adaptación geográfica, características morfológicas y potencial de rendimiento(Chandraratna, 1964; Chang, 1964; Jennigs, 1966; citados por McDonald, 1978). En términos de distribución geográfica índicas y japónicas son las mayores.

Las variedades japónicas han ganado potencial agronómico a expensas de su adaptabilidad o sobrevivencia bajo condiciones primitivas. Esta competencia parece jugar un muy importante y negativo papel en la evolución de las variedades tropicales (Jennings y Aquino, 1968; citados por McDonald, 1978).

Uno de los eventos más significante en el mejoramiento fue, el desarrollo de variedades Indicas semienanas de muy alto rendimiento para los trópicos. Además de mejorar las características morfológicas y aumentar su índice de cosecha, se alcanzó la insensibilidad al largo del día, es así que se pueden plantar en cualquier momento del año en los trópicos (Tanaka et al. 1964; Tanaka et al. 1966; citados por McDonald, 1978). La primera variedad formalmente realizada con esas características por el IRRI, fue la

IR8 calificada como "el arroz maravilla" por el impacto sobre la agricultura en ese momento.

Las variedades japónicas en general son resistentes al frío, pero pueden ser más o menos tolerantes según la situación particular en la que se encuentre.

Yoshida, citado por Ferreira y Montauban, 1998, determinó que el ciclo de un cultivar de arroz puede ser influenciado por el fotoperíodo y la temperatura. Los cultivares insensibles al fotoperíodo son característicos de la agricultura moderna, por lo tanto la temperatura es el factor climático con mayor influencia en el ciclo.

Basándose en estas conclusiones, la investigación ha intentado cuantificar la suma térmica necesaria para lograr alcanzar el desarrollo de las distintas etapas fenológicas.

2. Etapas de crecimiento del cultivo.

a. Etapa vegetativa.

Este periodo abarca desde la germinación de la semilla hasta el comienzo de la diferenciación del primordio floral. En esta fase vegetativa se da el macollaje que determina el número de macollos por área, equivalente al número potencial de panojas; también se determina el estado de las hojas que funcionan durante la etapa reproductiva.

b. Etapa reproductiva.

Comprende desde la diferenciación del primordio floral hasta que el 50% de las flores han sido polinizadas. Esta fase en regiones templadas se extiende mas que en regiones tropicales, variando con el cultivar y el clima en un rango entre 27 y 46 días (Yoshida, 1981).

A la vez, esta etapa se puede dividir en:

- a. diferenciación del primordio floral
- b. embarrigado
- c. comienzo de la floración

Hay que tener en cuenta que estas subdivisiones de la etapa son muy teóricas ya que en términos prácticos pierde valor porque lo que realmente nos interesa no es una

planta en particular sino una población de plantas (cultivo). En un momento dado en el mismo habrá plantas en diferentes fases fenológicas pero el promedio corresponderá a una subetapa determinada.

El período que va desde la diferenciación del primordio floral hasta comienzo de la floración, es la etapa en que la planta de arroz es más vulnerable a condiciones climáticas adversas. Acá se determina el número y tamaño de los granos, así como el estado de las hojas que contribuyen a la maduración (Tanaka, 1976; citado por Castro y Porto, 1994).

c. Etapa de llenado de grano y maduración.

Esta etapa comienza cuando el cultivo llega al 50% de floración y termina cuando la humedad promedio del grano es de alrededor del 20%, significando que no hay más deposición de carbohidratos en el grano, comenzando un período de pérdida de humedad. Esta etapa condiciona el último componente del rendimiento que es peso de granos. Es un período mencionado como bastante constante entre variedades, pero varía mucho según las condiciones ambientales donde es cultivada, tiene mayor duración en regiones templadas.

El grado de llenado y las condiciones climáticas durante este período determinan la calidad industrial y culinaria del grano.

B. INCIDENCIA DE LA TEMPERATURA EN EL CULTIVO.

1. Aspectos generales.

Al ser de origen tropical, el arroz sobrevive en un amplio rango de temperaturas (de 10° a 50°C), siendo más afectado por las mínimas extremas de temperatura que por las máximas. Los efectos de las bajas y altas temperaturas difieren de acuerdo a la etapa de crecimiento que se considere (Chang, et al., 1976; Toriyama y Heu, 1982, citados por Ferreira y Montauban, 1998).

Las temperaturas extremas limitan la siembra del cultivo de arroz a ciertas zonas templadas y ejercen una influencia sobre el crecimiento del mismo en los trópicos. La mínima temperatura diaria determina la estación efectiva del cultivo (Stansel, et al., 1980).

Según datos de Vergara, las bajas temperaturas producen mayores perjuicios en ciertas etapas de crecimiento, pero pueden tener efecto en cualquier estado de crecimiento. Algunos efectos de las bajas temperaturas pueden ser:

pobre germinación
decoloración de la hoja
falta de desarrollo
exsersión incompleta de la panoja
incremento de espiguillas degeneradas
falla en la antesis
reducción de macollos
retraso en la floración

Al considerar el efecto de la temperatura en un área dada, no es la temperatura promedio diaria la que debemos tener en cuenta, sino la máxima y la mínima. Las altas temperaturas, (35°-40° C) también pueden afectar el normal desarrollo.

Según Godwin, et al. (1994), (citados por Ferreira y Montauban, 1998) la temperatura ambiente es la mayor limitante para la producción de arroz, al menos en condiciones de riego.

Yoshida (1977), reportó las temperaturas críticas mínimas, máximas y óptimas (en ° C) para el crecimiento y desarrollo del arroz (cuadro N° 1).

Cuadro N º 1. Temperaturas críticas máximas, mínimas y óptimas (en º C) en diferentes etapas de desarrollo de la planta de arroz.

Etapa de desarrollo	Minima	Máxima	Óptima*
Germinación	16-19	45	18-40
Emergencia y establecimiento	12-13	35	25-30
Desarrollo de raiz	16	35	25-28
Elongación de hoja	7-12	45	31
Macollaje	9-16	33	25-31
Diferenciación de Primordio	15		
Panojamiento	15-20	30	
Antesis	22	35-36	30-33
Maduración	12-18	>30	20-29

^{*} Se refiere a la temperatura media diaria, con excepción para germinación.

Sobre el mismo tema, De Datta (1986), citado por Ferreira y Montauban (1998), identificó temperaturas críticas similares a las citadas por el autor mencionado anteriormente.

El efecto de la temperatura es más complejo y menos entendido que la respuesta al largo del día. Esta afecta el crecimiento de dos maneras:

- 1- Temperaturas críticas altas y bajas definen el ambiente bajo el cual el ciclo de vida de la planta de arroz puede ser completado.
- 2- Dentro de ese rango de temperaturas críticas, ésta influencia la tasa de desarrollo de las hojas, panojas y tasa de maduración, por eso fija la duración de crecimiento de una variedad bajo un ambiente dado, y eventualmente determinando la situabilidad de la variedad al ambiente (Yoshida, 1977).

La temperatura base y el límite superior sobre la cual no aumenta el desarrollo de las plantas, puede variar según la etapa considerada.

Los cultivares se clasifican en tres razas: javánica, japónica e índica. Los tipos japónicos son generalmente más resistentes a las bajas temperaturas que los índicos, aunque en algunas zonas montañosas de los trópicos hay cierto tipo de índicas con algún grado de tolerancia al frío.

Este factor climático es el de mayor influencia en el ciclo del cultivo. Para alcanzar los distintos eventos fenológicos se requieren una cantidad determinada de unidades de calor acumuladas expresadas en tiempo termal; y las distintas variedades difieren en los valores de calor que necesitan, según Yoshida (1997), Ritchie (1991), Infeld (1993) y Roel (1993 y 1997).

2. Incidencia en la etapa vegetativa.

La duración de la fase vegetativa se correlaciona positivamente con la duración del ciclo total del cultivo, se ha caracterizado a esta fase como la más variable.

Los cultivares modernos al ser más independientes del largo del día tienden a aumentar o a cortar la duración de la fase con los aumentos o disminución de la temperatura (MacDonald, 1978).

En el cuadro Nº 2, Stansel (1980) reporta una clasificación por tipo de madurez y los requerimientos para las inducciones fenológicas, en éste se nota la mayor dependencia

de la temperatura en cultivares de madurez temprana y la mayor sensibilidad al fotoperíodo de los cultivares de madurez tardía. Las variaciones en la duración de la etapa vegetativa determinan el tipo de madurez.

Cuadro Nº 2. Inducciones fenológicas para cultivares de arroz de madurez temprana, intermedia y tardía.

Madurez del	Fase vegetativa	Fase	Fase
grupo		reproductiva	maduración
Тетрганя	Termo-sensible 40-50 días (600°C - 700°C unidades)	Termo-sensible 21 días (300°C unidades)	Termo-sensible 35 dias (500°C unidades)
Intermedia	Sensibilidad fototermal 40-70 días (600°C-700°C unidades + largo del día)	Termo-sensible 21 días (300°C unidades)	Termo-sensible 35 días (500°C unidades)
Tardía	Foto-sensible	Termo-sensible	Termo-sensible
	30-90 días	21 días	35 días
	(largo del día)	(300°C unidades)	(500°C unidades)

Las altas temperaturas en esta fase, incrementan el macollaje, acortan el intervalo de tiempo de aparición entre hojas y las hojas tienen mayor tamaño, pero el número de hojas se mantiene bastante constante (Yoshida, 1977).

Cuando la temperatura cae por debajo de cierto nivel, el crecimiento y desarrollo puede detenerse y éstas se consideran temperaturas inefectivas; el rango es de 9 a 18° C dependiendo del tipo varietal. (Yoshida, 1981; Dua y Garrity, 1988; citados por Blanco en 1991).

La temperatura influye en la tasa de desarrollo de la hoja. A mayor temperatura mayor tasa de desarrollo. Para desarrollar una hoja antes de iniciación de primordio floral se necesita menos suma de unidades térmicas que para desarrollarla luego de esta fase. Esto indica que depende del número de hojas que se desarrollen antes o después de esta fase, para ver que suma térmica deberá tener para alcanzar la floración. El número de hojas desarrolladas antes de floración en el tallo principal es constante para una variedad dada. Esta característica es válida en variedades insensibles al fotoperíodo bajo un régimen de temperatura dado. Como resultado de lo anteriormente dicho, el número de días de siembra a floración se vuelve bastante constante para una variedad insensible al fotoperíodo y en un régimen térmico conocido (Yoshida, 1977).

3. <u>Incidencia en la etapa reproductiva</u>.

Esta determinada como una etapa relativamente constante en su duración ya que es muy poco afectada por el termo y fotoperíodo.

El período reproductivo del arroz comprendido entre desarrollo de la panoja y la antesis es sumamente sensible a las bajas temperaturas, estos períodos fríos son comunes durante esta etapa en la zona Este del Uruguay. Donde se encuentra la mayor área cultivada del país y ha sido identificada como una de las principales causas que afecta los rendimientos, limitando el uso de los cultivares de origen tropical (Blanco, Perez de Vida y Roel, 1993).

Las bajas temperaturas en esta etapa pueden tener muy importantes efectos negativos o positivos sobre el rendimiento, tal es así que De Datta (1981) y Stansel (1980), señalaron que una relativamente baja temperatura dentro de los rangos no perjudiciales durante la fase reproductiva, favoreció el número de espiguillas por m².

Durante esta etapa se desarrollan tres fases fenológicas: iniciación de primordio floral, embarrigado (meiosis, 10-12 días antes de comienzo de floración) y antesis.

a. Iniciación del primordio floral.

Se da cuando la etapa vegetativa esta terminando y no es fácil de determinarla en observaciones de campo.

Cuando las temperaturas en esta fase caen por debajo de 15° C tienen un gran efecto en la disminución del rendimiento por provocar una reducción en las flores por panoja.

Según Stansel, 1980, las temperaturas críticas para esta fase serían las menores a 15°C, no dándose la iniciación floral ni diferenciación de flores. A su vez Chang (1976) citado por Ferreira y Montauban (1988), identifican el óptimo de temperaturas de la noche entre 18° y 25° C.

Las bajas temperaturas determinan un retardo en el desarrollo de las panojas, mientras que las altas temperaturas (35°-37° C) aceleran este proceso, Matsuo, et al., 1995

b. Embarrigado.

Se da unos 10-12 días antes del principio de floración. Aquí las bajas temperaturas y su duración, fluctuaciones diurnas y las diferencias varietales, son los factores causantes de la esterilidad de las espiguillas.

Stansel (1980), señala que es una etapa muy vulnerable a condiciones climáticas adversas. Las bajas temperaturas en esta etapa pueden afectar la división de las células madres de las esporas.

Nishiyama (1976), citado por Ferreira y Montauban (1988), encontró que los daños por bajas temperaturas en la meiosis causan esterilidad y en la antesis causan infertilización.

c. Antesis.

Generalmente ocurre 1-3 días después que las flores emergieron de la vaina de la hoja bandera y puede continuarse por un período de 14 días. Las temperaturas que se reportan como críticas son las menores a 22° C en cultivares índicos, temperaturas diurnas mayores acompañadas de altos niveles de radiación dan una adecuada condición climática (Stansel, 1980).

Los perjuicios de las altas temperaturas son dificiles de constatar en el Este del país ya que las temperaturas máximas diurnas no alcanzan las temperaturas máximas críticas.

Durante esta etapa, la combinación de altas temperaturas, mayores a 35°C en cultivares de climas cálidos, y fuertes vientos, provocan disecación del polen determinando su grado de esterilidad. Estos valores de temperaturas críticas son 2 o 3 °C más bajos en cultivares japónicas.

4. <u>Incidencia en la etapa de maduración (llenado de grano).</u>

Munakata (1976), citado por Ferreira y Montauban (1998) reportó que el óptimo de temperatura para la maduración es entre 20° y 23 ° C.

La duración de llenado de grano es más dificultosa de identificar que un evento de desarrollo visual como son la aparición de hojas y el tiempo a floración. Para muchos cultivos hay un período "lag" (período de retardo) entre antesis y comienzo

rápido del llenado de grano.

La tasa de llenado de grano es casi constante entre variedades si el promedio de temperatura es relativamente constante hasta que el grano este casi lleno, a menos que halla escasez de asimilados, de nitrógeno o carbohidrato almacenado disponible para el llenado de grano.

Por su parte Ritchie (1991) e IRRI (1977), afirman este concepto agregando que las diferencias en la duración que podrían existir, se deberían a las diferentes temperaturas registradas en las distintas localidades. Esto lleva a que la duración de esta fase sea mayor en una zona templada que en una zona tropical.

La determinación de regulación del tiempo de llenado de grano de observaciones visuales como es el tiempo a floración y a madurez fisiológica, frecuentemente provoca inseguridad por la falta de claridad de los hechos observables en la planta al comienzo y final de la etapa de llenado de grano.

C. INCIDENCIA DEL FOTOPERÍODO.

1. Aspectos generales.

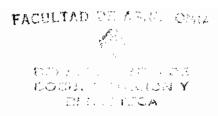
La diferencia primaria en el desarrollo entre genotipos dentro de especies, ocurre en el largo de su fase vegetativa. Esta variación puede resultar, entre otros, de las diferencias genotípicas en sensibilidad al fotoperíodo. Esta variación es exhibida en el largo del estado juvenil de especies de cultivo como el arroz, maíz, sorgo, mijo, en las cuales sus plantas jóvenes no comienzan la fotoinducción a floración hasta que no alcancen cierto número de hojas.

Durante su estado juvenil las plantas no son sensibles al fotoperíodo. Ritchie en 1991, demostró que la tasa de aparición de hoja tuvo una pequeña variación debida al fotoperíodo, pero el número de hojas y el tiempo a floración fue muy influenciado por el fotoperíodo y el genotipo.

En algunos experimentos realizados por Ritchie (1991), se demostró que aquellas variedades de ciclo corto eran más sensibles al fotoperíodo que aquellas de ciclo largo que tienen una larga fase juvenil.

La influencia del fotoperíodo en la característica de la planta puede ser demostrada comparando la aparición de hojas, el número final de hojas y tiempo a floración para dos genotipos contrastantes de arroz cultivados a temperatura constante y dos largos de día diferentes (datos no publicados por Ritchie, 1991).

Esto demuestra claramente que por la sensibilidad al fotoperíodo de los genotipos, el tiempo termal a floración no es una constante. Este será únicamente constante para plantas cultivadas con fotoperíodo común durante la inducción floral (Kiniry et al., 1983 a).


La sensibilidad de las plantas de arroz al fotoperíodo varía. Están aquellas cuyo crecimiento tiene un leve grado de variación (menor a 30 días) dependiendo de la estación o el mes en el cual son sembradas, éstas son definidas como poco sensibles al fotoperíodo y están aquellas variedades cuyo crecimiento varía mucho (mayor a 30 días) dependiendo de los mismos factores, son las llamadas fuertemente sensibles al fotoperíodo (Vergara B. S.).

Un hecho común en los datos es el "plateau" o fotoperíodo mínimo debajo del cual las plantas cesan su respuesta al fotoperíodo. Este umbral de fotoperíodo varía con el genotipo, el rango es alrededor de 11.5 a 14.0 horas para la mayoría de los cultivares de arroz (Vergara y Chang, 1985).

Cuadro Nº 3. Respuesta al fotoperíodo y temperatura de variedades de arroz en diferentes regiones.

REGIÓN	RESPUESTA AL FOTOPERIODO	RESPUESTA A LA TEMPERATURA
Templada	Insensible a poco sensible	Tolerancia a bajas temperaturas en etapas tempranas y reproductivas.
Subtropical	Insensible; débilmente sensible a fuertemente sensible	Niveles variables de los efectos de las bajas temperaturas en la fase vegetativa. Grados variables de tolerancia a bajas temperaturas en etapas tempranas. Fase vegetativa generalmente no afectada por las bajas temperaturas
Tropical	Débilmente a fuertemente sensible en muchas variedades; insensible en pocas variedades	Desarrollo retardado por bajas temperaturas en ctapas tempranas; fertilidad de espigas reducidas en etapas reproductivas. Fase vegetativa no afectada por altas temperaturas.

Como es visible bajo la distribución geográfica del arroz, los días largos durante la estación de crecimiento en áreas de su producción demoran de 11 a 16 horas (Moomaw y Vergara, 1965).

Variedades muy sensibles al fotoperíodo son sembradas únicamente en ciertas estaciones, por eso son llamadas variedades estacionales; pero también hay variedades que en su duración de crecimiento les faltan mas o menos lo mismo sin tener en cuenta la estación y se llaman variedades no estacionales, éstas pueden ser sembradas todo el año en los trópicos. Muchas de las variedades modernas de alto rendimiento son no estacionales. Esta insensibilidad incrementa la adaptabilidad del arroz a diferentes latitudes en la duración de su crecimiento, a menos que la temperatura sea limitante.

El arroz como es una planta de día corto, cuando una variedad es sensible al fotoperíodo, únicamente florecerá si el largo de día es más corto que cierta duración crítica. Cuando el fotoperíodo decrece, la duración del crecimiento es menor, esto es básicamente igual en todas las variedades, pero el grado de sensibilidad puede variar ampliamente con la variedad como ha sido declarado ampliamente en la bibliografía.

El aspecto más crítico del crecimiento del arroz que puede ser controlado por el fotoperíodo es la iniciación y exsersión de la panoja. Las variedades que alteran la duración de su ciclo con relación al fotoperíodo son llamadas sensibles al fotoperíodo.

La mayoría de los recientes cultivares son insensibles al fotoperíodo, los cambios en la duración del crecimiento son muy pequeños según cual sea la estación o el mes de siembra.

2. Incidencia en la etapa vegetativa.

Como se dijo anteriormente, durante su estado juvenil, las plantas no son sensibles al fotoperiodo. Además se observó que la tasa de aparición de hoja tuvo una pequeña variación debida al fotoperiodo, pero el número de hojas y el tiempo a floración fue muy influenciado por el fotoperiodo y el genotipo.

La variación en largo del estado juvenil es frecuentemente dada en arroz para la clasificación de la planta en términos de tipo de madurez, este concepto es únicamente cualitativo y puede ser solamente transferible en una región si la clasificación por tipo de madurez es el resultado de la duración del estado juvenil y de la sensibilidad al fotoperíodo.

La duración relativa de la etapa juvenil en plantas de días cortos puede ser calculada desde el valor del tiempo termal por el umbral del valor de fotoperíodo mínimo. La pendiente de respuesta al fotoperíodo sobre el umbral también varía considerablemente entre genotipos. Si ésta es expresada en grados día por hora, esta información puede volverse un coeficiente genotípico específico para usar en la

simulación en la duración del desarrollo vegetativo de la planta (Alocilja y Ritchie, 1990).

3. Incidencia en la etapa reproductiva.

La inciación del primordio de macollo no está sujeto a la influencia del ambiente (Yamazaki, 1960, citado por Ferreira y Montauban, 1998), pero su emergencia y desarrollo se ven muy influidos por el fotoperíodo, además de otros factores.

La desviación desde la constante de tiempo termal para todos los eventos de desarrollo fásico, es causada por la variación en el fotoperíodo durante el estado de inducción floral. Esto es únicamente durante ese tiempo que la planta es sensible al fotoperíodo y la tasa de fotoinducción depende del largo del día. Los eventos fenológicos futuros son consecuencia de la duración de la fase de inducción.

Excepto para el largo de la etapa juvenil, las cuales varían entre genotipos en tiempo termal, el fotoperíodo durante la inducción es el principal factor causante de las diferencias en tiempo termal al desarrollo de los principales eventos entre especies cultivadas.

Como se vio anteriormente, la etapa vegetativa está promoviendo la división de una fase vegetativa y de una fase sensible al fotoperíodo. Muchas plantas de arroz deben atenerse a una cierta cantidad de crecimiento, usualmente son de 14 a 63 días de edad antes de la iniciación floral. La fase sensible al fotoperíodo de variedades insensibles al mismo varía entre 0 y 30 días, mientras las variedades sensibles tardan más de 31 días.

La iniciación de primordio floral (IP) en una planta sensible al fotoperíodo dependerá de un largo de día crítico, un fotoperíodo excesivamente largo provocará una pequeña o ninguna iniciación de primordio floral. Si una variedad muy sensible al fotoperiodo es sembrada fuera de época puede demorar 11 meses en cosecharse, y si ésta es transplantada en la época adecuada se puede cosechar en 142 días. Esto remarca la sensibilidad al fotoperíodo ya que los meses que intervienen en el crecimiento tenían un fotoperíodo mayor al crítico necesario para florecer. Solo fotoperíodos por debajo del largo del día crítico, inducen la iniciación de primordio floral.

Existe una variación entre cultivares en el retraso de la floración debido a la iluminación, este efecto es menor en los cultivares de ciclo corto.

En una variedad sensible al fotoperíodo, cuanto más largo es la duración del día, mayor número de días a iniciación del primordio se necesitan. Pero para que se de fotoinducción, o sea iniciación del primordio, no solo debe haber un propicio largo de

día, sino también se debe alcanzar un adecuado estado vegetativo, esto es llamado madurez a floración.

La madurez de a floración depende de:

- * variedad
- * factores ambientales: disponibilidad de agua
 - temperatura
 - radiación solar

4. Incidencia en la etapa de maduración (llenado de grano).

Vergara (1976), reportó que el principal efecto de la radiación solar se da sobre el llenado de los granos desde floración a madurez, afectando el número y peso de los granos. En el llenado no se notan diferencias varietales, sino que son atribuibles a la radiación solar fotosintéticamente activa.

El fotoperíodo se correlaciona de forma positiva con la radiación fotosintéticamente activa, por eso a mayor fotoperiodo mayor radiación solar medida en calorías/ m² se obtienen.

Días largos y altos niveles de radiación solar durante la maduración contribuyen a obtener altos rendimientos de granos en zonas templadas (EUA, Australia y parte de Europa) (De Datta, 1986, citado por Ferreira y Montauban, 1998).

El efecto de la luz en la maduración depende de la temperatura, siendo positivo a altas temperaturas y despreciable e incluso negativo a bajas temperaturas (Munakata, 1976, citado por Ferreira y Montauban, 1998).

D. CARACTERIZACION DE LOS GENOTIPOS INDICOS Y JAPONICOS.

Chang y Vergara (1971), citados por Yoshida (1977), propusieron que la duración del crecimiento de un cultivar de arroz y el punto al cual es afectado por los días largos y la temperatura principalmente, determinan la adaptabilidad específica a una estación de cosecha regular en una localidad dada.

De las especies cultivadas, Oryza Sativa, el grupo de las variedades índicas es por ahora extensamente sembrado en regiones tropicales, como por ejemplo el sudeste de Asia.

El otro grupo de variedades, las japónicas, las cuales se adaptan a áreas frías por su mayor resistencia a las bajas temperaturas, son ampliamente sembradas en países templados, como ser China Central y Norte, Japón y Corea. Ambas variedades, indistintamente pueden sembrarse en regiones subtropicales como Taiwan. Al respecto, Vergara constató que en las regiones montañosas de los trópicos, donde fueron sembradas cierto tipo de índicas, se notaron algunos grados de tolerancia al frío.

El óptimo rango de temperatura para la actividad fotosintética se lo ha definido para las variedades índicas entre 25°-35 °C y para las variedades japónicas entre 18°-33 °C.

En trabajos realizados en la Estación Experimental del Este durante 1996, conducidos por Zorrilla G., se encontró que en siembras tempranas de agosto con temperaturas del suelo de 16°-17 °C, El Paso 144 (base genética mayormente índica) mostró más bajos porcentajes de germinación y emergencia que INIA Caraguatá (base genética mayormente japónica) y ésta que INIA Tacuarí (base genética mayormente japónica), coincidiendo con la conocida debilidad de El Paso 144 en otras etapas del cultivo.

Las variedades adaptadas a climas templados son insensibles o muy poco sensibles a días largos. A su vez, pocas variedades que crecen en los climas tropicales tienen grados de sensibilidades diferentes a los días largos.

Según Stansel (1980), cuando la temperatura cae por debajo de 10°C por más de tres días durante el llenado y maduración del grano, el rendimiento se detiene en los cultivares índicos. Sin embargo los cultivares japónicos pueden seguir desarrollándose hasta con 2 - 3°C menos. Los rangos de temperatura para la sobrevivencia y crecimiento de las cruzas japónica por índica no logran una combinación del rango total. Por eso Stansel los clasifica como cultivares: de temperaturas cálidas, intermedias y frías. Dentro de los rangos de 18° - 35°C para cultivares de temperaturas cálidas y 15° - 33°C para cultivares de temperaturas cálidas y 15° - 33°C para cultivares de temperaturas frías, la temperatura se correlaciona positivamente con el crecimiento de la planta durante la fase vegetativa, sin embargo la correlación es negativa en estados más tardíos.

El tiempo requerido para que la planta se desarrolle desde el establecimiento a la fase reproductiva depende del cultivar considerado. Por eso los cultivares se pueden dividir en tres grupos de acuerdo a la madurez:

- Grupo de madurez tardía que abarca variedades que en su mayoría son cultivares indicos, sensibles al fotoperíodo por lo que requieren un largo de día crítico para causar el desarrollo de panoja. Generalmente estas variedades tienen una larga estación de

madurez cuando son cultivadas en su ambiente adaptado.

- Grupo de madurez temprana que en su mayoría son las variedades japónicas insensibles o muy poco sensibles al fotoperíodo. Los días a llegar al estado reproductivo están en función de las unidades térmicas acumuladas.
- Grupo de madurez intermedia donde hay diferentes grados de interacción entre temperatura y fotoperíodo.

Los cultivares de origen japónico son generalmente insensibles o poco sensibles al fotoperíodo. Estos cultivares generalmente son de madurez de tipo temprana o muy temprana.

La mayoría de los cultivares más recientes son insensibles al fotoperíodo por lo tanto, los cambios en la duración del crecimiento son muy pequeños según cual sea la estación o el mes de siembra. Esta insensibilidad incrementa la adaptabilidad del arroz a las diferentes latitudes en lo referente a la duración de su crecimiento, a menos que la temperatura sea limitante.

E. MODELOS DESARROLLADOS.

1. <u>Utilización de los modelos.</u>

El objetivo de estos modelos es hacer una simulación de desarrollo del cultivo para predecir la duración del crecimiento, el promedio de las tasas de crecimiento y la cantidad de asimilados particionados a los componentes de rendimiento económico de la planta.

Con un sistema de simulación es posible estimar la utilización óptima de recursos y cuantificar el riesgo relacionado a la variación climática. También asistirá en facilitar un más eficiente pantallaso de los genotipos de forma de seleccionar los mejores adaptados a ambientes específicos.

Réaumur sugirió primero en 1735 que la duración particular de los estados de crecimiento estaba directamente relacionada a la temperatura y que esta duración para especies en particular puede ser predecidas usando la suma del promedio diario de la temperatura del aire (Wang, 1960, citado por Ritchie, 1991). Este procedimiento para normalizar el tiempo con la temperatura para predecir la tasa de desarrollo de la planta, ha sido usado ampliamente en el siglo XX. Investigadores que han estudiado el uso del sistema sobre los mismos cultivares en los mismos ambientes, han encontrado grandes

inexactitudes en el sistema.

Lawin et al., (1995), evaluaron la utilidad de los modelos lineales simples que relacionan la velocidad de desarrollo hacia la floración. Los modelos fueron muy eficaces en explicar la mayoría de las observaciones en las diferentes especies estudiadas (entre otras, el arroz y la cebada), cultivos y ambientes. Describieron reacciones cuantitativas donde los cultivos se habían adaptado relativamente bien en términos agronómicos y menos eficaces donde habían sido expuestos a temperaturas desfavorables y en menor medida a fotoperíodos desfavorables.

La comprensión fisiológica de los modelos provee de una interpretación biológica y últimamente predice la interacción Genotipo por Ambiente como en casos estudiados donde muchas de las variaciones del tiempo a floración de muchos genotipos son explicadas cuantitativamente en términos de diferentes respuestas a temperaturas y fotoperíodos.

La posibilidad de predecir la fecha en que ocurren los diferentes estados fenológicos en distintas épocas de siembra es útil por diversas razones: a) permite planificar épocas de siembra adecuadas, b) estrategias de aplicación de agroquímicos, c) predecir momentos de mayor susceptibilidad a condiciones ambientales adversas, d) estimar momento de cosecha y e) planificar momentos de riego, (Fassio et al., 1998).

2. Suma térmica.

El término más apropiado para describir el desarrollo de la planta, es el "tiempo termal" sugerido por Gallagher (1979) citado por Ritchie (1991). Es apropiado pensar en el tiempo termal como una visión de las plantas en el tiempo, porque la escala de tiempo de las plantas está estrechamente ligada con este ambiente térmico. Así mismo, si el fotoperíodo puede modificar el tiempo termal, el término es tiempo fototermal (Summerfield et al., 1991). El tiempo termal tiene como unidad los Grados Día, que es la acumulación térmica diaria que realiza la planta para alcanzar determinado evento fenológico. Esta acumulación se realiza por encima de una temperatura critica (temperatura base), debajo de ésta el desarrollo de la planta es cero.

La duración de la etapa juvenil es casi totalmente controlada por la temperatura. .

Durante la fase juvenil e inducción floral los primordios foliares están siendo desarrollados. Cuando la inducción floral comienza, la iniciación foliar ha finalizado y el número final de hojas ha sido determinado. La tasa de aparición de las hojas finales diferenciadas, pero aún no aparecidas, es controlada por la temperatura. El tiempo termal requerido para el resto de la etapa vegetativa es consecuencia de lo sucedido en la fase juvenil e inducción floral. Asimismo, la duración del resto del ciclo de vida de la planta es

principalmente controlado por la temperatura, por eso la suma térmica puede ser usada para describir el ciclo de crecimiento de planta hasta madurez fisiológica (Ritchie, 1991).

La metodología considera que la planta mientras se desarrolla para alcanzar diferentes eventos fenológicos, responde a la acumulación de unidades térmicas, esto se da dentro de un rango de temperaturas aptas para el desarrollo de la planta. La acumulación térmica comienza a darse a partir de cierta temperatura, a ésta se la llama temperatura base. Las distintas variedades difieren en los valores acumulados que necesitan según el ambiente en que se desarrollen. La cantidad de unidades térmicas que se pueden contabilizar está limitada por una temperatura máxima a la cual la planta detiene su acumulación.

3. Estudios y antecedentes.

La acumulación de unidades térmicas se mide como grados día. Ritchie en 1991, reporta que la fórmula más simple y usada de cálculo de unidades térmicas (td) es:

$$td = \sum_{i=1}^{n} (Ta - Tb)$$

Donde:

Ta = es la temperatura media diaria,

Tb = es la temperatura a la cual el cultivo detiene su desarrollo y

n = es el número de días de observación de la temperatura usados para la suma.

El cálculo de Ta es usualmente hecho promediando la temperatura máxima y mínima diaria. Estos cálculos de unidades térmicas son apropiados para la predicción del desarrollo de las plantas teniendo en cuenta:

- 1. La respuesta de la tasa de desarrollo a la temperatura es lineal sobre un rango de temperatura experimentadas.
- 2. La temperatura diaria no debe caer por debajo de Tb por una significativa parte del día.
- 3. La temperatura diaria no debe exceder el umbral superior de temperatura, por una significativa parte del día.
- 4. La región del cultivo tiene que tener la misma temperatura media que Ta.

Según Covell et al., (1986); Ritchie y Ne Smith (1991), cuando los valores de temperatura diurna están fuera del rango de la función lineal normal se procede de la siguiente manera: si el valor está por debajo de Tb, la acumulación térmica es igual a cero, y si está por encima, se toma un valor igual al límite superior o un valor por debajo del mismo. Con esto se asume que el desarrollo del cultivo se dará en este rango. Esta

misma metodología fue utilizada por diferentes investigadores en distintos cultivos en el Uruguay (Fassio et al., 1998 en cultivos de maíz; Roel, A y Blanco, F. 1993; Deambrosi, E. 1997 en cultivos de arroz).

En lo que respecta a arroz, para la variedad de mayor difusión actualmente en el país que es El Paso 144, en el cuadro Nº 4 se reportan valores promedio de unidades térmicas acumuladas en las fases de siembra a floración y de siembra a madurez fisiológica. Estos resultados se obtuvieron utilizando como temperatura base 10° C.

Cuadro Nº 4. Unidades térmicas acumuladas en base 10° C registradas por Roel y Blanco en 1993 y Deambrosi et al. en 1997.

Fase	Siembra a floración	Siembra a madurez	Autores
El Paso 144	1176.0	1639.5	Roel y Blanco
El Paso 144	1186.3	Sin datos	Deambrosi et al.

Infeld, J. A. et al., (1998) usando la fórmula antes mencionada (1) calcularon los Grados Día necesarios para el desarrollo de la fase vegetativa (con Tb = 11° C) en diferentes grupos de cultivares de arroz y los valores encontrados fueron: 536, 638 y 772 Grados Día para cultivares de ciclo precoz, medio y tardío, respectivamente.

Stansel, J. y Fries, R. (1980) utilizando como temperatura base 10° C, determinaron un modelo de cálculo de unidades térmicas con un tope no mayor a 15 unidades térmicas por día (DD10° C/ 15). Así concluyeron que para la fase reproductiva que va desde inicio de primordios a floración se necesitan alrededor de 500 a 600 unidades térmicas con altas y uniformes poblaciones y 500 a 700 unidades térmicas en cultivos con transplante.

4. Métodos de cálculo de la temperatura base.

La mayor dedicación dada para mejorar el método, se ha focalizado en la determinación de la temperatura donde el desarrollo del cultivo es 0 (temperatura base) y la temperatura más alta donde el desarrollo cesa de incrementar o comienza a declinar (Ritchie, 1991).

El tiempo de desarrollo entre eventos puede ser medido y expresado como tasa equivalente, tomando para esto el inverso del tiempo. Ritchie, J. demostró que la tasa de desarrollo de la hoja (medida como la tasa de aparición de hoja) tiene similar patrón de comportamiento que la tasa de desarrollo equivalente (medida como el inverso de la duración de la fase) ambas en función de respuesta a la temperatura. Para este último

trabajo se mantuvo el fotoperíodo constante.

Arnold (1959), realiza un estudio comparativo de los diferentes métodos de determinación de la temperatura base como lo son:

- 1)Método de menor variabilidad;
- 2) Método del coeficiente de regresión;
- 3) Ecuación de unidades térmicas;
- 4)Método del intercepto x.

1)Método de menor variabilidad: A partir de una serie de datos de siembra se calcula la suma de unidades térmicas probando distintas temperaturas base, y por eliminación se elige la de menor variabilidad que es determinada por medio del coeficiente de variación. El autor, considerando la importancia del sistema de unidades térmicas como herramienta, sugirió por medio de una fórmula, transformar el desvío en unidades térmicas, a desvío en días de la siguiente forma:

$$dd = \underline{ds}.$$
(Xt - Tb)

dd = desvío en días (+/-)

ds = desvío estándar en Grados Día.

Xt = temperatura media durante todo el desarrollo del cultivo hasta la etapa fenológica de interés.

Tb = Temperatura base.

El desvío en días tiene un similar comportamiento que el coeficiente de variación. La temperatura base correcta será aquella que tenga el menor desvío en días.

2)Método de coeficiente de regresión: Este método se basa en la relación entre la temperatura media del ciclo de desarrollo (variable independiente) y la suma de unidades térmicas (variable dependiente). Se calcula una ecuación de regresión y por medio del coeficiente de regresión se pueden evaluar las temperaturas base probadas. Cuando el valor es positivo significa que la temperatura usada es demasiado alta, así mismo cuando es negativo la temperatura es demasiado baja. Un valor cero indica que la temperatura base es la correcta.

3) Ecuación de unidades térmicas: Se asume que una serie de cambios morfológicos y bioquímicos posibilitan el desarrollo de la planta y pueden ser medidos como una forma de unidades de desarrollo. La ecuación se escribe teniendo en cuenta la temperatura efectiva de desarrollo de la siguiente manera:

 $dev = (dev/d)/^{\circ}te * te * d$

en donde:

dev. = unidades de desarrollo.

d = dias

ote = grados de temperatura efectiva.

