
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

QoS provision in a dynamic channel allocation based on
admission control decisions

CLAUDINA RATTARO, Facultad de Ingeniería, Universidad de la República, Uruguay

LAURA ASPIROT, Facultad de Ciencias Económicas y de Administración, Universidad de la República,

Uruguay

ERNESTO MORDECKI, Facultad de Ciencias, Universidad de la República, Uruguay

PABLO BELZARENA, Facultad de Ingeniería, Universidad de la República, Uruguay

Cognitive Radio Networks have emerged in the last decades as a solution of two problems: spectrum under-

utilization and spectrum scarcity. In this work we propose a dynamic spectrum sharing mechanism, where

primary users have strict priority over secondary ones, in order to improve the mean spectrum utilization

with the objective of providing to secondary users a satisfactory grade of service with a small interruption

probability. We study a stochastic model for Cognitive Radio Networks with fluid limits techniques. Our main

findings consist in a Gaussian limit theorem in the sub-critical case, and a non-Gaussian limit theorem, under

a different scaling scheme, in the critical case. These results provide us practical QoS criteria for sharing

policies. We support our analysis with representative simulated examples in both scenarios.

CCS Concepts: • Mathematics of computing → Probability and statistics; • Networks → Network
performance modeling; Network dynamics; Network performance analysis.
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1 INTRODUCTION
During the last two decades we have seen an explosive development of wireless networks which is

reflected on the widely extended use of wireless technologies in our everyday lives (e.g. mobile

phones, sensors, laptops). Consequently the demand for electromagnetic spectrum has increased to

unprecedented levels resulting in the spectrum scarcity problem. In spite of this, spectrum utilization

measurements have shown that licensed bands are vastly underutilized while unlicensed bands are

too crowded [6, 21, 39]. The significant underutilization occurs even in densely populated urban

areas. Therefore, it is vital to move forward with a means for better utilization of the spectrum.

Nowadays industrial and academic communities are focusing much of their efforts to define the

main characteristics of the fifth-generation of mobile networks. It is expected that 5G connections

will appear on the scene in 2020 and will growmore than a thousand percent from 2.3 million in 2020

to over 25 million in 2021 [11]. With this in mind, how to optimize the spectrum capacity becomes
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a key ingredient in 5G system design. In this regard Cognitive Radio represents an attractive

candidate, especially for 5G networs [1, 17, 19, 28, 34].

The concept of Cognitive Radio (CR) was introduced byMitola [26, 27]. CR represents a promising

technology which, based on dynamic spectrum access, strives at solving the important problems

that we mentioned before: spectrum underutilization and spectrum scarcity. In this paradigm we

can identify two classes of users: primary and secondary. Primary users (PUs) are those for which

a certain portion of the spectrum has been allocated to (often in the form of a paid contract).

Secondary users (SUs) are devices which are capable of detecting unused licensed bands and adapt

their transmission parameters for using them. The key requirement in this context is that the PUs

ought to be as little affected as possible by the presence of SUs. One challenge then is to distribute

the spectrum holes efficiently and fairly. Another goal is to provide quality of service (QoS) to PUs

and also to SUs.

In what follows we focus on the analysis and characterization of a dynamic spectrum sharing

mechanism where PUs have strict priority over secondary ones. We present tools and criteria that

can be used in order to improve the mean spectrum utilization with the commitment of providing

to SUs a satisfactory grade of service and a small interruption probability. We are interested in SUs

whose service cannot be interrupted with high probability (like a phone call or other interactive

services). For these services it is preferable to be rejected and to avoid the situation where the

connection is established and then interrupted. These decisions (start service or not) represent a

mechanism that can be adopted by the SUs as a sort of admission control policy. We analyze two

indicators of these types of systems: the mean spectrum utilization and the probability that the

system is working at its capacity limit which is related with the interruption probability for SUs

services. Associated with this last issue we analyze a possible admission control policy in order to

reduce this probability.

In more detail we consider a scenario with C subchannels to be distributed between SUs and

PUs, and where PUs have strict priority. That is to say, we assume a scenario without spatial reuse

of subchannels where if a PU arrives when all the resources are in use, one of the SUs will be

deallocated immediately. For instance, consider a cellular network that employs frequency division

duplexing where the operator has C frequency bands (subchannels) to be assigned to its users

(PUs). If the primary network is LTE, we can assume a subchannel as one or more resource blocks.

Another example is given by the digital TV spectrum bands. In both scenarios, if there are free

resources, the SUs could use them with the constraint that their communications can be interrupted

at any time. However, there are some differences between both examples: in a cellular network

PUs can use any of the C subchannels, but in the case of digital TV each TV channel has its own

frequency band. Then we assume in our model that when a PU arrives while a SU is using its

subchannel, and there are free subchannels, this SU can be moved instantly to another unused

band, without any consequence to its service. If there is not a free subchannel (all of them are

busy), the SUs communication will be interrupted with consequences to its QoS. As our model

takes into account only the number of subchannels that are being used by PUs and SUs, if there are

free subchannels, the case of a PU that arrives to its subchannel and a SU must be moved instantly

to another free one will be modeled as if the PU arrives to a free subchannel.

There are some previous works which contribute in this direction, with the most representative

examples being [2, 20, 23, 40]. In [20] the authors study a spectrum sharing allocation for PUs and

SUs where preemption can occur. Similar to our model, they consider that a SU call is immediately

dropped when all resources are in use and a PU call arrives. However, they only analyze the queuing

system (as twoM/M/C/C queues) but do not address the possibility of providing certain level of

QoS to the users. Therefore they do not investigate the behavior of the system when admission

control mechanisms are applied. In [23] the authors study preemptive and non-preemptive priority

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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queues. The main difference to our model is that the affected SU (which is deallocated when a PU

needs a subchannel and are all in use) has to wait in the system until a subchannel is available again

(in the paper it is assumed the existence of a buffer). In our case we consider a total interruption of

the communication, with no buffer. Our assumption is more reasonable in services like a phone

call or other interactive services. On the other hand, in [40] the authors study the stationary

regime for a multiclass queue with preemption, similar to ours, obtaining a recursive expression

for the probability of interruption. Finally in [2], although the authors study an admission control

mechanism over SUs, they do no obtain an analytic expression of QoS metrics and only evaluate

them through simulations.

In this work we model the cognitive radio network as a two-dimensional continuous time Markov

chain (CTMC). In our approach theMarkovian structure allows us to analyze its asymptotic behavior

by means of a deterministic approximation obtained as a solution of a differential equation, i.e.

its fluid limit. Under some regularity hypotheses on transition rates, the fluid limit is the solution

of an ordinary differential equation (ODE). In cases as ours, with discontinuous transition rates,

the fluid limit is a piecewise smooth dynamical system (PWSDS). We characterize the system

behavior studying the PWSDS fixed points and we show that, in many cases, a SUs admission

control mechanism is required in order to ensure a low probability of service interruption. Some

preliminary results were published in our previous article [30].

In the present paper we extend the analysis to a probabilistic admission control mechanism and

most importantly, we incorporate aspects such as the description of the asymptotic distribution

associated with the fluid limit. This distribution depends strongly on the fixed points of the

deterministic approximation, both with and without admission control, and we find, depending on

the parameters of the model, Gaussian and non-Gaussian asymptotic distributions. The asymptotic

distribution permits the analysis of the interruption probability for SUs giving confidence bounds

valid when the number of users is large. In the case of non-Gaussian distribution, the stationary

regime and its limit are described explicitly in a simplified case. Using our results we also present

some practical network design criteria. In particular, the asymptotic distribution that was only

mentioned in [30] is developed here.

Applications of fluid models to telecommunications appeared in the literature and were widely

developed in the last decade. Some recent examples include for instance: peer-to-peer systems

and mobile networks (see for example [3, 5, 14, 29, 31, 32, 37] and references therein). In particular

concerning applications to CR networks there are some relatedworks that wewould like to highlight.

In [38] the authors use a fluid model to study SU’s queuing delay performance. In [41] they study

the coexistence of two wireless networks with different priorities and compare throughput and

delay obtained in both networks. On the other hand, [42] is focused on the collaborative sensing

within the SUs and its impact in QoS. In these papers the authors analyze the delay and throughput

in different CR scenarios, so their results can be complementary to ours where we analyze the

interruption probability.

The rest of the paper is structured as follows. After this introductory section, in Section 2, we

describe our model of spectrum sharing in CR networks. Section 3 presents the fluid model and

in the following subsections we show our analysis and characterization of the behavior of the

system under different admission control policies. We study the system for three different admission

control policies: free, deterministic and probabilistic. For all cases we introduce a fluid limit, and

study the system through it , analyzing fixed points and the asymptotic distribution around the

limit. Finally, we conclude and discuss future work in Section 4.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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2 MODEL DESCRIPTION
In this section we introduce our stochastic model for the number of primary and secondary users

in the system as a two-dimensional CTMC. This is a comprehensive and although simple model for

the system under study, however, it does not have an analytical solution. Therefore, we introduce

in Section 3 a scaled version of the CTMC, in order to find a fluid limit that allows us to study the

system analytically.

