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Multistage stochastic capacitated discrete lot-sizing with lead times:
problem definition, complexity analysis and tighter formulations

by Carlos E. TESTURI

A stochastic capacitated discrete procurement problem with lead times, can-
cellation and postponement is addressed. The problem determines the ex-
pected cost minimization of satisfying the uncertain demand of a product
during a discrete time planning horizon. The supply of the product is made
through the purchase of optional distinguishable orders of fixed size with
lead time. Due to the uncertainty of demand, corrective actions, such as or-
der cancellation and postponement, may be taken with associated costs and
time limits. The problem is modeled as an extension of a capacitated dis-
crete lot-sizing problem with uncertain demand and lead times through a
multistage stochastic mixed-integer programming approach. To improve the
resolution of the model by tightening its formulation, valid inequalities are
generated based on conventional inequalities. Subsets of approximately non-
dominated valid inequalities are determined heuristically. A procedure to
tighten an upgraded formulation based on a known scheme of pairing of in-
equalities is proposed. Computational experiments are performed for several
instances with different uncertainty information structure. The experimental
results allow to conclude that the inclusion of subsets of the generated valid
inequalities enable a more efficient resolution of the model.

Keywords: stochastic lot-sizing, multistage stochastic mixed-integer program-
ming, valid inequality, lead time
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Resumen
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Multistage stochastic capacitated discrete lot-sizing with lead times:
problem definition, complexity analysis and tighter formulations

por Carlos E. TESTURI

Se aborda un problema de adquisición discreta capacitado estocástico con
plazos de entrega, cancelación y postergación. El problema determina la
minimización de costos esperados de satisfacer la demanda incierta de un
producto durante un horizonte de planificación de tiempo discreto. El sum-
inistro del producto se realiza mediante la compra de pedidos distinguibles
opcionales de tamaño fijo con tiempo de entrega. Debido a la incertidumbre
de la demanda, se pueden tomar medidas correctivas, como la cancelación
y la postergación de pedidos, con los costos y límites de tiempo asociados.
El problema se modela como una extensión de un problema de tamaño de
lote discreto capacitado con demanda incierta y plazos de entrega a través
de un enfoque de programación entera-mixta estocástica con múltiples eta-
pas. Para mejorar la resolución del modelo mediante el ajuste de su for-
mulación, se generan desigualdades válidas basadas en desigualdades con-
vencionales. Se determinan heurísticamente subconjuntos de desigualdades
válidas aproximadamente no dominadas. Además, se propone un proced-
imiento para ajustar una formulación mejorada basada en un esquema cono-
cido de emparejamiento de desigualdades. Para validar la metodología se
realizan experimentos computacionales para varios casos con diferente es-
tructura de información de la incertidumbre. Los resultados experimentales
permiten concluir que la inclusión de subconjuntos de las desigualdades vál-
idas generadas permite una resolución más eficiente del modelo.

Palabras claves: determinación de lotes estocástica, programación entera-mixta
estocástica múltiple-etapa, inecuaciones válidas, tiempo de espera
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Chapter 1

Introduction

Procurement problems are central to production planning or supply plan-
ning problems. In general, these problems require timely decisions on the
acquisition of products with the objective to efficiently meet their forecast
demand. Due to their properties, usually these problems do not have a di-
rect analytical resolution. Instead, frequently they are algebraically modeled,
and their models solved numerically by algorithms. For some problem cases,
their complexity is such that no efficient algorithmic resolution is known.
This situation leads to the search for appropriate resolution methodologies,
which is the area where this thesis seeks to make a contribution.

The problem under study tries to satisfy the uncertain demand of a prod-
uct at minimum expected cost during a time planning horizon. The product
procurement is accomplished by the optional acquisition of distinguishable
orders of fixed size with lead time. Due to orders lead time and the reveal-
ing of demand uncertainty, corrective actions may be taken on the acquisi-
tion decisions with associated costs and within time limits. One objective of
this thesis is to algebraically formulate the problem by multistage stochas-
tic mixed-integer programming and establish that it belongs to theNP-hard
temporal complexity class. A second objective is to tighten the formulation
through the development of associated valid inequalities. Another aim is to
approximately determine non-dominated sets of valid inequalities. A final
objective is to validate the effectiveness of the entire development through
computational experimentation.

