UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE AGRONOMÍA

EVALUACIÓN DE TRES BIOTIPOS DE CERDOS EN LA ETAPA DE POSDESTETE-RECRÍA EN UN SISTEMA PASTORIL

por

Cecilia Soledad CARBALLO SÁNCHEZ

TESIS presentada como uno de los requisitos para obtener el título de Ingeniero Agrónomo.

MONTEVIDEO URUGUAY 2009

Tesis aprobada por:	
Director:	
	Ing. Agr. Nelson Barlocco
	D. C.A. (* X. 1.11
	Prof. Antonio Vadell
	Ing. Agr. Patricia Primo
Fecha:	29 de diciembre de 2009
Autor:	
	Cecilia Carballo

AGRADECIMIENTOS

A Diego, por su ayuda en los trabajos de campo, su apoyo y compañía.

A Patricia Primo, no solo por su gran ayuda, si no también por todas sus enseñanzas durante el período que compartimos en la UPC.

A Nelson Barlocco, por haberme dado la oportunidad de haber realizado esta tesis.

A los compañeros de la UPC que me ayudaron durante el trabajo de campo.

A mi familia toda, que me dio la oportunidad de ser quien soy.

	Págin a
PÁGINA DE APROBACIÓNAGRADECIMIENTOS	II
	III
LISTA DE CUADROS E ILUSTRACIONES	V
1. INTRODUCCIÓN	·
	1
2. <u>REVISIÓN</u> <u>BIBLIOGRÁFICA</u>	3
ANTECEDENTES	3
2.2 FACTORES QUE AFECTAN EL COMPORTAMIENTO PRODUCTIVO	5
2.2.1 <u>Genotipo</u>	5
2.2.1.1 Cruzamientos	7
2.2.2 <u>Sexo</u>	8
2.2.3 <u>Ambiente</u>	9
2.2.4 <u>Alimentación</u>	10
2.2.4.1 Características de las pasturas como alimento para cerdos	10
2.2.4.2 Capacidad de consumo de pasturas por los	
cerdos 2.2.4.3 Selectividad	11 13

2.2.4.4 Efectos de la inclusión de pasturas sobre el comportamiento productivo	
productivo	
3. <u>MATERIALES Y MÉTODOS</u>	
3.1 LOCALIZACIÓN	
3.2	
INSTALACIONES	
ANIMALES	
ALIMENTACIÓN	
3.4.1 Ración balanceada	
<u>Pastura</u>	
TRATAMIENTOS	
3.6 CONDICIONES EXPERIMENTALES	

REALIZADAS.....

EVALUADOS.....

4. <u>RESULTADOS Y</u> <u>DISCUSIÓN</u>.....

4.1.2 <u>Efecto del sexo</u>.....

DIARIA.....

genotipo.

3.8 PARÁMETROS

4.1 GANANCIA DE PESO

4.1.1 Efecto del

4. RESULTADOS Y

20

20

23

23

23

25

4.2 CONSUMO Y EFICIENCIA DE CONVERSIÓN DEL	26
CONCENTRADO 4.2.1 Efecto del genotipo	26
	26
4.2.2 Efecto del peso	
vivo	27
4.2.3 Electo del Sexo	29
4.3 CONSUMO DE PASTURA: EFECTO DEL PV Y DEL	
GENOTIPO	29
4.4 CONSUMO TOTAL DE MS EFECTO DEL GENOTIPO Y DEL PV	33
4.5 EFICIENCIA DE CONVERSIÓN DE LA	33
DIETA	34
4.6 UTILIZACIÓN DE LA	25
PASTURA	35
crecimiento	
	35
4.6.2 <u>Utilización de las distintas especies y</u> selectividad	38
<u>sciectividad</u>	30
5.	
<u>CONCLUSIONES</u>	41
	41
6.	
RESUMEN	40
	42
7.	
SUMMARY	
	43
9.	
BIBLIOGRAFÍA	
	44
10.	
ANEXOS	
	50

LISTA DE CUADROS E ILUSTRACIONES

CUADRO No.	Págin a
1. Composición porcentual de la ración	
2. Composición avímico (PS) do la	17
2. Composición química (BS) de la ración	17
3. Descripción de los	
tratamientos	18
4. Nº de animales según genotipo y sexo	19
5. Temperaturas y precipitaciones según estación meteorológica del CRS y sensores "I button"	1)
	19
6. Ganancia de peso diaria (GPD) según genotipo (kg/día)	22
7. Ganancia de peso diaria (GPD) para machos enteros y hembras (kg/día)	23
	25
8. Consumo diario de concentrado (CC) en kgMS/día y eficiencia de conversión del concentrado (ECC) según genotipo para el período total	26
9. Eficiencia de conversión del concentrado (BS) y PV promedio según genotipo para P1 y P2	26
	28
10. Eficiencia de conversión del concentrado (BS) según sexo	29
11.Consumo de pastura promedio en P1 y P2 para los tres genotipos (kgMS/día)	2)
(kgivi5/dia)	30
12. Consumo total de MS (kg/día) para los tres tratamientos en P1 y P2	33
13. Eficiencia de conversión de la dieta (BS) según genotipo para P1 y P2	34
14. Composición de la pastura (% peso seco) al momento de ingreso y retiro de los animales	
	35
15. % de utilización para trébol rojo, achicoria y gramíneas para P1 y P2	38
*******	20

1. Evolución del consumo de concentrado diario promedio (BF) en kg/día y como	
%	
del PV según	
PV	28
2. Comparación del consumo de pastura para diferentes	
ensayos	31
3. Consumo de pastura según genotipo para los dos períodos (kgMS/día)	
	32
4. Consumo de pastura y concentrado como % del consumo	
total	34
5. Composición botánica de la pastura (BS) al ingreso y retiro de los animales a la franja de pastoreo. PERÍODO	
1	36
6. Composición botánica de la pastura (BS) al ingreso y retiro de los animales a la Franja de pastoreo. PERÍODO	
2	36
7. Consumo de pastura (BS) según % de ocupación de	
achicoria	39
8. Consumo de pastura (BS) según % de ocupación de	
raigrás	39

1 <u>INTRODUCCIÓN</u>

La coyuntura actual del mercado de granos, en la que últimamente existe una fuerte competencia por su destino (alimentación animal o producción de combustibles), ha mantenido una tendencia creciente del precio de estos insumos, tradicionalmente utilizados para la elaboración de raciones.

Frente a esta situación, son pocas las alternativas que tienen los productores de cerdos para mantenerse en un rubro cuya rentabilidad depende fuertemente de la alimentación animal y sus costos. Una opción es mejorar los índices productivos, lo cual puede llevar a la necesidad de intensificación y concentración de la producción con altísimos costos y pocas posibilidades de ser efectuado por los productores del país. La segunda alternativa, más accesible y manejada, es la reducción de los costos de producción, a través de la adopción de sistemas productivos de baja inversión y la utilización de alimentos alternativos.

Las pasturas, son utilizadas frecuentemente en la alimentación de cerdos en Uruguay, dadas las ventajas comparativas (características de clima y suelo) que existen para producir este alimento a relativamente bajo costo. Este es uno de los motivos por los que históricamente han existido sistemas de cría de cerdos a campo, basados en el uso de pasturas y complementados con una amplia variedad de alimentos.

El manejo de pastoreo tradicionalmente se ha destinado al rodeo reproductor, fundamentalmente cerdas en las etapas de gestación y lactancia, debido a su mayor capacidad de consumo y aprovechamiento del forraje y por ser una categoría fácil de manejar en sistemas a campo. En cambio, no es muy frecuente encontrar este manejo en cerdos de otras categorías.

En este sentido, la Unidad de Producción de Cerdos (UPC), desde 1996 tiene entre otros objetivos el estudiar alternativas tecnológicas de producción de lechones y/o cachorros en condiciones de campo y con una fuerte base pastoril. Los trabajos realizados sobre comportamiento productivo han tenido una fuerte base en la evaluación de la raza Pampa Rocha, en pureza racial y en cruzamientos con la raza Duroc, existiendo pocos ensayos que incluyan el cruzamiento con otras razas.

Hoy se plantea una línea de trabajo basada en la necesidad de estudiar sistemas de producción de cerdos viables no sólo desde el punto de vista económico, sino también desde el ambiental, y que tenga en cuenta el bienestar animal, siempre en busca de la posibilidad de obtener un producto diferencial a través de un proceso de producción basado en condiciones naturales (utilización de pasturas, libres de antibióticos,

hormonas, promotores del crecimiento, condiciones de bienestar animal, etc.) y en la posibilidad de obtener un cerdo apto para el mercado chacinero y eventualmente para la de producción de cortes frescos.

En función de los antecedentes, este trabajo plantea como objetivo general la evaluación de la raza Pampa Rocha en cruzamientos con la raza Duroc y Large White, en términos de comportamiento productivo, en la categoría de posdestete-recría en un sistema pastoril. Esto permitirá conocer el efecto del tipo genético y del peso vivo sobre el consumo de pastura, aportando información mas precisa para delinear un sistema de producción de cerdos para esta categoría en condiciones de pastoreo (carga animal apropiada, nivel de oferta de ración, pastura utilizada, manejo animal, etc.)

2 REVISIÓN BIBLIOGRÁFICA

2.1 ANTECEDENTES

La producción porcina uruguaya ha sufrido en los últimos años transformaciones que han modificado su esquema productivo: un gradual proceso de concentración de la producción (con la consecuente desaparición de pequeños productores), el ingreso de tipos genéticos especializados (que han desplazado parte de los tradicionalmente utilizados), cambios en los sistemas de alojamiento (con una fuerte difusión de la cría intensiva a campo) y una mayor apertura del mercado al ingreso de carne de cerdo importada a precios relativamente bajos (Bauzá y Petrocelli, 2005).

En el año 2000 existían 18923 explotaciones agropecuarias con cerdos, de las cuales 6069 eran comerciales; un 67% contaba con planteles menores a 20 madres (4067) y representaban un 14% del rodeo; en 1449 predios esta actividad constituía el principal ingreso, empleando a 3364 trabajadores permanentes y utilizando 26345ha (URUGUAY. MGAP. DIEA, 2000).

Según la Encuesta Porcina (2006), la orientación productiva más difundida es la cría (77% de los productores comerciales). En cuanto al sistema de alojamiento, sólo un 7% de los productores maneja los cerdos totalmente en confinamiento, mientras que el restante 93% maneja los animales a campo (con o sin utilización de pasturas) al menos en alguna de las fases del ciclo productivo (URUGUAY. MGAP. DIEA, 2006).

Estas cifras muestran, que a pesar del aumento del precio de la tierra (debido al incremento de la superficie agrícola y forestal), los productores de cerdos continúan destinando parte (o la totalidad) de sus predios a esta producción. Esta situación se debe a que la producción de cerdos está vinculada generalmente a productores de pequeña y mediana escala del sur del país con escasos recursos y escasa superficie (no atractiva para la producción agrícola y forestal) (Díaz, 2008).

En trabajos recientes, se menciona que el 80% de los predios con cerdos de la zona sur de Uruguay (zona de influencia del Centro Regional Sur) tiene una superficie menor a 10ha (Díaz, 2008), y destinan menos del 50% de la superficie total de los predios a la producción de cerdos (Barlocco, 2009).

La relación histórica entre los precios del cerdo y del alimento concentrado hace que -aún con índices productivos elevados- en muchos períodos la rentabilidad sea muy reducida o negativa, razón por la cual existe un interés permanente a nivel de los productores por utilizar alimentos alternativos que permitan sustituir al menos parcialmente el concentrado (Bauzá y Petrocelli, 2005). Este panorama se agudiza con la

utilización de los granos (producidos originalmente para alimentación humana y animal) para la producción de combustibles, con el consiguiente aumento de sus precios (Barlocco, 2007).

Si bien en el año 2009 hubo un descenso en el precio de estos insumos, esta situación de relaciones de precios desfavorables se ha mantenido históricamente (URUGUAY. MGAP. DIEA 2008, URUGUAY. MGAP. DIEA 2009).

Frente a esta situación, y en un intento por reducir los costos de alimentación (que representan alrededor del 80% de los costos totales de producción), el 81% de los productores de cerdos del país utiliza pasturas en combinación con diversos alimentos, entre los que se encuentran desde las raciones balanceadas a los subproductos de las diferentes industrias (URUGUAY. MGAP. DIEA, 2006).

Uruguay dispone de ventajas comparativas para la producción de pasturas, dadas por las condiciones climáticas y de suelo que permiten el desarrollo de especies forrajeras aptas para el consumo por los cerdos (Bauzá y Petrocelli 2005, Barlocco y Vadell 2005).

Tradicionalmente, se han utilizado las pasturas para alimentar cerdas en las etapas de gestación y lactancia, pero no ha sido común el uso de este alimento en la etapa de crecimiento-terminación. Por este motivo, las pasturas como alimento para cerdos han representado un tema prioritario a ser investigado en Facultad de Agronomía, pudiéndose citar varios trabajos referidos a la inclusión de pasturas, cortadas y bajo pastoreo directo (Azzarini et al. 1973, Amaya 1992, Arenare et al. 1997, Barlocco et al. 2003, Barlocco 2005, Battegazzore 2006).

En este contexto, desde 1996 con la creación de la Unidad de Producción de Cerdos, se dio continuidad a la investigación de distintos niveles de sustitución de concentrado por pasturas, tanto en las etapas de posdestete-recría (Bellini et al. 1998, Barlocco et al. 1999, Castro 2002, Barlocco et al. 2005) como en el engorde (Barlocco et al. 2000, Battegazzore 2006).

Los ensayos básicamente han sido realizados sobre dos tipos genéticos, Pampa Rocha en pureza racial y su cruzamiento con Duroc, pero no se ha evaluado la inclusión de otra sangre en condiciones de pastoreo.

Actualmente la utilización de pasturas en la alimentación de cerdos no solo representa una herramienta para bajar los costos de producción, sino que también puede aportar valor agregado al producto.

La producción al aire libre expone un atractivo panorama en el futuro, tanto desde el punto de vista de la rentabilidad como de la perspectiva de nuevas tendencias que

auguran leyes específicas de control de bienestar animal y ambiental (Muñoz, citado por Braun et al., 2007).

Los encierros en jaulas y parideras, con mínimas disponibilidades físicas, someten a los animales a un estrés considerable y permanente, que tiende a generar inconfort, conductas anormales, fallas inmunológicas, aparición de enfermedades y pérdidas de productividad (Lagrecca y Marotta, 2002).

Uruguay posee buena disponibilidad territorial para criar cerdos en sistemas sustentables que combinen la eficiencia productiva con el bienestar animal y el uso adecuado de recursos naturales (Castro, 2007).

Si bien el mercado aun no ha evolucionado hacia la valorización de los productos bajo esta forma, se debería considerar que por esta vía se puede explotar la posibilidad de obtener productos con mayor valor agregado debido al proceso de producción, mas allá de la disminución de los costos productivos (Barlocco, 2005).

2.2 FACTORES QUE AFECTAN EL COMPORTAMIENTO PRODUCTIVO

2.2.1 Genotipo

Las características de adaptación de los diferentes tipos genéticos de cerdos a sistemas de producción muchas veces contrastantes, han sido estudiadas desde hace varios años por distintos autores.

Pinheiro (1973) afirmaba que ninguna raza porcina resulta buena y eficiente si no se tienen en cuenta otros factores de producción como la alimentación, la sanidad, el manejo y las instalaciones. Las diferentes posibilidades de combinar estos factores y la gran variabilidad existente entre los sistemas, hacen que ninguna raza tenga un óptimo desempeño en todas las condiciones de producción.

Incluso varios autores mencionan los problemas de adaptación a los sistemas a campo que pueden tener las razas blancas (Large White, Landrace), por las quemaduras de piel debido a sus problemas de fotosensibilización, afirmando que en general el resto de las razas se adaptan sin inconveniente a este tipo de sistemas (Casamayou 1981, Ihlenfeld 1994).

Dentro de estas razas -según los mismos autores- se encuentra la Duroc (y sus cruzamientos), capaz de producir sin problemas en condiciones campo debido a su rusticidad y adaptación al consumo de forrajes.

Teniendo en cuenta que el tipo genético debe ser elegido en función del resto de los factores de producción, y a pesar de que estos sean óptimos (y no existan restricciones para el animal), existe un límite máximo para el crecimiento corporal o deposición de carne, determinado por las características genéticas del animal (Ludke et al., 1998).

En nuestras latitudes existe la creencia de que la importación de material genético desde países del primer mundo, resulta en una mejora genética de las poblaciones animales. A causa de esto, durante mucho tiempo ha sido ignorada la expresión de ese nuevo "pool genético" que ingresa y es expuesto ante situaciones ambientales muchas veces diferentes a aquellas en que los animales fueron seleccionados (Espasandín y Urioste, 2005).

La existencia en el mercado de madres híbridas comerciales y razas paternas hipermusculosas (propias de los sistemas intensivos desarrollados en el Hemisferio Norte) presentan dudosa y cuestionable adaptación a las condiciones de producción que predominan en la mayoría de los predios del país. Sin embargo han provocado un retroceso en las razas que tradicionalmente tenían mayor participación (Duroc, Large White y Landrace) (Barlocco, 2007).

En materia de recursos genéticos, la referencia inmediata anterior disponible data de 1988 (Uruguay, citado por Uruguay, 2006). En ese momento, el 54,3% de las cerdas de cría eran cruzas no definidas. En la actualidad, el uso de este tipo de madres se ha reducido al 30%, a raíz de su reemplazo por líneas genéticas importadas (URUGUAY. MGAP. DIEA, 2006).

También debe señalarse la disminución del uso de padrillos de razas puras, que cae del 67% en 1988 al 34% en la actualidad, acentuándose fundamentalmente a partir de la década del '90 cuando se consolidó la articulación entre empresas extranjeras productoras de genética y de empresas nacionales para la provisión de híbridos (URUGUAY. MGAP. DIEA, 2006).

Es fundamental tener en cuenta que animales seleccionados en determinadas condiciones de producción, no siempre responden del modo esperado al ser expuestos o reproducidos en condiciones diferentes (Espasandín y Urioste, 2005).

En este sentido, la raza Pampa Rocha tiene características propias de adaptación al sistema de producción caracterizado por el uso permanente de pasturas y ocasionales suplementos de alimentos concentrados, destacándose por su habilidad para producir en condiciones ambientales adversas, en las cuales otra genética ha fracasado (Urioste et al., 2002).

2.2.1.1 Cruzamientos

El cruzamiento entre razas o líneas genéticamente distantes es una herramienta muy utilizada en el mejoramiento de la productividad (Magofke y García, 2002), ya que permite la incorporación de material genético deseable en una o dos generaciones, la producción de heterosis, manipulación y complementariedad, permitiendo la asociación de características deseables de dos o más razas (Pathiraja 1986, Vieira et al. 2002).

Respecto a la evaluación de cruzamientos en razas adaptadas a producir en condiciones de campo, la bibliografía encontrada es escasa. En la Unidad de Producción de Cerdos (UPC) se han realizado algunos ensayos que evalúan fundamentalmente el comportamiento productivo de la raza Pampa Rocha (PP) y su cruzamiento con Duroc.

En el año 1998, Bellini et al. evaluaron cerdos de la raza PP y Pampa Rocha x Duroc (HDP) en la etapa de posdestete, en dos sistemas de alojamiento, a campo (con acceso a pasturas) y en confinamiento, ambos alimentados con concentrado según una escala de peso vivo (PV) con una restricción del 15% del consumo máximo voluntario (CMV). En el sistema a campo los animales PP tuvieron una ganancia de peso diaria (GPD) mayor que los HDP (0,501 y 0,455kg/día respectivamente, p<0.05), mientras que no se encontraron diferencias entre genotipos para los tratamientos que se encontraban confinados. Estos resultados señalan la mayor habilidad de los cerdos PP en el posdestete a campo.

En el año 1999, Barlocco et al. evaluaron el cruzamiento de la raza PP con Duroc y Large White, en el período de los 56 a los 77 días de vida. No encontraron diferencias para ganancia de peso diaria ni para eficiencia de conversión entre los tratamientos. Los valores de GPD fueron 0,377, 0,383, 0,384 y 0,354 para PP, HDP, HLP y Duroc, mientras que los valores de ECC fueron 2,72, 2,68, 2,71 y 2,84 respectivamente. Estos animales fueron alimentados con ración (con restricción del 25%) y acceso a pasturas constante.

Castro (2002) en un ensayo similar, pero solo evaluando animales HDP (alimentados con concentrado con un 15% de restricción y con acceso permanente a pasturas), obtuvo una GPD de 0,518kg/día y una eficiencia de conversión del concentrado (ECC) de 2,47/1.

También Barlocco et al. (2005), evaluaron el comportamiento productivo de animales PP y HDP, en un sistema de posdestete a campo. Los animales fueron alimentados con concentrado (según una escala de PV y con una restricción del 15% del CMV) y tuvieron acceso permanente a pasturas. A diferencia de los resultados encontrados por Bellini et al. (1998), los animales HDP presentaron una mayor GPD (0,507 vs. 0,483kg/día para HDP y PP respectivamente, p=0,02), mientras que para ECC

si bien no tuvo diferencias, mostró una tendencia a mejorar con el cruzamiento (2,53/1 vs. 2,73/1 para HDP y PP respectivamente).

A partir de estos ensayos, Barlocco y Vadell (2005) concluyen que los resultados son contradictorios cuando se compara el comportamiento productivo de animales Pampa Rocha en pureza racial y sus cruzas con Duroc en la etapa de posdestete y recría.