We model the arrival processes for both type of users as independent Poisson processes, and the

service durations are also independent and exponentially distributed random variables. We also

model the possibility of admission control decisions when a SU arrives to the system (SUs shall

decide, depending on the state of the system, whether to enter or not). We associate one user with

one channel.

In this context a general model and its variations due to the admission control policy assumptions

are stated in the following definitions.

Definition 2.1 (General model). Consider a CTMC (X1,X2) defined as follows.

• X1(t), X2(t): number of PUs and SUs at time t respectively,
• C: total number of identical subchannels, therefore, the state space is the subset:

E = {(x1, x2) ∈ N
2
: 0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ C}, (1)

• λ1, λ2: arrival rates for PUs and SUs respectively (independent Poisson arrivals),

• µ1, µ2: service rates for PUs and SUs respectively (independent exponentially distributed

service times),

• a(x1, x2) : E → R, admission decision function for SUs, and represents the probability that a

SU that arrives starts being served when there are x1 PUs and x2 SUs.

Thus the stochastic process (X1(t),X2(t)) has transition ratesq((x1, x2), (x
′
1
, x ′

2
)), from state (x1, x2)

to state (x ′
1
, x ′

2
), defined by:

• q((x1, x2), (x1 + 1, x2)) = λ1, if x1 + x2 < C ,
• q((x1, x2), (x1 − 1, x2)) = µ1x1,
• q((x1, x2), (x1, x2 + 1)) = a(x1, x2)λ2, if x1 + x2 < C ,

• q((x1, x2), (x1, x2 − 1)) = µ2x2,
• q((x1, x2), (x1 + 1, x2 − 1)) = λ1, if x1 + x2 = C and x2 , 0.

Definition 2.2 (Free admission control policy). We call free admission control model when in the

previous definition we consider no admission control policy, then a(x1, x2) = 1 if x1 + x2 < C and

a(x1, x2) = 0 if x1 + x2 = C .

Definition 2.3 (Deterministic admission control policy). In the deterministic case a(x1, x2) ∈ {0, 1};
if a(x1, x2) = 1 and a SU arrives, it will start being served, and when a(x1, x2) = 0, it will not. In this

work we assume x1 + x2 = δ , with 0 < δ < C , as an admission control boundary. That is to say,

a(x1, x2) = 1 if x1 + x2<δ and a(x1, x2) = 0 if x1 + x2≥δ .

Definition 2.4 (Probabilistic admission control policy). In the probabilistic admission control SUs

can access the system with a probability related with the number of users in the system. Let us

assume that a(x1, x2) is a continuous function that vanishes close to the border γ = {(x1, x2) :
x1 + x2 = C}. In this work we consider a(x1, x2) = 1 − (x1 + x2)/C .

Concerning the above formulation we may make some remarks. First notice that PUs behave as

aM/M/C/C queue, independent of the behavior of the SUs and of the admission policy. Secondly,

in this work we consider two approaches for the admission control mechanisms: a deterministic

and a probabilistic one. Thirdly, it is important to highlight that in the case when µ1 = µ2, for some

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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type of admission policies a(x1, x2), the process is a one-dimensional CTMC and the stationary

distribution can be computed explicitly. However, when µ1 , µ2 (which represents the natural

situation in cognitive radio networks) it is not possible to obtain a closed form expression of its

stationary distribution (see for example [43] and the references therein). Finally, although in the

general case the stationary distribution can be computed numerically, our approach consists in

formulating the corresponding fluid limit in order to characterize the system behavior and study

the influence of the admission control decisions in a more feasible and efficient way. We infer

properties of the stochastic system from the study of fixed points of the deterministic fluid limit

and the asymptotic distribution around it, and we define practical QoS criteria for sharing spectrum

policies.

3 FLUID MODEL
The Markovian structure of a process allows us to analyze its asymptotic behavior by means of a

simpler deterministic approximation: the fluid limit (generally obtained as a solution of an ODE).

Fluid limits have been used for particle systems, biology, epidemics, as well as in the study of

telecommunication networks. Generally speaking, starting from a stochastic model, the objective is

to find a deterministic approximation for the original process. Whereas the stochastic process is a

microscopic description of the system, we can say that the corresponding differential equation gives

a macroscopic description that captures the main characteristics of the system. See for instance

classical results on convergence of Markov processes in [10, 12, 13, 33, 36].

As a very simplified description of the method, the proof of this approximation result is generally

based on a martingale decomposition of the Markov process, which shows that the average behavior

of the stochastic process is captured by the drift part while the stochastic fluctuation of second order

(corresponding to the martingale) vanishes with the scaling and limit procedure. More specifically,

consider a Markov process X̃N (t) parametric in N and its martingale decomposition:

X̃N (t) = X̃N (0) +

∫ t

0

Q̃N (X̃N (s))ds + M̃N (t),

where Q̃N (l) is the so-called drift of the process at state l , which is calculated as

∑
m∈S (l −m)q(l,m),

being q(l,m) the transition rate from state l tom, S the state space, and where M̃N (t) is a martingale.

Consider now the scaled process XN (t) = X̃N (t)/N , then:

XN (t) = XN (0) +
1

N

∫ t

0

Q̃N (X̃N (s))ds +
M̃N (t)

N
.

If there exists a Lipschitz function Q such that:

lim

N→∞
sup

t ∈[0,T ]

Q̃N (X̃N (t))

N
−Q(XN (t))

 = 0 (2)

in probability, where ∥ · ∥ is the Euclidean norm, and M̃N (t)/N converges to zero in probability,

then XN (t) converges in probability over compact time intervals to a deterministic process x(t),
described by the ODE:

x ′(t) = Q(x(t)). (3)

The drift Q may be interpreted as the expected rate of change of the stochastic process (see Figure

1 for an illustration of this convergence in a toy example).

This introduces the problem of finding the suitable scale for the approximation. A typical scaling

procedure consists in dividing the process by N and considering transition rates multiples of N ;

jumps are of order 1/N and transition rates are of order N , which means that the product remains or

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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t

x

1
N {

Fig. 1. Illustration of a Markov process convergence. The continuous red line represents the solution of the
ODE and the dashed blue one is a trajectory of XN (t).

tends to a constant as N increases. This is the scaling considered in this work, we refer to [18, 25, 33]

as references for this and other scaling regimes, under which there are different limit results.

Let N be the scaling factor, and we define, as for the original model presented in Definition 2.1,

the following sequence of CTMCs (X̃N
1
, X̃N

2
) and whose state space is:

ẼN = {(Ni,N j) : (i, j) ∈ E}

where E is defined in Equation (1).

Definition 3.1. Consider the sequence of CTMCs (X̃N
1
, X̃N

2
) defined as follows.

• X̃N
1
(t), X̃N

2
(t): number of PUs and SUs at time t , respectively,

• CN : total number of subchannels,

• λ1N , λ2N : arrival rates for PUs and SUs, respectively,

• µ1, µ2: service rates for PUs and SUs, respectively,

• ãN (x1, x2): admission decision for SUs in each state.

The admission decision in each state should verify:

lim

N→+∞
ãN (Nx1,Nx2) = a(x1, x2).

This scaling concerns both admission control schemes presented in Section 2. In the case of a

deterministic admission control ãN (x1, x2) = 1 if x1 + x2 < Nδ and ãN (x1, x2) = 0 if x1 + x2 ≥ Nδ .
For the probabilistic admission control let ãN (x1, x2) = 1 − (x1 + x2)/CN .

The sequence of scaled stochastic process (X̃N
1
(t), X̃N

2
(t)) has transition rates q̃N ((x1, x2), (x

′
1
, x ′

2
)),

from state (x1, x2) to state (x ′
1
, x ′

2
), defined by:

• q̃N ((x1, x2), (x1 + 1, x2)) = λ1N , if x1 + x2 < CN ,

• q̃N ((x1, x2), (x1 − 1, x2)) = µ1x1,
• q̃N ((x1, x2), (x1, x2 + 1)) = ãN (x,x2)λ2N , if x1 + x2 < CN ,

• q̃N ((x1, x2), (x1, x2 − 1)) = µ2x2,
• q̃N ((x1, x2), (x1 + 1, x2 − 1)) = λ1N , if x1 + x2 = CN and x2 , 0.

In Table 1 we summarize the scaled parameters and their relationship with the original ones.

In this scaling scheme we go from our original system in Section 2 to a system where arrival rates

and capacity are multiplied by N , that can be interpreted as a large network, with many users (both

PUs and SUs) and large capacity. On the other hand, service rates in each channel are not scaled,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.
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Table 1. Original and scaled parameters for the two-dimensional process (X1,X2) and (X̃N
1
, X̃N

2
).

(X1,X2) λ1 λ2 µ1 µ2 C a

(X̃N
1
, X̃N

2
) λ1N λ2N µ1 µ2 CN ãN

as for instance they depend on the service type, and they do not increases individually, despite

the total service time increases with the number of users as µ1X̃
N
1
(t) for PUs and µ2X̃

N
2
(t) for SUs.