Te = temperatura media efectiva.

La contradicción de esta ecuación es que supone algo imposible como es la igualdad en los cambios de desarrollo en la fase vegetativa y en la fase reproductiva, ya que en ésta última fase no se puede medir los cambios fisiológicos y morfológicos involucrados.

4) Método del intercepto x: Este método elimina el paso de cálculo de unidades térmicas para cada temperatura base probada, utilizada en el método del coeficiente de regresión y se basa en dos datos por siembra, en la temperatura media de desarrollo del ciclo y en la tasa de desarrollo que se puede medir como el inverso de la duración en días o tasa equivalente. Con estos valores se calcula la ecuación de regresión, siendo ubicada la temperatura media en el eje de las abscisas, y en el eje de las ordenadas la tasa de desarrollo equivalente. Finalmente para obtener la temperatura base se resuelve la ecuación con y = 0 donde gráficamente el valor se representa en el intercepto de la recta con el eje de las abscisas.

Los métodos propuestos para encontrar la temperatura base fueron designados para dar: a) la menor variabilidad en la suma térmica o

b) cero cambio cuando la suma se relaciona matemáticamente con la temperatura media.

El autor concluye en sus experimentos que los métodos 1, 2 y 4 coinciden en la temperatura base resultante.

Roel y Blanco (1993); Deambrosi (1997); Infeld et al. (1993 y 1998), para la determinación de la temperatura base utilizaron el método de menor variabilidad propuesto por Arnold en 1959, midiendo el desvío en días mediante la fórmula creada por éste último. Los autores reafirmaron que el método propuesto se mostró consistente en la determinación de los resultados.

Roel y Blanco (1993) para el caso de temperatura base 10°C también calcularon los grados día por el método del DD50 (degree day 50) que es un programa muy usado en E.U.A. para predecir el desarrollo de este cultivo. Para el uso de este programa se hacen dos consideraciones:

- 1-Temperatura media del día es el promedio de la máxima y la mínima.
- 2- Se establece un rango de temperatura donde se produce la acumulación de grados día: si la temperatura mínima es mayor a 21°C, se asigna 21 como la mínima diaria, si la temperatura máxima es mayor a 34°C, se asigna 34 como la máxima del día.

Concluyeron que la metodología del DD50 ajustó mejor que los métodos de sustracción simple y es una herramienta que permite con cierto grado de exactitud predecir el desarrollo de las etapas fenológicas.

5. Fuentes de error en los modelos.

El método de unidades térmicas no da una respuesta exacta a los problemas prácticos aún basándose en exactas medidas de temperatura.

Los factores ambientales pueden ser separados en ambiente aéreo y ambiente del suelo. La información del ambiente aéreo viene de la información de registros de las condiciones climáticas como son temperatura y radiación solar. Al usar la medida de temperatura del aire de una estación climática para inferir la temperatura de la planta, es importante entender que hay muchas posibles fuentes de error que pueden ser introducidas en el cálculo de unidades térmicas como lo es el momento de observación de los registros (temperatura máxima y mínima del día), (Schaal y Dale, 1977, citados por Ritchie, 1991).

El mayor error en el cálculo de unidades térmicas se introduce cuando la temperatura que se registra a la altura de los termómetros no representa la temperatura en el punto de crecimiento de la planta. Hay dos fuentes para este tipo de error:

1-los registros de temperatura tomados se encuentran a distancia del campo donde el cultivo de interés esta localizado. Es posible introducir un sesgo desconocido debido a la variación espacial de la temperatura del aire.

2- El sitio específico de la planta donde la temperatura influye en el desarrollo es en zonas donde la división y expansión celular está ocurriendo.

Muchos investigadores han demostrado que la temperatura cercana a la superficie del suelo donde el punto de crecimiento está localizado cuando es joven, fue el indicador más exacto de la tasa de desarrollo que cuando se usó temperatura del aire (Law y Cooper, 1976; Cooper y Law, 1978; Swan et al., 1987; citados por Ritchie). Errores de este tipo pueden causar un gran sesgo en muchos días de atraso en la predicción del

desarrollo de eventos como la floración. Por esto el autor reconoce como importante que los medidores exactos de temperatura del aire estén cerca del cultivo y se registre la temperatura del suelo sobre 2 cm durante el crecimiento temprano.

Arnold en 1959, reporta que el error del sistema, en parte, se manifiesta como una variación en el número de unidades térmicas requeridas para una variedad en particular para completar una fase de desarrollo en particular. Este mismo autor realiza una revisión de literatura que revela que la variabilidad en la suma térmica no es completamente una casualidad, y muestra una tendencia definida relacionada a las condiciones climáticas bajo la cual una variedad es cultivada. Las relaciones pueden ser resumidas de la siguiente manera:

- a) Incrementos de la suma térmica en las partes calientes de la estación comparadas con las frías;
- b) Altas sumas térmicas en años cálidos comparados con años fríos;
- c) Mayores sumas en latitudes sur comparadas con latitudes norte;
- d) Mayores sumas en bajas altitudes comparadas con altas.

El autor concluyó en su discusión que tres posibles errores de procedimientos pueden llevar a la elección de una errónea temperatura base, ellos son: el uso de la desviación estándar de la suma de unidades térmicas en la elección de la temperatura base; el rechazo de la temperatura base correcta basándose en que es demasiado baja para ser fisiológicamente factible, y por lo tanto omitir el efecto de otro factor ambiental el cual afecta la tasa de desarrollo.

Si la tasa de desarrollo de un cultivo esta influenciada por la temperatura y el fotoperíodo, la determinación de la temperatura base es muy complicada de obtener en condiciones de campo. La temperatura media y el fotoperíodo medio del ciclo tienden a estar correlacionados, por eso la determinación de la temperatura base a través de la ecuación de regresión, teniendo en cuenta solo la temperatura media, llevará a la obtención de un valor erróneo. En este caso la temperatura base debe ser determinada en condiciones experimentales controladas. Para mejorar la exactitud del sistema se debería cuantificar el efecto del fotoperíodo (lo cual se hace dificil en condiciones de campo) o realizar una exacta conversión de unidades térmicas a unidades fototermales solamente usando la temperatura base correcta.

Otro error comúnmente cometido en este tipo de sistema se realiza cuando se asume que la relación entre temperatura y desarrollo es lineal cuando en realidad es curvilínea (Arnold, 1959; Slafer y Rawson, 1995). Pero no resulta un problema serio si se considera la tasa de desarrollo dentro de un rango de temperaturas que resulte óptimo para el normal desarrollo de la planta.

No menos importante resulta la fuente de error que genera la definición de una etapa fenológica por apreciación visual.

El incremento de la suma de unidades térmicas (utilizando una misma Tb) con el incremento de la temperatura, es un síntoma del uso de una alta temperatura base, muy común en la práctica.

La naturaleza del error introducido en el sistema lineal de unidades térmicas por el uso de una incorrecta temperatura base es generalizada, enfatizando que cuando la temperatura base seleccionada es demasiado alta, la suma de unidades térmicas se incrementará tanto como la temperatura media se incremente durante el desarrollo y si la base seleccionada es demasiado baja, la tendencia será inversa. La temperatura base resultante del menor coeficiente de variación se muestra más apropiada que la resultante del menor desvío estándar.

El mismo autor en 1960, propuso que la temperatura promedio real del día puede ser obtenida con buen grado de precisión a través del promedio de máxima y mínima diaria sin necesitar para ello de un termógrafo, además diseñó procedimientos para minimizar errores arrastrados por el método dejando un error residual pequeño. Sugirió su utilización para la mayoría de los trabajos comerciales y algunos tipos de investigación.

6. Aplicaciones.

Souza (1983), utilizó el modelo para el planeamiento de fertilización en cobertura, aplicación de fungicidas, escalonamiento de cosecha y secado de grano.

La Universidad de Arkansas en 1984 desarrolló un programa práctico con el fin de dar recomendaciones de manejo para los productores a través de la predicción de desarrollo del cultivo de arroz usando datos climáticos. Por medio de una investigación mostró la utilidad del sistema de computación de unidades térmicas. Recogiendo datos de productores, observó que los altos y bajos rendimientos se obtenían usando similares cantidades de fertilización, pesticidas y agua, al igual que otras prácticas similares. Las diferencias a favor de los altos rendimientos estaban en que éstos estaban usando además de prácticas de manejo apropiadas, el momento propicio para realizarlas. Manejando tiempos y ciertas prácticas como la fertilización con N en el arroz, se pueden mejorar los rendimientos tanto más como un 25%. Al comienzo de su extensión, este sistema basado en tiempo termal, no obtuvo éxito, pero a medida que se fue desarrollando un sistema computarizado, mayor fue el número de productores que lo adoptaron utilizando como datos esenciales para dicha ejecución datos de ubicación del predio, fecha de emergencia

y variedad utilizada, suponiendo un manejo generalizado.

Steinmetz, S. et al., (1996), en la EMBRAPA, a través del Centro de Pesquisas Agropecuarias do Clima Templado ofreció a las instituciones públicas del Estado y de la Sociedad de los Orizicultores en especial, una propuesta de zoneamiento para el cultivo de arroz irrigado. Las indicaciones que constan en este documento deberían servir para la orientación de políticas públicas y para la calificación de las decisiones de los productores de arroz. La expectativa fue de que el zoneamiento agroclimático propuesto para el cultivo de arroz irrigado, potencializará las posibilidades productivas derivadas de las culturas ofrecidas por la investigación y aumente el margen de opciones del productor, capacitando para la captación de recursos necesarios para el desarrollo de sus labores. Este trabajo tiene como objetivo minimizar el riesgo climático del cultivo de arroz irrigado, a través de la caracterización de las épocas de siembra más apropiadas para el cultivo, en los distintos municipios de Río Grande do Sul (Río Grande do Sul, 1994). Se consideró que la siembra puede iniciarse en la década en que la temperatura media del suelo desnudo, a 5 cm de profundidad, fuera mayor o igual a 20°C, ya que corresponde a una temperatura media del aire de 17.5°C, según las ecuaciones de regresión desarrolladas. Este valor representa el límite inferior de la temperatura óptima para la germinación de las semillas de arroz (Yoshida, 1981). Luego de definido el período de inicio de siembra, se definió un período de 20 días, entrando las fases de floración y de prefloración como las más sensibles a las bajas temperaturas y un período de 42 días, en torno de la floración, como la más crítica a la radiación solar. Basándose en datos de experimentos de campo, fueron establecidas las fechas medias a floración para las diferentes épocas de siembra de cultivares de ciclo corto y medio. De esta forma fue posible definir la época de ocurrencia de los períodos críticos de la planta.

Infeld et al., (1993) determinó los Grados Día necesarios para los cultivares precoces: Labelle, Belle Patna y Bluebelle; para completar la fase vegetativa y por lo tanto indicar la época de aplicación del N en cobertura. Las observaciones analizadas fueron la duración de la fase vegetativa, que va desde la emergencia a la diferenciación de panojas (primordio floral), en relación con las temperaturas registradas en la estación Agrometeorológica. Demostró que el uso de este sistema es un método eficiente y podrá ser usado como una herramienta en el manejo de fertilización.

El mismo equipo de autores en 1998, visualiza el fin de la etapa vegetativa como el momento más importante para la aplicación de nitrógeno en cobertura y trató de determinar la duración de la fase vegetativa en términos de unidades térmicas para tres tipos de cultivares, precoz, medio y tardío. Esto permite una mayor precisión en la determinación de este momento.

Lawin et al., (1995) definieron la principal fortaleza del modelo como la extensa

aplicabilidad en diferentes genotipos y especies, la carencia de complejidad y los pocos requerimientos para relativizar la respuesta a los parámetros, los cuales todos son importantes atributos en mejoramientos de cultivos. Las principales limitaciones de los modelos son la carencia de certeza y precisión para describir las reacciones cuando las plantas son expuestas a extremos fototermales, aunque se trata de circunstancias que a veces son poco realistas para el cultivo de estos genotipos en particular.

III. MATERIALES Y METODOS.

A. UBICACION

Los ensayos fueron ubicados, desde la primer zafra analizada (1986-87) hasta la actual (1998-99), en la Unidad Experimental de Paso de la Laguna - INIA Treinta y Tres. Esta se ubica a 28 Km. de la ciudad de Treinta y Tres, 33 ° 14' latitud sur, 54° 22' longitud oeste, a una altitud de 25 metros sobre el nivel del mar, en suelos Solods de la Unidad La Charqueada. Dichos suelos presentan un horizonte B - textural y una topografía plana de 1,2% de pendiente, adecuados para el cultivo de arroz.

B. FUENTE DE DATOS

Para las zafras analizadas se utilizó una base de datos heterogénea de las publicaciones anuales de los Resultados Experimentales de Arroz de cada zafra y de los datos de comportamiento agronómico e industrial de los distintos cultivares de los ensayos de la Evaluación Final de Cultivares del Programa de Mejoramiento Genético de Arroz (PMGA) del Instituto Nacional de Investigación Agropecuaria (INIA), donde cada año podía tener de dos a cinco fechas de siembra. A la vez, los cultivares y líneas utilizadas no poseen el mismo número de años proporcionando datos, ya que iban ingresando a medida que iban apareciendo (ver cuadro Nº 5).

Cuadro Nº 5. Número de zafras y de siembras presentes para cada variedad extraidos del PMGA.

Variedades	Nº de Zafras	Nº de datos
Bluebelle	13	50
El Paso 144	13	47
INIA Tacuarí	10	35
INIA Caraguatá	9	30
INIA Cuaró	6	13
Línes 1130	5	18

También se debe de considerar que a partir de la zafra 1995/96, o sea, en las cuatro últimas zafras, se obtuvieron datos del ensayo Bioclimático que proporcionaba datos de siembra a emergencia y de emergencia a primordio foliar, ya que antes solo se tomaban de siembra a 50% de floración, siendo el resto de los datos similares (ver cuadro N° 6). Las variedades utilizadas para este último ensayo fueron las que abarcan mayor superficie sembrada del país.

Cuadro Nº 6. Número de zafras y de siembras presentes para cada variedad extraidos del ensayo Bioclimático.

Variedades	Nº de zafras	Nº de datos
El Paso 144	4	8
INIA Tacuari	4	8
INIA Caragoatá	3	6
INIA Cuaró	2	4

Los datos recopilados para este trabajo durante todas las zafras analizadas fueron radiación y temperaturas diarias (máxima, media y mínima), desde la fecha de siembra a la llegada de madurez fisiológica en cada variedad estudiada. Los ensayos se instalaron en diferentes épocas de siembra, abarcando preferentemente todo el período potencial de siembra en nuestras condiciones (octubre a diciembre).

C. DISEÑO EXPERIMENTAL DE LOS ENSAYOS.

A modo de resumen, se detallará la realización del ensayo de la última zafra (1998 - 99):

Los experimentos del ensayo Bioclimático se realizaron con un diseño de bloques al azar, con tres repeticiones, con parcelas de 18 surcos de 3,6 metros de largo distanciados a 0,20 metros, usando una sembradora Hege 90. La fertilización fue hecha en función del análisis de suelo y además se controlaron malezas para proteger al cultivo. Las épocas de siembra utilizadas ese año fueron una normal para la zona del 21 de octubre y una tardía del 27 de noviembre.

En cuanto a los experimentos del PMGA, también se utilizó un diseño de bloques al azar, con tres repeticiones, con parcelas de 3,5 metros de largo distanciados a 0,20 metros. Utilizando la sembradora antes mencionada.

D. CULTIVARES

Se utilizaron seis materiales que fueron seleccionados por su importancia en área sembrada o variedades posibles a lanzarse al mercado.

1. Bluebelle

Origen: Estación Experimental de Beaumont, Texas, EUA. Proviene del cruzamiento de CI9214//Century Patna 231/CI9222. Desde el año 1969 se la cultiva en el

país. Su base genética es mayormente japónica.

Características agronómicas: Es una variedad erecta y poco macolladora. Posee tolerancia intermedia frente a bajas temperaturas en la etapa reproductiva entre las variedades indicas e INIA Tacuarí, lo que le confiere buena estabilidad de rendimiento en un amplio rango de períodos de siembra. El ciclo promedio de siembra a floración es de 95 días.

2. El Paso 144.

Origen: Variedad seleccionada en 1978 en la Estación Experimental del Este a partir de un material segregante del CIAT. Entró en certificación en 1986.

Características agronómicas: Es una planta semi-enana, tropical o índica de gran macollaje con hojas y granos pilosos pero de alto potencial de rendimiento. El ciclo promedio de siembra a floración es de 102 días, siendo el más largo de todas las variedades sembradas en la actualidad. Es susceptible a las bajas temperaturas en la etapa reproductiva, por lo que no resulta apta para las siembras tardías, recomendándose su siembra desde octubre a principios de noviembre.

3. INIA Tacuarí.

Origen: Proviene del cruzamiento de Newbonnet / Newrex L79 realizado en la Estación Experimental del Este en 1984. Base genética mayormente japónica. Entró en certificación en 1992.

Características agronómicas: Es una variedad del tipo moderno, ciclo promedio de siembra a principios de floración es de 87 días, 8 días menos que Bluebelle. En siembras tardías ha alcanzado la floración en 78 días (Blanco y Pérez de Vida, 1992). Es tolerante a las bajas temperaturas.

4. INIA Caraguatá.

Origen: Proveniente del cruzamiento de Bluebelle / Lebonet //BL 75/Texas 23, ingresó a evaluación en 1989/90 y a certificación en 1995. Base genética mayormente japónica.

Características agronómicas: Planta de tipo semi-enano, de hojas erectas y tallos

resistentes al vuelco. Es exigente en la preparación de tierra y control de malezas. El ciclo promedio de siembra a floración es de 97 días. Es susceptible a las bajas temperaturas en etapas reproductivas, no recomendándose su siembra en épocas tardías.

5. INIA Cuaró.

Origen: Este cultivar ingresó a evaluación preliminar en la zafra 1992/93 como L 1435, fue registrada como INIA Cuaró en 1997. Proviene del cruzamiento de Mt BR (IRGA) 409 / El Paso 144, realizado localmente en 1986, siendo su progenitor femenino un mutante de la variedad brasileña. Base genética mayormente índica.

Características agronómicas: Cultivar semi-enano, con características similares a El Paso 144 que le permiten lograr una buena implantación frente a condiciones adversas. Su ciclo promedio a floración es más corto que el de El Paso 144. Sus hojas y granos carecen de pilosidad lo cual es una ventaja frente a la variedad paterna, contribuyendo esto a reducir costos de cosecha, transporte y post-cosecha pero la similitud le permite aplicar prácticas de manejo similares.

6. <u>Línea experimental L 1130.</u>

Origen: Del cruzamiento de Newbonnet / Newrex L79 // Leah. El progenitor fue una planta F2 de la población de donde posteriormente se seleccionó INIA Tacuarí. Estas lineas se encuentran en proceso de purificación y multiplicación de semilla. Su base genética es mayormente japónica.

Características agronómicas: Tienen buen tamaño de grano y resistencia a enfermedades de tallo al igual que Tacuarí. Son erectas, sin pilosidad, y de mayor altura, sus ciclos duran de 99 a 100 días a floración, o sea, intermedio con respecto a Bluebelle y El Paso 144. L 1130 posee un rendimiento similar a Tacuarí.

Cuadro Nº 7. Duración promedio de las etapas en días para las variedades estudiadas, datos del P.M.G.A. de la zafra 1986/87 a la 1997/98.

Cicle	Bluebelle	El Paso 144	INIA Tacuarí	INIA Caraguatá	INIA Cuaró	L 1130
Siembra a floración	97	101	91	99	102	99
Floración a madurez fisiológica	38	40	38	38	36	38
Siembra a madurez fisiológica	135	141	129	137	138	137
Nº de datos	50	47	35	30	13	18

E. DETERMINACIONES DE REGISTROS.

Luego de cada fecha de siembra se hicieron monitoreos visuales periódicos por parcela para determinar las fechas de los diferentes eventos fenológicos en los distintos ensayos.

Para los ensayos del P.M.G.A. luego de la siembra se determinó:

- a) fecha a 50% de floración.
- b) fecha a madurez fisiológica.

Para los ensayos Bioclimáticos, luego de la siembra se determinaron:

- a) fecha a emergencia.
- b) fecha a inicio de primordio.
- c) fecha a 50 % de floración.
- d) fecha a madurez fisiológica y tasa de llenado de grano.
- e) rendimiento parcelario y % de verde

En estos últimos ensayos, la determinación de inicio de primordio se hicieron tomando muestras periódicas que luego eran llevadas a laboratorio para comprobar ese hecho mediante observación de cortes histológicos.

La tasa de llenado de grano y la madurez fisiológica se determinó de la siguiente forma:

- 1º- una vez que cada variedad llegaba a 50 % de floración, se marcaron 150 panojas de similar tamaño por bloque.
- 2°- a partir de la fecha de 50% de floración y cada 10 días, se muestrearon 15 panojas por variedad y por bloque.
- 3°- se secaron en estufa durante 24 horas a 105°C, se pesaron dichas panojas y se cosecharon manualmente.
- 4°- se separaron y contaron los granos llenos de los chuzos
- 5°- se pesaron los granos llenos y chuzos.
- 6°- se determinaron los pesos medios de: grano chuzo
 - grano lleno
 - panoja
- 7º- con los sucesivos muestreos se determinaron la tasa de llenado y el punto de madurez fisiológica (donde los granos dejan de aumentar de peso).

El rendimiento se obtuvo cortando dentro de cada parcela rectángulos de 1 metro de ancho por 2 metros de largo para luego trillar en una cosechadora experimental estacionaria, se pesa el grano y se mide la humedad para corregir el rendimiento a seco (13 % de humedad). Luego, sobre una sub-muestra de 100 gramos posteriormente descascarada en un molino de esmeril Satake (de origen japonés), se separaron y pesaron los granos verdes para determinar su porcentaje.

F. FUENTES DE DATOS CLIMATICOS.

La información climática fue recogida en la Unidad Experimental de Paso de la Laguna donde funciona una Estación Agrometeorológica Convencional desde 1972. De ella se recoge la información detallada del clima, quedando disponible para los diferentes proyectos de investigación. Los datos se procesan diariamente, las horas de sol reales diarias se obtienen a través de los cómputos de bandas, la radiación diaria se obtiene por medio del Actinógrafo y se registra temperatura máxima, mínima y media.

En este trabajo se utilizó en primera instancia:

- temperatura máxima
- temperatura mínima
- temperatura media obtenida como el promedio de las anteriores, pero luego a medida que el trabajo fue avanzando fue necesaria la recopilación de:
- horas de sol reales
- radiación diaria

La base de datos fue procesada desde la zafra 1986/87 hasta la actual, 1998/99.

Las horas de sol se calcularon como el promedio de horas de sol reales para la fase de siembra a floración.

G. METODOLOGIA EMPLEADA.

La base de datos climáticos de cada zafra se introdujo en Planillas de Cálculos del Programa EXCEL 6.0, los datos alineados día a día para los meses que duró cada zafra fueron:

- fechas
- temperatura máxima
- temperatura minima
- temperatura media
- calorías / cm² / dia

Las temperaturas base que se estudiaron fueron: 0°, 5°, 7°, 8°, 9°, 10°, 12°, y 15° C.

La decisión de las temperaturas base estudiadas no fue arbitraria, se eligieron de acuerdo a lo que la bibliografia sobre el tema menciona (10 - 12° C). Pero a medida que el experimento fue avanzando los resultados provisorios del estudio exigieron que se agregaran temperaturas extremas más bajas (0, 5 y 7°C), donde se pensó que estaría la base.

En la metodología de cálculo de Grados Día se usó la siguiente ecuación:

$$GDA = \sum_{i=1}^{n} (Ti - Tb)$$
 (1)

donde los términos significan lo siguiente:

GDA = Grados día acumulados

Ti = Temperatura media diaria

Tb = Temperatura base en estudio

n = Número de días de duración de la fase

Luego para cada temperatura base, con los datos obtenidos en las zafras estudiadas (1987-99), se calculó: GDA promedio, desvío estándar en grados día y mediante la ecuación 2 que Arnold N.Y. desarrolló en 1959, se pasó el desvío a días.

$$dd = ds / (Xt - Tb)$$
 (2)

En donde:

Dd = Desvio en días (+/-)

ds = Desviación estándar de los grados día acumulados para la serie de épocas y zafras estudiadas.

Xt = Temperatura media durante todo el desarrollo del cultivo hasta la etapa fenológica de interés

Tb = Temperatura base en estudio.

A su vez dentro del caso de temperatura base 10 también se calcularon los grados día acumulados tal cual se realiza en DD50 (degree day 50) programa muy utilizado en E.U.A. para predecir el desarrollo del cultivo. Este programa toma 10° C como base, pero hace dos consideraciones:

- 1- La temperatura media es el promedio de la máxima y la mínima, a diferencia de otros modelos donde la temperatura media es el promedio de las 24 horas del día.
- 2- Establece un rango de temperaturas donde se produce la acumulación de grados día, que son:
- Si la temperatura máxima es mayor a 34° C se asigna 34° C como temperatura máxima del día.
- Si la temperatura minima del día es mayor a 21° C se asigna 21° C como temperatura minima.

La temperatura base se escogió para cada variedad y cada fase utilizando los métodos descriptos por Arnold N. Y. en 1959, los cuales sobre una misma base de datos concluyeron en igual resultado, ellos son:

1)Método de menor variabilidad; 2)Método del coeficiente de regresión; 3)Método del intercepto x.

- 1) Método de menor variabilidad: Mediante su utilización se escogió la temperatura base que presentó el menor desvío en días, resultante de la ecuación (2).
- 2) Método del coeficiente de regresión: Graficando los GDA para determinada fase y las distintas temperatura base en función de la temperatura media diaria de la fase en desarrollo, se eligió como temperatura base aquella que su coeficiente de regresión estuviera más próximo a cero.
- 3) Método del intercepto x: Se graficó la tasa de desarrollo equivalente, que consistió en el inverso de la duración de la fase en días, en función de la temperatura media diaria del ciclo de desarrollo. Luego se determinó el intercepto x como

temperatura base resolviendo la ecuación de la recta por y = 0.

Los métodos propuestos para encontrar la temperatura base fueron designados para dar: a) la menor variabilidad en suma térmica o

b) cero cambio cuando la suma se relacionó matemáticamente con la temperatura media.

Con el fin de determinar la influencia del fotoperíodo sobre la duración de la fase siembra a floración, se relacionó mediante gráficos los días a floración en función de las horas de sol reales promedio para cada variedad.

H. ANALISIS ESTADISTICO.

1. Relación entre temperatura y duración del ciclo para cada variedad.

Se obtienen los coeficientes de correlación, determinación y regresión lineal entre temperatura media del ciclo y duración del ciclo siembra a floración para cada variedad.

Se utilizó el siguiente modelo de regresión lineal:

$$Y - a + b_1 X_1 + Eij$$

Donde: Y -Días de siembra a floración.

a = Término independiente.

 b_I – Coeficiente de regresión lineal.

 $X_I =$ Temperatura media del ciclo siembra a floración.

Ei = Error experimental.

2. Relación entre horas de sol reales y duración del ciclo para cada variedad.

Se obtienen los coeficientes de correlación, determinación y regresión lineal entre horas de sol y duración del ciclo siembra a floración para cada variedad.

Se utilizó el siguiente modelo de regresión lineal:

$$Y = a + b_1 X_1 + Eij$$

Donde: Y - Días de siembra a floración.

a = Término independiente.

 b_1 = Coeficiente de regresión lineal.

 X_I = Horas de sol reales promedio para el ciclo siembra a floración.

Eij - Error experimental.

3. Relación entre tasa de desarrollo equivalente y temperatura para cada variedad.

Se obtienen los coeficientes de correlación, determinación y regresión lineal entre tasa de desarrollo equivalente y temperatura media del ciclo siembra a floración para cada variedad.

Se utilizó el siguiente modelo de regresión lineal:

 $Y = a + b_1 X_1 + Eij$

Donde: Y = Tasa de desarrollo equivalente medida como el inverso de la duración del ciclo siembra a floración en días.

A = Término independiente.

 b_1 = Coeficiente de regresión lineal.

 X_I = Temperatura media del ciclo siembra a floración.

Eij = Error experimental.

Una vez obtenidos todos los términos de la ecuación de la recta se procedieron a su resolución para encontrar el valor de x cuando Y = 0.

4. Relación entre temperatura y Grados Día Acumulados para cada temperatura base en cada etapa de las variedades.

Se obtienen los coeficientes de correlación, determinación y regresión lineal entre los Grados Día Acumulados y temperatura media del ciclo siembra a floración para cada temperatura base en estudio, en las etapas de siembra a floración, de floración a madurez y siembra a madurez.

Se utilizó el siguiente modelo de regresión lineal:

$$Y = a - b_I X_I + Eij$$

Donde: Y – Tasa de desarrollo equivalente medida como el inverso de la duración del ciclo siembra a floración en días.

a = Termino independiente.

 b_I = Coeficiente de regresión lineal.

 X_l = Temperatura media del ciclo siembra a floración.

Eij - Error experimental.

Estos coeficientes se utilizan como una base para la aplicación del Método del coeficiente de regresión descripto por Arnold en 1959.

Una vez obtenidos todos los coeficientes de regresión de las temperaturas base en estudio, dentro de una etapa en una variedad, se procedió a la comprobación estadística de las diferencias. Por medio del programa estadístico SAS (Stadistic Analysis System) Edición 6.12, se procedió a la aplicación de un Modelo lineal de prueba de heterogeneidad de pendientes. Este prueba si el coeficiente de regresión de la variable continua (temperatura media del ciclo), es diferente para cada nivel de clasificación (temperatura base).

El nivel de confianza utilizado es del 90 %. Esto quiere decir que cuando la probabilidad de error es menor o igual a 0,1, afirmamos que hay heterogeneidad de pendientes (son diferentes). Cuando la probabilidad de error es mayor a 0,1, afirmamos que no hay heterogeneidad de pendientes (no son diferentes).

I, FUENTES DE DATOS PARA LA VALIDACION DE LA METODOLOGIA.

Con el fin de validar los resultados del estudio de las temperaturas base, se utilizaron datos de chacras comerciales de la zafra 1998/99, cercanas a la zona en donde se realizaron los experimentos. Luego se compararon los GDA promedios de la serie histórica con los obtenidos en las chacras comerciales, utilizando la temperatura base de mejor ajuste para cada variedad y la usada actualmente en la investigación.

Los datos fueron proporcionados por técnicos a cargo de las mismas. Se eligieron las dos variedades de arroz de mayor importancia en lo que se refiere a área cultivada, El Paso 144 e INIA Tacuarí.

El número de datos de chacras fue 24 para El Paso 144 y 62 para INIA Tacuarí. La información suministrada fue:

- Fechas de siembra
- Fechas de 50 % de floración
- Días a emergencia
- Momento de inundación
- Momento, tipo y dosis de aplicación de herbicidas.

IV. RESULTADOS Y DISCUSION.

A. INCIDENCIA DE LA TEMPERATURA Y LAS HORAS DE SOL REALES EN EL CICLO PARA CADA VARIEDAD DE ARROZ.

1. Aspectos generales.

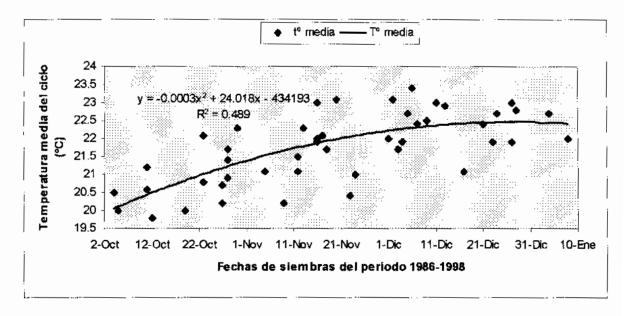
La temperatura mostró ser el factor de mayor importancia en cuanto a la influencia que posee sobre la duración del ciclo del cultivo para todas las variedades.

El otro factor que podría tener cierta influencia son las horas de sol, medido como horas de sol reales promedio para la etapa siembra a floración.

Para ambos factores, la respuesta depende del origen del cultivar que se considere. La variedad de origen índico, El Paso 144, mostró una mayor correlación entre horas de sol (HS) y días a floración, comparada con las variedades que tienen una base genética mayormente japónica (Bluebelle, Tacuarí, Caraguatá y L 1130). Cuaró es una variedad con base genética mayormente índica, pero su correlación entre horas de sol y duración del ciclo, fue relativamente baja. Esta correlación en general es positiva y con un coeficiente de regresión variable (ver cuadro N° 8).

Cuadro Nº 8. Coeficientes de correlación (R) de las dos variables climáticas (temperatura media del ciclo y horas de sol) con la duración del ciclo en días.

	Bluebelle	El Paso 144	INIA Tacuari	INIA Caraguatá	INIA Cuaró	L 1130
TMC	-0.66	-0.61	-0.62	-0.68	-0.80	-0.85
HS	0.24	0.42	0.31	0.11	-0.16	-0.09
n	50	47	35	30	13	18

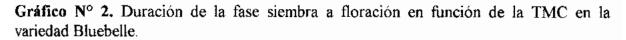

TMC = Temperatura Media del Ciclo. HS = Horas de sol. n = número de datos.

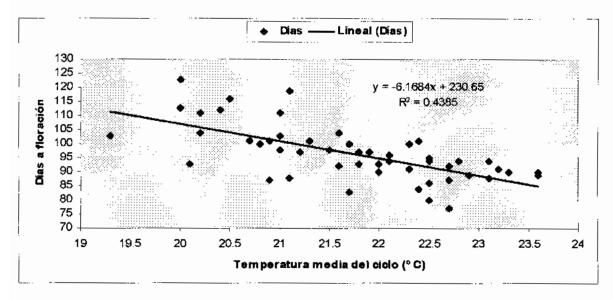
Cuando el factor climático considerado fue temperatura media del ciclo (T.M.C.), las respuestas fueron consistentes para todas las variedades. Se constató un menor número de días a floración cuando la temperatura media era mayor, verificándose esto con una alta correlación negativa para todos los casos estudiados. Este aumento de la temperatura media del ciclo se puede relacionar al atraso de la fecha de siembra. En el gráfico Nº 1, se puede observar para la variedad el Paso 144 un aumento sostenido de la TMC en la medida que se atrasa la fecha de siembra, ajustando mediante una tendencia polinómica de segundo grado. Los coeficientes de correlación y de determinación son altos, afirmando así la estrecha relación entre fecha de siembra y TMC, R = 0,699 y R² = 0,489, es decir que da un buen ajuste de puntos sobre la curva. La misma respuesta se

encuentra para todas las variedades.

Aunque los R y R² para HS son menores que los observados para TMC comparándolos entre variedades, se observan importantes diferencias.

Gráfico Nº 1. Evolución de la TMC en función del atraso de la fecha de siembra.




2. Variedad Bluebelle.

En el gráfico Nº 2 se puede observar claramente la importante influencia de la TMC sobre el período siembra a floración.

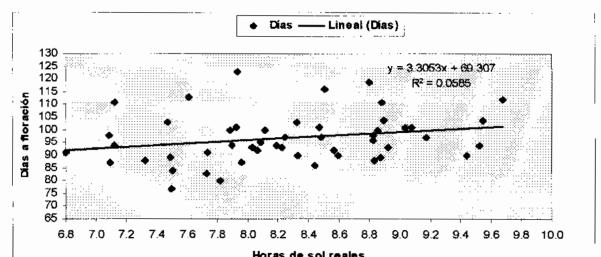
La fase vegetativa es la más variable en cuanto a duración y se encuentra dentro del período estudiado. Por lo tanto la variación en la duración de siembra a floración se debe en parte a la variación de la fase vegetativa.

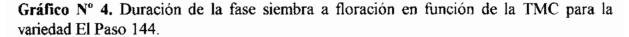
Ajustando la serie de puntos del gráfico N° 2 por medio de la tendencia lineal, se logra visualizar más claramente el efecto de la temperatura en la duración de la fase. Por cada aumento de 1 ° C de la TMC entre siembra y floración, éste se acorta más de 6 días, para una serie de 50 datos con un R^2 = 0,4385. Esto implica que más del 43 % de la variación de la duración del ciclo, se explica por la variación de la temperatura media del ciclo. El coeficiente de correlación de esta tendencia lineal fue de R = -0,6621, lo que determinó que ambas variables están estrechamente relacionadas.

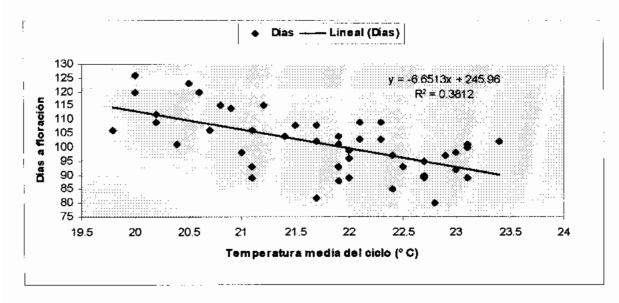
En el gráfico Nº 3, para la misma serie de 50 datos, se determinó la influencia de las HS sobre la duración del ciclo en días. Las HS fueron medidas como las horas de sol reales promedio para la fase de siembra a floración.

Se puede observar que el efecto de este factor sobre la duración del ciclo es mucho más incierto, debido a su muy bajo valor de R^2 (0,0585) comparado con el de la TMC. La baja correlación entre estas variables, R=0,2418, determinó el menor ajuste de la tendencia lineal de las HS comparado con la temperatura.

Para esta variedad los resultados permiten inferir la importancia de la temperatura media sobre la duración del ciclo considerado.




Gráfico Nº 3. Duración de la fase siembra a floración en función de las horas de sol reales promedio (HS) para la variedad Bluebelle.


3. Variedad El Paso 144.

El número datos manejado en esta variedad fue menor al anterior, n = 47, pero los resultados obtenidos tuvieron una similar tendencia.

