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Abstract—We present a dataset collected during ten months
from a network comprising approximately 9500 double-band
Access Points (APs), corresponding to Uruguay’s nation-wide
one-to-one computing program’s internet provider. The dataset
includes the transmission power, used channel and measured
RSSI (Radio Signal Strength Indicator) that each AP senses every
other AP in sight, with a granularity of an hour. This results in a
total of more than 750 million measurements, one of the largest
Wi-Fi datasets to date.

In the study of this dataset we have first focused on a link-
level analysis. Our contributions are fourfold. We verify that
approximately only half of the RSSI time-series are actually
stationary, and that in that case, they present strong time
correlations. Moreover, the typical assumption that the channel is
symmetrical is not true, even in the long-term, and we show that
interference plays an important role on this asymmetry. Finally,
we study attenuation in the 5 GHZ band and show that its upper
section is prone to larger attenuation than what is predicted by
classic models. The practical consequences of these observations
are discussed throughout the article. We also present network-
level indicators of the system (such as number of neighbors per
AP and interference level). These are particularly useful for
simulating a planned network such as the one discussed here.

Index Terms—attenuation, indoor propagation, hypothesis test-
ing

I. INTRODUCTION

Understanding and characterizing the received power of
Wi-Fi devices is a crucial input to several problems. Indoor
positioning [1], MAC access mechanisms [2], [3], power
control [4], radio planning [5] and performance evaluation [6],
[7] are only examples where certain assumptions are made
on the attenuation (and thus received power) suffered by the
Wi-Fi signal. However, a true understanding of the propa-
gation mechanisms and the resulting received power is still
difficult to attain, particularly in indoor scenarios. This results
in sometimes contradictory assumptions being made on the
literature, for instance regarding the symmetry of the channel,
the distribution of fading, or the dependence of path-loss on
distance or frequency (see for instance [8]).

We present a step towards overcoming this difficulty: a
dataset including almost 9500 operative Wi-Fi Access Points
(APs) in more than 1400 educational centers distributed across
an entire country. During the data collection phase, we have
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gathered RSSI (Radio Signal Strength Indicator) measure-
ments every hour between all the APs (independently of the
channel in use) during ten months. This means that we have
24 measurements per day for each pair of APs visible to each
other on each band (as all APs are double-band), during the
complete school year, resulting in over 750 million measure-
ments. In addition to RSSI measurements, the dataset includes
the associated AP model, configured frequency channel and
transmission power on both bands.

We are still working on the analysis of this huge dataset, and
this is an ongoing effort, but we share here four insights that
we believe will be highly interesting to the community. Firstly,
even when APs use a fixed channel and transmission power,
the measured RSSI is not stationary in approximately half
of the studied RSSI time-series. Moreover, even if stationary,
most of these time-series present strong time correlations for
several hours, and very few of them are actually independent
random variables. This is an important observation with prac-
tical consequences (in particular) for positioning systems, as
we discuss later.

Thirdly, we study the symmetry of the links and show that
it does not hold. That is to say, the mean RSSI (considering
only stationary sequences) measured at certain AP of the
transmission of another one is not necessarily equal on the
reverse direction (even when both APs are configured to use
the same frequency and transmission power). This observation
is particularly important for power control algorithms. We
further study the stationarity of both directions and use it to
show that this asymmetry is mostly due to interference.

The fourth observation is that the upper part of the 5 GHz
band presents a stronger attenuation than the rest of the
band (stronger than what the Friis model predicts). We show
evidence that this is mostly due to the walls between the APs.
This is a relevant conclusion that has significant importance
for radio planning. Even though the larger attenuation can
cause problems, cell isolation is also relevant, in particular for
scenarios with a high density of APs. Thus, in some situations
the wall attenuation could become helpful, in order to avoid a
high co-channel interference (CCI).

Finally, we present important network-level indicators of
the complete system. For instance, the number of neighbors
per AP and the level of CCI they suffer. These are basic
parameters useful for simulating a planned network such as
the one discussed here.
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Fig. 1. Number of buildings/networks with a given number of APs

After presenting the details of the dataset on the following
section, we discuss the related work on Sec. III. Section IV
presents our link-level insights, whereas in Sec. V we present
the network-level analysis. Conclusions and future work are
discussed in Sec. VI.

