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Abstract 

Solar resource assessment is a fundamental part of solar energy projects risk evaluation. In absence of in-situ 
measurement or well-calibrated satellite-based estimates, stakeholders tend to rely in freely available solar 
irradiation data sets, which usually have not been validated against local ground measurements. In this work we 
provide a performance assessment of Heliosat-4 (CAMS) and FLASHFlux (NASA) solar irradiation models for 
Uruguay on a daily time scale. It is found that both models present low bias and a rRMSD of 10.0% and 11.6%, 
respectively, making the former a better option from the end-user perspective. Evidence that the FLASHFlux 
model overestimate irradiation for coastal oceanic stations is given. The uncertainty obtained for these models is 
higher than previously locally adjusted satellite-based models, like the modified JPT statistical model, which 
remain as the best option for the region. 
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1. Introduction 

In Uruguay, renewable energies have changed the energy landscape. The country has transitioned in less than 10 
years from a combination of hydro and fossil fuels supplying the electricity mix to an almost 100% renewable 
energy mix. The up-to-date figures of Uruguay's generation can be retrieved from the national system operator 
website (http://adme.com.uy/); for instance, by July 2019 the yearly electricity generation was supplied by 98% 
of renewable energies, being hydro power 55%, wind power 33%, biomass power 7% and solar power 3%. 
Hence, only 2% of the supply was provided by fossil fuels thermal generation, mostly used as system back-up 
for the variable renewable energies short-term intermittency. Solar photovoltaic (PV) generation is gaining in 
importance and its contribution in the electricity mix is expected to increase significantly in the next decade due 
to new installations, with a similar expansion as the wind power sector has experienced (Gurín et al., 2018). 

The design of solar energy projects requires an accurate solar resource assessment for the project's location 
(Vignola et al., 2012). The uncertainty of solar resource assessment is directly translated to the financial risk of 
solar energy ventures and, if high, it can act as an economic barrier for the technology development. In fact, as 
demonstrated by Schnitzer et al. (2012), the resource uncertainty is the main factor affecting the financial risk of 
solar energy large-scale PV projects. In the absence of long term controlled quality solar irradiation ground 
measurements, the industry tends to rely on the available solar satellite estimates, which have not always been 
validated with local measurements and therefore their uncertainty is unknown. Several models exist to estimate 
the ground level solar irradiation that make use of satellite images (Perez et al., 2002; Rigollier et al., 2004; 
Ceballos et al., 2004; Cebecauer et al., 2010; Alonso-Suárez et al., 2012; Kratz et al., 2014; Qu et al., 2017). For 
areas without snow or high albedo terrain, visible channel images can be used to quantify the cloudiness and 
then the ground level solar irradiation. These models can be classified in three categories according to their 
formulation: (i) physical, (ii) statistical and (iii) hybrid. Physical formulations attempt to model in detail the 
radiative transfer of downward solar irradiance through the atmosphere, and typically require precise 
information of the atmosphere's state, including clouds properties, aerosols properties, water vapour content, 
among others, which is not always available with adequate extension and quality. With a few exceptions 
(Ceballos et al., 2004; Qu et al., 2017), these models are not suitable for operational purpose because they 
involve calculations that are too computationally expensive for real time operation. Statistical models rely on 



empirical relationships between a set of input variables (including satellite information) and the solar irradiation. 
The parameters of these relationships, which may be parametrizations or machine learning techniques, need to 
be adjusted using ground measurements. The main disadvantage of this approach is that the coefficients that are 
tuned for one region shall not be used in others, as the estimates uncertainty can be importantly higher. For a 
region where high quality ground measurements are not available, it is more suitable to apply a physical 
approach. The uncertainty of both approaches depends of the characteristics of the site and the quality and 
availability of the required ground measurements and/or atmospheric information. Hybrids models are in a 
middle category in where a physical basis is used but some coefficients need to be statistically adjusted to 
ground measurements. This strategy has been successful in the industry for providing low uncertainty solar 
irradiation estimates (Perez et al., 2013). At a daily scale, the focus of this work, the typical uncertainties are 
between 5-15% (as measured by the root mean square deviation relative to the average measurements value) 
with a low systematic bias between ±5% (as measured by the relative mean bias deviation). 