En el gráfico Nº 4, por medio de la tendencia lineal de los puntos se observa una marcada influencia de la TMC sobre la duración del período siembra a floración. La ecuación presenta una importante pendiente negativa, por cada aumento de 1° C en la TMC, el período considerado se acorta más de 6 días, similar a Bluebelle. La alta correlación negativa que se observó en estos datos, R = -0,61, determina el buen ajuste de la pendiente y la estrecha relación entre las variables. Aunque de las variedades estudiadas, es el menor coeficiente de correlación, se explica por la mayor influencia de las HS comparada con el resto de las variedades (ver cuadro Nº 8).

Con el coeficiente de determinación, $R^2 = 0.3812$, se explica que parte de la variación en la fase de siembra a floración se debe al aumento de la temperatura.

En El Paso 144, el estudio de la influencia de las HS sobre la duración del ciclo, determinó un mayor efecto de esta variable climática con respecto a las demás variedades.

Esta variedad presenta el mayor coeficiente de correlación, R = 0,4258, constatándose una mayor relación entre ambas variables, que se puede explicar por su origen índico.

En el gráfico N° 5, se observa en la ecuación de la recta una pendiente mayor a la de Bluebelle (gráfico N° 3). También el coeficiente de determinación es el mayor entre las variedades estudiadas, R^{2} = 0,813, reafirmando el mayor efecto de las HS sobre la duración del ciclo.

Los R y R² para HS son menores que los observados para TMC, determinando la mayor influencia de la temperatura sobre la duración del ciclo en El Paso 144. Pero a la vez estos parámetros son mayores que los observados en las otras variedades.

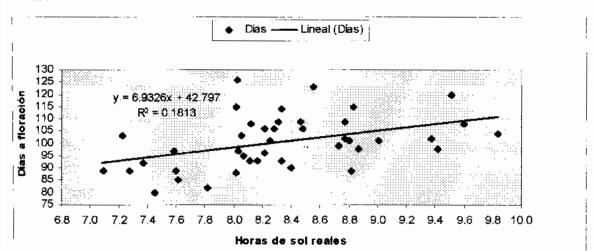
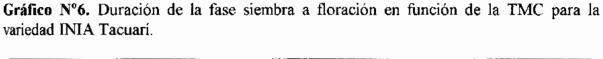
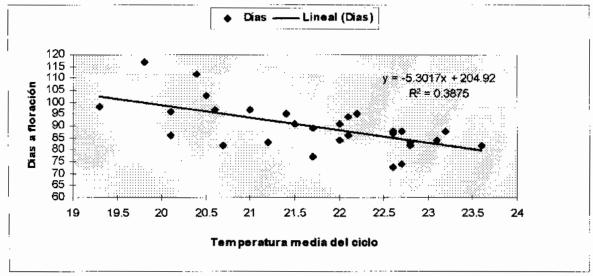


Gráfico Nº5. Duración de la fase siembra a floración en función de las HS en la variedad El Paso 144.

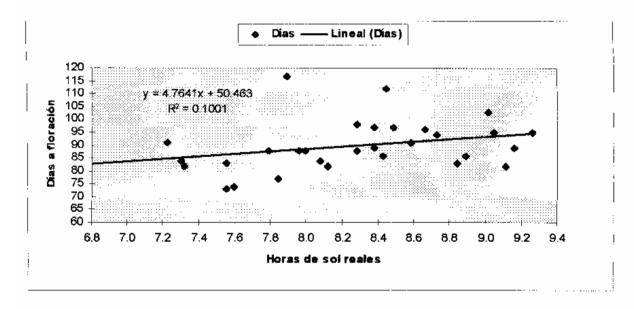

4. Variedad INIA Tacuarí.


Esta variedad tiene un n = 35, se debe a su ingreso años más tarde al PMGA, como fue explicado en el punto III. C.

En general es de ciclo de siembra a floración más corto que el resto de las variedades (ver cuadro Nº 3).

En el gráfico Nº 6, se observa un efecto similar a las variedades anteriores en la influencia de la temperatura sobre la duración del ciclo. A mayor temperatura, menor número de días a floración. En la ecuación presentada en el gráfico, por cada 1º C de aumento en la TMC el ciclo se acorta casi 5 días.

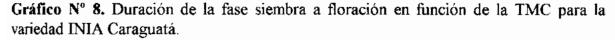
El coeficiente de correlación de esta tendencia lineal fue de R = -0.6225, un valor similar a la encontrada para El Paso 144 (R = -0.61). El porcentaje de la variabilidad en la duración del ciclo que se explica por la variación de la temperatura es de casi 39 %.

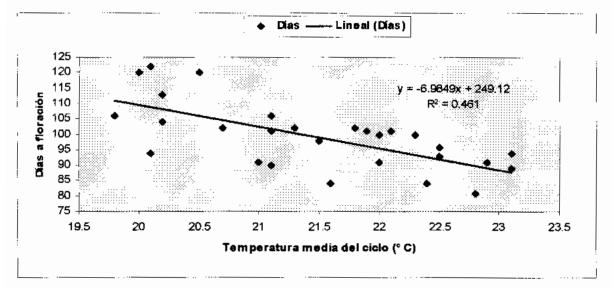


Sin embargo, la relación de la duración de la fase siembra a floración y HS, fue menor comparado con El paso 144.

En el gráfico N° 7 se observa que la tendencia lineal no tiene un buen ajuste sobre los puntos. Esto es reafirmado al observar el bajo coeficiente de correlación, R = 0.3164, indicando así un efecto incierto de las horas de sol sobre la duración del ciclo.

Los resultados de la baja influencia de las HS concuerdan con lo esperado para esta variedad, porque posee una base genética mayormente japónica y por lo tanto es menos sensible a este factor climático.

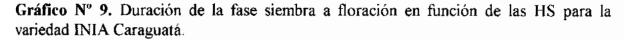

Gráfico Nº 7. Duración de la fase siembra a floración en función de las HS para la variedad INIA Tacuarí.

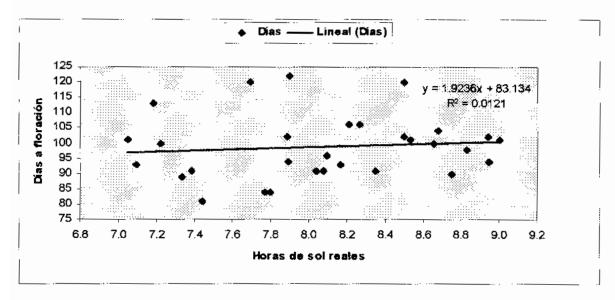


5. Variedad INIA Caraguatá.

Los resultados obtenidos para esta variedad han sido claros, se observó una importante influencia de la temperatura y una muy baja relación de las HS con la duración del ciclo.

En el gráfico Nº 8, se puede observar la tendencia lineal de los datos de duración del ciclo en función de la temperatura media. De la ecuación se determinó el efecto del aumento de la temperatura, por cada 1° C de aumento en la temperatura media el ciclo se acorta casi 7 días. Con un n=30, las variables presentan un alto coeficiente de correlación, R=-0.679. Esto determinó, además del buen ajuste de la recta, la importante relación existente entre ambas variables.

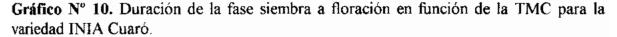


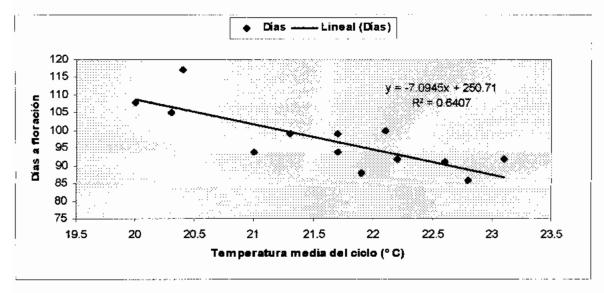


En el estudio de la respuesta a las HS los resultados fueron consistentes, se determinó la menor influencia y baja relación sobre la duración del ciclo.

En el gráfico N° 9 se observa el comportamiento de la duración del ciclo en función de las HS. El efecto de las HS sobre la duración de ciclo es mucho menor que el de la TMC y más incierto. Esto se debe a que tiene un coeficiente de correlación muy bajo R = 0.11, indicando que la recta de la tendencia lineal, no tiene un buen ajuste.

INIA Caraguatá se comporta claramente como una variedad moderna de origen japónico, muy sensible a temperatura y casi insensible a las HS. Así es que su ciclo es regulado mayormente por las variaciones de temperatura.





6. Variedad INIA Cuaró.

Esta variedad proveniente de un cruzamiento con El Paso 144, presenta una respuesta clara y diferente respecto a su progenitor.

El aumento de la temperatura tuvo una importante influencia negativa en la duración del ciclo. Aunque cuenta con el menor número de datos, n=13, los resultados son consistentes. Como se puede apreciar en el gráfico N° 10, la tendencia de la recta muestra una respuesta muy similar a la variedad paterna (ver gráfico N° 4). Con el aumento de la temperatura media en 1° C, el ciclo se acorta poco más de 7 días. La diferencia se observa en el coeficiente de correlación, es mayor a El Paso 144, R=-0.8004. El alto valor negativo afirma un mejor ajuste y una mayor asociación de las variables.

Sin embargo, la respuesta a las HS es diferente a El Paso 144, ya que presenta una relación entre este factor y la duración del ciclo, mucho menor. Así se puede observar en el gráfico Nº 11.

De acuerdo con los orígenes de esta variedad, mayormente índico, se esperaba una relación entre variables similar a la que se observó en El Paso 144. Pero presentó un R = -0,649, menor que su progenitor y similar al de las variedades de base genética mayormente japónica.

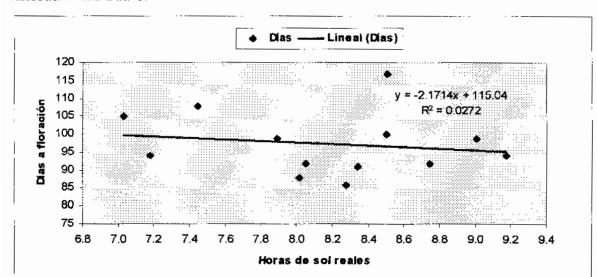


Gráfico Nº 11. Duración de la fase siembra a floración en función de las HS para la variedad INIA Cuaró.

7. LINEA 1130.

Al igual que las otras variedades, la influencia de la temperatura sobre la duración del ciclo fue muy importante y los valores de su respuesta fueron muy altos.

En el gráfico Nº 12, se observa la respuesta de la duración del ciclo en función de la temperatura media. Por cada 1º C de aumento en la temperatura media, el ciclo se acortó casi 8 días. Esta variedad presenta la mayor respuesta comparada con las restantes.

Con un n = 18, su coeficiente de correlación fue de R = - 0,8486. Este elevado parámetro estadístico determina la buena asociación entre las variables y un buen ajuste de la recta.

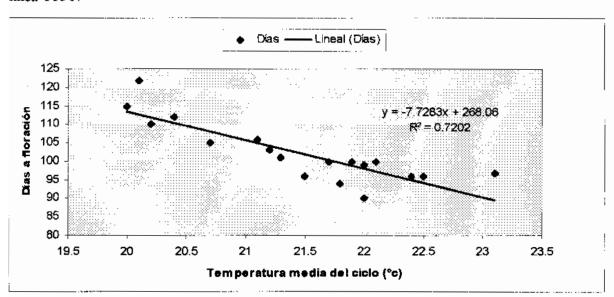



Gráfico Nº 12. Duración de la fase siembra a floración en función de la TMC para la línea 1130.

La influencia de las horas de sol en esta línea es similar a la encontrada para INIA Cuaró, baja e incierta.

Se observa en el gráfico N° 13 la tendencia de la duración del ciclo en función de la TMC. Los bajos valores de los coeficientes de correlación y de determinación, R = -0.3066 y $R^2 = 0.094$, determinan que las HS no tienen influencia clara sobre la duración del ciclo.

Gráfico Nº 13. Duración de la fase siembra floración en función de las HS para la Línea 1130.

B. ESTUDIO DE LAS TEMPERATURAS BASE EN LAS DIFERENTES VARIEDADES.

El estudio de la temperatura base para cada variedad se realiza a través de los métodos de evaluación de la temperatura base descripta por Arnold C. Y. en 1959 (ampliamente descriptos en el punto II. D.4.):

- 1) Método de menor variabilidad,
- 2) Método del coeficiente de regresión y
- 3) Método del intercepto x.

Las temperaturas elegidas para el estudio en una primera instancia, estuvieron en el entorno a aquellas que la bibliografía menciona ampliamente como las posibles bases para el arroz, cercano a los 10° C. Se eligió: 7°, 8°, 9°, 10°, 12° y15° C. Luego ante resultados promisorios se decidió incluir en el estudio temperaturas extremas más bajas, 0° y 5° C, ya que se podía observar un mejor ajuste a medida que descendía la temperatura.

Los tres métodos se aplicaron a cada variedad en la fase de siembra a floración, mientras que en las fases floración a madurez fisiológica y siembra a madurez fisiológica, se aplicaron los métodos 1 y 2.

Arnold Y. C. en 1959, encontró que la temperatura base que se obtenia era similar en los tres métodos, sobre una misma base de datos. Se logra así un resultado más seguro.

La obtención de los Grados Día Acumulados para cada Tb y cada variedad se realiza a través de la siguiente fórmula (explicada en el punto III.G):

$$GDA = \sum_{i=1}^{n} (Ti - Tb)$$
 (1)

Se tomo como variable independiente temperatura base (Tb) y como dependiente Grados Día Acumulados (GDA). Para las distintas épocas de siembra de la serie de zafras de 1986 a 1998 (ver cuadro Nº 5 en el punto III.B.), se calculó con los GDA el desvío estándar y los coeficientes de variación de las diferentes Tb.

1. Siembra a floración.

a. Variedad Bluebelle.

Una vez obtenidos los GDA entre la serie de fechas de siembra y floración para Bluebelle, se calculó el desvío estándar y el coeficiente de variación (cuadro anexo Nº 1). A estos resultados se aplicaron los métodos de evaluación de la Tb.

1)Método de menor variabilidad: Se convirtieron todos lo desvíos estándar a desvío en días por medio de la fórmula (2) desarrollada por Arnold en 1959. Luego se seleccionó aquella Tb de menor desvío en días. El cuadro Nº 9 muestra los resultados obtenidos. Por este método se determina que la Tb de menor variabilidad es 7º C, con un desvío en días de 7,14.

Cuadro Nº 9. Resumen de resultados obtenidos en Bluebelle para la fase siembra a floración.

To base (° C)	0°	5°	7°	8"	90	10°	12"	15°
GDA(media)	2114	1625	1429	1333	1236	1138	943	654
ds (GDA)	161	120	105	99	93	88	80	74
dd (dfas)	7.41	7.15	7.14	7.22	7.31	7,50	8.23	10.98
CV (%)	7.62	7.36	7.36	7.44	7.53	7.74	8.49	11.31
R ²	0.04	0.00	0.01	0.03	0.07	0.12	0.28	0.58
R	-0.20	0.00	0.09	0.18	0.26	0.34	0.53	0.76
βι	-30.63	-0.51	9.25	17.26	23.44	28.95	40.12	53.49

GDA = Grados Día Acumulados. ds = desvio estándar en grados día. dd = desvio en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

Otra forma de ver el comportamiento de los desvíos y el coeficiente de variación es por medio del gráfico Nº 14. En este gráfico se observa como tanto el desvío en días y el coeficiente de variación aumentan a medida que la temperatura base se aleja a ambos lados de 7° C, mientras que el desvío estándar en grados días tiende a ser menor a medida que la temperatura base aumenta de 0° a 15° C.

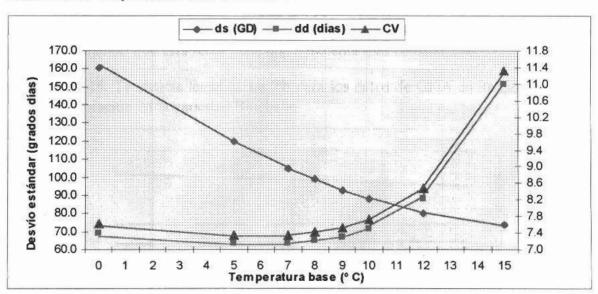
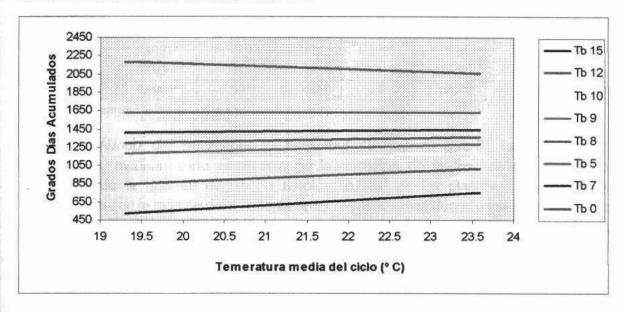


Gráfico Nº 14. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en Bluebelle de siembra a floración.

El estimador del desvío en días (dd) tiene una importancia muy práctica por las unidades en que se cuantifica el error.

La tendencia al descenso del desvío estándar con el aumento de la temperatura base se debe a una razón matemática, cuando mayor es la temperatura base, menor es el número resultante de la sustracción (Ti – Tb) en la fórmula (1). Al tener una menor diferencia se obtiene menos GDA, resultando en un bajo valor numérico del ds. Cada temperatura base tiene una población diferente con medias diferentes, esto hace que sus desvíos estándares no sean una buena medida de comparación entre variables, a pesar de tener las mismas unidades.


2) Método del coeficiente de regresión: Para su aplicación se determinaron parámetros estadísticos que complementan a la elección de la temperatura base adecuada. El coeficiente de regresión (pendiente o β₁) es la herramienta más importante para la selección de la Tb. Para cada Tb se relacionó los GDA con la TMC, aquella Tb cuya pendiente es la más cercano a 0, sería la de mejor ajuste.

En el cuadro N° 9 se presentan los parámetros estadísticos necesarios para este método, calculados para la serie de datos de Bluebelle. En los resultados se observa que la Tb se encuentra entre 5° y 7° C, porque las pendientes (β₁) cambian de signo (-0,51 y 9,25 respectivamente) indicando que el 0 está entre esas temperaturas. Como la pendiente de 5° C es más cercana a 0, es de esperar que ésta temperatura este más cerca de la Tb correcta, esperando así que ajuste mejor que 7° C. Para confirmar este resultado se observan los valores de R y R² que son ambos 0, afirmando que los GDA no están

relacionados linealmente con la temperatura media del ciclo.

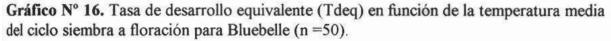
En el gráfico Nº 15 se muestran las líneas de tendencia de las Tb probadas, la recta que muestra un mayor paralelismo con respecto al eje de las abscisas es la de Tb = 5° C, reafirmando que esta recta tiene una pendiente más cercana a 0.

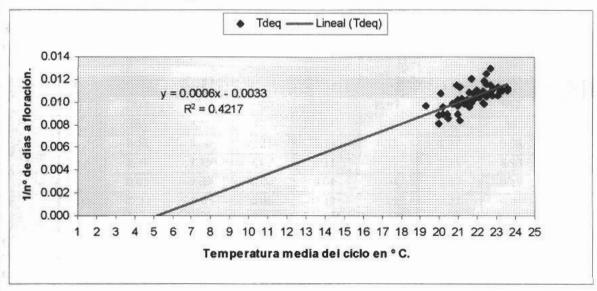
Gráfico Nº 15. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad Bluebelle.

Se decidió realizar una prueba estadística de comparación de las rectas para poder afirmar si en realidad las pendientes de las mismas son diferentes o no. Para ello se utilizo el Modelo lineal que prueba la heterogeneidad de pendientes. Este modelo que se realiza por medio del S.A.S. versión 6.12 (Statistic Analysis System), prueba si el coeficiente de regresión de la variable continua (temperatura media del ciclo) es diferente para cada nivel de la variable de clasificación (temperatura base). El nivel de confianza utilizado fue de 90 %, contemplando por lo tanto una probabilidad de error del 10 % para la prueba F. Cuando esta probabilidad de error hallada es mayor a 0,1, significa que no hay heterogeneidad de pendientes (los β_1 son iguales) y cuando la probabilidad es menor o igual a 0,1, significa que hay heterogeneidad de pendientes (los β_1 son diferentes).

En el cuadro Nº 10 se presentan los resultados de la comparación de los diferentes pares de temperatura base. Aquí se pueden comparar las dos rectas que nos interesan, por ejemplo 5° C que es la Tb recomendada por este método por ser la que mejor ajusta y 10° C que es la que se esta utilizando provisoriamente a nivel de investigación. De esta comparación resulta que estas dos rectas son iguales estadísticamente, aunque numéricamente el coeficiente de regresión de 5° C sea más cercano a 0 y que tenga un

menor desvío en días que 10° C, encontrado por el método de menor variabilidad.


Cuadro Nº 10. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de Bluebelle en la fase siembra a floración.


Temperatura base (° C)	0	5	7	8	9	10	12
0							
5	0.2724		I				
7	0.1296	0.6566					
8	0.0639**	0.4051	0.6854	*			
9	0.0331**	0.2479	0.4770	0.7356			
10	0.0171**	0.1449	0.2870	0.5090	0.7448		*
12	0.0036**	0.0346**	0.0759**	0.1658	0.2850	0.4496	I
15	0.0004**	0.0030**	0.0064**	0.0174**	0.0347**	0.0653**	0.2470

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

3) Método del intercepto x: Este método supone que la tasa de desarrollo equivalente, medida como el inverso de la duración de la fase en días, es un buen estimador de la tasa de desarrollo fenológico real de las plantas. Además hace el supuesto de que la tasa de desarrollo es igual todos los días durante esa fase, lo cual en la realidad no es así, porque es de esperar una mayor tasa de desarrollo en los días de mayor temperatura.

En el gráfico Nº 16 se observa la tendencia lineal y la ecuación de la función, para encontrar el intercepto x. Se despeja x y se resuelve la ecuación cuando y = 0, el resultado es la Tb. Así es que $x = \text{Tb} = 5,5^{\circ}$ C, prácticamente coincidente con el resultado del método del coeficiente de regresión.

Comparando la precisión en días de las Tb que mejor ajustaron por los tres métodos estudiados y la usada actualmente en la investigación, se puede observar que la diferencia es mínima (cuadro Nº 11). Pero la precisión es mejor cuando comparamos la metodología de la Tb con la tradicional, que se guía por un número fijo de días a floración.

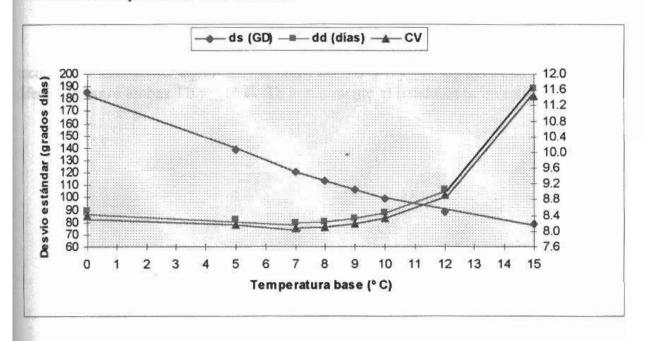
Cuadro Nº 11. Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en Bluebelle (n = 50).

	Tb recomendada	Precisión en días		
Menor variabilidad	7°	7,14		
Coeficiente de regresión	5°	7.15		
Intercepto x	5°	7.15		
Uso en investigación	10°	7.50		
Ciclo en días		9.70		

b. Variedad El Paso 144.

1)Método de menor variabilidad: En el cuadro Nº 12 se observan los resultados obtenidos de desvío estándar, desvío en días y coeficiente de variación para la variedad

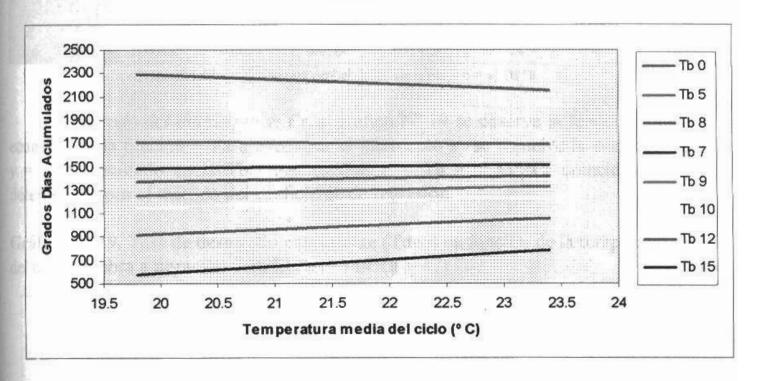
(base de datos en cuadro anexo N° 2). Por este método se determina que la Tb de menor variabilidad es 7° C, con un desvío en días de 8,21.


Cuadro Nº 12. Resumen de resultados obtenidos en El Paso 144 para el ciclo siembra a floración.

To base (o C)	00	5°	70	80	90	10°	12°	15°
GDA(media)	2216	1705	1502	1400	1297	1195	992	689
ds (GDA)	186	139	121	113	106	100	89	79
dd (días)	8.53	8.30	8.21	8.24	8.33	8.47	9.08	11.63
CV (%)	8.38	8.16	8.07	8.11	8.19	8.33	8.93	11.42
R ²	0.05	0.00	0.00	0.01	0.04	0.07	0.19	0.49
R	-0.21	-0.05	0.06	0.12	0.19	0.27	0.44	0.70
βι	-39.97	-6.54	7.00	13.67	20.32	26.78	39.48	55.46

GDA = Grados Día Acumulados. ds = desvío estándar en grados día. dd = desvío en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

. En el gráfico N° 17 se observa como tanto el desvío en días como el coeficiente de variación aumentan a medida que la temperatura base se aleja a ambos lados de 7° C, mientras que el desvío estándar en grados día tiende a ser menor a medida que la temperatura base aumenta de 0° a 15° C.

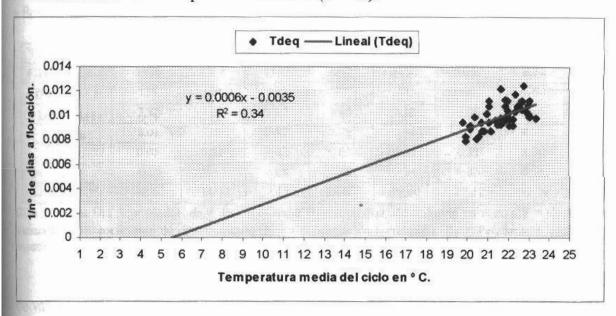

Gráfico Nº 17. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en El Paso 144 de siembra a floración.

2) Método del coeficiente de regresión: En el cuadro N° 12 se observa que la Tb ajustaría mejor con 6° C, ya que las pendientes (β₁) de 5° y 7° C tienen valores similares pero de signo contrario. Esto indicaría que la pendiente igual a 0 estaría entre ambas.

En el gráfico Nº 18 se observa la tendencia del comportamiento de las Tb probadas en función de la TMC. Se puede ver cierto paralelismo entre las rectas de 5° y 7° C.

Gráfico Nº 18. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad El Paso 144.

La prueba de heterogeneidad de pendientes (cuadro N° 13), demuestra que no se encontraron diferencias significativas entre las Tb 5° y 7° C, tampoco se encontraron diferencias entre ambas Tb y 10° C, Tb actualmente utilizada en la investigación.


Luadro Nº 13. Prueba de heterogeneidad de pendientes de las diferentes temperaturas ase para los GDA de la serie de datos de El Paso 144 en el ciclo siembra a floración.

Femperatura base (° C)	0	5	7	8	9	10	12
0		-0.0					
5	0.7236						
7	0.1564	0.6274					1
8	0.0990**	0.4554	0.7893				
9	0.0591**	0.3078	0.5813	0.7744			
10	0.0336**	0.1939	0.3976	0.5582	0.7632		
12	0.0092**	0.0597**	0.1400	0.2174	0.3351	0.5000	
15	0.0012**	0.0074**	0.0180**	0.0303**	0.0524**	0.0907**	0.2795

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

3) Método del intercepto x: En el gráfico N° 19 se observa la tendencia lineal y la ecuación de la función. Para encontrar el intercepto x se resuelve la ecuación cuando y = 0, el resultado es la Tb. Así es que $x = \text{Tb} = 5,83^{\circ}$ C, coincidiendo con lo determinado por el método del coeficiente de regresión.

Gráfico Nº 19. Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para El Paso 144 (n = 47).

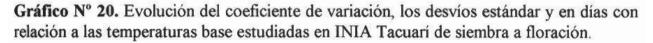
Comparando la precisión en días de las Tb que mejor ajustaron por los tres métodos estudiados y la usada actualmente en la investigación, se puede observar que la diferencia es mínima (cuadro Nº 14). Pero la precisión mejora en aproximadamente 2 días cuando comparamos la metodología de la Tb con la tradicional, que se guía por un

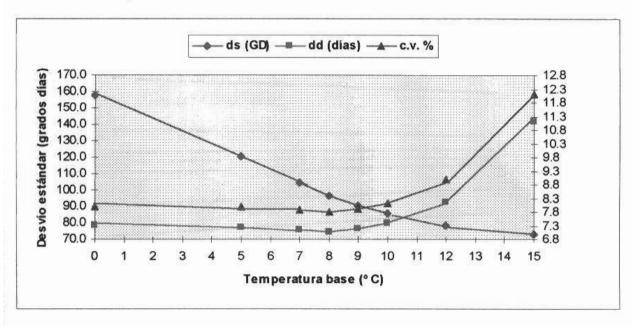
número fijo de días a floración.

Cuadro Nº 14. Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en El Paso 144 (n = 47).

	Tb recomendada	Precisión en días
Menor variabilidad	7°	8.21
Coeficiente de regresión	5°	8.30
Intercepto x	5°	8.30
Uso en investigación	10°	8,47
Ciclo en días		10.50

c. Variedad INIA Tacuarí.

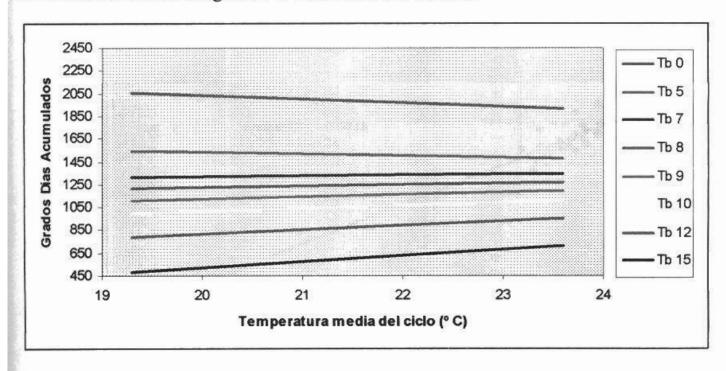

1)Método de menor variabilidad: En el cuadro Nº 15 se observan los resultados obtenidos de desvío estándar, desvío en días y coeficiente de variación para la variedad. (base de datos en cuadro anexo Nº 3). Por este método se determina que la Tb de menor variabilidad es 8º C, con un desvío en días de 7,10.


Cuadro Nº 15. Resumen de resultados obtenidos en INIA Tacuarí para el ciclo siembra a floración.

To base (° C)	O.	5°	7"	8°	9°	10°	12°	15°
GDA(media)	1976	1508	1332	1242	1150	1059	8.74	607
Ds (GDA)	158	120	105	97	91	86	79	74
Dd (días)	7,32	7.25	7.17	7.10	7.20	7.38	8.16	11.10
CV (%)	8.01	7.99	7.87	7.79	7.91	8.11	8.99	12.13
R ³	0.05	0.02	0.01	0.03	0.06	0.11	8.30	0.66
R	-0.23	-0.14	0.08	0.16	0.24	0.33	8.54	0.81
βı	-32.65	-14.91	7.43	13.65	19.60	25.32	37.79	52.58

GDA = Grados Día Acumulados. ds = desvío estándar en grados días. dd = desvío en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

En el gráfico Nº 20, se observa como tanto el desvío en días como el coeficiente de variación aumentan a medida que la temperatura base se aleja a ambos lados de 8° C, mientras que el desvío estándar presenta la misma tendencia observada en otras variedades.

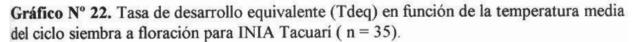


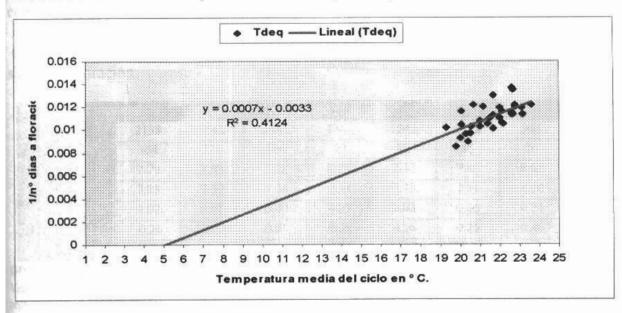
2) Método del coeficiente de regresión: Como se observa en el cuadro N° 15, la Tb de mejor ajuste se encuentra entre 5 y 7° C, ya que sus pendientes cambian de signo. Esto indicaría que la pendiente igual a 0 estaría entre ambas. Pero por la elección del menor valor numérico, la Tb más cercana a cero es 7° C (7,43).

Los resultados obtenidos por este método no concuerdan con el método de menor variabilidad. El coeficiente de regresión indica que la Tb que mejor ajusta es 7°C, o sea, menor que la obtenida por el método anterior (8°C).

En el gráfico N° 21 y el cuadro N° 16, se observan respectivamente la tendencia del comportamiento de las Tb probadas en función de la TMC y los resultados de la prueba de heterogeneidad de pendientes. En ellos se constata que no existe diferencia entre las Tb 7°, 8° y 10° C (esta última usada en la investigación).

Gráfico Nº 21. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad INIA Tacuarí.




Cuadro Nº 16. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Tacuarí en el ciclo siembra a floración.

Temperatura base (° C)	0	5	7	8	9	10	12
0							
5	0.5560						
7	0.1662	0.3632					
8	0.1014	0.2287	0.7762				
9	0.0599**	0.1352	0.5649	0.7667			
10	0.0339**	0.0742**	0.3822	0.5463	0.7571		
12	0.0080**	0.0144**	0.1151	0.1808	0.2869	0.4403	
15	0.0009**	0.0010**	0.0117**	0.0186**	0.0327**	0.0579**	0.2272

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

3) Método del intercepto x: La Tb resultante por este método es igual a 4,71° C, o sea cercana a 5° C. En el gráfico N° 22 se observa la tendencia lineal y la ecuación de la función. Este resultado no concuerda con el método 1, pero se acerca al método 2.

A pesar de que los tres métodos de evaluación determinaron Tb diferentes, la precisión en días obtenida por uno u otro método no presenta diferencias importantes (ver cuadro Nº 17). También la diferencia es mínima comparada con la Tb usada en investigación. Pero al igual que para las otras variedades, esta metodología es más precisa que guiarse por el ciclo en días.

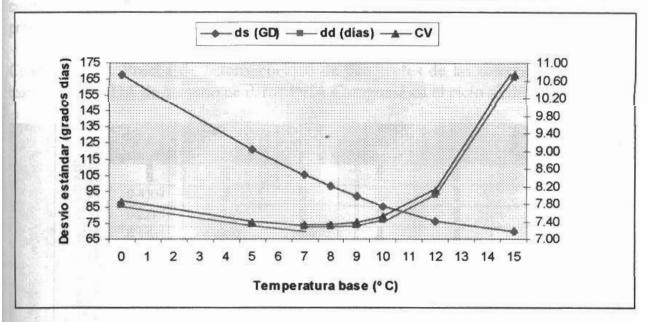
Cuadro Nº 17. Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en INIA Tacuarí (n = 35).

	Tb recomendada	Precisión en días
Menor variabilidad	8°	7.10
Coeficiente de regresión	7°	7.17
Intercepto x	5°	7.25
Uso en investigación	10°	7.38
Ciclo en días		9.80

d. Variedad INIA Caraguatá.

1) Método de menor variabilidad: En el cuadro Nº 18 se observan los resultados obtenidos, de desvío estándar, desvío en días y coeficiente de variación para la variedad.

(base de datos en cuadro anexo N° 4). Por este método se determina que las Tb de menor variabilidad son 7 y 8°C, ambos con un desvío en días igual de 7,28. 7° C fue coincidente con el menor coeficiente de regresión.


Cuadro Nº 18. Resumen de resultados obtenidos en INIA Caraguatá para el ciclo siembra a floración.

To base (o C)	0°	5°	7°	8°	9°	10°	12°	15°
GDA (media)	2138	1642	1441	1341	1242	1142	944	648
ds (GDA)	168	121	106	99	92	86	76	70
Dd (días)	7.79	7.33	7.28	7.28	7.32	7.43	8.01	10.66
CV (%)	7.85	7.39	7.34	7.34	7.39	7.51	8.10	10.75
R ²	0.07	0.01	0.00	0.01	0.03	0.06	0.21	0.55
R	-0.26	-0.12	0.01	0.08	0.16	0.25	0.46	0.74
Bı	-44.04	-13.99	0.81	7.75	14.69	21.37	34.65	51.49

GDA = Grados Día Acumulados. ds = desvío estándar en grados día. dd = desvío en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

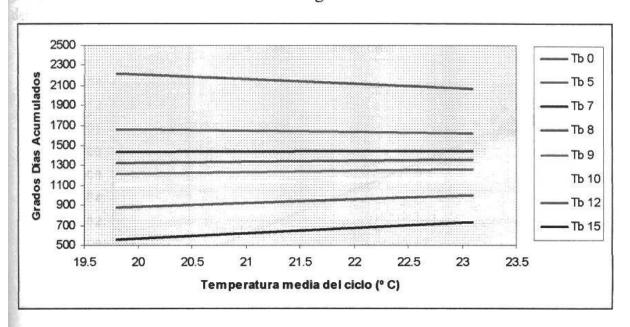

La Tb resultante por este método es igual a la encontrada para El Paso 144, pero menor en un grado a INIA Tacuarí. A pesar de las diferencias en la Tb, estas variedades no tienen diferencias importantes en el desvío en días. A través del gráfico N° 23 se observa que la Tb de mejor ajuste tiene un mínimo en su curva.