Para animales en terminación, Barlocco et al. (2000), además de evaluar cerdos PP y HDP incluyeron el cruzamiento con la raza Large White. Los animales fueron mantenidos en confinamiento (alojados individualmente) y alimentados con ración balanceada según una escala de PV. Si bien la GPD y la ECC fue similar para los distintos genotipos, se observó una tendencia a menor crecimiento (0,786kg/día) y menor ECC (3,80/1) en animales PP, respecto a cualquiera de los híbridos evaluados (p=0,05). Los animales triplecruza (Large White x HDP) mostraron una GPD de 0,870kg/día y una ECC de 3,40/1, mientras que los híbridos simples (HDP) mostraron valores de 0,866kg/día y 3,40/1 (para GPD y ECC respectivamente).

2.2.2 Sexo

La bibliografía encontrada respecto al efecto sexo sobre los parámetros productivos es contradictoria entre los distintos autores.

En 1979, Petrocelli et al. trabajaron con animales entre los 30 y 70kg de PV, evaluando el efecto de la sustitución de alimento concentrado por pasturas cortadas en un sistema confinado. En este ensayo, las hembras tuvieron una GPD mayor que los machos castrados (0,616 y 0,590kg/día respectivamente).

Posteriormente Drewry (1981), obtuvo resultados contradictorios en dos experimentos con animales con distintos porcentajes de razas Duroc, Landrace, Hampshire y Yorkshire, en donde evaluaba hembras y machos castrados en un período de 112 días luego del destete. Para el experimento 1, observó una ganancia mayor para las hembras (92g/día más que los machos) mientras que en el experimento 2 no encontró diferencias entre sexos.

Permingeat et al. (1985), trabajando con cerdos desde los 17 hasta los 60kg de PV y con acceso permanente a pasturas, no encontraron diferencias entre sexos (hembras vs. machos castrados) para GPD, consumo de alimento diario y ECC.

Sin embargo según Irgang et al. (1992), los machos castrados tendrían una velocidad de crecimiento mayor que las hembras, tanto en la fase de recría como en terminación,

sea en sistemas de alojamiento en confinamiento como a campo (con o sin restricción de alimento concentrado).

Los trabajos mencionados anteriormente han evaluado las diferencias en los parámetros productivos de hembras y machos castrados, pero no lo hacen comparando con machos enteros.

En este sentido Henry et al., citados por Ludke et al. (1998) afirman que durante la etapa de recría, el consumo de alimento, la velocidad de crecimiento y la eficiencia de conversión son iguales tanto en machos enteros como en hembras, ya que no existiría influencia hormonal como sí la hay en etapas mas avanzadas, en las que los machos enteros tienen una mayor GPD que las hembras y que los machos castrados.

Por el contrario, Barlocco et al. (2005), en un ensayo realizado durante la etapa de posdestete-recría con lechones PP y HDP, alimentados con ración según una escala de PV (con restricción del 15%) y con acceso permanente a pasturas, encontraron que los machos enteros tuvieron una GPD superior a las hembras (p=0,005).

Para las mismas condiciones de alojamiento mencionadas anteriormente (a campo con acceso a pasturas y oferta de concentrado) pero en la etapa de terminación, Barlocco et al. (2003), Battegazzore (2006) coinciden en que las hembras PP tienen mayor velocidad de crecimiento que los machos castrados del mismo tipo genético. Se citan valores de 0,607 y 0,556kg/día para hembras y machos castrados respectivamente (Barlocco et al., 2003).

En cuanto al efecto del sexo sobre el consumo de alimento, Díaz y Rodríguez (2002), González et al. (s/f) no encontraron diferencias entre machos castrados y hembras. En cambio Abeledo et al. (2004) encontró que machos castrados tenían un consumo mayor que hembras durante el período de engorde.

2.2.3 Ambiente

Hein (1994) define al ambiente como una combinación de factores físicos (clima, tipo de suelo, topografía), de infraestructura (refugios, distribución de agua) y manejo (densidad de alojamiento, orden social, control sanitario, alimentación, cuidados) que afectan el comportamiento productivo de los cerdos.

Los cerdos son animales homeotermos, y su consumo voluntario de alimentos está influenciado por el ambiente al cual son sometidos (Close y Stanier, citados por da Silva et al., 2000).

Cuando la temperatura desciende, el animal incrementa su producción de calor y produce una ligera hipotermia que debe ser compensada con una mayor ingesta energética (Lagrecca y Marotta, 2002).

En este sentido, Lizaso (1995) afirma que la temperatura afecta significativamente el consumo de alimento, fundamentalmente durante las primeras etapas del posdestete, en donde una disminución de 8°C (28 a 20) puede provocar un aumento de 30 a 40% del consumo.

Por el contrario, al exponerse a altas temperaturas, el cerdo reduce el consumo voluntario de alimento, mientras su requerimiento energético aumenta debido al esfuerzo fisiológico para disipar calor. Como consecuencia, la ganancia de peso, la conversión alimenticia y la composición de la canal se alteran (Close y Stanier, citados por da Silva et al., 2000).

El consumo también se ve afectado por el tipo de alojamiento y el número de animales. El alojamiento en grupo provoca un aumento en el consumo (no cuantificado) debido a una "estimulación a comer por otro" (Lizaso, 1995).

2.2.4 Alimentación

2.2.4.1 Características de las pasturas como alimento para cerdos

Varios son los autores que han estudiado las características nutricionales de las pasturas como alimento para los cerdos (Petrocelli et al. 1979, Casamayou 1981, Ihlenfeld 1994, Vincenzi 1996, Bellini et al. 1998, Marotta 1999, Castro 2002, Bauzá et al. 2005, Barlocco et al. 2005, Battegazzore 2006, Faner 2007, Bauzá 2007).

Brevemente, se puede describir como un alimento con un bajo aporte de energía, característica considerada como la principal limitante de su uso para la alimentación de cerdos, y que hace indispensable la suplementación con algún alimento rico en energía (Casamayou, 1981).

Puede llegar a ser un alimento económico (buena disponibilidad de MS/ha a costos relativamente bajos), de alta calidad (por su alto porcentaje de digestibilidad) y muy palatable (Ihlenfeld, 1994), ya que se ha comprobado que los cerdos (aún con una oferta de ración a voluntad) realizan un importante consumo de pastura, lo cual evidencia que se trata de un alimento muy apetecible (Bauzá y Petrocelli, 2005).

El contenido de proteína cruda de las pasturas varía entre 15 y 22% (en base seca), según las especies y el estado fisiológico. La digestibilidad de la proteína en general es alta en los forrajes tiernos, hasta que el cultivo madura y aumenta la lignificación de la planta, lo que reduce la capacidad de ataque por las proteasas (Bauzá y Petrocelli, 2005).

Las pasturas en estadios jóvenes de crecimiento contienen de un 70 a un 85% de agua (Casamayou, 1981) y a medida que maduran, van perdiendo calidad debido a que aumenta su contenido porcentual de fibra (lignina, celulosa, hemicelulosa) siendo este un elemento de baja digestibilidad para los cerdos (Faner, 2007).

Cuando se habla de pastura, en realidad no se refiere a un alimento único: el aporte nutritivo dependerá de la especie forrajera considerada, la densidad y el estado fisiológico de la misma; mientras que la utilización o aprovechamiento dependen del además de la edad del animal (Bauzá, 2007).

2.2.4.2 Capacidad de consumo de pasturas por los cerdos

De acuerdo a la bibliografía consultada, varios son los factores que pueden afectar el consumo de pasturas por los cerdos y seguramente su comportamiento productivo. Entre estos factores se mencionan la categoría, el nivel de oferta de concentrado, el sistema de alojamiento e incluso el modo de pastoreo (permanente o controlado por algunas horas).

Debido a que el cerdo es un monogástrico, no realiza un uso tan eficiente de los nutrientes de las pasturas, ya que no poseen enzimas capaces de digerir los componentes de la pared celular de los vegetales (hemicelulosa, celulosa, lignina), como tampoco poseen capacidad de fermentación pregástrica. Esto provoca un bajo aprovechamiento de las pasturas, que sumado a su baja capacidad gastrointestinal (que limita el consumo de materia seca) no le permiten a los cerdos crecer y llegar a la terminación alimentados exclusivamente con forrajes (Petrocelli et al. 1979, Casamayou 1981, Ihlenfeld 1994).

El cerdo posee una reducida capacidad de ingestión, siendo importante su limitación en categorías menores, aumentando la capacidad de consumo de materia seca con el aumento del peso vivo. Los mecanismos de regulación física actúan antes de que el nivel de nutrientes circulantes lo haga cuando la pastura representa una proporción importante de la dieta (Barlocco, 2007).

Varios autores han estimado el consumo de forraje para distintas categorías de cerdos y diferentes planos alimenticios (fundamentalmente referido a la oferta de alimento concentrado), tanto en confinamiento con forraje cortado como en pastoreo directo.

Arenare et al. (1997) encontraron un consumo de 32,5 y 60,1gMS/animal/día de alfalfa, en cerdos de 20 y 40kg de PV respectivamente, que se encontraban en confinamiento y alimentados con concentrado (con 30% de restricción del CMV) y oferta de alfalfa cortada.

También con animales en confinamiento (con alojamiento individual), pero alimentados únicamente con forraje cortado, Garín et al. (2002) obtuvieron un consumo voluntario de 428g/día (de forraje) para cerdos PP (peso inicial 49kg) y de 288g/día para cerdos Large White x Duroc (peso inicial 34kg). A partir de estos valores, los autores sugieren un comportamiento diferencial entre los distintos genotipos, con una mayor adaptación al consumo de forraje en animales Pampa Rocha (si bien el peso inicial fue mayor).

Castro (2002), aunque en condiciones diferentes (tanto de alojamiento como de alimentación) también evaluó el consumo de forraje de animales en posdestete-recría. Los animales HDP, fueron mantenidos en condiciones de campo, con acceso permanente a pasturas y alimentados con concentrado (con un 15% de restricción del CMV). Los consumos obtenidos fueron de 0,433 y 0,424kgMS/día para animales de 17,24 y 27,81kg PV respectivamente.

En cuanto a las categorías de mayor tamaño, se han encontrado algunos resultados de ensayos que evalúan el consumo de forraje (en pastoreo directo) de cerdas gestantes y animales en terminación.

Battegazzore (2006), encontró consumos de pastura de 0,57 y 1,17kgMS/día durante el engorde en pastoreo de cerdos PP para dos niveles de restricción de concentrado (30 y 50% respectivamente) y con acceso permanente a pasturas.

También en la etapa de crecimiento-terminación, Bauzá et al. (2006), encontraron que animales con acceso a pasturas durante 2hs diarias, tenían un consumo de forraje de 0,478kgMS/día cuando disponían de concentrado a voluntad y de 0,628kgMS/día cuando se les restringía el concentrado un 20% del CMV.

Para la categoría de cerdas en gestación, Barlocco et al. (2005), encontraron consumos diarios de forraje de 2,3kgMS/día, para cerdas HDP con acceso permanente a pasturas y una oferta de concentrado de 1,25kg/día, que significa un 50% de la oferta sugerida. Esta categoría es, según varios autores, la que mejor se adapta al consumo de alimentos voluminosos, debido a su mayor capacidad de ingesta y asimilación del tracto digestivo (Casamayou 1981, Feippe et al. 1982, Bauzá 2007).

A modo de síntesis y en función de varios trabajos realizados anteriormente, Bauzá (2007) afirma que el consumo promedio de forraje para animales en recría varía entre 370 y 385gMS/día, lo que significa un 17 a 21% de la ingestión total, mientras que en la

etapa de terminación el consumo promedio se ubica entre 700 y 800gMS/día, equivalente al 25-30% de la ingestión. En cerdas gestantes el consumo puede ser de 1,5kgMS/día, pudiendo reemplazar hasta un 50-70% del CMV y hasta un 25% en cerdas en lactación.

2.2.4.3 Selectividad

Los primeros trabajos encontrados, que mencionan preferencias de los cerdos por ciertas especies forrajeras, son los pertenecientes a Casamayou (1981), Permingeat et al. (1985). Según estos autores, dentro de las especies preferidas por los cerdos se encuentran la alfalfa y los tréboles, por sus mejores calidades nutritivas y palatabilidad.

Algunos ensayos más recientes, han evaluado la selectividad de cerdos de distintas categorías (fundamentalmente animales en crecimiento-terminación y cerdas gestantes), sometidos a pastoreo de diferentes especies.

Faner (2001), trabajando sobre una misma especie forrajera, evaluó la selectividad de cerdos de 40 y 60kg de hacia distintas partes de plantas de alfalfa, encontrando que animales de menor PV mostraron mayor selectividad hacia partes tiernas que los cerdos de mayor tamaño.

Para la categoría de cerdos en terminación, Battegazzore (2006) estimó la utilización de los distintos componentes de una pradera (achicoria, trébol rojo y raigrás) durante los meses de agosto a noviembre. Los animales utilizados fueron de la raza PP, mantenidos en condiciones de campo con acceso permanente a pasturas y alimentados con dos niveles de restricción del CMV de concentrado que definieron los tratamientos, 30% (moderada restricción, MR) y 50% (fuerte restricción, FR). Para ambos casos encontró el mayor porcentaje de utilización para la achicoria (79,5 y 81,8% para MR y FR), mientras que para el trébol rojo los valores fueron de 27,8 y 36,6%. En el caso del raigrás, no solo encontró el valor mas bajo de utilización, sino que para el tratamiento MR el valor fue negativo (-2,4%), explicado por las altas tasas de crecimiento y la baja palatabilidad debido al pasaje de estado vegetativo a reproductivo (encañado).

Estos resultados tienen ciertas similitudes con los encontrados por Barlocco et al. (2003) en un trabajo anterior, realizado con cerdas gestantes en pastoreo directo y con oferta restringida de concentrado (50% de la oferta sugerida), durante los meses de primavera. En este caso los porcentajes de utilización encontrados fueron de 96,3% (achicoria), 64,7% (trébol rojo) y 4,3% (raigrás). Es importante considerar la diferencia en la categoría de animales utilizada (en este caso menos exigente y con mayor adaptación al consumo de forraje) y la mayor restricción de concentrado respecto a la capacidad de consumo que puede la categoría.

Según Barlocco (2007), esta selectividad presentada por los cerdos hace que el consumo de forraje sea afectado por la composición botánica de la pastura y por su estado fisiológico al momento del pastoreo (vegetativo/reproductivo), lo cual demuestra que el criterio de disponibilidad de MS no es el único indicador a tener en cuenta para el ingreso y retiro de los animales a las pasturas, debiendo considerar otros elementos como la calidad y el estado fisiológico para realizar un mejor manejo.

Por lo mencionado anteriormente, la época del año sería un factor determinante sobre el consumo de determinadas especies por los cerdos, debido a la pérdida de calidad y palatabilidad al pasar del estado vegetativo al reproductivo (o floración).

2.2.4.4 Efectos de la inclusión de pasturas sobre comportamiento productivo

Los resultados encontrados en diversos trabajos realizados por diferentes autores, que evalúan el desempeño productivo de cerdos en la etapa de posdestete-recría alimentados con pasturas son contradictorios.

Azzarini et al. (1973), evaluaron el efecto de la inclusión de pasturas en el desempeño productivo de cerdos Duroc en la etapa de posdestete-recría. En este trabajo compararon dos sistemas de alimentación: 1- cerdos en confinamiento, alimentados exclusivamente con concentrado y 2- cerdos alimentados con concentrado (30% de restricción del CMV) y pastoreo *ad libitum*. La GPD fue similar para ambos tratamientos (0,559 y 0,510kg/día, para tratamiento 1 y 2 respectivamente), sin embargo la ECC fue mayor para los animales que tuvieron acceso a pastoreo (2,81/1) frente a aquellos que se alimentaron únicamente con concentrado (3,62/1).

Estos resultados permiten afirmar que el acceso a pasturas permitió una mejora en la eficiencia de conversión sin afectar la velocidad de crecimiento, siendo un sustituto satisfactorio del concentrado. Según Corengia et al. (1973), esto se debe a que la pastura permite que accedan a una dieta con un mejor equilibrio entre los componentes energéticos y proteicos, mejorando la relación nutritiva de la dieta.

Ache et al. (1984), no obtuvieron los mismos resultados en cuanto a la GPD, y afirma que un nivel de restricción del 30% (con acceso a pasturas) en la etapa de recría, disminuye la velocidad de crecimiento, provocando un alargamiento de esta etapa. Sin embargo coincide en que este manejo de la alimentación mejora la ECC.

La pastura es un buen complemento en la dieta, pero es ineficiente como única fuente de alimento. En un ensayo realizado por Permingeat et al. (1985), se observó que animales en la etapa de recría no lograban un crecimiento normal si se les ofrecían

pasturas como único alimento. Sin embargo, cuando las pasturas eran utilizadas como complemento de un concentrado, lograban tasas de crecimiento de 0,667kg/día y una ECC de 2,61/1.

Siguiendo la misma línea de trabajo, Amaya (1992) evaluó el comportamiento productivo de lechones en la etapa de posdestete-recría incluyendo las pasturas en la dieta. Los animales (Large White x Duroc) fueron agrupados en dos tratamientos: T1-alimentación con ración balanceada a voluntad y acceso a pastoreo directo de una pradera (trébol rojo, trébol blanco y raigrás) por 1 hora y media diaria; T2- ración balanceada a voluntad.

La velocidad de crecimiento fue similar para ambos tratamientos (0,548 y 0,526kg/día para tratamiento 1 y 2 respectivamente), mientras que la ECC mejoró en aquellos animales que tuvieron acceso a pastoreo (2,01/1 vs. 2,27/1 para tratamiento 1 y 2 respectivamente).

En un trabajo mas reciente, Castro (2002), evaluó dos sistemas de posdestete: confinado (alimentados con concentrado con 15% de restricción del CMV) y a campo (alimentados con concentrado con un 15% de restricción y acceso permanente a pasturas), obteniendo resultados diferentes a los obtenidos por otros autores. En este caso, la GPD fue menor en aquellos animales sometidos a una restricción de concentrados y con acceso a pastoreo (0,518g/día), que para aquellos que se encontraban en confinamiento con la misma restricción de concentrado (580g/día, p=0,01). Además, la ECC empeoró en el tratamiento que incluyó pasturas en la dieta (2,47/1 vs. 2,17/1 a favor del confinado, p=0,01), demostrando la ineficiencia de la pastura para sustituir la restricción de ración en esta etapa.

Según Bauzá et al. (2005), animales sometidos a una restricción de concentrado y que disponen de pasturas a voluntad, aumentan el consumo total de MS, para compensar el menor aporte energético del forraje, y si bien algunos autores señalan que la restricción de concentrado en esta etapa disminuye significativamente la velocidad de crecimiento, el alargamiento de la fase de recría en la práctica carece de relevancia.

En la etapa de crecimiento-terminación se han realizado diversos trabajos que han obtenido similares resultados. Varios autores afirman que para esta categoría, la inclusión de pasturas permitiría una mejora en la ECC, reduciendo los requerimientos de ración entre un 10 y 30% sin afectar la velocidad de crecimiento (Cuarón 1979, Echevarría 1985, Spiner et al. 1990, Battegazzore 2006, Faner 2007).

3 MATERIALES Y MÉTODOS

3.1 LOCALIZACIÓN

El trabajo se llevó a cabo durante el período mayo-noviembre de 2006 en la Unidad de Producción de Cerdos (UPC) del Centro Regional Sur de la Facultad de Agronomía (Juanicó, departamento de Canelones).

Las características de la UPC han sido descriptas en varios trabajos publicados anteriormente (Bellini 1998, Vadell 1999, Castro 2002, Vadell 2004, Díaz 2008).

3.2 INSTALACIONES

Se utilizó el sector C sur (piquetes 1 a 9), abarcando una superficie total de 13500m². Cada piquete (1500m², delimitado por 2 hebras de alambre electrificado) alojó una unidad experimental (lote), disponiendo de una paridera de campo "Tipo Rocha", un bebedero automático y comederos (bateas).

Dentro de cada piquete se armaron franjas de pastoreo de 300m², teniendo los animales acceso a una sola franja a la vez. Esto permitió realizar un mejor manejo del pastoreo y así conservar el estado de la pastura.

3.3 ANIMALES

Se utilizaron 72 lechones (36 hembras y 36 machos enteros), a partir del destete (46 días \pm 3; 10.7kg \pm 1.6) y hasta los 134 \pm 17 días de vida (57kg \pm 13). Los animales fueron producidos en la UPC, en condiciones de campo (el parto y la lactancia se realizaron en potreros empastados de 1500m²).

Los lechones fueron seleccionados a partir de 9 camadas nacidas entre el 14 de abril y el 29 de junio de 2006. De estas camadas, se seleccionaron al momento del destete 8 lechones, obteniendo así 9 lotes compuestos por 4 hembras y 4 machos hermanos de camada. En camadas con un número de lechones mayor a 8, se descartaron para el experimento aquellos que se alejaban más del promedio de peso de la misma. Todos los animales fueron desparasitados con Ivermectina al momento del destete.

3.4 ALIMENTACIÓN

3.4.1 Ración balanceada

La ración balanceada fue suministrada al lote diariamente y a primera hora del día según una escala de PV.

El nivel de oferta sugerido fue del 85% del CMV de la categoría, estimado como 4 veces la energía digestible para mantenimiento (EM = $110 \times PV^{0.75}$). A partir de este supuesto se estimó el consumo máximo de ración para un concentrado con 3200kcal de ED/kg de alimento. Este nivel de restricción es considerado como "leve" en la escala utilizada en la UPC.

La oferta de concentrado fue calculada semanalmente (posterior a la pesada de los animales), en función del PV y la ganancia de peso esperada. En función del peso estimado a mitad de semana se recurre a la tabla de alimentación mencionada anteriormente.

