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Abstract 
 
 

The algorithm we present here is able to give an optimal 
solution for the power generation expansion problem if 
there is no dynamical links between time steps (normally 
years). In other case, it gives a good approximation to the 
optimal solution. It uses as input an estimation of the 
expected operation cost with fixed generation equipment. 
This kind of data is normally available in Power Utilities, 
frequently from operation models. For the general problem 
(solved with more involved methods), this algorithm can 
give a good feasible solution that can be useful in the 
search for the optimum. 
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1. Introduction 
 
Electricity wholesale markets are changing their regulatory frameworks in a 
varied way. Depending on the case, different agents can be responsible for a 
safe demand supply, including the final consumer. In any case, there is an 
agent that will have a high cost if contracted generators would not be able to 
supply part of his demand. 
 
Let us define a purchaser as some agent (private or public, final consumer or 
retailer) that somehow has the responsibility of a safe supply. The following 
examples are possible: 
 

• The regulatory authority could be a purchaser for all the system’s 
demand, with an implicit contract with all the power generators in the 
system. In this context the cost for not serving energy is the not served 
energy social unit cost, that is frequently represented as a stepwise 
linear function.  

• A concessionaire in a specific geographical area could be a purchaser 
for his area. Now the cost for not serving energy is the penalty that the 
concessionaire has to pay in case of shortage. In this case the 
concessionaire will transfer the penalty to the contracted generators. 

• Suppose a retailer with a set of supply contracts with consumers. 
Contracts could have different penalties, producing a convex stepwise 
linear cost function, as in the case of the regulatory authority. 

 
The above mentioned purchasers correspond to different regulatory situations, 
but the structure of the problem is the same for all of them.  
 
We are interested in the case in which the purchaser is able to install power 
generation. This is not permitted in some regulatory frameworks, nevertheless 
long term contracts are similar to buying a power plant (we are really interested 
in irreversibility). 
 
The statement of the purchaser problem is to minimize a cost function including 
penalties in critical events, and we have a finite number of real investment 
alternatives. In real life, alternatives can include power contracts too. Long term 
power contracts could be included as alternatives in the present context. It is 
necessary that no long term contract could expire before the end of the study 
period. 
 
When modeling oligopoly markets, game theory (see [2]) consideration may be 
necessary. The analysis of the whole market equilibrium can become an 
involved problem. The simplified statement of the investment problem that we 
present here could help to manage such kind of problem. 
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If we are studying real investments (or long term contracts), once the purchaser 
have invested, all the other players in the market can know his decision and are 
able to change their own investment decisions or offers in the Spot market and 
short term contracts market. 
 
The main idea is to make simplifying assumptions in the statement of the 
problem in such a way that stochastic dynamic programming could be used. In 
the deterministic case, the number of transitions is further reduced using 
additional conditions on the problem. 
 
Our problem is to choose in a set of ip power projects. A feasible solution will 
be a combination of the available power projects for each year in a period, such 
that each year has not more installed projects than the following year. 
Alternatives are combination of the ip possible power projects. The maximum 
number of alternatives is equal to the number of sub-sets in the set of possible 
projects (2ip). In real life problems there are many forbidden combination of 
projects. For example, if k projects are identical, they produce only k 
alternatives. There are complete system problems having a low number of 
possible projects (5-10 in the system of Uruguay). The first condition to be able 
to apply this method is to have a low number of alternatives (up to 1000 for a 
PC). 
 
Even if we can have a great number of scenarios, they must be constructed as 
sequences of a few situations. In some problems we can construct scenarios 
from only two or three system annual situations (say low, average and high). 
Moreover, given a situation and an alternative for the corresponding year, it 
must be possible to estimate accurately the conditional expected annual 
operation cost. 
 
When the simplifying assumptions above are valid, we are able to solve the 
problem using the algorithm we develop in this paper. The optimal solution is a 
strategy, defining the decision to be made in the first time step, and decisions 
for each bundle of scenarios at each time step. 
 
Section 2 of this study is devoted to the deterministic version of the algorithm. 
 
The assumption developed in 2.2 is needed to be able to use the algorithm, at 
least as an approximation to the solution of the problem. It has been tested for 
the system of Uruguay. 
 
Result in 2.3 means that if in a time step, an alternative is more expensive in 
total costs than another and has less investment costs, then its investment is 
not enough for the system, and this situation will last with system growing 
(normally in the future). This result is only used to reduce the number of 
transitions to be considered. It depends on a monotony condition (MC) that is 
proved for a simplified problem. 
 
In 2.4 we present a first formulation of the problem as a 0-1 non linear program. 
This is the basic formulation, close to the real life problem, but it is not well 
suited for resolution. 

 5



 
In 2.5 we present an equivalent linear formulation that enables the use of 
available methods and packages. See the chapter of integer programming in [3] 
for a survey on equivalent systems. In this context “equivalent linear 0-1 
program” means a linear program with the same solution set as the basic 
formulation. 
 
Linear problems of that kind are widely studied in the literature. Methods have 
been developed to reduce calculation time. Good routines have been developed 
to implement them [CPLEX, XPRESS]. 
 
Defining input for the resulting linear program may be difficult. A solution 
algorithm is developed in 2.6 for a third equivalent formulation, as a dynamic 
problem that makes the structure of the problem’s data easier to manage (see  
[1] ). 
 
Results in 2.7 and 2.8 are used to reduce time calculation, even if this is not a 
critical issue for the applications. 
 
In section 3 a scenario analysis approach is developed, following the the ideas 
of [4]. 
 
Assumption in 3.2 is analogous to the one in 2.2. Now inaccuracy can originate 
in changes of situation between time steps of the same scenario. 
 
In 3.4 we present again a formulation as a 0-1 non linear program. The content 
of 3.5 is the equivalent linear version. 
 
In 3.6 there is an algorithm based on a dynamic (now stochastic) program 
formulation.  
 
Finally, section 4 shows some examples and applications. 
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2. Deterministic investment problem 
 
In what follows we are going to describe a problem that is stochastic, that is 
going to be solved in two stages. Even though the problem is stochastic, this 
first approach is going to consider a deterministic second stage problem. 
 
At the first stage, a power system operation stochastic problem is solved for a 
family of sub-sets of a set of possible projects. For each operation problem, an 
estimation of the expected operation costs is obtained for each time step. In the 
operation problem, the equipment remains fixed for the time period T that is 
analyzed. 
 
At this stage an operation problem must be solved for each combination of 
projects that is going to be considered as an alternative in the second stage. 
Nevertheless, this kind of operation problems is standard, and can be solved 
efficiently at a low cost. 
 
