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Abstract

In many applications like meteorology� atmospheric pollution studies� eolic
energy prospection� estimation of instantaneous velocity �elds� etc�� one faces
the problem of estimating a velocity �eld that is assumed to be incompressible�
Very often the available data contains just a few and sparse velocity measure�
ments and may be some boundary conditions imposed by solid boundaries� This
inverse problem is studied here� and a new method to provide a numerical solu�
tion is presented� It is based on the Fourier transform� and allows to include the
incompressibility constraint in a simple way� leading to an unconstrained least
squares formulation� usually ill�posed�

The Tikhonov regularization is applied to stabilize the solution� as well as to
provide some smoothness in the estimated �ow� As a consequence� the numerical
solution will generally approximate the measurements up to a threshold given
by the size of the regularization parameter� Moreover� if the available velocity
measurements come from a smooth velocity �eld then the numerical solution
can be usually constructed using just a small number of Fourier terms�

The choice of the regularization parameter is done using the L curve method�
balancing the perturbation and regularization contributions to the error�

Perturbation bounds �i�e��� bounds for the condition number of the matrix
from the Least Squares formulation are included�

Numerical experiments with test problems and real data from the southern
part of Uruguay are carried out� In addition� the results are compared with
related work and the results are satisfactory�
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Chapter �

Introduction

This Master thesis considers the problem of �nding a suitable mass consistent
�i�e��� a divergence free velocity �eld given a �nite number of measurements� and
possibly� some boundary conditions� This is a �ow estimation problem� which
belongs to the family of Inverse problems� and in addition it is Ill�posed� To treat
this last feature� we use a regularization method widely known as the Tikhonov
regularization� In this introduction we try to clarify what we understand by
this concepts� as well as give a brief outline of the work�

��� Inverse problems

In practical applications� the interpretation of experimental data yields impor�
tant information� Some physical quantities do not render an easy way to be
measured� and their e�ect is what we can only see� Beside this� linking the
e�ect with the causes we usually have a mathematical model� which may be
derived from physical laws or other sources� We now recall what a direct prob�
lem means� given a total description of the causes �nd the e�ect� On the other
hand� �nding the solution of an inverse problem involves determining unknown
causes based on observation of their e�ects�

One can intuitively understand what the solution of a common inverse prob�
lem in human vision involves� When we see� we derive the size� the shape� the
surface �nish and the structure of an object from the scattering and absorption
of the light perceived by the eye� As simple as it may seem� it involves a com�
plex eye structure and the ability of the brain to process such information� This
ability improves during learning processes� and it is necessary to use it with the
information o�ered by the eyes to obtain good results�

There are di�erent kind of Inverse problems� For example� some of them
seek initial conditions in a known dynamical system� given its evolution during
a certain period of time� A simple example is the cannon ball problem� The
cannon man has to determine the shooting angle in order to hit a given target at
a given position� Related to this are the boundary inverse problems� where we

�
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want to �nd some missing boundary condition given the evolution of a system�
possibly governed by a Partial Di�erential Equation �PDE�� The inverse heat
equation problem is a famous example� where we want to determine the income
surface heat �ux� given the evolution of the temperature pro�le inside a body�

Others are the classical parameter estimation� known as coe�cient inverse
problem� Linked with this is the kind of problem we deal with in this work�
Given the observations� and a parametric model to explain them� the task is
to �nd the parameters in some optimal way� For more examples of engineering
applications from inverse problems see ����

��� Ill�posed problems

Ill�posed problems appear frequently in science and engineering� Their theory
is well developed in the literature �	
�� and still very much alive among vari�
ous research groups� This sort of problems is usually related with three main
di�culties�

�� The condition number of the problem is large�

	� Solving a �nearby� well conditioned problem derived from the �rst does
not necessarily lead to an useful solution�

�� Care must be taken when imposing additional constraints�

The concept of ill�posedness goes back to Hadamard in the beginning of the
twentieth century ����� Shortly� the de�nition says that a problem is ill�posed
if its solution is not unique or if it does not depend continuously on the data�
This means that a tiny perturbation in the data may lead to a large change
in the solution� It is widely known that nature o�ers a non ending source of
perturbations� so we can hardly expect to compute with reasonable accuracy the
solution of an ill�posed problem unless we add more information to determine
the solution� Hadamard believed that ill�posed problems were rare in nature�
somewhat arti�cial� but that is not the case� There is an enormous amount
of applications� ranging from integral equations� image processing� tomography
technology� astronomy� seismology� to atmospheric �ow estimation�

For �nite dimensional problems� the de�nition of ill�posedness becomes wider�
allowing highly sensitive problems� but with continuous dependence of the solu�
tion with respect to the data� The classical example� which is also related with
the subject of this thesis is the linear least squares problem

min
x
kAx� bk�� A � Rm�n �����

Here we can say that problem ����� is ill�posed if the singular values of the
matrix A decay �gradually� to zero and the ratio between the largest and the
smallest singular value is large� The latter implies that the matrix A is ill
conditioned� which means that the solution is very sensitive to perturbations�
Typical examples of �nite dimensional ill�posed problems are obtained from the
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discretization of in�nite dimensional ill�posed problems like partial di�erential
equations and integral equations� We now remark what we said before about the
computability of the solution of an ill�posed problem� The fact that a problem is
ill�posed does not necessarily imply that we cannot compute an useful solution�
but that we must be careful when designing the numerical method to �nd it�

��� Regularization methods

The main di�culty we face when solving an ill�posed problem is that its solution
is essentially indeterminate� This indetermination happens in the subspace as�
sociated with small singular values� where any small perturbation� coming from
data errors or roundo� error during computations is highly ampli�ed�

Numerical regularization theory pursues to provide e�cient and numerically
stable methods for including proper side constraints� in order to achieve stabi�
lized and at the same time valuable solutions�

A classical tool in this area is the Tikhonov regularization ����� Keeping in
mind the linear least squares problem ������ the Tikhonov regularization de�nes
the regularized solution as the optimum of the following weighted problem�

x��� � argmin
�kAx� bk�� � �kBxk��

�
���	�

where B is a linear operator� In addition� the null spaces of A and B intersect
trivially� Intuitively� one can see that the term kBxk�� introduces more informa�
tion into the problem� Its importance is weighted by a positive regularization
parameter �� The reader will realize that once we regularize with a strictly pos�
itive � we lose the possibility of attaining kAx � bk� � 
� However� by doing
so we improve the stability of the problem� Typically� the operator B is the
identity� or some di�erence discretization of a derivative operator� The choice
of the B operator is motivated either by requiring small size in the solution or
a smooth solution� When B � I it is said that ���	� is in standard form�
A large value of � will favour the regularization term in the minimization� o�er�
ing a large residual and a small value of kBxk�� The opposite behaviour� with
small residual and large kBxk� begins to dominate as we shrink the regulariza�
tion parameter� A good regularization will o�er a su�ciently small residual� and
at the same time the obtained solution will be close to the solution of the unper�
turbed underlying problem� On the other hand� the regularization parameter
governs the sensitivity of the regularized solution� Shrinking the regularization
e�ect makes the problem more sensitive�

As the reader may have already guessed� the actual choice of the regulariza�
tion parameter plays an important role in this subject� There are many methods
for doing so� which will be discussed later on�

��� Flow estimation

In some applications like weather prediction� advection di�usion of pollutants in
the atmosphere� eolic energy prospections or instantaneous velocity �eld estima�
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tion� we face the problem of estimating a velocity �eld from given measurements�
In Uruguay� the problem of eolic energy prospection has been analyzed by many
people� As an example� the National Direction of Energy carried out site mea�
surements in several points of the country� Nevertheless� it is uneconomical
to do massive measurements all over the territory� so a common problem is to
�extend� a few number of measurements� usually coming from metereological
stations� in order to generate a �ow approximation de�ned in all the territory�
This problem belongs to the so called inverse problems� which are usually chal�
lengly ill�posed� since in general the amount of available data is not enough to
determine a well de�ned solution� Therefore� it is important to incorporate as
much as possible of the physical information we have a priori� like boundary
conditions and when it is possible� the incompressibility property of the �ow�

Flow estimation in the Uruguayan case has been already considered by Carlos
L�opez ���� following the work of Sherman ���� and Sasaki ��
�� In that work the
estimated �ow is obtained roughly by �rst interpolating the data and then mak�
ing a weighted L� projection of the interpolant onto a subspace of incompress�
ible �ows� The projection is carried out using a dual problem whose solution
is under certain hypothesis the multiplier associated with the incompressibility
constraint� The numerical technique includes various kind of interpolation and
the solution of the stationary heat equation using �nite elements�

In the present work we use a di�erent formulation� based on the Fourier
transform� which allows to substitute the incompressibility constraint without
introducing a Dual Problem� The numerical technique is basically a Tikhonov
regularization implemented as an unconstrained least squares problem�

��� Outline of the thesis

As we said before� this thesis considers the problem of �nding a suitable mass
consistent �i�e��� a divergence free velocity �eld� given a �nite number of mea�
surements� and possibly� some boundary conditions� With respect to our work�
the approximate �eld that we propose is a linear combination of �elds which
automatically satisfy the incompressibility relation ux � vy � 
� The construc�
tion of such �elds is based on the Fourier transform� which is able to handle the
incompressibility constraint in a simple way�

The mentioned superposition is computed to meet the data set and the
boundary conditions� which are enforced as equations to ful�ll �inside� the
computational domain� That computational domain is chosen as a square con�
taining all the data locations� as sketched in Figure ���� Beside this� we impose
periodic boundary conditions in the boundary of the computational domain�
The data �tting problem is posed as an unconstrained linear least squares prob�
lem� We have chosen a Tikhonov regularization ���� to ensure some smoothness
in the approximation and at the same time to stabilize the problem� There�
fore� we are able to bound and control the matrix condition number of the
least squares problem� roughly in terms of a regularization parameter and the
dimension of the Fourier subspace where we seek the solution� Moreover� the
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regularized solution depends smoothly on the regularization parameter� and we
are able to make extrapolations� This unregularized limit will interpolate the
data whenever this is possible �i�e�� when we allow a su�ciently large number
of frequencies in the solution� However� when we allow data contaminated with
errors� there exist di�erent criteria for choosing the regularization parameter�
Some of them� in particular the L curve method� are discussed in this work� It
relates the noise present in the data with the actual amount of regularization�

The number of Fourier components needed will depend in general on the
smoothness of the �ow we want to represent� Thus� for smooth �ows� the
numerical solution will contain just a few terms�

Here we have been working with two dimensional examples� but the tech�
nique can be extended to higher dimensions in a straightforward way� As an
example of a real 	D problem� in Figure ��� we show the data from six weather
stations in Uruguay� while computational results can be seen in Figure ��	� To
compute the solutions of the di�erent cases we have developed a Matlab �	��
code� which can handle both data points and slip boundary conditions� as well
as an analysis of the e�ect of the regularization parameters�

y

Boundary conditions
to enforce

Computational Domain

Measurements

x

Figure ���� Left� Data for one wind �eld case in the southern part of Uruguay
Right�The computational domain contains all the data point locations and the
boundaries where we want to impose slip boundary conditions� In addition�
periodic boundary conditions are imposed at the boundary of the computational
domain

The thesis work is organized as follows� First� in Chapter 	 we make a
short overview of related work on mass consistent �ow estimation� The great
majority are based on extending the given data to the whole domain by a
suitable interpolation� and then �tting an incompressible �ow to the interpolated
�ow� However� care must be taken when imposing Boundary Conditions in the
formulation�

In addition� we comment some regularization techniques� introducing also
the singular value �SVD� decomposition and its generalization� the General�
ized Singular Value Decomposition �GSVD� ��	� � which are basic tools for this
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purpose� The account of regularization techniques that we o�er there follows
Hansen�s work� Sensitivity of the solution with respect to perturbations is an
important issue� and its analysis can be done with the aid of the mentioned
factorizations� For this reason� the condition number of the formulated problem
is analyzed in Appendix A� yielding perturbation bounds for the solution �i�e���
bounds that link data perturbations with perturbations in the solution� These
are related the size of the regularization parameter� There is also a geometric
interpretation of a necessary condition for the regularization operator B in the
Tikhonov regularization� The proofs were done independently from Hansen �����
since the author was not aware of that work� Here the arguments rely on the
SVD decomposition� whereas the bounds in ���� are based on the Generalized
Singular Value Decomposition ��	��

By means of the sensitivity analysis one can see that in presence of perturbed
data there is no point in shrinking too much the regularization parameter� In
section 	�	�	� as well as in Appendix B� we consider the e�ect of the regular�
ization parameter� introducing also the use of the extrapolation with respect to
this parameter� This leads to an optimal value for the regularization parameter�
which is a standard problem in the area of numerical regularization� In Chapter
� we o�er the mathematical formulation and in Section ��� we present brie�y
some implementation issues�

Then� we apply the method to some model problems� some of them with
known solution� as well as a real data case� coming from the wind �eld estima�
tion problem in the southern zone of Uruguay� The results of this last case is
compared with those o�ered by L�opez V�azquez ����� showing satisfactory levels
of agreement even with much less freedom degrees�
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Figure ��	� A closer look to the example presented in Figure ����
Left� Zoomed view of available data� Right� Computational results�

Figure ���� Another example of velocity �eld estimation� Now there exist also
boundary conditions�
Left� Available Data� There is only one velocity measurement� and the �ow can�
not traspass the given ellipse� Right� Computational Results with the proposed
method�



Chapter �

Background

��� Variational formulations on �ow estimation

The purpose of this section is to comment shortly other works on mass consistent
velocity �eld estimation� Most of them follow Sasaki ��
�� and are based on
extending the available data

��Pi� � ��i� for i � � � � �Nd

to the whole domain by a suitable interpolation� and then �tting an incom�
pressible �ow to the extended �ow by minimizing a weighted L� norm of their
di�erence�

Let �� � D � Rd � Rd be a �ow obtained by �e�g�� interpolation of the
data� and � the desired approximate �ow� Sasaki ��
� proposed to take � as the
solution of