Finally the admission control in the large system depends only on the proportion of resources

occupied.

We consider now the scaled process (XN
1
,XN

2
), defined by

(XN
1
,XN

2
) = (X̃N

1
, X̃N

2
)/N (4)

and whose state space is:

EN = {(i/N , j/N ) : (i, j) ∈ E}

where E is defined in Equation (1).

This scaled process will converge to the deterministic fluid limit. In order to state the fluid

limit result we verify that our process satisfies equation (2). We compute the drift in the following

proposition.

Proposition 3.2. The drift for the process stated in Definition 2.1 is

Q(x1, x2) =

(
λ1 − µ1x1

λ2a(x1, x2) − µ2x2

)
, if x1 + x2 > C;

Q(x1, x2) =

(
λ1 − µ1x1

−λ1 − µ2x2

)
, if x1 + x2 = C, x2 > 0;

Q(x1, x2) =

(
−µ1x1

0

)
, if (x1, x2) = (C, 0).

The drift Q̃N (x1, x2) for the corresponding scaled process presented in Definition 3.1 verifies

lim

N→+∞

1

N
Q̃N

(
X̃N
1
, X̃N

2

)
= Q

(
XN
1
,XN

2

)
.

Proof. We compute the drift of (X1,X2) defined as:

Q(x1, x2) =
∑

(x ′
1
,x ′

2
)∈E

q((x1, x2), (x
′
1
, x ′

2
))

[
(x ′

1
, x ′

2
) − (x1, x2)

]
.

Q(x1, x2) = λ1

(
1

0

)
+ a(x1, x2)λ2

(
0

1

)
+ µ1x1

(
−1

0

)
+ µ2x2

(
0

−1

)
, if x1 + x2 < NC,

Q(x1, x2) = λ1

(
1

−1

)
+ µ1x1

(
−1

0

)
+ µ2x2

(
0

−1

)
, if x1 + x2 = C and x2 > 0,

Q(x1, 0) = µ1x1

(
−1

0

)
, if x1 = C and x2 = 0.

We compute the drift of (X̃N
1
, X̃N

2
) defined as:

Q̃N (x1, x2) =
∑

(x ′
1
,x ′

2
)∈ẼN

q̃N ((x1, x2), (x
′
1
, x ′

2
))

[
(x ′

1
, x ′

2
) − (x1, x2)

]
.
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Q̃N (x1, x2) = Nλ1

(
1

0

)
+ ãN (x1, x2)Nλ2

(
0

1

)
+ µ1x1

(
−1

0

)
+ µ2x2

(
0

−1

)
, if x1 + x2 < NC,

Q̃N (x1, x2) = Nλ1

(
1

−1

)
+ µ1x1

(
−1

0

)
+ µ2x2

(
0

−1

)
, if x1 + x2 = NC and x2 > 0,

Q̃N (x1, 0) = µ1x1

(
−1

0

)
, if x1 = NC and x2 = 0.

Then we replace (x1, x2) by (Nx1,Nx2) in the previous equations and divide by N . We need that

limN→+∞ ãN (Nx1,Nx2) = a(x1, x2), in fact we have that ãN (Nx1,Nx2) = a(x1, x2) for the three

different admission control schemes presented in Section 2. According to this we can conclude that

lim

N→+∞

1

N
Q̃N

(
X̃N
1
, X̃N

2

)
= Q

(
XN
1
,XN

2

)
.

□

Classical results on convergence of Markov processes assume some regularity properties of the

fluid ODE, i.e. the vector field Q(x1, x2) defining the ODE must be a Lipschitz continuous function

in the domain of interest. It is a sufficient condition for existence and uniqueness of solutions given

initial conditions. In our system this regularity condition does not always hold. In this context,

using results obtained by Bortolussi in [7, 9], it is possible to determine a PWSDS that is the fluid

limit.

The rest of the paper is structured as follows. In Subsection 3.1 we introduce some results

from [7, 9] and other references. Then, as a first step we analyze in Subsection 3.2 the system

without an admission control policy (free admission control policy). In Subsection 3.3 we continue

with the characterization of the system considering a deterministic admission control and finally in

Subsection 3.4 we study a probabilistic admission control policy. In all cases we analyze, together

with the fluid limit, the fixed points for the deterministic approximation and the asymptotic

distribution, all with the objective of designing practical admission control algorithms.

3.1 Piecewise smooth approximation
In the case where the drift is discontinuous the fluid limit can be obtained in the framework

of differential equations with discontinuous right-hand side [15]. In this context the differential

equation is replaced by what is called a differential inclusion, this means that Equation (3) is

replaced by

x ′(t) ∈ Q(x(t)) (5)

where Q is a set-valued mapping known as Filippov extension of Q defined as the convex hull of

the accumulation points of the drift. We define a Filippov solution as an absolutely continuous

function x(t) such that x(0) = x0 and x
′(t) ∈ Q(x(t)) almost everywhere. We refer to [7, 16] and

references therein for a more detailed exposition.

Concretely, considering x ′(t) = Q(x),Q : E → R2, E ⊆ R2,
⋃
Ri ⊇ E (Ri i = 1, 2 is a set of

disjoint regions), where Q is smooth on Ri and can be discontinuous only on the boundaries of Ri ,
and restricting our attention to our two different problems we have:

• Free admission control and probabilistic admission control policies: we only have one region

(R1) and its border γ . We have Q1(x) and Q2(x) the velocity vectors, both smooth in R1 = {x :

h(x) < 0} and γ = {x : h(x) = 0} respectively with h(x) smooth such that ∇h(x) , 0 in γ .
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Then x ′(t) ∈ Q(x(t)) with:

Q(x) =

{
Q1(x) if x ∈ R1

conv(Q1,Q2) if x ∈ γ
.

• Deterministic admission control policies: we have a system with two regions (R1, R2) and the

boundary between them (γ ′
). Let Q1(x) and Q2(x) be continuous in R1 = {x : h(x) < 0} and

R2 = {x : h(x) > 0} respectively and γ ′ = {x : h(x) = 0} with h(x) a smooth function with

∇h(x) , 0 in γ ′
.) Then x ′(t) ∈ Q(x(t)) with:

Q(x) =


Q1(x) if x ∈ R1

conv(Q1,Q2) if x ∈ γ ′

Q2(x) if x ∈ R2

,

where conv(Q1,Q2) is the convex hull of the vectors {Q1,Q2}. Notice that for each continuity point

x of Q , Q(x) = {Q(x)}, so that we have a proper differential inclusion only in the discontinuity

region (the borders γ or γ ′
).

Filippov proved results about existence and uniqueness of solutions [15]. If Q1 and Q2 are C
1
,

Q1 −Q2 is C
1
in γ (or γ ′

as appropriate), h is C2
in γ (or γ ′

) and at least one of nT (x)Q1(x) > 0 or

nT (x)Q2(x) < 0 holds, with x on the border γ (or γ ′
) and n(x) the normal vector to the border, then

there exists a unique Filippov solution from each initial condition. Considering x on the border γ ′

(or γ ), there are different behaviors of a solution starting in x depending on the value of nT (x)Q1(x)
and nT (x)Q2(x):

• transversal crossing: if nT (x)Q1(x) and n
T (x)Q2(x) have the same sign, e.g. if nT (x)Q1(x) > 0

and nT (x)Q2(x) > 0 , a solution starting in R1 crosses the border and stays in R2;

• sliding motion: if (nT (x)Q1(x))(n
T (x)Q2(x)) < 0 there is sliding motion, there are two cases:

unstable sliding motion when nT (x)Q1(x) < 0 and nT (x)Q2(x) > 0 (in this case there is no

uniqueness for solutions) and stable sliding motion when nT (x)Q1(x) > 0 and nT (x)Q2(x) < 0.

In this last case, that is ours, the system cannot escape from the border, then the solution

follows a vector field obtained as convex combination of Q1 and Q2, obtaining a new vector

field д(x) = (1 − α(x))Q1 + α(x)Q2 with α(x) ∈ [0, 1] that verifies nT (x)д(x) = 0;

• tangential crossing: if nT (x)Q1(x) = 0 (or nT (x)Q2(x) = 0), then the trajectory continues in

the region pointed by the non-zero vector field.

In our context, in all cases (free, deterministic and probabilistic admission control) we have a

discontinuous drift that leads to a differential equations with discontinuous right-hand side and to

the presence of sliding motion, as we show in the following subsections.

3.2 Free admission control policy
In this subsection we assume that a(x1, x2) = 1 for all (x1, x2) ∈ R1 such that R1 = {(x1, x2) :

x1 + x2 − C < 0}, 0 otherwise. The goal is to study the behavior of the system without any

intervention: if a SU arrives and there is at least one idle subchannel, the SU will be served. Here we

have discontinuous transition rates, as in the border of the state spaceγ = {(x1, x2) : x1+x2−C = 0}

we have a(x1, x2) = 0. As we explained, these discontinuities lead to a deterministic limit whose

trajectories are continuous but not differentiable. Because of this, some trajectories present sliding

motion.