As an example, stochastic dynamic programming is frequently used in 
hydrothermal systems to define the optimal use of water, given the level of the 
existing dams and a qualification of the hydrological situation (wet, medium or 
dry for example). Expected costs can be obtained for each time step as a result 
of the optimization. Sometimes the optimization algorithm requires important 
simplifying assumptions. In such cases, better estimates of the expected costs 
for each time step can be got from a more accurate simulation of scenarios, 
using the value of water that was calculated in the optimization algorithm. Even 
in that case, the operation problem for an alternative in a period of 10 years can 
be calculated in a few minutes, using a standard PC. 
 
In 2.1 we give the basic definitions for the operation problem. 
 
In 2.2 I present an assumption that is needed for the validity of the dynamic 
programming algorithm, and some characteristics of a power system that are 
suitable in order to be able to accept it. 
 
The monotony result of 2.3 is used afterwards to reduce the volume of 
calculation. 
 
2.4 is the first formulation of the second stage deterministic problem. It is an 
integer variables problem, that is not linear. In 2.5 there is an equivalent linear 
formulation of the deterministic problem. 
 
Finally we get to the formulation in 2.6, and to an algorithm to solve the 
deterministic problem. 
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2.1 Preliminary definitions and results 
 
Definition 1. 
A project p is a pair  (fp, cop) composed by a real number fp and a vector cop. 
The set of all considered projects will be called P. 
 
fp is the fixed cost of the project corresponding to each time step (usually time 
steps are years in this framework). It includes: 
 

• The amount of investment that has to be paid in a time step, a quantity 
such that its repeated addition for each time step of the project life results 
in the investment value, provided a constant discount rate i is used. 

• Fixed operation and maintenance costs for each time step. Actually 
these costs increase with time, when projects get older. To overcome 
this problem, projects are going to be analysed for a period of T years, 
such that operation and maintenance costs begin increasing after T time 
steps. In addition, fixed operation and maintenance costs are much less 
than investments, and their variation is reduced related to their value. So 
it is not inaccurate to suppose them constant. 

• cop is a vector in a finite dimensional vector space. The components of 
cop contain the project information needed for its adequate modelling in 
the operation problem. For example, if the project is a thermal plant, cop 
will contain its installed power, availability factor, variable cost, annual 
time of needed preventive maintenance, etc. 

 
T must be less than the life period of any project. As a consequence, no project 
can be installed and taken off before time T. This is a natural assumption when 
thinking of real investments as generation plants, due to their long life-time and 
their (almost) complete irreversibility. In the case of power contracts some care 
must be taken, and perhaps a shorter period T will have to be considered. 
 
cop will not be explicitly present in the formulation of the investment problem. Its 
values are going to be used in the operation problem to calculate the expected 
value of the variable cost of the system when project p is included in an 
alternative, as it will be defined later. 
 
Definition 2. 
Among the family of subsets of P we define a sub-family A of alternatives. We 
will use capital letters for families of alternatives, and low case letters for 
alternatives themselves. Each alternative is then, a subset of P. A can be the 
family of all the subsets of P. 
 
Definition 3. 
A finite ordered set { IiAE i }≤≤= 1, of alternatives will be called an expansion if  
the following condition were satisfied: 
( ) ji AAji ⊆<∀ , . 

Let  be a function on the family of alternatives A, such that 
is an expansion. Then tr will be called a path. 

{ } ATtr →,1:
( ){ Ttttr ≤≤1, }
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In what follows we will only consider expansions as feasible solutions of the 
second stage problem. In some problems, additional constraints can reduce 
even more the number of alternatives. For example, suppose that k of the 
projects are identical; then these projects generate only one relevant alternative 
once the number of identical projects is fixed, with a total of k alternatives. An 
arbitrary set of k elements has 2p subsets. 
 
Definition 4. 
The fixed cost of an alternative a is ∑

∈

=
ap

pa ff where the sum is over all the 

projects that belong to a. 
 
Definition 5. 
The variable cost of an alternative a is a function { } RTa →,1:ν . This function 
represents the variable production cost of the whole system for each time step, 
when projects of alternative a and only them are installed. If we use a stochastic 
operation model for the system, νa  is an estimation of the expected cost. 
 
Definition 6. 
The total cost of an alternative a is a function { } RTca →,1:  defined as: 
( ) ( )tftc aaa ν+= . 

2.2 A basic assumption 
 
We suppose that the expected value of the system variable costs are known for 
an alternative a once we have the cop vector of each project p belonging to a.  
 
This is not strictly true when dynamical effects are present. For example, 
suppose the system has important reservoirs, and variable costs are estimated 
running an operation model of the system including the considered alternative 
for all the years of the study period. As a result of the optimisation operation  
problem, a set of Bellman values depending on the level of the dams will be 
calculated. Expected operation costs ( ){ }Tttca ≤≤1,  for each time step are 
calculated from them. These values correspond to the installation of alternative 
a alone for all the years. 
 
Using the above mentioned operation costs, the algorithm presented here will 
select optimal alternatives for each time step, giving an optimal path tr as a 
result. Let t0 be a time step such that ( ) ( ) abttrattr ⊃=+= 1, 00 . Running the 
operation model with the optimal path tr will get variable costs . 
Even though  you can expect to have

( ){ }Tttctr ≤≤1,
( ) attr =0 ( ) ( )00 tctc atr ≤ , because the 

optimal path will “see” the additional equipment in alternative b for time step 
t0+1.  
 
That kind of inaccuracy can be reduced choosing the time step long enough. 
For example, if reservoirs are weekly and we use a time step of one year for the 
power expansion model, dynamical effects could be neglected.  
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After a selection of the time step, the algorithm gives an optimal path tr. This 
path can be used to check the accuracy of operation costs. If results are not 
acceptable, a greater time step could be used. 
 
The effect of future equipment increases with its size, and the size of the 
needed equipment in next time step depends on demand growth in each time 
step. Except with very high growing in demand, changes in future equipment 
are not drastic in the immediate future, and the effect of greater changes in the 
far future are less influent. 
 
Using a dynamic programming operation model in a power system with monthly 
reservoirs, we have observed differences of less than 5% in expected operation 
costs, using a 1 week time step for the operation model, and a 1 year time step 
in the investment problem. 
 
For the above reasons, I think that a quite accurate time step can be selected in 
many real life systems. 
 