���
minJ��� �

R
D

�
�k���� ���k��dx

s�t�
r � � � 
� in D

�	���

In the above� � denotes a scaling diagonal matrix with strictly positive weights�
A Lagrangian relaxation of the incompressibility constraint

r�� � 
 �	�	�

gives the relaxed subproblem

 ��� � min
�

J���� �

Z
D

�
�

	
k���� ���k�� � �r � �

�
dx

where � � Dc � R is a dual function� The corresponding dual problem can be
then de�ned as

��
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max
�
 ���

Since problem �	��� is strictly convex� it can be assured that once we �nd the
optimal Lagrange multiplier associated with the incompressibility constraint ��

the estimated �ow can be obtained from the solution of

� � argmin
�

J�����

Actually� one may also want the approximate �ow � to satisfy boundary
conditions� such as a slip boundary condition at a solid wall� on a certain subset
of �D� That can be expressed as

��� n� � 
� on �D� � �D �	���

where ��� �� � Rd � Rd � R is the usual inner product in Rd� Then� both
constraints �	�	� and �	��� are relaxed to �nd the Euler�Lagrange equation� This
is done by introducing the multipliers � for �	�	� and � for �	��� respectively�
Thus� the functional for the relaxed problem is

J������ �

Z
D

�
�

	
k���� ���k� � �r��

�
dx�

Z
�D�

���� n�ds

The �rst variation for this functional yieldsZ
D

�
���� � ��� �r�� h�dx� Z

�D�

��h� n�ds �

Z
�D�

��� ���h� n�ds � 


where h � D � R
d denotes a perturbation to the original �ow and �D�� �D�

is a disjoint partition of the boundary �D� Therefore� since h is arbitrary we
obtain the conditions

����� ����r� � 
� on D

� � � � 
� on �D� �Solid Wall�

� � 
� on �D� �Free Boundary�

In other approaches �see for example ����� �	��� �	��� ����� ���� and ������ a
boundary condition for the Lagrange multiplier �

��

�n
� �r�� n� � 
� on �D� �	���

is introduced as a way to enforce the slip constraint ��� n� � 
 �	���� The reader
will realize that �	��� is not a natural boundary condition for the minimization
of the functional� since it implies

����� � ���� n� � �r�� n� � 
� on �D� �	���
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which clearly does not guarantee �	��� in general� unless all the diagonal elements
of � are equal �which is not the case in those approaches� and the interpolant
�ow �� ful�lls � ��� n� � 
� It is our impression that the use of such boundary
condition may introduce spurious solutions �i�e��� � obtained in this way will
not be the desired Lagrange multiplier�

Using boundary condition �	���� they �rst solve the problem���
�r� �� � r�����r��� on D
� � 
� on �D�
��
�n � 
� on �D�

�	���

for the incompressibility multiplier � and after that obtain an approximation
for the �ow � in terms of � and the interpolated �ow ��

� � ��� ���r� �	���

Observe that problem �	��� can be seen as a stationary heat equation�with �
playing the role of the temperature �eld� This fact makes the approach followed
in ���� easy to implement� since for the heat equation there exist software that
handles even complicated geometry�

In order to avoid the undesired boundary condition in �	��� and �nd the
right one for �� it is enough to use �	���� yielding


 � ��� n� � �b�� n� � ����r�� n�� on �D�

which gives ����r�� n� � ��b�� n�� on �D�� as the boundary condition to be
applied in �	����

In our proposal this boundary condition problem does not appear� since we
are able to substitute directly the incompressibility constraints obtaining an
unconstrained formulation� which does not need the auxiliary problem for � �

There are other formulations inspired in the work of Sasaki ��
�� but based
on an integrated version of the continuity equation along the vertical axis� like
those presented in ����������� The variables are mean values of the horizontal
velocities within some mixing zone� and the vertical velocity at the top of the
top boundary� Therefore� the continuity equation reads

ht � �hu�x � �hv�y � w � 
 �	���

where
h � h�x� y� t� is the inversion height of the inversion base above topography�
u � u�x� y� t� and v � v�x� y� t� are horizontal components of the mean velocity
within the mixing zone� and w � w�x� y� t� is a vertical out�ow velocity through
the top boundary�

If we denote � �

	
UV
w

�A �

	
huhv
w

�A then the corresponding relaxed functional

to be minimized for every time t is
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 ��� t� � min
�

J��t��� �

Z
D

�
�

	
k���� ���k�� � � �ht � Ux � Vy � w�

�
dx

where � � Dc � R is a dual function� After carrying out the �rst variation we
arrive to the Euler Lagrange equations

U � �U � �x	�
�
��

V � �V � �y	�
�
��

w � �w � �	��
��

Applying the above relations together with �	��� yields the following partial
di�erential equation for �

r �
�
�

��
�

r�
�
� �	��

� � ht �r � �� � 


with identical boundary conditions as in �	���� Although the Euler Lagrange
equations may look similar to those derived before in �	��� such formulations
do not exhibit problems with slip boundary conditions� However� this averaged
formulation is not capable to compute three dimensional e�ects of the �ow�

Another method� due to Liu and Goodin�	�� is based on a linear iterative
procedure� In that algorithm the measured wind values are held �xed while
adjacent values are adjusted in order to reduce the divergence at every point�
Once converged� the velocity �eld will satisfy a discretized version of

�hu�x � �hv�y � 
 �	��

If we let h be a constant value� then the simplest version of this procedure�
which contains the key idea of the method� can be described as follows� Let
Un� V n denote vectors containing the mesh values of the estimated velocities at
the nth iteration� Thus� a discretized divergence at every interior mesh point is
computed by

Dn �
�
E�x�E���x

��x

E�y�E���y
��y

�
Un

V n

�
where E�x� E�y denote the classical shift operators in x and y directions� After
that� the velocity components are updated as shown below

�
Un��

V n��

�
�

�
Un

V n

�
�

�
F�x

F�y

�
Dn �

�
Un

V n

�
�

�
F�x

F�y

��
E�x�E���x

��x

E�y�E���y
��y

�
Un

V n

�
where F�x� F�y are constant diagonal matrices� If one value comes from a mea�
surement point then it is kept �xed along the iterations� and its corresponding
entry in the F matrix will be zero� For the remaining values� the entries of these
matrices are chosen by consistency considerations�
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A study of the convergence with respect to the number of iterations is in�
cluded� However� since the only physical equation considered is �	�� and no
regularization has been done the numerical results� apart from being sensitive
with respect to the initial iteration �eld are also very sensitive to perturbations�
looking wiggly and unnecessarily complex�

On the other hand� our formulation is motivated by the alternative problem�

�����������
min

R
Dc

Jr���

s�t�
r�� � 
� on D
� � ��jobserved points

��� n� � 
� on �D�

�	��
�

where the functional Jr��� to minimize will assure uniqueness and some smooth�
ness of our approximation� However� the interpolation formulation �	��
� is not
useful in presence of data errors� since it is very sensitive� Therefore� we keep it
in mind as the underlying unperturbed problem� solving a regularized version
of it�

In accordance with regular practice in inverse problems� this is just one
way of choosing one solution from the set of those which satisfy the natural
constraints of the problem� and its quality will be studied in what follows� The
intuitive idea behind� is to strongly respect the original data� and at the same
time to obtain a smooth incompressible �ow�

��� Regularization

����� Singular Value Decomposition

Before we enter into the description of the di�erent regularization approaches we
quote the celebrated singular value decomposition ���	�� Theorem 	����� page����
This decomposition can be used to solve the least squares problem� as well as
to analyze the sensitivity of its solution�

Theorem � Let A � R
m�n be a real rectangular matrix then there exist or�

thogonal matrices

U � �u�� � � � � um� � Rm�m and V � �v�� � � � � vn� � Rn�n

such that

UTAV � ! � diag�
�� � � � � 
q� � Rm�n� with q � min�m�n�

and 
� � 
� � � � � � 
q � 


�

In the present work� we deal with least squares formulations where we have
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m � n� The numbers 
i are called the singular values of the matrix A� while
the vectors ui� vi are known as the left and right singular vectors respectively�
The matrix A can be expanded in a neat way using the SVD decomposition as
follows�

A � Ur!rV
T
r �

rX
i��


i ui v
T
i

where the number r � q denotes the rank of A �i�e��� 
r �� 
� 
r�� � 
�
In the case of discrete ill posed problems� there is a characteristic feature

in the set of singular values� they decay gradually to zero� As we increase the
dimension of the problem� the smallest singular value becomes closer to zero�
and the number of relatively small singular values increase�

The SVD gives very useful information about the ill conditioning of the
matrix A� In fact� the 	�norm condition number can be computed as

���A� �

�

r
� kAk�kAIk�

where AI denotes the pseudo inverse of the matrix A� For more information
about the de�nition of the pseudo inverse see ��	�� page 	��� When we multiply
A times a vector x the components of x associated with small singular values�
often associated with high frequency� are dampened out by 
i as follows�

Ax �
rX

i��


i �v
T
i x�ui

Conversely� when we face the problem of reconstructing x from the vector
b � Ax it is intuitive to expect that small perturbations in b may lead to great
changes in x if they happen in the subspace associated with small singular
values� The fact that usually the errors in the data appear as high frequency
linked with small singular values tells us that unless we prevent it� those errors
will be magni�ed in x�

In the next paragraph� we assume that there are no exactly zero singular
values �i�e��� that A is full column rank� With this assumption� the solution is
unique� and we are able to carry out a perturbation analysis without introduc�
ing further information� This assumption is natural in regular practice� since
roundo� or other sources of error makes hard to obtain exactly zero singular
values� Using the SVD it is easy to show that the solution of the linear least
squares problem ����� reads

xLSQ �
nX
i��

uTi b


i
vi �	����

which clearly shows the ampli�cation e�ect of the small singular values on the
solution xLSQ� Moreover� we can see by direct perturbation of the data vector
b how the worst case associated with the condition number of A appears�

Let us choose b � 
�u�� Since �	���� holds and from the fact that the
matrix V is orthogonal we obtain x � v�� On the other hand� if we perturb
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b with �b � 
nun the corresponding perturbation in the solution is �x � vn�
Thus� the quotient of the relative perturbations of solution and data is

k�xk�
kxk�
k�bk�
kbk�

�

�

n

� ���A� �	��	�

More generally� when perturbations in the matrix A are allowed� a stan�
dard perturbation bound for the full rank least squares problem ����� �see �	��
Theorem ���� is given by

kx� �xk � ���A�

�� ���A�
k�Ak
kAk

�k�Ak
kAk kxk�

k�bk
kAk � ���A�

k�Ak
kAk

krk
kAk

�
�	����

where the condition number ���A� still ampli�es the perturbations in the

data� In the above� r � Ax � b� k�k � k�k� and kAIkk�Ak � ���A�
k�Ak
kAk  ��

Observe that when the residual r is nonzero there is also a perturbation which
is ampli�ed by ����A�� This makes things much more sensitive for ill�posed
problems�

Since the Fourier coe�cients of the right hand side uTi b do not shrink to zero
but keep above some threshold due to the presence of errors in b the solution
is dominated by small singular values� usually looking completely random� At
this point� regularization problems can be stated as eliminating� or �ltering
out the undesired contributions corresponding to small singular values� What
really matters for the �ltering to work is to have a su�ciently fast decay in the
Fourier coe�cients of the unperturbed right hand side� To illustrate the need
for this� let us consider the singular value decomposition of a compact operator
K�s� t� �

P�
i�� 
iui�s�vi�t� and the problem inff�L� kKf � gkL� � where the

right hand side g can be written as g�s� �
P�

i�� �iui�s�� Then� if we want f to
be square integrable the necessary and su�cient condition is

�X
i��

�
�uTi g�


i

��

	� 
i � 
 �	����

Therefore� the quotient �uTi g�
�i

must decay su�ciently fast to zero for a square in�
tegrable solution to exist� The above condition is known as the Picard Condition
����� The discrete version of this� due to P� C� Hansen����� can be expressed by
means of the Generalized Singular Value Decomposition� as will be seen below�

����� Generalized Singular Value Decomposition

The Generalized Singular Value Decomposition �GSVD� of the matrix pair
�A�B� is a generalization of the SVD decomposition of the matrix A� It is
used here to analyze the dependence of the regularized solution with respect to
the regularization parameter� as well as to provide sensitivity bounds for the
solution�
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Theorem � Let A � R
m�n� B � R

p�n with m � n � p� Moreover� assume

that rank

��
A
B

��
� n and denote q � rank�B� � p� Then� the GSVD is a

decomposition of the form

A � U

�
! 