Proposition 3.3. LetQ1(x1, x2) andQ2(x1, x2) be vector fields, both smooth in R1 andγ respectively
such that

Q1(x1, x2) =

(
λ1 − µ1x1
λ2 − µ2x2

)
, Q2(x1, x2) =

(
λ1 − µ1x1
−λ1 − µ2x2

)
,
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and let n(x1, x2) be the normal vector to the boundary γ (nT (x1, x2) = (1, 1) for all (x1, x2) ∈ γ ) then
we have a PWSDS driven by the following equations.

If x1 + x2 < C or λ1 + λ2 ≤ µ1x1 + µ2x2:{
x ′
1
= λ1 − µ1x1,

x ′
2
= λ2 − µ2x2.

,

if x1 + x2 = C and λ1 + λ2 > µ1x1 + µ2x2:{
x ′
1
= λ1 − µ1x1,

x ′
2
= −λ1 + µ1x1.

.

and if x1 = C : {
x ′
1
= −µ1x1,

x ′
2
= 0.

.

Sketch of the proof. We have that nT (x1, x2)Q1(x1, x2) = 0 ⇔ λ1 + λ2 − µ1x1 − µ2x2 = 0 and

nT (x1, x2)Q2(x1, x2) = 0 ⇔ −µ1x1 − µ2x2 = 0. Then, for studying nT (x1, x2)Qi (x1, x2) we have

several cases depending on the position of the line λ1 + λ2 − µ1x1 − µ2x2 = 0. It is clear that it

depends on the values of λ1, λ2, µ1 and µ2. In particular, we have that nT (x1, x2)Q1(x1, x2) > 0 if

λ1 + λ2 − µ1x1 − µ2x2 > 0,Q1 and n are tangent in the points over the line λ1 + λ2 − µ1x1 − µ2x2 = 0

and nT (x1, x2)Q1(x1, x2) < 0 if λ1+λ2− µ1x1− µ2x2 < 0. On the other hand, nT (x1, x2)Q2(x1, x2) < 0

in γ independently of the parameters λi and µi . Because of this we are in the presence of sliding

motion when −µ1x1+µ2x2 < λ1+λ2 and x1+x2 = C . In that case we define the differential inclusion
by a convex combination д(x1, x2) = (1−α(x1, x2))Q1 +α(x1, x2)Q2 verifying n

T (x1, x2)д(x1, x2) = 0

(the solution cannot escape from the border). Computing α(x1, x2) we obtain

α(x1, x2) =
µ1x1 + µ2x2
λ1 + λ2

then substituting in д(x1, x2) the result is proved. □

Let

(x1(t), x2(t)) (6)

be the PWSDS that is the solution to the previous equations with initial condition (x1(0), x2(0)), we
describe the trajectories for different system parameters and initial conditions. Complementary to

this, in Prop. 3.5 we study the fixed points.

The discussion depends on the existence or not of times where trajectories hit or leave the border

γ . Those times are the solutions of the equations x1(t)+x2(t)−C = 0 and λ1+λ2 = µ1x1(t)+ µ2x2(t)
and can not always be computed explicitly.

• Case 1: If the initial condition (x1(0), x2(0)) satisfies x1(0) + x2(0) < C we have two subcases:

– if � t+ > 0 such that x1(t
+)+x2(t

+)−C = 0, then the solution (x1(t), x2(t)) evolves according
to Q1(x1, x2) remaining in R1 and converges to its attractor fixed point (x∗

1
, x∗

2
). See Fig. 2

first row left. Note that the fixed point may also be on γ .
– if ∃ t+ > 0 such that x1(t

+)+x2(t
+)−C = 0, then the solution (x1(t), x2(t)) evolves according

to Q1(x1, x2) remaining in R1 until it hits the border at t
+
. Afterwards, the solution evolves

according to

д(x1, x2) =

{
x ′
1
= λ1 − µ1x1,

x ′
2
= −λ1 + µ1x1.

.

and depending on the fixed point we have:
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∗ if the fixed point (x∗
1
, x∗

2
) ∈ R1, always ∃t

++
, an exit point, such that t++ > t+ : µ1x1(t

++)+

µ2x2(t
++) = λ1 + λ2. Then for t > t++ the solution evolves according to Q1(x1, x2) and

converges to (x∗
1
, x∗

2
). See Fig. 2 second row left.

∗ if the fixed point (x∗
1
, x∗

2
) ∈ γ , the solution remains in γ ∀t > t+. See Fig. 2 second row

right.

• Case 2: If the initial condition (x1(0), x2(0)) satisfies x1(0) + x2(0) = C (with x2(0) > 0)

– if ∃ t∗ > 0 such that µ1x1(t
∗)+µ2x2(t

∗) = λ1+λ2, the solution (x1(t), x2(t)) evolves according
toд(x1, x2) (defined before) until t

∗
(an exit point) and then it evolves according toQ1(x1, x2).

It converges to the fixed point (x∗
1
, x∗

2
) ∈ R1. See Fig. 2 first row right.

– if � t∗ > 0 such that µ1x1(t
∗) + µ2x2(t

∗) = λ1 + λ2, then
∗ if (x∗

1
, x∗

2
) ∈ R1,∀t > 0 the solution (x1(t), x2(t)) evolves according toQ1(x1, x2) remaining

in R1 and converges to (x∗
1
, x∗

2
). See Fig. 2 third row left.

∗ if (x∗
1
, x∗

2
) ∈ γ , ∀t > 0 the solution (x1(t), x2(t)) evolves according to д(x1, x2) remaining

in γ and converges to (x∗
1
, x∗

2
). See Fig. 2 third row right.

• Case 3: If the initial condition (x1(0), x2(0)) satisfies x1(0) = C:
– if λ1/µ1 > C , the solution remains at (C, 0) being the fixed point.

– if λ1/µ1 < C , the solution evolves like Case 2.

Next we present the fluid limits results.

Theorem 3.4. Consider the process (X̃N
1
, X̃N

2
) with transition rates defined in Table 1, define:

(XN
1
(t),XN

2
(t)) = (X̃N

1
(t), X̃N

2
(t))/N

and let (x1, x2) be the PWSDS defined in Equation (6) with initial condition (x1(0), x2(0)). If

lim

N→∞
(XN

1
(0),XN

2
(0)) = (x1(0), x2(0))

then, for all T > 0,
lim

N→∞
sup

t ∈[0,T ]

(XN
1
(t),XN

2
(t)) − (x1(t), x2(t))

 = 0

in probability.

Sketch of the proof. The proof follows straightforward from Theorem IV.2 in [7]. The hy-

potheses of this Theorem are verified in our case; i.e. the scaling scheme of the process, as we

have defined in Section 3 and sumarized in Table 1, and the existence of a unique PWSDS with

regular trajectories, presented Subsection 3.2 in order to define Equation (6). Theorem IV.2 in [7]

considers two different regions R1 and R2 with a border between them, where the process and the

PWSDS may change many times from one region to the other and there may be several different

pieces of sliding motion at the border. In our case we have only one region and the border, but

the proof in [7] is suitable for this case. More specifically, the proof there consists in splitting the

whole PWSDS trajectory in pieces in each region (where classical results, for example from [13],

hold) and in sliding trajectories at the border. For that case the proof in [7] consists in replacing

the discontinuous drift by the sliding vector field and prove convergence by an uniformization

procedure. The proof of Lemma 3 in [8] that considers two different regions is valid for the case

with a region and its border.

In our case, as we in fact have a switched linear system we only have one piece of sliding motion,

and as our initial condition can only be in R1 we have three cases. In the first case the deterministic

trajectory stays all the time in R1 and classical results hold. In the second case the trajectory starts

in R1 and then presents sliding motion and stays at the border for t → ∞. In the last case the

trajectory PSWDS starts on R1 or at the border, then presents sliding motion and exits at the border,

and then remains in R1. In that case we need to check the exit conditions for the sliding motion,
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Fig. 2. Different trajectories for the PWSDS defined in Proposition 3.3 with C = 1. First row (left) shows a
trajectory in R1, starting at (0.1, 0.1) (λ1 = 2, λ2 = 1, µ1 = 5, µ2 = 4). First row (right) shows a trajectory with
initial condition (0.1, 0.9) at γ , with an exit point and that converges to the fixed point in R1 (λ1 = 3, λ2 = 1.5,
µ1 = 6, µ2 = 3.5). The second row (left) shows a trajectory with initial condition (0.05, 0.9) at R1, that stays
for a while on γ and finally converges to the fixed point (λ1 = 3, λ2 = 1.5, µ1 = 6, µ2 = 3.5) and (right) a
trajectory with initial condition (0, 0) in R1 which finally remains on γ (λ1 = 2, λ2 = 4, µ1 = 4, µ2 = 5). The
third row shows trajectories with initial condition (0.9, 0.1) at γ : (left) the whole trajectory for t > 0 in R1
(λ1 = 2, λ2 = 1, µ1 = 5, µ2 = 4) and (right) trajectory on γ ∀t > 0 (λ1 = 2, λ2 = 4, µ1 = 4, µ2 = 5.)