2.3 A monotony result 
 
The typical investment problem consists in spending money to get some 
advantage in supplying the demand of the system. Normally, the improvement 
in equipment results in a reduction of costs. Let a and b  be available 
alternatives, then: ( ) ( ) { }Ttttff baba ,1, ∈∀>⇒< νν  
 
Even more, if we have accepted a greater investment, we expect that the 
system will be better equipped. The increment in costs due to an increase in 
demand (marginal cost) would have to be less than the increment 
corresponding to the same demand evolution with lower investment costs. In 
standard situations demand increases with time, so we can have the following 
continuous version for that condition: ( ) ( ) ( ) ( TtttffMC baba ,0, ∈∀ )′>′⇒< νν  
 
For the problem presented bellow, the preceding monotony condition is 
satisfied. Suppose the operation model of a power system has the following 
characteristics: 
 

• Demand is represented in blocks given by a power level and duration. 
• The system has only thermal power plants. 
• Dynamical effects of thermal power plants can be neglected. 
• Scenarios (on demand and proportional unit cost of the plants) are 

known at the beginning of each time step, before the operation is done. 
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This model has the following formulation: 
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where: 
p(s) is the probability of scenario s. 
cith(s) is the variable cost of thermal plant ith ($/MWh) in scenario s. 
P(t,ib,s,ith) is power (MW) of thermal plant ith that has been dispatched in block 
ib of time step t, for scenario s. 
dur(t,ib) is the duration (hours) of block ib of time step t 
dem(t,ib,s) is the power demand (MW) corresponding to block ib of time step t, 
for scenario s. 
PP

( )

)

sup(ith) is the installed capacity (MW) in thermal plant ith 
 
Installed capacity (the goal of the investment problem) works as an upper 
bound in the operation problem. Correspondingly, expanding capacity (that 
correspond to an increase in fixed costs) accounts for relaxing the operation 
problem. 
 
In this case it is possible to solve separately a dispatching problem for each 
demand block ib, of each time step t and each scenario s. 
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The Lagrangean of (Pt,ib,s) is: 
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The (KKT) conditions are: 
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For each plant ith, three cases can be distinguished: 
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So that the plant has a complete dispatch in this case, and increasing Psup(ith) 
results in a reduction of the optimal value. 
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In this case the plant ith is not dispatched at all. 
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So that demand is satisfied if some plant is in Case 3. 
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In order to satisfy the above conditions, these problems are solved adding 
power of plants in increasing order of cith(s) until Psup(ith) is reached (thermal 
plant with complete dispatch) or demand is satisfied (marginal plant). Plants 
with cith(s) greater than the one of the marginal plant are not dispatched for the 
current (t,ib,s). 
 
Let cm(t,ib,s) be the variable cost of the marginal plant, im its thermal plant 
index. Then we have: 

  
( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( )⎩

⎨
⎧

>
≤−

=

=
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Let ΔP be a differential increase in Psup(ith). 
The corresponding unit reduction of operation costs is then 

  ( ) ( ) ( )( ) ( ) (( ) 0,,,,*
1 1 1 11
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B
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This shows that the expected value of operation costs decreases with the 
increase in equipment. 
 
Consider now ΔP as a finite increase. To see the effect on marginal costs, we 
distinguish the same three cases as above. 
 
Case 1 ( ) ( ) λ<scsp ith*  Plant ith has a complete dispatch. 

• If  then the marginal plant reduces its dispatch by ΔP 
and marginal cost remains unchanged. 

( imsibtPP ,,,≤Δ )

Let us call MP to the difference between the demand dem(t,ib,s) and the 
power dispatched until plant ith (including ith). 
• If  then the marginal plant have no dispatch and 

marginal cost is reduced to a value between the initial marginal cost and 
c

( ) MPPimsibtP ≤Δ<,,,

ith(s). 
• If PMP Δ<  then all the plants with variable cost greater than cith(s) have 

no dispatch and marginal cost is reduced to the value cith(s). 
 
So marginal cost does not increase in Case 1. 
 
Case 2 ( ) ( ) λ>scsp ith* Plant ith had no dispatch before increasing its maximum 
power, and it will still having no dispatch afterwards. Marginal cost does not 
change in this case. 
 
Case 3 ( ) ( ) λ=scsp ith*  In this case ith=im Plant ith has a partial dispatch 
before increasing its maximum power, and it will still having the same dispatch 
afterwards. Marginal cost does not change in this case. 
 
We conclude that for each time step t, demand block ib and scenario s, 
marginal cost does not increase. Then the same is true for expected values or 
average marginal costs, regardless of the type of weights used. 
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Each of these problems then satisfies the (MC). 
  
More complex models represent dynamical effects of thermal plants, associated 
to the start up process. If the power system has hydro plants with important 
dams, then dynamic links between time steps become important. I do not have 
a demonstration for the more complex cases. 
 
For the proof of the following Proposition we accept a continuous version of 
(MC). In this framework, we suppose the variable system cost function ν is of 
class C1 for each alternative a in A. 
 
Proposition 1. 
Let us suppose that (MC) is satisfied for the pair of alternatives a and b in A. 
Suppose in addition that ( )Ttff ba ,0*, ∈< . Then: 
a) ( ) ( ) ( ) ( ) *,** tttctctctc baba >∀>⇒>  
b) ( ) ( ) ( ) ( ) *,** tttctctctc baba <∀<⇒<  
 
Proof 
As fa is fixed and νa is of class C1 the following is verified for each alternative a: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) *,**

,0,

**

tttcduutcduutctc

Ttttff

a

t

t
aa

t

t
bbb

abba

>∀=′+<′+=

⇒∈∀′<′⇒<

∫∫ νν

νν
  

( ) ( ) ( )∫ >∀′+=
t

t
aaa ttduutctc

*
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This proves (a). The proof of (b) is similar. 
 

2.4 Formulation of the problem 
 
If nP is the number of possible projects and there is no additional constraints, 
then the number nA of alternatives will be 2nP. 
 
Additional constraints on the alternatives can reduce its number. As an 
example, if coal is not yet used for power generation, and p1 and p2 are two 
possible first projects with this fuel, they will include infrastructure costs. Each of 
the above mentioned projects, considered as a second project (after doing the 
other) will be cheaper than the same project, considered as a first one; let us 
consider them as different projects p21 (project 2 after doing project 1) and p12 
(project 1 after doing project 2). Then p21 can not belong to an alternative if p1 
does not belong to it. 
 
Constraints that depend on time (like financial constraints) will not be 
considered. Some of the proof use that constraints are explicitly dependent of 
the time elapsed. 
  
Alternatives will be referenced with index a. A great number of alternatives nA 
can make unpractical the algorithms studied in this work. In such a situation, 
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some sets of projects could be considered as a single one, especially if they are 
of the same type. For example, if 20 MW installed capacity gas turbines are to 
be installed in a system where demand increases by 500 MW each year, 
possibly identical gas turbine projects could be considered in groups of 5. 
 