 In�q

�
X��� B � V �M� 
� X��� �	����

where U � Rm�n and V � Rq�q have orthogonal columns �i�e�� UTU � In and
V TV � Iq� The matrix X � Rn�n is non singular� and ! and M are q � q
diagonal matrices� ! � diag�
�� � � � � 
q�� M � diag���� � � � � �q�� Furthermore�
the diagonal entries of ! and M can be ordered in the following way


 � 
� � � � � � 
q � �� � � �� � � � � � �q � 

and normalized such that


�i � ��i � �� for i � � � � � q

Furthermore� the singular values of the matrix X�� equal the singular values

of the matrix

�
A
B

�
The generalized singular values �i of the matrix pair �A�B� are de�ned as

the quotients

�i � 
i	�i� for i � �� � � � � q

and they appear in non�decreasing order�

�

For a proof see Bj"orck ���� theorem ��	�	� page ����
Observe that the above decomposition can be written as

A �
Pq

i�� ui
iy
T
i �

Pn
i�q�� uiy

T
i

B �
Pq

i�� vi�iy
T
i

�	����

where the vectors yTi denote the rows of X
�� �i�e��� yTi xj �

�
� if i � j

 otherwise

It is easy to see from �	���� that the last n � q columns of the matrix X
are basis vectors of the null space of B� On the other hand� if rank�A�  n
then 
i � 
 for � � i � dim�ker�A�� and the corresponding columns of X
make a basis of the null space of A� Therefore� the columns of the matrix X
contain enough information to characterize the null spaces of both A and B�
This tells us that if the angle between the subspaces ker�A� and ker�B� is small�
the matrix X will be near singular and its condition number large�

Here is worth to realize that by an abuse of notation� the matrices U� V�!
have the same name as those appearing in the SVD of A �theorem ��� but in
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general they are not the same� In particular� when B � In the generalized
singular values coincide� up to a permutation� with the usual singular values� as
well as U� V are identical to the U� V from the SVD up to a column permutation�
In general� the Singular Values will not coincide with their corresponding gen�
eralized Singular Values� but when the matrix kBIk� is small they are closely
related� being of the same order of magnitude �����

As mentioned in the previous subsection� there exist a discrete version of the
Picard condition that is needed to obtain useful results from regularization�����
Basically� it says that if the Fourier coe�cients juTi bj of the unperturbed right
hand side decay faster than the generalized singular values �i then the regu�
larized solution x��� approximately exhibits the same properties as the exact
solution of the unperturbed problem� The decay in the Fourier coe�cients need
not be monotonic as long as� on the average� is faster than �i� This� if kBIk�
is relatively small� can also be written in terms of the usual singular values of
the matrix A� On the other hand� it is not needed to check the discrete Picard
condition for all the generalized singular values� Instead� it is only needed to so
if they are numerically nonzero �i�e��� above a threshold related with the error
level in A� This of course is of no practical use as long as we need the unper�
turbed right hand side to verify the property� However� as Hansen points out� if
the underlying problem satis�es the Picard condition then one can often make
the regularized perturbed version to satisfy the Picard condition�

As a direct application of this decomposition to perturbation analysis in the
Tikhonov regularization ���	� we include a result from �����

Theorem � Let �A and �b denote perturbations of A and b respectively� and
let �x��� denote the perturbed regularized solution of

mink�A� �A��x � �b� �b�k�� � �kBxk��
Then� if 
  � � � and the intersection of the null spaces of A and B is trivial

�i�e���

�
Ap
�B

�
is full column rank

kx���� �x���k � ��

�� ��
k�Ak
kAk

�
�� � ���X��

k�Ak
kAk kx���k�

k�bk
kAk � ��

k�Ak
kAk

kr�k
kAk

�

where �� � kAkkXk	p��
Moreover� if q � n and the matrix B is nonsingular the following sharper bound
holds

kx���� �x���k � ���

�� ��� k�AkkAk

�
�� � ���B��

k�Ak
kAk kx���k�

k�bk
kAk � ���

k�Ak
kAk

kr�k
kAk

�

where now ��� � kAkkB��k	p�
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�

Using the GSVD decomposition� the Tikhonov regularized solution can be
written as�

x��� � X

��
!� � �M�

���
! 



 In�q

�
UT b �

qX
i��

��i
��i � �

uTi b


i
xi �

nX
i�q��

�uTi b�xi

�	����

where xi� i � �� � � � � n denote the columns of the matrix X� This expansion
looks similar as what we did with the SVD in the full rank case� Nevertheless�
here we can observe the dampening e�ect of the so called ��lter factors�

fi �
��i

��i � �

that ��lters out� the contributions to x��� corresponding to small �i �i�e��� less
than

p
��

In addition� it can be checked that

kBx���k�� �
qX

i��

�
��i

��i � �

uTi b


i

��

�	����

kr���k�� � kAx���� bk�� �
X

fi���i�q�	i
	g

�
�

��i � �
uTi b

��

� kr�
�k�� �	���

where r�
� is that component of the right hand side b which is outside the range
of A� Its norm is sometimes called incompatibility measure�

����� The L curve

The L curve method is a classic graphical tool to analyze regularization prob�
lems� It was �rst introduced by Lawson and Hanson �		� and Miller �	��� The
name refers to its shape� and it is used to choose the value of the regularization
parameter� In double logarithmic scale� the norm of the regularization term
kBx���k� is plotted against the residual kAx��� � bk� as shown in Figure 	���
The vertical part of the curve corresponds to small values of the regularization
parameter� where kBx���k� is very sensitive with respect to the regularization
parameter� On the other hand� the horizontal part of the curve corresponds to
large values of the regularization parameter� where the residual kAx���� bk� is
the sensitive term�

The following theorem from ��� yields the monotonicity property of the L
curve� as well as another characterization of its points�
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Theorem � Let x��� denote the solution of minkAx � bk�� � �kBxk�� Then
kBx���k� is monotonically decreasing function of kAx���k� and any point ���� ���
on the curve �kAx���� bk� kBx���k� is a solution of the following two inequality
constrained least squares problems�

�� � minkAx� bk� subject to kBxk� � ��� 
 � �� � kBx�
�k� �	�	
�

�� � minkBxk� subject to kAx� bk� � �� kr�
�k � �� � kr�	�k� �	�	��

�

To see the solution dependence more carefully� let x denote the exact solution
to the unregularized problem with the exact right hand side b� Then� let e be
a perturbation in the right hand side and denote by �x��� the solution of the

regularized problem corresponding to the perturbed right hand side �b � b� e�
Direct application of �	���� yields

�x���� x �

	
 qX
i��

fi
uTi e


i
xi �

nX
i�q��

�uTi e�xi

�A
� �z �

perturbation error

�

qX
i��

�fi � ��u
T
i b


i
xi� �z �

regularization error

�	�		�

where fi �
	�i

	�i ��
are the Tikhonov�s �lter factors� Now� we will motivate the

dependence of the solution with respect to � specially for small singular values�
that is �i  ��

For large values of � �i�e��� � �� ��i we have

fi
uTi e


i
�

��i
��i � �

uTi e


i

 ��i

�

uTi e


i
�

�p
�

�ip
�

q
��i � � u

T
i e �	�	��

which means that the contribution corresponding to small generalized singular

values in the perturbation error is �ltered up to O
�

�p
�


�

At the same time� the contribution to the regularization error is large�

�fi � ��u
T
i b


i

 �u

T
i b


i
� O

�
�

�i

�
On the other hand� when we consider small values of the regularization

parameter �i�e��� �  ��i the total error is made of a large perturbation error
and a small regularization one� as can be seen in the next equations

Contribution to Perturbation error� fi
uTi e


i

 uTi e


i
� O

�
�

�i

�



CHAPTER �� BACKGROUND 		

Contribution to Regularization error�

�����fi � ��uTi b
i
���� 
 ���� ���i u

T
i b


i

����  ����uTi e
i
����

Equation �	�	�� is related with theorem � since it shows that as the regulariza�
tion parameter shrinks to zero perturbations corresponding to small generalized
singular values are ampli�ed by O� �p

�
� For values of � ranging in between� there

is a small region where the perturbation error and the regularization one balance
to give a minimum total error contribution� That corresponds to the vicinity
of the corner of the L curve� In ��� a characterization is given to provide con�
ditions for using the L curve� If the b Fourier components uTi b associated with
small singular values decay su�ciently fast and the perturbation in the right
hand side is not large then the L curve can be used to determine a sensible reg�
ularized solution� That solution corresponds to the corner of the L curve� which
also determines the choice of �� The corner of the L curve is de�ned as the point
with maximum curvature� Since we only have a �nite number of points in the
L curve� a spline interpolation is recommended to de�ne the corner numerically
����

If b has a non negligible contribution in the subspace of small singular values
then it is very di�cult to �nd the corresponding x� since the ampli�ed harmful
perturbations in such subspace cannot be separated from the desired solution�

log(||Ax-b||
2

)

log(||Bx||2 )

little regularization

large regularization

Figure 	��� The L curve�

The L curve can be used for Tikhonov regularizations� where the regular�
ization parameter varies continuously� but also with discrete regularization pa�
rameter� like in the Truncated SVD method and others�
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����� Regularization methods

Regularization methods can be classi�ed in terms of the numerical method that
is used to obtain the solution� Following this line� there exist direct and iterative
regularization methods� Our aim is not to give an extensive enumeration of all
such methods� but to describe some basic techniques� This description will
hopefully give a framework where the Tikhonov regularization applied in this
work will �t� This is a direct regularization method� de�ned by the least squares
problem as mentioned in ���	��

minkAx� bk�� � �kBxk�� � min
����� Ap

�B

�
x�

�
b



�����
�

The regularized solution is unique whenever the null spaces of A and B
intersect trivially� That will be one of our basic assumptions throughout the
work� Its numerical solution can be computed in many ways� like direct solution
of the sparse normal equations

�ATA � �BTB�x��� � AT b

or using the QR factorization of

�p
�B
A

�
� Since both of these methods require

to redo all computations every time require a computation with a di�erent value
of � they are not very attractive�

Another possibility is to compute the GSVD of the matrix pair �A�B� once
and then compute Tikhonov�s �lter factors every time that � changes� obtaining
x��� from equation �	�����

Finally� there is a method proposed by L� Eld�en ��� that begins by trans�
forming the problem into standard form obtaining

mink �A�x� �bk�� � �k�xk�� � kAx� bk�� � �kBxk��
where k�xk�� � kBxk�� and k �A�x� �bk�� � kAx� bk���

After this� applying orthogonal transformations �U and �V to the matrix �A

arrives to an upper bidiagonal matrix

�
�Ab




�
� �V �A �UT � Therefore�

min

����� Ap
�B

�
x�

�
b



�����
�

� min

����� �Ap
�I

�
�x�

�
�b



�����
�

�

min

������
	
 �Ab


p
�I

�A y �
	
c�c�



�A
������
�

� kc�k�� �miny
����� �Abp

�I

�
y �

�
c�



�����
�

�	�	��

where y � �V T �x�

�
c�
c�

�
� �UT�b�
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Now there exist two possibilities� either we use Givens rotations to annihilatep
�I using �Ab by means of Eld�en�s algorithm ��� or we recognize that y in �	�	��

is the solution of the linear system

�
I �Abid
�AT
bid �I

��
r�
y

�
�

�
c�



�
�	�	��

which can be transformed into a symmetric tridiagonal and inde�nite system by
a suitable symmetric reordering columns and rows ��
�� Although both possi�
bilities can be computed with approximately 	
n �ops for every new value of �
Eld�en�s transform is more robust since it is based in orthogonal transformations�

At the end� the desired solution x is obtained by transforming back to the
original formulation�

Another direct method is the least squares with a quadratic constraint� Its
formulation is fairly close to the Tikhonov regularization� as mentioned before
in theorem �� There are two versions

minkAx� bk� subject to kBxk� � ��
minkBxk� subject to kAx� bk� � ��

�	�	��

where �� and �� are suitable positive parameters that play the same role as the
regularization parameter in the Tikhonov regularization�

To solve the �rst problem� �rst the unconstrained least squares solution xLSQ
is found� Then� if kBxLSQk� � �� it is accepted as the solution� Otherwise� the
solution solves the equality constrained problem

minkAx� bk� subject to kBxk� � �� �	�	��

A suitable method to solve �	�	�� is based on a Lagrangian relaxation of the
equality constraint kBxk�� � ��� � This yields a smooth one dimensional dual
problem with an unconstrained LSQ as subproblem�

Two regularization methods with discrete regularization parameter are the
Truncated SVD �TSVD� method ���� and the Modi�ed Truncated SVD �MTSVD�
�	��� Basically� they regularize by annihilation of the contribution coming from
small singular values� The original ill conditioned matrix

A �
rX

i��


i ui v
T
i

is replaced in the TSVD method by a truncated rank de�cient matrix

Ak �
kX
i��


i ui v
T
i
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Moreover� Ak is the closest matrix to A among those of rank k ���	��theorem
	���	� page ��� �i�e���


k�� � kA� Akk� � min fkA� Bkk� � rank�Bk� � kg �	�	��

This choice yields the solution

xk � AI
kb �

kX
i��

uTi b


i
vi

that is less sensitive to data perturbations than the unregularized solution� Its
condition number is ��

�k
which is smaller than the original one introduced in equa�

tion �	��	�� This is similar to a Tikhonov regularization with B � I� The di�er�

ence lies on the �lter factors� Here they are chosen by fi �

�
�� for � � i � k

� Otherwise�

o�ering a sudden �cuto�� at k while in Tikhonov�s they decay gradually with

fi �
��i

��i��
� Beside this� if

p
� 
 
k then the sensitivity of the Tikhonov solution

and the TSVD solution will be similar�
The replacement of the matrix A by Ak is motivated by the fact that those

components of the solution associated with large singular values are untouched�
while those related with small ones do not appear� In addition� the truncated
approximation Ak is much better conditioned than the original matrix A� It is
clear that in order to de�ne the method completely� we have to give a choice of
the �numerical rank� k� The notion of numerical ��rank re�ects the error level
in the data and depends on a tolerance� We say that a matrix has ��rank equal
to k if

k � minfrank�B� � kA�Bk� � �g � where � � 
 is a given constant

From �	�	�� we can see that A has ��rank k if


� � � � � � 
r � � � 
r�� � � � � � 
n

The de�nition is satisfactory whenever the spectrum of singular values has clear
gap� In that case it is fairly straightforward how to proceed� since the numerical
rank can be de�ned as the number of singular values above the gap� Unfortu�
nately� that is not the usual case with inverse problems� and is a clear sign of
ill�conditioning� Usually we have a �continuously� decaying diagram� and the
choice is far from straightforward� A �rule of thumb� is given in �	��page �����

If we assume that jeijj � e then it is suggested to take � � �mn�
��� � e However�

it is advisable to use it only when the norms of the columns of A are of the same
order�

There is another way to characterize the regularized solution of the TSVD
method� It is the solution the following constrained LSQ problem

minkxk� subject to minkAkx� bk� �	�	�
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Based on the same kind of ideas� the modi�ed TSVD �MTSVD��	�� intro�
duces the need for minimizing kBxk� leading to

minkBxk� subject to minkAkx� bk� �	��
�

Observe that �	��
� is closely related with the constrained least squares formu�
lation of Tikhonov regularization �	�	��� Since the condition minkAkx � bk�
still holds the solution of �	��
� is obtained by adding a correction in the null
space of Ak to xk� the solution of the TSVD method �	�	�� as follows�

xB�k � xk � �xB � where

�xB �
nX

i�k��

zivi � Vk��z � ker�A�

The correction is then chosen to minimize

kBxk� � kBxk �B�xBk� � kBxk � BVk��zk�
yielding

xB�k � xk � Vk���BVk���
Ixk

All these formulations with truncated matrices can also be generalized using
the GSVD to give the Truncated Generalized Singular Value Decomposition
�TGSVD������ A truncation is done in the generalized singular values� and the
corresponding solution is given by

xB�k �

qX
i�q�k��

uTi b


i
xi �

nX
i�q��

�uTi b�xi
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Figure 	�	� Two singular values diagrams� On the left� we see a case with a
distinct gap and well de�ned numerical rank� coming from an example with real
data from the Uruguayan case� On the right� another example from a model
problem where the de�nition of the numerical rank is less clear�
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Again� this implies a sudden cuto� in the GSV spectrum�
Instead of directly annihilation of the small singular values� there exist the

possibility to damp their e�ect� but with �lter factors di�erent from those ap�
pearing in Tikhonov�s regularization�

That is carried out by the damped SVD method ���� which regularizes the

solution by means of the �lter factors� fi �

�
�i

�i�
p
�

if B � I
	i

	i�
p
�

if B �� I
It can be

observed that the decay of the �lter factors is slower than in Tikhonov�s regu�
larization� therefore the damped GSVD o�ers less regularization�

When both the coe�cient matrix A and the right hand side b are contam�
inated with errors an appropriate formulation is the total least squares method
�TLS� ���	�� page �����

min

A�
b�x

k�A� b�� � #A�#b�kF subject to #b � #Ax

In this case� Tikhonov regularization can be applied following ��
��

min

A�
b�x

k�A� b�� � #A�#b�kF subject to #b � #Ax� kBxk� � �� �	����

where � is a positive constant� As observed in ��
� the solution of �	���� is
closely related to the solution of ���	� since it solves the equation

�ATA� �IIn � �BB
TB�x � AT b

where the parameters �I  
� �B � 
 satisfy

�I � �kb�Axk��
��kxk��

�B � ��� � kxk���
�B�

�
� � bT �b� Ax� � �I

Here � is the Lagrange multiplier associated with the norm constraint in �	�����
On the other hand� iterative regularization methods are devised for large

structured problems� and an e�cient implementationmust take care of the spar�
sity of the matrices involved in the problem� As an example of such methods�
the conjugate gradient method is a classical method for minimizing a quadratic
form with positive de�nite matrix coe�cient� or equivalently� to solve a linear
system of equations whose coe�cient matrix is symmetric and positive de�nite�
In this setting� it is applied to the unregularized normal equations� The reg�
ularization comes from the known fact that as the iterations proceed� the low
frequency components converge �rst� o�ering a smooth solution that becomes
more and more wiggly as the iterations proceed� Therefore� is the number of
iterations which plays the role of regularization parameter�
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����� Choice of the regularization parameter�

The goal of a sensible choice of the regularization parameter is to compensate
the contributions of the perturbation error� which is due to errors in the data of
the problem� and the regularization error in the regularized solution�

As P�C� Hansen points out� the strategies can be classi�ed in those which
make use of kek�� the error level present in the data� and those which do not�
making the choice based on a posteriori information�

Among the �rst class is the discrepancy principle� If the ill�posed problem is
consistent �i�e��� has zero incompatibility measure� it says that it does not pay
to �t the data with a residual which is less than the data error� The regularized
solution xreg then solves

kAxreg � bk� � kek�
Naturally� this method relies on a good estimate of data errors� and when

that happens� its solution is close to the one o�ered by the L curve method�
Finally� the L curve method is the most used method among those which

do not make use of an a priori estimate of the data errors� This method has
already been described in 	�	���
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Formulation

As we said before� our task is to provide an incompressible velocity �eld that
ful�lls a �nite number of data measurements up to a certain regularization
threshold and possibly� some slip boundary conditions�

The construction of such estimated �ow is based on a �nite superposition of
incompressible velocity �elds�

Let �ui� vi� be the velocity measurements at the station points

Pi � �xi� yi� � D� with � � i � Nd

where D denotes the physical domain� In order to make easier the presen�
tation of the equations and without any lose of generality� we assume that
D � �
� 	��� � Dc� The notation Dc stands for the computational domain�
where we embed our solution�

Now consider a �nite dimensional vector subspace in the space of complex
valued and square integrable functions L�

�	����� � spanned by a basis

f����x� y�gjj�max�j�j��max
� with ��� � Dc � R

� �� C

With this notation� we propose to take the estimated �ow as

��x� y� � �U �x� y� V �x� y�� �
X
��

C�� ����x� y��

�����

where C�� �
h
�U�� �V��

i
arises for a vector of complex coe�cients�

Some of the equations that will determine the coe�cients C�� come from
the desired interpolation property ��Pi� � ���Pi�� yieldingX

��

C������xi� yi� � �ui� vi�� for � � i � Nd ���	�
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In this context� a natural choice is to try to ful�ll ���	� using least squares
as follows

min
C

fd�C� �
�

Nd

X
��i�Nd

������
X
��

C������xi� yi�� �ui� vi�
������
�

�

� �����

where C is the complex valued vector made of the blocks

C�� �
h
�U�� �V��

i
It is useful to observe that after reordering the variables we can think of C as

made of two blocks C �
h
�U �V

i
each of them containing the coe�cients for the

ansatz of U �x� y� and V �x� y� respectively�
There are also boundary conditions �B�C�� that we may want to impose to

our approximation� In order to introduce them in the formulation we �rst dis�
cretize the boundary �D� into a �nite set of points distributed by the arclength�

Ph � �xh� yh�� for � � h � Nb

After that� the B�C� at the discretized boundary are considered as extra equa�
tions to ful�ll� We treat one basic linear boundary condition� which mod�
els the in viscid �ow at a solid wall �i�e�� �n�P �� ��P ��jsolid wall � 
 where
n�P � � �nx�P � ny�P �� is the inwards normal direction to the boundary�

Using the basis functions ��� we can rewrite the slip condition� arriving to

�n�xh� yh��
X
��

C�� ����xh� yh�� �

�
X
��

�n�xh� yh�� C��� ����xh� yh� �

�
X
��

�nx�xh� yh� �U�� � ny�xh� yh� �V��� ����xh� yh� � 
� �����

for � � h � Nb� �xh� yh� � �D�

As we did with ���	�� we treat ����� in least squares sense� The contribution of
the boundary conditions is called fb�C� and reads

fb�C� �
�
Nb

P
h

���P���C��� n�xh� yh������xh� yh�
���� �

�
length��D��

R
�D�

j� n�P �s��� ��P �s�� �j� ds� O� �
Nb
�

�����

This is a natural choice� since the boundary data is as useful as the �ow data�
and sometimes contains less error�

A Tikhonov�s regularization term �rfr�C� is added to ensure a unique solu�
tion to the Linear Least Squares �LSQ� problem� It stabilizes the problem and
works as a low pass �lter� smoothing the solution� That smoothing is obtained
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by penalizing higher frequencies with larger terms� The regularization term can
be expressed as

�rfr�C� � �r		
X
��

�
j �U��j� � j�V��j�


�j�j�p � j�j�p� �

� �r		
�
k eB�

�Uk�� � k eB�
�Vk��


� �r		 k eBCk��

We have introduced the notation eB� � diag�
pj�j�p � j�j�p� and

eB �

� eB� 



 eB�

�

After choosing our basis functions the parameter p will control the smoothness
degree in the solution�

Finally� the optimal weights C�� are found as the solution of

min
C

fd�C� � fb�C� � �rfr�C� �����

��� Basis functions

Until now� we have based our construction on the fact that a family of diver�
gence free �ows was available� Here we o�er explicit details about how such
construction can be accomplished� A practical approach would require that
����x� y� should be easy to construct� Furthermore� we would like to have good
convergence properties when we increase �max and �max� in the L

� norm sense
for example� So we begin our construction with the well known Fourier basis for
L�� Assuming that we work on the computational domain D � �
� 	��� � then
our choice for ����x� y� is ����x� y� � eixei�y where the wavenumbers �� � are
integers� The �ow representation will be

��x� y� � �u�x� y�� v�x� y��

u�x� y� �
X

�U�� e
ixei�y

v�x� y� �
X

�V�� e
ixei�y

Our task is then to �nd the subspace of �elds that ful�ll ux�vy � 
� Now is
when the fact that ����x� y� � eixei�y���Zare eigenvectors of any derivative
operator becomes extremely useful� because the incompressibility condition can
be expressed as�

� �U�� � � �V�� � 
� for all �� � �����

which is a linear constraint involving Fourier coe�cients of the same wavenum�
ber on di�erent �ow components� Since ����� has such a simple structure we
can make direct substitution arriving to an unconstrained formulation� that �ts
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nicely into the Tikhonov�s regularization framework� Thus� whenever � �� 
 we
may think of �U�� as independent variables and write �V�� � ��	� �U�� � � �� 
�
When � � 
 we keep �V�	 as free variables and get also that �U�	 � 
� � �� 
�

For the same reason� it is easy to see that �U	�	 is another free variable� So far�
we are able to span a vector subspace of divergence free �ows� based on the
Fourier basis of the whole space� Furthermore� since we want to consider just
real valued �ows� there are other constraints to be imposed�

��U���� � �U�� � � j�j � �max� j�j � �max �����

where the bar denotes the complex conjugate� and

��V ���� � �V�� � j�j � �max� j�j � �max ����

Observe that ����� and ���� are linear constraints if written in terms of the
real and imaginary parts of the coe�cients separately�
Summing up� when we express all the equations in terms of the real and imag�
inary parts of the desired quantities� ����� becomes a linearly constrained least
squares problem����������������

minC fd�C� � fb�C� � �rfr�C�
subject to

� �U�� � � �V�� � 
� � j�j � �max� j�j � �max

Re
�
�U����


� Re

�
�U��


� � j�j � �max� j�j � �max

Im
�
�U����


� �Im

�
�U��


� � j�j � �max� j�j � �max

����
�

By Parseval�s identity� the regularization term can be written for integer values
of p as

�rfr�C� � �r		

Z
Dc

��
�pu

�xp

��

�

�
�pu

�yp

��

�

�
�pv

�xp

��

�

�
�pv

�yp

��
�
dx

which says that we are looking into the space of functions with square integrable
pth derivative� That makes the connection to Sobolev spaces and explains how
the smoothness of the approximate �ow depends on p ����� Although due to
numerical reasons p must be kept relatively small� it has to be large enough
to assure the continuity of the solution �ow when we allow in�nitely many
frequencies to appear in the solution �i�e��� �max � �max � �	� The minimum
value for p depends on the number of dimensions of the space that contains the
data which in this case is 	� Observe that without continuity in the solution�
pointwise interpolation conditions ���	� that we want to impose do not make
any sense�

��� Number of variables involved

This section is devoted to o�er an estimate of how many freedom degrees are
really present in the solution after imposing the incompressibility constraint�
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That will give us an idea of for example how many interpolation conditions
can be imposed given once we �x the number of frequencies in the solution�
Initially� with no constraints we have 	�	�max����	�max��� complex variables�
�U�� � �V��


in the problem� The �	�max � ���	�max � ��� � incompressibility

constraints ����� approximately halve the degrees of freedom� Notice that the
incompressibility condition for � � � � 
 gives just a trivial identity 
 � 
�
Beside this� observe that if the free variables are chosen to generate a real �ow�
then ����� will automatically keep that constraint for the dependent variables�
This means that we only have to ensure ����� and ���� just on our free variables�
That leaves 	�	�max�max � �max � �max � �� free real variables in our system�
The last result is obtained by considering the real and imaginary part of each
�free� component as independent� A special case occurs again for � � � � 
�
where just the real part is nonzero� Suppose now that we have Nd data points
and Nb points in the solid wall boundary �denoted by �D��� and we want to
know how many Fourier modes we need in the solution in order to be able
to interpolate them� The number of Fourier modes present in the solution is
Nf � �	�max����	�max���� and there are N � 	�	�max�max��max��max���
degrees of freedom so we need to have

Nd �Nb		 � 	�max�max � �max � �max � �

For the particular case that we take nf � �max � �max we have

Nd �Nb		 � �nf � ��� � n�f  	�nf � ��
�

so it is enough to take nf � max�
�
q

Nd�Nb��
� � �� to be able to interpolate

all the data points� In general� we shall not take nf large enough to ensure
interpolation� since small residuals can be achieved with smaller values�

��� Size of the computational domain

We shall now consider how large the computational domain should be compared
to the physical one� On one hand� one would like to have it as large as possible�
to diminish the e�ect of the �unnatural� periodic boundary conditions� To o�er
a crude example of such requirement� suppose that the physical domain is a
square� with di�erent prescribed velocities on 	 opposite sides� If the computa�
tional domain is just a bit larger than the physical one the periodic extension
will be seen as �almost� discontinuous� This will imply that the solution may
exhibit the oscillatory behaviour known as Gibb�s phenomenon ���	�� page 	�	�
and furthermore� contain a lot of high frequency� which is undesirable if one
wants low values of �max� �max to be able to represent the solution� On the
other hand� it is not advisable for the computational domain to be very large
because the data will contain only relatively high modes since all the varia�
tions are contained in relatively little space� That also implies large values of
�max� �max to be able to represent the solution� Therefore� we have a trade
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o�� Here we have taken the size of the computational domain to be twice of the
size of the physical one� From the computational results� it seems to be enough�
Numerical experiments related with this fact can be observed in section ����

��� Some implementation issues

����� Formulation of the problem in real arithmetic

As seen before in section �� the problem ����
� was formulated in the complex
space� Now we want to perform our computations with real numbers� so we
proceed in the usual way �see ����� If we have a linear system of equations with
complex numbers� Mf � g then it is equivalent to�

MR �MI

MI MR

� �
fR
fI

�
�

�
gR
gI

�
where the subindex �R denotes the real part and the subindex �I denotes the
imaginary part of each quantity� Therefore� from now on we shall work only
with real variables and express all the equations in terms of them� The vector
C �

�
�U �V

�
will be then treated by blocks as

x �
�
CR CI

�
�
�
�UR

�UI
�VR

�VI

�
����� Treatment of the constraints

The real valued version of problem ����
� de�ned in section � reformulated in
terms of real variables as seen in section ����� can be expressed as a linearly
constrained Least Squares problem with the following structure��������

minx

wwww� Ap
�rB

� �
x
� � �b




�wwww�

�

� kAx� bk�� � �rkBxk��
s�t�
Hx � 


������

where H denotes the matrix for the homogeneous linear constraints ������ �����
and ����� As observed before in ��� the structure of the matrix H is so simple
that allows us to perform direct substitution of the variables in order to obtain
an unconstrained problem with less variables� To state this in a more direct
way� let us write our constraints Hx � 
 in block notation as�

HF HD

� �xF
xD

�
�
�


�

����	�

where HD is an invertible sub matrix of H� That implies

xD � �H��
D HF xF

Therefore� we can span the set of feasible solutions using just xF with�
xF
xD

�
�

�
I

�H��
D HF

� �
xF
�
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Now we substitute this into the initial formulation ������ obtaining

min
xF

wwww� Ap
�rB

� �
I

�H��
D HF

� �
xF
�� �b




�wwww�

�

�

� min
xF

wwww� AF �ADH
��
D HFp

�r
�
BF � BDH

��
D HF

�� �xF � � �b

�wwww�

�

������

Observe that HD is diagonal� and HF is very sparse� In fact� it has only one

nonzero value on each row� so the same happens with the matrix

�
I

�H��
D HF

�
�

Renaming ex � xF � eA � AF � ADH
��
D HF and eB � BF � BDH

��
D HF in

������ we get the unconstrained formulation

min
ex

wwwww
� eAp

�r eB
� �ex�� �b




�wwwww
�

�

� min
ex
k eAex� bk�� � �rk eBexk�� ������

Since often the matrix eA obtained by the substitution procedure may still
be ill conditioned the Tikhonov regularization term

p
�r eB plays an important

role� In Appendix B all the results are formulated in terms of ������� with thee dropped� The sparsity of the matrices involved for �max � �max � � can be
observed in Figure ���� There we show from left to right a row permuted version

of the matrices

�
Ap
�rB

�
�

�
I

�H��
D HF

�
and their product

�
Ap
�rB

� �
I

�H��
D HF

�
�� eAp

�r eB
�

The problem was solved in Matlab �	�� using methods described in 	�	��
and the di�erences encountered in the solutions were consistent with the error
estimates given in theorem � and those included in Corollary 	 from Appendix
A�
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Figure ���� Uruguayan case with � station points� Sparse structure for the ma�
trices of the LSQ with �max � �max � � and no imposed boundary conditions�
Then number nz counts the nonzero elements in each matrix�
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Numerical examples

Here we include computational experiments in order to gain insight into the
proposed method� as well as to motivate some way of choosing parameters�
like for example the values of p and N � �max � �max� First we perform
computations with model problems� trying to see the behaviour of the method
in di�erent situations� and also to compare the numerical solution with the
exact one when it is available� Beside this� we include a comparison with the
method used by L�opez V�azquez ����� involving real data from the southern zone
of Uruguay�

In all the cases� we make use of these notation�
A�x�b�� residual corresponding to data point conditions� kA�x�b�k�� � fd�C��
A�x� residual corresponding to homogeneous slip boundary conditions�
kA�xk�� � fb�C��
Ax� b� residual corresponding to both data point conditions and slip boundary
conditions� that is

jjAx� bjj�� � kA�x� b�k�� � kA�xk�� � fd�C� � fb�C� �

�

Nd

NdX
j��

k��Pj�� ���Pj�k�� � �
Nb

PNb

h�� �n�Ph�� V �Ph��
�

Bx� regularization term

kBxk�� � fr�C� �
X
��

�
j �U��j� � j�V��j�


�j�j�p � j�j�p�

Nf � amount of wavenumbers present in the numerical solution�
Nf � �	�max � ���	�max � ��
In some graphics we will use the names Nx� Ny instead of �max� �max

We study the sensitivity by means of three experiments� where we vary one
of the parameters while keeping the others �xed �i�e��

��
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�� Sensitivity with respect to �r� This experiment corresponds to the points
in the L�curve introduced in section 	�	���

	� Sensitivity with respect to N � This is meant to �nd a suitable amount of
wavenumbers in order to achieve small residuals�

�� Sensitivity with respect to p� As commented in section ���� p determines
the smoothness degree of the solution and it must be greater than one for
two dimensional problems� Nevertheless� it cannot be taken too large� as
will be seen in the examples�

Numerical results of the evolution of the condition number ���M ��r�� of the
least squares problem to be solved� as well as the e�ect on the spectrum of
singular values are shown in the Figures to check theoretical predictions�

The results included in Chapter 	 and Appendix A justify that the condition
number behaves like an approximate linear function of the inverse of the square
root of the regularization parameter� The e�ect of the maximum wavenumber
N or the smoothness parameter p on this condition number is less straigth�
forward altough some motivation can be given through the experiments� The
reader will be also able to inspect directly the e�ect of the parameters in the
computed velocity �eld� as well as the changes in j �U��j and j�V��j which are
shown under the title � Spectral energy distribution	� There one can check that
the approximate �ows can be constructed with a small number of terms�

��� Model problems

����� �D �ow around a circular tube

This example has only one point with known velocity� and there is a solid
boundary given by a tube wall� where the slip boundary condition holds�

�n�P �� ��P ��jsolid wall � 


All these can be seen in Figure ���� For the computations we have discretized
the circle wall on Nb � �

 uniformly distributed points� The resulting �ow can
also be seen in Figure ��� and it corresponds to the following parameters�

p � ���� Nb � �

 �r � �e� �
Since our method de�nes an approximation on every point of the computational
domain it will also de�ne it inside of the tube� This will be of no importance
since the tube wall acts as a streamline�

Sensitivity Results

�� Sensitivity with respect to �r� In Figures ��� and ��� we see that in this
case the residual can be diminished to small values without almost no
increase in the regularization term� and we are able to use Richardson
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extrapolation to compute a smooth solution which interpolates the data�
The results of the L curve experiment are shown in Figure ��	�

	� Sensitivity with respect to N � shown in Figures ��� and ����

In Figure ��� we see that ��M ��r�� increases with the maximumwavenum�
ber N � That can be explained by means of the bound �A�� that indicates
a growth with

p
�
p
� � �N �	N � ���

We also observe that N � 	 is enough to provide small residuals�
The e�ect of N in the singular values can be seen by �rst looking at the
operator B used for the regularization� When N increases� so does the
number of freedom degrees in the problem� yielding new larger singular
values in B� that behave like

pj�j�p � j�j�p� while keeping all the old sin�
gular values approximately constant� This explains why the small singular
values corresponding to the regularization looks essentially the same for
di�erent values of N �see Figure �����

�� Sensitivity with respect to p� as shown in Figures ��� and ���� Let us see
the dependence of ��M ��r�� shown in Figure ���� As p increases the diago�
nal matrix B increases its entries� which means that the singular values of
M ��r� p� increase� This� depending on the relative size of �r will make the
condition shrink or increase� The �rst happens when �r is relatively small�
such that the singular values introduced by the regularization are much
smaller than those originally present in the problem� In this case the max�
imum singular value of M ��r� p� will be basically unchanged� whereas the
smallest increases� On the other hand� we can observe that the condition
number increases with p when some of the singular values introduced by
the regularization are of the same order as those originally present� Then
the maximum singular value of M ��r � p� can increase with enough speed
to make the condition number larger� Beside this� p a�ects the spectrum
of singular values� changing the �power� pro�le� as seen in Figure ����

As predicted before� jjAx � bjj decreases with N or as �r decreases� The
dependence with respect to the smoothness parameter p is less simple� as can
be seen in Figure ���� Recall that in section � it was pointed out that the
value of p should be greater than � to have a well posed problem when we let
N � 	� If that is not the case� even for small values of N � the solution will
�t the measurements but vanish quickly away from them� That e�ect can be
seen on the �rst plot in Figure ���� However� computational experience shows
that the residuals increase when p is increased above some threshold level� and
moreover� the solution may look wild as depicted on the rightmost of Figure
���� so it seems to be an optimal value of smoothness� In the present work we
have taken p � ����

With respect to the boundary condition at the solid wall� a question arises
respect to the choice of the number of points in the discretized boundary� It
seems tempting to try to add as much as possible points to improve the ac�
curacy� However� the size of the problem will increase and we will face more
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Nx = 3, Ny = 3, epsr = 1e−4, p=1.5

Figure ���� Numerical experiments with the tube problem�Left� Data for the
problem� The circle wall has been discretized in Nb � �

 points and there
exist only one �ow measurement� shown in red� Right� Computed solution for
N � �max � �max � ��
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computational e�ort Moreover� adding more points to the boundary discretiza�
tion does not necessary imply a practical improvement in the accuracy in the
numerical solution� Recall that

kA�xk�� �
�

length��D��

Z
�D�

��� n��ds� O
�
�

Nb

�
�

minfNb�NfgX
i��


�i �v
T
i x�

�

where A� � RNb�Nf � Observe that both its singular values 
i and right singular
vectors vi depend on Nb�

As Nb increases below Nf � the spectrum corresponding to large singular val�

ues are within O
�

�
Nb


of the spectrum that corresponds to the non discretized

operator� while new small strictly positive singular values appear� Those are
associated with ill�posedness� and do not provide any useful information�

Beside this� the error coming from the discretization of the boundary is just
one of many� and it is not advisable trying to reduce it without keeping in mind
that the others are still present and are possibly larger� Numerical results can
be seen in Figure ��	� where we show the computed singular values of matrix A
for di�erent number of points in the discretized boundary� There it can be seen
that approximately �� singular values are important� By important we mean
above the regularization threshold� which is O�p�r��

In this particular example� there is almost no change in these singular values
when we use 	

 points or �

 in the discretization and the corresponding
numerical result is practically the same�
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����� �D �ow over a ramp

In this example we have an incompressible �ow with linear velocity pro�le over
a ramp� We shall again see the e�ect of boundary conditions� and furthermore�
how approximate is the numerical solution to the exact solution of the problem�
which is available�

We have discretized the boundary wall by means of �

 uniformly distributed
points and included �

 data points along the line segment


 � x � 
��� y � 


as shown in Figure ��� The computational domain is Dc � �
� ��� and the
parameters have been set to p � ��� and �r � �e� �� In Figure �� we can see a
typical numerical result� and in Figure ���
 we show the residual components�
both for the velocity conditions at the data points and the slip boundary con�
dition� On the left we show the error in x and y velocity components �i�e��� the
components of the vector �� � ����Pj� for j � � � � �Nd�

On the rightmost graphic we show the value ���Ph�� n�Ph�� for h � � � � �Nb�
As in the tube �ow example� all three sensitivity experiments have been

carried out and the same sort of comments apply� However� this solution is less
sensitive than the numerical solution of the tube problem� since there is more
data available in this case�

�� Sensitivity with respect to �r � See Figures ���� and ���	 for detailed results
and Figure ���� for the L�curve experiment�

	� Sensitivity with respect to N � shown in Figures ���� and �����

�� Sensitivity with respect to p� as shown in Figures ���� and �����

Nx = 3, Ny = 3, epsr = 1e−4, p=1.5

Figure ��� 	D �ow over a ramp� Left� Boundary and data points� Right�
Numerical solution
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����� Comparison with exact solution

As we said before� the exact solution is available in this example� Both the slip
boundary condition and the data measurements are satis�ed by the potential
�ow

b� � �y� x�
Now we compare this �ow with the numerical solution� using a grid of points

that is uniformly distributed on the region of interest��
�x� y� � R� � x � 
� x � y� x � 
���

That grid can be seen in Figure ����� and the error function for N � 	 and
N � � can be seen in Figure ���� There we see that N � 	 is enough for our
purposes� since there is no gain in accuracy when using N � �� To increase the
accuracy one needs to use more data points� preferably away from the boundary
where we have already imposed velocity data�

The same conclusion can be derived from Table ��� we show di�erent norms
of the error function on the grid of Figure ����� for values of N � �max � �max

ranging from � to ��
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Figure ����� Grid of points used to measure the di�erence between the the exact
solution and the numerical solution�
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Table ���� Error norm on the grid of Figure ���
as a function of the maximumwavenumber�
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����� �D Rankine vortex inside a tube

This example shows an application of the method to a con�ned �ow� There exist
�� points with known velocity� and there is a solid boundary given by a tube
wall� where the slip boundary condition holds� The velocity pro�le corresponds
to a Rankine vortex� that is�

���x� 
� � �
� V �x�� � � R � x � R

where R � ��� and V �x� �

�

�x if jxj � 
�	�
�
x if jxj � 
�	�

All these can be seen in Figure ��	
� For the computations we have dis�
cretized the circle wall on Nb � �

 uniformly distributed points� The resulting
�ow can also be seen in Figure ��	
 and it corresponds to the following param�
eters�

p � ���� N � � �r � �e� �
Since our method de�nes an approximation on every point of the computational
domain it will also de�ne it outside of the tube� This will be of no importance
since the tube wall acts as a streamline�

Sensitivity Results

Since most of the comments regarding sensitivity do apply in this example we
do not repeat them� and content ourselves with a brief outline of the numerical
results�

�� Sensitivity with respect to �r � In Figures ��		 we see that in this case the
residual remains in the order of � $ of the velocity measurements� This
slow convergence is due to the non�smoothness of the Rankine vortex�
However� observe that the slip boundary condition is accurately ful�lled�
The results of the L curve experiment are shown in Figure ��	� and it
justi�es the approximate choice �r � 
�


��

	� Sensitivity with respect to N � shown in Figures ��		� ��	� and ��	� We
observe that the di�erence between the measurements and the numerical
solution decreases as N increases� and that its maximum is clearly related
with the radius 
� 	� where the Rankine vortex is non smooth�

�� Sensitivity with respect to p� as shown in Figure ��	�� Let us see the
dependence of ��M ��r�� shown in Figure ��	�� This� depending on the
relative size of �r will make the condition shrink or increase�
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Figure ��	
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��� Wind �eld in the southern zone of Uruguay

Now we consider a problem with real data from the Southern zone of Uruguay�
The same approximation problem was �rst studied by L�opez V�azquez in his
Master Thesis ����� where also a statistical analysis of time dependent measure�
ments is done following the work of Ludwig �	�� and Richman �	�� Precisely
that Principal Components analysis is the data source for our example� Since
we do not give the details of the statistical procedure the reader can directly
refer to L�opez V�azquez �����

However� we sketch the result to provide an rough link between crude data
measurements and the application of the numerical procedure described in this
work� The original version of the problem can be stated as follows� given �
velocity �eld measurements in an hourly basis� �nd an incompressible approx�
imation for each time point� Instead of solving an approximation problem for
each sample in time� an Principal Components expansion for the measurements
is �rst computed�

��� ���t� P��
���

���t� PNd
�

 !" �
��� ��m�P��

���
��m�PNd

�

 !"�X
k

ak�t�

��� ��k�P��
���

��k�PNd
�

 !" �����

In this case� the contribution of the weights ak�t� decreases with k in such
a way that with only a few �say in this case �� terms� we have an acceptable
approximation� This truncation procedure works as a low pass �lter in time�
Thus� we solve then the approximation problem for just each of the terms of the
above expansion� and in this way� via 	 steps of approximation� the �rst in time
and the second in space� we get ��t� P � extended to all the time�space domain

��t� P � � �m�P � �
X
k

ak�t� �k�P ��

This of course involves less computational e�ort than trying to solve for each
time the incompressible approximation problem� Our model problem uses the
data from the �rst principal component� �i�e�� k � �� This data and a numerical
solution can be seen in Figure ��	�� The remainder numerical results can be
found in Appendix D�

�� Sensitivity with respect to �r� In Figures ��	� and ��	� we can see that the
residual of the velocity measurements shrinks to zero when we reduce the
regularization parameter� One very important feature of this example is
the distinct gap in the singular values spectrum� which makes it easier to
handle� Either we can use the Modi�ed Truncated Singular Decomposition
method directly or compute the solution using Richardson extrapolation�
When an estimate of the error level present in the data is available� the
bounds �A�� devised in Appendix A can be used in the following way�
Assume that we look for the unperturbed unregularized solution x�
� If
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we instead compute x��r� the error will be approximately x��
��r� In
general� since the data is contaminated with error we obtain �x��r� and an
application of the bounds from the appendix yields

kx�
�� x��r�k�
kx�
�k� 
 �	N � ��

p
��� � ���Ep
�r

�
kx��
�k�
kx�
�k� �r

where the number E represents the relative error in the data measure�
ments� In this case the quotient in the second term is of the order of �

	�i
where �i is the smallest non zero generalized singular value� which is O����
This yields the choice ��r � �	N � ������� � �������E���� Therefore� the
optimal error will be of order �	N � �����E����

Yet another possibility is to use the discrepancy principle described in
Chapter 	�

	� Sensitivity with respect to N � shown in Figures ��	 and ���
� We observe
that the di�erence between the measurements and the numerical solution
can be made negligible for N � 	� something directly related with the
amount of data�

�� Sensitivity with respect to p� shown in Figures ���� and ���	�

 

Figure ��	�� First Principal component example� Left� Available data� Right�
Computational results�



CHAPTER �� NUMERICAL EXAMPLES ��

10
−10

10
−5

10
0

10
0

10
5

10
10

sqrt(ε
r
)

κ 2(M
(ε

r))

N = 2, p = 1.5

0 10 20 30
10

−10

10
−5

10
0

10
5

ε
r
= 1

ε
r
= 1e−16

Singular values dependence w.r.t. ε
r

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
−2

10
0

||A
1
x−b

1
||

2

||B
x|

| 2

ε
r
= 1

ε
r
= 1e−16

Figure ��	�� Dependence of the solution w�r�t� �r�

Nx = 2, Ny = 2, epsr = 1e−1, p=1.5 Nx = 2, Ny = 2, epsr = 1e−2, p=1.5 Nx = 2, Ny = 2, epsr = 1e−4, p=1.5

−2
−1

0
1

2

−2
−1

0
1

2
0

0.5

Energy of U component

−2
−1

0
1

2

−2
−1

0
1

2
0

0.05

0.1

Energy of V component

Nx = 2, Ny = 2epsr = 1e−1, p=1.5

−2
−1

0
1

2

−2
−1

0
1

2
0

0.5

1

Energy of U component

−2
−1

0
1

2

−2
−1

0
1

2
0

0.05

0.1

Energy of V component

Nx = 2, Ny = 2epsr = 1e−2, p=1.5

−2
−1

0
1

2

−2
−1

0
1

2
0

0.5

1

Energy of U component

−2
−1

0
1

2

−2
−1

0
1

2
0

0.05

0.1

Energy of V component

Nx = 2, Ny = 2epsr = 1e−4, p=1.5

Figure ��	�� Dependence of the solution w�r�t� �r� Top�Flow results� Bot�
tom�Spectral energy distribution



CHAPTER �� NUMERICAL EXAMPLES �	

0 2 4 6 8
10

1

10
2

10
3

10
4

N

κ 2(M
(ε

r))

ε
r
 = 0.0001, p = 1.5

0 100 200 300
10

−2

10
−1

10
0

10
1

10
2

Singular values dependence w.r.t. N

N = 8

7654

10
−3

10
−2

10
−1

10
0

||A
1
x−b

1
||

2

||B
x|

| 2

N = 1
N = 8

Figure ��	� Dependence of the solution w�r�t� N �

Nx = 1, Ny = 1, epsr = 1e−2, p=1.5 Nx = 2, Ny = 2, epsr = 1e−2, p=1.5 Nx = 3, Ny = 3, epsr = 1e−2, p=1.5

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

Energy of U component

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.1

Energy of V component

Nx = 1, Ny = 1epsr = 1e−2, p=1.5

−2
−1

0
1

2

−2
−1

0
1

2
0

0.5

1

Energy of U component

−2
−1

0
1

2

−2
−1

0
1

2
0

0.05

0.1

Energy of V component

Nx = 2, Ny = 2epsr = 1e−2, p=1.5

−3 −2 −1 0 1 2 3

−4
−2

0
2

4
0

0.5

1

Energy of U component

−3 −2 −1 0 1 2 3

−4
−2

0
2

4
0

0.05

0.1

Energy of V component

Nx = 3, Ny = 3epsr = 1e−2, p=1.5

Figure ���
� Dependence of the solution w�r�t� N � Top�Flow results� Bot�
tom�Spectral energy distribution



CHAPTER �� NUMERICAL EXAMPLES ��

1 1.5 2 2.5 3
10

2

10
3

p

κ 2(M
(ε

r))

ε
r
 = 0.0001, N = 2

0 10 20 30
10

−2

10
−1

10
0

10
1

Singular values dependence w.r.t. p

p = 1

p = 3

10
−3

10
−2

10
−1

10
0

10
2

||A
1
x−b

1
||

2

||B
x|

| 2

p = 1

p = 3

Figure ����� Dependence of the solution w�r�t� p�

Nx = 2, Ny = 2, epsr = 1e−4, p=1 Nx = 2, Ny = 2, epsr = 1e−4, p=1.5 Nx = 2, Ny = 2, epsr = 1e−4, p=2

−2
−1

0
1

2

−2
−1

0
1

2
0

0.5

1

Energy of U component

−2
−1

0
1

2

−2
−1

0
1

2
0

0.02

0.04

0.06

Energy of V component

Nx = 2, Ny = 2epsr = 1e−4, p=1

−2
−1

0
1

2

−2
−1

0
1

2
0

0.5

1

Energy of U component

−2
−1

0
1

2

−2
−1

0
1

2
0

0.05

0.1

Energy of V component

Nx = 2, Ny = 2epsr = 1e−4, p=1.5

−2
−1

0
1

2

−2
−1

0
1

2
0

0.5

1

Energy of U component

−2
−1

0
1

2

−2
−1

0
1

2
0

0.05

0.1

Energy of V component

Nx = 2, Ny = 2epsr = 1e−4, p=2

Figure ���	� Dependence of the solution w�r�t� p� Top�Flow results� Bot�
tom�Spectral energy distribution



CHAPTER �� NUMERICAL EXAMPLES ��

����� Comparison with the results from ����

As mentioned before� L�opez V�azquez ���� closely follows Sasaki ��
� and Sher�
man ���� solving the dual problem 	�� for the Lagrange multiplier �� This Par�
tial di�erential equation has homogeneous Dirichlet boundary conditions when
there exist free �ow through the boundary� whereas the homogeneous Neumann
boundary condition is used at solid walls� that is �D�� We have seen in section 	
that this last B�C� introduces spurious solutions when � is not a multiple of the
identity at the boundary �D�� Unfortunately� this is the case in ���� since the
scaling matrix � is chosen to be constant on the whole domain� and its diagonal
coe�cients are di�erent�

The initial �ow �� is generated by means of interpolation� which can be car�
ried out in many possible ways�

On the other hand� since the approximation problem is posed in terms of
the interpolated �ow� that is

mink���� ���kL�
the data measurements will be treated in the same way as any other point in
the domain� once the interpolant is generated�

Taking this last fact into account� a proposal due to Guo ���� is used� It
involves adjusting a single constant c to minimize the residual at the data points�
that is

c� � argmin
c

NdX
j��

kc��Pj�� ���Pj�k��

This correction cannot guarantee to what extent c�� will approximate the data
measurements� specially when the scaling matrix � is constant� This property is
relevant for at least the mean value and the �rst principal component� since the
incoming data has been already �ltered by the principal components method�
and those two components explain much of the variation of the measurements in
time� As can be seen in Figure ����� the deviation from the data is particularly
large at the stations of Punta del Este� while smaller deviations can be seen
at the station of Melo and Carrasco� This does not happen with the proposed
method� which is able to approximate the � data measurements up to a given
tolerance taking N � 	� In addition� our method o�ers the �exibility to choose
the regularization parameter either by an a priori knowledge of the error level or
by an a posteriori procedure like the L curve method� adjusting the smoothing
level in every case� That is relevant in the Principal component analysis� since
the relative error level increases with the component number� In Figure ����
we show two numerical results� one with large regularization �r � 
�� which
is very similar to the one depicted in Figure ���� and has deviations up to ��
$ from the data measurements� That links the method presented in ���� with
large values of regularization� In the same Figure we show a computation that
has a negligible residual �of order �e���� and at the same time gives a smooth
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�ow� Furthermore� the fact that we can �nd a small residual with N � 	 means
that we are able to represent the solution in space in a compact way� �i�e�� with
just a few terms� which is in some sense complementary to the compression in
time carried out by the Principal components method�

In ����� the Poisson equation for � is solved by means of a Finite Element
method with isoparametric functions� for elements with � nodes� The same
method is applied for all the principal components� with no changes in the
parameters�

Here the numerical procedure consists on solving an unconstrained least
squares problem� and the amount of regularization can be adjusted to the
amount of error present in each Principal Component�

Rio de la Plata                         

Melo               

Paso de los Toros  

Treinta y Tres     

Colonia            

Carrasco           
Punta del Este     

Figure ����� Results from ����� �rst principal component
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Figure ����� Results from the proposed method� �rst principal component
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��� E	ect of the parameters

Now� we summarize some features about the behaviour of numerical solutions
with respect to various parameters used in the formulation�

E�ect of �max and �max

As observed in the experiments� increasing the values of �max and �max yields
a smaller residual and eventually� the unregularized problem can exhibit a null
residual� That is the case in the Uruguayan example� On the other hand� the
condition number ��M ��r�� increases mildly with the maximum wavenumber
N � so is advisable to use as few wavenumbers as possible� Therefore� there is
a tradeo� between small residuals and small condition number to consider in
each case�

E�ect of the size of the computational domain

In order to provide computational grounds for the relative choice of the Com�
putational Domain� we have changed its size with respect to the physical one
in the Uruguayan case� The column DC in the next table shows the value of
the magni�cation of the length side� and the residual at the data points� The
values for the rest of the parameters are �xed to �max � �max � �� p � ����
�r � �e � �� There are no important changes in the approximation� although
the residuals at the data points increase when we magnify the computational
domain� This is explained by the fact that the data will correspond to increas�
ingly higher wave numbers in the larger domains� precisely those which with
high penalization for its use� That e�ect can be observed in table ��	� On the
other hand� the computational domain has to be su�ciently large �so to avoid
arti�cial discontinuities in the periodic boundary�� This� if not treated with
care� will cause the solution to be non smooth�

DC absolute k�kL� absolute k�k�
� ��
��
e�
� ��
���e�

	 	��	�	e�
� ������e�
�
� ����e�
� �����
e�
�

Table ��	� L� norm of the residual at the data points when increasing the size
of the computational domain

E�ect of �r

The dependence of the solution with respect to �r has been analized throughout
this work and the L curve method has been described and applied to provide an a
posteriori choice for �r� In some cases where the perturbed problem also satis�es
the discrete Picard condition an a priori estimate of the error level present in the
data is needed to determine a sensible value for �r � An approximate value for
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�r can be obtained from �r 
 kEk���� �	N � ������ where kEk� is an estimate of
the relative error level in the data� This choice corresponds to an approximate
minimization of the relative error in the solution �i�e���

min
�r

kx��
�k�
kx�
�k� �r � ����r�kEk�

Here we also exemplify the use of Richardson extrapolation to verify the
results predicted in Appendices A and B�

The extrapolated value can be computed as�

x�extrp � x���r	n� �
x���r	n�� x���r�

n � � ���	�

The parameters were set to n � �
� �r � �e � � All the other parameters are
�xed to p � ���� �max � �max � 	�
Again we show the behaviour of the residuals at the data points�

�r absolute k�kL� absolute k�k�
�e�� �����e�
� 	�����e�
�
�e�� �����e�
� 	�����e�
�
extrp� ����e��
 ������e��


E�ect of p

The larger the value of p� the smoother the solution will be� That is obtained by
imposing the pth derivative of the velocity �eld to belong to L�� On the other
hand� not any posivite value of p yields useful solutions� In section � it was
pointed out that the value of p should be greater than � to have a well posed
problem when we let N �	� In other words� if we want to impose point values
to the solution� the functional subspace where we minimize must contain only
su�ciently smooth functions� If that is not the case� even for small values of N �
the solution will �t the measurements but vanish quickly away from them� The
importance of this e�ect will be greater for examples with only few data points�

However� computational experience shows that the residuals increase when
p is increased above some threshold level� and moreover� the solution may look
a bit wild� so it seems to be an optimal value of smoothness� In the present
work we have taken p � ����

Intuitively� for small values of �r there is no much di�erence between small
values of p � �� in the sense that the smoothing term only imposes an �order�
between the frequencies� which is not altered by the di�erent choices of p� Nev�
ertheless� for this to hold they have to be small enough so the regularization
term does not overrun the original data of the problem �i�e���

p
�rN

p  �� In
this work we take the value of p � ���
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����� Experiments with noise in the data

In 	�	�	 and in Appendix A we predict that the data perturbations will be
increasingly ampli�ed as we shrink the regularization parameter� It is then the
purpose of the following numerical experiments to show how this appears in
practice� as well as how the regularization procedure can �lter out the noise
contribution�

The �rst experiment consists on adding uncorrelated and normally dis�
tributed noise to the velocity data� and then applying the method to �lter
out this contribution�

We perturbed all the data measurements randomly and observed the e�ect
in the computed solution� The perturbations are independent� have normal
distribution and their standard deviation is 
�� of the velocity modulus at every
measurement point� In other words

upert�Pj� � u�Pj� � euj  
�� 
p
u��Pj� � v��Pj�� for j � � � � �Nd

vpert�Pj� � v�Pj� � evj  
�� 
p
u��Pj� � v��Pj�� for j � � � � �Nd

where euj � euj � N �
� ��� for j � � � � �Nd� On the other hand� the boundary
data has been kept unperturbed� As we can see in the following plots� the
algorithm works well and the �ltering procedure is successful� even with the
small values of regularization parameter used here� A possible explanation of
this behaviour is based on the fact that N � the maximumwavenumber has also
a regularization e�ect� Its value bounds the highest frequency present in the
numerical solution� therefore it precludes the unbiased uncorrelated error made
of high frequency� Numerical results for both the ramp case and the Rankine
vortex are shown in Figures ���� and ���� respectively�

The second experiment consists on shrinking the regularization parameter
while keeping �xed the noise level� By means of this procedure� we are able to
see how the numerical solution becomes more wiggly as it tries to approximate
better noisy data� Our actual example is based on the Uruguayan example� since
it is the example with least amount of data and that makes it more sensitive
to perturbations� The noise has been generated in the same way as in the �rst
experiment� and the results can be seen in Figure �����
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ow over a ramp with perturbed data
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Figure ����� 	D �ow over a ramp with random perturbations�Top� Numerical
solution� Bottom� De�noising e�ect� Observe that the di�erence between the
data and the numerical solution is made of scaled white noise� and that cor�
responds to the random perturbation that we introduced� On the other hand�
there is no di�culty on handling the boundary condition� since it does not
contain any perturbations�
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�D Rankine vortex with perturbed data
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Figure ����� 	D Rankine vortex with random perturbations� Top� Numerical
solution� Bottom� De�noising e�ect�Again� the di�erence between the data and
the numerical solution is made of scaled white noise� and that corresponds to
the random perturbation that we introduced� On the other hand� there is no
di�culty on handling the boundary condition� since it does not contain any
perturbations�
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Uruguayan case with perturbed data and variable regularization
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Figure ����� Numerical experiment with �xed noise level and di�erent values of
the regularization parameter� Decreasing the value of the �r parameter ampli�es
the error in the data and yields a wiggler solution� In addition� the pointwise
residuals also shrink with �r � Since the L�curve criterion is not useful in this
case� an a priori knowledge of the error is needed to provide a numerical solution
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Conclusions

Let us summarize the ideas that have been discussed throughout� When solving
a �ow estimation problem we often have a small number of data measurements�
so additional information has to be included in order to �nd an useful solution�
That sort of information can be the incompressibility condition� slip boundary
conditions and some qualitative knowledge of the smoothness of the �ow� The
method presented in this work can handle all these conditions� and in addition�
it can take into account the amount of noise present in the data� either in a
posteriori way� like in the L curve method or with a priori information� mini�
mizing an error bound of the solution� For that reason� it is useful to derive
perturbation bounds relating the size of the regularization parameter and the
error in the data with the corresponding perturbation in the solution�

Since we are able to substitute the incompressibility constraint� �nding a
numerical solution just involves an unconstrained linear least squares system�
usually of small size�

Here Tikhonov regularization has been applied� but other methods men�
tioned in section 	 can be also applied� For example� when there is a distinct
gap in the singular values spectrum� the MTSVD method �	��
� is very simple
to use� An empirical choice of the smothness parameter p has been done� but
a lower bound has been provided to guarantee that point conditions can be
succesfully imposed�

The properties of convergence with respect to the number of data measure�
ments common to spectral methods are present here� in the sense that the rate
of convergence will be enhanced by the smoothness of the original �ow� This
means that in some cases� with very few components we are able to represent
the numerical solution� as seen in our numerical experiments� both with model
problems and real data�

Beside this� numerical results from this method have been compared with
others from L�opez V�azquez ���� in the Uruguayan case� yielding an interpreta�
tion of an equivalent regularization level used in that work� In other words� we
can almost reproduce those results by choosing a large value of the regularization
parameter and with just a small number of Fourier modes�

��
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Requiring smoothness of the original �ow seems to be a key limitation of the
work� unless we are willing to face a large dimension least squares problem� For
example� that is the case with boundary layers� However� one could �zoom in�
into that zone of rapid variation� to obtain a local approximation that could be
overlapped with the outer smooth solution� That implies an adaptive procedure
which falls outside the scope of this thesis and can be the subject of future work�

Finally� a possible application which o�ers anoother view point of the algo�
rithm is to use it to validate measurements� For example� With the help of a
laser beam one can obtain a lot of velocity measurements in a planar section� A
three dimensional version of this method could be used as a part of a statistical
tool to reject poor quality measurements�
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Singular values estimates

The purpose of this section is to provide bounds on the condition number of
the matrix associated with Tikhonov regularization� First� we do the analysis
in a general setting� with arbitrary A and B and then we restrict the results
to the velocity �eld approximation problem discussed throughout the work�
This as already seen in Chapter 	 is a vital issue to guarantee the stability of
our computations� It is worth to mention that these results are close to those
included in ����� but the proofs have been done independently and based on
the Singular Value Decomposition instead of the Generalized Singular Value
Decomposition�

As we shall see� we are able to control the condition number of the matrix
from the least squares problem by choosing the value of �r� The condition
number will be then O ��	p�r��

In the following property we state the e�ect of �r on the singular values of a
matrix associated with Tikhonov regularization� assuming that the regulariza�
tion operator B is non singular�

Theorem � Bounds of singular values� Let the real valued matrix A �
R
m�n have rank r� with singular values 
Ai � � � i � r and de�ne

M ��r� �

�
Ap
�rB

�
where B � Rn�n is an invertible matrix with singular values 
Bi �
Then the singular values of M ��r� satisfy


i��r� � 
Ai � O��r�� for all � � i � r


i��r� � O�p�r�� for all r � � � i

Proof�

We use the fact that 
�i are the eigenvalues of the symmetric matrixM
T ��r�M ��r��

Then� recalling the de�nition of the singular value decomposition of the matrix

��
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A we have A � U!V T where U and V are orthogonal matrices and ! is a
diagonal matrix�
Therefore�

!T! � diag��
Ai �
�� � V TATAV� �A���

Now� let 
i��r� denote the singular values of M ��r�� Observe that the re�
lation 
i��r� is well de�ned since the eigenvalues of a matrix are continuous
functions of the matrix entries� which in this case are continuous functions of
the regularization parameter �r�

Applying the same similarity transformation as in �A��� to the matrix prod�
uct MT ��r�M ��r� we arrive to

V TMT ��r�M ��r�V � !� � �rV
TBTBV

Then� Gerschgorin theorem �see ��	�� theorem ��	��� page ���� with suitable
numbering of the singular values 
i��r� yields

j�
Ai �� � 
�i ��r�j � mi �r �A�	�

where mi � kV TBTBV eik�� This implies that lim�r�	 
i��r� � 
Ai and as a
byproduct it yields

j
Ai � 
i��r�j � mi �r


Ai � 
i��r�
�A���

Now� sinceM ��r� is constructed by appending extra rows to the matrixA we
have 
i��r� � 
Ai � for all � � i � n� This fact is a consequence of �	��theorem
���� page ����
Recall that the rank of A is r� Thus� if i � r then the singular value 
Ai is
strictly positive� and we get the bound

j
Ai � 
i��r�j � mi �r

	
Ai
� which is the �rst part of the theorem� �A���

To prove the other statement� let i � r� Then 
Ai � 
� and �A�	� yields


i��r� � pmi �r� �i � r

The strategy to obtain a lower bound on the singular values is to use the
non singularity of B� working with its smallest singular value�


�min��r� � min
kxk���

kAxk�� � �rkBxk�� � �r min
kxk���

kBxk�� � �r�

B
min�

�

Now� since 
�i ��r� � 
�min��r�� for all i from �A�	� we obtain

p
�r


B
min � 
i��r� � pmi �r � which implies the second part of the theorem��
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In Figure A�� we can see a numerical experiment showing the dependence
of the singular values spectrum of M ��r� with �r � The matrix A � R�	��	 has
rank equal to � and the regularization operator is B � diag��� 	��� � � � � 	
����
The bound provided by theorem � is clearly identi�ed in the graph� since the
modi�ed spectrum corresponding to the null space of A is just scaled by

p
�r�

In addition� observe that those perturbed singular values corresponding to non
zero singular values of A remain almost constant� In the experiment� we have
used
�r � �e� �� �e� �� � � � � �e� ��
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Figure A��� Numerical example of the dependence of singular values of M ��r�
with respect to �r

Using the last theorem we can now give a �rst estimate on the condition
number of the regularized unconstrained LSQ problem�

Corollary � With the same hypotheses as in theorem 
 we have

��

��
Ap
�rB

��
� kAk�kBIk�p

�r
�
p
�r�� �B�

Proof�
It is just a matter of bounding the maximal and the minimal singular values of
M ��r�� The �rst singular value satis�es the inequalities�


���r� �
q
kAk�� � �rkBk�� � kAk� � �rkBk�

And as seen in the proof of the last theorem�

��M ��r�
I
��
�
� kBIk�p

�r
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�

The next property allows us to bound the condition of the matrix of the
LSQ problem seen in ����	� In that section we allow the diagonal matrix B
from the regularization term to be singular� but keeping the assumption that
the intersection of the null spaces ker�A� and ker�B� is trivial� For the velocity
�eld problem this assumption of trivial intersection has been proved in corollary
��

The next step is to allow a singular regularization operator B� but keeping
the assumption of no intersection of null spaces�

A a direct consequence of �����theorem 	��� yields

�����
�

Ap
�rB

�I�����
�

� max
#
kBIk�p

�r
�

�

inf
�
APker�B�

�$ �A���

where Pker�B� is the orthogonal projection onto the null space of B and

inf
�
APker�B�

�
denotes the minimum non zero singular value of APker�B��

To be able to o�er a geometric interpretation of the results� we �rst need to
recall the notion of the angle between subspaces� and after that prove a simple
bound�

De�nition � The angle �� between two subspaces V and W is de�ned by

cos���� � max
kxk� � kyk� � ��
x � V� y � W

xT y

Lemma � Let �� be the angle between ker�A� and ker�B�� Then

inf
�
APker�B�

�
� min
kxk���� Bx�	

kAxk� � sin�����
ArA� �
sin����
kAIk�

Proof�
Let x � ker�B� with kxk� � � and de�ne the vector y as the orthogonal projec�
tion of x onto the Range of AT �

y � PR�AT �x

Observe that the angle � between x and ker�A� satis�es the relation

kyk�� � sin����
On the other hand� since by the above construction x � y belongs to the

null space of A we have Ax � Ay� Using the last relation and the inequality
sin���� � sin����� �which comes directly from the de�nition of ��� we arrive to

kAxk�� � kAyk�� � sin����kAuk�� � sin������
ArA��
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The last assertion holds since u � y
sin���� � Range�AT �� kuk� � �� �

Now let

Ak �
kX
i��


iuiv
T
i � with � � k � rank�A�

be a truncated SVD expansion of A� De�ne �k as the angle between ker�B� and
ker�Ak�� Since

inf
�
APker�B�

� � inf �AkPker�B�

�
� for � � k � rank�A�

then by means of lemma � we arrive to

inf
�
APker�B�

� � max
��k�rank�A�

�
sin��k�

kAI
kk�

%
We remark that both sin��k� and kAI

kk� do not decrease as k increases� Thus�
it is reasonable to expect that the maximum of

n
sin��k�
kAI

k
k�

o
will occur at an inter�

mediate value �  k�  rank�A��
The next corollary is just the generalization of � for B singular�

Corollary � With the same hypotheses as above�

��

��
Ap
�rB

��
�

max

�kAk�kBIk�p
�r

�
p
�r���B�� min

��k�rank�A�

�
���Ak�

sin��k�
� �r

kAI
kk�kBk�
sin��k�

%�
�A���

�

From corollary 	 we see that if the minimum of
n

sin��k�
kAI

k
k�

o
is small enough

then it makes sense to apply the Tikhonov regularization� This has the following
geometric interpretation� the subspace associated with relatively small singular
values of A should be near orthogonal to the null space of B�
The above can be seen as a condition for the choice of the regularization operator
B� since A generally given from the physical model� We can think of the above
statement as the numerical counterpart of the requirement ker�A� � ker�B� �
f
g� If that happens the condition number will be approximately controlled by
kAk�kBIk�p

�r
� To �nd satisfactory results we also need the right hand side b to

satisfy the discrete Picard condition commented in section 	�	�	�
As remarked in the numerical examples� the angle between the null spaces of

A and B may shrink when the number of wave numbers present in the solution
increases� so it may be useful to also add a small penalization to the mean
value components in the solution to make B invertible and keep the result from
theorem ��

In what follows� we particularize the sensitivity results to the case of the
velocity �eld estimation� For that reason� recall the quantities NDep �number
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of dependent variables� and Nfree �number of dependent variables� de�ned in
section ����	�

The next property gives a bound in the �substitution� matrix used in section
����	 to achieve an unconstrained formulation� It shows that the substitution
matrix is indeed very well conditioned�

It uses the fact that NDep	Nfree � �� which can be easily veri�ed by the
reader�

Property � Recall the de�nition of the matrices HD and HF given in ������
Then the following bound on the condition number of the substitution matrix
holds�

� �
����� I
�H��

D HF

�����
�

�
p
� � �� �A���

where � � max��max� �max�� Moreover� there exists a choice of the set of free
variables such that � � � This is accomplished by looking at constraint ��� and
choosing as independent the variables���

�U�� if j�j � j�j� and j�j � 

�V�� if j�j � j�j
�U�� and �V�� if� � � � 


�A���

Proof� Just consider the de�nition of the 	�norm������ I

�H��
D HF

������
�

� max
kxk���

kxk�� �
��H��

D HFx
���
�

Now let � be the maximum absolute value of the entries in the rectangu�
lar matrix H��

D HF � Beside this� recall that H
��
D HF has at most one nonzero

element per row and that for every independent variable there are at most �
dependent variables

Therefore� we arrive to ����� I
�H��

D HF

������
�

� � � ��

To conclude observe that � � maxf�max� �maxg for any choice of independent
variables and that if �A��� holds � � �

�

In what follows� we provide a bound on the �rst singular value of the matrix
A that contains information about both the station points and the slip boundary
conditions� For that reason� let A� be the matrix associated with condition ���	�
via the least squares formulation ������ In a similar way� let A� be associated
with the slip boundary condition in �D� as explained in ����� and ������
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Property � Let A �

�
A�

A�

�
with A� and A� as above and let

Nf � �	�max � ���	�max � ��

Then kA�k�� � 	Nf � kA�k�� � �Nf and

kAk� �
p
�Nf

�

Finally� by means of the preceding properties� we are able to give a bound
for the condition number of the matrix for the constrained problem discussed
in ����	� In order to emphasize the important terms in the bound� we have used
the O notation�

Property � Let

�M ��r� �

�
Ap
�rB

� �
I

�H��
D HF

�
Then

��� �M ��r�� �p
� � �� max

#p
�Nfp
�r

� O�p�r�� min
��k�rank�A�

���Ak�

sin��k�
� O��r�

$
�A��

�

Since the regularization operator B is diagonal with entries
p
��p � ��p its kernel

is spanned by constant �ows� and 
BrB � �� That simpli�es the bounds in
property �� If we also add a small penalization � in the entries that correspond
to � � � � 
 we are able to preclude any �closeness� between the null spaces
represented by a small value of sin���� in �A���

Now� keeping the same notation as in property � and applying �	����we have
the following perturbation bound in the Euclidean norm�

kx��r�� �x��r�k �
��� �M ��r��

�� ��� �M��r��
k�Ak
kAk

�k�Ak
kAk kx��r�k�

k�bk
kAk � ��� �M ��r��

k�Ak
kAk

kr��r�k
kAk

�



Appendix B

Convergence as �r � ��

The goal of this section is to analyze what happens when we let �r � 
��
assuming exact arithmetic and no errors in the data�

We now introduce some notation that will be used on what follows� Let
A be a m � n matrix� with rank�A� � r  n� Let Z be a basis for ker�A��
represented as a n � �m � r� matrix� Analogously� let N be a n � r matrix
such that its columns make a basis of Ker�A�� � Range�AT �� Observe that
NTZ � 
 and AZ � 
� Then� any arbitrary x can be written uniquely as
x � ZxZ �NxN � We shall also make use of the following notations� BZ � BZ�
BN � BN � AN � AN �

The following property gives useful results about the dependence of the
solution of a rank de�cient linear least squares problem� showing that there exist
a limit value x�
�� and that only the null space component of x�
� depends on
B�

Property � Consider the Linear Least Squares Problem from Tikhonov regu�
larization�

x��� � argminx kAx� bk�� � �kBxk�� �B���

where the matrix A is m � n� rank�A� � r  n� Let Z be a basis for ker�A��
and assume that BZ has rank n� r� Then

lim
��	�

x��� �
n
N � Z

�
BT
ZBz

���
BT
ZBN

o�
AT
NAN

���
AT
N b

�

To prove this property we shall use the optimality conditions for �B��� which
are widely known as the normal equations� and work with the components in
ker�A� and its orthogonal subspace Range�AT �� Beside this� we also use that
the matrix AT

NAN is invertible�

�	
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Proof�
First observe that BZ has full column rank� so B

T
ZBZ is non singular� and the

same happens with the inverse of AT
NAN � Beside this� the minimizer of �B��� is

the solution of

�ATA � �BTB�x��� � AT b �B�	�

Now decompose the vector x��� into null space and the range of AT �

x��� � ZxZ��� �NxN ���

Therefore� from �B�	� we arrive to

�BTBZxZ��� � �A
TA� �BTB�NxN ��� � AT b

Multiplying the last equation from the left by ZT yields�

BT
ZBZxZ��� � BT

ZBNxN ��� � 
 �B���

and multiplying from the left by NT we get

�BT
NBZxZ��� � �A

T
NAN � �BT

NBN �xN ��� � AT
N b �B���

From �B��� and �B��� we easily conclude that

lim��	�xN ��� � �A
T
NAN �

��AT
Nb

and
lim��	�xZ��� � ��BT

ZBZ �
��BT

ZBN �A
T
NAN �

��AT
N b

which �nishes the proof� �
The vector x�
� can be expressed by means of the GSVD of the matrix pair

�A�B� taking the limit in expression �	����

x�
� � X

�
!� 


 In�q

�
UT b �

qX
i��

uTi b


i
xi �

nX
i�q��

�uTi b�xi

This corresponds to a particular choice of the matricesN and Z described above�
If we are interested to enforce as much as possible the interpolation condi�

tions it is useful to reduce the e�ect of the regularization term� �i�e� compute
x�
�� That is numerically easier if one knows a priori that an extrapolation on
the vanishing parameter can be done� In this case� Richardson extrapolation ���
can be applied�

Corollary � Richardson extrapolation can be used to compute x�
�
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Proof�
It is enough to observe that the solution can be expanded as a power series for
su�ciently small values of � �

x��� � x�
� � a��� a��
� � ���

To conclude we use the following result �see ��	� lemma 	�	��� page ���

if kHk  � for some operator norm� then

�I �H��� � I �H �H� �H� � ����

Keeping this in mind� is su�cient to take

H � ��AT
NAN �

��BT
N �I �BZ�B

T
ZBZ �

��BT
Z �BN

with �  �	 � k�AT
NAN �

��BT
N �I �BZ�B

T
ZBZ�

��BT
Z �BNk�� in �B���� �

The result of the extrapolation can be also expressed by means of the GSVD�
For example

xextrap��� � x��� � �x��� � x�	��� �

X

�
Fextrap 


 In�q

�
UT b �

Pq
i�� f

extrap
i

uTi b
�i

xi �
Pn

i�q���u
T
i b�xi

where Fextrap � diag�fextrapi � and the �lter factors from Richardson extrapola�
tion are given by

fextrapi ��� �
�

� � �
	�
i

� � � �
	�i

� � 	 �
	�
i

� fTikhi

� � � �
	�i

� � 	 �
	�
i

� fTikhi

which shows that the extrapolated solution has less regularization�

Let us now discuss the behaviour of the �lter factors from the extrapolation�
For small values of �

	�
i

 � we have that

fextrapi ��� � ��O
�
� �
	�i
��


which basically implies that there is almost no regularization error in compo�
nents associated with large generalized singular values�
Conversely� for large values of �

	�i
�� � corresponding to relatively small �i we

have
fextrapi ��� 
 �

�f
Tikh
i � O

�
	�i
�


which implies a bit less regularization than

Tikhonov�s�
In Figure B�� we plot the �lter factors coming from Tikhonov regularization

and those from the described extrapolation as a function of �
	�i
�

Another implication of property � is that the there exist a limit value for the
solution of the velocity problem ����
� as we shrink the regularization parameter�
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Figure B��� Filter factors of Tikhonov regularization and its extrapolation� The
extrapolation o�ers larger �lter factors� leading to less regularization�
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Corollary � The solution of ������ has a well de�ned limit as �� 
��

Proof�
We use property �� Observe that problem ����
� can be written with the struc�
ture ������ once reformulated in real arithmetic� In this particular case� the term
�rfr�C� is equal to �rkBxk� from property �� This means that the only hypoth�
esis to check is that BZ is full column rank �i�e�� rank�A� � rank�B� � f
g
Recall that associated to each x real vector there exists a unique C complex
valued vector containing the Fourier components� If Bx � 
 then fr�C� � 

and then all C�� � 
� � �� 
� � �� 
 which is equivalent to say that the only

non zero Fourier components are those from the mean value� �U	�	 and �V	�	�

Therefore� kAxk�� � 
 implies

�

Nd

NdX
i��

�
�U	�	

�
�
�
�V	�	

�
� 


and
�

Nb

NbX
i��

�
�U	�	nx�Ph� � �V	�	ny�Ph�

�
� 


yielding �U	�	 � �V	�	 � 
� what we wanted to prove� �

The next property is the analogous of the characterization of the MTSVD
solution de�ned in �	��
� and can be used to prove that with �max� �max suf�
�ciently large the approximate solution obtained from the limit process will
interpolate the data�

Property � With the same hypothesis of property � let x�
� � lim��	� x����
Then

x�
� � argminkBxk�
s�t�
minkAx� bk�

�B���

Proof�
To prove the desired result� we pose the optimality conditions for �B��� which
is equivalent to ���

minx �		kBxk��
s�t�
ATAx � AT b

Its optimality conditions are�
BTB ATA
ATA 


� �
x
�

�
�

�



AT b

�
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Using the same notation as before� we write x � ZxZ �NxN and multiply the
last equation from the left by the nonsingular matrix�

ZT 


 NT

�
obtaining

�BT
ZBZ�xZ � BT

ZBNxN � 


AT
NANxN � AT

N b

which is the set of equations that uniquely determine x�
� as seen in property
�� �
If we do not take the limit of x��� �i�e�� �x � � 
 and moreover b � Range�A�
then we have kb � Ax���k� � O���� The last assert can also be seen directly
from relation �	�����
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Reduction to the �D case

for �at topology

The �ow has � components �u� v� w� which depend on �x� y� z�� Then� assuming
�at topology and either constant geostrophic wind or potential law extrapola�
tion in z direction� the �D problem of estimating the �ow is reduced to a 	D
subproblem on a certain layer at �
 meters height�

The only physical boundary conditions to satisfy are at z � 
 �null veloc�
ity� and z � H where we can choose between the geostrophic wind �when�
ever it is available� and a potential law extrapolation� If we assume �at topol�
ogy� and neglect the e�ect of the third component from the wind �ow we get
��x� y� z� � �u�x� y� z�� v�x� y� z�� 
� and the incompressibility relation simpli�
�es to ux�x� y� z� � vy�x� y� z� � 
� Moreover� if we use an extrapolation law in
the vertical direction of the form

u�x� y� z� � u�x� y� z	��z	z	�
n

v�x� y� z� � v�x� y� z	��z	z	�
n �C���

it is enough to ensure that ux�x� y� z	��vy�x� y� z	� � 
 to get an incompressible
approximation� Thus� our velocity problem is reduced to 	 dimensions� and we
have to solve it in the layer where the measurements have been taken�

On the other hand� if we use the geostrophic wind as a boundary condition
at z � H � zG then our approximation will be

u�x� y� z� � u�x� y� z	� � �uG�x� y� � u�x� y� z	��
log�z� � log�z	�

log�zG�� log�z	�
� �z � �z	� zG�

v�x� y� z� � v�x� y� z	� � �vG�x� y�� v�x� y� z	��
log�z� � log�z	�

log�zG� � log�z	�
�z � �z	� zG��C�	�

and the potential law �C��� for z � �
� z	�� If the geostrophic is assumed to be 	D
divergence free �a constant geostrophic is a particular case of this hypothesis�
then ux�x� y� z	� � vy�x� y� z	� � 
 is enough to ensure the incompressibility of
the � dimensional �ow�

��



Appendix D

Other results in the

Uruguayan case

D�	�� Flow results

In this section we present the results for the mean value and the �rst two
principal components of the wind �eld in the Southern part of Uruguay� At the
same time� we reproduce �with permission� the results from �����

Figure D��� Results from the proposed method� mean value component

�
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Figure D�	� Results from ����� mean value component

Nx = 3, Ny = 3, epsr = 1e−1, p=1.5

Figure D��� Results from the proposed method� �rst principal component
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Figure D��� Results from ����� �rst principal component
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Figure D��� Smoothed results from the proposed method� second principal com�
ponent �r � �e � 	
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Figure D��� Results from ����� second principal component
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