that are guaranteed because both vector fields are not tangential to the border at the same time (let

us recall that Q2 always points towards R1). □

An alternative approach can be done following [36]. In Chapter 8 the authors define what they

call flat boundary process, that is a Markov process where transitions at the border are different

from transitions in the interior of the state space, and transition rates are discontinuous at the

border. Under some regularity conditions the authors of [36] obtained very similar results than [7]:

they prove existence and uniqueness for the solution of the PWSDS and they prove convergence to

such systems. In their presentation the coefficients of the convex combination defining the sliding

vector field have a probabilistic interpretation. They consider a process with three coordinates,

where the first two correspond to PUs and SUs as ours, and the third, valued 0 or 1 indicates if the

system is at the border or not. With the same scaling as ours the third coordinate tends to 0 when
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scaled. In addition, as transition rates in the interior are smooth, while process stays in the interior

the scaled process (dividing by N ) changes a little. On the other hand, the number of jumps from

the interior to the border per time unit increases with N , so the third coordinate that indicates

where the process is reaches its invariant distribution before the number of PUs and SUs. In that

interpretation the coefficient α is the probability or the proportion of time that the process spends

at the border and (1 − α) the the proportion of time that the process spends in the interior.

For further work concerning fluid limits, including systems with discontinuous rates we also

refer to [9, 16, 22].

In the context of fluid limits it is usual to infer from the fixed point analysis of the deterministic

system the behavior of the stochastic one in the stationary regime. If there is a unique fixed point

that is a global attractor, the stochastic invariant distributions converges in probability to this fixed

point [4, 24, 37]. In what follows we will exploit this general result.

Proposition 3.5. Considering a(x1, x2) = 1 for all (x1, x2) : x1 + x2 < C , and 0 otherwise, letting
R1 and γ be the above defined zone and border and setting (x∗

1
, x∗

2
) as the PWSDS fixed point, then:

a. If λ1
µ1
+

λ2
µ2
< C , then the fixed point (x∗

1
, x∗

2
) =

(
λ1
µ1
, λ2µ2

)
∈ R1 and the mean system utilization is

λ1
µ1
+

λ2
µ2

(sub-critical case).

b. If λ1
µ1
+

λ2
µ2

≥ C and λ1
µ1
< C , then the fixed point (x∗

1
, x∗

2
) =

(
λ1
µ1
,C −

λ1
µ1

)
∈ γ and the mean

system utilization is C (critical case).
c. If λ1

µ1
≥ C , then the fixed point (x∗

1
, x∗

2
) = (C, 0) ∈ γ and the mean system utilization isC (critical

case).

Sketch of the proof. Let Q1 and Q2 be the velocity vectors, both continuous in R1 and γ
respectively:

Q1(x1, x2) =

(
λ1 − µ1x1
λ2 − µ2x2

)
, Q2(x1, x2) =

(
λ1 − µ1x1
−λ1 − µ2x2

)
,

and let n(x1, x2) be a normal vector to the line γ = {(x1, x2) : x1 + x2 = C}, so that nT (x1, x2) is
collinear with (1, 1) for all (x1, x2) ∈ γ .
As it is explained in Subsection 3.1, when summarizing the different possible behaviors of

both vector fields we have that all possible cases, for different values of the parameters, can be

categorized into two groups represented by Case 1 and Case 2 from Figure 3. In that figure the

solid line represents γ , the dotted line is λ1 + λ2 − µ1x1 − µ2x2 = 0 and the vectors are Q1 and

Q2. In Case 1 the PWSDS fixed point is in R1 (Proposition 3.5.a); we call it sub-critical case. It is

easy to note that (x∗
1
, x∗

2
) = (λ1/µ1, λ2/µ2). On the other hand, in Case 2, the fixed point is on γ

and its value is (x∗
1
, x∗

2
) = (λ1/µ1,C − λ1/µ1) representing a critical case, (Proposition 3.5.b). When

λ1/µ1 + λ2/µ2 ≥ C we can identify a sliding motion behavior near the fixed point, more precisely

we can affirm that the equation solution will live on γ most of the time. Both examples of Figure 3

consider λ1/µ1 < C . Finally, when the system is saturated by PUs (λ1/µ1 ≥ C), as a corollary from

Proposition 3.5.b the fixed point is (x∗
1
, x∗

2
) = (C, 0) (Proposition 3.5.c). □

In Figures 4 and 5 we show the deterministic approximation and a trajectory of the stochastic

processes for the Cases 1 and 2 of Figure 3. In each one, in the left graphic we show the simulation

of one trajectory of the scaled Markov process and the PWSDS. In the right we show for the same

simulation the evolution on the plane of the Markov chain and the corresponding PWSDS. In

Figure 4 the fixed point is in R1 and in Figure 5 it is on γ . It is important to note that in both cases,
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Fig. 3. Vector field for Case 1 (left): C = 1, λ1 = 2, λ2 = 1, µ1 = 5, µ2 = 4 and Case 2 (right): C = 1, λ1 = 2,
λ2 = 4, µ1 = 4, µ2 = 5. The solid line represents γ and the dotted line is λ1 + λ2 − µ1x1 − µ2x2 = 0. The region
R1 is defined by R1 = {(x1, x2) : x1 + x2 < 1}.
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Fig. 4. Case 1 with parameters: N = 100, C = 1, λ1 = 2, λ2 = 1, µ1 = 5 and µ2 = 4. The PWSDS fixed point is
(x∗

1
, x∗

2
) = (λ1/µ1, λ2/µ2) = (2/5, 1/4).

for large time values, the scaled number of users in the stochastic process is around the PWSDS

fixed point (x∗
1
, x∗

2
).

Recalling the description of the system, if x1 + x2 = C and a PU arrives, a SU will be immediately

deallocated giving the subchannel to the new PU. In this case, the QoS perceived by the SU will be

affected because of the interruption of its communication. We are interested in SUs whose service

cannot be interrupted with high probability (like a phone call or other interactive services). With

this in mind, we can relate the interruption probability with the probability that the process lives

on γ . We can conclude that the PWSDS fixed point has to be far enough from γ to avoid a strong

impact on secondary communications. However, it has to be as close as possible to γ to permit
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Fig. 5. Case 2 with parameters: N = 100, C = 1, λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5. The PWSDS fixed point is
(x∗

1
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2
) = (λ1/µ1,C − λ1/µ1) = (1/2, 1/2).

more spectrum utilization and a high access probability for SUs. According to Proposition 3.5 and

observing Figures 4 and 5 we can identify two cases: when the PWSDS fixed point is in R1 and

when it is on γ . For the last one, the system in stationary regime works near γ , so the probability of

service interruption is too large. Then, the question in this case is how can we move the fixed-point?

The analysis in the subsections 3.3 and 3.4 will be concentrated on answering that question. In

particular we move the fixed point using admission control decisions. On the other hand, in the next

two subsections we concentrate in cases like Case 1 (when the PWSDS fixed point is in R1). More

specifically, we concentrate our efforts on answering the question: is the fixed point far enough

from γ to assure a small interruption probability?

We study the interruption probability by means of the probability that the system is full P(X1 +

X2 = C). Both probabilities are highly related by

P(deallocate a SU) + P(block a PU) = P(X1 + X2 = C |PU arrives),

by PASTA property (Poisson Arrivals See Time Averages) the last probability is P(X1 + X2 = C)
and P(block a PU) is the blocking probability for aM/M/C/C queue.

3.2.1 Gaussian asymptotic distribution in sub-critical cases. Another issue studied in the context of

fluid limits is the velocity of this convergence by looking at the fluctuations of the process around

the limit. We refer to [13, 18, 33, 36] for the analysis of different scaling regimes and limit theorems

in that sense, concerning different kinds of limit distributions.

If we consider cases when λ1/µ1 + λ2/µ2 < C and the PWSDS trajectory remains all the time

in R1, it is possible to apply known results (see Theorem 2.3 of Chapter 11 in [13]) in order to

obtain the asymptotic distribution. Let (x1, x2) be the trajectory of the PWSDS with initial condition

(x1(0), x2(0)). If:

lim

N→+∞

√
N [(XN

1
(0),XN

2
(0)) − (x1(0), x2(0))] = χ (0)

with χ (0) deterministic, then:

√
N [(XN

1
,XN

2
) − (x1, x2)] ⇒ χ ,
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where (χ (t)) is a two-dimensional Gaussian process and ⇒ means convergence in distribution.

(χ (t)) has a covariance matrix determined explicitly by:

Cov(χ (t), χ (r )) =

∫ t∧r

0

eA(t−s)G(x1(s), x2(s))e
A(r−s)ds

where A =

(
−µ1 0

0 −µ2

)
and G(x1(s), x2(s)) =

(
λ1 + µ1x1(s) 0

0 λ2 + µ2x2(s)

)
.