II. DETAILS OF THE DATASET

The dataset was obtained from Plan Ceibal [9], a major
education service provider, which runs Uruguay’s nation-wide
one-to-one computing program. Among several challenges,
one of its most relevant responsibilities is to provide con-
nectivity to all educational centers throughout the country,
mostly primary and secondary schools, and thus corresponding
to indoor scenarios. This makes it one of the nation’s largest
Internet provider, reaching a number of devices comparable to
the number of subscribers of mobile network operators.

It is important to highlight that there is an enormous
variety of buildings, ranging from centennial constructions
with several stories and hundreds of students to small rural
schools with just a few tens. This may be seen in Fig. 1,
which shows the histogram of the number of APs per building
(i.e. network): each building is typically covered by 5 APs,
although approximately 20% of the buildings required more
than 10 APs. Moreover, there are no special regulatory aspects
regarding interferences from external networks (e.g. from other
APs) into these educational buildings.

For some years now, Plan Ceibal has incorporated high-
end Wi-Fi solutions, which allows a relatively complete and
continuous monitoring of the state of the network, which we
leverage in this study. In particular, most of the connectivity
solution is administered by two Cisco Flex 7500 Wireless LAN
Controllers (WLCs), each of them supporting up to 6000 APs.
The complete list of AP models and their most important
parameters are included in Table I. All APs use 20 MHz
channels in 2.4 GHz and 40 MHz in the 5 GHz band (and
only non-overlapping channels on both bands).

As part of the Radio Resource Management (RRM) al-
gorithm executed by the WLCs [10], each AP in the net-
work periodically sends a so-called NDP (Neighbor Discovery
Protocol) packet on every channel and band possible. These

TABLE I
AP MODELS AND HOW MANY ARE PRESENT IN THE COMPLETE NETWORK

AP model Number of APs Standard (2.4 GHz / 5 GHz)
AIR-CAP2702I-A-K9 5098 802.11n / 802.11ac-Wave 1
AIR-CAP1702I-A-K9 2681 802.11n / 802.11ac-Wave 1
AIR-AP1832I-A-K9 862 802.11n / 802.11ac-Wave 2

AIR-CAP2602I-A-K9 759 802.11n / 802.11n

Fig. 2. A typical sequence of RSSI measurements showing how one AP is
seen from all its neighbours in the 2.4 GHz.

broadcast messages are sent at the maximum allowed power
for the channel/band, at the lowest supported data rate and
using a single radio chain (meaning no beamforming is applied
in their transmission). By default, an NDP packet is sent over
all channels every 180 seconds (i.e. an AP goes off channel
roughly every 16 seconds to send an NDP packet over each of
the 11 channels in the 2.4 GHz band, and every 8 seconds for
the 22 channels in the 5 GHz band). All received NDP packets,
along with the corresponding RSSI (expressed in dBm and
with a resolution of 1 dBm) and channel, are forwarded to the
WLC. These values are averaged by the WLC over a period
of 15 minutes (the so-called pruning interval), corresponding
to 5 measurements per neighbor.

We have setup a system where every hour we query (via
SNMP) the WLCs about the last measurement corresponding
to all the APs (and thus the averages do not overlap). In par-
ticular, we are interested in the RSSI each AP sees every other
AP of the network, for both frequency bands. The timescale
was chosen in order to minimize the effect on the operational
network. A typical sequence of RSSI measurements is shown
in Fig. 2, where we have all the values corresponding to how
certain AP is seen from all its neighbours in the 2.4 GHz
band. The period is restricted to the school year (from March
to December) and missing data (in the example, note the
small gap in mid-April) is mostly due to holidays (when the
equipment might be turned off at schools), although since
this data is not stored by neither the APs nor the WLC, any
problem in the connection or the request between our system
and the WLC will result in a missing measurement.

