Wearable EEG via lossless compression

Guillermo Dufort, Federico Favaro, Federico Lecumberry,

Alvaro Martin, Juan P. Oliver, Julidn Oreggioni,
Ignacio Ramirez, Gadiel Seroussi and Leonardo Steinfeld*f

Abstract

This work presents a wearable multi-channel EEG recording system
featuring a lossless compression algorithm. The algorithm, based in a
previously reported algorithm by the authors, exploits the existing tem-
poral correlation between samples at different sampling times, and the
spatial correlation between different electrodes across the scalp. The low-
power platform is able to compress, by a factor between 2.3 and 3.6, up
to 300sps from 64 channels with a power consumption of 176uW /ch. The
performance of the algorithm compares favorably with the best compres-
sion rates reported up to date in the literature.

1 Introduction

Monitoring brain activity can play an important role for understanding the
functioning of human brain, as well as in preventing mental disorders or im-
proving our quality of life. Nowadays the electroencephalogram (EEG) is the
main method used for studying brain dynamics. However, current standard
EEG systems are wired and uncomfortable, mainly used in clinical practice. In
order to enable EEG recordings in daily-life activities, EEG technology needs to
become wearable (wireless, low weight and small size), which means low-power
operation and energy-efficient wireless data transmission [1].

The IEC standard specifies a minimum bandwidth of 0.5Hz to 50Hz for
EEG equipment. This covers the most common diagnostic purposes, but higher
bandwidths (from DC to 500Hz) may be required in other cases [1,2]. In addi-
tion, the current miniaturization of analog front-ends (AFE) for acquiring EEG
signals allows to record hundreds of channels. Thus, it becomes necessary to
efficiently handle high data rates. For example, 64 channels, 12-bit per sample,
at lksps, implies a data rate of 768kbps, which is an attainable throughput
by Bluetooth; other low-power transmission protocols are unable to handle it
(e.g.: IEEE 802.15.4). Moreover, currently, there are no low-power transmission
protocols that support 256 channels (data rate of 3Mbps).

*This work was partially funded by CSIC-UDELAR (Comisién Sectorial de Investigacién
Cientifica, Universidad de la Republica, Uruguay), ANII (Agencia Nacional de Investigacién
e Innovacién, Uruguay) and CAP-UDELAR (Comisién Académica de Posgrado, Universidad
de la Republica, Uruguay).

tGuillermo Dufort, Federico Favaro, Federico Lecumberry, Alvaro Martin, Juan P. Oliver,
Julian Oreggioni, Ignacio Ramirez, Gadiel Seroussi and Leonardo Steinfeld are with the Fac-
ultad de Ingenieria, Universidad de la Republica. Montevideo, Uruguay.



Low-Power Platform

I Power Supply Subsystem |

A wireless

Electrodes link
I—lj—b AFE & —» Processor Radio > PC
:p ADC |¢—
Stimulus |—J

Figure 1: Weareable EEG recording system block diagram.

For the above reasons, compression is a key factor in a low-power platform,
not only for reducing power consumption (in these platforms the power con-
sumption is usually dictated by the transmission), but also to achieve higher
data rates with the same power budget.

EEG data acquired for clinical purposes is often required to be procesed
without distortion. This in turn leads to a need for lossless compression algo-
rithms [3].

At the time of this writing, a wearable EEG recording platform for neuro-
scientific applications (see Fig. 1) is being constructed. This low-power platform
comprises an analog front-end of 16 or 64 channels, an analog to digital converter
(ADC), a processor block and a radio transceiver (some details of our platform
will be presented in Section 2). By means of a Bluetooth link, the collected data
is wirelessly transmitted to a PC, where a physician and/or a neuro-scientific
can analyze it.

This work is focused in increasing the quality of the EEG data (increase
the number of channels and/or the sample frequency) without jeopardizing the
power consumption, by means of a lossless compression algorithm, firstly de-
scribed by the authors in [3]. This algorithm and the modifications performed
to run it in our low-power platform are discussed in Section 3. Results of
compression level, memory usage, processing time and power consumption are
disclosed in Section 4. Finally, conclusions are presented in Section 5.