We will suppose νA(t) is a good approximation for the expected value of the 
variable cost at time step t for the optimal path tr. This approximation can have 
some inaccuracy (see 2.2 for details). Even if that assumption is not valid, the 
solution to the following problem will give a good initial feasible solution for the 
investment problem. Such an initial solution can be useful for more exact 
algorithms, like branch and bound methods. 
 
The deterministic investment problem has the following formulation: 
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Decision variables xa(t) are equal to one only if alternative a is chosen in time 
step t. The objective function represent the present value of total costs, where 
ca(t) includes fixed and operation costs and i is the discount rate. 
 
Constraint (1.t) establish that exactly one alternative is chosen at each time 
step. 
 
In constraints (2.t) we represent the irreversibility of investments. We know by 
(1.t) that given the time step, there is only one alternative a such that xa(t) is 
one. In order to satisfy (2.t), for the alternative of index a, exactly one alternative 
belonging to Ia must be chosen at time step t-1, where Ia is the set of 
alternatives from which transition to alternative a is possible. 
 

2.5 Linear version 
 
Problem (P1) is not linear. In order to have a linear formulation; we will define 
new variables ( ) ( ) ( ) AaTttxtxtz

aIb
baa ≤≤≤≤−= ∑

∈

1,2,1* . These variables 

are going to be defined linearly using the following Proposition. 
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Proposition 2. 

We consider  
{ }
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The same proof is valid for Y=0. Now suppose X=Y=1. 
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And the result follows. 
 
As , the linear problem (P( ) ( ) { }1,01, ∈−∑

∈ aIb
ba txtx 2) is equivalent to (P1). 
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2.6 Dynamic programming type recurrence 
 
In what follows we are going to suppose (MC) is verified, so that the monotony 
result of 2.3 is valid. 
 
Multi-stage stochastic programs can be described in terms of dynamic 
programming. A standard formulation can be found in [1]. We present now a 
first equivalent formulation for problem (P1). 
 
Let us consider the optimal value fopt(a,t) corresponding to time steps from t 
on, being given that alternative a holds during time step t. An expression for that 
function is: 
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fopt can be evaluated in a dynamical programming framework. It will be defined 
by the following recursive formulas: 
 

( ) ( )
( )

( )
( ) ( ) nAaTcTafopt
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tdfoptmin
tctafopt
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Jd
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The following dynamical programming algorithm implements the method above.  
To store some useful information concerning the optimal path, we will define the 
integer function trajec. 
 
Definition 7. 
We define the function { } { } { }ATAtrajec ,1,1,1: →× such that: 

• If t<T, then trajec(a,t) points to the following alternative in the optimal 
path beginning at feasible alternative a at time step t 

• If t=T, trayec(a,T)=a 
 
We can now define the following 
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Algorithm (deterministic) 
1) Initialise 

( ) ( )
( ) nAaaTatrajec

TcTafopt a

≤≤=
=

1,,
,

 

2) Main process 

( ) ( )
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At the end of main process, fopt(a,1) contains the optimal values for the 
problem beginning with each alternative in time step 1. Once the alternative that 
holds in the first time step is determined, trajec contains enough information to 
construct the optimal trajectory. 
 

2.7 Using the monotony result 
 
The aim is to reduce the number of transitions to be tested. The set Ja  contains 
alternatives including a and satisfying other constraints, and it does not depend 
on time step t. 
 
We suppose transitivity: 

  allowedca
allowedcb
allowedba

→⇒
⎭
⎬
⎫

→
→

 
The following proposition permits to reduce these sets using information 
produced in the main algorithm. 
 
Proposition 3. 
Let t be a time step, alternatives a and b, a previous time step u and a path tr 
such that 
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( ) ( ) ( )
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Then there is a path btr with a cost less or equal than the cost of tr and such 

that .  
( )
( ) aubtr

aubtr
=+

=
1
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Using this result repeatedly, it can be concluded that there is a path without any 
transition from alternative a to alternative b in a time step u with u<t and with 
cost less or equal to that of tr. It is then possible to exclude the possibility of a 
transition from alternative a to alternative b for the rest of the algorithm. 
 
Proof. 
Let us define an integer function btr from tr in the following way: 

{ }

( ) ( )⎩
⎨
⎧ +=

=

→

otherwisestr
usa

sbtr

ATbtr
1,

,1:
 

btr is equal to tr except for t=u+1, where tr has a transition from a to b and btr 
remains in a. 
 
( ) ( ) ( ) ( ) a

a

b Jutrubtr
Jb

Jutrbutr
∈+=+⇒

⎭
⎬
⎫

∈
∈+⇒=+

22
21

 

This shows that the transition from ( ) aubtr =+1 to ( ) ( 22 + )=+ utrubtr is allowed, 
so that btr is a path. 
 

baa ffbaJb ≤⇒⊆⇒∈  
Using (3) and the monotony result, we have 

( ) ( ) ( )6, ucuctu ba ≤≤∀  
 
The total cost function of btr is the same as the one of tr, except for time step 
u+1, where ca(u+1) ≤ cb(u+1) (see (6)). So the path btr has total cost less or 
equal than tr, and it has avoided the transition from alternative a to alternative b 
in time  step u<t. 
 
Let us consider time step t in the backward iteration of the dynamic 
programming algorithm of 2.6, and suppose alternatives a and b are as in 
Proposition 3. We can then eliminate b from the set Ja for iterations 
corresponding to time steps u<t. 
 
Condition (2) in Proposition 3 means that alternative b have “too much 
investment for the size of the system in time step t”. For previous time steps, 
the system will be smaller, so that alternative b will be still too big in investment. 
 
Last proposition has been used to reduce the number of transitions in the main 
algorithm. 
 
Note: the same proof can be done for a path tr with 
( )
( ) ( ) ( )tctcJbJaTtu

butr
cutr

baac ≤∈∈≤<≤
⎭
⎬
⎫

=+
=

,,,1
1

 

In that case, we have to define   ( )⎩
⎨
⎧ +=

=
otherwisestr
usa

sbtr
1,

)(

 
The following Proposition establishes an analogous result for u>t. 
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Proposition 4. 
Let t be a time step, alternatives a and b, a time step u>t and a path tr such 
that 
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Then there is a path btr with a cost less or equal than the cost of tr and such 
that . ( ) aubtr =
 
Proof 
Let us define an integer function btr from tr in the following way: 

{ }

( ) ( )⎩
⎨
⎧ =

=

→

otherwisestr
usa

sbtr

ATbtr
,

,1:
 

btr is equal to tr except for t=u, where tr is equal to alternative b and btr is 
equal to alternative a. 

( ) ( )
( ) ⎭

⎬
⎫

=
∈+=+

aubtr
Jutrubtr a11

This shows that the transition from to 

is allowed, so that btr is a path. 