We have also gathered from the WLCs the configured
transmission (Tx) power and frequency channel of all the APs
for both bands. The Tx power is actually reported by means
of the so-called power level, a Cisco terminology for this
parameter. With this value, as well as the frequency channel



Fig. 3. The configured transmission power and channel of the same AP as
in Fig. 2.

and the AP model (also obtained from the WLCs) it is possible
to calculate the Tx power of each AP in dBm. As indicated in
the Cisco documentation [11] a power level of 1 corresponds
to the maximum power setting for the AP (which depends on
the frequency, since the regulation is different in each band).
Each subsequent power level (up to 8) represents a 3 dBm
reduction in transmit power. Note that, since they stem from
NDP packets, our RSSI measurements correspond to a power
level of 1 on the receiver’s channel. This means, for instance,
22 dBm in the 2.4 GHz band for all models, or 14 dBm for
the 2602 model in channels 36 to 48 in the 5 GHz band.

An example sequence corresponding to the same AP as in
Fig. 2 is shown in Fig. 3. All this data is timestamped with
the time at which the whole “round” of SNMP queries started
and saved into a database. Note that although the timestamp is
the same, the actual moment the measurements were taken to
compute the resulting average for every AP will not be exactly
the same, but the maximum difference never exceeds 180s.

III. MODEL AND RELATED WORK

Let us present the notation we will use throughout the paper.
Let i and j be a pair of APs.1 We denote the RSSI on node
i from the transmission of j at timestamp t by RSSIt(i, j).
Moreover, we will use ft(i) to indicate the frequency/channel
used by node i at t. Finally, let Pt(j) be the transmission
power used by j on timestamp t (in our case the maximum
allowed power on ft(i), the receiver’s channel).

Mathematical models for RSSI values are typically ex-
pressed as:

RSSIt(i, j) = Pt(j)− L(i, j) + ζt(i, j), (1)

where L(i, j) is the path-loss, which is deterministic and
depends on the propagation path between i and j (such as
distance between them, or the number of walls and their mate-
rial), and ζt(i, j) is a zero-mean random variable called fading
(or shadowing), which models random variations around this
path-loss.

As we discussed in the previous section, in our particular
case RSSIt(i, j) is the result of averaging the RSSI of 5 NDP

1In the sequel, we will use the terms AP and node indistinctively.

packets sent by j and received at i on frequency ft(i). In
such case the random fluctuations around the mean are called
long-term fading as they are produced at a time-scale several
orders of magnitude larger than the symbol-time (it is thus not
possible to study short-term fading with our dataset).

In the past years there has been several measurement studies
aiming at understanding the behaviour of both L(i, j) and
ζt(i, j) in different scenarios. Naturally, the first such studies
were carried out during the deployment of the first mobile
telecommunication systems [12], and involved mostly outdoor
propagation (or outdoor to indoor). With the advent of Wi-Fi
and its immense popularity, indoor propagation gained interest.

For instance, [13] concludes that ζt(i, j) may be modeled
by a Weibull or Nakagami random variable, although the Rice
distribution acts as a reasonable approximation. However, the
transmitted signal is narrowband (corresponding to a DECT
transmitter). Pertaining specifically to Wi-Fi, both [14], [15]
conclude that the log-distance path-loss (where the attenuation
depends on the logarithm of the distance between i and j)
and log-normal shadowing (i.e. ζt(i, j) follow a gaussian
distribution) are reasonable models for an indoor propagation
under 802.11b, whereas [16] concludes that Rician distribution
is more accurate when we have Line-of-Sight (LOS) with the
AP. On the other hand, the authors of [17] conclude that the
best model for indoor attenuation is actually the multi-wall-
floor model [18], and that fading is best characterized by a
log-normal distribution.

All of these works focus on the 2.4 GHz band. With several
more channels available, the 5 GHz band is increasingly being
used despite larger attenuations, and virtually all new terminals
are dual-band. One of the first reports regarding this band
was [19], although the authors used narrowband signals and
focused on outdoor propagation. Indoor propagation in this
band was studied in [20] for corridor-like environments, and
concluded that the attenuation was very similar to lower
frequencies (as low as 900 MHz) except for the theoretical
difference in free space loss. However, for instance [21]
report that different materials present significant differences
in attenuation depending on the frequency.

Wi-Fi indoor localization systems use the received RSSI
as an input to estimate the position of a device [1], and
thus several studies are from this community [22], [23]. For
instance, [24] discusses how the distribution of fading may
affect the positioning’s system precision. A very interesting
discussion may be found in [25] regarding the characterization
of the RSSI and its usefulness for positioning. In particular,
the authors conclude that the best distribution for ζt(i, j) is
Weibull, and discuss the presence of an RSSI offset, i.e. a
fixed difference between the measured RSSI and the actual
signal’s power (also observed in [26], [27] when characterizing
symmetry).

