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Abstract—The detection of Non-Technical Losses is a very impor-
tant economic issue for Power Utilities. Diverse machine learning
strategies have been proposed to support electric power companies
tackling this problem. Methods performance is often measured using
standard cost-insensitive metrics such as the accuracy, true positive
ratio, AUC, or F1. In contrast, we propose to design a NTL detection
solution that maximizes the effective economic return. To that end,
both the income recovered and the inspection cost are considered.
Furthermore, the proposed framework can be used to design the
infrastructure of the division in charge of performing customers
inspections. Then assisting not only short term decisions, e.g., which
customer should be inspected first, but also the elaboration of long
term strategies, e.g., planning of NTL company budget. The problem
is formulated in a Bayesian risk framework. Experimental validation
is presented using a large dataset of real users from the Uruguayan
Utility (UTE). The results obtained show that the proposed method
can boost companies profit and provide a highly efficient and realistic
countermeasure to NTL. Moreover, the proposed pipeline is general
and can be easily adapted to other practical problems.

Index Terms—economic return, non-technical losses, electricity
theft, automatic fraud detection, example-cost-sensitive.

I. INTRODUCTION

Dishonest customers perform different and ingenious fraudu-
lent mechanisms to steal electric power and reduce their bills.
Power distribution companies lose a substantial amount of rev-
enue due to this problem which directly impacts on countries
economy [1], [2]. This harms specially developing countries
where due to a complex combination of social, economical, and
cultural factors, the economic losses associated to electric fraud
are even more significant. In India, for example, non-technical
losses (NTL) are estimated at $4.5 billion. In Brazil, Malaysia
and Lebanon NTLs represent up to the 40% of the total electricity
distributed [3], [4]; while in the UK and USA, non-technical
losses are estimated between 1 and 6 billion US dollars [3], [5].

Diverse maneuvers are developed by thieves to steal electricity.
For example, magnets are sometimes attached to the electrome-
chanical meters to slow down their reading; another common
technique is to create an electric bypass between the input and
output of the electric meter. A different modality consists of

connecting users to a distribution line or transformer, bypassing
all the existing meters. This second example is different in nature
to the first one, in particular, because these users do not have
an active contract with the distribution company, nor a history of
power consumption. In the present work we focus on the first type
of frauds. We assume that some kind of consumption reading is
being performed (with a certain periodicity) and we analyze the
history of these readings to automatically detect suspicious and
potentially illegal activities.

The present work is developed in Uruguay as part of an
existing collaboration between the University ”Universidad de
la Republica” and UTE (the national company in charge of
the power generation and distribution). In Montevideo (capital
of Uruguay) NTL represent approximately 13% of the total
energy distributed. Electric companies perform regular customer
inspections to detect and prevent NTL and fraudulent activities.
Obviously, performing such controls have an associated economic
cost. In addition, it is economically and timely intractable to visit
all the users and therefore, the optimal number of inspection must
be defined.

The goal of this work is to developed a machine learning
solution, that based on customer consumption profiles and utility
cost, produces an optimal reduced list of clients to be inspected.
The optimization consists of the maximization of the company
economic return. In other words, we aim not only at detecting
those customers that commit fraud, but also, at providing an
inspection priority list containing those customers for which the
economic return is potentially larger.

The main contributions of this work are: (i) to present an
approach for NTL detection conceived to maximize the economic
return. To the best of our knowledge, this is the first work
that provides such a solution in the context of NTL. (ii) To
propose a flexible method that can be optimized for non trivial
and realistic cost models, therefore, our solution can be used
in practice as an input for managers to make long and short-
term decisions. (iii) To contextualize the proposed solution in
a Bayesian-Risk framework, which would inspire researchers of
other fields to easily adapt our ideas to their specific discipline.



And (iv), to study and compare our solution with other cost-based
classification approaches.

Section 2 describes NTL problem and the proposed solution.
Then Sec. 3 provides additional implementation details and
experimental validation. Finally Sec. 4 concludes this work and
summarizes the main results.