( ) aubtr =

( ) aJubtr ∈+1
 
Using the monotony result 

( ) ( ) ( ) ( )ucuc
tu

tctc
ffabJa

baba

abb
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⎪
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⎬

⎫

>
≤
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As the only difference between tr and btr is that tr(u)=b and btr(u)=a, then btr 
is a path with a cost less or equal than the cost of tr and such that . ( ) aubtr =
 
As the main algorithm proceeds backward, the use of this result to modify the 
set Jb would require a pre-processing procedure. 
 
Conditions (2) and (3) in Proposition 4 mean that alternative b have “not enough 
investment for the size of the system in time step t, so that its variable costs are 
too big”. For a following time step u, the system will be greater, so that 
alternative b will be still too small in investment for the current time step.  
 
Condition (5) is necessary. Suppose a very good path for period [u+1,T] can be 
reached from alternative b but is not accessible from alternative a. In such case, 
b could be better than a in time step u.  
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2.8 Improvement inside a time step 
 
The deterministic algorithm presented above has a (backward) loop in time 
steps and a loop in alternatives. For each time step, the process consist in 
analyzing transitions from each alternative. In the middle of this process, some 
alternatives are yet studied and others are not. Information from yet studied 
alternatives is useful for the remaining ones, as is shown in the following 
proposition. 
 
Proposition 5. 
Let us define: 

{ } {
{ } {

( )( )1,arg
::
::

+=
⊆⊆→=
⊆⊆→=

∈
tbfoptminim

accallowedisaccI
baballowedisbabJ

aJb

a

a }
}  

Ja is the set of alternatives b to which transition is possible from a. 
Ia is the set of alternatives c such that transition is possible from c to a. 
Then the transitions from an alternative c with index in Ia to an alternative b with 
index in Ja is never better than the transition from c to the alternative of index 
im. 
 
Proof. 
Let tr be a path with a transition from an alternative c belonging to Ia in time 
step t, to an alternative b belonging to Ja in time step t+1, that is: 

{ }
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Let us define an integer function btr from tr in the following way: 
{ }

( ) ( )
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and btr optimal for u≥t+2. 

c
a

a Jim
Jim

Ic
∈

⎭
⎬
⎫

∈
∈

This shows that the transition from c to im is allowed, so that btr 

is a path. 
As fopt(im,t+1) ≤fopt(b,t+1), ∀ b ∈ Ja, then btr is not worse than tr. 
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3. Generalisation: optimisation under uncertainty 
 
Suppose now we can represent uncertainty using a finite number or scenarios 
with assigned probabilities. 
 

3.1 Definitions 
 
Let us define the following elements of such a setting for the stochastic 
problem. 
 
Definition 8. 
A scenario scen is a matrix of dimensions nA*T such that scen(a,t) is a 
possible future total cost associated with the a feasible alternative at time step t. 
It represent the behaviour of the system in a possible future period [1,T], for 
each feasible alternative. 
 
Definition 9. 
The set of all considered scenarios is ( ){ }nSCscscscenSC ≤≤= 1,.,., , where 
nSC is the number of scenarios. 
 
In this problem we are going to consider a finite number of scenarios. As the 
scenarios are themselves matrices, in what follows we are going to consider the 
set of scenarios as a unique matrix of dimensions nA*(T*nSC). 
 
In the following applications we shall store only a limited number of situations, 
from which scenarios are constructed. Concretely, each scenario will consist in 
a sequence of situations. 
 
If the number of recorded situations is nS, then we only have to allocate 
memory for nA*(T*nS) numbers. 
 
Definition 10. 
Let Bun be a partition of SC, that is 

( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

=∩⇒≠=≤≤=
=

φjBiBjiSCiBIiiBBun
I

i

,,1,
1
U  

Each set B(i) of Bun will be called a bundle of SC. 
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Definition 11. 
We take ( ) ( ) { } ( ) ( ){ }{ }{ }TtnSCscscscenTBunSCBuntBunK ≤≤≤≤=== 11,.,.,,1 . 
K is a sequence of partitions of SC such that the first one has the set SC as its 
unique element and the last one is the partition of SC in singletons. 
 
We will call K the evolution of our knowledge about the system. In this 
framework a bundle belonging to Bun(t) will be called B(i,t). 
 
Scenarios belonging to a set B(i,t) represent the ones that can not be 
distinguished at time step t, given that K is the evolution of our knowledge about 
the system. 
 
The first condition means all scenarios are possible at the beginning, so that we 
are not able to discard any of them using information available at time step 1. 
 
The second condition means we know the individual scenario that took place 
when we are in time step T. If that condition is not fulfilled, each 
indistinguishable set of scenarios in time step T could have been considered as 
a single scenario. We are going to make the assumption that the partitions in 
the evolution of our knowledge K are refined when t increases. This means we 
do not forget the passed history. We are using here the model of scenario 
analysis of [4]. 
 
Definition 12. 
We will call nb(t) the number of bundles in Bun(t). That is: 

( ) ( ) ( ){ }tnbitiBtBun ≤≤= 1,,  
 
Definition 13. 
We will call JBuni(t) the set of indices of bundles of time step t+1 such a 
transition from B(i,t) to bundles in JBuni(t) is allowed, that is: 

( ) ( ) ( ) ( ) ( )( ){ }0,1,,11, >++∈+= tiBtjBPtBuntjBjtJBuni  
 
Definition 14. 
The probability function of the scenarios is a function 

{ } ( )
( )

( ) 1

0
1,0,,1:

1

=

≥
→

∑
=

nSC

sc

scpr

scpr
nSCpr L

 

pr(sc) is the probability of scenario scen(sc). 
 
In a finite number of scenarios setting, pr(s) = 0 and pr(s) = 1 are not 
interesting possibilities. The first one should be eliminated. The second one 
implies pr(s) = 0 for the other scenarios, so that there is only one relevant 
scenario. That situation corresponds to the deterministic case, which we have 
yet studied. These arguments are not still valid for an infinite number of 
scenarios. 
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3.2 Basic assumption for the stochastic problem 
 
We make the basic assumption that operation costs are well defined for an 
alternative a, a time step t and a situation s, regardless of the future alternatives 
and situations that will be present in each feasible strategy and each scenario 
sc, as long as that situation s belongs to sc in time step t. 
 
This assumption is of the same nature as the one in the deterministic approach. 
 
Here we have a new source of inaccuracy. The estimation of operation costs is 
made in a fixed situation. This is accurate only for scenarios that have the same 
situations for time step t on. In other cases there is an error associated to the 
estimation. Special care must be taken when there is a great conditional 
probability of changing between very different situations in a time step, and 
specially if such a framework could conduct easily to a change in the chosen 
alternative in the same time step. 
 