It is important to highlight that all of these works fo-
cus on single or very few links. That is to say, a small
number of works study complete networks. Measurements
over operational networks is typically referred to as “in the
wild” [28]. For instance, the authors of [29] study a large



network comprising ten thousand APs during two weeks.
However, their focus was on the client’s usage and not on
the wireless channel. Similarly, the authors of [30] study the
connectivity pattern of users during a month comprising over
eight million APs. Another example is [31], which studies
some 50 billion packets across a hundred thousand APs
and proposes variations to TCP and the channel assignment
algorithm in APs.

With several months’ worth of RSSI measurements, includ-
ing over 1400 networks comprising about 9500 APs in total,
and resulting in approximately 70.000 and 37.000 “links” in
the 2.4 GHz and 5 GHz band respectively, the dataset collected
for the present article is to the best of our knowledge the
largest RSSI dataset to date (even considering those included
in the popular Crawdad repository, https://crawdad.org/). In
the following sections we present some of the conclusions
we have reached during our ongoing study of this dataset.
In particular, we will focus on single-link analysis, but we
will also discuss some important conclusions we have reached
regarding complete networks.

IV. LINK-LEVEL MEASUREMENTS

A. Stationarity

We will begin our discussion by analyzing an often over-
looked but important aspect of the RSSI measurements: its
stationarity. For example, this property is assumed by virtually
all models used in performance evaluation (e.g. if in (1) we
assume that L(i, j) is constant). Furthermore, a certain level
of stationarity is assumed in all Wi-Fi indoor positioning sys-
tems. For instance, so-called Wi-Fi fingerprinting-based indoor
positioning techniques [1] use a set of RSSI measurements
together with the corresponding zone (e.g. room) to train
a machine learning algorithm that learns to map between
RSSI measurements and zone. In this case, a change in the
underlying distribution of RSSI measurements (or different
from the one used during training) will result in a very poor
performance of the positioning system.

However, such situation is relatively common. For instance,
Figure 4 shows a one week long example from our measure-
ments where stationarity does not hold. Approximately the first
day presents a mean clearly higher than the rest of the week.
Please recall that APs have a static position, and thus these
changes may stem either from the surroundings (such as new
large objects between APs or interferers near the receiver using
the same channel) or from changes in the equipment itself
(such as in the antenna orientation).2 This last case, although
possible since APs are not under our control, should be rare, as
APs are not easily accessible. The former case is important,
since a change in the surroundings will affect not only the
transmission between this particular pair of APs, but all nodes
in the vicinity.

We have thus studied how often this non-stationarity man-
ifests, and for how long may the propagation environment be

2As discussed in Sec. II, the NDP packets are always sent at maximum
power.
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Fig. 4. An example of a non-stationary RSSI measurement series correspond-
ing to a fixed channel in the 2.4 GHz band.

considered stationary. Some important remarks regarding how
we proceeded follows. First, as the channel used by the AP is
dynamically set by the WLC, and to avoid fluctuations due to
large variations in the used frequency (see Sec. IV-C for further
discussion on this aspect), we have analyzed RSSIt(i, j) for
those t where ft(i) is static. That is to say, if ft(i) changes n
times during the complete series, then we will study the n+1
resulting sub-series. The same procedure is applied when the
series has missing values for certain timestamps t (cf. the small
gap in mid-April in Fig. 2). However, we will only consider
those sub-series longer than 100 measurements (roughly four
days), to make the result statistically meaningful.

In order to analyze the stationarity of a given time-series,
and since visual inspection is out of the question in our
case, we have resorted to classic unit-root tests such as
a combination of the augmented Dickey-Fuller (ADF) [32]
and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests [33]
(both implemented in the statsmodel library [34]). Only
if both tests do not reject the stationarity hypothesis at a
significance level of 0.05 we will conclude that the sub-series
is stationary.