Related Work

Different machine learning based approaches have been pro-
posed in the past twenty years for NTL detection. Glauner et
al. [3] present a review of the most relevant work published
until 2017. Recently, Messinis and Hatziargyriou [6] presented an
exhaustive survey including network oriented, hybrid and novel
data oriented methods.

Supervised approaches build and learn mathematical models
that describe the problem based on labeled datasets provided by
power distribution companies. Several works explore the use of
support vector machines (SVM) algorithm [4], [7], [8], [9] or
combinations of SVM with other methods such as the Genetic
Algorithm [10]. Other classification strategies have been explored
as well, e.g., Neural Networks classifiers [11], k-Nearest neighbor
[8], or Optimum path forest (a graph-based classifier) [12].

In recent years, the increasing shift from electromechanical and
electronics meters to smart meters is originating novel counter-
measures to the problem of NTL. For example Zeng et al. [13]
used smart meters data to train deep neural networks considering
daily consumption inputs at the top layer. They propose a Wide &
Deep Convolutional Neural Network (CNN) model with two com-
ponents. The Deep CNN component identify the non-periodicity
of electricity-theft and the periodicity of normal electricity usage
based on two dimensional (2-D) electricity consumption data.
Meanwhile, the wide component captures global features of 1-
D electricity consumption data. Hu et al. [14] propose a semi
supervised deep-learning-based fraud detection model to handle
high dimensional and unlabeled data as input.

The transition to Advanced Measurement Infrastructure (AMI)
also generates new types of fraud, such as cybertampering.
Several works have been carried out to face this problem. Guo
et al. [15] propose an online data validation framework to verify
household energy meters in a secondary network with real-time
measurements from the remote terminal units of the feeder in the
primary network. Other emerging threat is related to the malware
on IP-based smart meters. In 2015, Guo et al. [16] use Markovian
Decision Process to define a preventive maintenance strategy in
order to control a malware propagation over the AMI.

Complementary work focus on engineering proper features to
represent customer consumption profiles in a convenient vector
space. For example, Fourier coefficients, local averages and
categorical information such as: the meter type, history of theft,
or credit worthiness proved to provide useful information for NTL
detection [1], [7], [17], [18]. Recently, Glanuer et al. [19] included

the use of neighborhood local features. In a similar direction,
Massaferro et al. [20] propose a method to find an optimal grid
for the development of adaptive geographical features.

Related works highlights the imbalance nature of fraud detec-
tion problem [17] and the importance of the metric used to asses
the performance of NTL detection. To address classes unbalance
Avila et al. [21] propose a random under sampling boosting
strategy, using the area under the receiver operating curve (AUC)
and the Matthews correlation coefficients (MCC) as performance
metrics.

In contrast with the approaches described above, the focus
of the present work is not on the circumstantial features or
classifier being used. A recent review on financial fraud detection
asseverates: ”The expense of a false positive in miss-classifying
a legitimate transaction as fraud, is typically far less than that
of a false negative [22]. Insufficient study has been performed
on the disproportionate nature of these costs, with attention typi-
cally focusing on the traditional classification performance meth-
ods”[23]. The present work is a contribution aiming specifically
at reducing this gap by considering the associated economical
cost of false negative and false positive cases.

We aim at designing a machine learning solution that optimizes
companies economic return. Similar approaches were followed
on different areas. For example, Bahnsen et al. [24] present
a comparison of a set of classification approaches taking into
account the monetary loss for credit card fraud detection.

II. PROPOSED APPROACH

Let xi represent a column vector with the feature values
associated to the i-th sample, and yi its label. For example, in
the context of NTL, xi can represent the history of monthly con-
sumption, or the concatenation of the history of consumption and
additional numerical features (e.g., the geographic coordinates of
the customer associated to the sample) [20]. We focus on a binary
classification problem where yi ∈ {−1, 1}. The label yi = 1
(named the positive class) is associated to a fraudulent behavior
while the label yi = −1 (negative class) is associated to a normal
customer.