In this work we provide a performance assessment for Uruguay of two publicly available daily solar radiation 
data sets that are based on physical models that make use of satellite images: the Heliosat-4 method's estimates 
(Qu et al., 2017) as provided by the Copernicus Atmosphere Monitoring Service (CAMS) and the FLASHFlux 
model's estimates (Kratz et al., 2014) as provided by the National Aeronautics and Space Administration 
(NASA). Evaluation is done for the global horizontal irradiation (GHI) using the data as provided by the 
platforms, without any site adaptation procedure. This is the first performance evaluation of this information in 
the region at a daily scale. This article is organized as follows. Section 2 describes the ground measurements 
being used, that are distributed across the Uruguayan territory and are representative of the broader Pampa 
Húmeda region of the south-east of South America. Section 3 presents the main characteristics of the models 
being evaluated and the performance metrics that are used for their evaluation. Section 4 presents the results 
and, finally, Section 5 summarizes our conclusions. 

2. Ground measurements 

The ground measurements considered in this work were registered in seven sites in Uruguay (see Tab. 1). The 
data availability time span in each location is different, from three years in the PP site to almost nine years in the 
LB site. The region is of homogeneous climatic characteristics, with no elevations and mostly plain grassland. 
The coastal East part of the country is influenced by its proximity to the Atlantic Ocean and is classified as Cfb 
(temperate, without dry season, warm summers) in the Köppen-Geiger climate classification (Peel et al., 2007). 
The rest of the country is classified as Cfa (temperate, without dry season, hot summers). The solar irradiation 
short-term variability of the area is medium and the inter-annual variability is also medium, similar to that of the 
Central USA (Alonso-Suárez, 2017). 

Tab. 1:Details of the measurement stations used in this work. 

Site Code Lat.(deg) Lon. (deg) Alt(m) Time period used 

Canelones LB -34.67 -56.34 32 03/2010 - 12/2018 

Artigas AR -30.40 -56.51 136 01/2012 - 12/2018 

Rocha RC -34.49 -56.17 24 04/2015 - 10/2018 

Colonia ZU -34.34 -57.69 81 05/2015 - 10/2018 

Salto LE -31.28 -57.92 42 10/2015 - 11/2018 

Tacuarembó TA -31.71 -55.83 140 05/2015 - 10/2018 

Treinta y Tres PP -33.26 -54.49 58 10/2016 - 12/2018 

 

All the sites in Tab. 1 record the GHI measurements at 1 minute time resolution as an average of 15 seconds 
samples (4 samples per registered 1 minute value) and use Kipp & Zonen instruments. The LE site is equipped 
with a Solys2 ground station where the GHI is recorded using a CMP11 Secondary Standard pyranometer. The 
other six sites correspond to a field measurements network where autonomous stations record the GHI using 



CMP6 First Class or CMP10 Secondary Standard pyranometers. All the pyranometers are calibrated every two 
years against a CMP22 Secondary Standard which is kept with traceability to the Primary Standard in the World 
Radiation Center. 

3. Models and performance 

3.l. Models description 

The GHI estimates available at the CAMS are generated with the Heliosat-4 method. This method is based on 
two radiative transfer models, one for clear sky conditions (McClear) and one for cloudy sky conditions 
(McCloud). Its operational version is based on look-up tables of these models for rapid calculation (Qu et al., 
2017; Lefèvre et al., 2013). The model obtains the cloud transmittance and cloud properties from the images of 
the Meteosat (MSG) geostationary satellite by applying the APOLLO/SEV algorithm, an adaptation of the 
APOLLO algorithm (Kriebel et al., 2003) for its use with the SEVIRI (Spinning Enhanced Visible and Infrared 
Imager) instrument in the MSG satellite. The model also integrates advanced products for aerosol, ozone and 
water vapour estimation for its clear sky modeling. The time and space resolution of the solar estimates follows 
the MSG satellite capabilities, being available every 15 minutes with an approximate spatial resolution of 7 km 
for the region under study. The data used here was retrieved on a daily scale directly from SoDa website 
(http://soda-pro.com/) for the same time period as the ground measurements. 