A continuación se muestran los componentes y las características químicas de la ración utilizada en la alimentación de los lechones durante el ensayo.

Cuadro 1: Composición porcentual de la ración.

COMPONENTES	%
Maíz	75
Harina de soja	17.5
Harina de carne y hueso	6.5
Premezcla vitamínico-mineral	0.5
Sal	0.5

Cuadro 2: Composición química (BS) de la ración.

FRACCIÓN	% (BS)
MS	87.35
С	6.50
PC	21.99
Ca	0.93
P	0.68
Lisina	0.70
Metionina	0.23

3.4.2 Pastura

La pastura utilizada fue una pradera de 2º año, constituida fundamentalmente por achicoria, trébol rojo y raigrás, con cierto grado de enmalezamiento.

Se realizó un pastoreo rotativo, utilizando franjas de pastoreo de 300m², teniendo los animales acceso permanente a la pastura. Para el ingreso y retiro de los animales a cada franja se tuvo en cuenta la altura de las hojas de achicoria, debiendo alcanzar unos 20-30cm para el ingreso y 5cm para el retiro de los animales. Se consideraron además, otros aspectos basados en la observación, como la disponibilidad inicial y evolución de las distintas especies durante el pastoreo. Los muestreos de disponibilidad y rechazo se realizaron con el método de Doble Muestreo (Moliterno, 1997).

3.5 TRATAMIENTOS

Los tratamientos fueron definidos según los tipos genéticos de los animales. Las cerdas utilizadas como madres fueron de la raza Pampa Rocha para los tres tratamientos, por lo que la diferencia entre ellos está en la utilización de distinta raza paterna (Pampa Rocha, Duroc o Large White).

La unidad experimental estuvo constituida por un lote de ocho animales hermanos de camada. A continuación se presenta un cuadro con la descripción de los tratamientos.

TRATAMIENTORAZAS UTILIZADASDENOMINACIÓNT1Pampa Rocha x Pampa Rocha(PP)T2Pampa Rocha x Duroc(HDP)T3Pampa Rocha x Large White(HLP)

Cuadro 3: Descripción de los tratamientos.

Se realizaron tres repeticiones por cada tratamiento, evaluándose 24 animales por cada tipo genético (8 cerdos x 3 repeticiones).

Tipo genétic o	N° de repeticione s	Cerdos/ Repetición	Total cerdo s	Machos/ repetición	Hembras/ repetición
PP	3	8	24	4	4
HDP	3	8	24	4	4
HLP	3	8	24	4	4
TOTA			72		

Cuadro 4: Nº de animales según genotipo y sexo.

3.6 CONDICIONES EXPERIMENTALES

Los valores de temperatura y precipitaciones fueron obtenidos de la Estación Meteorológica del Centro Regional Sur (Juanicó). Se registró además, la temperatura interna de la paridera mediante un sistema de sensores programables "i button", que fueron colocados en el interior de la paridera protegidos de los animales.

El cálculo de los promedios de temperatura (media, máxima y mínima) se realizó teniendo en cuenta los datos de los meses junio a noviembre, para que este valor pueda ser comparado con el promedio de temperatura obtenido a partir del sistema de sensores programables "i button" ubicados en el interior de las parideras.

Cuadro 5: Temperaturas y precipitaciones según estación meteorológica del CRS y sensores "I button".

MES	TEMP. MED. (°C)	TEMP. MÁX. (°C)	TEMP. MÍN. (°C)	PRECIP. (mm)	DÍAS CON LLUVIA	TEMP. MEDIA (°C) SENSORES I BUTTON
mayo	12,0	18,3	6,9	16,0	9	
junio	11,2	17,7	6,6	259,6	16	12,41
Julio	12,7	17,0	8,6	60,5	17	14,97
agosto	10,2	15,7	5,3	40,1	15	12,43
setiembre	12,3	19,2	5,9	23,1	9	14,61
octubre	16,9	23,0	11,4	60,5	8	19,58
noviembre	17,7	24,0	11,7	91,2	7	20,68
PROMEDIO	13.5	19.4	8.3	89.2	12	14,8

3.7 MEDICIONES REALIZADAS

4 Peso de los animales (kg).

Se obtuvo el peso individual de los animales de forma semanal. Esta actividad fue realizada a primera hora de la mañana y antes del racionamiento diario.

5 Disponibilidad inicial de pastura (kgMS).

La disponibilidad de forraje al momento de ingreso de los animales a la franja de pastoreo se estimó a través del método de doble muestreo, realizado el mismo día previo al ingreso.

6 Disponibilidad final de pastura (kgMS).

La disponibilidad de forraje al momento de retirar los animales (rechazo) también fue estimada con el método de doble muestreo.

7 Composición botánica de la pastura (%).

La composición botánica de la pastura fue estimada para los momentos en que se realizaron los muestreos de disponibilidad (inicial y final). Fue expresada como % en peso de cada fracción en base fresca y base seca y como % de ocupación en el campo (estimación visual).

8 Tiempo de pastoreo en cada franja (días).

Los días de pastoreo fueron calculados en base a las fechas de ingreso y retiro de los animales.

9 Contenido de materia seca de la pastura (%MS).

Las muestras obtenidas durante los muestreos realizados para estimar disponibilidad fueron secadas en estufa (a 60°C y durante 48hs) para determinar el contenido de materia seca.

10 Crecimiento de la pastura (kgMS/ha/día).

La tasa de crecimiento de la pastura, fue estimada utilizando jaulas de exclusión ubicadas dentro de las franjas de pastoreo.

10.1 PARÁMETROS EVALUADOS

La ganancia de peso diaria, consumo y eficiencia de conversión del concentrado fueron evaluados durante el período comprendido entre el destete (46 ± 3 días; 10,7kg) y los 110 ± 3 días de vida (39 ± 3 kg).

Consumo de pastura, consumo total de MS, eficiencia de conversión de la materia seca de la dieta, crecimiento de la pastura, utilización, selectividad y carga animal fueron evaluados en dos períodos:

Período 1 (P1): a partir del destete (46 días \pm 3; 10,7kg \pm 1,6) y hasta los 71 días \pm 10 (20,17kg \pm 4,3).

Período 2 (P2): desde los 108,9 días \pm 11,2 (39,7kg \pm 7,2) hasta los 134 \pm 17 días de vida (57kg \pm 13).

Se evaluó el efecto del genotipo, sexo y peso vivo sobre los siguientes parámetros (según corresponda):

11 Ganancia de peso diaria (GPD, kg/día).

A partir de los registros de pesos individuales obtenidos semanalmente, se calculó el promedio de ganancia de peso diaria y total durante el período de ensayo.

12 Consumo de concentrado (CC, kgMS/día).

Fue calculado el consumo diario y total de concentrado. Debido a que los animales se encontraban alojados en lotes, el valor de consumo fue calculado como el promedio de 8 animales.

13 Eficiencia de conversión del concentrado (ECC).

Es la relación entre el consumo de concentrado expresado en Base Seca y la ganancia de peso de los lechones. Fue calculado para el período total y para P1 y P2 como forma de poder evaluar el efecto del PV en la ECC.

14 Consumo de pastura (CP, kgMS/día).

Para la determinación del consumo, se tendrán en cuenta los muestreos de disponibilidad y rechazo de forraje. Durante el período de determinación de consumo, los animales tuvieron acceso a una sola franja de pastoreo.

15 Consumo de MS total (CT, kgMS/día).

El consumo de MS total (concentrado + pasturas) se estimó como promedio del lote para los dos períodos definidos.

16 Eficiencia de conversión de la MS de la dieta (ECT, concentrado + pasturas).

Se estimó la eficiencia de conversión de la materia seca total de la dieta para los períodos en que se evaluó el consumo de pastura (definidos previamente).

17 Crecimiento de la pastura (kgMS/ha/día).

Fue estimado utilizando jaulas de exclusión, que se encontraban ubicadas dentro de las franjas de pastoreo.

18 Utilización de la pastura, selectividad y carga animal.

Evaluado a partir de los datos de disponibilidad y rechazo obtenidos en los muestreos de pastura, fundamentalmente de la composición botánica.

19 <u>RESULTADOS Y DISCUSIÓN</u>

19.1 GANANCIA DE PESO DIARIA

19.1.1 Efecto del genotipo

Se encontraron diferencias para ganancia de peso diaria (GPD) entre los tratamientos. Los animales HLP mostraron un mayor valor que los animales PP (p = 0,005) y que los HDP (p = 0,023), no existiendo diferencias entre estos dos últimos genotipos (si bien existe una tendencia a mejorar en animales HDP). Según estos resultados, el tipo genético influyó sobre la GPD.

Los valores encontrados se resumen en la siguiente tabla:

Cuadro 6: Ganancia de peso diaria (GPD) según genotipo (kg/día).

GENOTIPO	GPD (kg/día)
PP	$0,428 \pm 0,011_a$
HDP	$0,436 \pm 0,012_a$
HLP	$0,477 \pm 0,012_{b}$
PROMEDIO	$0,447 \pm 0,017$

Letras distintas indican diferencias significativas entre los tratamientos (p=0,05).

La GPD de los animales HLP fue un 11% mayor que animales PP y 9% mayor que animales HDP. Esto significa que en un período de 9 semanas (63 días de evaluación promedio), los animales HLP ganaron 3,0 y 2,6kg más que PP y HDP respectivamente.

Según Barlocco et al. (2000), estos resultados podrían ser explicados considerando que tanto la raza Duroc como la Large White, han sido seleccionadas por caracteres de crecimiento, sumado a las ventajas de la utilización de cruzamientos por el aprovechamiento de la heterosis individual. Estos autores evaluaron el comportamiento productivo en el engorde de cerdos con diferente proporción de genes Pampa Rocha, Duroc y Large White, no encontrando diferencias entre los genotipos, si bien observaron una tendencia a un mayor crecimiento en los animales cruza.

Varios autores como Pathiraja (1986), Irgang (1998), Fernández et al. (s/f), citan valores de heterosis individual para ganancia de peso en el posdestete-recría en el rango de 0-10%, obtenidos en ensayos que evalúan diferentes razas.

Los datos obtenidos en este ensayo difieren de lo encontrado por Bellini et al. (1998), quienes comparando animales PP y HDP en un sistema de posdestete a campo, encontraron una mayor ganancia de peso para animales PP (0,501kg/d) que para HDP (0,455kg/d), sosteniendo que la raza PP tiene mayor habilidad que los HDP en este tipo de sistemas.

En un ensayo posterior la GPD fue similar para animales PP, HDP, HLP y Duroc, citando valores de 0,377, 0,383, 0,384 y 0,354kg/día respectivamente (Barlocco et al., 1999). Estos valores son menores a los encontrados en el presente trabajo, debido probablemente a una mayor restricción del alimento concentrado (25% del CMV) y a una menor edad de los animales promedio durante el período evaluado. Si bien no encontraron diferencias significativas, las tendencias se mantienen hacia la mejora de la GPD para los animales cruza frente a cualquiera de las dos razas puras (Pampa Rocha y Duroc).

Esta tendencia fue confirmada por Barlocco et al. (2005), quienes encontraron una mayor velocidad de crecimiento en animales HDP (0,507kg/día) frente a PP (0,483kg/día) en posdestete a campo, sometidos a una restricción de concentrado de 15% del CMV y con acceso permanente a pasturas.

La mayoría de los trabajos consultados en la bibliografía evalúan animales sometidos a algún nivel de restricción de concentrado y con acceso a pasturas como complemento. Según Espasandín y Urioste (2005), en condiciones de alimentación restrictivas, las ganancias de peso mayores son explicadas por los genes de eficiencia de uso de los alimentos, mientras que en condiciones no restrictivas las diferencias en el aumento de peso es consecuencia de los genes responsables del apetito.

En este sentido Dobao et al. (1987), Irgang et al. (1992), hacen referencia a la mejora de la ganancia de peso de diferentes razas a través del cruzamiento con animales Duroc, adjudicando esta mejora a un mayor apetito, lo que resulta en un mayor consumo de alimento, cuando este es ofrecido a voluntad.

También fue confirmado por Renadeau et al. (2005), quienes observaron que el consumo es altamente influenciado por el genotipo, cuando compararon cerdos criollos de la zona de Guadalupe (Antillas Francesas) con cerdos Large White, alimentados con concentrado a voluntad.

19.1.2 Efecto del sexo

Para realizar la comparación de GPD entre sexos no fue considerado el tipo genético de los animales. No se encontraron diferencias para GPD entre machos enteros y hembras, lo cual puede ser explicado por la no existencia durante esta etapa, de influencia hormonal que provoque diferencias en el comportamiento productivo entre machos y hembras (Permingeat et al. 1985, Henry et al. citados por Ludke et al. 1998).

Cuadro 7: Ganancia de peso diaria (GPD) para machos enteros y hembras (kg/día).

SEXO	GPD (kg/día)
Machos enteros	$0,443 \pm 0,052$
Hembras	$0,454 \pm 0,063$

Los resultados encontrados en la bibliografía al respecto son contradictorios, incluso en trabajos realizados por un mismo autor, como Drewry (1981).

Barlocco et al. (2005), en un ensayo similar al presente, encontró una GPD mayor para los machos enteros que para hembras en la etapa de recría (0,516 y 0,478kg/día respectivamente).

En trabajos realizados con machos castrados y en confinamiento, Petrocelli et al. (1979) encontró mayor GPD para las hembras, mientras que Irgang et al. (1992) obtuvo mayor GPD para machos.

Para la etapa de terminación, en sistemas a campo, Barlocco et al. (2003) y Battegazzore (2006) encontraron una mayor velocidad de crecimiento para las hembras que para los machos castrados.

19.2 CONSUMO Y EFICIENCIA DE CONVERSIÓN DEL CONCENTRADO

19.2.1 <u>Efecto del genotipo</u>

Los tres genotipos mostraron valores similares para CC y ECC en el período total de evaluación. Es importante resaltar, que no se observó rechazo de concentrado para ninguno de los lotes durante todo el ensayo.

Cuadro 8: Consumo diario de concentrado (CC) en kgMS/día y eficiencia de conversión del concentrado (ECC) según genotipo para el período total.

GENOTIPO	CC (BS)	ECC (BS)
PP	$1,061 \pm 0,023$	$2,45/1 \pm 0,11$
HDP	$1,081 \pm 0,023$	$2,35/1 \pm 0,10$
HLP	$1,058 \pm 0,023$	$2,28/1 \pm 0,17$
PROMEDIO	1,067	2,36/1

En cuanto a los valores de consumo, es necesario tener en cuenta que los animales fueron sometidos a una restricción de concentrado del 15% del CMV, por lo que al no disponer de concentrado a voluntad, carece de sentido discutir el efecto del genotipo sobre CC.

Respecto a los valores de ECC, no se encontraron diferencias entre los tratamientos, si bien se observa cierta tendencia a mejorar en animales HLP respecto a los PP (p=0,065).

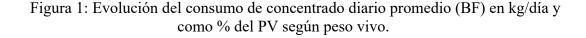
Estos resultados coinciden con los obtenidos por Barlocco et al. (1997), quienes evaluando animales en posdestete a campo con diferente proporción de genes Pampa, Duroc y Large White, no encontraron diferencias para la ECC, citando valores de 2,72/1, 2,68/1 y 2,71/1 para animales PP, HDP y HLP respectivamente. Los valores de ECC obtenidos por estos autores son menores a los del presente trabajo, debido a que la mayor restricción de concentrado (25% CMV) afectó la GPD y por lo tanto los animales fueron menos eficientes en convertir el alimento suministrado.

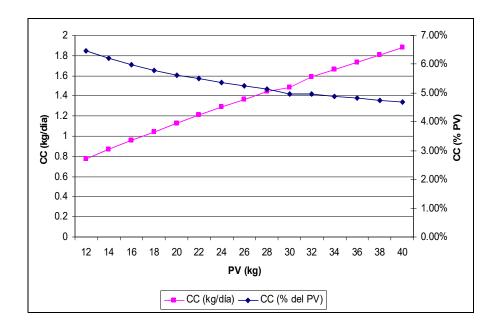
Similares resultados obtuvo Barlocco et al. (2005) en la evaluación de animales PP y HDP durante el período de posdestete-recría. La ECC no mostró diferencias entre genotipos, si bien se mantuvo la tendencia a mejorar con el cruzamiento, citando valores de 2,53/1 y 2,73/1 para PP y HDP respectivamente.

A modo de referencia, Castro (2002), Bellini et al. (1998), encontraron valores de ECC de 2,47/1 (PP) y 2,17/1 (HDP) respectivamente, para lechones en posdestete a campo con acceso a pasturas y 15% de restricción de concentrado.

En la fase de terminación, animales PP, HDP y HLP mostrarían una ECC similar, manteniendo la tendencia a mejorar en los animales cruza.

Si bien en el estudio de la raza PP no se ha logrado una mejora notoria en la ECC a través del cruzamiento con Duroc y Large White, varios autores mencionan la existencia de heterosis para la eficiencia de conversión del alimento, manejando valores de 0-3% (Mahadevan citado por Pathiraja 1986, Irgang 1998).


Según Buxadé (1984), la raza Duroc presenta ventajas para ser utilizada como macho terminal por la heterosis lograda (en cruzamientos con otras razas) en el índice de conversión y velocidad de crecimiento (sin dejar de lado su adaptación a sistemas restrictivos y a condiciones adversas).


La raza Large White, según Renadeau et al. (2005), presenta un mejor comportamiento productivo que cerdos criollos de las Antillas Francesas, por su mayor consumo de concentrado cuando es ofrecido a voluntad, mayor crecimiento y mejor eficiencia de conversión del alimento durante la etapa de crecimiento-terminación.

Las tendencias encontradas en el presente ensayo y en la bibliografía demuestran que existe la posibilidad de obtener cruzamientos que permitan una mejora notoria en la eficiencia de conversión partiendo de animales Pampa Rocha, que podría derivar en el ahorro de alimento concentrado y en la reducción de los costos de alimentación, además de explotar las características de adaptación a los sistemas de producción a campo de esta raza (Vadell, 2008).

19.2.2 <u>Efecto del peso vivo</u>

Si bien el CC no se analizó estadísticamente, a partir de los datos recolectados puede conocerse la evolución del CC durante el período de duración del ensayo. Debido a que el cálculo de la cantidad de concentrado ofrecido se realizaba en función del peso vivo y a que se mantuvo constante el nivel de restricción (15% del CMV) durante el ensayo, la oferta y el consumo de concentrado fueron aumentando con la edad y peso de los animales. A continuación se presenta una gráfica que muestra la evolución del consumo diario, promedio para los tres tratamientos (ya que entre ellos no se observaron diferencias de consumo).

Cuadro 9: Eficiencia de conversión del concentrado (BS) y peso vivo (PV) promedio (kg) según genotipo para P1 y P2.

	ECC		PV prom.	
GENOTIPO	P1	P2	P1	P2
PP	$2,66/1_{ab} \pm 0,25$	$3,03/1_a \pm 0,29$	$14.45 \pm 1,53$	$48.62 \pm 13,58$
HDP	$2,36/1_{bc} \pm 0,22$	$2,68/1_{ab} \pm 0,27$	$16.10 \pm 2,45$	$44.44 \pm 8{,}17$
HLP	$2,12/1_c \pm 0,21$	$2,90/1_a \pm 0,18$	$18.01 \pm 1,25$	$51.93 \pm 9{,}01$
PROMEDIO	2,38/1	2,87/1	15.96	48.33

Letras distintas indican diferencias significativas entre los tratamientos (p=0,05).

Los promedios de ECC para P1 y P2 mostraron marcadas diferencias (p = 0,002). Según estos valores, los animales fueron más eficientes en la conversión del alimento durante el período 1 (en el cual tenían un menor peso vivo).

Estos resultados coinciden con la bibliografía, Castro (2002), Barlocco et al. (2005) también observaron que la ECC empeoraba con el crecimiento de los animales. Barlocco et al. (2005) encontraron una ECC de 2,64/1 y 2,81/1 mientras que Castro (2002)

menciona una ECC de 2,25/1 y 3,28/1 para períodos similares a los evaluados en el presente ensayo.

Mientras que para el período total la ECC no mostró diferencias entre genotipos, al analizar los períodos por separado se observa que en P1 los animales PP son menos eficientes en la conversión de concentrado que los HLP (p = 0.045).

Según los resultados, los animales HLP durante el P1, mostraron un ahorro de 0,540kg de concentrado (BS) por cada kg de PV ganado respecto a los PP. Entre el resto de los tratamientos no se encontraron diferencias. Este comportamiento reafirma la tendencia encontrada al analizar la ECC global, dirigida hacia una mejora de la conversión alimenticia en animales cruza.

No ocurre lo mismo para el P2, en el cual no existe efecto del genotipo sobre la ECC. De todas formas se mantiene la tendencia de los animales PP a una peor ECC.

19.2.3 Efecto del sexo

Poder evaluar el efecto del sexo sobre la ECC dependerá de poder afirmar (o no) que existe un consumo similar entre machos y hembras.

Según Díaz y Rodríguez (2002), González et al. (s/f), en la etapa de posdestete no existen diferencias de consumo entre machos castrados y hembras.

Ayerbe (2002) para el período de engorde, tampoco encontró diferencias de consumo entre machos castrados y hembras.

Sin embargo Abeledo et al. (2004) para el período de engorde, encontraron que los machos castrados tenían un consumo mayor que las hembras.

Haciendo la suposición de que no existieron diferencias en el consumo de concentrado entre machos y hembras, se calculó la ECC correspondiente.

Cuadro 10: Eficiencia de conversión del concentrado (BS) según sexo.