In sub-critical cases, we can conclude that lim

N→+∞
P(XN

1
(t) + XN

2
(t) = C) = 0 for all t . However,

considering the defined Gaussian process and a finite large N we can present a practical criterion

to analyze if the PWSDS fixed point is far enough from γ . In particular, we can obtain confidence

bounds and also infer an adequate number of subchannels in order to avoid a high interruption

probability for SUs.

3.2.2 Practical QoS design criterion in sub-critical cases. As we have shown in the simulated exam-

ples of Figures 4 and 5, the fluid limit is an accurate approximation whenN is large. Then, in practice,

a possible criterion to determine whether the PWSDS fixed point is far enough from γ would be to

consider a certain confidence region of (XN
1
(t),XN

2
(t)) assuming a large value of t . If the resulting

confidence ellipse is entirely insideR1, high probability of non-interruption is guaranteed. Otherwise,

we should try to move the fixed point. In particular we consider lim

t→+∞
G(x1(s), x2(s)) = G(x

∗
1
, x∗

2
)

and define this limit matrix as G(∞) = G(x∗
1
, x∗

2
). Then, following the development in [29] we can

obtain the covariance matrix Σ(∞) by solving:

AΣ(∞) + Σ(∞)AT = −G(∞). (7)

Considering a fixed relation between both classes
λ1/µ1
λ2/µ2

= constant , using the deterministic confi-

dence ellipse we can infer which is the ideal scaling parameter. In other words, we can obtain an

idea of the optimal number of resources (subchannels) necessary to guarantee a small interruption

probability for SUs. In Figure 6 we show the theoretical 95% confidence ellipses considering different

values of N for two different parameter sets (Case A and Case B). In particular, we have considered

C = 1, then N represents the number of channels of the system (X̃N
1
(t), X̃N

2
(t)). For Case A, (with

C = 1, λ1 = 9, λ2 = 13, µ1 = 50 and µ2 = 20) we have that the ellipse is tangent to γ when

N = 180. Therefore, we can conclude that an admission control does not make sense in the system

(X̃N
1
(t), X̃N

2
(t)) when N ≥ 180. In Table 2 we confirm that the interruption probability of SUs can

be analyzed studying the probability that the system is full of users (blocking probability of PUs

can be approximated by 0). For Case B (withC = 1, λ1 = 10, λ2 = 12, µ1 = 25 and µ2 = 30), we have

an analogous conclusion when N ≥ 120.

Table 2. Values of full system probability and blocking PU probability for Case A of Figure 6. P(X̃N
1
(t) +

X̃N
2
(t) > C) is approximated by a Gaussian distribution.

N 100 110 120 130 140 150

P(X̃N
1
(t) + X̃N

2
(t) > C) 0.031 0.0252 0.0205 0.0167 0.0136 0.0111

P(block a PU) 0.5 × 10
−40

0.7 × 10
−45

0.8 × 10
−48

0.1 × 10
−53

0.1 × 10
−55

0

3.3 Deterministic admission control policy
In this subsection we analyze the system when a deterministic admission control is applied. In

this situation we consider γ ′ = {(x1, x2) : x1 + x2 = δ } as the admission control border, then the

question is: what is a reasonable value of δ to guarantee certain level of QoS to SUs?
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1
(t),XN

2
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100, 120, 140, 160, . . . , 500). Parameters of Case A: C = 1, λ1 = 9, λ2 = 13, µ1 = 50 and µ2 = 20. Param-
eters of Case B: C = 1, λ1 = 10, λ2 = 12, µ1 = 25 and µ2 = 30.

In this case the fluid limit is obtained in the same way as in Subsection 3.2, but the sliding motion

occurs in γ ′
.

Proposition 3.6. Let Q1(x1, x2) and Q2(x1, x2) be vector fields, both smooth in R1 = {(x1, x2) :
x1 + x2 − δ < 0} and R2 = {(x1, x2) : x1 + x2 − δ > 0} respectively such that

Q1(x1, x2) =

(
λ1 − µ1x1
λ2 − µ2x2

)
, Q2(x1, x2) =

(
λ1 − µ1x1
−µ2x2

)
,

and let n(x1, x2) be the normal vector to the boundary γ ′ (nT (x1, x2) = (1, 1) for all (x1, x2) ∈ γ ′) then
we have a PWSDS driven by the following equations.

If x1 + x2 < δ : {
x ′
1
= λ1 − µ1x1,

x ′
2
= λ2 − µ2x2.

,

else, if x1 + x2 − δ = 0 (γ ′): {
x ′
1
= λ1 − µ1x1,

x ′
2
= −λ1 + µ1x1.

,

and if x1 + x2 > δ : {
x ′
1
= λ1 − µ1x1,

x ′
2
= −µ2x2.

.

Notice that we consider the case
λ1
µ1
< C because its practical importance.

The behavior is very similar as in the free admission control case, and we can think in this case

as a sort of translation of the free case where the border that presents sliding motion is shifted

from γ to γ ′
. Then, the proof is totally analogous to Proposition 3.3.

A convergence theorem analogous to Theorem 3.4 holds, in this case using directly Theorem

IV.2 in [7], as for the deterministic policy there are two regions R′
1
= {(x1, x2) : x1 + x2 < δ },

R′
2
= {(x1, x2) : x1 + x2 > δ }, and the border γ ′ = {(x1, x2) : x1 + x2 = δ }, where the drift is

discontinuous.
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In addition we can study fixed points, by an analysis similar to Proposition 3.5. However, the

fixed point of the PWSDS in the most interesting cases lies in γ ′
. This fact hinders the development

of a design criterion like in Subsection 3.2.2, as we do not have the same results for the asymptotic

distribution.

In the deterministic policy scheme the hypotheses of Theorem 2.3 of Chapter 11 in [13] are not

verified, due to the non-smoothness of the PWSDS at the border γ ′
.

We have convergence of the stationary regime to the PWSDS fixed point but there is not a

general framework that allows to state a Gaussian asymptotic distribution. Therefore, we proceed

to compute the asymptotic stationary distribution of the total number of users in the particular

case when service rates are the same for primary and secondary users.

The limitation to a particular case comes from our proof method that depends on the explicit

stationary distribution, that can only be explicitly obtained for equal service rates. However, we

will give some insight on the asymptotic distribution in this case, for different service rates, based

on simulations. Further study of the general case is object of future work.

Using the limit of the invariant distribution for the particular case, we can build some design

criteria in order to find an estimation of the optimalδ value for certainmaximum level of interruption

probability. We will show that the criteria can be extended to the case µ1 , µ2 with good results in

3.3.2.

3.3.1 Non-Gaussian invariant distribution. We consider the original system (when µ1 = µ2) and
compute its invariant distribution, both for the original system and the scaled one. Then for the

scaled system that depends on N we find the limit of the invariant distribution when N goes to

infinity. For practical purposes as in this case, the invariant distribution can be computed explicitly.

There is no need to compute the asymptotic distribution, but theoretically we want to show that

the asymptotic distribution in the case where the equilibrium lies in the admission control border

is not Gaussian; with a different scaling, we find a geometric asymptotic distribution. The proof

is only in the particular case when service rates are the same for primary and secondary users,

that is when the problem is one-dimensional. The scaling, different from

√
N , and the geometric

distribution are not frequent in related works.

Consider the Markov chain defined in Section 2 with µ1 = µ2 where the access control is defined
considering γ ′

. In this case X = X1 + X2 is a one dimensional Markov chain with state space

E = {0, 1, . . . ,C}, and non-zero transition rates from i to j, q(i, j), given by:

q(i, i + 1) =

{
λ1 + λ2 for 0 ≤ i < δ
λ1 for δ ≤ i < C

, q(i, i − 1) = iµ for 0 < i ≤ C,

where δ ∈ E denotes the border of the admission control, that is when we have δ or more users we

prohibit the access of new secondary users. Let us observe that in the general case described in

Section 2 the total number of users X = X1 + X2 is Markovian only if µ1 = µ2, so the reduction to

a one dimensional Markov chain follows only in this case. In order to simplify notation in what

follows let us call ν2 = λ1 + λ2, and ν1 = λ1. We then have the following transition rates, where

ν1 < ν2:

q(i, i + 1) =

{
ν2 for 0 ≤ i < δ
ν1 for δ ≤ i < C

, q(i, i − 1) = iµ for 0 < i ≤ C,

We consider the scaled process X̃N = X̃N
1
+ X̃N

2
with the scaling in Table 3. Theorem 3.4 holds

in this case and we also have that XN = X̃N /N converges in probability, uniformly over compact

time intervals to x , given by the following equations, for 0 ≤ δ ≤ C .
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Table 3. Scaling for the one dimensional processes (X ) and (X̃N ).

(X ) ν1 ν2 C δ

(X̃N ) ν1N ν2N CN δN
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Fig. 7. PWSDS solution in the one dimensional case for two different initial conditions. Parameters: C = 5,
δ = 3, ρ1 = 1, ρ2 = 3.5 (left) and C = 5, δ = 3, ρ1 = 1, ρ2 = 2.5 (right).