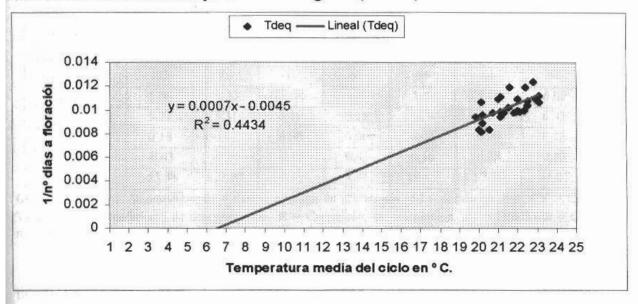
Gráfico Nº 23. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Caraguatá de siembra a floración.

2) Método del coeficiente de regresión: En el cuadro Nº 18 se observa que la Tb que presenta la menor pendiente es 7° C con una pendiente igual a 0,81. Este valor indica que por cada aumento de 1° C en el promedio del ciclo los GDA aumentan 0.81, un valor mínimo. En el gráfico N° 24 se observa la tendencia del comportamiento de las Tb probadas en función de la TMC.

Gráfico Nº 24. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad INIA Caraguatá.

Al igual que para las anteriores variedades, se constato la similitud de las rectas cuando se realizó la prueba de heterogeneidad de pendientes. En el cuadro Nº 19 se presentan los resultados obtenidos.

Cuadro Nº 19. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos INIA Caraguatá en el ciclo siembra a floración.


Temperatura base (° C)	0	5	7	- 8	9	10	12
0	/As	A COLUMN	and the second	September 1			
5	0.4307						
7	0.2215	0.6247					
8	0.1503	0.4592	0.7988				
9	0.0970**	0.3151	0.5977	0.7830			
10	0.0603**	0.2031	0.4188	0.5748	0.7731		
12	0.0203**	0.0663**	0.1573	0.2553	0.3520	0.5125	
15	0.0038**	0.0091**	0.0231**	0.0364**	0.0595**	0.0976**	0.2813

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

No se encontraron diferencias significativas entre las pendientes de las Tb 7°, 8° y 10° C (Tb actualmente utilizada en la investigación).

3) Método del intercepto x: Una vez resuelta la ecuación del gráfico N° 25 se obtuvo la Tb, ésta es de 6,42 ° C. O sea que es prácticamente coincidente con los resultados de los otros dos métodos.

Gráfico Nº 25. Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para INIA Caraguatá (n = 30).

Los tres métodos de evaluación determinaron similares Tb, la precisión en días obtenida es igual (ver cuadro Nº 20). También la diferencia es mínima comparada con la Tb usada en investigación. Pero al igual que para las otras variedades, esta metodología es más precisa que guiarse por el ciclo en días.

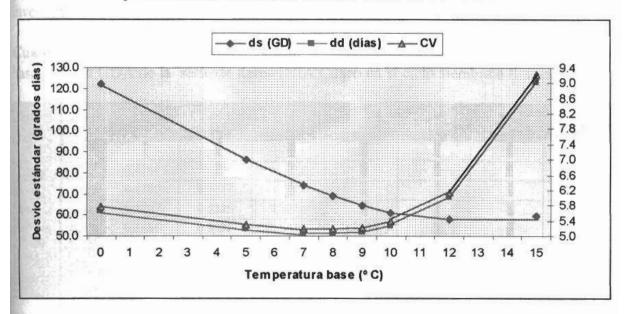
Cuadro Nº 20. Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en INIA Caraguatá (n = 30).

	Tb recomendada	Precisión en días
Menor variabilidad	7°	7.28
Coeficiente de regresión	7°	7.28
Intercepto x	7°	7.28
Uso en investigación	10°	7.43
Ciclo en días		10.20

e. Variedad INIA Cuaró.

1)Método de menor variabilidad: En el cuadro Nº 21 se observan los resultados obtenidos de desvío estándar, desvío en días y coeficiente de variación para la variedad. (base de datos en cuadro anexo Nº 5). Por este método se determina que las Tb de menor variabilidad son 7 y 8°C, con valores de desvío 5,08 y 5,07 días respectivamente. Estos valores, al igual que los del coeficiente de variación, son bajos comparados con los presentados por su progenitor, El Paso144.

Cuadro Nº 21. Resumen de resultados obtenidos en INIA Cuaró para el ciclo siembra a floración.


T° base (° C)	0°	5°	7°	8°	9°	10°	12°	15°
GDA (media)	2120	1628	1432	1333	1235	1137	941	649
ds (GDA)	122	86	74	69	65	61	58	60
Dd (dias)	5.66	5.20	5.08	5.07	5.12	5.28	6.02	9.04
CV (%)	5.77	5.31	5.19	5.18	5.24	5.39	6.02	9.22
R ³	0.18	0.04	0.00	0.00	0.03	0.08	0.28	0.65
R	-0.43	-0.20	-0.05	0.05	0.16	0.28	0.53	0.80
βι	-53.38	-17.90	-3.72	3.38	10.47	17.38	31.07	49.11

GDA = Grados Día Acumulados. **ds** = desvío estándar en grados día. **dd** = desvío en días. **CV** = Coeficiente de Variación. \mathbf{R}^2 = coeficiente de determinación. \mathbf{R} = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

La Tb resultante por este método es igual a la encontrada para El Paso 144, pero tienen diferencias importantes en el desvío en días.

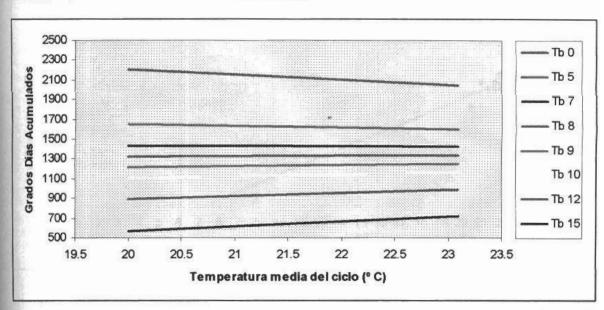
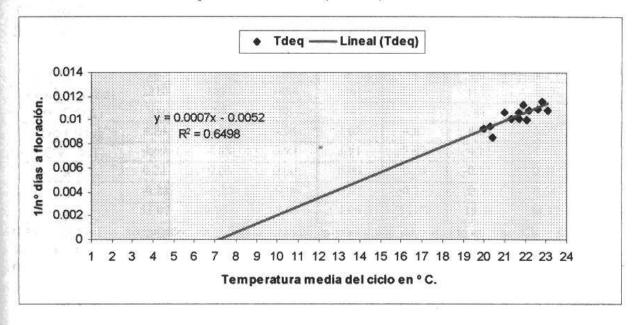

A través del gráfico N° 26 se observa que la curva del desvío en días no presenta claramente un mínimo en un solo punto, sino en el conjunto 7°, 8° y 9° C.

Gráfico Nº 26. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Cuaró de siembra a floración.

2) Método del coeficiente de regresión: En el cuadro Nº 21 se observa que las Tb que presentan las menores pendientes son 7º y 8º C, con valores de -3,72 y 3,38 respectivamente. Estadísticamente estos valores son iguales, ya que fueron comprobados por la prueba de heterogeneidad de pendientes (cuadro Nº 22). En el gráfico Nº 27 se observa la tendencia del comportamiento de las Tb probadas en función de la TMC.

Gráfico Nº 27. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad INIA Cuaró.

En el cuadro N° 22 se comprueba por medio de la prueba de heterogeneidad de pendientes que no hay diferencias entre 7° y 10 ° C, que es utilizada actualmente en la investigación.


Cuadro Nº 22. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos INIA Cuaró en el ciclo siembra a floración.

Temperatura base (° C)	0	5	7	8	9	10	12
0		The second					
5	0.4161						
7	0.2380	0.6857					
8	0.1707	0.5326	0.8220				V.
9	0.1181	0.3932	0.6420	0.8084			
10	0.0798**	0.2776	0.4766	0.6208	0.7984		
12	0.0334**	0.1179	0.2172	0.2996	0.4149	0.5678	
15	0.0089**	0.0276**	0.0485**	0.0684**	0.0995**	0.1478	0.3435

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

3)Método del intercepto x: En la gráfica N° 28 se presenta la tasa de desarrollo equivalente, al resolver la ecuación cuando y = 0, se obtuvo la Tb = 7,43° C. O sea que es prácticamente coincidente con los resultados de los otros dos métodos.

Gráfico Nº 28. Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para INIA Cuaró (n = 13).

Los tres métodos de evaluación se acercaron con similares Tb, la precisión en días

obtenida es igual (ver cuadro Nº 23). También la diferencia es mínima comparada con la Tb usada en investigación. Pero la diferencia pasa a ser de más de 3 días comparado con el seguimiento del ciclo en días.

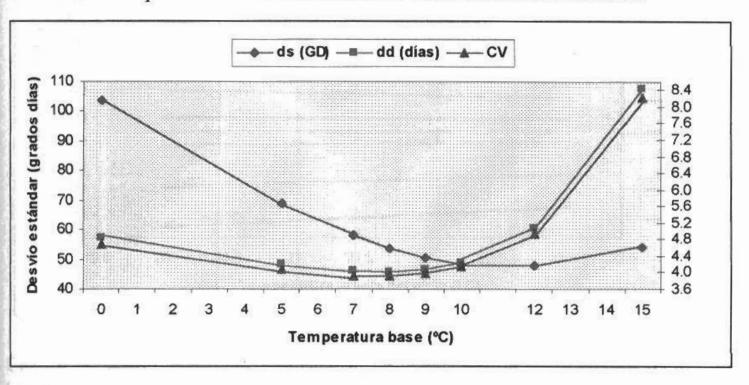
Cuadro Nº 23. Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en INIA Cuaró (n = 13).

T	b recomends	ida Precisión en días
Menor variabilidad	7°	5.08
Coeficiente de regresión	7°	5.08
Intercepto x	7º	5.08
Uso en investigación	10°	5.28
Ciclo en días		8.35

f. Línea 1130.

1)Método de menor variabilidad: Se obtuvieron los resultados de desvío estándar, desvío en días y coeficiente de variación para la variedad (base de datos en cuadro anexo Nº 6), presentados en el cuadro Nº 24. Por este método se determina que la Tb de menor desvío en días es 8° C, con un valor de 4,02 días. Este valor, al igual que el coeficiente de variación, son bajos comparados con los presentados en el resto de las variedades.

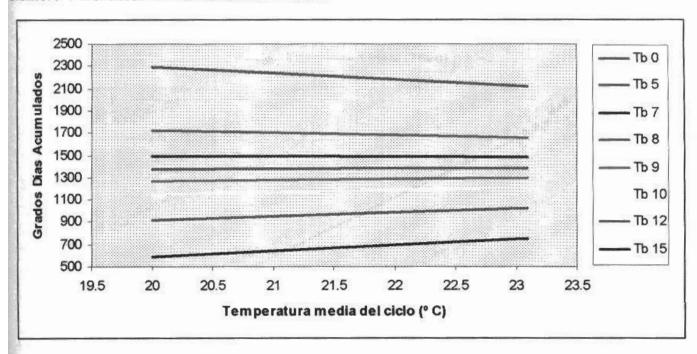
Cuadro Nº 24. Resumen de resultados obtenidos en L 1130 para el ciclo siembra a floración.


T* base (* C)	0°	5°	7"	8°	9°	10°	120	15°
GDA (media)	2210	1691	1484	1381	1278	1175	969	662
ds (GDA)	104	69	58	54	51	48	48	54
Dd (dias)	4.84	4.19	4.04	4.02	4.07	4.24	5.07	8.44
CV (%)	4.69	4.08	3.93	3.91	3.97	4.13	4.95	8.21
R ³	0.22	0.06	0.00	0.00	0.04	0.13	0.41	0.77
R	-0.22	-0.25	-0.06	0.07	0.21	0.36	0.64	0.88
β_1	55.07	-19.10	-3.66	4.05	11.77	19.36	34.37	53.49

GDA = Grados Día Acumulados, ds = desvío estándar en grados día, dd = desvío en días. CV = Coeficiente de Variación, \mathbf{R}^2 = coeficiente de determinación, \mathbf{R} = Coeficiente de correlación, β_1 = Pendiente o coeficiente de regresión.

A través del gráfico Nº 29 se observa que la curva de desvío en días presenta un

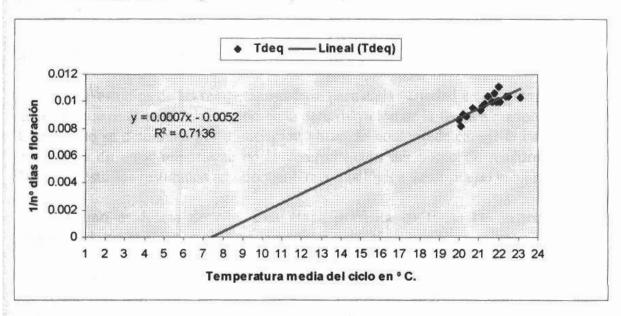
mínimo en 7° y 8° C.


Gráfico Nº 29. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en L 1130 de siembra a floración.

2) Método del coeficiente de regresión: Al igual que en INIA Cuaró, en el cuadro Nº 21 se observa que las Tb que presentan las menores pendientes son 7º y 8º C, con valores de -3,66 y 4,05 respectivamente. Estadísticamente estos valores son iguales, ya que fueron comprobados por la prueba de heterogeneidad de pendientes (cuadro Nº 25). También en este cuadro se comprueba que no hay diferencias entre ambas y 10 ° C, que es utilizada actualmente en la investigación.

En el gráfico Nº 30 se observa la tendencia del comportamiento de las Tb probadas en función de la TMC.

Gráfico Nº 30. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a floración en la variedad L 1130.


Cuadro Nº 25. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos L 1130 en el ciclo siembra a floración.

Temperatura base (° C)	0	5	7	8	9	10	12
0	19.7					1 2 2 1	
5	0.2658						
7	0.1005**	0.5391					
8	0.0556**	0.3436	0.7310				
9	0.0286**	0.1954	0.4770	0.7079			
10	0.0139**	0.0991**	0.2739	0.4438	0.6896		
12	0.0028**	0.0178**	0.0578**	0.1077**	0.2017	0.3666	
15	0.0003**	0.0010**	0.0032**	0.0060**	0.0123**	0.0265**	0.1412

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

3) Método del intercepto x: En la gráfica N° 31 se presenta la tasa de desarrollo equivalente, al resolver la ecuación cuando y = 0, se obtuvo la Tb = 7,43° C. Similares a los resultados de los otros dos métodos y al de INIA Cuaró.

Gráfico Nº 31. Tasa de desarrollo equivalente (Tdeq) en función de la temperatura media del ciclo siembra a floración para L 1130 (n = 18).

La similitud en la precisión de las Tb encontradas por cada método y en la usada en la investigación, vuelve a repetirse para esta variedad (ver cuadro Nº 26). Pero la precisión en días pasa a ser el doble comparado con el seguimiento del ciclo en días.

Cuadro Nº 26. Comparación de la precisión de los distintos métodos utilizados para encontrar la Tb, la Tb usada actualmente en investigación y guiándose por el ciclo en días en L 1130 (n = 18).

	Tb recomendada	Precisión en días
Menor variabilidad	8°	4.02
Coeficiente de regresión	7°	4.04
Intercepto x	7°	4,04
Uso en investigación	10°	4.24
Ciclo en días		7.90

2. Floración a madurez fisiológica.

a. Variedad Bluebelle.

La duración del ciclo de floración a madurez fisiológica es poco variable en número de días con respecto al ciclo de siembra a floración.

Los estudios de las temperaturas base para cada variedad en esta etapa, tienen una limitante que es el error introducido en la determinación de la fecha a madurez fisiológica. Este evento se determina por apreciación visual, lo cual puede causar la introducción de una fuente de error importante en la determinación del punto de madurez fisiológica. Debido a esto los resultados no concuerdan con la lógica descripta en la bibliografía.

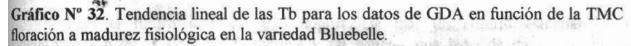
Como evidencia de ello, esta etapa presenta en todas las variedades, mayor variabilidad que la anterior observada a través del CV.

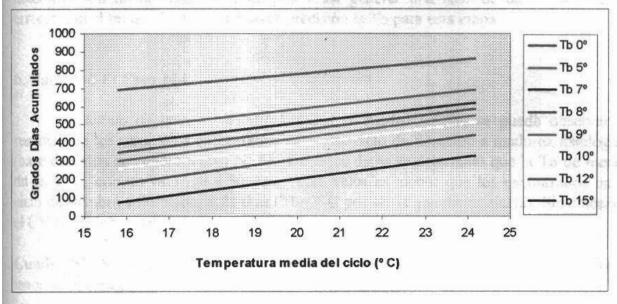
Se aplicaron dos métodos de evaluación de la temperatura base, con el fin de que los resultados obtenidos sirvan de base para una investigación futura. Los métodos aplicados fueron:

- 1) Método de menor variabilidad y
- 2) Método del coeficiente de regresión.

I)Método de menor variabilidad: Una vez obtenidos los datos de GDA para las diferentes fechas de siembra existentes, se convirtió el desvío estándar a desvío en días (base de datos en cuadro anexo N° 7).

En el cuadro Nº 27, se puede observar el resumen de los resultados encontrados para este ciclo de floración a madurez fisiológica. De estos datos se determinó que la Tb de menor dd es 0° C, con un valor de 4,83 días. Este valor es menor que los encontrados en el ciclo de siembra a floración, 7,14 días (Tb=7° C por ser la que mejor ajusta). Sin embargo el CV es mayor, resaltando la mayor variación en la serie de datos.


Cuadro Nº 27. Resumen de resultados obtenidos en Bluebelle para el ciclo floración a madurez fisiológica.


To base (° C)	0°	5°	7°	8°	9ª	10°	12°	15°
GDA(media)	716	603	528	486	448	410	334	225
ds (GDA)	100	88	85	83	81	79	77	69
dd (dias)	4.83	5.57	6.17	6.52	6.85	7.40	8.81	12.05
CV (%)	12.60	14.56	16.05	17.10	17.96	19.38	23.10	30.73
R ²	0.18	0.37	0.44	0.52	0.58	0.63	0.73	0.81
R	0.43	0.61	0.66	0.72	0.76	0.79	0.86	0.90
βι	20.54	25.50	26.72	28.35	29.29	30.20	31.54	29.89

GDA = Grados Día Acumulados. ds = desvío estándar en grados días. dd = desvío en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

2) Método del coeficiente de regresión: La evaluación de los datos a través de este método confirma la incertidumbre de los resultados. Como se observa en el cuadro N° 27, las pendientes (β₁) de las Tb se encuentran muy lejos de 0, determinando que la Tb adecuada no está entre las estudiadas o los datos no son buena información para obtenerla. Los valores de las pendientes tienden a disminuir a medida que disminuye la Tb. Lo que se podría esperar es lograr un buen ajuste con una Tb mayor que la del ciclo de siembra a floración.

La menor pendiente se obtiene con 0°C, $\beta_1 = 20,54$, un valor muy elevado que produce un efecto significativo en los GDA. A mayor temperatura media del ciclo, mayor GDA. En el gráfico N° 32 se observa el similar comportamiento de las Tb.

También se realizó el Modelo lineal que prueba la heterogeneidad de pendientes, que muestra si la pendiente de la variable continua (TMC) es diferente para cada nivel de clasificación (Tb). Los niveles de confianza son iguales para todas las variedades y fases, estos fueron predeterminados en la fase anterior. La comparación de las Tb se hacen de a pares, cuadro N° 28. Este cuadro afirma que todas las pendientes son iguales y que no existe diferencia alguna entre las mismas. Por lo tanto todas tienen el efecto de aumentar los GDA a medida que la temperatura media del ciclo aumenta.

Cuadro Nº 28. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de Bluebelle en el ciclo floración a madurez fisiológica.

Temperatura base (° C)	0	5	7	8	9	10	12
0	der end	0 : 1	Per S. P. P	1 1		the Brand	
5	0.5398						
7	0.4302	0.8155					
8	0.3025	0.6336	0.7873				
9	0.2381	0.5384	0.6596	0.8633			
10	0.1849	0.4333	0.5385	0.7253	0.8560		
12	0.1182	0.2886	0.3657	0.5159	0.6283	0.7624	
15	0.1677	0.4138	0.5252	0.7349	0.8884	0.9373	0.6386

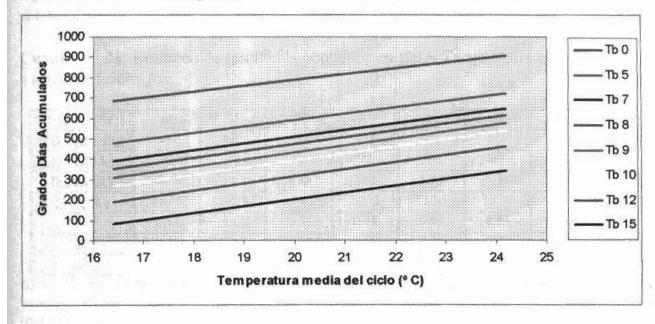
^{**} significativamente diferente con una probabilidad de error < o = al 10 %

Para el futuro será de gran importancia fijar un criterio estándar en la leterminación de la madurez fisiológica y así generar una base de datos con menos errores con el fin de obtener con mayor precisión la Tb para esta etapa.

b. Variedad El Paso 144.

1)Método de menor variabilidad: En el cuadro N° 29, se puede observar el resumen de los resultados encontrados para este ciclo de floración a madurez fisiológica (base de datos en cuadro anexo N° 8). De estos datos se determinó que la Tb de menor de esto o C, con un valor de 4,50 días. Este valor es menor que los encontrados en el ciclo de siembra a floración, 8,21 días (Tb=7° C por ser la que mejor ajusta). Sin embargo el CV es mayor, resaltando la mayor variación en la serie de datos.

Cuadro Nº 29. Resumen de resultados obtenidos en El Paso 144 para el ciclo floración a madurez fisiológica.


T° base (° C)	0°	5°	7°	8°	9°	10°	12°	15°
GDA(media)	798	603	523	484	445	405	327	214
ds (GDA)	96	86	82	80	79	78	75	68
dd (días)	4.50	5.57	6.10	6.48	6.93	7.48	8.97	12.74
CV (%)	11.99	14.19	15.58	16.55	17.71	19.13	22.92	31.90
R²	0.35	0.52	0.61	0.65	0.69	0.73	0.81	0.89
R	0.59	0.72	0.78	0.81	0.83	0.86	0.90	0.94
β,	29.18	31.91	32.88	33.42	33.91	34.41	34.95	33.42

GDA = Grados Día Acumulados. ds = desvío estándar en grados día. dd = desvío en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

2) Método del coeficiente de regresión: En el cuadro Nº 29 se presentan las pendientes (β_1) de las Tb, éstas se encuentran muy lejos de 0.

La menor pendiente se obtiene con 0° C, β_1 = 29,18. un valor muy elevado que produce un efecto significativo en los GDA. En el gráfico N° 33 se observa el similar comportamiento entre las diferentes Tb.

Gráfico Nº 33. Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad El Paso 144.

En la observación de los resultados de la prueba de heterogeneidad de pendientes (cuadro Nº 30) se confirma que las pendientes son iguales y no existe diferencia entre las mismas.

Cuadro Nº 30. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de El Paso 144 en el ciclo floración a madurez fisiológica.

Temperatura base (° C)	0	5	7	8	9	10	12
0						Carrier Services	
5	0.7236						
7	0.6150	0.8764					
8	0.5560	0.8026	0.9223				
9	0.5027	0.7329	0.8470	0.9237			
10	0.4496	0.6602	0.7664	0.8405	0.9153		
12	0.3873	0.5722	0.6671	0.7374	0.8100	0.8946	
15	0.5073	0.7647	0.9028	0.9997	0.9005	0.7862	0.6281

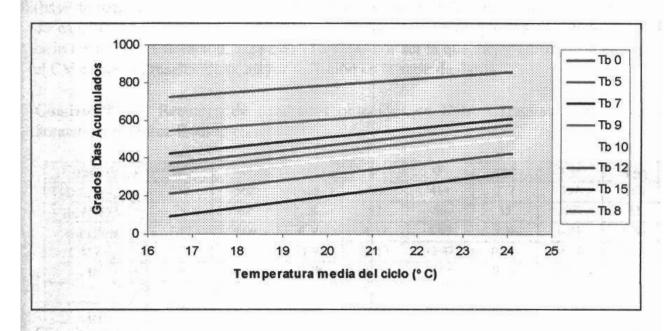
^{**} significativamente diferente con una probabilidad de error < o = al 10 %

c. Variedad INIA Tacuarí.

1)Método de menor variabilidad: En el cuadro Nº 31, se puede observar el

resumen de los resultados encontrados para este ciclo de floración a madurez fisiológica (base de datos en cuadro anexo Nº 9). De éste se determina que la Tb de menor desvío en días es 0° C, con un valor de 4,43. Este valor es menor que los encontrados en el ciclo de siembra a floración, 7,10 días (Tb=7° C por ser la que mejor ajusta). Sin embargo el CV es mayor, resaltando la mayor variación en la serie de datos.

Cuadro Nº 31. Resumen de resultados obtenidos en INIA Tacuarí para el ciclo floración a madurez fisiológica.


To base ("C)	0°	5°	70	8°	9°	10°	12°	15°
GDA(media)	801	617	530	491	452	413	335	225
ds (GDA)	92	90	72	72	70	69	65	62
Dd (dias)	4.43	5.67	5.22	5.62	5.93	6.35	7.34	10.55
CV (%)	11.54	14.58	13.65	14.72	15.60	16.70	19.43	27.51
R ²	0.12	0.11	0.35	0.44	0.49	0.55	0.63	0.81
R	0.35	0.33	0.59	0.66	0.70	0.74	0.80	0.90
β_1	17.58	16.47	23.58	26.31	27.06	28.12	28.40	30.58

GDA = Grados Día Acumulados. ds = desvio estándar en grados día. dd = desvio en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

2) Método del coeficiente de regresión: En el cuadro N° 31 se presentan las pendientes (β_1) de las Tb, éstas son de valores elevados indicando que las Tb no ajustan adecuadamente.

La menor pendiente se obtiene con 5° C, β_1 =16,47. En el gráfico N° 34 se observa el similar comportamiento entre las diferentes Tb.

Gráfico Nº 34. Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad INIA Tacuarí.

En la observación de los resultados de la prueba de heterogeneidad de pendientes (cuadro Nº 32) se confirma que las pendientes son iguales y no existe diferencia entre las mismas.

Cuadro Nº 32. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Tacuarí en el ciclo floración a madurez fisiológica.

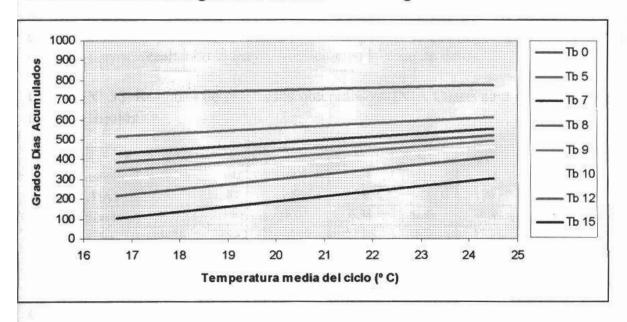
Temperatura base (° C)	0	5	7	8	9	10	12
0						1000	
5	0.9251						
7	0.5554	0.4787					
8	0.3810	0.3166	0.7236				
9	0.3352	0.2752	0.6375	0.9071			
10	0.2725	0.2182	0.5311	0.7948	0.8883		
12	0.2455	0.1932	0.4823	0.7494	0.8456	0.9620	
15	0.1446	0.1072	0.2652	0.4701	0.5464	0.6370	0.6402

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

d. Variedad INIA Caraguatá.

1)Método de menor variabilidad: En el cuadro N° 33, se puede observar el resumen de los resultados encontrados para este ciclo de floración a madurez fisiológica (base de datos en cuadro anexo N° 10). De estos datos se determinó que la Tb de menor dd es 0° C, con un valor de 3,87 días. Este valor es menor que los encontrados en el ciclo de siembra a floración, 7,28 días (Tb=7° C por ser la que mejor ajusta). Sin embargo el CV es mayor, resaltando la mayor variación en la serie de datos.

Cuadro Nº 33. Resumen de resultados obtenidos en INIA Caraguatá para el ciclo floración a madurez fisiológica.


T" base (" C)	0°	5°	70	8°	9*	10°	12°	15°
GDA(media)	749	562	488	451	414	377	307	198
ds (GDA)	79	62	58	57	56	55	57	53
dd (dias)	3.87	4.06	4.36	4.59	4.89	5.30	6.81	9.84
CV (%)	10.51	11.11	11.94	12.57	13.42	14.55	18.56	26.66
R ²	0.02	0.15	0.28	0.36	0.45	0.54	0.72	0.87
R	0.15	0.39	0.53	0.60	0.67	0.73	0.85	0.93
β_1	6.31	12.69	16.04	17.66	19.27	20.87	25.08	25.54

GDA = Grados Día Acumulados. ds = desvio estándar en grados día. dd = desvio en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

2)Método del coeficiente de regresión: En el cuadro N° 33 se presentan las pendientes (β_1) de las Tb, éstas son de valores elevados indicando que las Tb probadas no ajustan adecuadamente.

La menor pendiente se obtiene con 0° C, $\beta_1 = 6.31$. En el gráfico N° 35 se observa el similar comportamiento entre las diferentes Tb.

Gráfico Nº 35. Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad INIA Caraguatá.

En la observación de los resultados de la prueba de heterogeneidad de pendientes (cuadro N° 34) se confirma que las pendientes son iguales y no existe diferencia entre las mismas.

Cuadro Nº 34. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Caraguatá en el ciclo floración a madurez fisiológica.

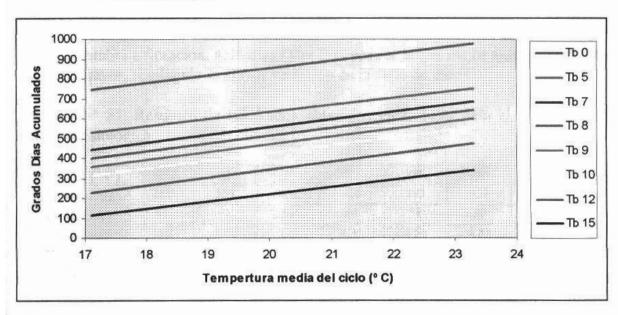
Temperatura base (° C)	0	5	7	8	9	10	12
0							
5	0.5116						
7	0.2954	0.6602					
8	0.2128	0.5005	0.8105				
9	0.1468	0.3567	0.6180	0.7934			
10	0.0971**	0.2377	0.4386	0.5865	0.7751		
12	0.0284**	0.0613**	0.1238	0.1783	0.2611	0.3840	
15	0.0198**	0.0383**	0.0784**	0.1150	0.1745	0.2706	0.8978

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

e. Variedad INIA Cuaró.

1)Método de menor variabilidad: En el cuadro Nº 35, se puede observar el resumen de los resultados encontrados para este ciclo de floración a madurez fisiológica (base de datos en cuadro anexo Nº 11). De estos datos se determinó que la Tb de menor dd es 0° C, con un valor de 4,57 días. Este valor es menor que los encontrados en el ciclo de siembra a floración, 5,08 días (Tb=7° C por ser la que mejor ajusta). Sin embargo el CV es mayor, resaltando la mayor variación en la serie de datos.

Cuadro Nº 35. Resumen de resultados obtenidos en INIA Cuaró para el ciclo floración a madurez fisiológica.


T° base (° C)	0"	5°	7°	8°	90	10°	12°	15°
GDA(media)	865	642	566	524	481	438	353	230
ds (GDA)	93	87	80	78	77	76	73	65
dd (dias)	4.57	5.68	6.01	6.38	6.83	7.38	8.84	12.33
CV (%)	10.71	13.52	14.09	14.96	16.01	17.29	20.71	28.24
R ³	0.49	0.49	0.71	0.74	0.77	0.80	0.86	0.94
R	0.70	0.70	0.84	0.86	0.88	0.90	0.93	0.97
β,	37.85	35.36	39.08	39.26	39.44	39.61	39.64	36.66

GDA = Grados Día Acumulados. ds = desvío estándar en grados día. dd = desvío en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

2) Método del coeficiente de regresión: En el cuadro N° 35 se presentan las pendientes (β_1) de las Tb, éstas son de valores elevados indicando que las Tb probadas no ajustan adecuadamente.

La menor pendiente se obtiene con 5° C, β_1 = 35.36. En el gráfico N° 36 se observa el similar comportamiento entre las diferentes Tb

Gráfico Nº 36. Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad INIA Cuaró.

En la observación de los resultados de la prueba de heterogeneidad de pendientes (cuadro Nº 36) se confirma que las pendientes son iguales y no existe diferencia entre las mismas.

Cuadro Nº 36. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Cuaró en el ciclo floración a madurez fisiológica.

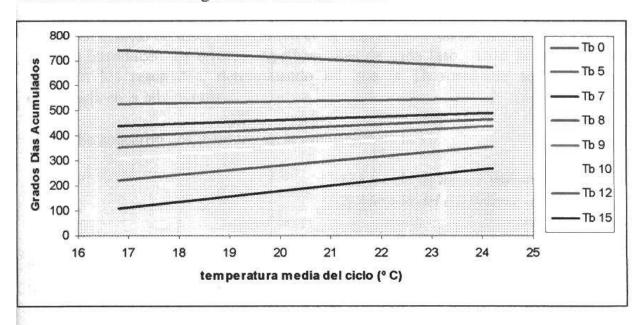
Temperatura base (° C)	0	5	7	8	9	10	12
0							
5	0.8774						
7	0.9300	0.7823					
8	0.9182	0.7669	0.9866				
9	0.9061	0.7511	0.9722	0.9855			
10	0.8940	0.7355	0.9573	0.9703	0.9847		
12	0.8876	0.7223	0.9508	0.9644	0.9797	0.9951	
15	0.9216	0.9096	0.7686	0.7357	0.6987	0.6580	0.5961

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

f. Variedad L 1130.

1)Método de menor variabilidad: En el cuadro N° 37, se puede observar el resumen de los resultados encontrados para este ciclo de floración a madurez fisiológica (base de datos en cuadro anexo N° 12). De estos datos se determinó que las Tb de menor dd son 0° y 5° C, con un valor de 4,02 días. Este valor es similar que el encontrado en el ciclo de siembra a floración, 4,04 días (Tb=7° C por ser la que mejor ajusta). Sin embargo el CV es mayor, resaltando la mayor variación en la serie de datos.

Cuadro Nº 37. Resumen de resultados obtenidos en L 1130 para el ciclo floración a madurez fisiológica.


To base (° C)	o"	5°	7°	8°	9°	10°	12°	15°
GDA(media)	711	535	464	428	393	357	286	184
ds (GDA)	81	61	55	53	51	50	49	48
dd (dias)	4.02	4.02	4.17	4.33	4.56	4.89	5.99	9.19
CV (%)	11.45	11.44	11.92	12.39	13.07	14.06	17.29	26.27
R ²	0.05	0.01	0.07	0.12	0.20	0.29	0.50	0.76
R	-0.22	0.10	0.26	0.45	0.45	0.54	0.71	0.87
βι	-9.25	3.02	7.41	9.60	11.80	13.99	18.09	21.63

GDA = Grados Día Acumulados. ds = desvío estándar en grados día. dd = desvío en días. $CV = Coeficiente de Variación. <math>R^2 = coeficiente de determinación. R = Coeficiente de correlación. <math>\beta_1 = Pendiente o coeficiente de regresión.$

2)Método del coeficiente de regresión: En el cuadro N° 37 se presentan las pendientes (β₁) de las Tb, éstas son de valores elevados indicando que las Tb probadas no ajustan adecuadamente.

La menor pendiente se obtiene con 5° C, $\beta_1 = 3,02$. En el gráfico N° 37 se observa el similar comportamiento entre las diferentes Tb.

Gráfico Nº 37. Tendencia lineal de las Tb para los datos de GDA en función de la TMC floración a madurez fisiológica en la variedad L 1130.

En la observación de los resultados de la prueba de heterogeneidad de pendientes (cuadro Nº 38) se confirma que las pendientes son iguales y no existe diferencia entre las mismas.

Cuadro Nº 38. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de L 1130 en el ciclo floración a madurez fisiológica.

Temperatura base (° C)	0	5	7	8	9	10	12
0			31-20		125		
5	0.3480						
7	0.1857	0.6770					
8	0.1276	0.5202	0.8167				
9	0.0841	0.3784	0.6317	0.8026			
10	0.0531	0.2589	0.4580	0.6044	0.7863		
12	0.0199	0.1051	0.2022	0.2849	0.4022	0.5642	
15	0.0068	0.0345	0.0680	0.0995	0.1495	0.2296	0.5193

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

3. Siembra a madurez fisiológica.

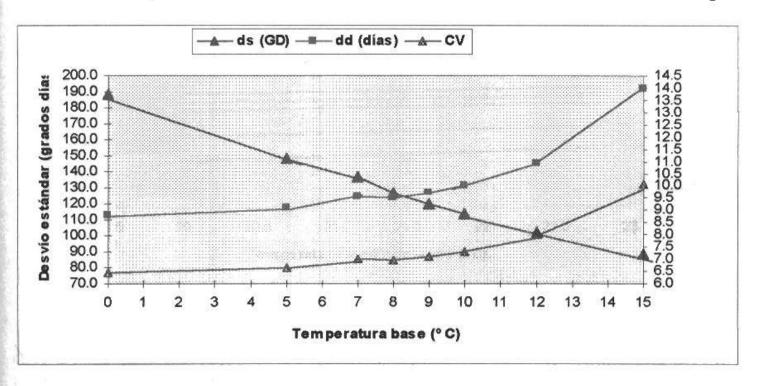
a. Variedad Bluebelle.

Es el ciclo completo del cultivo en la cual se incluyen las dos fases anteriores. Por lo tanto introducen los errores experimentales de cada fase. Esto lleva a producir un sesgo en los resultados, determinando así que la Tb resultante sea inferior a la encontrada en la bibliografía.