Results are shown in Table II, where we present the portion
of sub-series that were actually stationary (for both frequency
bands), as a function of their length in weeks (to be more
precise, its length in hours integer divided by 168). A first
result worth highlighting is that only half of the considered
sequences are stationary. Moreover, note how the behaviour is
approximately the same for all lengths and both bands.

TABLE II
PORTION OF RSSI SUB-SERIES THAT ARE STATIONARY

Length (weeks) 2.4 GHz Band 5 GHz Band
0 49% 49%
1 55% 54%
2 56% 50%
3 52% 51%
4 51% 46%

As we mentioned before, this result is of major importance



for positioning systems. It means that if the measurement
phase of a Wi-Fi indoor positioning system is performed,
for instance, during a single day, then the resulting preci-
sion may significantly decrease some days later. However,
since the duration of the sub-series has little impact on the
portion of stationary sub-series, a change on the underlying
distribution may take some weeks. All in all, this result is
an important argument in favor of positioning systems that
include maintenance (i.e. updates on the mapping between
RSSI measurements and location), such as [35].

B. Channel Symmetry

Let us now focus on one of the assumptions most commonly
used when modeling and designing wireless systems: the
symmetry of the channel. For instance, the classic CSMA
algorithm assumes that if a node sees a frame from another
node, its own transmission with the same power will interfere
with the ongoing transmission in the same degree. More
recently, most power-control algorithms on Wi-Fi make similar
assumptions (even those discussed for 802.11ax [36]): that a
device may calculate its transmission power based on the AP’s
informed power and the received RSSI.

However, an offset between the received power and the
reported RSSI is generally present. This is discussed for
instance in [25], where this offset is assumed fixed and due
to miscalibration. Our measurements indicate that this is not
always the case, and that interference plays an important role.
In any case, as we will shortly present, this offset may exceed
3 dBm. The immediate practical consequence is that power
control algorithms should always favor a closed-loop scheme
(e.g. one where the AP indicates the stations either to increase
or decrease their transmission power) instead of an open-
loop one (where stations base their decision on local RSSI
measurements). This is specially important for the new UL
MU OFDMA access scheme in 802.11ax [36], where the AP
should receive signals from different devices at almost the
same power level.

To study and quantify this offset we will take all AP pairs
i, j that see each other, are the same model (to avoid differ-
ences in transmission powers), transmit on the same channel,
and study the difference in RSSI between the direct and reverse
paths (i.e. ∆RSSIt(i, j) = RSSIt(i, j)−RSSIt(j, i)). Sim-
ilar to the previous section, the complete time series is broken
into sub-series when missing values are present (which in this
case are further generated when one of the two nodes changes
its channel), and we will only consider sub-series longer than
100 samples.

Note that if the difference between the direct and reverse
paths stems from a fixed offset only, then the sub-series
∆RSSIt(i, j) would be stationary, and the corresponding
mean equal to this offset. However, only 60% of the sub-series
on the 5 GHz band are actually stationary according to the
ACF+KPSS tests (again, at significance level equal to 0.05).
Results are even lower for the 2.4 GHz band, where only half
of the sub-series are stationary. In order to study what may
be causing these non-stationarities, we have also tested the
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Fig. 5. Histogram of average ∆RSSIt(i, j).

corresponding direct and reverse sub-series, and obtained the
results in Table III.

TABLE III
SYMMETRY STATIONARITY

Reverse/Direct path

∆RSSIt(i, j)
Both

Stationary
Both

Non-stationary Mixed

5 GHz Stationary 29% 13% 17%
Band Non-stationary 7% 13% 21%

2.4 GHz Stationary 21% 12% 19%
Band Non-stationary 5% 18% 26%

Note that most of the non-stationary cases occur when one
of the paths is stationary and the other one is not (e.g. 21%
of the total sub-series for the 5 GHz band). A change in the
distribution of the RSSI seen by only one of the two APs
is indicative of a local interference (as opposed to a change
in the propagation path between both APs). Note that an
important portion of the stationary sub-series also stem from
reverse and direct paths with different behaviours, although the
resulting ∆RSSIt(i, j) is still stationary (17% in the 5 GHz
band and 19% in the 2.4 GHz band). This could be generated
by an interferer closer to one of the two ends (resulting
in one of them only marginally affected), so that the tests
cannot reject stationarity for the difference ∆RSSIt(i, j). All
in all, interference appears as a very important factor when
considering channel asymmetry.