Since the year 2007 the available NASA solar radiation estimates at https://power.larc.nasa.gov/ are based on 
the FLASHFlux (Fast Longwave and SHortwave radiative Flux) model (Kratz et al., 2014). This model was 
designed to reduce the processing time in the calculations of the radiation budgets at the surface and at the top of 
the atmosphere, exchanging some accuracy for speed. It uses the information from the CERES (Clouds and the 
Earth Radiant Energy System) and MODIS (Moderate Resolution Imaging Spectroradiometer) instruments 
aboard the Terra and Aqua sun-synchronous orbiting satellites, among other meteorological sources, to estimate 
the shortwave and longwave radiative fluxes. From January 2008 to date different versions of this model are 
available at the website: version 2 from 2008 to 2012, version 3AB from 2013 to 2016 and version 3C since 
2017. In this work we use GHI measurements (in this context, shortwave downward irradiation) from 2010 to 
2018, so the evaluations of this model comprise different versions. In particular, almost all the stations have 
measurements after 2015, allowing a good performance comparison between the 3AB and 3C FLASHFlux 
versions. For version 2, only two sites have the adequate time span for its evaluation (AR and LB). The 
evaluation is done also through the entire measurements time-series as we want to assess the performance of the 
available information as a whole, from an end-user perspective 

3.2. Performance metrics 

The performance metrics used for evaluation are the Mean Bias Deviation (MBD), the Root Mean Square 
Deviation (RMSD) and Kolmogorov-Smirnov Integral (KSI). The first metric measures the systematic bias of 
the estimates as compared to the measurements while the second one measures the dispersion of the deviations. 
On the other hand, the KSI metric measures the statistical difference between the estimates and the 
measurements through all the time-series. This index is based on the two-sample Kolmogorov-Smirnov 
statistical test to determine if two data sets are statistically similar, hence the metric measures at which extend 
the estimates and the measurements can be considered as realizations of the same statistical distribution. 

The MBD and RMSD are computed as, 
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where 𝑁 is the number of days, 𝐻෡௛ is the estimated daily GHI and 𝐻௛ is the measured daily GHI, both expressed 
in MJ/m2. If the MBD is positive, it means that the estimates are overestimating the data and vice versa if 
negative. Their relative metrics, rMBD and rRMSD, are expressed as a percentage of the mean measurements 
value. 

The KSI metric is computed by comparing the cumulative distribution functions (CDF) of the estimates and the 

measurements. If  𝐹 is the CDF of the measurements and  𝐹෠ is the CDF of the estimates, then the KSI metric is 



defined as the integral of their absolute difference as follows, 

    dHHFHFKSI   ˆ
. 

The unit for KSI is the same as the daily irradiation 𝐻, MJ/m2. 

4. Results 

Let us focus first on the MBD and RMSD metrics. The performance for each model in terms of these metrics is 
shown in Tab. 2 (for all the measurements' period). Results are presented for each station and as an average over 
all sites (average site performance). In the last row the standard deviation of the metrics is also shown 
(performance’s site variability or geographical variability). The mean bias is small for both models (on average, 
-0.1% for Heliosat-4 and +0.5% for FLASHFlux). However, when observing each site, the MBD varies 
approximately between ±2% for both models. The highest rMBD values for the NASA model are positive and 
are found in the coastal stations of LB and RC (rMBD ≥ +2.0%), which are the closest sites to the Atlantic 
Ocean. This overestimation phenomenon close to the Atlantic coast was already observed in Alonso-Suárez et 
al. (2013) for the previous NASA SSE (Surface meteorology and Solar Energy) model. This behavior is not 
observed for Heliosat-4 method, for which no pattern arises from inspecting the rMBD values. The performance 
of both models in terms of rRMSD is different: the site average for the Heliosat-4 method is of 10.0% and for 
the FLASHFlux model is of 11.6%. The geographical variability of the performance is similar for both models 
and low (less than 1%). Considering both models, the best performance is observed for the AR site (in the 
North). The scatter plots between the measurements and the estimates for this site are shown in Fig. 1 (a) and 
(b), for CAMS and NASA models respectively. The overall agreement is good, but a small overestimation bias 
is observed for the CAMS estimates at low irradiation values. The uncertainty found for these models is higher 
than locally adjusted models for the region based on GOES-East imagery, which typically have a rMBD 
between ±1% and a rRMSD of around 7% (Alonso-Suárez et al., 2012). 