3.3 Conditional Transition probabilities between bundles 
 
Definition 15. 
Suppose we have an evolution K of our knowledge about the system and a 
probability function pr of the scenarios in SC. 
We consider ( ) ( ) ( ) ( )11,,, +∈+∈ tBuntjBtBuntiB . We will use the conditional 

transition probability definition ( ) ( )( ) ( ) ( )( )
( )( )tiBP

tiBtjBPtiBtjBP
,

,1,,1, I+
=+  as usual 

in probability theory. We will call it the conditional transition probability between 
bundle i in time step t and bundle j in time step t+1. 
 
Proposition 6. 
Knowing the probability function pr of the scenarios is equivalent to knowing the 
conditional transition probabilities between bundles. 
 
Proof 
Suppose first that we know the probability function pr of the scenarios. Then by 
definition 

 

( ) ( )( )
( )

( )

( ) ( ) ({ }
( ) ( ){ }tiBscscenscD

tiBtjBscscenscE

scpr

scpr
tiBtjBP

Dsc

Esc

,.,.,:
,1,.,.,:

,1,

∈=
+∈=

=+
∑
∑

∈

∈

I )  
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Reciprocally, suppose now we know the conditional transition probabilities 
between bundles. We shall calculate the individual probabilities of scenarios 
using the following recursive formulas: 
For t=1 ( ) ( ){ } { } ( )( ) ( ) 11,11,11 ==⇒== CPBPSCBBun  
Suppose now that we know the bundle probabilities ( )( ) tIitiBP ≤≤1,, ( )  for a 
time step t, and the conditional probabilities 

( ) ( )( ) ( ) ( )tIitIjtiBtjBP ≤≤+≤≤+ 1,11,,1, . 
Then  can be determined: ( )( ) ( 11,1, +≤≤+ tIjtjBP )

)( )( ) ( ) ( )( )[ ]
( )

( )( ) ( ) (( )
( )

∑∑
==

+=+=+
tI

i

tI

i
tiBtjBPtiBPtiBtjBPtjBP

11
,1,*,,1,1, I  

Using this formula repeatedly it is possible to calculate the probability of bundles 
for time step T. But then  
( ) ( ){ } ( )
( )( ) ( )iprTiBP

nSCTIiiscenTiB
=

⇒=≤≤=
,

1,,
 

 
This shows that transition probabilities have all the probability information of K. 
For each time step, we can record these conditional probabilities in a matrix. 
 
Definition 16. 
Let t be a time step. The transition probability matrix prtrt corresponding to time 
step t is the matrix with generic element 

( ) ( ) ( )( )
( ) ( )11,1

,1,,
+≤≤≤≤

+=

tIjtIi
tiBtjBPjiprtrt . 

This matrix is of dimensions ( ) ( )1* +tnbtnb where nb(t) is the number of bundles 
in Bun(t). It will be denoted simply prtr if there is no ambiguity. 
  
This rectangular matrix works in the stochastic algorithm like the square 
transition probability matrix between states of a Markov chain in a stochastic 
dynamic programming algorithm. 
 

3.4 The investment problem under uncertainty 
 
As in the deterministic case, we begin with the setting of the problem for the 
stochastic case. 
 
We will assume that we have an estimation of the expected operation costs for 
each alternative a and each time step t, given that we are in bundle B(i,t). As 
scenarios in B(i,t) can not be distinguished, they must all have the same 
sequence of situations for 1≤u≤t. So it is enough to know the expected 
operation costs for each alternative a, each time step t and each situation s. 
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In the stochastic problem, x(a,t,i)=1 if in time step t and if bundle B(i,t) occur at 
time step t, you decide to install alternative a from time step t+1. 
 
Non-anticipation constraints imply that there is only one decision variable 
x(a,t,i) for all the scenarios belonging to bundle B(i,t). 
 
 The objective function is an expression of the expected value of the total costs 
corresponding to a valid strategy. For the expected value we have the 
expression ( ) ( )( ) ( ) ( )( ) ( )

( )
∑

∈

++=+
tJBunj

aa
i

jttiBtjBPtiBtE ,1,1,,1 νν  

where νa(t+1,j) is the variable cost corresponding to time step t+1 if alternative a 
is installed and bundle B(j,t+1) occurs. 
 
Constraints (1.t.i) establish that exactly one alternative is chosen in every 
feasible strategy for each bundle B(i,t) of scenarios in each time step t. 
 
Constraints (2.t.i.j) establish that alternative to be chosen in time step t+1 must 
belong to the set Ja of alternatives accessible from a.  
 
Constraints (3.a.t.i) define x(a,t,i) as logical variables. 
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3.5 Linear version 
 
Problem (S1) is not linear. In order to have a linear formulation; we will define 
new variables 

( ) ( ) ( ) ( ) tJBunjtIBuniTtnAajtbxitaxjitaz i
Jb a

∈∈−≤≤≤≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

∈

,,11,1,,1,*,,,,, ( ) 

These variables are going to be defined linearly as done in the deterministic 
problem. The resulting equivalent linear problem is 
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3.6 Generalised algorithm 
 
The following algorithm is based on a dynamic programming formulation of the 
stochastic problem, analogous to the one presented for the deterministic 
problem. 
 
The following definitions will be needed. 
 
Definition 17. 
We will call optesp(a,t,i) the optimal expected cost from time step t to time step 
T, beginning in alternative a at time step t and knowing that the system is in 
bundle . ( ) (tBuntiB ∈, )
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Definition 18. 
A strategy is a set of alternatives 

( ) ( ) ( ){ }tnbiTtnAaJitabitabstr a ≤≤−≤≤≤≤∈= 1,11,1,,,,,  
The strategy str determines the alternative b(a,t,i) to be installed from time step 
t+1 to time step T, if bundle B(i,t) would occur and alternative a would be 
installed, at time step t. 
 
Algorithm S is designed for the case where scenarios are defined from a little 
number of possible situations. In this framework scenarios are sequences of 
situations in time. As we have a reduced number of situations, normally each 
situation is repeated as part of different scenarios, or as part of the same 
scenario in different time steps. 
 
For example, a scenario can be a sequence of situations that consist in a high, 
medium or low level of some relevant variable. 
 
This kind of scenarios are described by the estimated expected operation costs 
for each alternative, time step and situation, and the sequence of situations that 
define the scenario. We will then change the definition of a scenario. 
 
Definition 19. 
We will call cost(a,t,s) the expected operation costs of alternative a at time step 
t, given that the system is in situation s during all the period {1,T}. 
 