When the posterior probabilities P (yi = 1|xi), and P (yi =
−1|xi) are available for a given sample xi, the classification cri-
teria that maximizes the accuracy over a given set X = {x1...xn}
is:

ŷi = argmax
ỹ
{P (ỹ|xi)}. (1)

ŷi denotes the predicted label while yi represents the ground truth
label (available or not). The previous classification rule is known
as the Bayes minimum error approach [25]. It is easy to prove that
this strategy leads to an optimal classification solution in terms
of minimizing the mean classification error.

Although the previous strategy may seem appealing, it suits
problems with balanced classes. Unpractical results are obtained
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when it is applied for NTL. In particular, because NTL problem is
very unbalanced (only a minor percentage of the total customers
pursuit fraudulent activities [3], [5], [17]). Imagine for instance
that only 1% of the customers are committing fraud. Then, a
trivial classifier that predicts always the negative class would
achieve 99% accuracy, despite that it does not provide any benefit
for detecting fraud.

As an alternative, we are interested in minimizing the financial
loss taking into account: (a) the cost of performing individual
inspections and (b) the harm of not detecting a fraudulent case.
This information could be used to define whether the number of
inspections carried out is sufficient, or if re-allocation of resources
is necessary in a division of the company.

Maximizing the economic return. Let m denote the number of
inspections to be performed and Xm ⊂ X an arbitrary subset of
m samples of X . As before, P (yi = 1|xi) denotes the probability
that a given sample xi is committing fraud, ai represents the
amount of money the ith customer could potentially be stealing
(if it does), and ci the cost of inspecting the ith customer. Given
the previous definitions our approach consists of obtaining the
optimal subset X̂m = {xi1 , ..., xim} such that

X̂m = argmax
Xm

{
m∑
k=1

aikP (yik = 1|xik)−
m∑
k=1

cik

}
. (2)

The previous optimization scheme can be related to a Bayesian-
Risk formulation of the problem [26] [27]. A cost sensitive
classification loss can be expressed as

L(x, q) =
∑
k

P (y = k|x)µqk. (3)

µqk represents the cost associated to predict as q a member of the
class k [26]. In the particular case of binary classification, µ11,
µ00, µ01 and µ10 are associated to the true positive, true negative,
false negative, and false positive costs respectively.

An optimal decision in terms of the loss L(x,q) leads to the
classification rule:

The optimal prediction is the positive class if and only if the
expected cost of this prediction is less than or equal to the
expected cost of predicting the negative class, i.e., if and only if
P (y = −1|x)µ10+P (y = 1|x)µ11 ≤ P (y = −1|x)µ00+P (y =
1|x)µ01.

The proposed solution can be seen as the application of the
previous rule when µ10(xi) = ci, µ11(xi) = ci − ai and
µ00(xi) = µ01(xi) = 0. Substituting the weight defined above
and using the property P (y = 1|x) + P (y = −1|x) = 1 the
classification rule can be simplified as: x should be classified as
positive if the expected return surpass the inspection cost, i.e.,
ci < aiP (yi = 1|xi).

Implementing a solution for NTL. Equation (2) is intuitive
and mathematically express the goal of maximizing the economic

return. Three crucial aspects needs to be addressed before it is
practically applicable. For instance, we need to estimate: (i) the
a-posterior class probability P (yi = 1|xi), (ii) the amount of
potential fraud ai, and (iii) the optimum number of inspections
mop. In the following we address these definitions, and we
propose a practical solution to estimate these quantities with the
information accessible in the context of NTL detection.

1) Empirical estimation of the a-posterior class probability:
A naive approach would be to exploit training data (xi, yi)
to directly estimate the density function P (y = 1| · ), for
example, applying non-parametric kernel-based method [28]. This
family of methods are intractable in several practical applications,
specifically when the dimension of the feature space is moderate
or large [29]. Certainly, it is not the right choice in the context
of NTL where the dimension of the feature space is moderately
larger [17], [7], [3], [30].