This thesis is structured around a compendium of articles. It is composed
of a first part structured in chapters where the context and subject of it, its
contributions and a summary of computational experiments that validate
them are presented. The second part is composed by an appendix that in-
cludes three articles supporting it.

In Chapter 2, an introductory background of the problem is given. To-
gether with a description of the problem, a summary of the relevant litera-
ture associated with the analysis of the selected formulation and the method-
ology used for the problem is presented. In addition, a brief description of
the contextual literature that highlights the milestones of the methodology is
provided.

Chapter 3 describes an algebraic formulation of the problem based on the
stochastic mixed-integer programming approach. At the beginning, an in-
troductory formulation of the problem is developed assuming deterministic
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data. After defining the information structure of the uncertainty from a dis-
crete stochastic process, the stochastic variant of the formulation is presented.

Chapter 4 studies the time complexity of the problem based on its de-
terministic formulation. It includes the derivation of valid inequalities to
strengthen the stochastic formulation of the problem. It also includes, a
heuristic to determine non-dominated valid inequalities. Finally, an orderly
tightening scheme of pairing of valid inequalities is proposed.

Computational experiments of the developed methodology on several
data instances are summarized in Chapter 5. The value of information and
solution of the stochastic formulation is obtained. The performance of for-
mulations derived from valid inequalities is determined. Experiments are
performed to evaluate a stochastic formulation obtained by the heuristic de-
termination of non-dominated valid inequalities.

The epilogue of this thesis is provided in Chapter 6 with inferred conclu-
sions and suggestions for further research.

Finally, additional details of results of this thesis were included in the
following articles published or submitted for consideration for publication.
The article “Stochastic discrete lot-sizing with lead times for fuel supply op-
timization”, published in the Pesquisa Operacional journal, describes the con-
text, the problem and its formulation. The development of valid inequalities
to strengthen the stochastic formulation of the problem is included in arti-
cle ”Valid inequalities for a stochastic capacitated discrete lot-sizing prob-
lem with lead times, cancellation and postponement” that was submitted
to a journal for consideration for publication and is currently under the re-
view process. The article “Non-dominated valid inequalities for a stochas-
tic capacitated discrete lot-sizing problem with lead times, cancellation and
postponement”, published in Proceedings of the 8th International Conference on
Operations Research and Enterprise Systems, depicts the heuristic to determine
non-dominated valid inequalities. Appendix A contains a copy these articles.
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Chapter 2

A Procurement Problem

This chapter presents a variant of the problem of satisfying the uncertain de-
mand of a product at minimum expected cost during a time planning hori-
zon. The supply of the product is made through the purchase of optional
distinguishable orders of fixed size with lead time. Due to the uncertainty
of demand, corrective actions, such as order cancellation and postponement,
may be taken with associated costs and time limits. The background of the
problem is outlined in Section 2.1. The description of the procurement prob-
lem in a context of demand uncertainty and delivery times is presented in
Section 2.2. A summary of relevant and contextual literature associated with
the problem and the used methodology is presented in Sections 2.3 and 2.4,
respectively. The description of the problem presented here was introduced
in the paper Testuri, Cancela, and Albornoz (2019a), which is a part of the
thesis work.

2.1 Problem Background

Distribution and storage of primary products are downstream oil supply
chain activities. These involve complex logistic planning under uncertainty
of product features and resources. In most non-oil producing countries, or
where the production is not sufficient to cover the internal demand, it is nec-
essary to import either crude oil, or even refined products, to cover demand.
One of the most important and cheapest transportation modes is by ship. The
use of ship transportation has an important impact in the supply chain, as it is
necessary to negotiate not only volume and price, but also how the delivery
will be carried out; shipments are of fixed sizes, ship routes are complex and
travel times are usually long. This means that supply contracts must be fixed
much in advance of the actual times where the fuel will be needed. Addition-
ally, demand may vary significantly from the best forecasts; this stochastic
component introduces an additional complexity and is a source of costs.

The problem background of the present work is a real problem arising in
a state-owned Uruguayan oil company that deals with fuel acquisition un-
der contractual and logistic conditions for the energy sector. The demand
that the company faces is uncertain, given that thermal electricity genera-
tion, as a complement in an electrical system, is highly dependent on re-
newable sources (Testuri, Zimberg, and Ferrari, 2012; Zimberg, Testuri, and
Ferrari, 2019). While the particular situation of the company, as discussed in
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the mentioned papers, focuses on fuel procurement for thermal generation,
the present thesis discusses the formulation and solution of a more general
variant of the problem core, which can represent situations in which a prod-
uct procurement is carried out by selecting distinguishable discrete supply
options in the context of uncertain demand.