Definition 20. 
Let nSC be the number of considered scenarios. The set of all considered 
scenarios is represented by a matrix scen of dimension nSC*T such that 
scen(sc,t) is the situation that corresponds to scenario sc at time step t. 
 
The following matrices are also calculated, to facilitate the calculations. 
 
Definition 21. 

optesp is a matrix of dimension . Element optesp(a,t,i) will contain 

the optimal expected cost from time step t to time step T, beginning in 
alternative a at time step t and knowing that we are in bundle B(i,t) (also called 
bundle i). 

( )∑
=

T

t
tnbnA

1
*

 
Definition 22. 
candi is an nA*nA matrix. Element candi(a,b) is equal to one if transition 
between alternative a and b is allowed, that is (in the framework of algorithm S) 
if alternative a is contained in alternative b. 
 
Definition 23. 
scen2bun is a nSC*T matrix. Element scen2bun(sc,t) contains a bundle 
number i. Scenario sc belongs to bundle B(i,t). 
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Definition 24. 
sit2bun is a nSC*T matrix. Element sit2bun(i,t) contains a situation number s. 
For all the scenarios of bundle i, situation number s is verified at time step t. 
Columns of sit2bun are not complete, because nb(t)<nSC, except for the last 
column. 
 
The algorithm that follows is a generalization of the deterministic one, for the 
stochastic problem. 

Algorithm  S (stochastic) 
1) Generation of scenarios. Includes: 
Generation of matrices scen, scen2bun and sit2bun 
Generation of vector nb (number of bundles for each time step) 
Generation of pr (probability of each scenario). 
Generation of matrix candi 
 
2) Initialise 
Matrices str and optesp with zeros. 
 
3) Main process 
For t=(T-1:-1:1) 
 Calculate matrix prtrt for transitions between time steps t and t+1. 
 Optimal expected cost from alternative a1 and bundle i1 in time step t  

for a1=(nA:-1:1) 
for i1=1:nb(t) 

Load in J alternative indices a2 attainable from a1. 
Load in K bundle indices i2 attainable from i1. 
For each possible transition to an alternative a2, calculate 
the expected cost for [t,T], given we come from alternative 
a1 and bundle i1 in t. 
Calculate the minimal expected cost and its corresponding 
alternative index im. Load optesp and str from those 
values. 

end for (i1) 
end for (a1) 

end for (t) 
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4. Examples and applications 
 
Applications present the type of problems that the method described in this 
paper can handle. 
 
The case of 4.1 can be solved with standard stochastic dynamic programming. 
In this case there is a standard way to generate many scenarios, and this 
possibility is used to get an idea about processing time. 
 
The case of 4.2 is closer to real life applications. 
 
Here accuracy is not the main issue. This is due to the inexact estimation of 
some variables that are known to be relevant, specially the ones related to 
global economic consequences and to subjective probability of events. In my 
experience in problems related to the power system, the most important global 
economic variables are the non-served energy unit price and the alternative 
investment yield. 
 
Non-served energy unit prices are a set of values (USD/MWh) which are 
assigned to each unit of non-served energy, in different levels. The unit cost for 
the first level is much greater than the variable cost of plants in the system, and 
it increases for deeper levels. These values represent the cost for the economy 
for not having demand completely fulfilled. They are roughly estimated from 
studies of the whole economic system. In addition, these studies are expensive, 
so that results are frequently calculated many years before they are used. 
 
Similar considerations can be made about the alternative investment yield in the 
economy. 
 
Subjective probabilities of events are other variables of difficult estimation. 
Information to make it comes from statistical studies, history and information 
that is not open to the public. In such a situation it is very difficult to even 
evaluate the degree of accuracy of the resulting estimations. 
 
The use of models permits to take into account all the relevant variables of a 
system in analyzing a decision. It also permits to react quickly when conditions 
vary in a significant form. 
 
Finally, the construction of scenarios is made from two or three situations (low, 
medium and high for example), that is all that can be distinguished at the level 
of accuracy that we have. 
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4.1 Markovian scenario 
 
This case have markovian scenarios, drawn from two situations s1 and s2. It 
has a fixed number of states and a unique square transition matrix. We suppose 
that the system is in situation s1 in the first time step. For each time step, 
probabilities of transition to situation s1 or s2 are both 0.5. This problem can be 
solved using classical dynamic programming, and is used to test calculation 
time and memory size required. 
 
With a tree of around 1000 scenarios, the problem is solved in less than 5 
minutes in a PC Pentium, using a prototype MATLAB code. The aim of this 
example is to check the code, and to ensure that calculation time is 
manageable in real life problems. 
 

4.2 An example of generation expansion 
 
A deterministic (second stage) problem results for the analysis of the generation 
expansion of a power system. Results can be useful for an independent 
generator (who is thinking of installing power to sell in the spot market), to know 
the type of plant that is needed in the system in some time step. 
 
An operation model of the system is supposed to be available, as well as the 
input data that it needs. 
 
The following projects have been considered: 
 

• Four independent and identical gas turbines, identified as TG1 to TG4. 
• Two additional identical gas turbines TG5 and TG6, that could be 

combined. 
• The incremental project to get a combined cycle from TG5 and TG6. 
• Two projects consisting in the change of fuel of existing units E1 and E2. 
• A project of improvement of variable cost and increase of power for E2. 

 
In terms of the deterministic algorithm, each gas turbine is a project, but only 5 
alternatives are originated from them (it is known that the first project must be at 
least of two gas turbines). 
 
The incremental project to get a combined cycle from gas turbines requires the 
previous turbines to be included in its alternative. 
 
Improvement of E2 was considered an independent project (it could be done 
with a change in fuel or not). 
 
From the existing projects and the above conditions, 30 alternatives have been 
considered: 
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1. No project at all 
2. Only change of fuel of E1 and E2 
3. Installation of TG5 and TG6 alone (2 TG) 
4. 2 TG plus improvement of E2 
5. 2 TG and change of fuel of E1 
6. 2 TG, change of fuel of E1 and improvement of E2 
7. Combined cycle (CC) with TG5 and TG6 
8. 1 CC and improvement of E2 
9. 1 CC, change of fuel of E1 and E2 
10. 1 CC, change of fuel of E1 and E2 and improvement of E2 
11. 3 TG alone 
12. 3 TG and improvement of E2 
13. 3 TG, change of fuel of E1 and E2 
14. 3 TG, change of fuel of E1 and E2 and improvement of E2 
15. 1 CC and a gas turbine (1 TG) 
16. 1 CC, 1 TG and change of fuel of E1 and E2 
17. 4 TG 
18. 4 TG and improvement of E2 
19. 4 TG, change of fuel of E1 and E2 
20. 4 TG, change of fuel of E1 and E2 and improvement of E2 
21. 1 CC, 2 TG 
22. 1 CC, 2 TG and change of fuel of E1 and E2 
23. 5 TG 
24. 5 TG and change of fuel of E1 and E2 
25. 1 CC, 3 TG 
26. 1 CC, 3 TG and change of fuel of E1 and E2 
27. 6 TG 
28. 6 TG and change of fuel of E1 and E2 
29. 1 CC, 4 TG 
30. 1 CC, 4 TG and change of fuel of E1 and E2 

 
Alternatives with a very high installed power related to the size of the system in 
time step T were eliminated. 
 