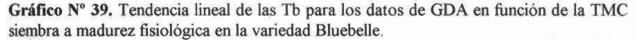
Se aplicaron dos métodos en la evaluación de la Tb:

- 1) Método de menor variabilidad y
- 2) Método del coeficiente de regresión.
- 1) Método de menor variabilidad: Una vez obtenidos los datos de GDA para las diferentes fechas de siembra existentes, se convirtió el desvío estándar a desvío en días (base de datos en cuadro anexo Nº 13).

En el cuadro N° 39 se puede observar el resumen de los datos encontrados para el ciclo. Estos datos determinan que la Tb de menor desvío en días es 0° C, con un valor de 8,84. Este valor es mayor que el encontrado en el ciclo de floración a madurez fisiológica, 4,83 días (Tb = 0° C) y sensiblemente mayor al del ciclo siembra a floración, 7,14 días (Tb = 7°C). Sin embargo el CV es menor al encontrado en los dos ciclos anteriores, 6,46 % (12,60 % floración a madurez fisiológica y 7,36% siembra a floración).


Cuadro Nº 39. Resumen de resultados obtenidos en Bluebelle para el ciclo siembra a madurez fisiológica.

To base (o C)	()°	5°	7°	8°	9°	10°	12°	15°
GDA(media)	2920	2236	1962	1826	1689	1552	1280	881
ds (GDA)	189	149	137	127	120	114	102	89
dd (dias)	8.84	9.11	9.55	9.50	9.72	10.02	10.95	14,00
CV (%)	6.46	6.66	6.98	6.94	7.10	7.32	7.99	10.08
R ²	0.00	0.01	0.03	0.06	0.09	0.12	0.22	0.43
R	-0.03	0.12	0.18	0.24	0.30	0.35	0.47	0.65
βι	-6.70	24.40	33.93	42.79	48.88	54.78	65.88	80.19


GDA = Grados Día Acumulados. ds = desvío estándar en grados día. dd = desvío en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

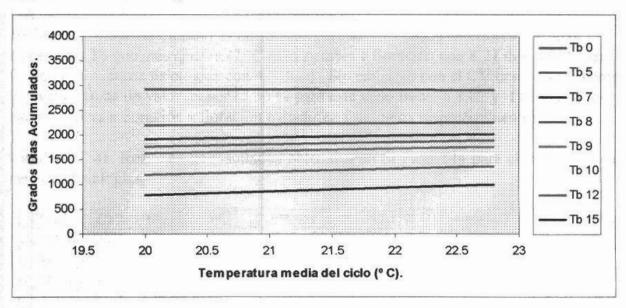

En el gráfico N° 38 se observa el comportamiento de los desvíos y del CV. El dd y el CV disminuyen a medida que la temperatura base se hace menor.

Gráfico Nº 38. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en Bluebelle de siembra a madurez fisiológica.

2)Método del coeficiente de regresión: Este reafirma el resultado encontrado en el método anterior. En el cuadro N° 39 se observa que la recta de la pendiente (β₁) igual a 0 se encuentra entre las Tb 0° y 5° C, ya que entre ellas existe un cambio de signo. Pero la pendiente menor es la de 0° C, o sea, es la que mejor ajuste presenta. Los valores de las pendientes tienden a disminuir a medida que la Tb disminuye. En el gráfico N° 39 se observa el comportamiento de las pendientes cuando la temperatura media del ciclo aumenta. Estas elevadas pendientes cuantifican el efecto de los GDA frente al aumento de 1° C en la temperatura media del ciclo resultado que descalifica las Tb probadas ya que lo que se busca es que los Grados Día Acumulados no aumenten con la temperatura.

Estas pendientes en el gráfico se presentan muy similares. Se confirma esto con el cuadro Nº 40 que muestra los resultados de la prueba de heterogeneidad de pendientes. La prueba estadística determinó que las pendientes de 0° y 5° C son iguales, únicamente se encontró diferencias en las Tb extremas.

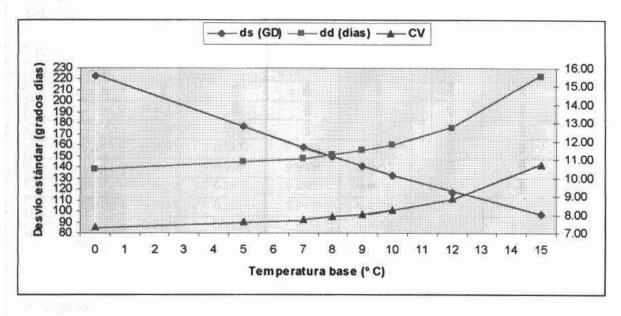
Cuadro Nº 40. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de Bluebelle en el ciclo siembra a madurez fisiológica.

Temperatura base (° C)	0	5	7	8	9	10	12
0							
5	0.5223						
7	0.3915	0.8155					
8	0.2830	0.6396	0.8120				
9	0.2193	0.5219	0.6791	0.8591			
10	0.1666	0.4148	0.5525	0.7181	0.8535		
12	0.0917**	0.2426	0.3360	0.4591	0.5687	0.6971	
15	0.0357**	0.0947**	0.1347	0.1928	0.2500	0.3420	0.5342

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

b. Variedad El Paso 144.

1)Método de menor variabilidad: En el cuadro Nº 41 se puede observar el resumen de los datos encontrados para el ciclo (base de datos en cuadro anexo Nº 14). Los mismos determinan que la Tb de menor desvío en días es 0° C, con un valor de 10,49. Este valor encontrado es mayor que para los dos ciclos anteriores con sus respectivas Tb que más ajustan (7° C para siembra a floración con 8,21 días y 0° C para loración a madurez fisiológica con 4,5 días). Sin embargo con el CV ocurre justamente o inverso, toma un valor menor (7,36 % para este ciclo frente a 8,07 y 11,99 para los xiclos siembra a floración y floración a madurez fisiológica respectivamente).


Cuadro Nº 41. Resumen de resultados obtenidos en El Paso 144 para el ciclo siembra a nadurez fisiológica.

To base (o C)	O°	5°	7°	8°	9%	10°	12°	15°
GDA(media)	3029	2319	2033	1891	1749	1607	1324	905
Ds (GDA)	223	177	158	149	141	133	118	97
Dd (dias)	10.49	10.92	11.09	11.27	11.51	11.81	12.73	15.52
CV (%)	7.36	7.65	7.77	7.90	8.06	8.27	8.89	10.71
R ³	0.09	0.15	0.19	0.21	0.24	0.27	0.35	0.47
R	0.30	0.39	0.44	0.46	0.49	0.52	0.59	0.69
βi	98.03	100.92	99.90	100.17	100.40	100.51	100.28	96.65

SDA = Grados Día Acumulados, ds = desvio estándar en grados día, dd = desvio en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de egresión.

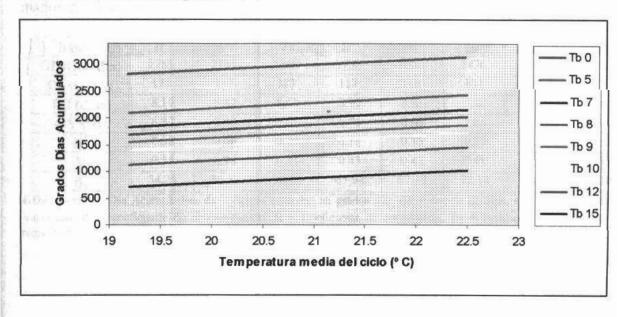

En el gráfico Nº 40 se observa el comportamiento de los desvíos y del CV. El dd / el CV disminuyen cuanto menor es la Tb probada.

Gráfico Nº 40. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en El Paso 144 de siembra a madurez fisiológica.

2) Método del coeficiente de regresión: En el cuadro N° 41 se observa que las pendientes (β₁) son muy elevadas, por lo cual no se puede extraer la Tb de mejor ajuste. En el gráfico N° 41 se observa el comportamiento de las pendientes cuando la temperatura media del ciclo aumenta. Se ve una elevada pendiente al aumentar la misma.

Gráfico Nº 41. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad El Paso 144.

La prueba de heterogeneidad de pendientes presentada en el cuadro Nº 42, constata la igualdad entre rectas.

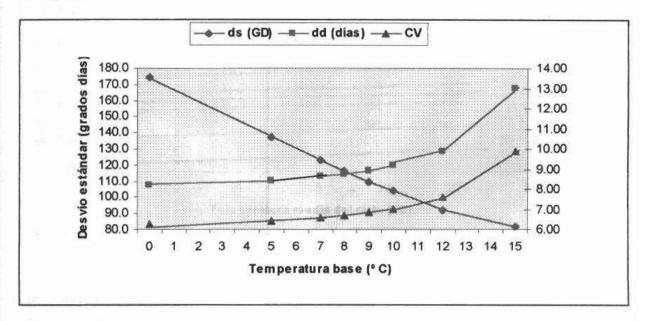
Cuadro Nº 42. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de El Paso 144 en el ciclo siembra a madurez fisiológica.

Temperatura base (° C)	0	5	7	8	9	10	12
0				*			
5	0.9612			•			
7	0.9737	0.9830					1
8	0.9693	0.9871	0.9950	1			*
9	0.9652	0.9909	0.9904	0.9953	#		
10	0.9630	0.9925	0.9880	0.9930	0.9977		
12	0.9653	0.9877	0.9920	0.9976	0.9971	0.9944	
1.5	0.9778	0.9137	0.9254	0.9158	0.9049	0.8963	0.8902

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

c. Variedad INIA Tacuari.

1)Método de menor variabilidad: En el cuadro N° 43 se puede observar el resumen de los datos encontrados para el ciclo (base de datos en cuadro anexo N° 15). Los mismos determinan que la Tb de menor desvío en días es 0° C, con un valor de 8,19. Su CV, 6,27% es menor al de las dos fases que la componen.


Cuadro Nº 43. Resumen de resultados obtenidos en INIA Tacuarí para el ciclo siembra a madurez fisiológica.

T° base (° C)	O°	5°	7°	8°	9°	10°	12°	15°
GDA(media)	2785	2131	1868	1738	1606	1476	1212	831
Ds (GDA)	175	137	123	117	110	104	92	82
Dd (dias)	8.19	8.42	8.63	8.77	8.93	9.20	9.91	13.05
CV (%)	6.27	6.44	6.61	6.71	6.84	7.05	7.61	9.91
R ²	0.02	0.08	0.10	0.19	0.18	0.23	0.37	0.60
R	0.14	0.28	0.31	0.43	0.42	0.48	0.61	0.77
βί	34.25	56.40	56.13	65.94	67.28	72.18	80.97	91.88

GDA = Grados Día Acumulados. ds = desvío estándar en grados día. dd = desvío en días. CV = Coeficiente de Variación. \mathbf{R}^2 = coeficiente de determinación. \mathbf{R} = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

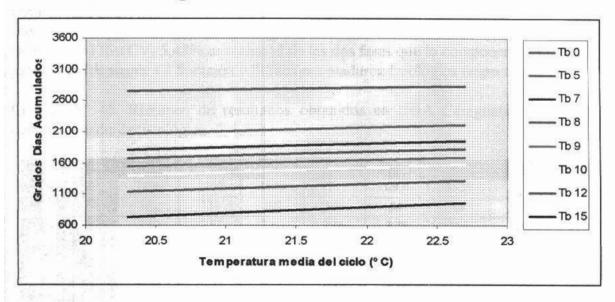

En el gráfico Nº 42 se observa el comportamiento de los desvíos y del CV. El dd y el CV disminuyen cuanto menor es la Tb probada.

Gráfico Nº 42. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Tacuarí de siembra a madurez fisiológica.

2)Método del coeficiente de regresión: Observando el cuadro N° 43 se observa que las pendientes (β₁) son muy elevadas, por lo cual se hace dificil extraer la Tb de mejor ajuste. En el gráfico N° 43 se observa el comportamiento de las pendientes cuando la temperatura media del ciclo aumenta. Se ve una elevada pendiente al aumentar la misma.

Gráfico Nº 43. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad INIA Tacuarí.

Mediante la prueba de heterogeneidad de pendientes (cuadro N° 44), se comprobó que no existe diferencia entre las distintas Tb probadas. Por lo tanto todas tienen el defecto de aumentar los GDA a medida que la TMC aumenta.

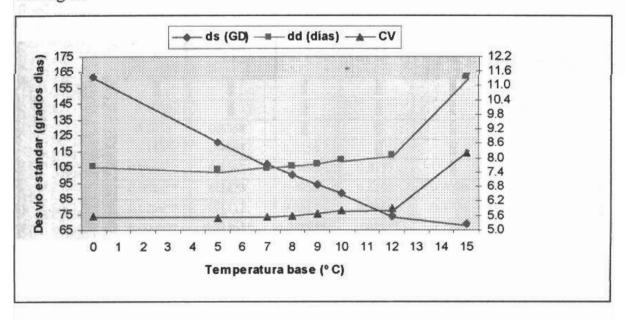
Cuadro Nº 44. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Tacuarí en el ciclo siembra a madurez fisiológica.

Temperatura base (° C)	0	5	7	8	9	10	12
0							
5	0.6915						
7	0.6835	0.9953					
8	0.5448	0.8268	0.8101				
9	0.5436	0.8255	0.8077	0.9985			
10	0.4509	0.7012	0.6741	0.8631	0.8572		
12	0.3344	0.5259	0.4850	0.6529	0.6381	0.7701	
15	0.2168	0.3309	0.4803	0.3991	0.3735	0.4669	0.6337

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

d. Variedad INIA Caraguatá.

I)Método de menor variabilidad: En el cuadro N° 45 se puede observar el resumen de los datos encontrados para el ciclo (base de datos en cuadro anexo N° 16). Los mismos determinan que la Tb de menor desvío en días se encuentra a 5 ° C, con un valor de 7,51. Su CV, 5,48% es menor al de las dos fases que lo componen (7,34 y 10,51 para los ciclos siembra a floración y floración a madurez fisiológica respectivamente).


Cuadro Nº 45. Resumen de resultados obtenidos en INIA Caraguatá para el ciclo siembra a madurez fisiológica.

To base (o C)	0°	5°	7°	8°	90	10°	12°	15°
GDA(media)	2896	2210	1934	1797	1660	1523	1253	847
Ds (GDA)	162	121	107	100	94	88	74	69
Dd (días)	7.69	7.51	7.60	7.66	7.77	7.95	8.14	11.37
CV (%)	5.60	5.48	5.54	5.59	5.67	5.80	5.92	8.20
R ²	0.08	0.01	0.00	0.01	0.02	0.05	0.16	0.43
R	-0.28	-0.11	0.01	0.08	0.15	0.23	0.40	0.66
В	-61.85	-18.03	2.20	10.77	19.34	27.69	41.09	62.78

GDA = Grados Día Acumulados. ds = desvío estándar en grados día. dd = desvío en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

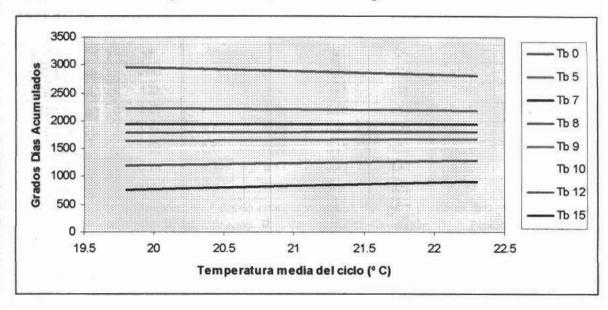

En el gráfico Nº 44 se observa el comportamiento de los desvíos y del CV. El dd y el CV disminuyen cuanto menor es la Tb probada.

Gráfico Nº 44. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en INIA Caraguatá de siembra a madurez fisiológica.

2) Método del coeficiente de regresión: En el cuadro N° 45 se observa que las pendientes (β₁) son muy elevadas, por lo cual no se puede extraer la Tb de mejor ajuste. En el gráfico N° 45 se observa el comportamiento de las pendientes cuando la temperatura media del ciclo aumenta. Se ve una elevada pendiente al aumentar la misma.

Gráfico Nº 45. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad INIA Caraguatá.

La prueba de heterogeneidad de pendientes presentada en el cuadro Nº 46, constata la igualdad entre rectas.

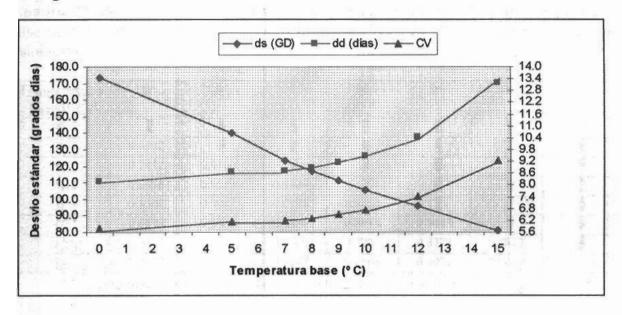
Cuadro Nº 46. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Caraguatá en el ciclo siembra a madurez fisiológica.

Temperatura base (° C)	0	5	7	8	9	10	12
0							
5	0.4036						
7	0.2058	0.6368					
8	0.1439	0.4893	0.8258				
9	0.0964**	0.3567	0.6495	0.8133			
10	0.0624**	0.2473	0.4858	0.6295	0.8039		
12	0.0259**	0.1112	0.2511	0.3469	0.4776	0.6453	
15	0.0059**	0.0236**	0.0599**	0.0871**	0.1292	0.1928	0.3422

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

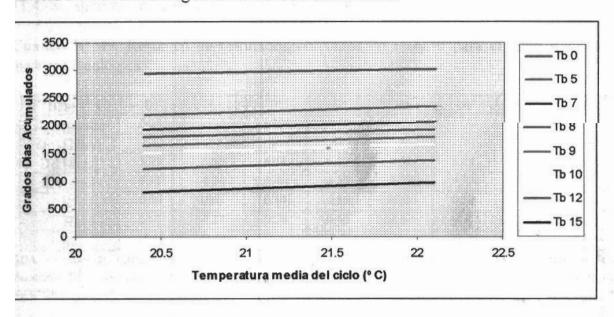
e. Variedad INIA Cuaró.

1)Método de menor variabilidad: En el cuadro N° 47 se puede observar el resumen de los datos encontrados para el ciclo (base de datos en cuadro anexo N° 17). Los mismos determinan que la Tb de menor desvío en días se encuentra a 0 ° C, con un valor de 8,19. Su CV, 5,81% es menor al de la fase de floración a madurez, 10,71%, pero mayor al de la fase de siembra a floración, 5,19%.


Cuadro Nº 47. Resumen de resultados obtenidos en INIA Cuaró para el ciclo siembra a madurez fisiológica.

T" base (" C)	0°	5°	70	8°	9°	10°	12°	15°
GDA(media)	2985	2270	1998	1857	1716	1575	1294	879
Ds (GDA)	173	140	124	117	111	106	96	81
Dd (dias)	8.19	8.65	8.72	8.90	9.14	9.48	10.44	13.19
CV (%)	5.81	6.16	6.19	6.32	6.49	6.72	7.41	9.27
R ²	0.02	0.14	0.14	0.17	0.22	0.27	0.39	0.64
R	0.14	0.37	0.37	0.42	0.47	0.52	0.63	0.80
βı	40.15	82.41	73.84	78.24	83.00	87.57	96.14	104.23

GDA = Grados Día Acamulados. ds = desvío estándar en grados día. dd = desvío en días. CV = Coeficiente de Variación. \mathbf{R}^2 = coeficiente de determinación. \mathbf{R} = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.


En el gráfico Nº 46 se observa el comportamiento de los desvíos y del CV. El dd y el CV disminuyen cuanto menor es la Tb probada.

Fráfico Nº 46. Evolución del coeficiente de variación, los desvíos estándar y en días con elación a las temperaturas base estudiadas en INIA Cuaró de siembra a madurez isiológica.

2) Método del coeficiente de regresión: En el cuadro N° 47 se observa que las sendientes (β₁) son muy elevadas, por lo cual no se puede extraer la Tb de mejor ajuste. En el gráfico N° 47 se observa el comportamiento de las pendientes cuando la emperatura media del ciclo aumenta. Se ve una elevada pendiente al aumentar la misma.

Fráfico Nº 47. Tendencia lineal de las Tb para los datos de GDA en función de la TMC iembra a madurez fisiológica en la variedad INIA Cuaró.

La prueba de heterogeneidad de pendientes presentada en el cuadro Nº 48, constata la igualdad entre rectas.

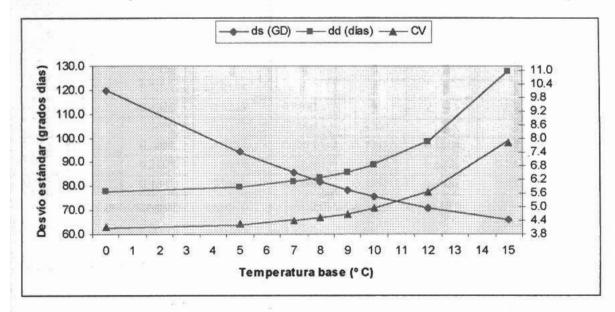
Cuadro Nº 48. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de INIA Cuaró en el ciclo siembra a madurez fisiológica.

Temperatura base (° C)	0	5	7	8	9	10	12
0							
5	0.6882						
7	0.7412	0.9160					
8	0.6998	0.9595	0.9504				
9	0.6580	0.9941	0.8974	0.9464	*		1
10	0.6177	0.9469	0.8436	0.8914	0.9443		1
12	0.5417	0.8514	0.7349	0.7784	0.8278	0.8812	
15	0.4647	0.7481	0.6147	0.6508	0.6932	0.7408	0.8529

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

f. L 1130.

1)Método de menor variabilidad: En el cuadro N° 49 se puede observar el resumen de los datos encontrados para el ciclo (base de datos en cuadro anexo N° 18). Los mismos determinan que la Tb de menor desvío en días se encuentra a 0° C, con un valor de 5,71. Su CV, 4,11% es menor al de la fase de floración a madurez fisiológica, 11,45%, pero mayor al de la fase de siembra a floración, 3,93%.


Cuadro Nº 49. Resumen de resultados obtenidos en L 1130 para el ciclo siembra a madurez fisiológica.

T° base (° C)	0°	5°	70	8°	9°	10°	12"	15°
GDA(media)	2921	2226	1949	1810	1671	1532	1255	846
Ds (GDA)	120	94	86	82	78	76	71	66
Dd (días)	5.71	5.89	6.11	6.28	6.52	6.84	7.85	10.95
CV (%)	4.11	4.24	4.40	4.53	4.70	4.93	5.66	7.82
R ²	0.00	0.07	0.14	0.19	0.25	0.32	0.48	0.71
R	0.07	0.27	0.38	0.44	0.50	0.57	0.70	0.84
βι	13.18	42.61	54.40	60.29	66.18	72.05	83.23	94.04

GDA = Grados día acumulados, ds = desvío estándar en Grados día. dd = desvío en días. CV = Coeficiente de Variación. R^2 = coeficiente de determinación. R = Coeficiente de correlación. β_1 = Pendiente o coeficiente de regresión.

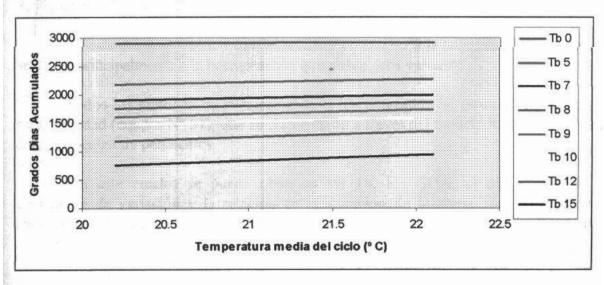

En el gráfico Nº 48 se observa el comportamiento de los desvíos y del CV. El dd y el CV disminuyen cuanto menor es la Tb probada.

Gráfico Nº 48. Evolución del coeficiente de variación, los desvíos estándar y en días con relación a las temperaturas base estudiadas en L 1130 de siembra a madurez fisiológica.

2)Método del coeficiente de regresión: En el cuadro N° 48 se observa que las pendientes (β₁) son muy elevadas, por lo cual no se puede extraer la Tb de mejor ajuste. En el gráfico N° 49 se observa el comportamiento de las pendientes cuando la temperatura media del ciclo aumenta. Se ve una elevada pendiente al aumentar la misma.

Gráfico Nº 49. Tendencia lineal de las Tb para los datos de GDA en función de la TMC siembra a madurez fisiológica en la variedad L 1130.

La prueba de heterogeneidad de pendientes presentada en el cuadro Nº 50, constata la igualdad entre rectas.

Cuadro Nº 50. Prueba de heterogeneidad de pendientes de las diferentes temperaturas base para los GDA de la serie de datos de L 1130 en el ciclo siembra a madurez fisiológica.

Temperatura base (° C)	Ð	5	7	8	9	10	12
0							
5	0.6456			1			
7	0.5011	0.8184		***			ı
8	0.4326	0.7225	0.8982				
9	0.3680	0.6257	0.7909	0.8900		i ii	1
10	0.3086	0.5309	0.6811	0.7743	0.8809		1
12	0.2109	0.3623	0.4739	0.5478	0.6371	0.7439	
15	0.1345	0.2206	0.2880	0.3351	0.3951	0.4725	0.6828

^{**} significativamente diferente con una probabilidad de error < o = al 10 %

C. GRADOS DIA ACUMULADOS PARA CADA VARIEDAD.

Una vez determinadas las temperaturas base que mejor ajustaron en el punto IV.B., se procedió a la comparación entre variedades de los GDA y la precisión en días.

La etapa siembra a floración fue en la que se obtuvo resultados más consistentes, que en las etapas de floración a madurez fisiológica y siembra a madurez fisiológica. La razón de esto es la introducción de errores en estas últimas etapas.

1. Siembra a floración.

En esta etapa se encontraron diferencias en cuanto a la acumulación térmica, que se deben principalmente a la base genética que posee cada variedad.

Todos los métodos de evaluación de la Tb determinaron resultados similares en cada variedad (cuadro Nº 51), que se confirmaron a través del modelo lineal de prueba de heterogeneidad de pendientes.

En este cuadro se puede observar las Tb, los GDA, el desvío en días, el coeficiente de variación y la relación de la duración de la etapa con la temperatura encontrada. Aunque se penso encontrar diferencias lógicas y claras entre las Tb de cada

variedad, los resultados no lo determinaron así. No se encontró Tb mayores en variedades con base genética mayormente índica, incluso fueron iguales a variedades con base genética mayormente japónica.

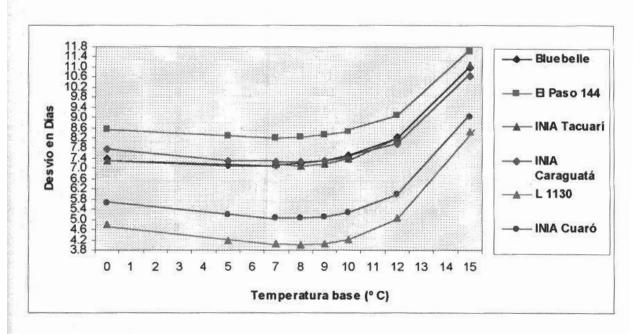
Como se mencionó anteriormente, las diferencias que se encontraron entre variedades fueron en los GDA y sus desvios en días. El Paso 144 fue la de mayor GDA, lo que afirma que es una variedad de ciclo más largo que el resto. Pero a su vez ésta presentó menor precisión que el resto, con un desvio en días de 8,21, lo que es dable esperar ya que tiene una mayor influencia de otros factores climáticos como horas de sol y fotoperíodo. Esto es confirmado por el mayor CV y su menor relación de la etapa con la temperatura (R).

INIA Tacuarí fue la de menor GDA por ser una variedad de ciclo más precoz que el resto, además tiene mejor precisión que El Paso 144 debido tal vez a su mayor insensibilidad a otros factores climáticos.

El resto de las variedades obtuvieron GDA intermedios a estas dos, con precisiones variables. INIA Cuaró a pesar de ser descendiente directo de El Paso 144 presentó diferencias claras en este sentido, menor GDA y menor desvío en días que su progenitor, o sea un ciclo más corto y una mayor precisión. Esto se debe quizá a una mayor influencia de la temperatura, resultando en un menor CV.

Cuadro Nº 51. Grados Día Acumulados, Temperatura base, desvío en días, coeficiente de variación y la relación con la temperatura en cada variedad para la etapa siembra a floración.

VARIEDAD	Tb (°C)	GDA	dd	CV	R	11
Bluebelle	7	1429	7.14	7.36	-0.66	50
El Paso 144	7	1502	8.21	8.07	-0.61	47
INIA Tacuari	7	1332	7.17	7.87	-0.62	35
INIA Caraguatá	7	1441	7.28	7.34	-0.68	30
INIA Cuaró	7	1432	5.08	5.19	-0.80	13
L 1130	7	1484	4.04	3.93	-0.85	18


Tb =Temperatura base; GDA = Grados Día Acumulados; dd. = Desvío en dias; CV = Coeficiente de variación; R = Coeficiente de correlación; n = número de datos.

En el gráfico Nº 50 se observa la curva de los desvios en días para cada variedad, en algunos casos se nota más claramente un mínimo sobre la curva.

Bluebelle, INIA Tacuarí e INIA Caraguatá presentan curvas muy similares, constatándose un comportamiento igual de los desvíos. El Paso 144 y L 1130 son las curvas extremas, esta diferencia hace la mayor precisión de una u otra variedad.

mencionada anteriormente.

Gráfico Nº 50. Comportamiento de los desvíos en días para cada variedad en la etapa siembra a floración.

2. Floración a madurez fisiológica.

Además de la alta variabilidad de los datos (ver CV en el cuadro N° 52) debido a los errores experimentales introducidos en esta etapa en la determinación del punto de madurez fisiológica, se comprobó a través de la prueba de heterogeneidad de pendientes que en general no había diferencias significativas entre las Tb probadas. Por lo tanto no se pudo determinar con exactitud estadística la Tb para cada variedad, pero a modo de comparación de los GDA se seleccionó la Tb = 0, que en general presentó menor desvío en días para todas las variedades.

En el cuadro Nº 52 se observan los GDA, el desvío en días y el coeficiente de variación para cada variedad. Los elevados CV comparados con los de la etapa siembra a floración determinan la mayor variabilidad de la etapa, aunque la precisión en días en general es mayor.

En cuanto a los GDA se pueden inferir algunas diferencias. Bluebelle, El Paso 144 e INIA Tacuarí tuvieron similar acumulación térmica, estas variedades a pesar de tener diferentes bases genéticas resultaron con igual duración de la etapa y similar precisión en días, bajo un mismo régimen térmico.

INIA Cuaró presentó mayor acumulación térmica que el resto de las variedades, inclusive que su progenitor, lo que resulta en una mayor duración de la etapa.

INIA Caraguatá y L 1130 tuvieron menores acumulaciones térmicas que el resto de las variedades, o sea etapas más cortas.

Cuadro Nº 52. Grados Día Acumulados, Temperatura base, desvío en días y coeficiente de variación en cada variedad para la etapa floración a madurez fisiológica.

VARIEDAD	Tb (°C)	GDA	dd	CY
Bluebelle	0	796	4.83	12.60
El Paso 144	0	798	4.50	11.99
INIA Tacuari	0	801	4.43	11.54
INIA Caragnatá	0	749	3.87	10.51
INIA Cuaró	0	865	4.57	10.71
L 1130	0	711	4.02	11.45

Tb =Temperatura base; GDA = Grados Día Acumulados; dd = Desvío en días; CV = Coeficiente de variación.

3. Siembra a madurez fisiológica.

Al igual que en la etapa anterior, al no poder determinar con exactitud la Tb en cada variedad para comparar los GDA, se seleccionó la Tb=0.

En el cuadro Nº 53 se observa que El Paso 144 tiene mayor acumulación térmica en el total del ciclo que el resto de las variedades, mientras que INIA Tacuarí la menor acumulación. Esto diferencia con claridad el largo de los ciclos y los requerimientos térmicos de cada variedad.

Las diferencias de GDA en el total del ciclo en INIA Tacuarí, Bluebelle y El Paso 144, se debe principalmente a las acumulaciones diferenciales en la etapa siembra a floración, ya que las acumulaciones térmicas en la etapa floración a madurez son muy similares.

INIA Cuaró tiene una acumulación térmica similar a El Paso 144, lo que lleva a deducir que a pesar de tener menor acumulación térmica a floración que su progenitor, la mayor acumulación a madurez compensa esta diferencia. Es decir, una etapa más corta de siembra a floración y más larga de floración a madurez que El Paso 144.

INIA Caraguatá y L 1130 tienen menos GDA que El Paso 144 porque las acumulaciones térmicas en las dos sub etapas fueron más precoces.

Cuadro Nº 53. Grados Día Acumulados, Temperatura base, desvío en días y coeficiente de variación en cada variedad para la etapa siembra a madurez fisiológica.

VARIEDAD	Tb (° C)	GDA	dd	CV
Bluebelle	0	2920	8.84	6.46
El Paso 144	0	3029	10.49	7.36
INIA Tacuarí	0	2785	8.19	6.27
INIA Caraguatá	0	2896	7.69	5.60
INIA Cuaró	0	2985	8.19	5.81
L 1130	0	2921	5.71	4.11

Tb =Temperatura base, GDA = Grados día Acumulados, dd = Desvio en días, CV = Coeficiente de variación.

D. ENSAYO BIOCLIMATICO.

Este ensayo que esta en su cuarto año, tiene como meta generar una base de datos que permitan estudiar más detalladamente la fenología del cultivo y la validación de diferentes modelos. Se trabaja actualmente con las cuatro variedades de mayor importancia en superficie sembrada en el país, El Paso 144, INIA Tacuarí, INIA Caraguatá e INIA Cuaró.

Una de los fines es la determinación de la Tb y los GDA en etapas como emergencia a primordio floral, primordio floral a floración y emergencia a floración para cada variedad. Al contar con estas herramientas permitiría predecir con buena anticipación el desarrollo del cultivo. De esta manera podría hacerse más eficiente el uso de cada unidad de recurso limitante para la producción.

Aunque el número de observaciones (n) es pequeño (ver cuadro Nº 6 en punto II. B.), los estudios hechos sobre esta base de datos permiten obtener leves tendencias. El bajo n conduce a obtener altos CV que no permiten lograr en general resultados consistentes.

Para el estudio de la Tb en las etapas de cada variedad, se utilizó el *método de menor variabilidad*. Luego se comparó los GDA de cada una y del total del período de emergencia a floración.

1. Emergencia a primordio floral.

La determinación desde la emergencia tiene ciertas ventajas, porque se elimina errores introducidos en la metodología de suma térmica. Por ejemplo la inferencia de que

la temperatura media del aire es igual a la temperatura media del suelo en el período siembra a emergencia. Cuando en realidad la temperatura del suelo, que es la que afecta los puntos de crecimiento en ese período, es de 2° a 3° C mayor que la temperatura del aire. Además se eliminan errores causados por los retrasos en la emergencia del cultivo, que a su vez estos son provocados por factores como baja humedad en el suelo y encostramiento de la superficie.

La importancia de la determinación con anterioridad del comienzo de primordio floral se debe principalmente a las medidas de manejo previas que se realizará (entre otras la fertilización), lo que potencializará el rendimiento final.

En el cuadro Nº 54 se pueden observar los resultados del desvio en días y el coeficiente de variación para las variedades. Todas mostraron menor desvío en días con 0° C. El coeficiente de variación es muy elevado en general comparado con los datos de siembra a floración, lo cual se debe en parte al bajo número de observaciones. Por esta desventaja es que solamente se describen tendencias.

En este cuadro El Paso 144 e INIA Tacuarí presentaron similar desvío y los mayores CV. En cambio INIA Caraguatá se mostró más precisa, 5,8 días.

También se probó el modelo DD50 (Degree Day 50° F) descripto en el punto III.G. y en general los resultados comparados con 10° C son similares. Hay una tendencia a una diferencia mínima a favor del DD 50 en la precisión, lo cual puede deberse a los límites de este modelo, ya que el régimen térmico de la región Este pocas veces excede los límites impuesto por el mismo.

Cuadro Nº 54. Resumen de los resultados de desvío en días y coeficiente de variación para cada variedad en la etapa emergencia a primordio floral.

					Temper	ratura ba	ise (° C)			
Variedac	1	0	5	7	8	9	10	DD50	12	15
El Paso	Dd	9.6	10.2	10.6	10.9	11.2	11.5	11.2	12.5	15.5
144	CV	14.1	15.0	15.6	15.9	16.4	16.9	16.5	18.4	22.6
INIA	Ðd	9.8	10.2	10,5	10.7	10.9	11.2	10.9	12.1	14.6
Tacuari	CV	16.3	17.1	17.6	17.9	18.3	18.8	18.4	20.2	24.3
INIA	Dd	5.8	6.4	6.8	7.0	7.4	7.7	7.4	8.9	12.3
Caragustá	CV	9.5	10.4	11.0	11.4	11.9	12.6	12.1	14.4	19.9
INIA	Dd	7,6	7.8	8.0	8.1	8.2	8.3	8.2	8.7	9,9
Cuaró	CV	13.4	13.7	14.0	14.1	14.3	14.5	14.4	15.1	17.2

dd = desvío en días; CV = Coeficiente de variación.

Lo lógico a esperar en la tendencia de los resultados sería encontrar una Tb mayor

que la de la etapa siembra a floración.

2. Primordio floral a floración.

La iniciación del primordio floral marca el comienzo de la fase reproductiva y donde se forma parte importante del rendimiento potencial. En esta etapa, que además de ser una de las más sensibles al estrés climáticos, se produce la fotoinducción en las variedades sensibles al fotoperíodo.

En el cuadro Nº 55 se puede observar el resumen de resultados del desvío en días y el CV para todas las variedades. El Paso 144 e INIA Caraguatá tienen una leve tendencia a lograr un mejor ajuste con temperaturas base entre 5° a 10° C y 9° a 12° C respectivamente, mientras que INIA Tacuarí e INIA Cuaró mantienen una leve tendencia a mejorar la precisión hacia 0° C. El mejoramiento de la precisión con el cambio de Tb es mínimo, apenas una tendencia.