2.2 Problem Description

In the problem under study, the decision maker aim is to meet the uncer-
tain demand of a product over a finite discrete time planning horizon while
minimizing the expectation of the costs incurred. To meet the product de-
mand, there are optional distinguishable purchase orders with an indivisible
amount of the product. Each order can be purchased at most once within
the planning horizon, with an associated cost and a delivery time. After sat-
isfying the demand of the product in a given period, the remaining quan-
tity is stored, up to a certain capacity, to flexibly satisfy future demand in
subsequent periods. The orders have significant delivery times within the
planning horizon. Therefore a considerable amount of time elapses between
the purchase decision and the moment when the product is received. As the
time passes, the uncertainty of the demand is revealed. Then it can happen
that, at a given time, a purchase order which has not yet been received is no
longer necessary. In this case, it could be decided to cancel its acquisition or
postpone its delivery; decisions that in turn, have minimum execution times
in relation to the time of delivery and associated costs.

2.3 Relevant Literature

The uncapacitated lot-sizing problem formulated by Wagner and Whitin (1958)
can be used as a baseline to formulate the problem of this work. This prob-
lem determines a minimum cost scheme of decisions of set-up, production or
replenishment, and storage for a product in order to satisfy its demand over
a discrete time planning horizon. In relation to this work we are interested
in classifying the problem in variants according to i) the certainty of the data
(determininistic or stochastic), ii) if production capacities are established as
constant or variable, and iii) the sizing of the lot (continuous or discrete).

For the deterministic uncapacitated and continuous lot-sizing case, Wag-
ner and Whitin (1958) and Wagelmans, Hoesel, and Kolen (1992) showed
that the problem has efficient resolution through dynamic programming ap-
plied to the original mixed-integer formulation. In addition, there are known
tighter formulations which determine the convex hull of the decisions’ fea-
sible region: the extended facility location formulation of Krarup and Bilde
(1977) and the valid inequalities formulation of Barany, Van Roy, and Wolsey
(1984). In the extended facility location formulation the quantity produced
in a period is distinguished according to the period of the demand it serves.
Barany, Van Roy, and Wolsey (1984) derived valid inequalities, denoted (`,S),
of the original formulation that allow to obtain its convex hull.
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For the problem variant with constant production capacities, Pochet and
Wolsey (1993) derived valid inequalities that generate all facets of the convex
hull of feasible solutions. This authors also showed that a subset of inequal-
ities suffices to solve the problem when the Wagner-Whithin assumption is
satisfied (Pochet and Wolsey, 1994).

A variant of the lot-sizing problem with capacity production was estab-
lished by Florian and Klein (1971). Florian, Lenstra, and Rinnooy Kan (1980)
showed that this variant belongs to the NP-hard time complexity class for
some combinations of convexity on objective functions and capacity limits.
Bitran and Yanasse (1982) established that this variant is a generalization of
the binary knapsack problem, and that it belongs to the NP-hard class for
a concave objective function with linear production and storage costs under
several cost properties.

Fleischmann (1990) established a variant of the lot-sizing problem with
discrete production; where a branch and bound procedure with Lagrangian
relaxation solved by dynamic programming is used. Van Hoesel et al. (1994)
reformulated the single-item discrete lot-sizing problem as a linear assign-
ment problem under specific conditions that allow resolution by linear and
dynamic programming. Van Eijl and Van Hoesel (1997) presented a partial
linear description of the convex hull of the single-item lot-sizing problem
with Wagner-Whitin costs. Tight mixed-integer programming formulations,
with mixed-integer sets, of variants of the discrete lot-sizing problems are
proposed by Miller and Wolsey (2003).