This algorithm can run in a PC Pentium, and is written in a student’s version of 
MATLAB. Calculation time is negligible. 
 
The solution for this problem was the following optim vector: 

[ ]25252115151577773=optim  
 
That is, to install TG5 and TG6 the first year and to combine the cycle one year 
after. Additional gas turbines are needed in years 6, 9 and 10. 
 
Valuable qualitative information can be obtained from the solution of this 
problem. For example, with this set of data the projects on existing plants are 
not interesting. 
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4.3 Generation expansion with uncertainty 
 
Let us call A the modeled purchaser, and B the other player in the market. A 
and B are interconnected, B is a seller that has cheap energy. The aim of A is 
to decide how much power he would have to install, having as an alternative to 
buy to B. 
 
The total analyzed period is of 11 years (T=11). 
 
This example generates scenarios from three basic situations of trade of electric 
energy. 
 
Situation 1 (separate systems situation) 
 
There is no trade of electricity between A and B.  
 
Situation 2 (limited integration situation) 
 
The amount of trade between A and B is bounded, because B decides to limit 
his offer. 
 
Situation 3 (integrated systems situation) 
 
The amount of trade between A and B is not limited in quantities. The price of 
the energy of B depends on the alternative that A has installed. 
 
Alternatives for A consist in installation of generation plants, which require a 
long period of decision, financing and construction. B can choose his prices in a 
shorter term so that when B takes his decisions on prices, he knows what A has 
played. The situation corresponds to a dynamic game with A as the first player. 
This game theory problem can be modelled without changes in the algorithm. 
When we calculate the row corresponding to an alternative a, we know the 
alternative and then an estimation of the prices B is going to choose can be 
made. Using such prices, we are able to calculate the conditional expected 
operation cost for each year. Price considerations could be also made in 
situation 2.  
 
Given a fixed investment level, expected variable costs decrease from 
situation 1 to situation 3. 
 
The aim of A is to calculate his best investment strategy. 
 
Investment alternatives are ordered in fixed cost increasing order. A greater 
fixed cost corresponds to an increase in installed power or to the installation of 
lower variable cost generation plants. We suppose that the monotony result 
holds. 
 
Different expansions result if each situation is considered to hold for all the 
study period, and there is uncertainty about the sequence of situations that will 
really occur. 
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Uncertainty on trade for a 10-years future period can be modelled in many 
different ways. Even if we construct scenarios from situations outlined above, 
some sequences of situations can be considered impossible. In other cases, for 
the sake of simplicity the analyst may prefer to represent a group of similar 
sequences aggregated in only one scenario with a greater probability. 
 
The analyst knowledge about the system and the information he has about the 
present situation can produce different probability distributions. So, probability 
distribution of scenarios represents the (funded) opinion of the analyst about 
possible futures (including zero probability scenarios, which can be omitted). 
We think that kind of model is useful to better elaborate opinions, to incorporate 
verified knowledge about reality and to conserve coherence in decision making. 
 
In this case, we have studied a simple structure consisting of a main scenario 
and “crisis” scenarios. At each time step, there is a low conditional probability of 
transition to the crisis scenario given we are in the main one (for the numerical 
results we have used a transition probability of 0.01). If crisis does not arise, the 
system goes on in the main scenario. If a transition to a crisis scenario occurs, 
no new transition occurs until the end of the studied period. 
 
The sequence of situations that defines the main scenario begins with 
situation 2 in the first time steps, continuing with situation 3. This means that 
the main scenario consist of an improvement in integration between A and B, 
that is perceived as having a high probability. If this main scenario were 
considered as deterministic, a low level of investment would be necessary. 
 
Each crisis scenario coincides with the main one until a transition time step. 
Then, situation 1 holds for some years (in the numerical example we have 
taken 5 years), and then it takes the same sequence of situations as the main 
scenario. If one of such scenarios were considered as deterministic, a high level 
of investment would be justified. 
 
Alternatives are labelled from 1 to 11. Labels increase by investment level. 
Alternative 1 has no additional investment. Investment level is related to 
installed capacity and variable cost of that capacity. 
 
The following table shows the optimal strategies, obtained using the algorithm 
presented in this paper. Each column represents a year, and each row is a 
scenario. The table contents are labels of the optimal alternative for the 
corresponding scenario and year. 
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Year 1 2 3 4 5 6 7 8 9 10 11 
Main 3 3 3 3 3 3 3 3 5 5 5 
crisis 2 3 3 9 9 9 9 9 9 9 9 9 
crisis 3 3 3 3 9 9 9 9 9 9 9 9 
crisis 4 3 3 3 3 11 11 11 11 11 11 11 
crisis 5 3 3 3 3 3 11 11 11 11 11 11 
crisis 6 3 3 3 3 3 3 11 11 11 11 11 
crisis 7 3 3 3 3 3 3 3 11 11 11 11 
crisis 8 3 3 3 3 3 3 3 3 11 11 11 
crisis 9 3 3 3 3 3 3 3 3 5 11 11 
crisis 10 3 3 3 3 3 3 3 3 5 5 11 
 
As conditional transition probabilities are very low in this example, there is an 
important probability of remaining in the main scenario for the whole period, and 
the alternatives for the main scenario can be considered as a plan. The main 
scenario has no crisis, and its investment level is the lowest. Even though, it is 
higher than the investment level you would have considering the main scenario 
as deterministic. 
 
If a crisis scenario have its transition to crisis in a year, then important increases 
in the level of investment take place the year after. This is intended to support 
the crisis period. After the crisis period, equipment stay in the system due to 
irreversibility. 
 
Crisis scenarios 2 and 3 have their crisis early in the study period, so that 
demand is lower in the crisis period, and Alternative 9 is enough. Crisis 
scenarios 5 to 8 have a crisis later (with a greater demand), so that they need 
Alternative 11 investment level. 
 
If the beginning of the crisis is in time step 9 or 10 (as in crisis scenarios 9 and 
10) then Alternative 5 is installed as in the main scenario, and investment is 
completed to the Alternative 11 level after the crisis beginning.  
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