SEXO	ECC
Machos enteros	2,37/1
Hembras	2,35/1

No se encontraron diferencias para ECC entre machos enteros y hembras. Esto se encuentra estrechamente relacionado a que no se observaron diferencias en la GPD.

La bibliografía encontrada evalúa fundamentalmente el efecto sexo sobre la GPD, siendo escaso el material encontrado del efecto sexo sobre CC y ECC. Permingeat et al. (1985), evaluaron el efecto sexo sobre la ECC, pero en machos castrados hembras, y sin encontrar diferencias entre ambos.

19.3 CONSUMO DE PASTURA: EFECTO DEL PESO VIVO Y DEL GENOTIPO

El consumo de pastura mostró diferencias entre los diferentes períodos evaluados (p= 0,010), siendo mayor en P2, explicado por las diferencias de PV de los animales en cada uno (15,96 y 48,33kg para P1 y P2 respectivamente), con la consecuente diferencia en la capacidad gastrointestinal y de consumo (Rodríguez el al. citado por Battegazzore, 2006) que permite un aumento de la digestibilidad de la fibra conforme aumenta la edad del animal, si bien en esta categoría no es dable esperar un gran aumento (Faner, 2007).

Cuadro 11: Consumo de pastura promedio en P1 y P2 para los tres genotipos (kgMS/día).

GENOTIPO	CP1	CP2
PP	$0,097_a \pm 0,04$	$0,\!208_{\mathrm{b}} \pm 0,\!09$
HDP	$0,076_a \pm 0,06$	$0,207_{b}\pm0,13$
HLP	$0.087_a \pm 0.08$	$0,237_{b}\pm0,07$
PROMEDIO	$\textbf{0,087} \pm \textbf{0,05}$	$0,217 \pm 0,09$

Letras distintas indican diferencias significativas entre los tratamientos (p=0,05).

Si se compara el CP como % del PV, se observa que no tuvo grandes variaciones en los diferentes períodos, siendo de 0,58% del PV para P1 y 0,45% del PV para P2. Estos valores, como era de esperar, son inferiores a los encontrados por Battegazzore (2006) para el período de engorde de cerdos PP, en el cual observó que el consumo de pastura representaba un 1,4% para animales con una restricción del 30% del CMV y 2,5% del PV en aquellos cuando la restricción en la oferta de concentrado aumentó a 50% (animales PP en ambos casos).

El consumo de MS proveniente de la pastura fue en promedio 2,5 veces mayor en P2 que lo consumido en P1. La gráfica presentada a continuación muestra cómo a pesar de los distintos planos alimenticios (fundamentalmente diferentes niveles de restricción de

concentrado y cambios en las especies forrajeras) y condiciones de alojamiento, el consumo de pastura aumenta con la edad y peso del animal.

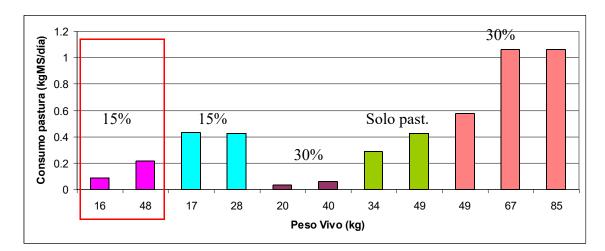


Figura 2: Comparación del consumo de pastura para diferentes ensayos.

El gráfico anterior fue elaborado en base a datos obtenidos por Arenare et al. (1997), Castro (2002), Garín et al. (2002), Battegazzore (2006) y el presente trabajo.

Las barras de igual color, pertenecen a un mismo ensayo pero a períodos de evaluación diferentes, siendo las barras internas al recuadro las correspondientes a este trabajo. El valor sobre las barras se refiere al % de restricción del concentrado. Salvo para el ensayo realizado por Castro (2002), en todos los ejemplos se observa la capacidad de aumento en el consumo de pastura con el PV.

Bauzá et al. (2005) encontraron una tendencia lineal con el tamaño corporal para consumo de pastura durante el período de recría-terminación, en animales alimentados con una cantidad fija de concentrado y 3hs de acceso a pasturas.

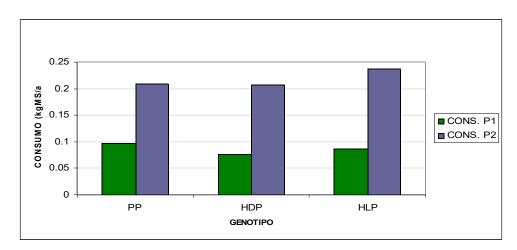


Figura 3: Consumo de pasturas según genotipo para los dos períodos (kgMS/día).

El consumo de pastura no mostró diferencias entre los genotipos, para ambos períodos de evaluación.

Se encontró escasa bibliografía que evalúe un posible efecto del genotipo en la capacidad de consumo de pastura, si bien existen datos de diferentes autores que estimaron consumo de forraje para distintas razas y categorías.

En los reportes encontrados en diferentes trabajos, se pueden observar grandes variaciones en el consumo. Hay que tener en cuenta que no todos fueron realizados a campo (en donde los animales tienen la posibilidad de consumir tanto forraje como deseen). De todas formas es necesario ajustar los métodos de estimación de consumo en esta categoría, lo que implica encontrar métodos de muestreo de pastura más exactos, que den mayor confianza en los valores encontrados, fundamentalmente para los ensayos trabajos realizados a campo, en donde es posible estimar el material desaparecido, pero es muy difícil conocer el valor real de consumo, teniendo en cuenta además las bajas tasas de consumo en función del peso vivo de los animales.

En confinamiento no sucede lo mismo, ya que se ofrece el material cortado y lo que desaparece es lo que realmente consumen los animales.

Si se comparan los valores de consumo de pastura de los ensayos realizados a campo frente a los realizados en confinamiento, estos últimos presentan valores más bajos, pudiendo deberse a que los valores de consumo a campo (a través de muestreo de pasturas) sean sobreestimados, a causa de material desaparecido que no necesariamente fue consumido, o a que el pastoreo directo estimule a los animales a un mayor consumo.

Otro factor que juega en contra de la exactitud en la estimación del consumo de forraje en pastoreo directo, es la dificultad para la estimación de la tasa de crecimiento real de la pastura, tarea que no fue posible para el presente trabajo por diversos motivos, siendo necesario utilizar valores teóricos para realizar los cálculos.

19.4 CONSUMO TOTAL DE MS: EFECTO DEL GENOTIPO Y DEL PESO VIVO

El consumo total de MS no mostró diferencias entre los tratamientos. El consumo para P2 fue mayor que para P1 (p = 0,0001), diferencia acentuada por el consumo de concentrado (altamente influido por el PV de los animales).

Cuadro 12: Consumo total de MS (kg/día) para los tres tratamientos en P1 y P2.

GENOTIPO	P1	P2
PP	$0,885 \pm 0,02$	$2,133 \pm 0,41$
HDP	$0,945 \pm 0,10$	$2,067 \pm 0,34$
HLP	$0,958 \pm 0,18$	$2,260 \pm 0,14$
PROMEDIO	0,929	2,153

Para ambos períodos, el porcentaje representado por cada componente de la dieta fue el mismo, siendo 10% para las pasturas y 90% para el concentrado. Estos valores muestran que el consumo total de MS fue menor al CMV, ya que para compensar la restricción del concentrado, las pasturas deberían haber representado al menos un 15% del consumo total de MS.

Estos resultados no coinciden con lo afirmado por Bauzá et al. (2005), quienes mencionan que animales sometidos a una restricción de concentrado y que disponen de pasturas a voluntad, aumentan el consumo total de MS, para compensar el menor aporte energético del forraje.

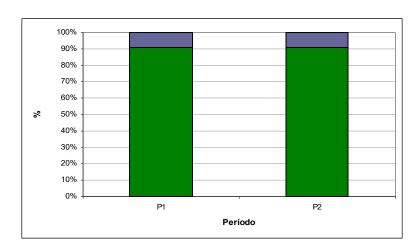


Figura 4: Consumo de pastura y concentrado como % del consumo total.

Es necesario continuar evaluando diferentes niveles de restricción de concentrado y oferta de pasturas en la etapa de posdestete-recría, para encontrar cual es la máxima sustitución posible de realizar sin afectar el comportamiento productivo de los animales, ya que a pesar de ser una categoría con bajo consumo de forraje y escaso aprovechamiento del mismo, la MS aportada por la pastura continúa siendo de menor costo que la aportada por los granos.

19.5 EFICIENCIA DE CONVERSIÓN DE LA DIETA

Cuadro 13: Eficiencia de conversión de la dieta (BS) según genotipo para P1 y P2.

	EC	
GENOTIPO	P1	P2
PP	2,99/1 _a	2,36/1
HDP	$2,56/1_{b}$	2,97/1
HLP	2,34/1 _b	3,24/1
PROMEDIO	2,63/1	3,19/1

Al evaluar la eficiencia de conversión de la dieta (concentrado + pastura), se observaron diferencias para P1 y P2 (p = 0,001), siendo los animales de mayor PV menos eficientes.

Se observó que existe efecto del tipo genético sobre el valor de conversión de la MS total en el P1, siendo los animales PP los menos eficientes. No ocurre lo mismo para el P2 ya que no se encontraron diferencias en la EC entre los genotipos.

Estos resultados se explican por la menor GPD que mostraron los PP y por la tendencia a mayor consumo de pastura durante el P1, lo que hizo acentuar las diferencias de EC de este tratamiento respecto a los animales HDP y HLP.

Estos resultados vuelven a confirmar la posibilidad de mejorar el comportamiento productivo de animales PP a través del cruzamiento (en este caso con Duroc o Large White).

19.6 UTILIZACIÓN DE LA PASTURA

19.6.1 Composición botánica de la pastura, rendimiento y tasa de crecimiento

A continuación se presenta un cuadro del % representado por las diferentes especies (como % en peso seco) para los dos períodos de consumo.

Cuadro 14: Composición de la pastura (% peso seco) al momento de ingreso y retiro de los animales a la franja de pastoreo.

	FRACCIÓN					
MOMENTO						Gramínea
	T.rojo	Achicoria	Otras leg.	Malezas	R. secos	S
INGRESO P1	10%	18%	2%	3%	23%	44%
RETIRO P1	8%	11%	0%	9%	28%	44%
INGRESO P2	13%	15%	1%	6%	14%	51%
RETIRO P2	14%	8%	0%	9%	23%	46%

El cuadro muestra el efecto del pastoreo sobre la composición de la pastura y la marcada presencia de las gramíneas (fundamentalmente raigrás) a lo largo del ensayo. Es importante destacar el alto % de raigrás al retiro de los animales (en P1 y P2), lo que muestra su bajo consumo para esta categoría (con una alta tasa de crecimiento durante los meses evaluados y pérdida de calidad por el encañado). Las gráficas a continuación representan la información del cuadro.

Figura 5: Composición botánica de la pastura (BS) al ingreso y retiro de los animales a la franja de pastoreo. PERÍODO 1.

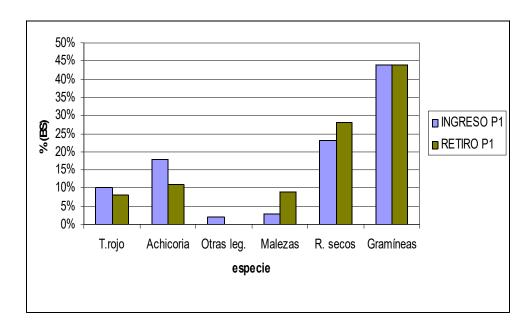
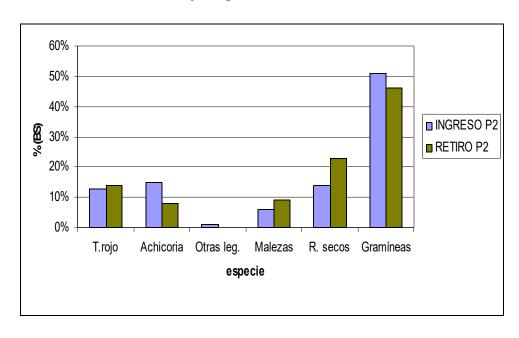



Figura 6: Composición botánica de la pastura (BS) al ingreso y retiro de los animales a la franja de pastoreo. PERÍODO 2.

Las gráficas anteriores dan una idea de las preferencias de los cerdos hacia los distintos componentes de una pastura, siendo la achicoria, la especie que mostró disminución en su % de ocupación en ambos períodos.

El porcentaje de utilización de la mezcla fue de 35% para el P1 y 57% para el P2, por lo que se reafirma que animales de mayor PV hacen una mayor utilización de la pastura. Barlocco et al. (2003), para cerdos en la etapa de terminación encontró un valor de utilización de una mezcla similar de 41,5%, sin embargo Battegazzore (2006) encontró un % de utilización de 23,7% y 28,1% de una pradera para animales en terminación.

Bauzá et al. (2005) encontró los siguientes valores de utilización para animales en recría: 45,32 para animales con 3hs de acceso a la pastura y 63,8% para animales con acceso a pastoreo permanente.

En cuanto a la tasa de crecimiento, fue necesario utilizar valores tomados de la bibliografía, ya que el método de estimación a través de la utilización de jaulas de exclusión no aportó datos coherentes. El principal problema fue desplazamiento de las mismas y pérdida de MS en el interior provocado por los lechones, fundamentalmente durante los primeros días de ensayo. Por lo tanto se puede concluir que no fue el mecanismo correcto para la determinación de tasas de crecimiento al menos en estas condiciones.

Según Battegazzore (2006) a partir de datos obtenidos de bibliografía (Leborgne s/f, Fodere et al. 2000), una pastura mezcla de achicoria, trébol rojo, trébol blanco y raigrás tendría una producción anual de 9000kg de MS/ha.

Los animales ingresaron a las franjas de pastoreo con un promedio de 1557kg de MS/ha en el primer período y de 2896kg de MS/ha para el segundo período de evaluación de consumo de pastura.

El promedio de días de pastoreo en las franjas (300m^2) fue de 23 días \pm 9 para el P1 y 25 días \pm 9 para el P2. Es importante resaltar que durante todo el ensayo los animales tuvieron acceso permanente a la pastura, incluso frente a condiciones climáticas en las que se debería haber restringido el acceso. También hay que considerar que los animales no fueron anillados, por lo que se observaron varios casos en que la pastura fue ozada, provocando grandes daños a la misma.

19.6.2 <u>Utilización de las distintas especies y selectividad</u>

Para tener una aproximación de la utilización de las especies que componen la pastura se calculó el % de utilización como la relación entre el desaparecido y el ofrecido (en BS).

Cuadro 15: % de utilización para trébol rojo, achicoria y gramíneas para P1 y P2.

PERÍOD O	T.rojo	Achicoria	Gramínea s
P1	17%	48%	-28%
P2	38%	68%	46%

Según los datos, existe una alta selectividad por parte del cerdo sobre algunas especies, en este caso sobre la achicoria.

El cuadro anterior muestra un comportamiento diferencial de los animales en el P1 y en el P2 respecto a la utilización de gramíneas. Según los % anteriores se podría concluir que los animales de menor PV son más selectivos y que hacen un menor aprovechamiento de todas las fracciones en general.

Es necesario considerar que para el cálculo de estos valores no se tuvo en cuenta la tasa de crecimiento de las diferentes especies (como si se hizo para calcular el % de utilización de la mezcla, 35 y 57% para P1 y P2 respectivamente).

Exceptuando el % de utilización del raigrás en el P2, en general los valores obtenidos coinciden con la bibliografía, en donde la achicoria se presenta como la especie de mayor preferencia por los cerdos en este tipo de mezclas, mientras que el raigrás siempre muestra un fuerte rechazo, fundamentalmente cuando comienza su pasaje de estado vegetativo a reproductivo y pierde calidad.

En este sentido, Barlocco et al. (2003) encontró porcentajes de utilización de 96,3, 64,7, 4,3 y 41,5% para achicoria, trébol rojo, raigrás y la mezcla para animales en terminación en condiciones de pastoreo permanente.

Según Barlocco (2005), en octubre el raigrás comienza a encañar y presenta fuerte rechazo a ser consumido, por lo que si no se manejan cortes de limpieza y/o pastoreo con otras especies, semilla y aparece en la mezcla en el año siguiente.

Las gráficas presentadas a continuación muestran una aproximación al efecto de la composición botánica sobre el consumo total de pastura, en este caso para el P1, en el cual el efecto es mayor por tratarse de animales más selectivos según los datos presentados anteriormente.

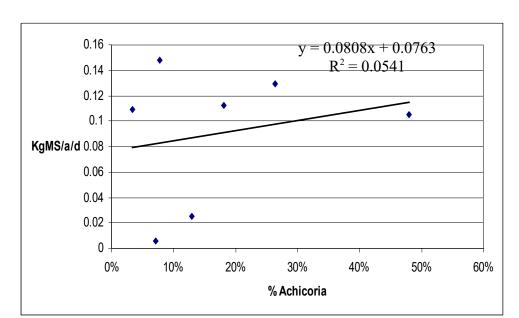
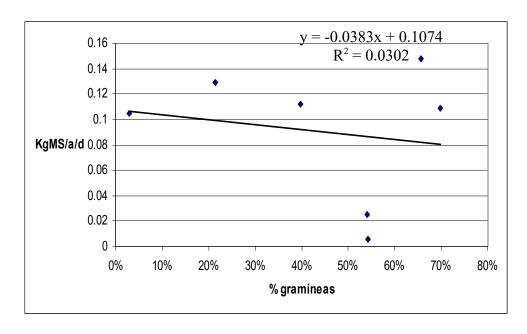



Figura 7: Consumo de pastura (BS) según % de ocupación de achicoria.

Figura 8: Consumo de pastura (BS) según % de ocupación de raigrás.

Según lo observado en las gráficas, la composición botánica de la pastura estaría afectando el consumo de la misma. Para el caso de la achicoria, especie que es apetecida por los cerdos, su presencia estimula el consumo, mientras que en el caso del raigrás ocurre lo contrario. Estos resultados deben ser considerados a la hora de planificar las especies utilizadas en la alimentación de cerdos, fundamentalmente en animales de bajo PV. Probablemente el efecto de la presencia de una u otra especie no sea tan acentuado durante el P2, o con animales de mayor PV, por su menor selectividad.

Si bien se observan tendencias de consumo en función de la composición, estos valores son relativos y es necesario continuar con este tipo de ensayos, que evalúen con mayor precisión tanto el consumo como la utilización de las diferentes especies forrajeras, para las distintas categorías y épocas del año (que influye en la calidad de la pastura).

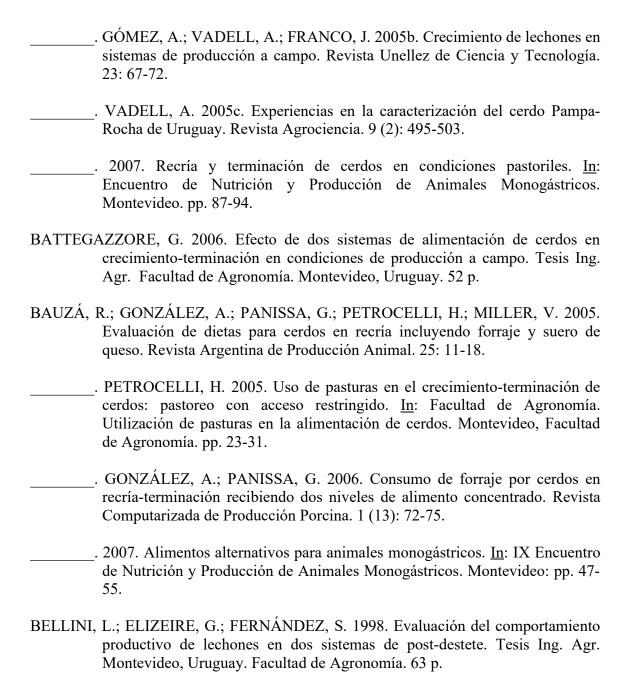
20 CONCLUSIONES

- 21 El comportamiento productivo de la raza Pampa Rocha puede ser mejorado a través de su cruzamiento con las razas Duroc y Large White.
- 22 Si bien para algunos parámetros evaluados, los tres genotipos muestran un comportamiento similar, las tendencias encontradas permiten lograr una mejora de las variables de interés con la utilización de los cruzamientos.
- 23 Existe consumo de pastura durante la etapa de posdestete-recría, sin embargo es necesario mejorar las técnicas de estimación de consumo, fundamentalmente para este tipo de ensayos realizados con animales a campo.
- 24 Las tendencias observadas en cuanto a la variación del consumo de pasturas en función de la composición botánica, plantean la importancia de continuar estudiando la preferencia de esta categoría hacia determinadas especies forrajeras.
- 25 Teniendo en cuenta el elevado costo de la ración balanceada y el constante esfuerzo de los productores por sustituirla por alimentos alternativos, es interesante continuar este tipo de evaluaciones en sistemas de alimentación que puedan considerar otros tipos de alimentos de menor costo.
- 26 Para poder continuar con la evaluación del comportamiento productivo de la raza Pampa Rocha, es necesario mantenerla en pureza racial, lo cual resalta la importancia que tiene hoy en día el rodeo de la Unidad de Producción de Cerdos, frente a las dificultades que se presentan en los intentos por conseguir este tipo de animales puros, incluso en su zona de origen.