If the initial condition is x(0) < δ :

x(t) =

{
ρ2 + (x(0) − ρ2)e

−µt
if t < τ2

δ if t ≥ τ2.

If the initial condition is x(0) > δ :

x(t) =

{
ρ1 + (x(0) − ρ1)e

−µt
if t < τ1

δ if t ≥ τ1,

where ρ1 =
ν1
µ
, ρ2 =

ν2
µ
, τ1 =

1

µ
log

(
x(0) − ρ1
δ − ρ1

)
and τ2 =

1

µ
log

(
x(0) − ρ2
δ − ρ2

)
. (See Figure 7 for

different behaviors of these solutions.)

Now we come back to the original system. As the problem now is one-dimensional we will

explicitly compute the stationary distribution of X , and then for the scaled system X̃N
for fixed N

and obtain its limit when N → ∞. X is a modification of a M/M/C/C queue, where the arrivals

changes their rate depending on the number of clients in the queue. We will analyze our system as

in [33] for theM/M/C/C queue. Computing the stationary distribution π for this Markov chain:

π (i)ν2 = π (i + 1)(i + 1)µ for 0 ≤ i < δ ,

π (i)ν1 = π (i + 1)(i + 1)µ for δ ≤ i < C .
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Then,

π (i) =
ρi
2

i!
π (0) for 0 ≤ i ≤ δ ,

π (i) =

(
ρ2
ρ1

)δ ρi
1

i!
π (0) for δ < i ≤ C,

where:

π (0)−1 =
δ∑
i=0

ρi
2

i!
+

(
ρ2
ρ1

)δ C∑
i=δ+1

ρi
1

i!
.

The stationary distribution π̃N
for the process X̃N

is:

π̃N (i) =
(N ρ2)

i

i!
π̃N (0) for 0 ≤ i ≤ Nδ ,

π̃N (i) =

(
ρ2
ρ1

)N δ
(N ρ1)

i

i!
π̃N (0) for Nδ < i ≤ C,

with:

π̃N (0)−1 =

N δ∑
i=0

(N ρ2)
i

i!
+

(
ρ2
ρ1

)N δ NC∑
i=N δ+1

(N ρ1)
i

i!
.

Theorem 3.7. Consider the original processes with equal service rates µ1 = µ2 and XN defined
as before. Then, the stationary distribution of X̃N − Nδ converges to the distribution of an integer
variable Z given by

P(Z = j) =


ρ

( ρ2
δ

) j
if j < 0,

ρ
( ρ1
δ

) j
if j ≥ 0,

where ρ1 =
ν1
µ
, ρ2 =

ν2
µ
, ρ =

(
ρ1

δ − ρ1
+

ρ2
ρ2 − δ

)−1
.

Proof. Let us compute, for 0 ≤ k < Nδ the stationary distribution π̃N (Nδ − k). Computing its

inverse:

π̃N (Nδ − k)−1 =
(Nδ − k)!

(N ρ2)N δ−k
π̃N (0)−1

=
(Nδ − k)!

(N ρ2)N δ−k

(
N δ∑
i=0

(N ρ2)
i

i!
+

(
ρ2
ρ1

)N δ NC∑
i=N δ+1

(N ρ1)
i

i!

)
=

(Nδ − k)!

(N ρ2)N δ−k

(
N δ∑
j=0

(N ρ2)
N δ−j

(Nδ − j)!
+

(
ρ2
ρ1

)N δ NC∑
i=N δ+1

(N ρ1)
i

i!

)
=

N δ∑
j=0

(N ρ2)
k (Nδ − k)!

(N ρ2)j (Nδ − j)!
+

N (C−δ )∑
j=1

(N ρ1)
j (N ρ2)

k (Nδ − k)!

(Nδ + j)!

= ρk
2

N δ∑
j=0

ρ−j
2

N k (Nδ − k)!

N j (Nδ − j)!
+

N (C−δ )∑
j=1

(N ρ1)
j (N ρ2)

k (Nδ − k)!

(Nδ + j)!
.
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Using Stirling’s formula we obtain:

lim

N→∞

N k (Nδ − k)!

N j (Nδ − j)!
=

δ j

δk

and then for the first term, using dominated convergence we have:

lim

N→∞
ρk
2

N δ∑
j=0

ρ−j
2

N k (Nδ − k)!

N j (Nδ − j)!
=

( ρ2
δ

)k 1

1 −
δ

ρ2

For the second term we have using Stirling’s formula that:

lim

N→∞

(N ρ1)
j (N ρ2)

k (Nδ − k)!

(Nδ + j)!
=

( ρ1
δ

) j ( ρ2
δ

)k
,

then, with dominated convergence:

lim

N→∞

N (C−δ )∑
j=1

(N ρ1)
j (N ρ2)

k (Nδ − k)!

(Nδ + j)!
=

ρ1
δ − ρ1

( ρ2
δ

)k
and, for 0 ≤ k < Nδ , we obtain:

lim

N→∞
π̃N (Nδ − k) = ρ

(
δ

ρ2

)k
.

If Z̃N = X̃N − Nδ we have that the stationary distribution µ̃N of Z̃N
verifies, for j < 0, that:

lim

N→∞
µ̃N (j) = lim

N→∞
π̃N (Nδ − (−j)) = ρ

( ρ2
δ

) j
.

In the same way we compute, for 0 ≤ k ≤ NC − Nδ , π̃N (Nδ + k). □

In Figure 8 we show the limit distribution and the stationary distribution for different values of

N . We see that the limit distribution represents a good estimation of the stationary one for all N
values.

3.3.2 Practical QoS criterion for δ selection. Using Theorem 3.7 we can improve the average

utilization of the spectrum while ensuring a small probability of interruption to the secondary

users. Please note that the result is valid for µ1 = µ2. For the general case, we cannot obtain an

analytical expression of the distribution but we can estimate δ considering an equivalent system. If

µ1 and µ2 are of the same order we can assume µ = min{µ1, µ2} (the worst case). Another approach
considers a µ−scaled system (µ = µ1, λ1 = λ1 and λ2 = λ2µ/µ2) [35]. Then, with the equivalent

system, in the same way as in the Gaussian approximation, our proposal consists in relating the

value of δ with the probability that the process lives on γ , then

P(X̃N
1
+ X̃N

2
= CN ) = P(X̃N = CN ) = P(X̃N − Nδ = CN − Nδ ).

According to Theorem 3.7 we can assume that:

P(X̃N
1
+ X̃N

2
= CN ) ≈ ρ

( ρ1
δ

)N (C−δ )
(8)

for large values of N .

Assuming a threshold on the probability of interruption which can be represented by P(X̃N
1
+

X̃N
2
= CN ) ≤ ϵ for certain ϵ and considering NC as the total number of subchannels in the system,

using equation (8) it is possible to obtain an upper bound of
ˆδ = δ (N ,C, ϵ).
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Fig. 8. Limit (N → ∞) of stationary distribution and stationary distributions for different N values. Parame-
ters: C = 5, δ = 3, ρ1 = 1, ρ2 = 3.5.

As an example we made different sets of simulations changing the value of N considering the

parameters λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5. Figure 9 shows the probability that the system is

full for different values of N . In this case we have used µ = 4 (the most critical case). Considering

ϵ = 0.1 we can conclude that if we need P(X̃N
1
+ X̃N

2
= CN ) ≤ 0.1, we obtain an upper bound of δ

(
ˆδ ) depending on N (see Table 4).

Table 4. Upper bounds to δ in order to ensure P(X̃N
1
+ X̃N

2
= CN ) ≤ 0.1.

N 100 80 50 20 10

ˆδ 0.986 0.982 0.951 0.920 0.791

P(block a PU) 0.0163 × 10
−8

0.8675 × 10
−8

0.3602 × 10
−5

0.0019 0.0184

3.3.3 Simulations for the general case with different service rates. The asymptotic distribution

obtained in Theorem 3.7 has the drawback that assumes equal services rates for PUs and SUs. This
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Fig. 9. Interruption probability vs δ . Parameters: C = 1, λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5.

hypothesis is needed because of the technique that we used to prove Theorem 3.7. Our proof, based

on [33], relies on the explicit computation of the stationary distribution for the original system and

for the scaled one, and in the calculus of the limit when the scaling factor N goes to infinity. This

approach is not suitable for different service rates as there is not a closed formula for the stationary

distribution. Then, a different approach would be necessary to obtain a non-Gaussian asymptotic

distribution in the general case.

Despite of this restriction, in 3.3.2 we have applied our results about geometric distribution to

the case of different services rates in order to design an admission control policy. In addition, for

different service rates, when the fixed point is in the admission control border, the asymptotic

distribution is non-Gaussian.