Inspired by the work of Zadrozny and Elkan [31] we propose
to estimate the a-posterior probability of fraud in two steps. First,
a classifier method is trained to estimate a score function s(x).
Then a calibration mapping function g : [0, 1]→ [0, 1] is defined
such that P (y = 1|x) = g(s(x)).

Classification algorithms like SVM, random forest, or neural
networks are extremely efficient at learning the distribution of
different classes in the feature space. Most of these techniques
provide as a result a score function s(x). When s(x) ≈ 0 the
sample x very likely belong to the negative class, while on the
other hand, s(x) ≈ 1 indicates that the sample likely belong
to the positive class. Then, classification of new input samples
can be performed according to: if s(xi) < λ then ŷi = −1,
otherwise, ŷi = 1. Most methods set by default λ = 0.5, but
is also common to tune this threshold to maximize a particular
performance measure (e.g., the Accuracy, F1 or AUC).

Although the score s(x) provides valuable information for
classification, it can not be directly interpreted as the chance of
membership to a given class. For example, s(x) = 0.2 does not
necessary imply that P (y = 1|x) = 0.2.

Score calibration can be defined as the task of obtaining
a calibration function g : [0, 1] → [0, 1] such that P (y =
1|g(s(x)) = s) converges to s as the number of samples goes
to infinity [31]. One of the most used techniques on probability
calibration is Platt Scaling originally proposed by John Platt
to calibrate SVM [32]. This is a parametric method based on
adjusting the likelihood through logistic regression as describes
Eq. (4)). Parameters A and B are learned in a supervised fashion
using available training data.

P (y = 1|x) = 1

1 + eAs(x)+B
(4)

An extension of the previous technique was proposed for other
algorithms. It was recently proved that a simplified extension
called Temperature Scaling, is the simplest and most efficient
method to calibrate the output of neural networks [33].
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In the present work, Platt Scaling calibration method is com-
pared with a non-parametric approach based on isotonic re-
gression. Then calibration is performed using the Platt Scalling
implementation included in the scikit-learn library for the score
output of Random Forest and SVM algorithms. For NN we
implement the Temperature Scaling by adding an extra layer
before the finally SoftMax activation function (to minimizing the
binary cross-entropy).

2) Estimation of the potential fraud loss: In order to estimate
the volume of customers potential fraud ai, we propose two
alternatives. The first idea uses ubiquitous information in the
context of NTL, requiring only the knowledge of customers
maximum (peak) contracted power. The second alternative, uses
the records of economic return obtained for fraudulent customers
inspected in the past.

a) Fraud estimation using exclusively billing information:
A typical domestic installation includes in addition to the power
meter, a switchgear that limits the maximum power that can
be consumed from the power grid (and protects the electrical
infrastructure in case of failures). The maximum power contracted
is ubiquitously accessible in the context of NTL.

Based on empirical observation of the data, we make the
following assumption: fraudulent customers reduce their electrical
bills an amount that is approximately proportional to their actual
consumption, i.e, ai ∝ ei., where ei represents the total amount of
energy (in kWh) the customer actually consumes. We empirically
observed that ei has a strong correlation with the value of the
maximum (peak) contracted power Mpi.

Specifically, we have observed that the average energy con-
sumed is approximately proportional to the maximum contracted
power Mpi. This is an interesting observation from a practical
perspective, as the latter is available information (while the former
is strictly unknown in the context of fraud detection). Therefore,
the potential magnitude of fraud can be estimated as ai ∝Mpi.

b) Fraud estimation using actual records of economic re-
turn.: An alternative approach for the estimation of customers
potential theft is to consider this problem also as a supervised
learning problem. In other words, if the economic harm can be
retrieved in practice (after actual inspections are performed) we
can use this information to predict ai(x).