2 Low-power platform

The core of the low-power platform is the processor (shown in Fig. 1), that
is mainly dedicated to run the compression algorithm. A processor suitable
for implementing a wearable EEG must satisfy very challenging and usually
conflicting requirements:

e 16-bit or higher data width, in order to efficiently handle scalar 12-bit
samples at minimum.

e Low power consumption, needed for an extended life-time battery. The
total platform consumption should be below 8.3mW for 30 days of contin-
uous use, powered by two AA batteries. This means 130uW per channel
for 64 channels, in accordance to the power requirement estimation made
in [2].
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Figure 2: Compression algorithm. LEFT: block diagram of the prediction
scheme; here x;(n) refers to the value of channel i at discrete time n, x, is
the “helper” (parent) channel of z;, P is the order of the filters, & is the p-th
order prediction of z; and ; is the final prediction for that channel. RIGHT:
sample tree used when deciding which channel helps which; the root channel is
encoded with no help.

e Enough performance to ensure a computation time per sample low enough
to process the total number of channels at the desired sample rate. For
instance, the processing time to handle 64 channels at 1ksps needs to be
less than 31.25us per channel.

Depending on the compression algorithm, a hardware floating-point unit
(FPU) can be necessary (this requirement can be eliminated by implementing
floating point operations by software, at a higher performance requirement).

Nowadays, there are increasingly available commercial off-the-shelf micro-
processors targeting low-power applications, and at the same time, relative
high-performance processing capabilities. Still, higher clock frequencies demand
higher supply voltages and thus higher power consumption. In addition to a
core processor, common microcontrollers include programmable I/O peripher-
als (such as serial ports needed to receive the sampled data from the AFE)
and memory (to store code and data). However, low-power microcontrollers
have memory of relatively low size, since system memory is responsible for a
large portion of the total energy budget [4]. Thus, an algorithm with a reduced



memory footprint is mandatory to achieve low power consumption.

We selected a MSP432P401R microcontroller, a 32-bit ARM Cortex-M4F
running up to 48 MHz, manufactured by Texas Instruments. This microcon-
troller has 256kB of Flash and 64kB of RAM memory, and features a FPU
with single cycle multiply and accumulate instructions and hardware support
for single-precision square root, and so on. For the experiments, we used the
evaluation kit MSP432P401R LaunchPad, which includes the EnergyTrace tool
to measure the total system energy consumption.

The integrated development environment (IDE) used was Code Composer
Studio (CCS) from Texas Instruments, which supports EnergyTrace and allows
to configure various toolchains. The different versions of the algorithms were
built using the GNU v4.8.4 (Linaro) compiler.

3 EEG Compression algorithm

Table 1: Platform performance depending on the compression algorithm version.

Algorithm  Number of Proc. time per Max sampling Memory usage Memory usage

channels sample (ms) rate (sps) FLASH (kB) RAM (kB)
FLO-SW 16 40.18 25 44.9 26.7
FLO-SW 64 — — 45.2 103.1
FLO 16 3.11 321 42.5 26.7
FLO 64 - — 42.8 103.1
FIX 16 2.81 355 46.7 16.6
FIX 64 11.55 87 47.0 60.5
FIX2 16 0.83 1201 42.1 10.2
FIX2 64 3.83 296 42.4 33.8

As mentioned in the previous sections, the lossless, real time and low power
requirements of our platform impose severe restrictions on the latency and com-
putational resources of its embedded software. In order to meet such require-
ments, we adopt the algorithm described in [3] as our starting point, which is
a low-latency, low-complexity algorithm with controllable per-sample distortion
offering the best compression rates reported up to date in the literature.

As most EEG compression algorithms, the method in [3] exploits the existing
temporal (between samples at different sampling times) and spatial (between
different electrodes across the scalp) correlations. These are induced by natural
properties of the target signal such as temporal continuity, natural correlation
of neural activity across regions, and spatial smoothing of the latter signals due
to the different layers of tissue that separate the source signals (the neurons) to
the point where they are measured (the electrodes).