27 <u>RESUMEN</u>

El presente trabajo se llevó a cabo durante el período mayo-noviembre de 2006 en la Unidad de Producción de Cerdos (UPC) del Centro Regional Sur de la Facultad de Agronomía (Juanicó, departamento de Canelones). Se utilizaron 72 lechones (36 hembras y 36 machos enteros), a partir del destete (46 días \pm 3; 10.7kg \pm 1.6) y hasta los 134 ± 17 días de vida (57kg ± 13), distribuidos en tres tratamientos definidos por el tipo genético: T1 Pampa Rocha (PP), T2 PP x Duroc (HDP) y T3 PP x Large White (HLP). Los animales fueron alimentados con concentrado (con una restricción del 15% del consumo máximo voluntario) y acceso permanente a pasturas (pradera de 2º año). Fueron alojados en franjas de pastoreo de 300m², disponiendo de una paridera de campo tipo Rocha, bebederos automáticos y comederos tipo batea. Se evaluó el efecto del genotipo, peso vivo y sexo (según corresponda) para: ganancia de peso diaria (GPD), consumo de concentrado (CC), eficiencia de conversión del concentrado (ECC), consumo de pastura (CP), consumo de materia seca total (CT) y eficiencia de conversión de la dieta (ECT), siendo estos tres últimos parámetros evaluados en dos períodos, P1 (15,96kg de PV promedio) y P2 (48,33kg de PV promedio). Los animales HLP mostraron una GPD mayor que los animales PP (p = 0.005) y que los HDP (p = 0.023), no existiendo diferencias entre PP y HDP. Los valores de GPD fueron 0,428, 0,436 y 0,477kg/día para PP, HDP v HLP respectivamente. No se encontraron diferencias entre genotipos para CC, encontrándose un promedio de 1,067kgMS/día para los tres tratamientos. La ECC mostró diferencias entre P1 y P2 (2,38/1 vs. 2,87/1 respectivamente, p = 0,002), mientras que el efecto del tipo genético se observó solamente para el P1, no siendo así para el P2 y el período global. Los valores de ECC para PP, HDP y HLP fueron los siguientes: 2,66/1, 2,36/1 y 2,12/1 para P1; 3,03/1, 2,68/1 y 2,90/1 para P2 y 2,45/1, 2,35/1 y 2,28/1 para el período global. El CP fue mayor para el P2 (0.217 kgMS/dia) que para P1 (0.087 kgMS/dia), p = 0.010), no encontrándose efecto del genotipo en ningún período. Los valores de CP para PP, HDP y HLP fueron los siguientes: 0,097, 0,076 y 0,087kg/día para P1 y 0,208, 0,207 y 0,237kg/día para P2. El CT mostró el mismo comportamiento que para CP, siendo los valores 0,085, 0,945 y 0,958kgMS/día para P1 y 2,133, 2,067 y 2,260kgMS/día para P2, para PP, HDP y HLP respectivamente. La EC mostró diferencias entre P1 (2,63/1) y P2 (3,19/1, p = 0,001), observándose diferencias entre genotipos solamente en el P1 en el que los animales PP tuvieron peor EC (2,99/1) que el resto de los tratamientos (2,56/1 y 2,34/1 para HDP y HLP respectivamente). No se observó efecto sexo para ninguno de los parámetros evaluados (GPD, ECC y CC). Si bien las diferencias no son significativas, existe una tendencia a la mejora del comportamiento productivo de los animales cruza respecto a los PP. Se demostró también, que a pesar de tratarse de una categoría chica, existe consumo de pastura y una restricción de concentrado del 15% no afecta el comportamiento productivo y permite reducir los costos de alimentación.

Palabras claves: cruzamientos, posdestete, producción a campo.


28 SUMMARY

This experiment was conduced in the Pigs Production Unit (UPC), in the College of Agriculture, during may to november (2006). 72 pigs were utilized (36 females and 36 non-castrated males), and animals were evaluated since weaning (46 days \pm 3; 10.7kg \pm 1.6) to 134 ± 17 days of life (57kg ± 13). Treatments were defined as genotype: T1 Pampa Rocha (PP), T2 PP x Duroc (HDP) and T3 PP x Large White (HLP). Animals were fed with concentrated food (15% restriction) and permanent access to cultivated pastures and were accommodated in a shelter on pricks of 300m². Race, live weight and sex effects were evaluated. Variables studied were: daily weight gain (GPD), concentrated food intake (CC), concentrated food conversion (ECC), pasture intake (CP), total dry matter intake (CT) and diet conversion (ECT). CP, CT and ECT was studied in P1 (15,96kg average) and the P2 (48,33kg average). GPD of HLP animals was greater than PP (p = 0,005) and HDP (p = 0,023). GPD values was 0,428, 0,436 y 0,477kg/day to PP, HDP and HLP respectively. CC found values were equal for treatments, and average was 1,067kgDM/day. ECC was different between P1 and P2 (2,38/1 vs. 2,87/1 respectively, p = 0,002) and genetic effect was observed in P1, but not observed in P2 and global period. ECC values for PP, HDP y HLP genotypes were: 2,66/1, 2,36/1 and 2,12/1 to P1; 3,03/1, 2,68/1 and 2,90/1 to P2 and 2,45/1, 2,35/1 and 2,28/1 to global period. CP were higher to P2 (0,217kgDM/day) than to P1 (0.087 kgDM/day, p = 0.010); genotype effect not was found for any period. CP values for PP, HDP and HLP: 0,097, 0,076 and 0,087kg/day for P1 and 0,208, 0,207 and 0,237kg/day for P2. CT showed the same behavior than CP, and the values were: 0,085, 0,945 and 0,958kgDM/day for P1 and 2,133, 2,067 and 2,260kgDM/day for P2, for PP, HDP and HLP respectively. EC was different between P1 (2,63/1) and P2 (3,19/1, p = 0,001), and differences were observed between genotypes in P1. In this period PP animals showed worse EC (2,99/1) than other treatments (2,56/1 and 2,34/1 to HDP and HLP respectively). There was no sex effect for any parameters (GPD, ECC and CC). Although the differences were not significant, there is a tendency to improve the productive performance in crossbred animals. Also showed that consumption of pasture there for this category and that a restriction of concentrate of 15% does not affect the productive performance and can reduce feed costs.

Keywords: crossbreeding, post-weaning period, outdoor production.

29 <u>BIBLIOGRAFÍA</u>

- ACHE, J.; ARAGÓN, C; FUREST, J; LORENZO, D. 1984. Sustitución de ración por pastura en cerdos para el mercado. Tesis de Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 82 p.
- AMAYA, R. 1992. Efecto del acceso a pasturas sobre la performance de lechones en post-destete. Tesis de Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 102 p.
- ARENARE, L.; COUTO, P.; MAURI, P. 1997. Determinación del consumo de alfalfa cortada por cerdos de diferentes categorías. Tesis Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 83 p.
- AZZARINI, A.; ESTEVES, R.; RUIZ, M. 1973. Influencia del pastoreo en la economía de los concentrados en la preparación de los cerdos para el mercado. <u>In</u>: Congreso Nacional de Producción Animal. Paysandú. pp. A4/1-A4/12.
- BARLOCCO, N.; GÓMEZ, A.; VADELL, A.; FRANCO, J. 1999. Crecimiento de lechones en sistemas de producción a campo. (en línea). Montevideo. Facultad de Agronomía. 5 p. Consultado 6 jun. 2009. Disponible en http://www.fagro.edu.uy/~suinos/biblioteca/prod_cerdos_a_campo/PCAC-Barlocco%20-%20Crecim%20de%20lechones%20en%20sist%20de%20prod %20a%20campo.pdf
- . VADELL, A.; FRANCO, J. 2000. Comportamiento en el engorde de cerdos Pampa y sus cruzas con Duroc y Large White. <u>In</u>: Reunión Latinoamericana de Producción Animal (16a.). Congreso Uruguayo de Producción Animal (3°., 2000, Montevideo, Uruguay). Montevideo, Facultad de Agronomía. s.p. Consultado 15 set. 2009. Disponible en http://www.fagro.edu.uy/~suinos/biblio_cont_compprod.html
- BATTEGAZZORE, G.; GÓMEZ, A.; VADELL, A. 2003. Efecto del suministro restringido de concentrado y acceso permanente a pasturas cultivadas en cerdos en crecimiento-engorde. 1. Efecto sobre el comportamiento productivo. Revista Argentina de Producción Animal. 3 (1): 295-296.
- ______. 2005a. Alimentación de cerdos en crecimiento y engorde en pastoreo permanente. <u>In</u>: Facultad de Agronomía. Utilización de pasturas en la alimentación de cerdos. Montevideo, Facultad de Agronomía. pp. 15-22.

BRAUN, R.; CERVELLINI, J.; MUÑOZ, V. 2007. Causas que afectan la edad para alcanzar el peso de faena de cerdos alojados al aire libre. <u>In</u>: Congreso de la Asociación Latinoamericana de Producción Animal (20°., Cusco, Perú). Consultado 10 may. 2009. Disponible en http://www.produccion-

animal.com.ar/produccion porcina/90-Braun-Cerdos aire libre.pdf

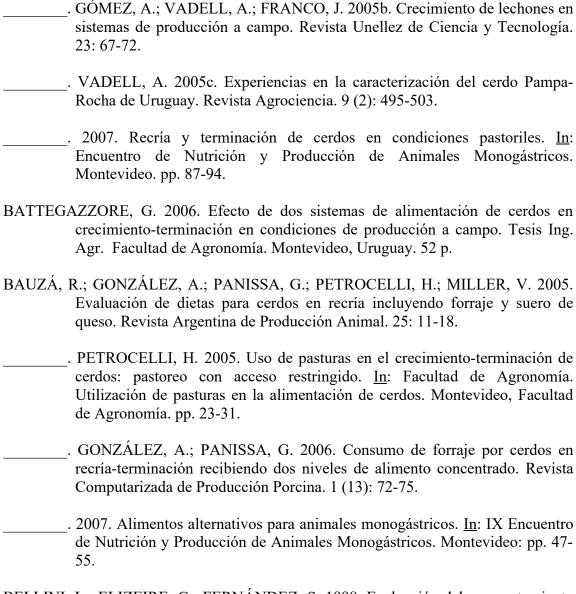
- CASAMAYOU, A. 1981. Las pasturas en la producción porcina. Revista de la Asociación de Ingenieros Agrónomos del Uruguay. 19: 48 p.
- CASTRO, F. 2002. Evaluación de dos sistemas de post-destete recría para lechones destetados a los 42 días. Tesis Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 164 p.
- CASTRO, G. 2007. Situación de los recursos genéticos porcinos locales en Uruguay. Archivos de Zootecnia. 1 (56): 783-788.
- CORENGIA, C.; DE IZAGUIRRE, R.; BOVÉ, G.; COLUCCI, P.; D'ALESSANDRO, J.; PORTELA, A. 1973. Estudio del uso del pastoreo en cerdos en crecimiento y su complementación. <u>In</u>: Congreso Nacional de Producción Animal. Paysandú.
- CUARÓN, J.; ROBLES, A.; SHIMADA, A. 1979. Estudios sobre dos sistemas de restricción alimenticia en cerdos para abasto. Pág. 31.
- DA SILVA, S.; LOPES, J.; MIRANDA, R.; SUARES, A.; KILL, J. 2000. Niveles de energía digestible para lechonas sometidas a ambiente de alta temperatura. Archivos Latinoamericanos de Producción Animal. 8 (1): 13-17.
- DÍAZ, S. 2008. Sistemas de producción de cerdos, estudio para mejorar la articulación entre la oferta y la demanda por tecnologías para la cría de cerdos. Tesis Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 79 p.
- DREWRY, K. 1981. Postweaning Performance of Crossbred Pigs Fed Normal and High Fiber Diets. Journal of animal science. 52: 197-209.
- ECHEVARRIA, A.; PARSI, J.; RINAUDO, P. 1985. Evaluación de dos sistemas de producción para cerdos en crecimiento: a campo con pasturas y en confinamiento. Revista Argentina de Producción Animal. 5 (5-6): 331-343.
- ESPASANDÍN, A.; URIOSTE, J. 2005. Sostenibilidad de los recursos genéticos para producción de carne vacuna en pastoreo: considerando la interacción entre genotipos y ambientes. Revista Agrociencia. 9 (1 y 2): 569-578.
- FANER, C. 2001. Utilización de la pastura en la alimentación porcina: una experiencia. (en línea). <u>In</u>: Fericerdo. Resúmenes de charlas técnicas y conferencias. Marcos Juárez. s.p. Consultado 6 jun. 2009. Disponible en http://www.sian.info.ve/porcinos/eventos/fericerdo2001/faner.htm

- _____. 2007. La pastura de alfalfa como fuente de alimentación para cerdos en crecimiento-terminación. (en línea). Boletín AACP. pp. 1-6. Consultado 12 jun. 2009. Disponible en
 - http://www.produccion-animal.com.ar/produccion_porcina/72-alfalfa.pdf
- FEIPPE, A.; MONDELLI, M.; RUIZ DE FACTILLI, I. 1982. Utilización de pasturas en la alimentación de cerdas en gestación. Investigaciones Agronómicas. 3 (1): 5-8.
- GARÍN, D.; VADELL, A.; BARLOCCO, N.; MARTÍNEZ, M. 2002. Ingestión de forraje fresco por cerdos Pampa Rocha en la fase de recría. <u>In</u>: Simposio Iberoamericano sobre la conservación de los recursos zoogenéticos locales y el desarrollo rural sostenible. Montevideo.
- HEIN, A. 1994. Genotypes for outdoor production. Pig News and Information. 15 (4): 129-130.
- IHLENFELD, J. 1994. Utilización de pasturas en producción porcina. Revista Plan Agropecuario. 66: 21-24.
- IRGANG, R.; DE SOUZA, J.; CARDOSO, S., PAIVA, J. 1992. Desempenho de suínos mestiços criados em confinamento e a campo. Revista Sociedad Brasilera de Zootecnia. pp. 719-729.
- LAGRECCA, L.; MAROTTA, E. 2002. Comportamiento alimenticio de la cerda a pastoreo. <u>In</u>: Alternativas tecnológicas para la crisis del sector porcino. Marcos Juárez. s.p. Consultado 6 jun. 2009. Disponible en http://www.sian.info.ve/porcinos/publicaciones/gidesporc/seminario/lagreca.htm
- LIZASO, J. 1995. Formulación de piensos para lechones en España: II. Factores que influyen en el consumo del pienso. <u>In</u>: Curso de Especialización FEDNA. Barcelona.
- LUDKE, J.; BERTOL, T.; SCHEUERMANN, G. 1998. Producao, manejo e saúde do rebanho; Manejo da alimentação. <u>In</u>: EMBRAPA. Suinocultura intensiva. Brasilia. pp. 65-90.
- MAGOFKE, J.; GARCÍA, X. 2002. Uso del cruzamiento entre razas para mejorar la productividad en animales I. Circular de Extensión Técnico Ganadera. 28: 36-43.

- MAROTTA, E. 1999. Pastoreo racional con porcinos. Una herramienta estratégica. (en línea). <u>In</u>: Fericerdo. Marcos Juárez. s.p. Consultado 15 may. 2009. Disponible en http://www.sian.info.ve/porcinos/eventos/fericerdo/marotta.htm
- MOLITERNO, E. 1997. Principios y usos de un método de doble muestreo. Estimación visual de la disponibilidad de forraje en pasturas. Cangüe. no. 9: 32-36.
- PENZ, A.; SPILLARI, E. 1998. Suinocultura intensiva. Producao, manejo e saúde do rebanho; Nutrição. <u>In</u>: EMBRAPA. Suinocultura intensiva. Brasilia. pp. 46-63.
- PERMINGEAT, O.; BERTOSSI, O.; ANGIULLI, A.; PICARDI, L. 1985. Recría de cerdos sobre pasturas con la adición de maíz y balanceados. Revista Argentina de Producción Animal. 5(12): 663-667.
- PETROCELLI, H.; MOSCO, M.; DOMÍNGUEZ, G. 1979. Sustitución de concentrados por pasturas en la cría de cerdos (30 a 70kg de peso vivo). Tesis Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 66 p.
- PINHEIRO, L. 1973. Los cerdos. Buenos Aires, Hemisferio Sur. 528 p.
- SPINER, N.; CAMINOTTI, S.; BRUNORI, J.; PERETTI, M.; LEGASA, A. 1990. Comportamiento de cerdos en pastoreo sometidos a distintos niveles de restricción de alimentos concentrados. INTA. Serie Producción Animal. Informe especial no. 44. s.p.
- URIOSTE, J.; VADELL, A.; BARLOCCO, N. 2002. El cerdo Pampa Rocha como recurso zoogenético en Uruguay. Aspectos generales. <u>In</u>: Simposio Iberoamericano sobre la conservación de los recursos zoogenéticos locales y el desarrollo rural sostenible. Montevideo.
- URUGUAY. MINISTERIO DE GANADERÍA, AGRICULTURA Y PESCA. DIRECCIÓN DE INVESTIGACIONES ECONÓMICAS AGROPECUARIAS. 2000. Censo General Agropecuario. Vol. II. (en línea). Montevideo. Consultado 7 set. 2009. Disponible en http://www.mgap.gub.uy/portal/hgxpp001.aspx? 7,5,82,O,S,0,MNU;E;28;3;MNU;

•	 2006. Encuesta	Porcina. N	Iontevideo. 7	71 p.
				_

		2008.	Anuario	de	precios.
	http://www.mgap.gub.uy/portal/hgxp	p001.aspx ^c	?		_
	7,5,56,O,S,0,MNU;E;2;16;10;2;MNU	J;			
		2009.	Boletín	de	precios.
	http://www.mgap.gub.uy/portal/hgxp	p001.aspx	?		-
	7,5,56,O,S,0,MNU;E;2;16;10;2;MNU	J;			
VADELL,	, A. 1999. Producción de cerdos a cam	po en un s	istema de mi	nimos o	costos. <u>In</u> :
	Encuentro de Nutrición y Producción	de Anima	les Monogás	tricos. N	Maracay.
	. 2004. La producción de cerdos al air	e libre en	Uruguay. Sis	stemas i	ntegrados
	con producción de no rumiantes. <u>In</u> : I	Expoferia I	Porcina. pp. 4	1-12.	
	,				,
VIEIRA,	A.; DA FONSECA, R.; ARAÚJO, J.;				
	DE ALMEIDA, R.; FREDERICO, F	R. 2002. Es	studo da div	ergência	ı genética
	entre as raças suínas Duroc, Landrac	e e Large	White, utiliz	zando té	cnicas de
	análise multivariada. Archivos Latin	oamerican	os de Produc	cción A	nimal. 10
	(2): 81-55.				


VINCENZI, M. 1996. Implantação, tipos e manejo da cobertura vegetal em "Sistema

de Suinos Criados ao Ar Livre. Concordia. pp. 43-57.

intensivo de suinos criados ao ar livre". <u>In</u>: Simposio sobre Sistema Intensivo

1 <u>BIBLIOGRAFÍA</u>

- ACHE, J.; ARAGÓN, C; FUREST, J; LORENZO, D. 1984. Sustitución de ración por pastura en cerdos para el mercado. Tesis de Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 82 p.
- AMAYA, R. 1992. Efecto del acceso a pasturas sobre la performance de lechones en post-destete. Tesis de Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 102 p.
- ARENARE, L.; COUTO, P.; MAURI, P. 1997. Determinación del consumo de alfalfa cortada por cerdos de diferentes categorías. Tesis Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 83 p.
- AZZARINI, A.; ESTEVES, R.; RUIZ, M. 1973. Influencia del pastoreo en la economía de los concentrados en la preparación de los cerdos para el mercado. <u>In</u>: Congreso Nacional de Producción Animal. Paysandú. pp. A4/1-A4/12.
- BARLOCCO, N.; GÓMEZ, A.; VADELL, A.; FRANCO, J. 1999. Crecimiento de lechones en sistemas de producción a campo. (en línea). Montevideo. Facultad de Agronomía. 5 p. Consultado 6 jun. 2009. Disponible en http://www.fagro.edu.uy/~suinos/biblioteca/prod_cerdos_a_campo/PCAC-Barlocco%20-%20Crecim%20de%20lechones%20en%20sist%20de%20prod %20a%20campo.pdf
- . VADELL, A.; FRANCO, J. 2000. Comportamiento en el engorde de cerdos Pampa y sus cruzas con Duroc y Large White. <u>In</u>: Reunión Latinoamericana de Producción Animal (16a.). Congreso Uruguayo de Producción Animal (3°., 2000, Montevideo, Uruguay). Montevideo, Facultad de Agronomía. s.p. Consultado 15 set. 2009. Disponible en http://www.fagro.edu.uy/~suinos/biblio_cont_compprod.html
- ______. BATTEGAZZORE, G.; GÓMEZ, A.; VADELL, A. 2003. Efecto del suministro restringido de concentrado y acceso permanente a pasturas cultivadas en cerdos en crecimiento-engorde. 1. Efecto sobre el comportamiento productivo. Revista Argentina de Producción Animal. 3 (1): 295-296.
- ______. 2005a. Alimentación de cerdos en crecimiento y engorde en pastoreo permanente. <u>In</u>: Facultad de Agronomía. Utilización de pasturas en la alimentación de cerdos. Montevideo, Facultad de Agronomía. pp. 15-22.