We formulate this as a regression problem where using cus-
tomers information x, we predict the amount of associated
potential fraud ai. To this end, we collected real measures
of the economic loss associated to cases of fraud. About 50
thousand inspections were performed in 2017 and the information
associated to three thousand cases of fraud analyzed.

Random forest, SVM and a neural network where considered
for numerical solution of the regression problem. These
algorithms are trained on fraudulent cases using the real
economic harm as the target output.

3) Income and Cost: Defining the optimal operating capacity:

The optimal number of inspection that should be performed is
determined by the expected amount of economic gain versus the
cost associated to perform the inspections. These balance between
gain and cost can be formulated in the framework described
before,

X̂m = argmax
N,Xm

{
m∑
k=1

aikP (yik = 1|xik)−
m∑
k=1

c[N, k]

}
, (5)

c[N, k] denotes the cost of performing the kth inspection when
the infrastructure is designed to perform a nominal number of N
inspections. In the following we address how to define realistic
cost models c[N, k].

Cost model: Defining the number of inspections that needs
to be performed helps to establish and design the operational
infrastructure. A realistic cost model must include at least one
fixed component and one variable. Let us recall standard defini-
tions in microeconomics. The Marginal Cost (MC) represents the
derivative of the cost function with respect to the quantity, and
the Average Cost (AC) the total cost divided by the number of
units. In the present work we use a cost curve designed to an
operating capacity of N inspections, we assume the fixed cost to
be proportional to N and an extra cost when operating over the
designed capacity:

c[m] =

{
αm+ αN γ

1−γ m ≤ N
βm+ αN 1

1−γ m > N.
(6)

γ = c[0]/c[N ] sets the fixed cost, α/β the marginal cost be-
low/above the designed capacity respectively. A smooth approxi-
mation of the previous model is also considered as illustrated in
Fig. 1 (third-order polynomial approximation).

In addition to the optimal list of users to be inspected Xm,
we consider now the nominal number of inspections N also as
an optimization parameter. As described before, a realistic model
for the inspection costs is variable and depends of the nominal
capacity N set by the company infrastructure.

The components of Eq. (5) associated to the potential gain
aikP (yik = 1|xik) are independent of the cost curve. Therefore,
we can primarily rank the estimated potential return of each
customer. Then, the optimal number of inspections m can be
computed given the nominal value N .

An important practical advantage of the proposed approach is
that the more complex learning task (associated to estimating
aikP (yik = 1|xik)) is performed only once, and thus several cost
models can be tested efficiently. In contrast, algorithms that take
into account the cost of each sample internally, e.g., as proposed
in [34], need to be trained from scratch for every cost model
leading to time consuming training routines.
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Fig. 1: Inspection costs assuming the infrastructure is planned for
a nominal number of N inspections. The cost model includes:
fixed, variable and extra costs. A continuous smooth approxima-
tion of the two segment model is also considered.

III. EXPERIMENTS

A. Data

Two data sets are considered for experimental validation and
analysis: NTL 10K S and NTL 50K R.

NTL 10K S dataset is composed of the historical monthly
consumption of ten thousand customers distributed across Mon-
tevideo (capital of Uruguay). To provide a first round of ex-
periments in fully controlled conditions, synthetic frauds are
simulated over real consumption of this set of clients. Therefore,
the actual ground truth economic recovery can be accurately
measured over this set. Random fraudulent cases are simulated in
10% of the samples uniformly distributed over time. The stolen
percentage of energy is also randomly assigned.

NLT 50K R dataset consists of fifty thousand customers in
Montevideo inspected over 2017. The portion of fraudulent
customers is approximately 6.0%. This data set includes the
historical energy consumption and additional features such as the
contracted peak power and the geographical coordinates. After
fraudulent customers are detected, fines and economic penalties
are implemented (whose value depend on the company estimation
of the magnitude of the fraud). We use this financial information
to estimate ground truth values of the economic return associated
to each fraudulent customer.