Regarding the actual difference between direct and re-
verse paths, Fig. 5 shows the histogram of the mean of
∆RSSIt(i, j) (for those considered as stationary) in both
bands. Note how the 2.4 GHz band is prone to much more
asymmetry than the 5 GHz one. This is in line with the
previous discussion, since the 2.4 GHz band is subject to much
more interference (either from other Wi-Fi equipment or the
myriad of technologies that use this band). Note however, that
even in the 5 GHz band, differences of more than 3 dB are
not rare and amount to approximately 10%.
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Fig. 6. The difference Lt(i, j) − Lt(j, i). Each boxplot corresponds to a
group of measurements with the frequency difference indicated on the x-axis.

C. Dependence on the Frequency

Given that our dataset includes the RSSI received by a
certain AP from all other APs in its operating channel, we
may study the “instantaneous” attenuation between pairs of
nodes using different frequencies (i.e. Pt(j)−RSSIt(i, j) in
Eq. 1, which we will now denote as Lt(i, j)).3 That is to
say, for a given timestamp, we can compute the attenuation
between a pair of nodes, generally on both directions. We will
now study the difference between these two attenuations as a
function of the difference in frequency of the channel used by
either nodes.

We thus now limit ourselves to those pairs that are the
same model and study how does Lt(j, i)−Lt(i, j) depends on
ft(i)−ft(j). Figure 6 shows the boxplots of these differences
for the 5 GHz band. We have grouped the data according
to ft(i) − ft(j), which is used as the x-axis, and we are
only showing its positive half as the data is completely
symmetrical. Moreover, we are omitting the outliers for ease
of visualization.

Some observations are in order. Firstly, there exists a gap
in the frequency differences as Uruguay’s regulations only
permits operation on the 5.2, 5.3 and 5.8 GHz sub-bands
(UNII-1, 2 and 3 according to the FCC terminology). This
means that the right-most group of boxplots corresponds to
values of Lt(j, i) − Lt(i, j) where ft(i) and ft(j) belong to
the upper and lower portion of the 5 GHz band respectively.
Secondly, and most interestingly, there is a clear tendency to
higher attenuations with higher frequencies. Note, for instance,
how in the UNII-3 channels attenuation is between 0 and 5 dB
larger than on the lowest frequencies.

Typical attenuation models (in dB) are linear on the loga-
rithm of the frequency. We have conducted a least square fit
on the curve in Figure 6, resulting in a coefficient equal to 5.6,
somewhat larger than the typical outdoor coefficient between
2 (free space) and 4.

3Please recall that Pt(j) depends on the channel used by i (i.e. ft(i)) and
the model of j.
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Fig. 7. ∆Lt(i, j) as the number of walls between APs i and j vary. Mea-
surements correspond to pair of APs where 0 ≤ ft(i) − ft(j) < 150 MHz
(left) and ft(i)− ft(j) > 400 MHz (right).

The explanation for this difference lies on the materials and
structure between the APs, a possibility further supported by
the great variance in each group in Fig. 6. To further justify
this claim, we have obtained the plan (and AP’s positions) of
a school building, and studied how ∆Lt(i, j) varies with the
number of walls between i and j. The results are shown in Fig.
7 where we have separated the measurements depending on
ft(i)−ft(j): the left boxplots show the results corresponding
to a small difference in frequency, and the right ones to a large
difference.

Please note how the group with 0 ≤ ft(i) − ft(j) <
150 MHz presents a behaviour very similar to the case where
ft(i) = ft(j), with ∆Lt(i, j) rarely exceeding ±5 dB indepen-
dently of the number of walls between i and j. The trend is
very different for the case where ft(i)−ft(j) > 400 MHz, and
clearly evidences that the 5.8 GHz sub-band presents higher
attenuations than the rest of the band, and that an important
factor is the presence of walls (supporting the study in [21]).

The most important practical consequence of this observa-
tion is that this sub-band may be used to decrease interference
between APs in large density deployments. This may be
understood as a second step in a relatively common practice
for this kind of deployments: disabling the 2.4 GHz radios (or
enable it only in some APs) to obtain a greater “cell” isolation.