- BELLINI, L.; ELIZEIRE, G.; FERNÁNDEZ, S. 1998. Evaluación del comportamiento productivo de lechones en dos sistemas de post-destete. Tesis Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 63 p.
- BRAUN, R.; CERVELLINI, J.; MUÑOZ, V. 2007. Causas que afectan la edad para alcanzar el peso de faena de cerdos alojados al aire libre. <u>In</u>: Congreso de la Asociación Latinoamericana de Producción Animal (20°., Cusco, Perú). Consultado 10 may. 2009. Disponible en http://www.produccion-animal.com.ar/produccion-porcina/90-Braun-Cerdos_aire_libre.pdf

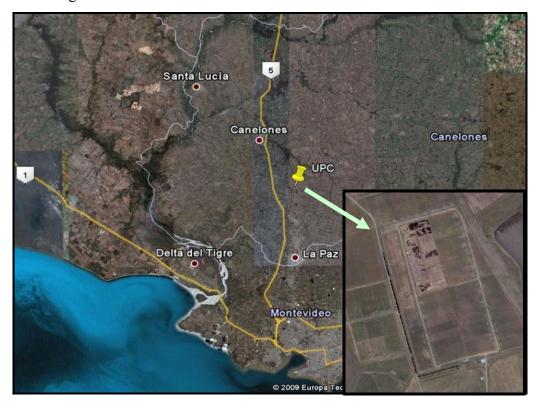
- CASAMAYOU, A. 1981. Las pasturas en la producción porcina. Revista de la Asociación de Ingenieros Agrónomos del Uruguay. 19: 48 p.
- CASTRO, F. 2002. Evaluación de dos sistemas de post-destete recría para lechones destetados a los 42 días. Tesis Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 164 p.
- CASTRO, G. 2007. Situación de los recursos genéticos porcinos locales en Uruguay. Archivos de Zootecnia. 1 (56): 783-788.
- CORENGIA, C.; DE IZAGUIRRE, R.; BOVÉ, G.; COLUCCI, P.; D'ALESSANDRO, J.; PORTELA, A. 1973. Estudio del uso del pastoreo en cerdos en crecimiento y su complementación. <u>In</u>: Congreso Nacional de Producción Animal. Paysandú.
- CUARÓN, J.; ROBLES, A.; SHIMADA, A. 1979. Estudios sobre dos sistemas de restricción alimenticia en cerdos para abasto. Pág. 31.
- DA SILVA, S.; LOPES, J.; MIRANDA, R.; SUARES, A.; KILL, J. 2000. Niveles de energía digestible para lechonas sometidas a ambiente de alta temperatura. Archivos Latinoamericanos de Producción Animal. 8 (1): 13-17.
- DÍAZ, S. 2008. Sistemas de producción de cerdos, estudio para mejorar la articulación entre la oferta y la demanda por tecnologías para la cría de cerdos. Tesis Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 79 p.
- DREWRY, K. 1981. Postweaning Performance of Crossbred Pigs Fed Normal and High Fiber Diets. Journal of animal science. 52: 197-209.
- ECHEVARRIA, A.; PARSI, J.; RINAUDO, P. 1985. Evaluación de dos sistemas de producción para cerdos en crecimiento: a campo con pasturas y en confinamiento. Revista Argentina de Producción Animal. 5 (5-6): 331-343.
- ESPASANDÍN, A.; URIOSTE, J. 2005. Sostenibilidad de los recursos genéticos para producción de carne vacuna en pastoreo: considerando la interacción entre genotipos y ambientes. Revista Agrociencia. 9 (1 y 2): 569-578.
- FANER, C. 2001. Utilización de la pastura en la alimentación porcina: una experiencia. (en línea). <u>In</u>: Fericerdo. Resúmenes de charlas técnicas y conferencias. Marcos Juárez. s.p. Consultado 6 jun. 2009. Disponible en http://www.sian.info.ve/porcinos/eventos/fericerdo2001/faner.htm

- . 2007. La pastura de alfalfa como fuente de alimentación para cerdos en crecimiento-terminación. (en línea). Boletín AACP. pp. 1-6. Consultado 12 jun. 2009. Disponible en http://www.produccion-animal.com.ar/produccion_porcina/72-alfalfa.pdf
- FEIPPE, A.; MONDELLI, M.; RUIZ DE FACTILLI, I. 1982. Utilización de pasturas en la alimentación de cerdas en gestación. Investigaciones Agronómicas. 3 (1): 5-8.
- GARÍN, D.; VADELL, A.; BARLOCCO, N.; MARTÍNEZ, M. 2002. Ingestión de forraje fresco por cerdos Pampa Rocha en la fase de recría. <u>In</u>: Simposio Iberoamericano sobre la conservación de los recursos zoogenéticos locales y el desarrollo rural sostenible. Montevideo.
- HEIN, A. 1994. Genotypes for outdoor production. Pig News and Information. 15 (4): 129-130.
- IHLENFELD, J. 1994. Utilización de pasturas en producción porcina. Revista Plan Agropecuario. 66: 21-24.
- IRGANG, R.; DE SOUZA, J.; CARDOSO, S., PAIVA, J. 1992. Desempenho de suínos mestiços criados em confinamento e a campo. Revista Sociedad Brasilera de Zootecnia. pp. 719-729.
- LAGRECCA, L.; MAROTTA, E. 2002. Comportamiento alimenticio de la cerda a pastoreo. <u>In</u>: Alternativas tecnológicas para la crisis del sector porcino. Marcos Juárez. s.p. Consultado 6 jun. 2009. Disponible en http://www.sian.info.ve/porcinos/publicaciones/gidesporc/seminario/lagreca.htm
- LIZASO, J. 1995. Formulación de piensos para lechones en España: II. Factores que influyen en el consumo del pienso. <u>In</u>: Curso de Especialización FEDNA. Barcelona.
- LUDKE, J.; BERTOL, T.; SCHEUERMANN, G. 1998. Producao, manejo e saúde do rebanho; Manejo da alimentação. <u>In</u>: EMBRAPA. Suinocultura intensiva. Brasilia. pp. 65-90.
- MAGOFKE, J.; GARCÍA, X. 2002. Uso del cruzamiento entre razas para mejorar la productividad en animales I. Circular de Extensión Técnico Ganadera. 28: 36-43.

- MAROTTA, E. 1999. Pastoreo racional con porcinos. Una herramienta estratégica. (en línea). <u>In</u>: Fericerdo. Marcos Juárez. s.p. Consultado 15 may. 2009. Disponible en http://www.sian.info.ve/porcinos/eventos/fericerdo/marotta.htm
- MOLITERNO, E. 1997. Principios y usos de un método de doble muestreo. Estimación visual de la disponibilidad de forraje en pasturas. Cangüe. no. 9: 32-36.
- PENZ, A.; SPILLARI, E. 1998. Suinocultura intensiva. Producao, manejo e saúde do rebanho; Nutrição. <u>In</u>: EMBRAPA. Suinocultura intensiva. Brasilia. pp. 46-63.
- PERMINGEAT, O.; BERTOSSI, O.; ANGIULLI, A.; PICARDI, L. 1985. Recría de cerdos sobre pasturas con la adición de maíz y balanceados. Revista Argentina de Producción Animal. 5(12): 663-667.
- PETROCELLI, H.; MOSCO, M.; DOMÍNGUEZ, G. 1979. Sustitución de concentrados por pasturas en la cría de cerdos (30 a 70kg de peso vivo). Tesis Ing. Agr. Montevideo, Uruguay. Facultad de Agronomía. 66 p.
- PINHEIRO, L. 1973. Los cerdos. Buenos Aires, Hemisferio Sur. 528 p.
- SPINER, N.; CAMINOTTI, S.; BRUNORI, J.; PERETTI, M.; LEGASA, A. 1990. Comportamiento de cerdos en pastoreo sometidos a distintos niveles de restricción de alimentos concentrados. INTA. Serie Producción Animal. Informe especial no. 44. s.p.
- URIOSTE, J.; VADELL, A.; BARLOCCO, N. 2002. El cerdo Pampa Rocha como recurso zoogenético en Uruguay. Aspectos generales. <u>In</u>: Simposio Iberoamericano sobre la conservación de los recursos zoogenéticos locales y el desarrollo rural sostenible. Montevideo.
- URUGUAY. MINISTERIO DE GANADERÍA, AGRICULTURA Y PESCA. DIRECCIÓN DE INVESTIGACIONES ECONÓMICAS AGROPECUARIAS. 2000. Censo General Agropecuario. Vol. II. (en línea). Montevideo. Consultado 7 set. 2009. Disponible en http://www.mgap.gub.uy/portal/hgxpp001.aspx? 7,5,82,O,S,0,MNU;E;28;3;MNU;

•	 2006. Encuesta	Porcina. N	Iontevideo. 7	71 p.
				_

VINCENZI, M. 1996. Implantação, tipos e manejo da cobertura vegetal em "Sistema

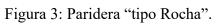

de Suinos Criados ao Ar Livre. Concordia. pp. 43-57.

intensivo de suinos criados ao ar livre". In: Simposio sobre Sistema Intensivo

1 <u>ANEXOS</u>

UBICACIÓN

Figura 1: Vista aérea de la Unidad de Producción de Cerdos.



Ubicación de la UPC. Foto aérea. Google Earth.

Figura 2: Vista panorámica de la UPC.

INSTALACIONES



Figura 4: Cerdos en franja de pastoreo.

ALIMENTACIÓN

Cuadro 1: Consumo (ración y energía) para cerdos en posdestete-recría.

	RANGO	REQ. MANT.	CONS.		85%
P.V. ¹	P.V.	E.D. ²	MAX. E.D. ³	CMV ⁴	CMV
11.5	11-12	687	2748	0.859	0.730
12.5	12-13	731	2925	0.914	0.777
13.5	13-14	775	3099	0.968	0.823
14.5	14-15	817	3269	1.022	0.869
15.5	15-16	859	3437	1.074	0.913
16.5	16-17	900	3602	1.126	0.957
17.5	17-18	941	3765	1.176	1.000
18.5	18-19	981	3925	1.227	1.043
19.5	19-20	1021	4083	1.276	1.085
20.5	20-21	1060	4239	1.325	1.126
21.5	21-22	1098	4393	1.373	1.167
22.5	22-23	1136	4546	1.421	1.208
23.5	23-24	1174	4696	1.468	1.248
24.5	24-25	1211	4845	1.514	1.287
25.5	25-26	1248	4993	1.560	1.326
26.5	26-27	1285	5139	1.606	1.365
27.5	27-28	1321	5284	1.651	1.403
28.5	28-29	1357	5427	1.696	1.442
29.5	29-30	1392	5569	1.741	1.480
30.5	30-31	1428	5711	1.749	1.487
31.5	31-32	1463	5850	1.828	1.554
32.5	32-33	1497	5989	1.872	1.591
33.5	33-34	1532	6127	1.915	1.628
34.5	34-35	1566	6264	1.957	1.663
35.5	35-36	1600	6399	1.999	1.699
36.5	36-37	1633	6534	2.042	1.736
37.5	37-38	1667	6668	2.084	1.771
38.5	38-39	1700	6801	2.125	1.806
39.5	39-40	1733	6933	2.166	1.841

¹P.V.: peso vivo en kg. ² REQ. MANT. E.D.: 110 x kg^{0.75} (en condiciones de confinamiento). ³ CONSUMO MAX. E.D.: consumo máximo esperado de energía (4 veces mantenimiento).

⁴ CMV: consumo máximo voluntario esperado de ración con 3200 kcal/kg.

40.5	40-41	1766	7064	2.207	1.876
41.5	41-42	1799	7194	2.248	1.911
42.5	42-43	1831	7324	2.289	1.945
43.5	43-44	1863	7453	2.329	1.980
44.5	44-45	1895	7581	2.369	2.014
45.5	45-46	1927	7708	2.409	2.048
46.5	46-47	1959	7835	2.448	2.081
47.5	47-48	1990	7961	2.488	2.115
48.5	48-49	2022	8086	2.527	2.148
49.5	49-50	2053	8211	2.566	2.181
50.5	50-51	2084	8335	2.605	2.214
51.5	51-52	2115	8459	2.643	2.247
52.5	52-53	2145	8582	2.682	2.280
53.5	53-54	2176	8704	2.720	2.312
54.5	54-55	2206	8826	2.758	2.344
55.5	55-56	2237	8947	2.796	2.377
56.5	56-57	2267	9068	2.834	2.409
57.5	57-58	2297	9188	2.871	2.440
58.5	58-59	2327	9307	2.909	2.472
59.5	59-60	2357	9426	2.946	2.504
		•			

Cuadro 2: Ganancia de peso diaria esperada (kg/día).

SEMANA	GANANCIA DE PESO ESPERADA (kg/d)
1	0,300
2	0,350
3	0,400
4	0,450
5	0,500
6	0,550
7	0,600
8	0,650
9	0,700
10	0,750

Método de doble muestreo

El procedimiento (para una escala de 5 puntos) consiste en:

- 1- Recorrer en primer lugar toda el área objeto del relevamiento para establecer el grado de homogeneidad de la misma. Es importante realizar esto, dado que si la pastura es homogénea se podrá marcar una sola escala y utilizarla en toda el área, mientras que si por cualquier motivo se observase que existen zonas en las cuales la composición botánica y la cobertura de suelo difieren marcadamente, lo aconsejable es marcar 2 escalas.
- 2- Si el área es homogénea se procede a elegir una zona reducida en la cual se construirá una escala que podrá ser de 3 puntos (en caso de marcada homogeneidad), o de 5 puntos (para pasturas de cierta edad o que ya han sido pastoreadas varias veces). Para la construcción de la escala se puede utilizar como unidad de muestreo un cuadrado de 0.3m o de 0.5m de lado, aunque la forma y área de la unidad de muestreo es dependiente del tipo y estado de la pastura a relevar. Si se cumple el supuesto planteado en 1, entonces se está en condiciones de marcar una escala que abarque todas las situaciones de rendimiento posibles de encontrar en cualquier zona de la pastura a relevar en cualquier lugar de la misma y abarcando un espacio reducido. Para marcar la escala que servirá de referencia para el muestreo posterior, se comienza por elegir visualmente y con el cuadrado de muestreo, aquel que represente a juicio del observado, la situación de mayor rendimiento. Recordando que los atributos más importantes son densidad y altura, el cuadrado de mayor rendimiento será aquel que reúna los mayores valores de ambos atributos. Una vez elegido el punto se procede a identificarlo con el Nº 5, el cual representará el mayor rendimiento posible de encontrar en esa pastura y para ese muestreo. Es conveniente tomar alguna lectura de la altura del forraje en ese cuadro, de manera de poder ayudarse para marcar los siguientes puntos. Para los siguientes puntos se procede de manera análoga, eligiendo a continuación el otro punto extremo, Nº 1, el que representará el menor rendimiento posible de encontrar en esa pastura y para ese muestreo. Luego de marcar el Nº 1, se procederá a elegir el punto intermedio entre 1 y 5, es decir el punto Nº 3 de la escala. Para marcar los puntos 2 y 4 se siguen los mismos criterios, hasta que finalmente queda marcada la escala de 5 puntos, la cual quedará como referencia para consulta mientras se realice el muestreo.
- 3- La forma en que se utiliza la escala marcada es la siguiente: con una planilla y el cuadrado que se utilizó para marcar la misma, se realizará un muestreo definido como "Aleatorio o al Azar", se recorre la pastura y cada vez que se deposita el cuadrado se estima para el contenido del mismo su similitud a uno de los cinco puntos de la escala y se anota en la planilla, se levanta el cuadrado caminando el número de pasos prefijados, y se repite la operación, anotando el número de la escala estimado, y así sucesivamente.
- 4- Una vez completado el muestreo se deberá proceder a obtener el dato del rendimiento de forraje de cada punto de la escala para expresarlo en kg/ha. Para esto, la recomendación es elegir 2 cuadrados que sean lo más parecido posible al

punto correspondiente de la escala y cortarlos al ras del suelo, individualizándolos en bolsas de nylon separadas. La tercera muestra es la propia escala, y de esta manera se tienen 3 repeticiones de cada punto con una idea de la variación con respecto a la escala efectivamente marcada. Las muestras se pondrán a secar hasta que el peso seco permanezca constante, y por su relación al área del cuadrado, se obtendrán los correspondientes valores expresados como kg/ha MS.

(Moliterno, 1997).

TRATAMIENTOS

Cuadro 3: Tratamientos

TRATAMIENTO 1

Raza Cerda: Pampa Rocha

Raza Padrillo: Pampa Rocha

Denominación: PP

TRATAMIENTO 2

Raza Cerda: Pampa Rocha

Raza Padrillo: Duroc

Denominación: HDP

TRATAMIENTO 3

Raza Cerda: Pampa Rocha

Raza Padrillo: Large White

Denominación: HLP

GANANCIA DE PESO

Cuadro 4: Ganancia de peso semanal para los 3 tratamientos, promedio y esperada.

	SEMANA										
GENOTIPO	1	2	3	4	5	6	7	8	9		
	1,72	2,17					3,65		4,60		
PP	1	2	2,213	2,687	2,821	3,936	5	4,474	4		
	2,29	2,70					3,71		5,34		
HDP	1	1	3,048	3,095	4,127	3,415	4	3,190	0		
	1,70	1,47					4,34		4,54		
HLP	1	1	4,131	2,893	3,877	3,532	1	3,827	8		
	1,90	2,11					3,90		4,83		
PROMEDIO	4	5	3,131	2,891	3,608	3,628	3	3,831	1		
	2,10	2,45			•	•	4,20		4,90		
ESPERADA	0	0	2,800	3,150	3,500	3,850	0	4,550	0		

CONSUMO DE CONCENTRADO

Cuadro 5: Consumo de concentrado diario promedio para los tres genotipos (kg/día).

SEMANA	PP	HDP	HLP	PROMEDIO
1	0,777	0,820	0,746	0,781
2	0,868	0,898	0,823	0,863
3	0,957	1,014	0,928	0,966
4	1,085	1,139	1,071	1,098
5	1,194	1,274	1,194	1,221
6	1,326	1,406	1,339	1,357
7	1,467	1,568	1,492	1,509
8	1,615	1,711	1,652	1,659
9	1,783	1,910	1,794	1,829

CONSUMO DE PASTURA

Cuadro 6: Consumo de pastura obtenido en diferentes ensayos y por diferentes autores.

Autor	PV prom. (kg)	consumo past (kgMS/día)	sist. alojam.	restricción conc.		
Carballo, 2009	16	0.087	campo	15%		
Carballo, 2009	48	0.217	campo	15%		
Castro, 2002	17	0.433	campo	15%		
Castro, 2002	28	0.424	campo	15%		
Arenare et al., 1997	20	0.033	confinamiento	30%		
Arenare et al., 1997	40	0.06	confinamiento	30%		
Garín et al., 2002	34	0.288	confinamiento	sin conc		
Garín et al., 2002	49	0.428	confinamiento	sin conc		
Battegazzore, 2006	49	0.574	campo	30%		
Battegazzore, 2006	67	1.059	campo	30%		
Battegazzore, 2006	85	1.063		30%		

LOTE 1 CERDA PP 1338			RAZA PADRILLO: PP											
FECHA NAC: 14/04/06			FECHA DEST: 29/05/06											
			fecha de pesada											
N°	Sexo	14-abr	05-may	29-may	31-may	07-jun	14-jun	21-jun	28-jun	05-jul	12-jul	19-jul	26-jul	02-ago
1566	m	1.360	4.800	11.600	12.700	14.200	16.900	18.900	21.950	25.100	27.750	33.000	37.100	41.600
1567	m	1.500	5.500	12.400	13.300	15.100	17.600	19.900	22.500	26.350	29.950	34.400	39.150	43.200
1568	m	1.070	3.900	9.800	10.900	12.000	14.100	16.400	18.400	21.900	25.200	28.900	32.200	36.400
1569	m	1.170	2.700	6.800	7.600	9.600	11.800	13.100	14.900	18.400	21.650	26.300	30.400	34.300
1571	h	1.330	5.500	12.800	13.300	15.400	17.900	20.200	23.000	26.200	29.350	33.100	35.300	36.800
1572	h	1.060	4.300	9.800	10.600	11.300	13.400	15.500	17.300	20.400	23.250	25.900	29.450	32.300
1573	h	1.130	5.300	11.900	12.900	14.700	16.900	19.850	21.500	25.200	28.000	32.700	36.650	40.500
1574	h	1.290	4.900	10.500	11.800	13.400	16.000	17.900	19.800	22.800	26.100	29.600	33.700	39.000
			·		·	·								
total		9.910	36.900	85.600	93.100	105.700	124.600	141.750	159.350	186.350	211.250	243.900	273.950	304.100
prom	lote	1.239	4.613	10.700	11.638	13.213	15.575	17.719	19.919	23.294	26.406	30.488	34.244	38.013

I	macl	108	1.275	4.225	10.150	11.125	12.725	15.100	17.075	19.438	22.938	26.138	30.650	34.713	38.875
	heml	oras	1.203	5.000	11.250	12.150	13.700	16.050	18.363	20.400	23.650	26.675	30.325	33.775	37.150

		l												
LOTE	2	CERDA	PP 749		RAZA I	PADRILL	O: DJ							
FECH	A NAC: 24/0	04/06		FECHA	DEST: 1	0/06/06								
							fe	cha de pe	sada					
		24-						ena de pe	Sucu					
N°	Sexo	abr	15-may	10-jun	12-jun	20-jun	27-jun	04-jul	11-jul	19-jul	26-jul	02-ago	09-ago	16-ago
1575	m	0.720	3.600	10.400	11.50 0	13.800	15.600	18.650	20.300	23.900	28.350	32.400	35.700	40.100
					10.35									
1576	m	0.730	3.100	9.600	10.30	11.500	17.700	15.500	16.400	19.550	23.600	26.800	31.200	36.100
1578	m	0.750	3.400	9.450	10.30	12.700	14.300	16.450	18.300	21.900	25.800	29.400	33.500	37.400
					13.30									
1579	m	1.150	4.700	11.700	0	16.000	18.300	21.700	23.100	28.100	32.500	37.400	43.300	49.200
1580	h	1.300	4.100	10.600	10.70 0	13.100	15.100	16.700	19.100	22.300	25.500	29.600	34.000	37.600
					12.40									
1583	h	1.050	3.900	10.900	11.85	14.350	16.600	19.700	22.100	26.150	31.800	36.000	40.700	44.650
1584	h	1.200	4.300	11.250	11.85	14.450	17.500	19.000	21.550	28.300	29.800	34.200	40.700	44.300
1585	h	1.240	3.900	10.600	11.25	14.000	15.600	19.050	21.200	25.800	29.050	33.000	36.000	40.200
1303		1.240	3.900	10.000	U	14.000	13.000	19.030	21.200	23.800	29.030	33.000	30.000	40.200
					91.65	109.90	130.70	146.75	162.05	196.00	226.40	258.80	295.10	
total		8.140	31.000	84.500	0	0	0	0	0	0	0	0	0	329.550
pro	lote	1.018	3.875	10.563	11.45 6	12 720	16 220	10 244	20.256	24 500	28.300	22.250	26 000	41 104
m	iote	1.018	3.8/3	10.363	11.36	13.738	16.338	18.344	20.256	24.500	26.300	32.350	36.888	41.194
	machos	0.838	3.700	10.288	3	13.500	16.475	18.075	19.525	23.363	27.563	31.500	35.925	40.700
	hembras	1.198	4.050	10.838	11.55 0	13.975	16.200	18.613	20.988	25.638	29.038	33.200	37.850	41.688