B. Implementation Details.

A span of three years of monthly electrical consumption is used
as feature. Experiments over NLT 50K R data set also include
additional features such as the record of previous irregularities

and geographical coordinates. A detailed analysis of these features
is provided in [20] where we focus on the impact of considering
different subset of features for NTL. Algorithms are trained using
70% of the data while the other 30% is isolated for testing.
This partition is randomly performed ten times, the average test
performance over these experiment is reported. Classification and
regression algorithms are selected from Python libraries: sikit-
learn, Keras, and Tensorflow.

a) Training: Parameters (C, γ) for SVM and
(n estimators,max features) for Random-Forest are
obtained by performing a logarithmic grid search of the
maximum value of AUC (Area Under Receiver Operating
Curve). The fully connected network considered has 3 hidden
layers with 100 neurons per layer, ReLU (Rectified Linear Unit)
is used as activation function. The network is optimized using
Stochastic Gradient Descent (SGD) and the crossentropy is
defined as loss function. The final activation is a sigmoid unit
which value is considered to estimate the probability of fraud for
each sample. Temperature-Scaling is adjusted during the training
process. For the case of SVM and Random-Forest, score outputs
are calibrated using Platt-Scalling procedure.

In addition an experiment is presented where the incidence of
the calibration method in the results is evaluated. PlattScaling
and Isotonic Regression algorithms are compared using the im-
plementation contained in the scikit-learn library.

To estimate the volume of potential theft ai by means of
regression, SVR, Random-Forest-Regressor and a neural network
are considered.

The NN used for regression has the same architecture of the
classification network described before. The mean square error is
considered as the optimization loss and the economic return as
the output. To train the Random-Forest-Regressor four hundred
trees are used with the minimum square error criterion. Each tree
uses all the features but the samples are randomly chosen with
replacement. For SVR, an RBF kernel is considered (γ = 0.01)
and the error penalty set to C = 1.

b) Optimization of the number of inspections: Once the
probability of fraud pi and the estimation of the amount of
economic harm ai is obtained for each customer i, the optimal
number of inspections m can be computed given a cost curve
cN (m). cN (m) denotes the total cost of performing m inspections
given a nominal capacity N . Algorithm 1 summarizes the main
steps involved in the determination of the optimal number of
inspection and the list of customers to be inspected.

In addition, the previous method can be used to estimate the
optimal capacity of the division in charge of fraud detection. For
example, different values N can be tested (defining a family of
cost functions cN ). Moreover, N can also be chosen in order to
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Algorithm 1 Estimate the optimal number of inspections m and
the list of customers to be inspected Xm.

Input: Input: trained methods f and g for the estimation of
P (y = 1|x) and a(x) respectively, and cost profile cN .

1: for each sample xi do
2: pi = f(xi) prob. of fraud.
3: ai = g(xi) potential harm.
4: G = [p1a1 ... pMaM ] Vector of potential gain per sample
5: [G, ind] = sort(G, descending)
6: m = argmaxk

(∑k
i=1G[i]− cN [k]

)
7: Xm = ind[1 : m] Set of customers to be inspected
8: return Xm,m

maximize the overall gain,

Nop = argmaxN

m(N)∑
i=1

G[i]− cN [m(N)]

 . (7)

As in Alg. 1 Gi represent the potential gain associated to each
individual customer (in descending order). As we will show in
the following experiments, the expression given in Eq. (7) can
be empirically evaluated to find the optimal capacity of operation
and the operation point associated to it.

C. Results on NTL 10K S data set

Three fraud detection strategies are compared. As baseline
we consider a solution that maximizes the F1 measure. This
criterion aims to find an optimal balance between classification
Recall and Precision, for unbalanced problems, this is one of the
many adequate measures that can be considered [6]. A second
solution is provided estimating the potential theft associated to
each customer ai from its maximum contracted power Mp. The
third solution is obtained by estimating customers potential gain
ai as a supervised regression problem as described in Pag. 4.