El coeficiente de variación se mostró más alto en todas las variedades que en la etapa emergencia a primordio floral, quizá esto se deba en parte a la mayor sensibilidad de esta etapa a otros factores climáticos y al bajo número de observaciones.

INIA Caraguatá presentó el menor dd (5,5 días), pero en general aún el error es alto para el manejo del cultivo en esta etapa.

Cuadro Nº 55. Resumen de los resultados de desvio en días y coeficiente de variación para cada variedad en la etapa primordio floral a floración.

					Tempe	ratura b	ase (° C)			
Variedac		0	5	7	8	9	10	DD50	12	15
El Paso	đđ	7.6	7,5	7.5	7.5	7.5	7.5	7.4	7.6	7.9
144	CV	23.8	23.7	23.7	23.7	23.7	23.7	23.6	23.9	24.9
INIA	đđ	7.1	7.2	7.2	7.2	7.2	7.2	7.2	7.3	7.6
Tacuari	CV	26.3	26.3	26.4	26.4	26.5	26.6	26.7	26.9	27.8
INIA	dd	6.0	5.8	5.7	5,6	5.5	5.5	5.5	5,5	5,9
Caraguatá	CV	17.7	17.1	16.8	16.7	16.6	16.5	16.6	16.5	17.8
INIA	dd	10.0	10.4	10.6	10.7	10.9	11.1	10.9	11.6	13.0
Cuaró	CV	30.4	31.5	32.1	32.5	33.0	33.6	33.2	35.0	38.9

dd = desvío en días: CV = Coeficiente de variación.

3. Emergencia a floración.

Esta etapa más amplia al eliminar la determinación de primordio floral, también elimina por consiguiente, la fuente de error que introduce. Así lo demuestran los resultados presentados en el cuadro Nº 56, donde todas las variedades tienen menor desvío en días en esta etapa que en cada una de las etapas que la componen.

La mejora de la precisión en esta etapa con respecto a la etapa siembra a floración, se debe en parte a la eliminación en la introducción de error al periodo siembra a emergencia.

INIA Caraguatá e INIA Cuaró presentaron mayor precisión en días y CV más bajos que las restantes variedades. El CV es bajo comparado con las otras etapas.

Cuadro Nº 56. Resumen de los resultados de desvío en días y coeficiente de variación para cada variedad en la etapa emergencia a floración.

			Temperatura base (° C)								
Varieda	d	0	5	7	8	9	10	DD50	12	15	
El Paso	Dđ	6.5	7.1	7.6	7.8	8.2	8.6	8.2	9.8	13.2	
144	CV	6.5	7.1	7.6	7.8	8.2	8.6	8.3	9.8	13.2	
INIA	Dd	6.0	6.5	6.8	7.0	7.3	7.7	7.3	8.6	11.5	
Tacuari	CV	6.9	7.5	7.8	8.1	8.4	8.8	8.5	9.9	13.3	
INIA	Dd	3.7	3.5	3.5	3.7	3.9	4.2	3.9	5.3	9.2	
Caraguatá	CV	3.9	3.6	3.7	3.8	4.0	4.4	4.1	5.6	9.7	
INIA	Dd	3.1	3.4	3,6	3.8	3.9	4.2	4,0	4.9	7.0	
Cuaró	CV	3.5	3.8	4.0	4.2	4.4	4.7	4.5	5.4	7.7	

dd = desvío en días; CV = Coeficiente de variación.

4. Comparación de los Grados Día Acumulados entre las diferentes etapas y variedades.

Para poder hacer las diferentes comparaciones se eligió una misma Tb para todas las etapas y variedades, 0° C. Esto se puede hacer por la baja diferencia en la precisión en el rango de 0° a 10° C que presentaron todos los datos. A pesar de esto, en general las variedades muestran una leve tendencia a mejorar la precisión hacia 0° C.

En el cuadro Nº 57 se presentan los GDA y el dd de cada etapa y variedad. En la etapa emergencia a primordio, INIA Cuaró presentó menor acumulación térmica y un dd intermedio frente al resto de las variedades; mientras que INIA Caraguatá obtuvo una mejor precisión en días. El Paso 144 tuvo mayor acumulación térmica y una baja

precisión. La acumulación térmica en esta etapa es mayor a la etapa primordio a floración.

En la etapa primordio a floración, a pesar de ser la más variable se constataron tendencias importantes. INIA Tacuarí sigue teniendo baja acumulación térmica comparada con el resto, mientras que INIA Caraguatá tiene la mayor. INIA Cuaró y El Paso 144 mostraron similar resultado en la acumulación e intermedia a las otras variedades.

En la etapa emergencia a floración fue menos variable y más precisa debido a la eliminación de fuentes de error antes mencionada. El "ranking" de acumulación térmica se mantiene similar al encontrado en el punto IV.C.1. en la etapa siembra a floración. Pero se encontró una variante, que los GDA de INIA Cuaró en esta etapa están más cercano a INIA Tacuarí y en siembra a floración esta variedad está más cercana a INIA Caraguatá. Hay que tener en cuenta el bajo número de observaciones de las variedades presentadas en este cuadro.

Cuadro Nº 57. Grados día Acumulados (Tb = 0°) y desvío en días de las etapas emergencia a primordio, primordio a floración y emergencia a floración de las variedades estudiadas.

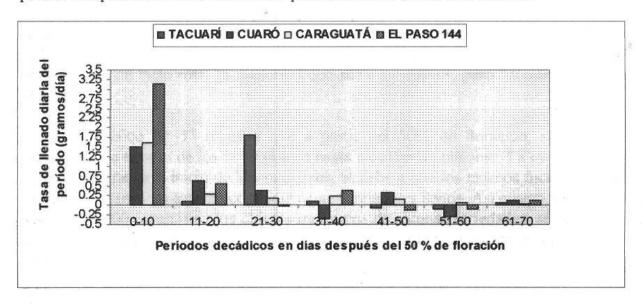
			Vari	edad	
Etapas Fenológic	as	El Paso 144	INIA Tacuari	INIA Caraguatá	INIA Cuaró
Emergencia a		1458	1268	1310	1169
Primordio	dd	9.6	9.8	5.8	7.6
Primerdie a	GDA	711	611	753	713
Floración	dd	7.6	7.1	6.0	10.1
Emergencia a	GDA	2169	1879	2063	1882
Floración	dd	6.5	6.0	3.7	3.1
Número de obser	vaciones	8	8	6	4

GDA = Grados Día Acumulados; dd = desvío en días.

E, EVOLUCION DE LA TASA DE LLENADO DE GRANO Y DETERMINACION DE LA MADUREZ FISIOLOGICA.

Para las variables estudiadas, tasa de llenado diario, peso de 1000 granos e incremento de peso de 1000 granos, se encontraron diferencias importantes entre cultivares, entre momentos de muestreo y entre épocas de siembra. De las cuatro variedades utilizadas, INIA Tacuarí e INIA Cuaró aparecen como de ciclo de llenado de duración media e INIA Caraguatá y El Paso 144 como de duración larga. Las fechas de

siembra tomadas fueron dos, una normal para la zona Este del 21 de octubre y otra tardía como es la del 27 de noviembre.


La madurez fisiológica fue definida como el punto en el cual se alcanzó el máximo peso de los 1000 granos. Después de logrado el 50% de floración (DPF) en cada variedad, se comenzó a realizar el muestreo cada 10 días, así se continuó con el mismo intervalo de tiempo hasta los 70 DPF. En el laboratorio se determinaron: peso de las espigas, peso de los granos llenos y vacíos por espiga, peso de los 1000 granos y número de granos llenos y vacíos por espiga. Todos los datos de peso fueron tomados con 0% de humedad.

1. Evolución del llenado de grano en la fecha de siembra normal.

En el gráfico Nº 51 se observa la máxima tasa de acumulación carbohidratos en los granos que se da entre los 0 y 30 DPF para todos los cultivares analizados, existiendo una leve tendencia a extenderse unos pocos días más el período de llenado en aquellos cultivares de ciclo a floración más corto. De todas maneras se puede decir que luego de los 30 DPF, todos los cultivares considerados siguen acumulando a tasas muy bajas, hasta lograr el máximo incremento en peso y peso de los 1000 granos entre los 30 y 45 DPF.

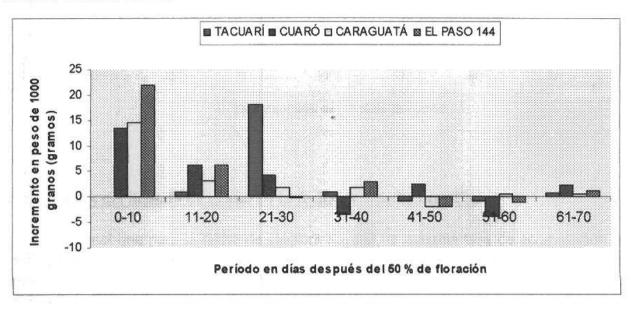
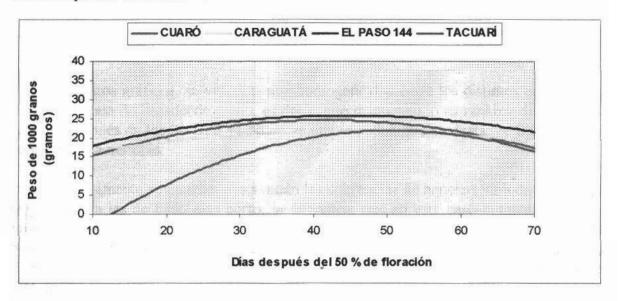

Es de importancia destacar el comienzo tardío y el gran incremento que da el llenado de 1000 granos en la variedad INIA Tacuarí alrededor de los 20 y 30 DPF, pasando de una tasa diaria casi nula en los primeros DPF a una tasa de aproximadamente 1.8 gramos entre los días mencionados. En contraposición, las restantes variedades presentan sus mayores tasas de llenado en períodos menores (0-10 y 11-20 DPF), en particular, El Paso 144.

Gráfico Nº 51. Evolución de la tasa diaria de llenado de 1000 granos (en gramos/día) del período después del 50% de floración para la siembra en la fecha normal.

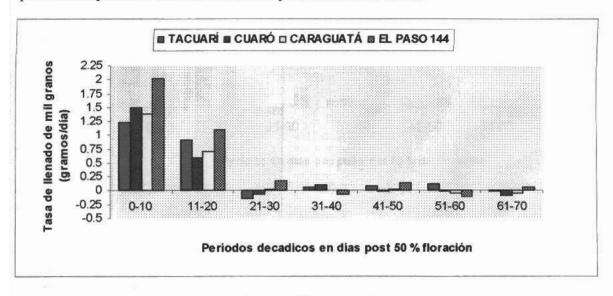
En los gráficos Nº 52 y 53 se verifica lo observado en el gráfico Nº 51 con el incremento en peso de los 1000 granos (pasando a aumentar de 0 a 18.1 gramos en el mismo período) y el peso de 1000 granos final, que según parece, esta última variable logra estabilizarse pasado los 40 DPF. Esto fue también demostrado en otros trabajos realizados con el mismo cultivar INIA Tacuarí en el mismo local (Tesis García Malervi, J., Pintos Chierichetti, A. 1997. Estación Experimental de INIA Treinta Y Tres).


Gráfico Nº 52. Incremento en peso de 1000 granos (en gramos) por período para la siembra en fecha normal.

El alto contenido de materia seca, el elevado IAF y la acumulación de reservas en la vaina de El Paso 144, así como el mayor peso específico foliar de INIA Caraguatá desarrollado a floración, (com. pers. Fernando Pérez) estarían incidiendo tanto en el adelanto como en la mayor magnitud del llenado de grano. Basándose en esto se puede deducir que los cultivares de ciclo largo, comparado con los cultivares de ciclo más corto, tienen un ciclo total (a madurez) que suele ser mayor, pero "acortan" la etapa a floración.

El gráfico Nº 53 muestra que a partir del 50% de floración, se observa un incremento en el peso de los 1000 granos hasta alcanzar un máximo. La causa del menor peso de los granos al inicio de los muestreos, se debe a que los mismos fueron realizados cuando los granos no estaban completamente formados y llenos. Así mismo, la caída en el peso de los 1000 granos en los últimos muestreos de algunas variedades, se podría deber al desgrane. Tanto El Paso 144 como INIA Cuaró, logran los máximos pesos de 1000 granos a los 40 DPF.

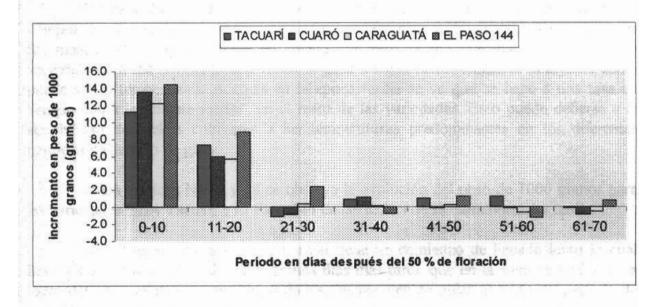
Gráfico Nº 53. Evolución del peso de 1000 granos (en gramos) después del 50% de floración para la siembra en fecha normal.



2. Evolución del llenado de grano en la fecha de siembra tardía.

Al igual que para la fecha de siembra normal, la máxima tasa de acumulación de carbohidratos observada en los gráficos Nº 54, se da entre los 0 y 20 DPF para todos los cultivares analizados, no existiendo diferencias claras en cuanto a la duración de la misma entre ellos. Sin embargo parece ser que El Paso 144 entre los 21 y 30 DPF sigue

acumulando pero a una tasa muy baja (0.183 gramos/día). De todos modos se puede decir que luego de los 30 DPF ya no existe tasa de llenado y por ende no se verifica un incremento de peso de 1000 granos aunque parecería, según la línea obtenida por regresión, que el peso máximo de 1000 granos se estabilizaría alrededor de los 40 DPF.


Gráfico Nº 54. Evolución de la tasa diaria de llenado de grano (en gramos/día) del período después del 50% de floración para la siembra tardía.

En estos gráficos se visualiza una homogeneidad entre los distintos cultivares en cuanto a la tasa de llenado de grano, es decir, que manteniendo su ranking diferencial de llenado, después de los 20 DPF ya no se ve una variedad que se destaque frente al resto como en los anteriores.

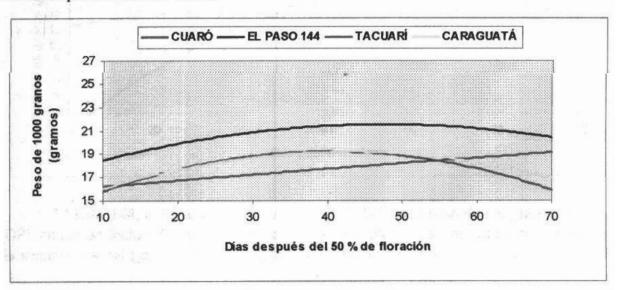
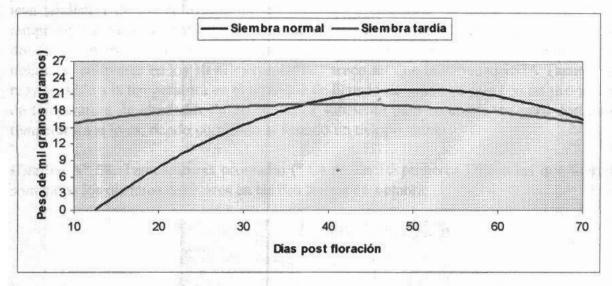

Nuevamente se estarían observando las diferencias de aquellas variedades de ciclo largo frente a las de ciclo más corto, la diferencia que en este caso aumenta en mayor proporción su magnitud de llenado que lo que la adelanta. Por lo tanto en los gráficos Nº 54 y 55, vemos que el ciclo en todas las variedades, finaliza en un tiempo similar luego de alcanzar el 50 % de floración con una leve tendencia de El Paso 144 a finalizar pocos días después.

Gráfico Nº 55. Incremento en peso de 1000 granos (en gramos) por período para la siembra tardía.

En cuanto al peso de los 1000 granos se ve en el gráfico Nº 56 que, como ya se dijo, tiene una tendencia a aumentar hasta los 40 DPF en todas las variedades, excepto en INIA Cuaró donde parecería que aún sigue aumentando, pero a esto se le atribuye un posible error de muestreo. Se observa también que además de tener menor peso de granos todas las variedades frente a la primer siembra, El Paso 144 logra una mayor diferencia frente al resto teniendo un peso final de 1000 granos de 21 gramos cuando las otras en promedio no superan los 19 gramos.

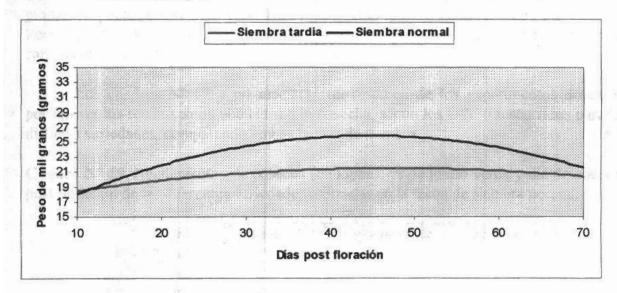
Gráfico Nº 56. Evolución del peso de 1000 granos (en gramos) después del 50% de floración para la siembra tardía.


3. Comparación de ambas fechas de siembra.

Comparando las dos épocas de siembra, se observa un similar patrón de comportamiento en la tasa de llenado diaria. La diferencia se da en INIA Tacuarí que ya fue mencionada. Hay que tener en cuenta que esto se dio únicamente en el cultivo sembrado en fecha normal lo cual quizá se deba a algún factor climático influyente como puede ser la temperatura. Además en la época tardía se ve que se hace a una tasa de llenado diaria levemente menor en el resto de las variedades. Esto puede deberse a la sensibilidad de dichos cultivares a las temperaturas predominantes en los diferentes períodos de llenado de grano.

En los gráficos Nº 57 y 58 se observa la evolución del peso de 1000 granos para las variedades INIA Tacuarí y El Paso 144 en las fechas de siembra normal y tardía.

INIA Tacuarí, en la siembra normal tiene un comienzo de llenado lento lo cual lleva a estabilizar el peso de 1000 granos días más tarde que en la siembra tardía. Esta logró definitivamente un mayor peso de los mismos debido quizá al largo del período de aumento de peso. En cambio en la fecha tardía, empieza su llenado más rápido obteniendo mayor peso a los 10 DPF, pero estabiliza el peso de los granos antes. La diferencia de peso es aproximadamente un 8 % menor que en la fecha anterior.


Gráfico Nº 57. Evolución del peso de 1000 granos en la variedad INIA Tacuarí en las fechas de siembra normal y tardía.

El Paso 144, a diferencia de INIA Tacuarí, logró igual peso de mil granos a los 10 DPF en ambas fechas de siembra. Sin embargo la evolución del peso fue más notoria en la siembra normal (gráfico N° 58). Esto determina que a pesar de que ambas fechas de

siembra alcanzan el peso máximo a similares DPF, éste fue cerca de 23 % mayor en la siembra normal.

Gráfico Nº 58. Evolución del peso de 1000 granos en la variedad El Paso 144 en las fechas de siembra normal y tardía.

Salvo INIA Tacuarí, las otras tres variedades alrededor de los 10 DPF ya cuentan con un peso de 1000 granos importante independientemente de la fecha de siembra considerada, esto concuerda con otros trabajos anteriores donde se ve que existe una leve tendencia de los cultivares menos precoces a comenzar su etapa de llenado más temprano y a finalizar también más temprano. Esto se puede explicar en el cuadro N° 58 donde se muestran las temperaturas promedios a las cuales fueron sometidos los diferentes cultivares en los 10 primeros DPF. Parece ser que la variedad INIA Tacuarí es muy sensible a la temperatura en el arranque de llenado de grano ya que con un promedio de temperatura de alrededor de 20 °C no es suficiente para su comienzo pero con más temperatura sí lo es, dando comienzo al llenado un tiempo antes.

Cuadro Nº 58. Temperaturas promedio (° C)-de los 10 primeros DPF a las que fueron sometidos los distintos cultivares en las dos fechas de siembra.

VARIEDAD	Normal	Tardía
INIA Tacuarí	20.2	26.8
INIA Cuaró	19.8	23.7
INIA Caraguatá	24.2	23.4
El Paso 144	24.5	22.5

Los valores de peso de 1000 granos logrados para todas las variedades son siempre mayores en la época de siembra normal, siendo aún mayores en cultivares de

ciclo largo. Inclusive El Paso 144 logra el máximo peso de 1000 granos registrado en estos experimentos a los 40 DPF, comenzando desde los primeros días luego de la floración a causa de su alta tasa de llenado diaria desde el inicio.

Tanto INIA Caraguatá como El Paso 144 logran un peso de 1000 granos a los 40 DPF de 23.3 y 27.4 gramos respectivamente promediando los pesos de ambas fechas de siembra. INIA Tacuarí y INIA Cuaró en cambio, llegan a un peso menor de 18.7 y 21.7 gramos respectivamente pero entre los 40 y 50 DPF. En el trabajo realizado por Castro y Porto (1994), se reporta que existen diferencias genéticas entre variedades en la característica peso de 1000 granos.

Los cuadros Nº 59 y 60 muestran un resumen de los experimentos donde se pueden ver los rendimientos obtenidos a la cosecha, según los DPF transcurridos para las distintas variedades, comparando ambas fechas de siembra.

Cuadro Nº 59. Rendimientos de cosecha (en kg/há), % de grano verde y día de cosecha post floración de las diferentes variedades utilizadas en la fecha de siembra normal.

Variedad	Rend./há	% grano verde	Cosecha en DPF
INIA Tacuari	10380	2.6	56
INIA Cuaró	10761	2.3	48
INIA Caraguatá	8996	2.6	38
El Paso 144	9911	9.6	35

Cuadro Nº 60. Rendimientos de cosecha (en kg/há), % de grano verde y día de cosecha post floración de las diferentes variedades utilizadas en la siembra tardía.

Variedad	Rend./há	% grano verde	Cosecha en DPF
INIA Tacuari	9460	2.3	60
INIA Cuaró	10440	1.5	55
INIA Caraguatá	7890	3.0	53
El Paso 144	7995	3.4	50

Las cosechas fueron realizadas en fechas tomadas arbitrariamente, el 25 de marzo para la siembra normal y el 29 de abril para la siembra tardía, lo que implica que las distintas variedades fueron cosechadas en momentos diferentes después de floración. De esta manera se pierde la posibilidad de comparar los rendimientos y los porcentajes de grano verde obtenidos, ya que para eso lo mejor hubiera sido tener igual número de DPF en cada variedad.

No obstante esto, igualmente se hizo las correspondientes mediciones. Todos los valores obtenidos de porcentaje de grano verde son bajos, excepto el de El Paso 144 que

según los valores aceptados (12%), estaría dentro del mismo. Esto quizá se deba a que además de ser una variedad de ciclo largo, su cosecha fue realizada apenas 35 DPF (ver cuadro N° 58). Sin embargo, en la cosecha de la siembra tardía, los valores obtenidos son también bajos, inclusive el de El Paso 144, entendiéndose esto porque fue realizado unos 15 días más tarde que la época anterior (ver cuadro N° 59).

Los rendimientos (llevados a 13 % de humedad) que se obtuvieron en la siembra en fecha normal fueron levemente superiores en todas las variedades. Registrándose un menor rendimiento en aquellas variedades de ciclo largo que en promedio tuvieron un menor rendimiento en ambas fechas de siembra, frente a las de ciclo más corto, lo que se agudiza esta diferencia en la época tardía. En la siembra temprana INIA Tacuarí e INIA Cuaró rindieron aproximadamente un 10 % más que El Paso 144 y INIA Caraguatá y en la fecha de siembra tardía, un 20 % más.

Es importante destacar que este trabajo no tuvo como objetivo principal estudiar exhaustivamente la evolución de la tasa de llenado ni la determinación de la llegada a la madurez fisiológica. Lo que se buscaba con el mismo era estudiar los diferentes patrones de incrementos de peso de grano hasta la llegada a madurez fisiológica. Si el objetivo hubiera sido encontrar el punto exacto de madurez fisiológica, lo mejor hubiera sido realizar muestreos más seguidos en intervalos de tiempo más cortos, de 3 o 4 y no de 10 días como se manejo acá, para obtener con mayor precisión los detalles del mismo.

F. VALIDACION DE LA METODOLOGIA.

Una vez obtenidos los GDA de las situaciones de chacras comerciales, se procedió a su comparación con los resultados experimentales. Los GDA se calcularon en base a 7° y 10° C, de forma de comparar la Tb encontrada como la de mejor ajuste en este trabajo y la utilizada en la investigación. Luego se estimó la diferencia en días de estas situaciones con respecto al promedio histórico.

Con la finalidad de comparar los datos de las chacras con los resultados obtenidos, se las dividió en dos grupos basándose en que eran manejados por empresas diferentes (ver cuadro N° 61).

Cuadro Nº 61. Grupos y números de chacras por variedad.

	Cha	eras .
Variedad	Grupe 1	Grupo 2
El Paso 144	14	10
INIA Tacuari	46	16

En los cuadros Nº 62 y 63, se presentan en resumen el promedio de GDA y desvío en días (dd) de los grupos para las variedades El Paso 144 e INIA Tacuarí. El promedio del desvío en días se obtuvo del valor absoluto de cada situación.

Cuadro Nº 62. GDA y dd promedios y porcentaje de situaciones comerciales dentro del promedio histórico para la variedad El Paso 144 de la fase siembra a floración.

		Tb=ア			Tb = 10°		
	GDA	+/- dd	%	GDA	+/- dd	%	ri .
Histórico	1502	8.0		1195	8.0		47
Grupo 1	1524	5.5	86	1163	6.0	64	14
Grupo 2	1544	3.6	70	1173	5.0	100	10

GDA = Grados día Acumulados; dd = desvío en días; % = porcentaje de chacras dentro del rango histórico.

Como se puede observar en este cuadro, en más del 70 % de las situaciones de chacra en los dos grupos de El Paso 144, se obtuvieron desvíos en días menores a la media histórica (+/- 8 días). También se destaca que la media del dd en el grupo 2 tendió a ser menor.

Similares resultados se encontraron con INIA Tacuarí (cuadro Nº 63), donde el porcentaje de chacras dentro del promedio histórico (+/- 7 días) fue similar a El Paso 144.

Cuadro Nº 63. GDA y dd promedios y porcentaje de situaciones comerciales dentro del promedio histórico para la variedad INIA Tacuarí de la fase siembra a floración.

		Tb # 7°			$Tb = 10^{\circ}$		
	GDA	+/- dd	%	GDA	+/- dd	%	Ð
Histórica	1332	+/-7.0		1059	7		35
Grupo I	1355	5.2	74	1048	5.1	76	46
Grupo 2	1304	3.2	87.5	1006	5.4	63	16

GDA = Grados día Acumulados, dd = desvío en días; % = porcentaje de chacras dentro del rango histórico.

En todas las chacras, se identificaron aquellas situaciones particulares en que su desvío excedía los límites de comparación impuestos en este trabajo.

1. El Paso 144.

En ambos grupos, 7° C se mostró como la Tb más precisa y el promedio del desvio en días fue menor que para 10° C. Esto confirma los resultados encontrados en este trabajo.

Las situaciones de chacra del grupo 1 se presentan en el cuadro N° 64. La temperatura base utilizada para explicar estos casos fue 7° C. De las catorce situaciones del grupo 1, dos son las chacras fuera del rango, las número 5 y 6. Estas se atrasaron en la emergencia y sumado al efecto herbicida ambos factores causaron un fuerte retraso para alcanzar la floración. Tanto la no-aplicación de herbicidas como la inundación temprana, adelantan la floración y contrarrestan los retrasos en la emergencia.

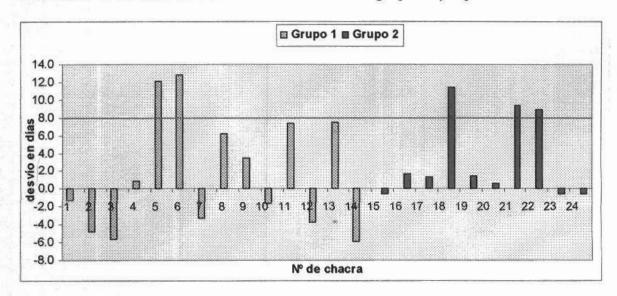
Cuadro Nº 64. Datos de chacras comerciales del grupo Nº 1 para El Paso 144.

Nº de	Fecha de	TMC	GDA (Tb	dd	GDA	cjtš	Dias u	Efecto	Dias a	Historia de
checra	Siembre		7)		(Tb 10)		emergencia	herbicida	inundación	chacre
1	27-Sep-98	19.1	1487	-1.2	1118	-8.4	17	Normal	35	Rastrojo
2	2-Oct-98	19.3	1443	-4.8	1092	-11.0	18	Normal	30	Ret. Largo
3	5-Oct-98	19.5	1432	-5.6	1087	-11.4	18	Normal	25	Rastrojo
4	7-Oct-98	19.6	1513	0.9	1153	-4,4	25	Sin herb.	30	Ret. Largo
5	7-Oct-98	19.6	1654	12.1	1261	6.9	25	Fuerte	35	Ret. Corto
	8-Oct-98	19.7	1665	12.8	1272	7.9	19	Fuerte	35	Ret. Largo
7	10-Oct-98	19.8	1460	-3.3	1118	-7.8	15	Normal	25	Rastrojo
8	10-Oct-98	19.8	1582	6.3	1210	1.5	19	Sin herb.	30	Ret. Largo
9	10-Oct-98	19.8	1546	3.4	1183	-1.2	19	Normal	35	Rastrojo
10	11-Oct-98	19.8	1481	-1.6	1133	-6.3	14	Normal	25	Ret. Corto
11	12-Oct-98	19.8	1595	7.3	1220	2.6	25	Normal	30	Ret. Corto
12	15-Oct-98	19.9	1454	-3.8	1115	-8.1	11	Normal	25	Ret. Corto
13	15-Oct-98	19.9	1598	7.4	1226	3.1	25	Normal	25	Ret. Corto
14	25-Oct-98	20.1	1425	-5.9	1098	-9.6	8	Sin herb.	30	Ret. Largo
	Media	19.7	1524.0	5.5**	1163	8**	20	80	30	

** = Media del valor absoluto. TMC = temperatura media del ciclo; GDA = Grados Día Acumulados (base 7° y 10° C); dd = desvío en días con respecto a la media histórica; Sin Herb. = sin herbicida; C.N.L. = campo nuevo ladera; Ret. = retorno.

Las chacras del grupo 2 tuvieron problemas en la emergencia de las plantas, primeramente debido a la baja humedad en el suelo. Luego, a los trece días, se realizó un baño para favorecer el nacimiento, éste fue seguido por una lluvia. El exceso de agua retrasa aún más la emergencia al dificultar la aireación en el suelo. Como resultado de esto, el promedio de siembra a emergencia fue de 23 días (ver cuadro N° 65), cuando lo normal estaría entorno a los 12 días.

El momento de inundación fue más temprano (25 días post- emergencia) con respecto al tradicional que se realiza alrededor de los 45 días. Este factor causa un adelantamiento del ciclo a floración. Excepto las chacras 18, 21 y 22, el resto tuvieron un ajuste muy preciso. En las chacras mencionadas el efecto del adelanto de la inundación, no fue suficiente como para contrarrestar el elevado número de días a emergencia.


Cuadro Nº 65. Datos de chacras comerciales del grupo Nº 2 para El Paso 144.

Nº de Chacra	Fecha de Siembra	TMC	GDA (Tb	dd	GDA (Tb 10)	dd	Días a emergencia	Efecto herbicida	Dias a inundación	Historia de chacra
15	1-Oct-98	19.4	1496	-0.5	1133	-6.6	20	Fuerte	32	Ret. Corto
16	1-Oct-98	19.4	1524	1.8	1155	-4.3	20	Normal	32	Ret. Corto
17	2-Oct-98	19.4	1518	1.3	1152	4.5	16	Normal	35	Ret. Corto
18	3-Oct-98	19.5	1644	11.4	1248	5.6	29	Normal	21	Ret. Corto
19	4-Oct-98	19.5	1520	1.4	1154	-4.4	20	Fuerte	29	Ret. Corto
20	5-Oct-98	19.5	1510	0.7	1147	-5.0	19	Fuerte	29	Ret. Corto
21	6-Oct-98	19.6	1619	9.3	1232	3.9	26	Normal	21	Ret. Corto
22	7-Oct-98	19.6	1615	8.9	1231	3.7	28	Normal	18	Ret. Corto
23	8-Oct-98	19.7	1495	-0.5	1141	-5.5	24	Normal	18	Ret. Corto
24	8-Oct-98	19.7	1495	-0.5	1141	-5.5	27	Normal	18	Ret. Corto
	Media	19.5	1544	3.6**	1173	4.9**	23		25	No. of Concession, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, Name of

^{** =} Media del valor absoluto TMC = temperatura media del ciclo; GDA = Grados Día Acumulados (base 7° y 10° C); dd = desvío en días con respecto a la media histórica; Sin Herb. = sin herbicida; C.N.L. = campo nuevo ladera; Ret. = retorno.

Los dd negativos del grupo 2 se deben principalmente a medidas de manejo utilizadas como el adelanto del momento de inundación, que acortó los días a floración. En contraposición, la aplicación de herbicidas en momentos más sensibles lo retrasó. En el gráfico Nº 59 se observa los dd de ambos grupos en El Paso 144.

Gráfico Nº 59. Desvío en días de cada chacra de los grupos 1 y 2 para El Paso 144.

2. INIA Tacuarí.

En el grupo 1 a pesar de tener un período de siembra a emergencia similar al considerado por la bibliografia (13.5 días), fue variable entre las chacras (ver cuadro Nº 66). La inundación fue relativamente temprana (30 días post – emergencia) con respecto

a la tradicional.

Las chacras 2, 5, 6 y 20 tuvieron un excesivo atraso a floración, esto se debió principalmente a que se encontraban sobre una ladera de campo nuevo. La ubicación topográfica causó la falta de uniformidad en el perfil de inundación, que posiblemente retardó el crecimiento del cultivo.

Las chacras 8, 9, 10 y 13 tuvieron un retraso a floración causado principalmente por el largo período a emergencia. Sin embargo el retraso en la 34 se debió probablemente al tardío momento de inundación.

El adelanto en la floración de las chacras 14 y 16 fue afectado en conjunto por el temprano momento de inundación y por haber sido rastrojos del año anterior. En cuanto a la 42, su adelanto fue afectado por el corto período a emergencia y la no- aplicación de herbicidas.

Cuadro Nº 66. Datos de chacras comerciales del grupo Nº 1 para INIA Tacuari.

Nº de	Fecha de	TMC	GDA	dd	GDA	dd	Dias a	Efecto	Dias a	Historia de
Chacra	Siembra		(Tb 7)		(Tb 10)		emergençis	herbicida	mundación	chacra
1	1-Oct-98	19.0	1341	0.7	1005	-6.0	13	Sin herb.	35	C.Ņ.L.
2	4-Oct-98	19.5	1489	12.5	1132	7.6	16	Sin herb.	35	C.N.L.
3	9-Oct-98	19.6	1343	0.9	1022	-3.9	19	Normal	25	Rastrojo
4	9-Oct-98	19.6	1343	0.9	1022	-3.9	19	Normal	25	Rastrojo
- 5	8-Oct-98	19.7	1562	18,1	1193	13.8	20	Sin herb.	38	G.N.L.
6	18-Oct-98	20.0	1464	10.2	1125	6.6	10	Sin herb.	35	C.N.L.
7	16-Oct-98	19.7	1272	4.7	972	-9.0	13	Sin herb.	35	Ret. Corto
8	11-Oct-98	19.8	1481	11.7	1133	7.6	18	Normal	36	Rastrojo
9	14-Oct-98	19.9	1426	7,3	1093	3.5	16	Normal	36	Rastrojo
10	16-Oct-98	19.9	1430	7.6	1097	3.8	16	Normal	36	Retorno
11	25-Oct-98	20.2	1304	-2.2	1007	-5.2	8	Normal	35	Rastrojo
12	10-Oct-98	19.8	1418	6.7	1085	2.7		Normal	35	Retorno
13	10-Oct-98	19.8	1546	16.7	1183	12.7	24	Normal	35	Retorno
14	21-Oct-98	19.9	1236	-7.5	948	-11.2	16	Normal	25	Rastrojo
15	9-Oct-98	19.7	1411	6.2	1078	2.0	28	Normal	25	Rastrojo
16	26-Oct-98	20.2	1237	-7.3	955	-10.3	11	Normal	25	Rastrojo
17	14-Oct-98	19.8	1359	2.1	1041	-1.8	24	Normal	25	Rastrojo
18		19.9	1398	5.1	1074	1.5	22	Normal	25	Retorno
19		20.3	1247	-6.4	965	-9.2	10	Normal	35	Retorno
20	25-Oct-98	28.1	1436	8.0	1106	4.7	14	Sin herb.	36	C.N,L.
21		20.1	1391	4.5	1073	1.4	10	Sin herb.	35	C.N.
22	27-Oct-98	20.1	1340	0.6	1034	-2.5	13	Normal	25	Retorno
23	31-Oct-98	20.3	1354	1.7	1048	-1.0	15	Sin herb.	35	Retorno
24		20.1	1402	5.3	1081	2.2	18	Normal	35	Retorno
25	31-Oct-98	20.3	1367	2.7	1058	-0.1	15	Normal	25	Retorno
26	25-Nov-98	21.2	1318	-1.0	1039	-1.8	9	Sin herb.	35	Ret. Largo
27	3-Nov-98	20.5	1279	-3.9	994	-6.2	8	Normal	25	Rastrojo
28	4-Nov-98	20.5	1296	-2.7	1008	-4.9	9	Doble ap.	25	Rastrojo
29	3-Nov-98	20.5	1307	-1.8	1016	-4.1	10	Normal	25	Rastrojo
30	4-Nov-98	20.5	1399	5.0	1087	2.7	11	Normal	35	Rastrojo
31	3-Nov-98	20.5	1279	-3.9	994	-6.2	13	Normal	35	Retorno
32	6-Nov-98	20.4	1304	-2.0	1013	-4.4	10	Normal	35	Rastrojo
33	6-Nov-98	20.4	1304	-2.0	1013	-4.4	10	Dobie ap.	25	Rastrojo
34	3-Nov-98	20.6	1500	12.3	1170	10.4	-13	Normal	40	Retorno
35	6-Nov-98	20.4	1326	-0.5	1029	-2.9	18	Sin herb.	35	Ret. Largo
36	9-Nov-98	20.5	1292	-2.9	1004	-5.2	9	Normal	25	Rastrojo
37	9-Nov-98	20.5	1271	-4.5	989	-6.7	11	Normal	25	Retorno
38		20.7	1361	2.1	1064	0.5	12	Normal	25	C.N.
39	15-Nov-98	20.6	1262	-5.1	983	-7.1	12	Normal	25	Rastrojo
40	9-Nov-98	20.5	1282	-3.7	997	-5.9	19	Sin herb.	35	C.N.L.
41	8-Nov-98	20.7	1438	7.8	1123	6.0	20	Normal	35	Ret. Corto
42	22-Nov-98	20.8	1185	-10.7	927	-12.2	7	Sin herb.	36	Ret. Largo
43	25-Nov-98	21.2	1336	0.2	1054	-0.5	8	Normal	25	Rastrojo
44	30-Nov-98	21.3	1289	-3.0	1019	-3.6	7	Normat	25	Retorno
45	1-Dic-98	21.6	1391	4.0	1106	4.0	8	Normal	25	Ret. Largo
46	7-Dic-98	21.7	1292	-2.7	1028	-2.7	14	Sin herb.	35	Rastrojo
	MEDIA	20.3	1355	5.2**	1048	6.1°*	13.5		30	

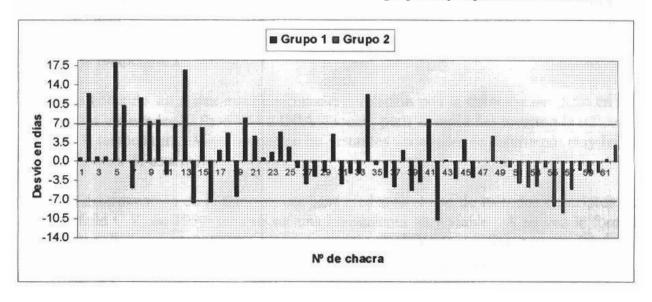
^{** =} Media del valor absoluto TMC = temperatura media del ciclo; GDA = Grados Día Acumulados (base 7° y 10° C); dd = desvio en dias con respecto a la media histórica; Sin Herb. = sin herbicida; C.N.L. = campo nuevo ladera; Ret. = retorno.