LOTE	2	CERDA	DD 60		D 1 7 1 I	PADRILLO). I W							
LOTE	3	CERDA	A PP 00		KAZA	ADKILL	J. LW							
FECH.	A NAC: 26	/04/06		FECHA	DEST: 1	0/06/06								
							f	echa de po	esada			-		
		26-	17-											
N°	Sexo	abr	may	10-jun	12-jun	20-jun	27-jun	04-jul	11-jul	19-jul	26-jul	02-ago	09-ago	16-ago
1586	m	0.690	3.500	9.000	10.10 0	11.100	12.400	15.500	17.750	24.800	23.200	27.700	31.900	35.300
1587	m	1.430	4.900	12.450	15.30 0	15.250	17.300	21.500	23.950	27.500	31.400	36.750	40.700	46.300
1588	m	0.920	3.300	9.450	9.900	10.850	12.400	15.750	17.900	20.400	23.200	27.100	30.800	36.200
1593	h	0.960	3.700	10.200	10.65 0	12.650	14.100	19.500	20.550	26.400	26.800	31.400	34.100	39.200
1594	h	1.100	3.700	10.050	11.90 0	13.300	15.200	19.050	21.650	26.300	31.800	33.300	37.900	43.200

					11.25									
1595	h	1.230	3.800	10.850	0	13.350	15.500	19.500	20.800	25.350	28.300	32.800	36.000	39.900
					11.75									
1597	h	1.250	3.900	10.800	0	13.900	15.700	18.250	22.350	23.200	26.800	30.500	35.000	39.500
					11.30									
1598	h	1.330	4.800	11.400	0	13.400	14.900	17.400	21.350	23.850	27.200	30.600	35.200	40.400
					92.15	103.80	117.50	146.45	166.30	197.80	218.70	250.15	281.60	
total		8.910	31.600	84.200	0	0	0	0	0	0	0	0	0	320.000
pro					11.51									
m	lote	1.114	3.950	10.525	9	12.975	14.688	18.306	20.788	24.725	27.338	31.269	35.200	40.000
					11.76									
	machos	1.013	3.900	10.300	7	12.400	14.033	17.583	19.867	24.233	25.933	30.517	34.467	39.267
					11.37									
	hembras	1.174	3.980	10.660	0	13.320	15.080	18.740	21.340	25.020	28.180	31.720	35.640	40.440

1										1		1	
LOTE	4	CERDA I	PP 753		RAZA P	ADRILLO:	: DJ						
FECH	A NAC: 10/0	5/06		FECHA	DEST: 24	/06/06							
							fecha	de pesada					
N°	Sexo	10-may	01-jun	24-jun	27-jun	04-jul	11-jul	19-jul	26-jul	02-ago	09-ago	16-ago	24-ago
28	m	1.800	6.400	13.700	14.100	15.900	19.450	23.200	26.500	29.900	34.700	31.000	45.300
29	m	1.520	5.500	11.400	11.700	13.700	16.100	19.550	22.850	25.100	28.200	33.600	37.900
30	m	1.630	5.500	11.900	12.700	15.500	17.900	22.150	25.900	29.200	34.000	40.300	44.800
31	m	1.580	5.800	12.800	13.900	15.900	18.050	21.450	25.900	29.900	33.100	38.200	46.500
32	h	1.730	5.800	11.400	11.500	13.800	16.450	20.000	23.200	25.800	28.000	33.150	37.900
33	h	1.700	5.300	12.600	12.700	14.900	17.300	21.300	24.800	28.600	32.500	36.500	41.800
34	h	1.800	5.500	13.200	12.900	16.600	19.100	22.400	26.600	30.500	33.200	31.200	45.400
total		11.760	39.800	87.000	89.500	106.300	124.350	150.050	175.750	199.000	223.700	243.950	299.600
pro m	lote	1.680	5.686	12.429	12.786	15.186	17.764	21.436	25.107	28.429	31.957	34.850	42.800
	machos	1.633	5.800	12.450	13.100	15.250	17.875	21.588	25.288	28.525	32.500	35.775	43.625
	hembras	1.743	5.533	12.400	12.367	15.100	17.617	21.233	24.867	28.300	31.233	33.617	41.700

LOTE	5	CERDA	PP 54		PADRII	LLO RAZ	A: PP							
FECH.	A NAC: 27	/05/06		FECHA	DEST: 11	/07/06								
							fe	cha de pe	sada					
N°	Sexo	27- may	16-jun	11-jul	13-jul	20-jul	28-jul	03-ago	10-ago	16-ago	24-ago	31-ago	07-sep	14-sep
28	m	1.300	4.500	11.200	11.750	13.600	16.300	18.600	21.500	23.600	29.400	31.800	36.000	40.250
29	m	1.500	4.400	11.200	12.200	14.350	17.600	20.700	22.250	24.200	30.200	33.200	38.000	44.850
30	m	0.990	4.300	9.800	10.600	13.000	15.600	17.400	19.200	21.500	26.200	29.500	34.100	39.550
31	m	0.830	2.800	9.300	9.400	10.750	12.900	14.900	17.100	19.250	23.700	26.700	30.800	35.850
32	h	1.180	3.800	10.500	11.250	13.100	16.200	19.200	21.100	23.100	28.100	31.700	36.600	41.850

33	h	1.010	3.600	8.900	9.800	11.700	14.600	16.800	18.500	21.000	26.600	29.100	34.100	40.550
34	h	1.250	4.700	10.350	11.200	12.250	15.300	17.400	19.900	23.000	27.300	29.600	34.400	38.950
			28.10					125.00	139.55	155.65	191.50	211.60	244.00	
total		8.060	0	71.250	76.200	88.750	108.500	0	0	0	0	0	0	281.850
pro														
m	lote	1.151	4.014	10.179	10.886	12.679	15.500	17.857	19.936	22.236	27.357	30.229	34.857	40.264
	machos	1.155	4.000	10.375	10.988	12.925	15.600	17.900	20.013	22.138	27.375	30.300	34.725	40.125
	hembra													
	S	1.147	4.033	9.917	10.750	12.350	15.367	17.800	19.833	22.367	27.333	30.133	35.033	40.450

<u> </u>								l	l				l	
LOTE	6	CERDA	A PP 694		RAZA l	PADRILLO	D: PP							
EECH	A NAC: 09/	06/06		EECHA	DEST: 2	7/07/06								
FECH	A NAC: 09/	06/06		FECHA	DES1: 2	.7/07/00								
								fecha de p	esada					
		09-												
N°	Sexo	jun	30-jun	27-jul	29-jul	05-ago	12-ago	19-ago	26-ago	02-sep	09-sep	16-sep	23-sep	30-sep
				12.90	14.00									
60	m	1.000	4.500	0	0	15.800	16.700	18.600	23.200	27.200	31.000	35.700	40.900	46.400
61	m	0.990	4.600	12.50 0	13.50	15.400	16.600	19.000	22.400	25.900	29.400	33.200	38.900	42.900
01	III	0.990	4.000	10.20	11.00	13.400	10.000	19.000	22.400	23.900	29.400	33.200	38.900	42.900
62	m	0.890	4.700	0	0	12.600	14.300	16.200	19.600	22.300	25.000	28.900	33.800	36.900
		0.050	,00	12.40	13.00	12.000	111500	10.200	17.000	22.500	25.000	20.500	22.000	201200
64	m	1.210	5.000	0	0	14.200	14.700	16.100	19.400	21.800	25.200	28.700	33.400	37.300
				10.20	10.45									
65	m	1.280	4.300	0	0	12.700	15.000	17.750	23.300	24.400	28.600	33.300	38.900	43.700
		4.0.00	4 = 00	10.60	11.20				• • • • • •		• • • • • •	• • • • • •		***
66	m	1.060	4.700	0	0	14.000	14.700	17.000	20.100	22.900	26.000	30.000	34.200	39.500
68	h	1.130	5.300	13.45	14.10 0	15.500	17.250	19.800	23.200	25.800	30.600	34.600	39.600	45.200
00	П	1.130	3.300	11.30	12.10	15.500	17.230	19.000	23.200	23.800	30.000	34.000	39.000	43.200
69	h	1.140	4.300	0	0	13.500	15.100	17.000	20.500	23,700	26.800	30.300	35.300	40.200
			37.40	93.55	99.35									
total		8.700	0	0	0	113.700	124.350	141.450	171.700	194.000	222.600	254.700	295.000	332.100
pro				11.69	12.41									
m	lote	1.088	4.675	4	9	14.213	15.544	17.681	21.463	24.250	27.825	31.838	36.875	41.513
				11.46	12.19			l						
-	machos	1.072	4.633	7	2	14.117	15.333	17.442	21.333	24.083	27.533	31.633	36.683	41.117
	hamba.	1 125	4 000	12.37	13.10	14.500	16 175	10 400	21.050	24.750	20.700	22.450	27.450	42.700
	hembras	1.135	4.800	5	0	14.500	16.175	18.400	21.850	24.750	28.700	32.450	37.450	42.700

LOTE	7	CERDA	A PP 782		RAZA I	PADRILLO	D: LW							
FECH	A NAC: 17/0	06/06		FECHA	DEST: 0	3/08/06								
							f	echa de pe	esada					
No	G	17-	00 :1	02	05-	12	10	26	02	00	16	22	20	07
N°	Sexo	jun	08-jui	03-ago	ago	12-ago	19-ago	26-ago	02-sep	09-sep	16-sep	23-sep	30-sep	07-oct

86	m	1.050	5.100	8.000	8.500	10.050	12.900	16.300	19.400	22.500	26.600	30.900	35.000	40.000
					12.60									
88	m	1.190	4.800	10.900	0	14.000	16.700	20.800	23.100	26.700	30.800	36.000	39.800	45.600
89	m	1.080	4.500	8.100	8.900	11.050	14.150	17.700	20.800	23.400	27.200	32.800	35.400	39.100
					10.70									
90	m	0.960	3.500	9.600	0	11.900	14.650	17.500	19.900	22.900	27.000	32.000	36.700	40.900
					12.80									
91	m	0.930	3.800	10.600	0	14.000	16.700	21.000	22.300	26.200	31.000	35.800	40.300	46.000
					10.20									
92	h	1.090	4.200	10.000	0	11.500	13.200	16.400	18.900	22.100	26.300	31.000	35.900	38.800
					11.40									
95	h	0.950	3.900	10.400	0	13.500	17.000	20.200	23.200	27.200	32.500	38.100	42.300	46.900
					13.70									
96	h	1.030	4.300	12.200	0	14.600	16.900	21.000	23.900	27.700	31.900	37.000	41.500	47.200
					88.80			150.90	171.50	198.70	233.30	273.60	306.90	
total		8.280	34.100	79.800	0	100.600	122.200	0	0	0	0	0	0	344.500
pro					11.10									
m	lote	1.035	4.263	9.975	0	12.575	15.275	18.863	21.438	24.838	29.163	34.200	38.363	43.063
					10.70									
	machos	1.042	4.340	9.440	0	12.200	15.020	18.660	21.100	24.340	28.520	33.500	37.440	42.320
					11.76									
	hembras	1.023	4.133	10.867	7	13.200	15.700	19.200	22.000	25.667	30.233	35.367	39.900	44.300

LOTE 8		CERDA	PP 825		RAZA P.	ADRILLO	: DJ							
FECHA N	AC: 26/06/0	6		FECHA I	DEST: 11/	08/06								
								fecha de p	esada					
N°	Sexo	26-jun	17-jul	11-ago	18-ago	24-ago	31-ago	07-sep	14-sep	23-sep	28-sep	05-oct	12-oct	19-oct
105	m	0.800	3.700	8.200	9.100	10.550	13.600	16.500	19.850	23.600	26.300	29.400	31.000	42.000
106	m	1.290	5.400	13.300	15.100	18.000	21.300	25.200	29.650	34.500	38.200	43.400	40.500	53.000
107	m	0.980	5.100	9.100	12.400	14.800	17.300	20.600	24.450	28.700	31.700	34.500	31.000	42.000
108	m	1.140	4.400	10.950	11.500	13.300	15.800	19.100	22.150	26.300	28.800	33.300	25.500	35.500
109	h	1.130	5.000	11.900	13.500	15.200	17.600	21.400	25.050	30.200	32.900	37.600	35.500	47.500
110	h	1.230	5.400	13.250	15.100	18.000	21.800	25.400	29.250	36.000	38.900	43.800	41.000	52.000
total		6.570	29.000	66.700	76.700	89.850	107.400	128.200	150.400	179.300	196.800	222.000	204.500	272.000
prom	lote	1.095	4.833	11.117	12.783	14.975	17.900	21.367	25.067	29.883	32.800	37.000	34.083	45.333
	machos	1.053	4.650	10.388	12.025	14.163	17.000	20.350	24.025	28.275	31.250	35.150	32.000	43.125
	hembras	1.180	5.200	12.575	14.300	16.600	19.700	23.400	27.150	33.100	35.900	40.700	38.250	49.750

LOTE	E 9	CERDA 1187	. PP		RAZA PA	ADRILLO	: LW							
FECH	IA NAC: 2	29/06/06		FECHA	DEST: 11/	08/06								
							fee	ha de pes	ada					
N°	Sexo	29-jun	21 d	11-ago	18-ago	24-ago	31-ago	07-sep	14-sep	23-sep	28-sep	05-oct	12-oct	19-oct

122	m	1.120	3.100	8.400	10.700	12.900	12.900	17.600	20.650	25.500	29.400	33.300	37.500	40.000
124	h	1.050	3.600	6.450	11.050	13.000	13.000	18.100	21.550	26.300	30.100	34.180	38.000	43.000
125	h	1.200	2.900	6.900	8.900	10.600	10.600	12.700	13.750	15.500	18.200	20.900	24.000	26.500
126	h	1.350	3.000	10.100	12.400	14.500	14.500	21.900	26.250	30.700	35.500	39.600	42.500	48.000
128	h	1.200	3.700	10.000	12.150	14.800	14.800	20.700	25.050	30.200	33.200	38.500	43.000	46.000
129	h	1.300	4.200	11.100	13.400	15.500	15.500	21.800	26.550	30.700	34.300	37.900	42.000	47.000
130	h	1.200	3.500	8.700	10.800	13.300	13.300	18.100	22.450	27.400	31.200	35.900	37.000	42.500
TOTA	A L	8.420	24.000	61.650	79.400	94.600	94.600	130.90 0	156.25 0	186.30 0	211.90 0	240.28 0	264.00 0	293.000
PROM	И	1.203	3.429	8.807	11.343	13.514	13.514	18.700	22.321	26.614	30.271	34.326	37.714	41.857

The SAS System

Obs DE_GA	RAZ AN	SEX	MED_PN	MED_PI	MED_GAN	DE_PN	DE_PI
1	HDP 3276	h	1.37556	11.7444	0.45601	0.28579	1.05102
2	HDP	m	1.17417	11.0417	0.43764	0.38848	1.74341
0.069	9446						
3	HLP	h	1.16000	9.9393	0.47207	0.13127	1.60374
0.079	9074						
4	HLP	m	1.04111	9.6111	0.45559	0.20558	1.47665
0.041	L536						
5	PP	h	1.16889	11.0556	0.42472	0.10505	1.45289
0.039	9533						
6	PP	m	1.15357	10.7786	0.43875	0.21313	1.62631
0.041	L079						

The SAS System

The GLM Procedure

Class Level Information

Class	Levels	Values
RAZ	3	HDP HLP PP
SEX	2	h m

REP 3 1 2 3

Number of observations 67 The SAS System

The GLM Procedure

Dependent Variable: GAN

Dependent	variable. G	LAIN .						
Source > F		DF		of	Mean Squ	are F	Value	Pr
Model 0.0144		6	0.04841	615	0.00806	936	2.92	
Error		60	0.16571	572	0.00276	193		
Corrected	Total	66	0.21413	187				
	R-Square	Coeff	Var	Root	MSE	GAN Me	an	
	0.226104	11.72	2534	0.052	554	0.4482	09	
Source > F		DF	Type III	SS	Mean Squ	are F	Value	Pr
RAZ 0.0127		2	0.02597	376	0.01298	688	4.70	
SEX		1	0.00000	342	0.00000	342	0.00	
0.9720 RAZ*SEX		2	0.00286	080	0.00143	040	0.52	
0.5984 PI 0.0012		1	0.03184	468	0.03184	468	11.53	
Parameter		Estimat	te		ndard Error	t Valu	e P	°r >
Intercept		0.278694425	55 B	0.049	18398	5.6	7	
<.0001 RAZ	HDP	005014719	91 B	0.020	70664	-0.2	4	
0.8095 RAZ 0.1429	HLP	0.034181994	40 B	0.023	02666	1.4	8	
RAZ	PP	0.000000000	00 В					

SEX	h	0181434574 B	0.02248619	-0.81	
0.4229					
SEX	m	0.0000000000 B	•		
RAZ*SEX	HDP h	0.0260797432 в	0.03232136	0.81	
0.4229					
RAZ*SEX	HDP m	0.0000000000 B	•		
RAZ*SEX	HLP h	0.0297484359 B	0.03175489	0.94	
0.3526					
RAZ*SEX	HLP m	0.0000000000 B	•		
RAZ*SEX	PP h	0.0000000000 B	•		
RAZ*SEX	PP m	0.000000000 B	•	•	
PI		0.0148491587	0.00437310	3.40	
0.0012					

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimabl

The SAS System

The GLM Procedure

Level of		G.	AN				
		Mean	St	d Dev		Mean	Std
HDP 1.49685384		0.44551286	0.059	06274	11.342	8571	
	23	0.46562348	0.066	25531	9.810	8696	
PP 1.53283882		0.43325696	0.040	18095	10.886	9565	
Level ofGAN							
SEX Dev	N	Mean	St	d Dev		Mean	Std
h 1.58723407		0.45423594	0.062	50052	10.760	9375	
	35	0.44269914	0.051	68092	10.568	5714	
Level of		of	GAN				
RAZ Dev		N	Mean	Std	Dev	Mean	Std

HDP 1.05102463	h	9	0.45601111	0.04327639	11.744444
HDP 1.74340750	m	12	0.43763917	0.06944555	11.0416667
HLP 1.60374305	h	14	0.47207143	0.07907425	9.9392857
HLP 1.47664691	m	9	0.45559333	0.04153579	9.6111111
PP 1.45289462	h	9	0.42471667	0.03953340	11.0555556
PP 1.62631181	m	14	0.43874714	0.04107933	10.7785714

The SAS System

The GLM Procedure Least Squares Means

		Standard		LSMEAN
RAZ	GAN LSMEAN	Error	Pr > t	Number
HDP	0.43594653	0.01202184	<.0001	1
HLP	0.47697759	0.01187549	<.0001	2
PP	0.42792138	0.01128272	<.0001	3

Least Squares Means for effect RAZ
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: GAN

i/j	1	2	3
1		0.0232	0.6236
2	0.0232		0.0046
3	0.6236	0.0046	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used

The SAS System

The GLM Procedure Least Squares Means

	SEX	GAN LSMEAN		Standard Error	Pr > t
	h	0.44718147		0.00955702	<.0001
1	m	0.44671553		0.00906830	<.0001
		The	SAS	System	

The GLM Procedure

Least Squares Means

RAZ	SEX	GAN LSMEAN	Standard Error	Pr > t
HDP	h	0.43991467	0.01814807	<.0001
HDP	m	0.43197839	0.01526237	<.0001
HLP	h	0.48278008	0.01439537	<.0001
HLP	m	0.47117510	0.01810907	<.0001
PP	h	0.41884965	0.01760302	<.0001
PP	m	0.43699311	0.01405516	<.0001
		The SAS	System	

The GLM Procedure Least Squares Means

${\tt RAZ*SEX}$ Effect Sliced by ${\tt RAZ}$ for ${\tt GAN}$

		Sum of			
RAZ	DF	Squares	Mean Square	F Value	Pr > F
HDP	1	0.000318	0.000318	0.12	0.7354
HLP	1	0.000735	0.000735	0.27	0.6079
PP	1	0.001798	0.001798	0.65	0.4229
		The SA	AS System		

The GLM Procedure Least Squares Means

RAZ*SEX Effect Sliced by SEX for GAN

SEX	DF	Sum of Squares	Mean Square	F Value	Pr > F
h	2 2	0.022606	0.011303	4.09	0.0216
m		0.008399	0.004199	1.52	0.2269