The essence of the algorithm (see Fig. 2), referred to as FLO hereafter,
can be summarized as follows (we refer the interested reader to [3] for further
details):

e The coding stage is predictive: both encoder and decoder predict the
value of each sample from previously encoded samples; the actual value
is described to the decoder by encoding the difference with respect to the
prediction using the Golomb-Rice code (see, e.g., [5]).



e Channel samples are encoded in a pre-specified order following a tree;
the root channel is predicted using past samples only, whereas all other
channels have a parent channel (corresponding to their parent in the tree)
which “helps” them, meaning that the past (and present) information
about the parent channel is used for predicting the present sample of the
child channel.

e Each sample prediction is a weighed average of a set of adaptive linear
predictions of different orders, which are combined using an exponential
weighting scheme [6] to form a final prediction.

e All adaptive linear predictions are computed using an efficient lattice im-
plementation of the multi-channel Recursive Least Squares algorithm [7],
which computes all (least-squares optimal) predictions of up to a fixed
order p efficiently.

The FLO requires on average lus to encode (or decode) a single scalar
sample, that is, about C us for encoding (decoding) an EEG sample composed
of C scalar channel samples, on a common desktop computer (Intel i7 at 3.4GHz,
on a single thread). Although this much more than meets the requirements on
the desktop side of the platform (it would allow us to go beyond 10kHz with 64
channels), the FLO algorithm as originally proposed falls short of meeting them
when ported to a low-power microcontroller running at a few tens of MHz.

In order to do this, we have introduced a number of significant changes to
the original algorithm, resulting in a new algorithm which we refer to as FIX.
More specifically:

e the lattice RLS predictor is replaced by a multichannel predictor that is
adapted heuristically and requires only integer additions and multiplica-
tions,

e the remaining floating-point arithmetic is removed by approximating the
exponential weighting scheme by one requiring only register shifts,

e memory is greatly reduced by approximating moving averages by a simple
first order low-pass filter.

The above FIX algorithm reduces all computational requirements signifi-
cantly, most importantly memory requirements, while maintaining the com-
pression ratio essentially unchanged. However, simplifications are required in
order to meet the goals set forth in this work. We will therefore refer to the
algorithm that was finally implemented as FIX2; the main difference with FIX is
that we have empirically selected a reduced set of predictors that are combined
to form the final prediction for each sample. In FIX2 we used four predictors,
which yields a very significant performance improvement at the cost of a slight
compression rate degradation.

4 Results

Three versions of the algorithm described in Section 3 will be presented: FLO,
FIX and FIX2. Each algorithm was initially developed on a desktop computer
and later the source code was migrated to run on the selected platform.



The input-output interfaces were modified to avoid the utilization of a file
system. Two versions of these interfaces were developed, the first one allows
to read the samples from flash memory and the second allows read and write
samples through a serial port using the internal UART of the microcontroller.

Time measurements were performed with the CCS Event Count tool, count-
ing machine cycles between two breakpoints. The clock frequency of the MSP432
was set at 48MHz in all cases. The three versions of the algorithm were verified
comparing the output data with the desktop version.

In order to asses the impact of using a FPU in the processing time, the
same source code of the starting point algorithm was compiled using the FPU,
version named FLO, and using emulated floating point operations from the
newlib library with the FPU turned off, named FLO-SW.

In Table 1 the platform performance is presented in terms of processing time
and memory usage, for the different compression algorithms. The third column
shows the measured average time spent to process all channels, and the fourth
column indicates the computed maximum sampling rate (calculated assuming
that the microcontroller is always in active mode). In both cases, each sample
is formed by 16 or 64 values as indicated in column two.

FLO-SW can handle up to 16 channels, because the RAM memory needed
to process 64 channels (103.1kB) exceeds the available memory of the selected
platform (64kB). Moreover, FLO-SW performs very poorly, and at 16 channels,
it can only process up to 25sps.

The use of the FPU (FLO) reduces the processing time, achieving a rea-
sonable sample rate (321sps), but the limitation on the maximum number of
channels remains (due to memory restrictions). The release of FIX implied
an important effort in reducing computing complexity for suppressing floating
point data and operations. This effort made it possible to run the compression
algorithm for 64 channels in our low-power platform. Although the 16-channel
processing time was acceptable (enabling a maximum sample rate of 355sps),
the 64-channel processing time exceeded our design goal (maximum sample rate
of 87sps). This issue was subsequently addressed by the FIX2 algorithm.