Tab. 2: Performance indicators for the CAMS and NASA models estimate on a daily basis. 

Code Days 
MBD (MJ/m2) rMBD (%) RMSD (MJ/m2) rRMSD 

CAMS NASA CAMS NASA CAMS NASA CAMS NASA 

LB 2779 -0.2 +0.3 -1.4 +2.1 1.6 1.9 9.6 12.0 

AR 2153 ≈ 0 -0.1 -0.2 -0.5 1.6 1.8 9.1 10.2 

RC 1297 +0.3 +0.3 +1.9 +2.0 1.7 1.9 10.9 12.1 

ZU 1267 -0.1 +0.1 -0.8 +0.8 1.8 2.0 10.9 12.1 

LE 1055 -0.3 -0.2 -1.6 -1.0 1.8 1.9 10.6 11.0 

TA 1155 +0.1 +0.1 +0.3 +0.5 1.7 2.0 10.8 12.6 

PP 797 ≈ 0 -0.1 +0.8 -0.2 1.5 2.0 8.7 11.6 

mean - ≈ 0 +0.1 -0.1 +0.5 1.7 1.9 10.0 11.6 

stdev - 0.2 0.2 1.3 1.2 0.1 0.1 0.9 0.8 

 

Tab. 3 inspects the performance of the FLASHFlux model discriminated by model's version. Due to the 
measurements time span, the only version that can be evaluated in all stations is the 3C (2017-2018). The 3AB 
version (2013-2016) can be evaluated in almost all stations with the exception of the PP site, which only has two 
months of data in the period of this version. The version 2 can only be evaluated in the LB and AR stations, 
which are the sites with larger data statistic. An overall improvement can be seen in the transition from version 
3AB to 3C. The average rMBD is slightly reduced from +0.9% to +0.4%. This overall reduction is not a result 
of the deviations being lower at each station, rather, some sites increase their rMBD while other reduce it, but as 
a whole, the average trend is to improve the bias performance. On the other hand, there is an overall rRMSD 



reduction from 12.5% to 11.1%. This improveme
seen in Tab. 3 that the rRMSD of version 
six sites where the comparison can be done. 
highest improvements are observed for the ZU, LE and TA 
RC stations (the closest sites to the Atlantic Ocean)
values approximately the same for both versions. For version 2, the comparison is not conclusive as the amount 
of sites is reduced. Tab. 3 shows that the MBD is approximately the same in the transition from version 2 to 
version 3AB. The rRMSD is improved for the LB site

Tab. 3: Performance comparison between different versions of the FLASHFlux model

Code 
MBD (MJ/m2) 

V2 V3AB V3C V2

LB +0.4 +0.3 +0.2 +2.4

AR -0.1 -0.1 ≈ 0 -0.6

RC - +0.3 +0.4 - 

ZU - +0.1 +0.2 - 

LE - -0.1 -0.2 - 

TA - +0.3 -0.1 - 

PP - - ≈ 0 - 

mean  +0.1 +0.1 - 

stdev  0.2 0.2 - 

 

      (a) CAMS estimates (AR site)                        

Fig. 1: Performance analysis of the models against reference ground measurements.
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to the Atlantic Ocean) show almost negligible rRMSD gains, being the rRMSD 
mately the same for both versions. For version 2, the comparison is not conclusive as the amount 

shows that the MBD is approximately the same in the transition from version 2 to 
version 3AB. The rRMSD is improved for the LB site but it is downgraded for the AR site. 