En el grupo 2, presentado en el cuadro Nº 67, se nota un adelantamiento del ciclo a floración en la mayoría de las chacras. Esto puede estar explicado por la inundación temprana del cultivo, que en promedio fue realizada 26 días post – emergencia.

En general, el período siembra a emergencia no presentó problemas (13 días en promedio), pero las chacras con menores días a emergencia acentuaron el acortamiento del ciclo a floración.

El efecto "herbicida fuerte" provoca un atraso en el ciclo si se lo compara con el resto de las chacras de este grupo.

El factor Historia de chacra mostró cierta influencia, ya que los rastrojos acentuaron aún más el acortamiento del ciclo a floración.


Cuadro Nº 67. Datos de chacras comerciales del grupo N º 2 para INIA Tacuarí.

N° de	Fecha de	TMC	GDA	dd	GDA	dd	Diasa	Efecto	Dies a	Historia de
Chacra	Siembra		(Tb7)		(Tb 10)		emergencia	herbicida	inundación	chacra
47	10-Oct	19.6	1334	0.1	1016	-4. 5	14	Normal	32	Rastrojo
48	11-Oct	19.8	1391	4.6	1064	0.5	22	Fuerte		Retorno
49	17-Nov	19.9	1329	-0.3	1020	-4.0	17	Fuerte	30	Retorno
50	18-Oct	19.9	1320	-0.9	1014	-4.5	15	Fuerte	31	Retorno
51	19-Oct	19.9	1281	-3.9	984	-7.5	16	Normal	21	Rastrojo
62	20-Oct	20.0	1272	-4.6	978	-8.1	15	Normal	21	Rastrojo
53	21-Oct	20.0	1274	-4.5	980	-7.9	13	Normai	22	Rastrojo
54	21-Oct	20.1	1321	-0.8	1018	-4.0	13	Normal		Rastrojo
55	27-Oct	20.2	1224	-8.2	945	-11.2	10	Normal	26	Retorno
56	28-Oct	20.2	1211	-9.2	935	-12.3	10	Normal		Retorno
57	31-Oct	20.3	1265	-5.0	980	-7.6	10	Normal	22	Retorno
58	01-Nov	20.4	1312	-1.5	1018	-3.9	10	Normal		Retorno
59	03-Nov	20.5	1307	-1.8	1016	-4.1	10	Normal	22	Retorno
60	04-Nov	20.5	1307	-1.8	1016	-4.1	12	Normal		Retorno
61	05-Nov	20.4	1339	0.5	1039	-1.9	13	Normal		Retorno
62	06-Nov	20.5	1372	3.0	1066	0.7	14	Normal		Retorno
	Modia	20,1	1303.7	3.2**	1005.6	5.4***	13		26	

^{** =} Media del valor absoluto TMC = temperatura media del ciclo; GDA = Grados Día Acumulados (base 7° y 10° C); dd = desvío en días con respecto a la media histórica; Sin Herb. = sin herbicida; C.N.L. = campo nuevo ladera; Ret. = retorno.

En el gráfico Nº 60 se observa que el manejo homogéneo realizado en las chacras del grupo 2 provocó en general un adelanto a floración, mientras que el grupo 1 mostró situaciones más variables. Pero se constató que la inundación temprana, la no- aplicación de herbicida y el rastrojo tendieron a adelantar o contrarrestar atrasos en la floración.

Gráfico Nº 60. Desvío en días de cada chacra de los grupos 1 y 2 para INIA Tacuarí.

V. CONCLUSIONES.

Se determinó una importante relación entre temperatura media del ciclo y duración del ciclo a floración en días para todas las variedades estudiadas. Esta relación condujo a altas respuestas negativas en la duración del ciclo en días frente al aumento de la temperatura.

Las horas de sol reales manifestaron cierta relación con la duración del ciclo en días en las variedades El Paso 144 e INIA Tacuarí, pero siempre fue menor a la influencia de la temperatura. Mientras que en las restantes variedades se determinó muy baja la influencia de este factor.

La determinación de la temperatura base mediante el uso de métodos descriptos por Arnold C.Y. en 1959, mostró ser una herramienta muy viable. A su vez la fórmula desarrollada por este mismo autor para estimar el desvío en días a partir del desvío estándar, aporta una herramienta más práctica a las situaciones comerciales.

La temperatura base resultante de este estudio fue 7° C en la etapa siembra a floración para todas las variedades. Sin embargo la precisión, medida como desvío en días, fue variable, pasando de +/- 8,2 días en El Paso 144 a +/- 4,0 en L 1130.

Se determinó que las variedades que presentaron mayor desvío en días fueron las mismas que mostraron cierta relación con las horas de sol reales. Esto determina una mayor variabilidad en la metodología de suma térmica en estas variedades.

No se encontró diferencias significativas en todas las variedades entre la temperatura base resultante de este trabajo (7° C) y la que actualmente esta siendo usada en la investigación (10° C). La precisión tendió a ser mejor con 7° C, pero la diferencia numérica es mínima.

Los errores introducidos en las fuentes de datos de las etapas floración a madurez y siembra a madurez, no permiten obtener resultados consistentes sobre la Tb de mejor ajuste en las mismas.

En todas las variedades se constató que el seguimiento del cultivo por suma térmica es una herramienta más precisa que el número de días a cada etapa.

El análisis de la base de datos de las etapas emergencia a primordio floral y primordio floral a floración, generadas en los ensayos Bioclimáticos, muestran diferentes tendencias entre variedades. Además se confirman diferencias entre éstas ya mencionadas por otros investigadores. Es muy importante seguir generando datos

para que futuras investigaciones aclaren estas tendencias, ya que el número de observaciones utilizado fue bajo.

- La validación de la metodología de la suma térmica realizada sobre datos de chacras comerciales de la zafra 1998/99, confirmó la utilidad de esta herramienta. En la comparación con los resultados obtenidos en este trabajo se obtuvo más de 70 % dentro del promedio histórico, mientras que el 30 % restante fue justificado en cada situación en particular por razones que se debían principalmente al manejo. Por tanto es una herramienta de posible uso en la detección de problemas y planificación de estrategias de manejo.
- En el estudio de la etapa de madurez, se observó que el llenado de grano presenta la máxima tasa de acumulación de carbohidratos en los granos entre los 0 y 30 DPF en todos los cultivares analizados. Luego de este período, siguen acumulando a tasas muy bajas hasta alcanzar el máximo peso de mil granos, entre los 30 y 45 DPF.
- Los cultivares más tardíos como El Paso 144 e INIA Caraguatá tienden a comenzar su etapa de llenado más temprano y a finalizar también más temprano, pero logrando un peso final de mil granos mayor al resto de las variedades.
- El cultivar INIA Tacuari comienza más tardíamente el llenado de grano y alrededor de los 20 a 30 DPF tiene un gran incremento. Además demuestra ser muy sensible a bajas temperaturas en el arranque del mismo.
- En la fecha de siembra normal se constató un peso final de mil granos mayor en todas las variedades, esa diferencia es mayor en El Paso 144.
- En ambas fechas de siembra, el llenado de grano de todas las variedades se realiza con similar patrón de comportamiento, excepto en INIA Tacuarí. Pero en la siembra tardía la tasa de llenado diaria fue levemente menor.
- Algunas sugerencias para trabajos similares que se pueden realizar a futuro sería la realización de muestreos de panojas a intervalos más cortos y la fijación de criterios más objetivos en la determinación de las distintas etapas.

VI. <u>RESUMEN.</u>

El principal objetivo en este trabajo fue determinar la temperatura base para el cálculo de grados día en seis cultivares y líneas de arroz (Bluebelle, El Paso 144, INIA Tacuarí, INIA Caraguatá, INIA Cuaró y la Línea 1130).

El trabajo se realizó sobre una base de datos generada en la Unidad Experimental de "Paso de la Laguna" de la Estación Experimental de INIA Treinta y Tres, donde funciona una Estación Agrometeorológica Convencional desde 1972. Esta se ubica geográficamente a 33° 14' latitud sur, 54° 22' longitud oeste y una altitud de 25 metros sobre el nivel del mar.

Se constató la influencia de la temperatura sobre la duración del ciclo a floración en las variedades estudiadas. La temperatura base para cada variedad se determinó a través de 3 métodos descriptos por Arnold C.Y. en 1959, éstos fueron: I)Método de la menor variabilidad; 2)Método del coeficiente de regresión y 3)Método del intercepto x.

La elección de las diferentes temperaturas probadas se basó en los antecedentes obtenidos en la revisión bibliográfica, que indican el rango en el cual se puede encontrar la que mayor ajuste brinda en cada fase.

Se encontraron diferencias en los requerimientos térmicos para cada variedad. Los mayores Grados Día acumulados (GDA) se obtuvieron en la variedad El Paso 144 y los menores en la variedad INIA Tacuarí. Siendo la primera de base genética mayormente índica y la segunda mayormente japónica. El resto de las variedades estudiadas presentó resultados intermedios a éstas.

Además se analizó la evolución de la tasa de llenado de grano y se determinó la llegada a madurez fisiológica para la zafra 1998/99 en cuatro variedades, usando dos fechas de siembra, una normal para la zona (21 de Octubre) y una tardía (27 de Noviembre). Para ello se registraba fecha de 50 % de floración y luego de la misma, cada 10 días se hacían muestreos de panojas hasta los 70 días posteriores.

Se encontraron diferencias entre cultivares, los menos precoces como El Paso 144 INIA Caraguatá tienden a comenzar su etapa de llenado más temprano y a finalizar también más temprano pero logrando un peso final de 1000 granos mayor al resto por sus diferencias genéticas. A pesar de que en ambas fechas de siembra se alcanza el peso máximo a similares días post floración, la normal obtuvo un valor mayor.

Por último, con los resultados obtenidos se hizo una validación de la metodología con datos de chacras comerciales. Lo que se observó fue que más del 70 % de esos casos

estaban dentro del rango admisible de desvío en días que se le aplicó al método. Aquellas situaciones que escapaban al mismo, tuvieron en su totalidad una respuesta agronómica que explicaba la causa de su exclusión.

VII. <u>SUMMARY.</u>

The main objective to this work was to determinate the base temperature in order to be able to calculate the degree day on 6 rice cultivars and line (Bluebelle, El Paso 144, INIA Tacuarí, INIA Caraguatá, INIA Cuaró and Line 1130).

The work was done using a database from the 'Unidad Experimental' of 'Paso de la Laguna' from the Experimental Station of INIA located in Treinta y Tres where a Agrometheorological Conventional Station works since 1972. This Station is located geographically on the 33° 14' south latitude, 54° 22' west longitude and 25 metres of altitude over the sea.

It was confirmed the influence of temperature during the cycle to flowering on different studied varieties. The base temperature for each variety was determinate using three methods described by Arnold in 1959, those were: 1) Method of least variability; 2) Method of the regression coefficient and 3) Method of intercept x.

The selection of different temperatures to be tested, it was based on bibliographic revision. This shows the range of temperature in which it could be found one that fits best.

Different thermal requirements for each variety were found. The higher Degree Day Accumulation (DDA) was obtained on the El Paso 144 variety and the lower ones on the INIA Tacuarí variety. The first have mostly an indic genetic base and the second one mostly a japonic genetic base. The rest of the studied varieties showed intermediate results to this.

In despite of analysing the evolution of filling grain rate, it was determinate the physiologic maturity for the season 1998/99. Four varieties and two data sowing were used, one at normal data for the zone (October 21) and late the other (November 27). For those, 50% of flowering was registered them each ten days, the heads was sampled until seventy days.

There were differences between cultivars, those late like EL Paso 144 and INIA Caraguatá trend to begin and finish earlier filling grain phase but dub to genetics differences they reach a higher 1000 grains final weight. Although the maximum weight is reached in similar number of days after flowering in both data sowing, the normal was higher than the later sowing.

Finally, it was done a validation of the methodology with farmers dates and results obtained. More than 70% of situations were situated in the admissible range of

deviation in days that the method was applied. Those cases in which the results were out of the range, had an agronomic responsive of exclusion.

VII. <u>BIBLIOGRAFIA.</u>

- 1- ARNOLD, C. Y. 1959. The determination and significance of the base temperature in a linear heat unit sistem. Proc. Amer. Soc. Hort. Sci. 74: 430-445.
- 2- _____. 1960. Maximum-minimum temperatures as a basis for computing heat units. Proc. Amer. Soc. Hort. Sci. 76: 682-692.
- 3- BLANCO, P. 1991. Growth and assimilate paritioning in rice cultivars of different maturity groups. Tesis M. Sc. Arkansas, USA, University of Arkansas, 141 p.
- 4- DEAMBROSI, E.; MENDEZ, M; ROEL, A. 1997. Estrategia en la producción de arroz para un mejor aprovechamiento de las principales variables climáticas. Instituto Nacional de Investigación Agropecuaria (Uruguay). Serie técnica Nº 89. 12p.
- 5- DE DATTA S. K.1981. Principles and Practices of Rice Production. New York. Johns Wiley & Sons. p. 618.
- 6- DE SOUZA, A.; NOGUEIRA DA COSTA, J. M. 1992. Temperatura base para cálculo de graus-dia para cultivares de arroz no triangulo mineiro. Local Uberaba. Lav. Arrozeira, Porto Alegre. pp 24-25.
- 7- DE SOUZA, P. R.1983. Ensaio Bioclimatico de cultivares e Linhagens de Arroz (Oryza Sativa L.). IN Reuniao da cultura do arroz irrigado, (12ª, 1983) Anais. pp.87;88
- 8- ECOFISIOLOGIA DEL CULTIVO. Ensayo Bioclimático. Programa Arroz. Resultados Experimentales. INIA Treinta y Tres. Estación Experimental del Este (Épocas de Siembras 1995-1997)
- 9- FASSIO, A.; CARRIQUIRY, A. I.; TOJO, C.; ROMERO, R. 1998. Maíz: aspectos fenológicos; estudios de requerimientos térmicos. Instituto Nacional de Investigación Agropecuaria (Uruguay). Serie técnica Nº 101. 31-34 pp.
- 10- FERREIRA, E.; MONTAUBAN, E. 1998. Incidencia de factores climáticos sobre rendimiento y vías de construcción del rendimiento en cultivares de arroz. Tesis Ing. Agr. Montevideo, Uruguay, Facultad de Agronomía. 186 p.

- 11- GRIST, D. H. Rice; The Origin and History of Rice. 4a ed. Malasya, Longmans. 3-9 pp.
- 12- INFELD, J. A.; DA SILVA, J. B. y ASSIS, F. N. 1993. Temperatura base para el cálculo de grados día en cultivares precoces de arroz irrigado. In Reuniao da cultura do arroz irrigado, (20a, 1993, Pelotas) Anais. EMBRAPA-CPACT. pp. 97-99.
- 13- _____. 1998. Temperatura base e graus-dia durante o periodo vegetativo de tres grupos de cultivares de arroz irrigado. Revista brasileira de agrometeorologia. V.(6): 187-191 pp.
- 14- INTERNATIONAL RICE RESEARCH INSTITUTE (IRRI). Annual report for. 1973. Climate Influence on Yeild. Pp 48-51.
- 16- LAWIN R. J.; SUMMERFIELD R.J.; ELLIS R.H.; QI A.; ROBERTS E.H.; CHAY P.M.; BROUWERS J.B.; ROSE J.L.; YEATES S.J. 1995. Towards the reliable prediction of time to flowering in six annual crops. VI. Applications in crop improvement. Expl. Agric. Volumen 31, pp 89-108.
- 17- MEJORAMIENTO GENETICO. PROGRAMA ARROZ. Resultados Experimentales. INIA Treita y Tres. Estación Experimental del Este (Epocas de Siembra 1986 - 1998).
- 18- Mc DONALD, J. D. 1978. Rice and its Adaptation to World Environments. The Journal of the Australian Institute of Agricultural Science. 44: 3-20.
- 19- MURATA, Y.; TOGARY, Y.1972. Analysis of the Effects of Climatic Factors upon the Productivity of Rice at Differents Localities in Japan. IN Proceedings of the Crop Science Society of Japan. Faculty of Agriculture, Tokyo University. Bunkyo-ku, Tokyo, Japan. 372-386 pp.
- 20- RITCHIE, J.T. 1991. Genetic specific data for crop modeling. Systems Aproaches for Agricultural Development. Penning de Vries F.; Teng P.; Metselaar K. Bangkok, Thailand. Penning de Vries F.; CABO-DLO, Wageningen, The Netherlands. 77-91 pp.

- 21- ROEL, A., BLANCO, F. 1993. Temperaturas base para el cálculo de grados día en diferentes cultivares de arroz. In Reuniao da cultura do arroz irrigado, (20a., 1993, Pelotas) Anais. EMBRAPA-CPACT. Pp. 102-104.
- 22- SLAFERG. A.; RAWSON H. M. 1995. Base and optimun temperatures vary with genotype and stage of development in wheat. Plant, Cell and Environment. 18: 671-679.
- 23- STANSEL, J. W.; FRIES, R. E. 1980. A conceptual agromet rice yield model. IN Proceedings of a Symposium on the Agrometeorology of the Rice Crop. World Meteorological Organization and I.R.R.I. Los Baños, Filipinas. I.R.R.I. pp 201-211.
- 24- STEINMETZ, S; INFELD, J. A.; MALUF, J. R. T.; SOUZA, P. R.; BUENO, A. C. 1996. Zoneamiento agroclimático da cultura do arroz irrigado no estado do Rio Grande do Sul: recomendacao de épocas de semeadura por município. Pelotas EMBRAPA CPACT. Documentos, 19. 30p.
- 25- UNIVERSITY OF ARKANSAS (U.S.A.). Department of Agronomy. 1984. Rice management decision aids based upon thermal time base 50° F.Arkansas. pp10.
- 26- VENKATESWARLU, B.; VERGARA, B. S.; VISPERAS, R. M. 1987. Influence of Photosynthetically Active Radiation on Grain Density of Rice. Crop Science 27: 1210-1214.
- 27- VERGARA, B.S. Rice Production Training Series; Effects of temperture and photoperiodism on rice grouth. IRRI. Slipe tape instructional unirt. pp 28.
- 28- YOSHIDA, S. 1977. Rice. IN Ecophysiology of Tropical Crops. Alvim P. De T.; Kozlowski. T. T. Academic Press. New York, San Francisco, London. 57-87 pp.

VIII. ANEXO.

.

Los datos climáticos de temperatura (media, mínima y máxima) y de heliofanía, de las zafras evaluadas en este trabajo, registrados en la Estación Agrometeorológica de la Unidad Experimental de Paso de la Laguna-INIA Treinta y Tres, al igual que los datos de ensayos de épocas de siembra del Programa de Mejoramiento Genético de Arroz, se encuentran a disposición de quien los solicite en la Estación Experimental del Este, INIA Treinta y Tres.

 $Cuadro\ N^o\ 1.$ Base de datos de los GDA para Bluebelle en la etapa Siembra a Floración

E. S.	Zafra	Хt	U.T.0	U.T.5	₩.T. 7	Ų.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 60
1	86/87	20.6	2102	1597	1395	1294	1193	1092	591	595	1088
2	ſ	21.6	2008	1543	1357	1264	1171	1078	892	613	1074
3		22.5	1958	1523	1349	1262	1193	1088	914	653	1081
4		22.7	2108	1643	1457	1364	1271	1178	992	681	1169
1	87/88	20.9	2128	1616	1414	1312	1210	1108	904	601	1103
2		21.2	2080	1590	1394	1296	1198	1100	904	611	1095
3		22	2054	1594	1406	1312	1218	1124	936	654	1118
4		22.4	1907	1482	1312	1227	1142	1057	887	632	1052
1	88/89	20.4	2311	1746	1520	1407	1294	1181	961	645	1170
2	,	21.6	2267	1742	1532	1427	1322	1217	1007	700	1204
3		22.8	2189	1694	1504	1409	1314	1219	1029	746	1203
4	1	23.6	2144	1689	1507	1416	1325	1234	1052	779	1216
5		23.6	2121	1671	1431	1401	1311	1221	1041	771	1205
1	89/90	21	2384	1788	1584	1452	1340	1229	1007	687	1219
2		22.4	2285	1775	1571	1489	1367	1265	1061	780	1251
3	 	23.3	2125	1670	1488	1397	1306	1215	1033	780	1200
4		23.2	2133	1673	1489	1397	1305	1213	1029	753	1199
5		22.3	2049	1589	1405	1313	1221	1129	945	671	1116
1	90/91	20.2	2117	1592	1382	1277	1172	1087	857	542	106B
2		20.1	1891	1421	1233	1139	1045	951	763	481	951
3		21.1	1881	1436	1258	1169	1080	991	813	546	986
1	91/92	22.1	2096	1621	1431	1338	1241	1148	956	672	1138
2	1	22.9	2061	1611	1431	1341	1251	1181	981	711	1151
3	 	23.1	2052	1607	1429	1340	1251	1182	984	717	1149
4		22.7	1998	1558	1382	1294	1206	1118	942	678	1106
1	92/93	19.3	1915	1420	1222	1123	1024	927	735	468	926
2	82/83	20.9	1839	1399	1223	1135	1047	960	786	531	958
3	<u> </u>	21.7	1821	1401	1233	1149	1065	981	813	564	978
4		22.5	1821	1416	1254	1173	1092	1011	849	808	1006
5		22.7	1796	1401	1243	1164	1085	1006	848	611	1001
1	93/94	20	2485	1865	1617	1493	1369	1245	998	643	1244
2	00/84	20.7	2111	1601	1397	1295	1193	1091	887	582	1090
3	 	21	2186	1666	1458	1354	1250	1148	938	626	1146
4	-	21.5	2133	1636	1440	1341	1242	1143	945	648	1143
5	+							1093	911	638	1091
1	0400	22	2003	1548	1386	1275	1184	1229	998	859	1220
	94/95	20.5	2397	1812	1578	1461	1344				1149
2		21 3	2176	1666	1462	1360	1258	1158	958 976	860	1189
3		22.1	2140	1655	1461	1364	1267	1170		686	
4		22.5	2134	1659	1469	1374	1279	1184	994	709	1174
5	<u> </u>	21.8	2049	1579	1391	1297	1203	1109	921	640	1105
11	95/9 5	21.8	2138	1648	1452	1354	1258	1158	962	889	1148
2	<u> </u>	22 5	2158	1678	1486	1390	1294	1198	1008	718	1193
3	.	21.1	2530	1930	1690	1570	1450	1330	1092	747	1319
4		22.3	2255	1750	1548	1447	1346	1245	1043	741	1234
1	98/97	21.9	2149	1659	1463	1365	1267	1169	973	680	1157
2		23.1	2191	1716	1526	1431	1338	1241	1051	766	1228
1	97/98	20.2	2259	1699	1475	1363	1251	1139	915	582	1138
2		21	2081	1586	1388	1289	1190	1091	893	598	1089
1	98/99	20	2279	1709	1481	1367	1253	1139	911	579	1136
2	L	21.7	2196	1891	1489	1388	1287	1186	984	661	1180
		Xt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U,T. 15	DD 50
•	MEDIA	21.7	2114	1625	1429	1333	1236	1138	943	854	1130
•	ds (GD)		161	120	105	99	93	88	80	74	85
	dd (dlas)		7.41	7 15	7.14	7 22	7.31	7.50	8.23	10.98	7.25
	CV		7.62	7.36	7.38	7.44	7.53	7.74	8.49	11.31	7.53

Xt = Temperatura media del ciclo.

U.T. = Unidades térmicas o Grados Día Acumulados.

DD 50 = Degree Day 50° F.

Cuadro Nº 2. Base de datos de los GDA para El Paso 144 en la etapa Siembra a Floración

Ē. S.	Zafra	Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
1	88/87	20.9	2407	1832	1602	1487	1372	1257	1028	690	1252
2		22.1	2293	1773	1565	1461	1357	1253	1045	733	1248
3		22.7	2065	1610	1428	1337	1246	1155	973	700	1146
4		22.7	2174	1694	1502	1406	1310	1214	1022	734	1206
1	87/88	20.8	2414	1834	1602	1488	1370	1254	1022	677	1249
2	-	21.5	2341	1796	1578	1469	1360	1251	1033	708	1245
3	 -	22	2137	1852	1458	1361	1264	1167	973	882	1161
4	† · · · · ·	22	1922	1492	1354	1284	1174	1084	904	635	1079
1	88/89	20.6	2494	1889	1647	1526	1405	1284	1048	708	1271
2	1	21.7	2369	1824	1606	1497	1388	1279	1081	742	1265
3	 	23	2272	1777	1579	1480	1381	1282	1084	789	1284
4		23.4	2407	1892	1688	1583	1480	1377	1171	862	
5	 	23	2281	1786	1588	1489	1390	1291	1093	798	1359
1	89/90	21.2	2458	1878	1646	1529	1414	1299	1069	737	1276
2		22.3	2453	1903	1683	1573	1463	1353			1285
3	 	23.1	2361	1851	1647	1545			1133	807	1339
4	 	22.9	2248	1758	1562		1443	1341	1137	831	1327
1	90/91	20.2	2223	1673		1464	1386	1268	1072	778	1253
2	200	20.4	2081	1571	1453	1343	1233	1123	903	573	1120
3	 -	21.1	1902		1367	1265	1163	1081	857	551	1057
1	91/92	22.3		1451	1272	1182	1092	1002	822	552	997
<u>'</u>	91/92	23	2294	1779	1573	1470	1367	1264	1058	750	1254
			2136	1671	1485	1392	1299	1206	1020	741	1194
		23.1	2075	1625	1445	1355	1265	1175	995	725	1162
4		22.7	2040	1590	1410	1320	1230	1140	960	690	1128
1	92/93	19.8	2118	1583	1389	1262	1155	1051	843	552	1046
2	ļ.—.	21.1	1981	1511	1323	1229	1135	1042	856	586	1037
3	<u> </u>	21.7	1803	1389	1223	1140	1057	974	808	582	969
4		22.4	1925	1495	1323	1237	1151	1065	893	635	1060
- 5		22.8	1844	1439	1277	1198	1115	1034	872	629	1029
<u> </u>	93/94	20	2543	1908	1654	1527	1400	1273	1019	656	1272
2		20.7	2214	1679	1465	1358	1251	1144	930	610	1143
3		21.1	2255	1720	1506	1399	1292	1185	971	650	1185
. 4	<u> </u>	21.7	2234	1719	1513	1410	1307	1204	998	689	1202
5		21.9	2057	1587	1399	1305	1211	1117	929	847	1115
1	94/95	20.5	2538	1918	1670	1546	1422	1299	1055	694	1290
2		21.4	2243	1718	1508	1403	1298	1195	988	682	1186
3		22	2203	1703	1503	1403	1303	1203	1003	704	1194
4		22.5	2114	1644	1456	1362	1268	1174	986	704	1165
5		21.9	1951	1506	1328	1239	1150	1061	883	616	1057
1	95/96	21.9	2233	1723	1519	1417	1315	1213	1009	704	1203
2		22.4	2197	1707	1511	1413	1315	1217	1021	727	1212
1	96/97	22.1	2431	1881	1661	1551	1441	1331	1111	781	1316
2		23.1	2333	1828	1626	1525	1424	1323	1121	818	1308
1	97/98	20.2	2282	1717	1491	1378	1265	1152	926	591	1150
2		21	2081	1588	1388	1289	1190	1091	893	596	1089
1	98/99	20	2425	1820	1578	1457	1336	1215	973	620	1212
2		21.9	2295	1770	1580	1455	1350	1245	1035	720	1239
		Хt	U.T.0	U.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.Y. 15	DD 50
•	MEDIA	21.7617	2215.9	1705.3	1501.9	1399.7	1297.5	1195.5	991.6	688.6	1187.5
•	ds (GD)		185.7	139.2	121.2	113.5	106.3	99.0	88.6	78.7	96.6
	dd (dias)		8.5	8.3	8.2	8.2	8.3	8.5	9.1	11.6	8.2
•	ÇV		8.4	8.2	8.1	8.1	8.2	8.3	8.9	11.4	8.1

Xt = Temperatura media del ciclo.

U.T. = Unidades térmicas o Grados Día Acumulados.

 $Cuadro\ N^{\circ}\ 3.$ Base de datos de los GDA para INIA Tacuarí en la etapa Siembra a Floración

E. S.	Zafra	Χt	U.T.0	U.T.5	U.T. 7	U.T. 8	Ų.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
1	89/90	20.5	2128	1808	1400	1296	1192	1089	838	587	1087
2		22.2	2129	1649	1467	1361	1265	1169	977	693	1158
3		23.6	1956	1541	1375	1292	1209	1126	960	711	1111
4		23 .2	2067	1322	1444	1355	1286	1177	999	732	1183
5	T	22.6	1902	1482	1314	1230	1148	1062	894	644	1049
1	90/91	20.1	1954	1469	1275	1179	1081	984	790	499	982
2	1	20.1	1746	1311	1137	1050	963	876	702	441	876
3		21.2	1778	1358	1190	1106	1022	938	770	518	933
1	91/92	22	2028	1566	1382	1290	1198	1106	922	647	1099
. 2		22.8	1914	1494	1326	1242	1158	1074	906	654	1064
3		23.1	1988	1537	1367	1262	1197	1112	942	687	1099
4		22.8	1895	1480	1314	1231	1148	1065	899	650	1052
_ 1	92/93	19.3	1915	1420	1222	1123	1024	927	735	468	926
2		20.7	1718	1303	1137	1054	971	889	725	489	884
3	I	21.7	1690	1300	1144	1086	988	910	754	524	905
4		22.7	1699	1324	1174	1099	1024	949	799	574	944
5		22.6	1678	1308	1158	1084	1010	936	768	656	931
1	93/94	19.8	2334	1748	1512	1394	1278	1158	922	586	1157
2		20.6	2015	1525	1329	1231	1133	1035	839	546	1035
3		21	2053	1563	1367	1269	1171	1073	877	583	1073
4		21.5	1977	1517	1333	1241	1149	1057	873	597	1057
5		22.1	1920	1485	1311	1224	1137	1050	878	615	1048
1	94/95	20.4	2306	1741	1515	1402	1289	1177	955	627	1168
2		21.4	2054	1574	1382	1256	1190	1095	907	628	1086
3		22.1	2101	1626	1438	1341	1246	1151	961	677	1142
4		22.7	2022	1577	1399	1310	1221	1132	954	687	1122
5		22	1887	1442	1218	1187	1102	1017	847	592	1013
1	95/96	21.7	1952	1502	1322	1232	1142	1052	872	602	1042
2	Ī	226	2009	1564	1386	1297	1208	1119	941	674	1114
1	96/97	21.7	1951	1501	1321	1231	1141	1051	871	602	1041
2		23.2	2087	1622	1444	1355	1266	1177	999	732	1163
1	97/98	20.3	2129	1604	1394	1289	1184	1079	869	558	1077
2		21	1971	1501	1313	1219	1125	1031	843	561	1029
1	98/99	20	2180	1635	1417	1308	1199	1090	872	555	1087
2		21.7	2066	1591	1401	1306	1211	1116	926	641	1110
		Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
	MEDIA	21.6	1976	1508	1332	1242	1150	1059	874	607	1052
	ds (GD)		158	120	105	97	91	86	79	74	84
	dd (dias)		7.32	7.25	7.17	7.10	7.20	7.38	8.16	11.10	7.19
	CV		B.G1	7.99	7.87	7.79	7.91	8.11	8.99	12.13	7.95

Xt = Temperatura media del ciclo.

U.T. = Unidades térmicas o Grados Día Acumulados.

Cuadro $N^{\rm o}$ 4. Base de datos de los GDA para INIA Caraguatá en la etapa Siembra a Floración

			•				-				
E. S.	Zafra	Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
1	90/91	20.2	2017	1592	1382	1277	1172	1067	857	542	1088
2		20.1	1914	1439	1249	1154	1059	964	774	489	964
3		21.1	1924	1469	1287	1196	1105	1014	832	559	1010
1	91/92	22.3	2255	1750	1548	1447	1346	1245	1043	741	1235
2		22.9	2110	1650	1466	1374	1282	1190	1006	730	1179
3		23.1	2075	1625	1445	1355	1265	1175	995	725	1162
4		22.5	2119	1648	1461	1367	1273	1179	991	709	1166
1	92/93	19.8	2118	1583	1369	1262	1155	1051	843	552	1046
2		21	1935	1475	1291	1199	1107	1016	834	571	1011
3	1 · · · · ·	21.6	1640	1415	1245	1160	1075	990	820	568	985
4		22.4	1908	1483	1313	1228	1143	1058	888	633	1053
5		22.8	1866	1458	1292	1210	1128	1048	882	636	1041
1	93/94	20.1	2467	1852	1606	1483	1380	1237	992	640	1236
2		20.7	2127	1612	1408	1303	1200	1097	891	583	1096
3		21.1	2255	1720	1508	1399	1292	1185	971	650	1185
4		21.5	2133	1638	1440	1341	1242	1143	945	648	1143
5	1	. 22	2024	1564	1380	1288	1196	1104	920	644	1102
1	94/95	20.5	2478	1873	1631	1510	1389	1270	1031	680	1261
2		21.3	2198	1683	1477	1374	1271	1170	967	667	1161
3		22	2242	1719	1517	1416	1315	1214	1012	710	1205
4		22.5	2114	1644	1456	1362	1268	1174	986	704	1165
5		22	2020	1580	137 8	1284	1192	1100	916	B4D	1097
1	95/96	21.9	2233	1723	1519	1417	1315	1213	1009	704	1203
2		22.5	2178	1693	1499	1402	1305	1208	1014	723	1203
1	96/97	22.1	2252	1742	1538	1438	1334	1232	1028	723	1218
2		23.1	2191	1718	1526	1431	1336	1241	1051	766	1226
1	97/98	20.2	2306	1736	1508	1394	1260	1168	938	600	1164
2]	21.1	2156	1646	1388	1289	1190	1091	893	596	1089
1	98/99	20	2425	1820	1578	1457	1338	1215	973	620	1212
. 2		21.8	2247	1732	1528	1423	1320	1217	1011	702	1211
		V 4	11.7.0	1176	11 7 7	117.5	11.4	11 7 40	11 T 40	11.77 48	00.4

	<u> </u>	U.T.U	U. I .6	U.1.7	Ų.I.B	U. I. 9	U. r. 10	0.1.12	U. I. 16	DD 90
MEDIA	21.5	2138	1642	1441	1341	1242	1142	944	648	1136
ds (GD)		168	121	106	99	92	86	76	70	84
dd (diae)		7.79	7.33	7.28	7.28	7.32	7.43	8.01	10.66	7.25
CV		7.85	7.39	7.34	7,34	7.39	7.51	8.10	10.75	7.36

Xt = Temperatura media del ciclo.

U.T. = Unidades térmicas o Grados Día Acumulados.