D. Independence

In this last section regarding link-level measurements, we
will focus on a second hypothesis that is assumed by all studies
regarding RSSIt(i, j): that they correspond to a sequence of
independent and identically distributed (iid) random variables.
We have already shown that roughly half of the sequences are
not identically distributed, so let us focus on the other half
and study whether they are independent. To this end, we will
analyze the stationary sub-series as in Sec. IV-A and apply
them the Ljung-Box test (with a 0.05 significance level). Quite
interestingly, only 2% of the stationary time-series form an iid
sequence according to this test.

To gain understanding into the statistical correlation be-
tween timestamps, we show two example sequences in Fig. 8
along with their autocorrelation function (ACF). Please recall
that each value of RSSIt(i, j) corresponds to the average of
five NDP packets (over approximately 15 minutes), but we
are extracting a measurement every hour, so these averages do
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Fig. 8. Example of two RSSIt(i, j) sequences and their ACF: an iid (left)
and a non-iid (right) sequence.

not overlap (and thus it does not explain the strong correlation
observed in Fig. 8).

From a practical point of view, the consequence of this
correlation is that in order to obtain sufficiently varied data
for a Wi-Fi localization system, measurements should span
several hours. This may be understood as a complementary
result to the one obtained in Sec. IV-A: even when the RSSI
measurements are stationary, if measurements are not taken
sufficiently separated in time the dataset may not reflect the
actual variability in the data.

This is further supported by Fig. 9, which shows the boxplot
of the absolute value of the ACF (for up to 36 hours lags) of all
the sub-series corresponding to a certain school on the 5 GHz
band (very similar results are obtained for the 2.4 GHz band).
Note how the median autocorrelation reaches a plateau only
after approximately the 10 hours lag. Furthermore, note that
the 24 hours lag (i.e. the correlation at the same hour during
different days) does increase, but very little. This means that
it is not so important to take measurements at different times
of the day, as it is to consider a long measurement period. In
other words, this result indicates that the mobility of people (in
this case teachers and students) does not have much influence
on the attenuation variations.

V. NETWORK-LEVEL MEASUREMENTS

We will conclude the article by presenting measurements
regarding the networks. In our case, they correspond to profes-
sionally designed networks, so the topological characteristics
we discuss here should generalize to other similar environ-
ments (e.g. indoor scenarios such as hospitals or offices).
Moreover, as it is operated by a WLC, it may be considered a
“best case-scenario” regarding co-channel interference (CCI),
although the RRM algorithm optimality should be analyzed,
which is part of our ongoing work. Finally, throughout this
section we have considered a snapshot of the networks: in
particular all measurements taken at 3 P.M. on August 16th
2018. We have considered several other dates and times (as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Lag (hours)

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n 
(a

bs
. v

al
ue

)

Fig. 9. Boxplot of the absolute value of the ACF of RSSIt(i, j) for up to
32 hours (corresponding to the complete school year on a certain school).
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Fig. 10. Number of APs that use a certain channel. Both bands are shown.

well as summarizing certain indicators), but the observations
we present here do not change qualitatively.

Let us begin by analyzing how are channels used. Figure
10 shows the results. Note how the RRM algorithm evenly
distributes the channel usage among the three possibilities in
the 2.4 GHz band, although in the 5 GHz band it tends to
choose channel 36. More on this aspect is discussed later in
this section. Regarding power levels, results are shown in Fig.
11. As expected from the previous analyses, the power used
in the 2.4 GHz band is far less than in the 5 GHz (recall
that a power level of 1 is the maximum, and each increase
corresponds to halving the transmission power).

Both the used channel and power dictate the coverage and
interference in the network. An indicator of the latter may be
obtained by analyzing how many APs are sensed (and at what
RSSI) by each AP (i.e. the number of neighbors of each AP).
These results for both bands are shown in Fig. 12. We have
divided the neighbors into those that use the same channel as
the AP (and thus interfere) and all APs sensed by each AP.
Note how the former may exceed five interfering neighbors in
the 2.4 GHz band. This is the result of a combination of both
the few channels available and the lower attenuation. This is
reflected in the 5 GHz band, where the number of interfering
nodes are virtually always below 3 APs.
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Fig. 12. Density of number of neighbors in each AP for the 2.4 GHz band
(left) and 5 GHz band (right).