comparison between different versions of the FLASHFlux model on a daily basis

rMBD (%) RMSD (MJ/m2) rRMSD

V2 V3AB V3C V2 V3AB V3C V2 

+2.4 +2.2 +1.5 2.0 1.9 1.9 12.2 

0.6 -0.7 ≈ 0 1.7 1.7 1.7 8.5 

 +1.8 +2.4 - 1.8 1.8 - 

 +0.7 +1.1 - 1.9 1.8 - 

 -0.4 -1.4 - 2.1 1.7 - 

 +1.8 -0.5 - 2.1 1.9 - 

 - -0.3 - 2.2 1.8 - 

 +0.9 +0.4 - 2.2 1.8 - 

 1.2 1.3 - 0.2 0.1 - 

                        (b) NASA estimates (AR site)                       (c) FLASHFlux co
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the average value decreases (the normalization value). For partly cloudy days the absolute MBD is reduced in 
comparison to mostly clear sky days, but the improvement in the relative terms (rMBD) is not such high. An 
overestimating bias is observed for NASA estimates under this condition and not for CAMS estimates, which 
exhibit a mixed situation. It can be observed in Fig. 2 (b) than the NASA estimates are, on average, above than 
CAMS estimates for this kind of days, explaining the different MBD trend. The RMSD for condition (ii) days is 
higher than for condition (i) days, being the rRMSD significantly higher: the rRMSD increases from 4.8% to 
10.6% for the CAMS estimates and from 5.2% to 14.0% for the NASA estimates. Again, an overall better 
performance of the CAMS model is observed and the differences between models are more important. Finally, 
for cloudy days both models present the highest metrics, showing overestimating biases and high RMSD values 
(2.3MJ/m2 in absolute terms, resulting in ≈42% in relative terms). Overall, the rMBD is higher for the CAMS 
estimates than for the NASA estimates, but the opposite occurs for the rRMSD. The performance of both 
models is similar under cloudy conditions, but as the rRMSD is similar (42±0.5%) and the rMBD is lower for 
NASA than for CAMS (+19% in comparison with +27%), it can be fairly said that NASA model is preferable in 
this situation. Same conclusion can be obtained by inspecting Fig. 2 (c). 

Tab. 4: Performance indicators for the CAMS and NASA models estimate on a daily basis and different type of days. 

 Days 
MBD (MJ/m2) rMBD (%) RMSD (MJ/m2) rRMSD (%) 

CAMS NASA CAMS NASA CAMS NASA CAMS NASA 

Clear sky          

LB 1077 -0.8 -0.5 -3.5 -2.4 1.2 1.1 5.3 4.7 

AR 968 -0.4 -0.8 -1.7 -3.0 1.0 1.2 4.2 5.0 

RC 427 +0.6 -0.6 -2.7 -2.5 1.0 1.1 4.4 4.6 

ZU 547 -0.9 -0.7 -4.0 -3.1 1.4 1.3 6.2 5.8 

LE 467 -1.0 -0.9 -4.2 -3.9 1.4 1.3 5.8 5.6 

TA 455 -0.5 -0.8 -2.1 -3.4 0.9 1.4 3.9 5.8 

PP 298 -0.5 -0.8 -1.9 -3.3 0.9 1.3 3.6 5.2 

mean - -0.7 -0.7 -2.9 -3.1 1.1 1.2 4.8 5.2 

stdev - 0.2 0.1 1.0 0.5 0.2 0.1 1.0 0.5 

Partly Cloudy          

LB 1106 -0.4 +0.7 -2.5 +4.9 1.6 2.2 10.9 10.7 

AR 735 -0.4 +0.2 -2.4 +1.2 1.8 2.0 10.8 12.5 

RC 550 +0.3 +0.6 +1.9 +4.1 1.6 2.1 10.7 14.0 

ZU 445 -0.3 +0.6 -1.7 +4.3 1.7 2.4 11.0 15.6 

LE 339 -0.8 +0.1 -4.7 +0.5 1.8 2.3 10.9 14.3 

TA 417 -0.1 +0.2 -0.8 +1.4 1.7 2.2 10.4 13.5 

PP 324 +0.1 +0.1 +0.3 +0.4 1.6 2.3 9.4 13.2 

mean - -0.2 +0.4 -1.4 +2.4 1.7 2.2 10.6 14.0 

stdev - 0.4 0.3 2.1 1.9 0.1 0.1 0.6 1.0 

Cloudy          

LB 558 +1.2 +1.3 +21.7 +23.1 2.0 2.5 35.8 46.5 

AR 450 +1.4 +0.8 +23.0 +13.5 2.2 2.3 37.8 39.1 



RC 300 +1.6 

ZU 276 +1.7 

LE 251 +1.7 

TA 305 +1.6 

PP 174 +1.4 

mean - +1.5 

stdev - 0.2 

 

      (a) Mostly clear sky days.                                     