Let us denote the solutions described above as:
• SFP: Sort Fraud Probabilities. The classification threshold is

defined to maximize F1 metric.
• SWFP-P: Sort Weighted Fraud Probabilities considering the

contracted peak power.
• SWFP-R: Sort Weighted Fraud Probabilities using regression

algorithms.
Figure 2 provides the F1 score for the solutions described

above. The horizontal axis represents the number m of customers
to be inspected (i.e. labeled as fraudulent). As expected, SFP
solution obtains the highest performance in terms of the F1
measure. On the other hand, Fig. 3 shows the accumulated income
(i.e. the economic gain without accounting for inspection costs).
And finally, Fig. 4 provides the net gain (i.e., gain minus cost)
varying the number of inspections m for a fixed cost profile.
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Fig. 2: F1 score for SFP, SWFP-P and SWFP-R solutions.
Random Forest is used as classification and regression algorithm.
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Fig. 3: Income for SFP, SWFP-P and SWFP-R solutions.
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Fig. 4: Net economic return (normalized) for SFP, SWFP-P and
SWFP-R solutions.
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TABLE I: Comparison of calibration methods, Platt Scaling and
Isotonic Regression for the three proposed solutions using RF
algorithm over NTL 10K S dataset.

Clibration method E. Return % F1 % precision % recall %

SFP 31.5 42.9 44.5 41.3
Isotonic SWFP-P 55.0 33.5 22.3 67.6

SWFP-R 58.2 31.5 21.0 62.7
SFP 32.3 43.6 41.1 46.5

Platt Scalling SWFP-P 55.7 32.8 21.9 65.4
SWFP-R 61.0 32.7 22.7 58.4

TABLE II: Economic net return for the solutions SFP, SWFP-P
and SWFP-R implemented with different classification/regression
algorithms. The solutions we propose are also compared with
the Cost-Based solutions proposed by Bahnsen et al. [34], [35]
CostCla.CSRP and CostCla.CSDT

Alorithm Method E. Return % Inspections % F1
SVM SFP 54.6% 44.5% 27.2%
RF SFP 33.4% 10.5% 42.3%
NN SFP 41.4% 27.5% 30.5%
SVM SWFP-P 50.6% 28.5% 21.2%
RF SWFP-P 56.3% 36.0% 30.6%
NN SWFP-P 51.1% 34.0% 19.9%
SVM SWFP-R 55.6% 40.5% 24.3%
RF SWFP-R 61.0% 32.0% 30.6%
NN SWFP-R 55.7% 29.5% 21.7%

CostCla.CSRP 49.2% 58.5% 25.2%
CostCla.CSDT 43.2% 59.5% 21.6%

Figures 2, 3 and 4 show results obtained using Random-Forest
as classification and regression tool. Table I shows results for the
three proposed solutions (SFP, SWSP-P and SWSP-R) comparing
two methods of probability calibration. The experiment indicate
that Platt Scalling leads to a better performance. Complementary
results for SVM and NN algorithms are reported in Table II.

Algorithms aiming at maximizing the economic return were
proposed in the context of credit card fraud. Some of these
methods are implemented and publicly available in the Cost
Sensitive Classification library [35]. We compare our solu-
tions with two state-of-the-art cost sensitive existing meth-
ods: Cost-Sensitive-Decision-Tree (CSDT) and Cost-Sensitive-
Random-Patches (CSRP), see Table II. In addition, we measure
and compare how efficient these solutions are in terms of execu-
tion time. Since Costcla’s algorithms require the prior knowledge
of each sample individual cost, these algorithms need to be re-
trained each time the cost model is updated (which becomes very
inefficient when a large number of cost models wants to be tested).
For example, to obtain the results reported in Table II, SWFP-
R demanded approximately 9 seconds while CSDT required 4.2
hours.