Cuadro N° 5. Base de datos de los GDA para INIA Cuaró en la etapa Siembra a Floración

E. S.	Zafra	Хt	U.T.0	U.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
1	94/95	20.4	2416	1826	1590	1472	1354	1238	1005	663	1229
2	1	21.3	2132	1632	1432	1332	1232	1133	937	646 .	1124
3	1	22.2	2082	1597	1411	1318	1225	1132	948	668	1123
4		22.8	1980	1545	1371	1284	1197	1110	936	675	1101
5	Ī	21.9	1951	1506	1328	1239	1150	1061	883	616	1057
1	95/96	21.7	2064	1589	1399	1304	1209	1114	924	639	1104
2	I T	22.6	2078	1618	1434	1342	1250	1158	974	698	1153
1	96/97	22.1	2228	1723	1521	1420	1319	1218	1016	714	1204
2		23.1	2150	1685	1499	1406	1313	1220	1034	755	1205
1	97/98	20.3	2150	1620	1408	1302	1196	1090	878	563	1087
2	T	21	1996	1521	1331	1236	1141	1046	856	571	1044
1	98/99	20	2180	1635	1417	1308	1199	1090	872	555	1087
2		21.7	2173	1673	1473	1373	1273	1173	973	673	1167
		Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 60
	MEDIA	21.6	2120	1628	1432	1333	1235	1137	941	649	1130
	ds (GD)		122	86	74	69	65	61	58	60	58
	dd (dias)		5.66	5.20	5.08	5.07	5.12	5.28	6.02	9.04	5.02
	CV		5.77	5.31	5.19	5.18	5.24	5.39	6.18	9.22	5.16

Cuadro ${
m N}^{\rm o}$ 6. Base de datos de los GDA para Línea 1130 en la etapa Siembra a Floración

E. S.	Żafra	Χt	U.T.O	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
1	93/94	20.1	2487	1852	1608	1483	1360	1237	992	640	1236
2		20.7	2192	1662	1450	1344	1238	1132	920	603	1131
3		21.1	2255	1720	1508	1399	1292	1185	971	660	1185
4		21.5	2084	1599	1405	1308	1211	1114	920	630	1114
5		22	2003	1548	1366	1275	1184	1093	911	638	1091
1	94/95	20.4	2306	1741	1515	1402	1289	1177	955	627	1168
2		21.3	2154	1649	1447	1346	1245	1146	947	65 3	1137
3		22	2203	1703	1503	1403	1303	1203	1003	704	1194
4		22.4	2171	1686	1492	1395	1298	1201	1007	716	1192
5	I	21.8	2087	1592	1402	1307	1212	1117	927	643	1113
1	95/96	21.9	2212	1707	1505	1404	1303	1202	1000	697	1191
2	[22.5	2178	1693	1499	1402	1305	1208	1014	723	1203
1	96/97	22.1	2282	1723	1521	1420	1319	1218	1016	714	1204
2		23.1	2262	1772	1576	1478	1380	1282	1086	792	1267
1	97/98	20.2	2238	1683	1481	1350	1239	1128	906	577	1126
2		21.2	2201	1681	1473	1369	1265	1161	953	641	1158
1	98/99	20	2317	1737	1505	1389	1273	1157	925	587	1154
2		21.7	2196	1691	1489	1388	1287	1188	984	681	1180
		Χt	U.T.0	U.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 16	DD 50
	MEDIA	21.4	2210	1691	1484	1381	1278	1175	969	662	1169
	ds (GD)		104	69	58	54	51	48	48	54	46
	dd (dias)		4.84	4.19	4.04	4.02	4.07	4.24	5.07	8.44	3.99
	ĊV		4.69	4.08	3.93	3.91	3.97	4.13	4.95	8.21	3.91

Xt = Temperatura media del ciclo.

U.T. = Unidades térmicas o Grados Día Acumulados.

Cuadro N° 7. Base de datos de los GDA para Bluebelle en la etapa Floración a Madurez fisiológica

E. S.	Zafra	Хt	U.T.O	U.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 16	DD 50
1	86/87	22.7	999	779	691	647	603	559	471	339	555
2	1	23.2	927	727	647	607	567	527	447	327	522
3	1	20.7	869	859	575	533	473	449	365	240	448
4	<u> </u>	16.9	826	581	483	434	366	339	250	163	339
1	87/88	22.5	965	750	665	621	578	535	449	321	533
2		23.2	834	654	582	548	510	474	402	294	471
3	1	21.1	740	565	495	460	425	390	320	219	388
4			!						_		
1	88/89	24.1	964	784	684	644	604	564	484	364	556
2		24.2	848	673	603	568	533	498	426	323	491
3	1	22.5	857	687	591	553	515	476	401	287	473
4		20.1	866	651	585	522	478	436	350	221	436
5		17.3	742	527	501	398	355	312	233	127	312
1 "	89/90	22.7	890	566	502	470	438	406	342	246	402
2		21.4	885	525	461	429	397	365	301	204	364
3		20.5	801	606	528	489	450	411	333	217	411
4		18.3	715	520	442	403	364	325	247	140	325
5		15.8	647	442	360	319	278	237	161	72	236
1	90/91	21.8	762	587	517	482	447	412	342	237	407
2		22.0	705	545	481	449	417	385	321	225	380
3		19.2	690	510	438	402	366	330	259	161	330
1	91/92	22.9	757	592	526	493	480	427	361	262	422
2		20.5	737	557	485	450	413	377	305	198	374
3		19.6	646	481	415	382	349	316	250	252	316
4	1	17.4	765	545	457	413	369	325	238	121	324
1	92/93	23 1	1001	781	693	649	605	582	474	342	558
2		21 7	848	653	575	536	497	457	379	266	458
3		21.7	867	687	587	547	507	467	387	2 6 7	467
4		21.8	763	588	518	483	448	413	343	238	413
5										210	077
	93/94	21.4	707	542	478	443	410	377	311	213	377
2		21.8	528	386	340	317	294	271	225	158	2/1
3	 	21.5	730	560	492	458	424	390	322	220	388
4	 	19.2	730	540	464	428	388	350	274	163	349
5	0465	17.4	766	546	458	414	370	326	239	122	328
1	94/95	21.3	808	618	542	504	466	428	352	238	428
2		20.9	876	666	582	540	498	456	372	248	458
3 4		20.1	773	649	563	520 445	477	363	348 283	220 172	434 363
- 4	 	18.9 16.8	739	5 68 519	486 431	387	343	299	214	104	299
1	95/98	22.2	777	602	532	497	462	427	357	252	426
2		18 7	711	521	445	407	369	331	255	149	331
3	+	22.1	950	735	699	808	563	520	434	305	520
4	· · · - · · ·	20.0	938	703	609	562	515	468	374	241	468
1	96/97	22.4	917	712	630	589	548	507	425	302	504
2	1-000	19.8	793	593	513	473	433	393	313	199	392
- 1	97/98	21.7	761	586	516	481	446	411	341	236	410
2	1	18.9	737	542	484	425	386	347	269	158	346
	98/99	23.8	833	658	588	553	518	483	413	308	479
2	1	18.2	746	541	459	418	377	338	254	147	336
		Xt	U.T.O	U.T.8	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
	MEDIA	21	798	603.0	528	487	448	410	334	225	409
	ds (GD)		100	87.8	85	82	81	79	777	89	78
	dd (dias)	-	4.83	5.57	6.17	6.44	6.85	7.40	8.81	12.05	7.28
	CV		12.60	14.56	16.05	16.85	17.98	19.38	23.10	30.73	19.15

Cuadro N° 8. Base de datos de los GDA para El Paso 144 en la etapa Floración a Madurez fisiológica

	_				-	· · · · · · · · · · · · · · · · · · ·	u : 101u				
E. S.	Zafra	Xt	U.T.0	U.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
1	88/87	22.5	991	771	683	639	595	551	463	331	548
2		21.4	813	623	547	509	471	433	357	243	429
3		19.5	875	650	560	515	470	425	335	203	425
4		16.4	772	537	443	396	350	305	220	111	304
1	87/88	23.2	950	745	683	622	581	540	458	336	537
2		21.7	803	618	544	507	470	433	359	250	432
3		19.9	735	550	476	439	402	385	292	191	364
4	L	!						···	· · · · · · · · · · · · · · · · · · ·		
1	68/89	23.9	887	702	628	591	554	51 8	444	332	511
2	L	23.4	819	644	574	539	504	489	399	294	463
3	1	21.5	837	642	564	525	486	447	369	252	445
4	Ţ	19.2	804	594	510	468	428	384	300	174	384
5		17.1	700	495	413	372	331	290	216	116	290
1	89/90	22.0	901	696	614	574	532	491	409	288	491
2		20.7	827	677	547	507	486	427	347	229	427
3		19.8	810	605	523	482	441	400	318	197	400
4		17.9	733	528	448	405	384	323	241	126	324
1	90/91	21.2.	786	801	527	490	453	416	342	231	413
2	1	203	730	550	478	442	406	370	298	192	370
3		19.0	683	504	431	395	359	323	252	155	324
1	91/92	21.5	903	693	609	567	525	483	399	274	480
2	" "	20.1	723	543	471	435	399	363	291	183	362
3		19.5	654	484	416	382	348	314	246	144	313
4		17.4	696	496	416	376	336	296	218	109	298
1	92/93	22.1	993	768	678	633	588	542	452	318	543
2		21.8	874	674	594	554	514	474	394	274	474
3	1	21.7	869	668	588	548	508	468	388	268	468
4	1	21.4	814	624	548	510	472	434	358	246	434
5			1								
1	93/94	22.3	869	674	596	557	518	479	401	284	477
2	1	21.5	580	445	391	364	336	310	256	175	310
3		20.8	791	601	525	487	449	411	335	222	410
4		18.1	653	473	401	365	329	293	222	122	294
5		17.4	712	507	425	384	343	302	221	113	302
1	94/95	20.9	855	650	568	527	486	445	363	240	445
2		20.4	877	867	583	541	499	457	373	247	457
3		20.3	935	705	613	567	521	475	383	247	475
4		18.9	793	58 3	499	457	415	373	290	177	373
5		17.0	817	577	481	433	385	337	245	125	338
1	95/96	21.8	764	589	519	484	449	414	344	239	414
2		18.6	652	477	407	372	337	302	232	135	302
1	96/97	21.5	883	678	596	555	514	473	391	268	473
2		19.2	785	580	498	457	418	375	293	176	376
1	97/98	21.0	818	623	545	508	487	428	350	236	427
2	L	18.9	720	530	454	416	378	340	264	156	339
1	98/99	24.2	821	651	583	549	515	481	413	312	478
2		17.5	611	436	366	331	298	261	191	102	261
		Χt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD50
•	MEDIA	20.4	798.2	602.9	523.2	483.9	444.6	405.3	327.4	214.2	404.3
•	de (GD)		95.7	85.5	81.5	80.1	78.8	77.5	75.0	68.3	78.7
	dd (días)		4.5	5.6	6.1	6.5	6.9	7.5	9.0	12.7	7.4
•	ĊΥ		12.0	14.2	15.6	16.5	17.7	19.1	22.9	31.9	19.0

Cuadro N° 9. Base de datos de los GDA para INIA Tacuarí en la etapa Floración a Madurez fisiológica

E. S.	Zafra	Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
1 1	89/90	24.1	845	670	600	575	530	494	370	320	472
2		22.1	863	66 8	580	551	512	473	395	278	471
3		21.1	886	676	491	493	423	389	321	219	390
4		18.6	781	871	487	445	403	381	277	161	361
5		16.5	745	520	430	385	340	295	208	88	294
1	90/91	21.7	650	500	440	400	380	350	290	200	347
2		22.1	686	531	486	438	407	376	314	221	371
3	I	20	698	523	453	418	383	348	278	176	357
1	91/92	23	988	768	680	638	592	548	460	328	541
2		21.2	945	720	630	585	540	495	405	288	492
3	1	19.9	809	620	534	491	448	405	319	191	406
. 4		17.9	804	579	489	444	399	354	265	141	354
1	92/93	23.1	901	706	628	589	550	511	433	316	507
2		22	946	731	645	602	559	518	430	301	518
3	T	21.8	917	707	623	581	539	497	413	286	497
4	T -	21.6	820	630	554	516	478	440	364	250	439
5				i	·					<u> </u>	
1	93/94	21.9	792	608	552	500	464	428	356	248	428
2		22.2	532	412	364	340	318	292	244	172	291
3		22.1	775	600	530	495	460	425	355	250	423
4	-	20.3	791	596	518	479	440	401	323	206	399
5		17.3	776	558	468	424	380	336	249	132	338
1	94/95	21.7	823	633	557	519	481	443	367	253	443
2		21.1	782	597	523	486	449	412	338	227	412
3		20.3	814	614	534	494	454	414	334	215	414
4		19.5	796	593	511	470	429	388	306	187	388
5	i	18.1	705	510	486	393	354	315	236	135	315
1	95/96	22.8	822	642	570	534	498	482	390	283	481
2		194	699	519	447	411	375	339	267	187	339
1	96/97	22.9	916	716	852	811	570	529	447	324	524
2		20.3	730	550	478	442	406	370	298	193	369
1	97/98	21.2	783	598	524	477	450	413	339	228	413
2		19.4	778	578	498	458	418	378	298	184	377
1	98/99	23.2	858	673	599	562	525	488	414	303	484
2		19.3	773	573	493	453	413	373	294	181	373
		Χt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 60
	MEDIA	20.9	801	617	530	491	452	413	335	225	412
	ds (GD)	1.82	92.39	90.01	72.40	72.32	70.47	69.01	65.12	61.99	67.27
	dd (dias)		4.43	5.67	5.22	5.62	5.93	6.35	7.34	10.55	6.19
	CV	8.74	11.54	14.58	13.65	14.72	15.60	16.70	19.43	27.51	16.33

 $Cuadro\ N^o\ 10.$ Base de datos de los GDA para INIA Caraguatá en la etapa Floración a Madurez fisiológica

E. S.	Zafra	Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 16	DD 50
1	90/91	22.1	807	547	483	451	419	387	323	227	382
2		22	682	527	465	434	403	372	389	217	367
3		18.7	731	536	458	419	380	341	264	157	340
1	91/92	21.7	598	463	409	382	355	328	274	193	324
2		20	652	492	428	396	364	332	268	172	330
3	1 -	19	605	450	388	357	326	295	233	140	294
4		16.9	545	386	321	289	257	225	162	78	226
1	92/93	21.9	833	643	587	529	491	452	376	262	452
2	1	21.8	894	689	607	566	525	484	402	279	484
3	1	21.8	892	687	605	564	523	482	400	277	482
4		21.9	767	592	522	487	452	417	347	242	416
5			 	 		1		ļ			
1	93/94	21.5	773	593	521	485	449	413	341	233	413
2		21.8	764	589	519	484	449	414	344	239	414
3	! !	20.7	745	585	493	457	421	385	313	205	383
4	1	18.9	754	554	474	434	394	354	275	163	353
5	!	17	815	575	479	431	383	335	242	121	336
1	94/95	21.4	727	557	489	455	421	387	319	217	387
2	1	20.9	732	557	487	452	417	382	312	207	382
3	 	20	7 6 2	585	507	468	429	390	312	196	390
4		18.8	809	594	508	465	422	379	294	177	379
5	1	16.7	802	562	466	418	370	322	229	109	322
1	95/96	22	704	544	480	448	416	384	320	224	383
2	t1	18.6	816	596	508	464	420	376	288	165	378
1	96/97	21.9	788	605	536	500	464	428	356	248	427
2	<u> </u>	19.8	772	577	499	460	421	382	304	193	382
1	97/98	21.6	735	565	497	463	429	395	327	224	394
2	1 1	18.7	747	547	464	425	386	347	269	158	346
1	98/99	24.5	735	585	526	495	465	435	375	285	431
2	<u> </u>	17.8	728	523	441	400	359	318	236	129	318
	1	Хt	U.T.0	U.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
	MEDIA	20.4	749	562	488	451	414	377	307	198	376
	ds (GD)	1.93	79	62	58	57	56	55	57	53	55
	dd (día s)		3.87	4.06	4.36	4.59	4.89	5.30	6.81	9.84	5.30
	CV	9.46	10.51	11.11	11.94	12.57	13.42	14.55	18.56	26.66	14.58

 $\begin{array}{c} \text{Cuadro } N^o \text{ } 11. \\ \text{Base de datos de los GDA para INIA Cuar\'o en la etapa Floración a Madurez fisiológica} \end{array}$

E. S.	Zafra	Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
1	94/95	21	860	655	573	532	491	450	368	245	450
2		20.9	921	701	613	569	525	481	393	261	481
3	!	20.3	1038	783	681	630	578	528	426	274	528
4	1	19.5	821	811	527	485	443	401	317	195	401
5	1	17.1	736	521	435	392	349	306	224	117	306
1	95/96	22.3	893	693	613	573	533	493	413	293	492
2		18.6	697	512	438	401	364	327	253	150	327
1	96/97	21.7	953	733	645	601	557	513	425	293	512
2	90/97	20	899	674	584	539	494	449	359	230	449
1	97/98	21.2	891	553	597	555	513	471	387	261	470
2	1	19.1	822	607	521	478	435	392	306	183	391
1	98/99	23.3	932	732	652	612	572	532	452	332	528
2	1	18.3	785	570	484	441	398	355	269	156	355
		Хt	U.T.G	U.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
	MEDIA	20.3	865	642	566	524	481	438	353	230	438
	ds (GD)		93	87	80	78	77	76	73	65	75
	dd (dias)		4.57	5.68	6.01	6.38	6.83	7.38	8.84	12.33	7.32

Cuadro Nº 12. Base de datos de los GDA para Línea 1130 en la etapa Floración a Madurez fisiológica

E. S.	Zafra	Χt	U.T.0	U.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 16	DD 50
1	93/94	21.2	679	519	455	423	391	359	294	199	359
2		21 9	438	338	298	278	258	238	198	138	238
3		21.1	676	516	452	420	388	356	292	197	355
4		19.8	751	561	485	447	409	371	295	180	369
5		17.4	766	548	458	414	370	32 6	239	122	326
1	94/95	21.7	823	633	557	519	481	443	367	253	443
2		21	757	577	505	469	433	397	325	217	397
3	T	20.3	729	549	477	441	405	369	297	191	369
4		19	720	530	454	416	378	340	266	164	340
5		18.8	756	531	441	398	351	306	219	106	306
1	95/96	22.1	764	589	519	484	449	414	344	240	415
2	T	18.7	748	548	468	428	388	348	269	157	348
1	96/97	21.8	586	570	502	468	434	400	332	230	399
2	T	19.4	678	503	433	398	363	328	258	159	327
1	97/98	21.8	718	553	487	454	421	388	322	223	387
2		18.2	637	462	392	357	322	287	217	118	287
1	98/99	242	703	558	500	471	442	413	355	268	409
2	I	18.2	762	552	468	426	384	342	258	148	342
		Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 16	DD 50
	MEDIA	20.3	711	535	464	428	393	357	286	184	357
	ds (GD)	1.94	81	6 1	55	53	51	50	49	48	50
	dd (días)		4.02	4.02	4.17	4.33	4.56	4.89	5.99	9.19	4.86
	ÇV	9.59	11.45	11.44	11.92	12.39	13.07	14.06	17.29	26.27	13.97

 $Cuadro\ N^o\ 13.$ Base de datos de los GDA para Bluebelle en la etapa Siembra a Madurez fisiológica

E. S.	Zafra	Хt	0.T.0	Ú.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
1	86/87	21.4	3101	2376	2086	1941	1796	1651	1382	934	1643
2		22.1	2935	2270	2004	1871	1798	1805	1339	940	1596
3	Ι	21.9	2827	2182	1924	1795	1666	1537	1279	893	1529
4	Γ''	20.7	2934	2224	1940	1798	1857	1517	1242	845	1508
1	87/88	21.3	3093	2368	2079	1933	1788	1643	1353	922	1636
2		21.7	2914	2244	1976	1842	1708	1574	1306	905	1566
3		21.7	2804	2159	1901	1772	1643	1514	1256	873	1506
4											
	88/89	21.4	3275	2510	2204	2051	1898	1745	1445	1009	1728
2	 	22.2	3115	2415	2135	1995	1855	1715	1435	1023	1695
3	 	22.8	3026	2361	2095	1962	1829	1695	1430	1033	1676
5	·	22.5	3010	2340	2072	1938	1804	1670	1402	1000 898	1652 1517
	89/90	21.5	2863 3074	2198 2354	1932 2066	1799 1922	1666 1778	1533 1635	1274 1349	933	1621
<u>1</u>	08/80	21.3 22.2	2970	2300	2032	1898	1764	1630	1382	964	1615
3		22.5	2926	2276	2016	1886	1756	1828	1366	977	1611
4	 	21.7	2848	2193	1931	1800	1669	1538	1276	893	1524
- 3	 " "	20.3	2696	2031	1765	1632	1499	1366	1106	743	1352
1	90/91	20.6	2879	2179	1899	1759	1619	1479	1199	779	1473
2	30/01	20.8	2596	1966	1714	1588	1462	1338	1084	708	1331
3	 	20.6	2571	1946	1696	1571	1446	1321	1072	707	1316
1	91/92	22.3	2853	2213	1957	1829	1701	1573	1317	934	1560
2	-	22.2	2798	2168	1916	1791	1664	1538	1286	909	1525
3	 	22.1	2698	2088	1844	1722	1600	1478	1234	969	1465
4	†·	20.9	2763	2103	1839	1707	1575	1443	1180	799	1430
1	92/93	20.4	2916	2201	1915	1772	1629	1489	1209	810	1484
2	†	21.2	2887	2052	1798	1671	1544	1417	1165	797	1412
3	† ·	21.7	2688	2068	1820	1696	1572	1448	1200	831	1443
4	1"	22.3	2584	2004	1772	1656	1540	1424	1192	844	1419
5	1		†—— <u>-</u>		1		· —		~	- "	
1	93/94	20.3	3192	2407	2093	1938	1779	1622	1309	856	1621
2		20.9	2639	1987	1737	1612	1487	1362	1112	738	1361
3		21.1	2916	2226	1950	1812	1674	1536	1280	846	1534
4		20.9	2863	2178	1904	1767	1630	1493	1219	811	1492
5		20.5	2769	2094	1824	1689	1554	1419	1150	760	1417
1	94/95	20.7	3205	2430	2120	1965	1810	1857	1350	897	1648
2		21 2	3053	2333	2045	1901	1757	1614	1330	906	1605
3		21.5	3004	2304	2024	1884	1744	1604	1324	906	1595
4	<u> </u>	21.4	2907	2227	1955	1819	1683	1547	1276	881	1538
5		20.2	2787	2097	1821	1683	1545	1407	1135	745	1404
1	95/96	21.9	2915	2250	1984	1851	1718	1585	1319	921	1574
2		21.4	2869	2199	1931	1797	1663	1529	1281	867	1524
3		20	3480	2665	2389	2176	2013	1850	1528	1052	1839
4	1	21.8	3193	2453	2157	2009	1861	1713	1417	982	1702
1	96/97	22.1	3066	2371	2093	1954	1815	1878	1398	982	1081
2	03/00	22.1	2983	2308	2038	1903	1768	1633	1383	984	1618
2	97/98	20.5	3019	2284	1990	1843	1696	1549	1255	818 754	1548 1435
<u></u>	98/99	20.4	2818	2128 2387	1852 2069	1714 1920	1576 1771	1438	1162 1324	887	1615
2	30/89	20.9	3112 2942	2387	1948	1806	1664	1822 1522	1238	828	1516
	L.,	X t	U.T.Q	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
	MEDIA										
	MEDIA	21.3	2920.3	2236.0	1961.5	1825.7	1669.0	1552.4	1280.1	880.6	1543.2
	ds (GD)		188.7	148.8	137.0	126.7	120.0	113.7	102.3	88.8	110.8
	dd (dias)		8.8	9.1	9.6	9.5	9,7	10.0	10.9	14.0	9.8

Cuadro N° 14. Base de datos de los GDA para El Paso 144 en la etapa Siembra a Madurez fisiológica

						-					
E. S.	Zafra	Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 16	DD 50
1	86/87	21 4	3398	2603	2285	2126	1987	1808	1491	1021	1798
2		21.9	3106	2396	2112	1970	1828	1686	1402	976	1677
3	T	21.6	2940	2260	1988	1852	1716	1580	1308	903	1571
4		20.6	2946	2231	1945	1802	1660	1519	1242	845	1510
1	87/88	21.4	3364	2579	2265	2108	1951	1794	1480	1013	1786
Ž		21.5	3144	2414	2122	1978	1830	1684	1392	958	1677
3		21.4	2872	2202	1934	1800	1666	1532	1265	873	1525
4						<u> </u>	T	<u> </u>			
1	88/89	21.4	3381	2591	2275	2117	1959	1802	1492	1040	1782
2	1	22.1	3188	2468	2160	2036	1892	1748	1480	1036	1728
3		22.5	3109	2419	2143	2005	1867	1729	1453	1041	1709
4		22.1	3211	2486	2196	2051	1906	1761	1471	1038	1743
5		21.3	2981	2281	2001	1861	1721	1581	1309	912	1566
1 1	89/90	21.4	3359	2574	2260	2103	1946	1790	14/8	1023	1776
2		21.9	3280	2580	2230	2080	1929	1780	1480	1036	1768
3		22	3171	2456	2170	2027	1884	1741	1455	1028	1727
4		21.4	2981	2266	2008	1869	1730	1591	1313	906	1577
1	90/91	20.5	3009	2274	1980	1833	1686	1539	1245	804	1533
2	1	20.4	2811	2121	1845	1707	1569	1431	1155	743	1427
3	t	20.5	2585	1965	1703	1577	1451	1325	1074	707	1321
1	91/92	22.1	3197	2472	2182	2037	1892	1747	1457	1024	1734
2		22.2	2859	2214	1958	1827	1698	1569	1311	924	1556
3	 	19.2	2729	2109	1861	1737	1613	1489	1241	869	1475
- 4		21	2738	2086	1826	1896	1566	1436	1178	799	1424
	92/93	20.5	3111	2351	2047	1895	1743	1593	1295	870	1589
2	- 82/83	21.3	2855	2185	1917	1783	1649	1516	1250	860	1511
3		21.8	2672			1688	1565	1442	1196	830	1437
4	 	22.1	2739	2057 2119	1811	1747	1623	1499	1251	881	1494
5			2138	2119	10/1	1/4/	1623	1499	1231	001	1484
1	93/94	20.6	3412	2502	2250	2004	404.0	1750	1420	040	4740
	93/94	20.8	2794	2582 2124	2250 1856	2084 1722	1918 1587	1752 1454	1186	940 785	1749
3	 		3046							872	1453
4		21	2887	2321	2031	1886 1775	1741	1596	1306		1595
		20.8		2192	1914		1636	1497	1220	811	1496
5	94/95	20.5	2789	2094	1824	1689	1554	1419	1150	760	1417
1	94/90	20.6	3393	2568	2238	2073	1908	1744	1418	934	1735
2		21 3	3120	2385	2091	1944	1797	1652	1361	929	1642
3		21.5	3139	2409	2117	1971	1825	1679	1387	951	1670
4		21.4	2907	2227	1955	1819	1683	1547	1276	881	1538
5		20.2	2768	2083	1809	1672	1535	1398	1128	740	1394
1	95/98	21.9	2997	2312	2038	1901	1784	1827	1353	943	1617
2	Ĺ	21.7	2849	2184	1918	1785	1652	1519	1253	862	1514
1	96/97	21.9	3314	2559	2257	2106	1955	1804	1502	1049	1788
2	<u></u>	22	3118	2408	2124	1982	1840	1698	1414	994	1684
1	97/98	20.4	3100	2340	2036	1884	1732	1580	1276	827	1577
2		20.4	2801	2116	1842	1705	1568	1431	1157	752	1428
1	98/99	20.9	3248	2471	2161	2006	1851	1696	1386	932	1690
2		20.8	2906	2206	1926	1786	1646	1506	1226	822	1500
		Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD50
	MEDIA	21.2	3028.9	2318.9	2033.3	1891.1	1748.9	1606.9	1323.6	905.3	1597.8
	ds (GD)		222.9	177.4	158.0	149.3	140.9	132.9	117.7	97.0	129.8
	dd (dias)		10.5	10.9	11.1	11.3	11.5	11.8	12.7	15.5	11.5
		_	L	1 .0.0				1	14.1	10.0	11.0

Cuadro N° 15. Base de datos de los GDA para INIA Tacuarí en la etapa Siembra a Madurez fisiológica

E. S.	Zafra	Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 16	DD 50
1	89/90	21.4	2973	2278	2000	1871	1722	1583	1208	907	155 9
2		22.2	2992	2317	2047	1912	1777	1642	1372	971	1627
3		22.7	2842	2217	1866	1785	1632	1515	1281	930	1501
4		21.7	2848	2193	1931	1800	1669	1538	1276	893	1524
5		20.5	2647	2002	1744	1615	1486	1357	1102	742	1343
1 1	90/91	20.5	2604	1969	1715	1588	1461	1334	1080	699	1329
2		20.8	2432	1842	1606	1488	1370	1252	1016	882	1247
3		20.8	2478	1881	1643	1524	1405	1286	1048	894	1290
1	91/92	22.2	3014	2334	2062	1926	1790	1854	1382	975	1640
2		22.2	2859	2214	1956	1827	1698	1569	1311	942	155 6
3		21.9	2797	2157	1901	1773	1645	1517	1261	878	1505
4		21.1	2699	2059	1803	1675	1547	1419	1164	791	1406
["] 1	92/93	20.4	2816	2126	1850	1712	1574	1438	1168	784	1433
2		21.1	2664	2034	1782	1858	1530	1405	1155	790	1400
3		21.7	2807	2007	1767	1647	1527	1407	1167	810	1402
4		22.3	2519	1954	1728	1815	1502	1389	1163	824	1383
5		•				· · · · · · · · · · · · · · · · · · ·					
1	93/94	20.3	3126	2358	2064	1894	1740	1586	1278	834	1585
2		20.9	2547	1937	1893	1571	1449	1327	1083	718	1326
3		21.3	2828	2163	1897	1764	1631	1498	1232	833	1496
4		21.1	2768	2113	1851	1720	1589	1458	1196	803	1456
5		20.6	2696	2041	1779	1648	1517	1386	1125	747	1384
1	94/95	20.7	3129	2374	2072	1921	1770	1620	1322	881	1611
2		21.3	2836	2171	1905	1772	1639	1507	1245	855	1498
3		21.6	2914	2239	1969	1834	1699	1584	1294	892	1555
4		21.7	2819	2169	1909	1779	1649	1519	1259	874	1510
5		20.7	2572	1952	1704	1580	1456	1332	1085	727	1328
1	95/96	22	2774	2144	1892	1766	1640	1514	1262	885	1503
2		21.7	2708	2083	1833	1708	1583	1458	1208	841	1453
1	96/97	22.1	2867	2217	1973	1842	1711	1580	1318	925	1564
2		22.4	2797	2172	1922	1797	1672	1547	1297	925	1532
1	97/98	20.5	2913	2203	1919	1767	1635	1493	1209	786	1490
2		20.5	27 49	2079	1811	1677	1543	1409	1141	745	1406
1	98/99	208	3038	2308	2016	1870	1724	1578	1288	858	1571
2		21	2839	2164	1894	1759	1624	1489	1220	822	1483
		Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50
	MEDIA	21.3	2785	2131	1868	1738	1606	1476	1212	831	1468
	ds (GD)	0.69	175	137	123	117	110	104	92	82	101
	dd (dlas)		8.19	8.42	8.63	8.77	8.93	9.20	9.91	13.05	8.92
Г	cv	3.24	6.27	6.44	6.61	8.71	6.84	7.05	7.61	9.91	6.87

Cuadro $N^{\rm o}$ 16. Base de datos de los GDA para INIA Caraguatá en la etapa Siembra a Madurez fisiológica

E. S.	Zafra	Χt	U.T.0	U.T.6	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 60
1	90/91	20.6	2824	2139	1865	1726	1591	1454	1180	769	1448
. 2		20.6	2596	1966	1714	1588	1462	1336	1163	708	1331
3		20.4	2655	2005	1745	1815	1485	1355	1096	716	1350
1	91/92	22.3	2853	2213	1957	1829	1701	1573	1317	934	1559
2		22.3	2762	2142	1894	1770	1646	1522	1274	902	1509
3		22 .1	2680	2075	1833	1712	1591	1470	1228	865	1458
. 4		21.1	2664	2034	1782	1656	1530	1404	1153	787	1392
. 1	92/93	20.3	2951	2226	1936	1791	1646	1503	1219	814	1498
2		21.3	2829	2164	1898	1765	1632	1500	1236	850	1495
3		21.7	2732	2102	1650	1724	1598	1472	1220	845	1467
4		22.3	2675	2075	1835	1715	1595	1475	1235	875	1469
5					1			T			
1	93/94	20.4	3240	244 5	2127	1968	1809	1650	1333	873	1649
2		20.9	2891	2201	1925	1787	1649	1511	1235	822	1510
3	1	21	3000	2285	1999	1856	1713	1570	1284	855	1588
4	1	20.8	2887	2192	1914	1775	1636	1497	1220	811	1496
5	1	20.3	2839	2139	1859	1719	1579	1439	1162	765	1438
1	94/95	19.8	3205	2430	2120	1965	1810	1857	1350	697	1648
2	1	21.2	2930	2240	1964	1826	1688	1551	1279	874	1542
3		21.5	3004	2304	2024	1884	1744	1604	1324	908	1595
4		21.3	2923	2238	1964	1827	1690	1553	1280	881	1544
5		20.2	2822	2122	1842	1702	1562	1422	1146	750	1419
1	95/96	21.9	2937	2267	1999	1865	1731	1597	1329	928	1586
2	 	21.2	2994	2289	2007	1866	1725	1584	1302	888	1579
1	96/97	22	3040	2350	2074	1936	1798	1680	1384	971	1845
2		22.1	2963	2293	2025	1891	1757	1823	1355	959	1608
1	97/98	20.5	3040	2300	2004	1856	1708	1560	1264	824	1557
2		20.4	2902	2192	1852	1714	1576	1438	1182	754	1435
1	98/99	20.9	3160	2405	2103	1952	1801	1650	1348	905	1643
2	†	20.7	2975	2255	1967	1823	1879	1535	1247	831	1529
		X t	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 60
	MEDIA	21 1	2896	2210	1934	1797	1660	1523	1253	847	1516
	ds (GD)	•	162	121	107	100	94	88	74	69	87
	dd (días)		7.69	7.51	7.60	7.66	7.77	7.95	8.14	11.37	7.84
	CV		5.60	5.48	5.54	5.59	5.67	5.80	5.92	8.20	5.75

Cuadro N° 17. Base de datos de los GDA para INIA Cuaró en la etapa Siembra a Madurez fisiológica

E.S.	Zafra	Хt	Ü.T.0	U.T.5	U.T. 7	U.T. 8	U.T. \$	U.T. 10	U.T.12	U.T. 15	DD 50	
1	94/95	20.6	3276	2481	2163	2004	1845	1688	1374	908	1679	
2		21.2	3053	2333	2045	1901	1757	1614	1330	906	1605	
3		21.5	3100	2380	2092	1948	1804	1880	1372	942	1651	
4		21.7	2801	2156	1898	1769	1640	1511	1253	870	1502	
5		20.4	2687	2027	1763	1831	1499	1367	1106	732	1363	
1	95/96	21.9	2957	2282	2012	1877	1742	1607	1337	932	1596	
2		21 5	2775	2130	1872	1743	1614	1485	1227	848	1480	
1	96/97	21.9	3181	2456	2166	2021	1876	1731	1441	1007	1716	
2		22.1	3049	2359	2083	1945	1807	1669	1393	985	1654	
1	97/98	20.5	3040	2173	2004	1856	1708	1560	1264	824	1557	
2		20.4	2818	2128	1852	1714	1576	1438	1162	754	1435	
1	98/99	20.9	3112	2367	2069	1920	1771	1822	1324	887	1615	
2		20.7	2958	2243	1957	1814	1571	1528	1242	829	1522	
		Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 15	DD 50	
	MEDIA	21.2	2985	2270	1998	1857	1718	1575	1294	879	1567	
	ds (GD)		173	140	124	117	111	106	96	81	103	
•	dd (dias)		8,19	8.65	8.72	8.90	9.14	9.48	10.44	13.19	9.19	
:	cv		5.81	6.16	6.19	6.32	6.49	8.72	7.41	9.27	6.56	

Cuadro Nº 18. Base de datos de los GDA para Línea 1130 en la etapa Siembra a Madurez fisiológica

E. S.	Zafra	Хt	U.T.O	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 16	DD 50
1	93/94	20.3	3146	2371	2061	†906	1751	1598	1286	839	15 9 5
2		20.9	2630	2000	1748	1622	1496	1370	1118	741	1369
3		21.1	2931	2236	1958	1819	1680	1541	1263	847	1540
4		21	2835	2160	1890	1755	1620	1485	1215	810	1483
5		20.5	2769	2094	1824	1689	1554	1419	1150	760	1417
1	94/95	20.7	3129	2374	2072	1921	1770	1620	1322	881	1611
2	1	21.3	2912	2227	1953	1818	1679	1543	1273	870	1534
3	Ι	21.6	2933	2252	1980	1844	1708	1572	1300	895	1583
4	I	21.4	2892	2217	1947	1812	1677	1542	1273	880	1533
5		20.2	2822	2122	1842	1702	1562	1422	1146	750	1419
1	95/96	21.9	2976	2296	2024	1888	1752	1616	1344	937	1606
2		21.4	2926	2241	1967	1830	1693	1556	1283	880	1551
1	96/97	22	2989	2294	2024	1889	1754	1619	1349	944	1603
2		22.1	2939	2274	2008	1875	1742	1609	1343	950	1595
1	97/98	20.5	2956	2236	1948	1804	1660	1516	1228	800	1513
2		20.4	2838	2143	1865	1726	1587	1448	1170	759	1445
1	98/99	20.8	3020	2295	2005	1860	1/15	1570	1280	855	1583
2		20.7	2958	2243	1957	1814	1871	1528	1242	829	1522
		Хt	U.T.0	U.T.5	U.T. 7	U.T. 8	U.T. 9	U.T. 10	U.T.12	U.T. 16	DD 50
	MEDIA	21.0	2921	2226	1949	1810	1671	1532	1256	846	1520
	ds (GD)	0.59	120	94	86	82	78	76	71	66	73
	dd (dias)		5.71	5.89	8.11	5.28	6.52	6.84	7.85	10.95	6.57
	CV	2.82	4.11	4.24	4.40	4.53	4.70	4.93	5.66	7.82	4.75