Fig. 2: Measurements and model's estimates scatter plot for the AR site and each type of day.

The KSI metric provides a different view in the analysis: the statistical dissimilarity. The results are shown in 
Tab. 5 for all the days (last two columns) and discriminat
of the MBD and RMSD analysis but, overall, the NASA 
CAMS model from the statistical point 
partly cloudy days the KSI is better for the 
KSI metric for cloudy days is particularly interesting, as can be 
CDF and the measurement's CDF (above) and their absolute difference (below) are shown. The main 
discrepancy in the model's comparison is the high CDF difference 
values (cloudy days). This is the same overestimation phenomenon observed 
the KSI perspective this behavior is significant enough to impact the overall rate of the CAMS data set.

Tab. 5: KSI metric (in MJ/m

Code 
Mostly clear sky 

CAMS NASA CAMS

LB 0.8 0.5 

AR 0.4 0.7 

RC 0.6 0.6 

ZU 0.9 0.7 

LE 1.0 0.9 

TA 0.5 0.8 

PP 0.5 0.8 

mean 0.7 0.7 

stdev 0.2 0.1 

+1.0 +29.0 +18.8 2.4 2.3 43.9

+1.0 +31.3 +19.3 2.4 2.3 46.6

+0.9 +30.3 +16.4 2.5 2.0 44.7

+1.2 +29.1 +22.4 2.5 2.6 45.6

+1.2 +22.9 +19.7 2.1 2.5 36.0

+1.1 +26.8 19.0 2.3 2.4 41.5

0.2 4.0 3.3 0.2 0.2 4.7

                                     (b) Partly cloudy days.                                      (c) Cloudy days.

Measurements and model's estimates scatter plot for the AR site and each type of day. 
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metric (in MJ/m2 for the CAMS and NASA models estimates on a daily basis. 

Partly cloudy Cloudy All days

CAMS NASA CAMS NASA CAMS 

0.4 0.8 1.2 1.3 0.5 

0.4 0.4 1.4 0.8 0.4 

0.3 0.7 1.6 1.1 0.5 

0.3 0.8 1.7 1.0 0.5 

0.7 0.3 1.7 0.9 0.8 

0.4 0.5 1.6 1.2 0.4 

0.4 0.4 1.4 1.2 0.3 

0.4 0.6 1.5 1.1 0.5 

0.1 0.2 0.2 0.2 0.2 

43.9 41.6 

46.6 43.4 

44.7 37.1 

45.6 47.4 

36.0 43.2 

41.5 42.6 

4.7 3.7 

 

Cloudy days. 
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exhibit mixed biases for partly cloudy days. The CAMS estimates are preferred for clear sky and partly 
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clear sky days and a systematic overestimation is observed for cloudy days. For the NASA data set the 
overestimation is also present for partly cloudy days. This is not observed for the CAMS estimates, which 
exhibit mixed biases for partly cloudy days. The CAMS estimates are preferred for clear sky and partly 
cloudy days. The difference between models' performance is not high for the former but is significant for the 
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The uncertainty found in the region for these two models is higher than the one observed for 
East satellite images, like the BDJPT model (Alonso-Suárez et al., 

and rRMSD is around 7% (on a daily basis against independent data sets, not 
used for training). The different performance can be explained by the model’s local-adaptation and the use of 

 

CDF comparison (NASA). 

 

Absolute CDF difference (NASA). 

A performance comparison between the available daily GHI estimates at the CAMS and NASA platforms 
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imates, being slightly higher for the NASA estimates. Further, an overestimation 
affected by their proximity to the Atlantic Ocean, 
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region than the previous one (3AB). The site 

11.6% for the NASA estimates. From the 
int of view, the results show a small overall better agreement for the NASA data set. This 

difference is explained due to an overestimation bias observed for the CAMS data set for low daily 
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 locally-adjusted 
Suárez et al., 2012), 

and rRMSD is around 7% (on a daily basis against independent data sets, not 
adaptation and the use of 



GOES-East satellite images, which have a smaller pixel size for the region than the MSG satellite. From the 
end-user perspective, it is preferable to rely on estimates from the previously locally-adapted model (BDJPT) 
than the publicly available data sets. 
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