The question remains on how much power of these inter-
ferers reaches the AP. To study this, and to gain insight into
the operation of the RRM algorithm, we took RSSIt(i, j),
and corrected it based on the power level configured on j
in order to calculate what interference to expect on i from j
during operation (which we will denote as P rx

t (i, j)).4 Figure
13 shows the results for all the values of P rx

t (i, j) considering
all neighbors or only those operating on the same channel as
i.

Note how the density corresponding to the interference
generated by neighbors on the same channel as i has a
smaller mean, which is naturally the objective of the channel
selection algorithm: avoiding strong interferers. Ideally, one
would expect that, from all the interferers on node i, those
operating on the same channel are received with lower power.
In particular, CCI should be below the RSSI threshold used

4Recall that our measurements correspond to NDP packets, that are sent at
maximum power, which is not necessarily equal to P rx

t (i, j).
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Fig. 13. Density of the power received by each AP from its neighbors
(P rx

t (i, j)) for the 2.4 GHz band (left) and 5 GHz band (right).
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Fig. 14. Density of the maximum power received by each AP from all its
neighbors and the maximum of those neighbors that operate on the same
channel; for the 2.4 GHz band (left) and 5 GHz band (right).

by the standard CSMA/CA carrier sensing, typically around
-80 dBm. We can see that this is mostly achieved for the 5 GHz
band in Figure 14, where we are plotting the density of the
maximum power received by node i from all its neighbors,
along with the density of the maximum power received by i
from those neighbors operating on the same channel. However,
the situation is quite different for the 2.4 GHz band, where the
CCI is above -80 dBm for almost half of the APs.

Figure 14 evidences that the 2.4 GHz band is saturated
in its spatial reuse, where even optimally allocating channels
and transmission power (according to the RRM algorithm),
we cannot avoid a CCI smaller than -80 dBm around 50%
of the times. In contrast, the result for the 5 GHz band is
complementary to the one we obtained in Fig. 10, which
showed that the WLC assigned mostly channel 36, precisely
because it generally does not need to use other channels to
avoid high interference. Although the key factor to achieve
this is the larger number of channels available on 5 GHz, the
propagation properties at this band also helps to have more
isolation between APs, as we discussed in Sec. IV-C. Finally,
it is worth to note that in both cases there is a mean difference
of 20 dB between the maximum RSSI for any neighbour and
those in the same channel, product of the allocation made
by the RRM algorithm. As we mentioned before, part of our
ongoing research is studying the RRM algorithm, its resulting
performance and optimality.

VI. CONCLUSIONS AND FUTURE WORK

We have presented one of the largest Wi-Fi RSSI dataset
of an operational network to date. We have first focused on
link-level measurements and have reached several important
conclusions. Firstly, approximately half of the RSSI time-
series may not be considered as stationary, and even those that
are so, present important time correlations for several hours.
Moreover, the symmetry of the channel does not hold: average
RSSI (considering only APs using the same transmission
power and channel) with differences of 3 dBm between both
directions are not rare (particularly in the 2.4 GHz band). Our
analysis shows that interference plays an important role on this
asymmetry. Finally, we have observed a larger attenuation on
the UNII-3 sub-band when compared to the UNII-1 sub-band,
and have shown that this is due to walls between APs. As
we discussed throughout the article, all of these conclusions



are (particularly) important for positioning systems as well as
power control algorithms and radio planning.

We have also presented some import network-level indica-
tors. In particular the number of neighbors per AP and the
interference level they suffer should be useful for simulating
planned and controlled networks such as the ones discussed
here. Instead of considering pairs of APs, the next natural step
is to enrich this study by considering the graph of APs. That is
to say, for each timestamp we may compute a graph indicating
in its edges the RSSI (or attenuation). This will allow us, for
instance, to verify some assumptions made by the research
community on this (random) graphs. Furthermore, we may
perform spatial/temporal analysis on these graphs to detect
anomalies (such as a change in the building’s infrastructure),
or to study the RRM (propietary and closed) algorithms and
verify their optimality.

Finally, it is our intention to publish the dataset. The process
of obtaining the administrative rights to do so is underway,
but not finished yet. In particular, we are undertaking the
anonymization procedure required.
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