The experiments presented above are obtained for a fixed
cost model (fixed N). As explained in the previous section and
illustrated in Alg. 1, cost curves cN (m) with nominal capacity

Fig. 5: Economic return depending on the number of inspections
and the size of the operational capacity. Results over NTL 10K S
data set using RF/SWFP-R method. Red dot represent the max-
imum economic return and its projection is shown on the three
planes.

N can be simultaneously compared. Figure 5 illustrates the net
economic gain for different values of N (operating capacity)
and m (actual number of inspections performed). The global
maximum recovers a 68.6% of the total monetary value being
stolen, this solution is obtained when the 33.5% of the customers
are inspected.

Performing experiments with a fixed versus a variable value
of N addresses two different practical situations companies face.
In the first case (N is fixed) a company may have a fixed
infrastructure (e.g. a given number of inspectors and vehicles) and
wants to know which customers should be inspected to maximize
the economic return. A second scenario, is when a company is
determining which would be their optimal infrastructure, in this
case N is also a free parameter that can be optimized.

D. Results on NLT 50K R data set

Similar experiments are performed on NTL 50K R dataset.
This set extremely heterogeneous and in particular, the number
of customers across the range of contracted power Mp is highly
unbalanced. To prevent classification bias for certain values of
the contracted power, oversampling techniques are considered
(exclusively applied to the porting of the data selected for
training). Once training data is balanced, the experiments are
performed exactly as described for the previous dataset.

Table III reports the highest economic return obtained for each
solution, and provide additional classification measures (the cost
model is fixed in this experiment). Again, it can be seen that SFP
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Fig. 6: Normalized net economic return versus the number
of inspections (fixed cost model). Random Forest is used for
classification/regression.

SFP SWFP-P SWFP-R

Economic Return % 25.8 43.5 49.0
Inspections % 12.0 48.0 46.5
F1 % 37.1 24.9 26.1
precision % 32.8 14.8 15.6
recall % 42.7 77.3 78.8

TABLE III: Highest economic return achieved for SFP, SWFP-P
and SWFP-R. Random Forest is used for classification/regression.

method achieves the highest F1 score. Figure 6 illustrates the net
economic return for SFP, SWFP-P and SWFP-R solutions.

IV. DISCUSSION AND CONCLUSIONS

The experimental results show how the economic return can
be drastically improved when machine learning solutions are
developed with economic aspects in mind.

Random Forest, Support Vector Machines and Neural Networks
proved to be adequate algorithms to implement the proposed
schemes. Although all of them are extremely efficient and suitable
for this task, RF was the algorithm that consistently provided
the highest performance for the data at hand. As expected, when
classification measures (such as the F1) are selected as maxi-
mization criteria, algorithms become optimal only with respect to
that measure. This can lead to substantial economic losses when
fraud detection solution are being developed. It is important to
highlight that due to the large number of users, even a modest
percentage increase of the relative economic return represent very
large amounts of profit.

We observed that solutions that maximize the economic impact
developed in the context of credit card fraud detection outperform
classical approaches (compare for instance, the results reported in
Table II for SFP with CSRP and CSDR). However, in the context

of electric NTL and for the data collected across Uruguayan
customers, we observed that the proposed strategies (both SWFP-
R and SWFP-P) outperform other state-of-the-art methods. In
addition, the proposed solutions are computationally more conve-
nient than strategies such as CSRP and CSDR when different cost
models need to be evaluated. Several realistic cost curves and the
size of the infrastructure required can additionally be optimized
as illustrated in Fig. 5. This is extremely useful as in addition of
detecting fraud, the proposed approach can be used to simulate the
economic impact associated to different management decisions.

Even-though we focus on this work in NTL for electric compa-
nies, the proposed pipeline is general and most of the ideas here
presented can be easily adapted to other application. Furthermore
the proposed approach focuses in designing an optimization
criteria that is economically meaningful, and it is agnostic to the
set of features or classification method at hand.
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