FIX2 presents a reduced memory footprint, 10.2kB and 32.8kB for 16 and
64 channels respectively, freeing RAM memory for other important functions
(i.e. I/O buffers for acquisition and transmission). Moreover, much more im-
portantly, FIX2 presents an outstanding improvement in terms of processing
time with respect to FIX and FLO, achieving 1201sps and 296sps for 16 and
64 channels respectively. Finally, it is interesting to note that the number of
channels and the processing time are linear.

A sample rate of 296sps for each channel, exceeds the minimum requirement
for standard EEG recording. At the same time, processing 64-channels at 296sps
in our platform, implies that the microcontroller draws a current of 3.75mA
powered from 3V, which represents a power consumption of 176uW/ch for the
processor block. This current was measured with a Fluke 45 amperimeter while
the processor was running the compression algorithm continuously. The same
measure was performed with EnergyTrace and the current was 3.82mA. These
measurements are in accordance with the typical value 4.6mA reported in the
microcontroller datasheet, presenting a very low relative error.

We evaluated the performance of FLO and FIX2 in terms of compression
ratio using the following publicly available databases:

e DBla and DB1b [8,9]: 64-channel, 160Hz, 12bps EEG of 109 subjects



using the BCI2000 system. Recordings are divided in 2-minute motor
imagery task (DBla) and 1-minute calibration (DB1b).

e DB2a and DB2b [10] (BCI Competition III): 118-channel, 1000Hz, 16bps
EEG of 6 subjects performing motor imagery tasks (DB2a). DB2b is a
100Hz downsampled version of DB2a.

e DB3 [11] (BCI Competition IV): 59-channel, 1kHz, 16bps EEG of 7 sub-
jects performing motor imagery tasks.

e DB4 [12]: 31-channel, 1kHz, 16bps EEG of 15 subjects performing image
classification and recognition tasks.

For each database, we compressed each data file separately and calculated
the overall Compression Rate (CR) in bits per sample, R = L/N, where N is
the the sum of the number of scalar samples over all files of the database, and
L is the sum of the number of bits over all compressed files of the database.
Alternatively, the results can be expressed in terms of the Compression Ratio
(CR%), CR = 100x L/S, where S is the total number of bits required to store
all the uncompressed files in the database. Note that, in both cases, smaller
means better.

Table 2: Compression Rate (bits per sample) of FLO and FIX2 for different
databases.

Algorithm DBla DB1b DB2a DB2b DB3 DB4

FLO 177 4,86 544 7.07 557 3.72

FIX2 4.87 4.98 5.44 7.07 5.57 3.84

Table 2 shows that the compression rate of FIX2 is marginally higher than
that of FLO. This means that the memory and time requirements of the com-
pression algorithm were drastically reduced with almost no degradation in com-
pression performance. Therefore, according to [3], FIX2 is well in line with
the best compression rates reported up to date in the literature. In terms of
compression ratio, the largest value 43.8% was obtained for DB2b, whereas the
smallest value was 27.9% for DB4. This is implies that the transmitted data
can be reduced by a factor between 2.3 and 3.6 respectively.

5 Conclusions

Firstly, we have presented a successful implementation, in a low-power platform,
of a lossless multichannel EEG compression algorithm for 16 channels (FLO),
with a compression ratio well in line with the best ones reported in the current
literature.

Our multidisciplinary team, including researchers from information theory,
computer science, digital signal processing, embedded systems, digital electron-
ics, and analog microelectronics, was then faced with the challenge of changing
the algorithm in order to handle 64 channels in a low-power platform while pre-
serving the compression rate; the result, algorithm FIX2, achieves those goals.

Extending the use of EEG systems beyond clinical practice requires a tech-
nology capable of wireless, long-lasting low-power operation. In this work, we



have approached this goal with a platform able to compress, by a factor be-
tween 2.3 and 3.6, almost 300sps from 64-channel with a power consumption of
176 W /ch.

Future work includes assesing the low-power platform with other physiolog-

ical signals. For example, results of the compression algorithm for electrocar-
diogram signals are very promissory [13].
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