Herewe analyzewith simulations the casewith different service rates.We consider a deterministic

admission control where the fixed point (x∗
1
, x∗

2
) of the PWSDS is at the admission control border

γ ′
. In this case we cannot obtain a Gaussian distribution as it is obtained when the fixed point is in

the interior the region {(x1, x2) : x1 + x2 < δ }. In this last case it actually does not matter if there is

a deterministic admission control at x1 + x2 = δ or we consider the free admission control policy.

In both cases, if the fixed point is in the interior the behavior is similar. On the other hand, when

the fixed point lies in γ ′
, fluctuations around the fixed point are asymmetric and much smaller than

in the case of the interior fixed point, so that scaled by

√
N as in the Gaussian case we would not

obtain such limit.

We simulate two cases, with different parameters and the same deterministic admission control,

one with the fixed point in the interior an the other at γ ′
. In both cases the starting point is the

fixed point. For both cases we show the trajectories in Figure 10. The case at the right is more

asymmetrical and shows less dispersion around the fixed point than the left one. In Figure 11 we

show the kernel density estimations of the normalized fluctuations of XN
1
+ XN

2
around the mean

system utilization x∗
1
+ x∗

2
and in Figure 12 the corresponding QQ-plots. In both figures it is more

visible the asymmetry but specially that the distribution at the right is concentrated around zero,

and cannot be approximated by a Gaussian.
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Fig. 10. Left: N = 100, C = 1, δ = 0.8 λ1 = 2, λ2 = 1, µ1 = 5 and µ2 = 4. The PWSDS fixed point is (2/5, 1/4).
Right: N = 100, C = 1, δ = 0.8 λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5. The PWSDS fixed point is (1/2, 3/10).
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Fig. 11. Left: N = 100, C = 1, δ = 0.8, λ1 = 2, λ2 = 1, µ1 = 5 and µ2 = 4, kernel density estimation for the
normalized variable XN

1
+XN

2
− 0.65. Right: N = 100,C = 1, δ = 0.8, λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5, kernel

density estimation for the normalized variable XN
1
+ XN

2
− 0.8.

3.4 Probabilistic admission control policy
Let us consider another class of admission control: a probabilistic admission mechanism where

secondary users can access the system with a probability related to the number of users in the

system. Let a(x1, x2) be the probability that a secondary user that arrives enters the system when

there are x1 primary users and x2 secondary users. Then, when computing the entry rates for the

whole system, the arrival rates of secondary users appear multiplied by this probability. Let us

assume that a(x1, x2) is a Lipschitz function that vanishes close to the border {(x1, x2) : x1 +x2 = C}
(as an example we could choose a(x1, x2) = 1 − (x1 + x2)/C), that is:

lim

x1+x2→C
a(x1, x2) = 0.

In this case we also have discontinuous transition rates in the border of the state space. Following

the same lines as for the free admission case in Subsection 3.2 Proposition 3.3 we have:
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Fig. 12. Left: N = 100, C = 1, δ = 0.8, λ1 = 2, λ2 = 1, µ1 = 5 and µ2 = 4. Right: N = 100, C = 1, δ = 0.8,
λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5.

Proposition 3.8. Let Q1(x1, x2) and Q2(x1, x2) be vector fields, both smooth in R1 = {(x1, x2) :
x1 + x2 −C < 0} and γ respectively such that

Q1(x1, x2) =

(
λ1 − µ1x1

λ2a(x1, x2) − µ2x2

)
, Q2(x1, x2) =

(
λ1 − µ1x1
−λ1 − µ2x2

)
,

and let n(x1, x2) be the normal vector to the boundary γ (nT (x1, x2) = (1, 1) for all (x1, x2) ∈ γ ) then
we have a PWSDS driven by the following equations.

If x1 + x2 < C or λ1 ≤ µ1x1 + µ2x2:{
x ′
1
= λ1 − µ1x1,

x ′
2
= λ2a(x1, x2) − µ2x2.

If x1 + x2 = C and λ1 > µ1x1 + µ2x2: {
x ′
1
= λ1 − µ1x1,

x ′
2
= −λ1 + µ1x1.

This system has a unique solution with initial condition (x1(0), x2(0)). Let:

(x1(t), x2(t)) (9)

be the piecewise smooth dynamical system that is the solution to the previous equations with

initial condition (x1(0), x2(0)). Theorem 3.4 holds in this context.

This probabilistic admission control is different from the deterministic one. The solution presents

sliding motion when λ1/µ1 ≥ C or when λ1/µ2 ≥ C . In the first case the system in stationary

regime is always saturated by PUs, despite of the admission control. In the second case sliding

motion depends on the initial condition but it does not influence the stationary regime.

Let us consider the fixed point (x∗
1
, x∗

2
) for the processes defined by (9). For θ1 = λ1/µ1 < C and

θ2 = λ2/µ2, we have x
∗
1
= θ1 and x

∗
2
verifies the equation x∗

2
= θ2a(θ1, x

∗
2
). Therefore, x∗

2
is unique

if we assume that the equation θ2a(θ1, x) − x = 0 has an unique solution. In the example, with

a(x1, x2) = 1 − x1 + x2/C , x
∗
2
can be obtained explicitly.

Proposition 3.9. Considering a(x1, x2) continuous with lim

x1+x2→C
a(x1, x2) = 0 and defining (x∗

1
, x∗

2
)

as the PWSDS fixed point, then:

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Claudina Rattaro, Laura Aspirot, Ernesto Mordecki, and Pablo Belzarena

a. If θ1 < C , then x∗
1
=

λ1
µ1

and x∗
2
= θ2a(θ1, x

∗
2
)where (x∗

1
, x∗

2
) ∈ R1 and the mean system utilization

will be θ1 + θ2a(θ1, x∗2).
b. If θ1 ≥ C , then (x∗

1
, x∗

2
) = (C, 0) and the mean system utilization will be C .

Sketch of the proof. Results follows from similar arguments than in Proposition 3.5. In addi-

tion we could assume hypotheses about the probabilistic admission control function a(x1, x2) that
ensures asymptotic stability of the solutions (for example negative real part of eigenvalues for the

linearized system). This condition follows in the example a(x1, x2) = 1 − x1 + x2/C , where we have
a linear ODE. (See Figure 13 in order to analyze the vector field behavior in two different cases.)

□
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Fig. 13. Vector field for Case 1 (left): N = 100, C = 1, λ1 = 2, λ2 = 1, µ1 = 5, µ2 = 4 and Case 2 (right):
N = 100, C = 1, λ1 = 2, λ2 = 4, µ1 = 4, µ2 = 5. The continuous line represents γ .

Remark. For case a. of Proposition 3.9, for initial conditions where there is not sliding motion, it is
possible to apply the same results about Gaussian limits. Let (x1, x2) be the trajectory of the solution
with initial condition (x1(0), x2(0)). If:

lim

N→+∞

√
N [(XN

1
(0),XN

2
(0)) − (x1(0), x2(0))] = χ (0)

with χ (0) deterministic, then
√
N [(XN

1
,XN

2
)− (x1, x2)] ⇒ χ , where (χ (t)) is a Gaussian process whose

matrix can be determined explicitly by:

Cov(χ (t), χ (r )) =

∫ t∧r

0

eA(t−s)G(x1(s), x2(s))e
A(r−s)ds

where

A =

(
−µ1 0

0 −µ2

)
,

G(x1(s), x2(s)) =

(
λ1 + µ1x1(s) 0

0 λ2a(x1(s), x2(s)) + µ2x2(s)

)
.

In particular in Figure 14 we show the simulation of one trajectory of the scaled Markov process

and the trajectory of the ODE. In the same way as in Section 3.2, considering a large finite value of

N we can calculate the covariance matrix Σ(∞) solving Equation (7). For instance in Figure 15 we

illustrate different confidence ellipses (for different N values) for the case of Figure 14.
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Fig. 15. Theoretical 95% confidence ellipses of (XN
1
(t),XN

2
(t)), considering different N values (N =

50, 60, 70, . . . , 300). Parameters: C = 1, λ1 = 2, λ2 = 4, µ1 = 4 and µ2 = 5.

Remark. For case b. of Proposition 3.9, where there is sliding motion, it is possible to apply a similar
approach as in Theorem 3.7.

4 CONCLUSIONS AND FUTUREWORK
The main contributions of this work are the analysis and characterization of a possible model of

spectrum sharing in cognitive radio networks that improve the average utilization of the spectrum

while ensuring a small probability of interruption to the secondary users.

We considered a continuous time Markov chain that represents the population of the different

types of users in the system. We formulated the associated fluid model and we studied its solutions.

We studied the behavior of the system considering deterministic and probabilistic admission control
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mechanisms by means of the study of fixed points and the related asymptotic distributions. For

the deterministic case we obtained non-Gaussian and Gaussian asymptotic distributions being

the non-Gaussian result one of the main contributions of the paper. It is an input for future work

our preliminary results about asymptotic distribution in the non-Gaussian case. We aim to find

theoretical results in the general case with different service rates.

For systems with a large number of users we presented practical design criteria to guarantee

with high probability that secondary users in the system will not have service interruptions. These

design criteria were suggested by a theoretical analysis and supported by simulations.
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