Obs	PER	RAZ	SEX	CONS	CONV
1	2_3	PP	m	1.202	2.791
2	2 3	PP	m	1.195	2.728
3	2 3	PP	m	1.247	2.806
4	2 3	HDP	m	1.160	2.869
5	2 3	HDP	m	1.278	2.612
6	2 3	HDP	m	1.276	2.621
7	2 3	HLP	m	1.211	2.899
8	2 3	HLP	m	1.176	2.486
9	2_3	HLP	m	1.245	2.586

10	2 3	PP	h	1.202	3.053
11	2 3	PP	h	1.195	2.663
12	2_3	PP	h	1.247	2.767
13	2 3	HDP	h	1.160	2.657
14	2 3	HDP	h	1.278	2.772
15	2_3	HDP	h	1.276	2.621
16	2_3	HLP	h	1.211	2.784
17	2_3	HLP	h	1.176	2.388
18	2 3	HLP	h	1.245	2.527

----- PER=2_3

Class Level Information

Class	Levels	Values
RAZ	3	HDP HLP PP
SEX	2	h m

Number of Observations Read Number of Observations Used 18 18

Dependent Variable: CONV

Source > F		DF	Sum Squar	~ —	Mean S	quare	F Value	Pr
Model 0.4779		5	0.125703	333	0.025	14067	0.96	
Error		12	0.313556	567	0.026	12972		
Corrected	Total	17	0.439260	00				
	R-Square	Coeff	Var	Root	MSE	CONV	Mean	
	0.286171	5.98	3229	0.16	1647	2.7	01667	
Source > F		DF	Type III	SS	Mean S	quare	F Value	Pr
RAZ 0.1675		2	0.108761	133	0.054	38067	2.08	
SEX		1	0.001530)89	0.001	53089	0.06	
0.8128 RAZ*SEX 0.7499		2	0.015411	111	0.007	70556	0.29	

SEX CONV LSMEAN

h 2.69244444 m 2.71088889

I

er
1
2
3

Least Squares Means for effect RAZ
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: CONV

i/j	1	2	3
1		0.4062	0.2641
2	0.4062		0.0649
3	0.2641	0.0649	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

RAZ	SEX	CONV LSMEAN
HDP	h	2.68333333
HDP	m	2.70066667
HLP	h	2.56633333
HLP	m	2.65700000
PP	h	2.82766667
PP	m	2.77500000

RAZ*SEX Effect Sliced by SEX for CONV

SEX	DF	Sum of Squares	Mean Square	F Value	Pr > F
h	2	0.102816	0.051408	1.97	0.1824
m	2	0.021356	0.010678	0.41	0.6734

Obs	PER	RAZ	SEX	CONS	CONV
1	2 3	PP	m	1.202	2.791
2	2 3	PP	m	1.195	2.728
3	2 3	PP	m	1.247	2.806
4	2 3	HDP	m	1.160	2.869
5	2_3	HDP	m	1.278	2.612
6	2_3	HDP	m	1.276	2.621
7	2_3	HLP	m	1.211	2.899
8	2_3	HLP	m	1.176	2.486
9	2_3	HLP	m	1.245	2.586
10	2_3M	PP	m	1.202	2.791
11	2_3M	PP	m	1.195	2.728
12	2_3M	PP	m	1.247	2.806
13	2_3M	HDP	m	1.160	2.869
14	2_3M	HDP	m	1.278	2.612
15	2_3M	HDP	m	1.276	2.621
16	2_3M	HLP	m	1.211	2.899
17	2_3M	HLP	m	1.176	2.486
18	2_3M	HLP	m	1.245	2.586
19	4_5M	PP	m	2.725	4.128
20	4_5M	PP	m	2.747	3.900
21	4_5M	PP	m	2.615	3.630
22	4_5M	HDP	m	2.710	3.940
23	4_5M	HDP	m	2.842	3.810
24	4_5M	HDP	m	2.413	3.137
25	4_5M	HLP	m	2.838	3.786
26	4_5M	HLP	m	2.585	3.859
27	4_5M	HLP	m	2.504	5.199

----- PER=2_3M

Cl	ass	Levels Values			ıes	es.		
RA	Z		3	HDP	HLP	PP		
SE	X		1	m				

Number of Observations Read 9
Number of Observations Used 9

Dependent Variable: CONS

Sum of
Source DF Squares Mean Square F Value Pr
> F

Model 0.7517			2	0.00	130756	0.00	065378	0.30	
Error			6	0.01	310133	0.00)218356		
Corrected T	otal		8	0.01	440889				
	R-Square 0.090746		Coeff 3.82			ot MSE 046729		Mean 21111	
Source > F			DF	Type	III SS	Mean	Square	F Value	Pr
RAZ 0.7517			2	0.001	30756	0.000)65378	0.30	
Dependent Va	riable: CO	VNC							
Source > F			DF		Sum of quares	Mean	Square	F Value	Pr
Model 0.6510			2	0.02	135622	0.01	1067811	0.46	
Error			6	0.13	881667	0.02	2313611		
Corrected T	otal		8	0.16	017289				
	R-Square		Coeff	Var	Roc	ot MSE	CONV	Mean	
	0.133332		5.61	0912	0.1	52106	2.7	10889	
Source > F			DF	Туре	III SS	Mean	Square	F Value	Pr
RAZ 0.6510			2	0.02	135622	0.01	1067811	0.46	
		RAZ	C	ONS LS	MEAN	LSME Numk			
		HDP		1.2380 1.2106			1 2		
		HLP PP		1.2106			3		

Least Squares Means for effect RAZ Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: CONS

i/j	1	2	3
1		0.5007	0.5633
2	0.5007		0.9199
3	0.5633	0.9199	

RAZ	CONV LSMEAN	LSMEAN Number
HDP	2.70066667	1
HLP	2.65700000	2
PP	2.77500000	3

Least Squares Means for effect RAZ
Pr > |t| for H0: LSMean(i)=LSMean(j)

	Dependent	Variable: CON	V
i/j	1	2	3
1		0.7372	0.5714
2	0.7372		0.3787
3	0.5714	0.3787	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

----- PER=4_5M

The GLM Procedure

Class Level Information

Class	Levels	Values
RAZ	3	HDP HLP PP
SEX	1	m

Number of Observations Read
Number of Observations Used
9

Dependent Variable: CONS

Sum of

Source > F		DF	Squa	res	Mean	Square	F Value	Pr
Model 0.9209		2	0.00465	867	0.00	0232933	0.08	
Error		6	0.16726	933	0.02	2787822		
Corrected T	otal	8	0.17192	800				
	R-Square	Coeff	Var	Root	MSE	CONS	Mean	
	0.027097	6.26	6773	0.16	6968	2.6	64333	
Source > F		DF	Type III	SS	Mean	Square	F Value	Pr
RAZ 0.9209		2	0.00465	867	0.00)232933	0.08	
Dependent Variable: CONV								
Source > F		DF	Sum Squa		Mean	Square	F Value	Pr
Model 0.3908		2	0.64787	622	0.32	2393811	1.10	
Error		6	1.76167	0.29361244				
Corrected T	otal	8	2.40955	089				
	R-Square	Coeff	Var	Root	MSE	CONV	Mean	
	0.268878	13.78	8039	0.54	1860	3.9	32111	
Source > F		DF	Type III	SS	Mean	Square	F Value	Pr
RAZ 0.3908		2	0.64787	622	0.32	2393811	1.10	
	5	~		N.T.	LSMI	EAN		

RAZ CONS LSMEAN

Number

HDP	2.65500000	1
HLP	2.64233333	2
PP	2.69566667	3

Least Squares Means for effect RAZ
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: CONS

i/j	1	2	3
1		0.9290	0.7755
2	0.9290		0.7092
3	0.7755	0.7092	

RAZ	CONV LSMEAN	LSMEAN Number
HDP	3.62900000	1
HLP	4.28133333	2
PP	3.88600000	3

Least Squares Means for effect RAZ
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: CONV

i/j	1	2	3
1		0.1908	0.5825
2	0.1908		0.4060
3	0 5825	0 4060	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Thursday	y, Januar	y 14, 20	01 1		Sistema	SAS	14:15
ECRA	Obs ECMS	RAZA	PERI	REPE	PEIN	COPA	COTO
	1	1	1	1	11.460	0.112	0.890
2.409	2.756 2	1	1	2	12.667	0.006	0.889
2.541	2.559 3	1	1	3	12.545	0.109	1.056
2.116	2.360						

	4	2	1				
1				•	•		
	5	2	1	2	11.100	0.148	1.081
2.274	2.635						
	6	2	1	3	10.981	0.025	0.834
1.974	2.035	_					
	7	3	1	1	11.637	0.105	0.891
2.750	3.117	_		_			
	8	3	1	2	11.142	0.129	0.863
2.382	2.800			_			
	9	3	1	3	12.419	0.057	0.902
2.845	3.037			-	00 646	0 1 60	1 000
0 070	10	1	2	1	33.646	0.162	1.900
2.970	3.247	4	_	0	20 270	0 100	1 0 4 5
0 105	11	1	2	2	32.370	0.103	1.845
2.427	2.571	1	_	2	45 440	0 056	0 455
0 600	12	1	2	3	47.443	0.356	2.457
2.639	3.086	0	0	1	25 006	0 210	0 100
0 500	13	2	2	1	35.886	0.318	2.103
2.783	3.279	0	0	0	46.060	0 010	0 010
2 000	14	2	2	2	46.060	0.210	2.319
3.098	3.406	2	2	3	44 EO1	0 100	0 257
2.809	15 3.044	۷	۷	3	44.591	0.182	2.357
2.809	16	3	2	1	29.321	0.140	1.665
2.808	3.066	3	2	Τ	29.321	0.140	1.003
2.000	17	3	2	2	48.657	0.169	2.447
3.357	3.606	3	2	۷	40.657	0.169	2.44/
J.JJ/	18	3	2	3	39.523	0.315	2.287
2.925	3.393	3	4	J	J9.JZ3	0.313	4.401
2.323	J.JJJ				Sistema	C 7\ C	14:15
					DISCEILLA	DAD	14.17

Thursday, January 14, 2001 2

Procedimiento GLM

Información del nivel de clase

Clase	Niveles	Valores
RAZA	3	1 2 3
PERI	2	1 2
REPE	3	1 2 3

Número de observaciones 18

 ${\tt NOTA:}$ All dependent variables are consistent with respect to the presence or absence of missing

values. However only 17 observations can be used in this analysis.

Thursday,	January 14,	2001	3	Sistema	SAS	14:15
				Procedimie	nto GLM	

Wariahle	dependiente:	COPA
variable	dependrence.	COPA

Error

		Procedimiento Gr	11/1
Variable dependiente: COPA			
Fuente F-Valor Pr > F	DF		Cuadrado de la media
Modelo 2.05 0.1496	5	0.07489805	0.01497961
Error	11	0.08048783	0.00731708
Total correcto	16	0.15538588	
R-cuadrado Media)	Coef Var Rai	z MSE COPA
0.482013	3	54.95761 0.0	85540
Fuente F-Valor Pr > F	DF	Tipo III SS	Cuadrado de la media
RAZA 0.08 0.9273	2	0.00111161	0.00055580
PERI 9.72 0.0098	1	0.07110288	0.07110288
RAZA*PERI 0.07 0.9324	2	0.00103094	0.00051547
Thursday, January 14, 2001 4		Sistema SAS	14:15
		Procedimiento GI	M
Variable dependiente: COTO			
Fuente F-Valor Pr > F	DF	Suma de cuadrados	Cuadrado de la media
Modelo 21.56 <.0001	5	6.44779938	1.28955988

11 0.65794250 0.05981295

Total correcto 16 7.10574188

Media		R-cuadrado		Coef Var	Raiz	MSE	COTO
1.575		0.907407		15.52168	0.24	4567	
F-Val	Fuente or Pr > F		DF	Tipo III S	SS		ado de media
	RAZA		2	0.0349441	.7	0.01	747208
	0.7523 PERI		1	6.2237575	5	6.22	375755
	5 <.0001 RAZA*PERI		2	0.0235482	1	0.01	177411
	0.8241 day, January 14,	2001 5		Sistema S	SAS	14	:15
				Procedimient	o GLM		
Varia	ble dependiente:	ECRA					
F-Val	Fuente or Pr > F		DF				ado de media
	Modelo 0.0129		5	1.4320878	8	0.28	641758
	Error		11	0.6374020	0	0.05	794564
	Total correcto		16	2.0694898	8		
Media		R-cuadrado		Coef Var	Raiz	MSE	ECRA
2.653	353	0.692000		9.072257	0.24	0719	
F-Val	Fuente or Pr > F		DF	Tipo III S	SS		ado de media
3.64	RAZA 0.0614		2	0.4213407	7	0.21	067039

17 14	PERI	1	0.99327185	0.99327185
	0.0016 RAZA*PERI	2	0.15689001	0.07844501
	0.2981		Sistema SAS	14:15
Thurs	day, January 14,	2001 6		
			Procedimiento	GLM
Varia	ble dependiente:	ECMS		
			Suma de	Cuadrado de
F-Val	Fuente or Pr > F	DF	cuadrados	la media
	Modelo 0.0085	5	1.96948067	0.39389613
	Error	11	0.77756733	0.07068794
	Total correcto	16	2.74704800	
		_ , ,		
Media		R-cuadrado	Coef Var R	alz MSE ECMS
2.941	000	0.716944	9.040192 0	.265872
2.941	000	0.716944	9.040192 0	.265872
	Fuente	0.716944 DF		.265872 Cuadrado de la media
				Cuadrado de
F-Val	Fuente or Pr > F RAZA	DF	Tipo III SS	Cuadrado de
F-Val	Fuente or Pr > F RAZA 0.0423 PERI	DF	Tipo III SS 0.60415476	Cuadrado de la media 0.30207738
F-Val 4.27 18.60	Fuente or Pr > F RAZA 0.0423 PERI 0.0012 RAZA*PERI	DF 2	Tipo III SS 0.60415476 1.31508185	Cuadrado de la media 0.30207738
F-Val 4.27 18.60 1.64	Fuente or Pr > F RAZA 0.0423 PERI 0.0012	DF 2 1 2	Tipo III SS 0.60415476 1.31508185	Cuadrado de la media 0.30207738 1.31508185 0.11557617
F-Val 4.27 18.60 1.64	Fuente or Pr > F RAZA 0.0423 PERI 0.0012 RAZA*PERI 0.2390	DF 2 1 2 2001 7	Tipo III SS 0.60415476 1.31508185 0.23115233	Cuadrado de la media 0.30207738 1.31508185 0.11557617 14:15
F-Val 4.27 18.60 1.64	Fuente or Pr > F RAZA 0.0423 PERI 0.0012 RAZA*PERI 0.2390	DF 2 1 2 2001 7	Tipo III SS 0.60415476 1.31508185 0.23115233 Sistema SAS Procedimiento	Cuadrado de la media 0.30207738 1.31508185 0.11557617 14:15
F-Val 4.27 18.60 1.64	Fuente or Pr > F RAZA 0.0423 PERI 0.0012 RAZA*PERI 0.2390	DF 2 1 2 2001 7	Tipo III SS 0.60415476 1.31508185 0.23115233 Sistema SAS Procedimiento dias de cuadrados	Cuadrado de la media 0.30207738 1.31508185 0.11557617 14:15
F-Val 4.27 18.60 1.64	Fuente or Pr > F RAZA 0.0423 PERI 0.0012 RAZA*PERI 0.2390	DF 2 2 1 2 2 2 2 2 9 7 Me	Tipo III SS 0.60415476 1.31508185 0.23115233 Sistema SAS Procedimiento dias de cuadrados	Cuadrado de la media 0.30207738 1.31508185 0.11557617 14:15 GLM mínimos Número

	Medias	de cua	drados mi	ínimos para	el efecto
RAZA	P	r > t	for HO:	LSMean(i)=	LSMean(j)
		Var	iable der	pendiente:	COPA
	i/j		1	2	3
	1		T0.64	0.7064	0.8253
	2		.7064 .8253	0.8655	0.8655
		RAZA	COTO I	LSMEAN	Número LSMEAN
		1 2 3	1.608	616667 858333 916667	1 2 3
RAZA				ínimos para LSMean(i)=	
		Var	iable der	pendiente:	COTO
	i/j		1	2	3
	1	0	5000	0.5082	0.9834
	2		.5082 .9834	0.5205	0.5205
		RAZA	ECRA I	LSMEAN	Número LSMEAN
		1 2 3	2.510	700000 033333 450000 ema SAS	1 2 3 14:15
Thursday, January 14, 20	01 8				
		Medi		miento GLM adrados mín	imos

RAZA

Medias de cuadrados mínimos para el efecto

Pr > |t| for H0: LSMean(i)=LSMean(j)

Variable dependiente: ECRA

i/j	1	2	3
1		0.9647	0.0381
2	0.9647		0.0445
3	0.0381	0.0445	

		Número
RAZA	ECMS LSMEAN	LSMEAN
1	2.76316667	1
2	2.78900000	2
3	3.16983333	3

Medias de cuadrados mínimos para el efecto

RAZA

Pr > |t| for H0: LSMean(i)=LSMean(j)

Variable dependiente: ECMS

i/j	1	2	3
1		0.8768	0.0226
2	0.8768		0.0392
3	0.0226	0.0392	

 $\ensuremath{\mathsf{NOTA}}\xspace$. To ensure overall protection level, only probabilities associated with pre-planned

comparisons should be used.

	PERI	COPA LSMEAN	H0:LSMean1= LSMean2 Pr > t
	1 2	0.08638889 0.21722222	0.0098
Thursday, January 14, 2001	9	Sistema SAS	14:15

Procedimiento GLM Medias de cuadrados mínimos

H0:LSMean1=
LSMean2
PERI COTO LSMEAN Pr > |t|

		PERI 1 2	2.3	LSMEAN 7944444 6844444	H0:LSMean1= LSMean2 Pr > t 0.0016
		PERI 1 2	2.62	LSMEAN 2600000 8866667	H0:LSMean1= LSMean2 Pr > t 0.0012
		RAZA	PERI	COPA LSM	Número EAN LSMEAN
		1 1 2 2 2 3 3	1 2 1 2 1 2	0.07566 0.20700 0.08650 0.23666 0.09700 0.20800	000 2 000 3 667 4 000 5
RAZA*PERI	Medias				a el efecto (i)=LSMean(j)
		V	ariable	dependien	te: COPA
i/j 5	1	2		3	4
1 0.7657 2 0.1436	0.0847 0.0868 0.9888	0.0868		0.8922	0.0417
3 0.8955 4 0.0708	0.8922 0.1480 0.0417 0.6894	0.1511		0.0807	0.0807
5	0.7657	0.1436		0.8955	0.0708

1

2

0.92927778

2.15333333

<.0001

6 0.0847 0.9888 0.1480 0.6894 0.1403 Sistema SAS 14:15

Thursday, January 14, 2001 10

Procedimiento GLM Medias de cuadrados mínimos

RAZA	PERI	COTO LSMEAN	Número LSMEAN
1	1	0.94500000	1
1	2	2.06733333	2
2	1	0.95750000	3
2	2	2.25966667	4
3	1	0.88533333	5
3	2	2.13300000	6

Medias de cuadrados mínimos para el efecto

RAZA*PERI

Pr > |t| for H0: LSMean(i)=LSMean(j)

Variable dependiente: COTO

i/j	1	2	3	4
5	6			
1	<.0001	0.0002	0.9564	<.0001
2	0.0002		0.0004	0.3562
3	0.9564	0.0004		0.0001
0.7526 4	0.0003 <.0001	0.3562	0.0001	
<.0001 5	0.5388 0.7707	0.0001	0.7526	<.0001
<.0001	<.0001	0.7484	0.0003	0.5388
<.0001				

RAZA	PERI	ECRA LSMEAN	Número LSMEAN
1	1	2.35533333	1
1	2	2.67866667	2
2	1	2.12400000	3
2	2	2.89666667	4
3	1	2.65900000	5
3	2	3.03000000	6

Thursday, January 14, 2001 11

Procedimiento CIM

				cedimiento GLM e cuadrados mín	imos
RAZA*PERI	Medias de cuadrados mínimos para el efecto				
KAZA" PEKI		Pr >	t for	HO: LSMean(i)=	LSMean(j)
			Variabl	e dependiente:	ECRA
i/j 5	1		2	3	4
1	0.0056	0.12	82	0.3150	0.0187
2 0.9221	0.1282 0.1014			0.0283	0.2910
3	0.3150	0.02	83		0.0048
0.0331	0.0017 0.0187	0.29	10	0.0048	
0.2519	0.5115 0.1506	0.92	21	0.0331	0.2519
0.0857 6 0.0857	0.0056	0.10	14	0.0017	0.5115
		RAZA	PERI	ECMS LSMEAN	Número LSMEAN
		1 1 2	1 2 1	2.55833333 2.96800000 2.33500000	1 2 3

1	2	2.96800000	2
2	1	2.33500000	3
2	2	3.24300000	4
3	1	2.98466667	5
3	2	3.35500000	6

Medias de cuadrados mínimos para el efecto RAZA*PERI Pr > |t| for H0: LSMean(i) = LSMean(j) Variable dependiente: ECMS i/j 5 1 0.0858 0.3772 0.0092 1 0.0753 0.0037

0 0400	2	0.0858		0.0243	0.2314
0.9402	3	0.1022 0.3772	0.0243		0.0033
0.0215		0.0015			
	4	0.0092	0.2314	0.0033	
0.2591		0.6161			
	5	0.0753	0.9402	0.0215	0.2591
0.1161					
	6	0.0037	0.1022	0.0015	0.6161
0.1161					

NOTA: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.