In the case that problem data is uncertain (stochastic variant), it can be
formulated by means of stochastic programming (Birge and Louveaux, 2011;
Kall and Wallace, 1994). Haugen, Løkketangen, and Woodruff (2001) pro-
posed a progressive hedging meta-heuristic solution for the continuous prob-
lem. Ahmed, King, and Parija (2003) established a tightened extended formu-
lation of the stochastic continuous uncapacitated problem and showed that
the Wagner-Whitin conditions are not satisfied by the formulation. Guan et
al. (2006) showed that the valid inequalities proposed by Barany, Van Roy,
and Wolsey (1984) are also valid for the stochastic continuous variant, and
they extend the inequalities to a general class that allow to define facets of
the feasible set.

Other variants of the deterministic continuous uncapacitated lot-sizing
problem model delivery time of the lots (e.g. due to production time). Lee,
Çetinkaya, and Wagelmans (2001) presented a variant in which demands
have a compliance interval, and they presented and efficient resolution by
dynamic programming. Brahimi, Dauzère-Pérès, and Najid (2006) presented
two variants according to whether the lots are or are not distinguishable with
respect to delivery times. These authors proposed efficient algorithms based
on dynamic programming for the distinguishable case and for the undistin-
guishable case when the order-delivery windows are not inclusive. For these
variants, Wolsey (2006) set tight extended formulations. For the stochastic
case, Huang and Küçükyavuz (2008) established that the problem with ran-
dom lead times can be efficiently solved when delivery windows do not in-
tersect in time. Jiang and Guan (2011) established a quadratic polinomial
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time algorithm. Liu and Küçükyavuz (2018) proposed valid inequalities for
the static probabilistic lot-sizing problem. Other approaches to stochastic lot-
sizing problems deals with scheduling of multiple products (Sox et al., 1999;
Beraldi et al., 2006; Vargas and Metters, 2011; Cunha Neto, Ferreira Filho,
and Arruda, 2015; Hu and Hu, 2018).

2.4 Contextual Literature

The methodology used to model the problem is stochastic mixed-integer
(linear) programming. A mixed-integer programming problem is about the
search of a solution over a set of combined continuous and discrete domain,
frequently described as linear constraints, that optimizes a linear objective
function (Schrijver, 1986; Nemhauser and Wolsey, 1988; Bertsimas and Weis-
mantel, 2005). The leading attempt of Dantzig, Fulkerson, and Johnson (1959)
(belatedly published) to solve the traveling salesman problem by describing
the convex hull of the tours ushered the cutting plane method independently
provided later by Gomory (1958). Land and Doig (1960) presented the suc-
cessful branch and bound method to solve integer programming problems;
which was later integrated with the cutting plane method. Edmonds (1968)
showed for several cases of integer programming problems that their convex
hull may be obtained by a combinatorial set of cutting planes. Following the
characterization of decision problems on the NP-complete time complexity
class by Cook (1971), Karp (1972) proved that several integer programming
problems belongs to the optimization related NP-hard class. Balas (1979)
showed that integer programming problems could be extended by consid-
ering disjunctions of polyhedra, and that valid inequalities for the disjunc-
tion of polyhedra can be deduced from inequalities of the original polyhedra.
Lenstra, Lenstra, and Lovász (1982) began a primary approach to solve the
problem with Lovász’s basis reduction algorithm (Aardal, Weismantel, and
Wolsey, 2002). Nemhauser and Wolsey (1990) developed a general recursive
procedure to obtain disjunctive and mixed integer rounding (MIR) inequali-
ties. Günlük and Pochet (2001) showed how known MIR inequalities can be
combined to generate new strong valid inequalities. Several valid inequali-
ties are derived from the disjunctive and MIR approaches (Cornuéjols, 2008).

Stochastic programming, a variant of the mathematical programming ap-
proach, seeks to determine the solution of optimization problems that in-
volves uncertain data. A relevant feature of this framework is that the deci-
sion process modeled must be consistent with the temporal structure of the
information. In this scheme, decisions and random events are interspersed
in two or more time stages, where decisions depend on the probabilistic dis-
tribution of future events, but cannot anticipate them with certainty. Dantzig
(1955) and Beale (1955) independently presented the earlier development of
two-stage stochastic programming. Wets (1966), Walkup and Wets (1967) and
Kall (1976) developed the fundamentals of two-stage stochastic program-
ming. Due to the uncertainty modeling, problem instances become large.
Therefore, decomposition mechanisms were developed to treat this effect



2.4. Contextual Literature 7

(Dantzig and Medansky, 1961; Benders, 1962). Based on Benders decompo-
sition, Van Slyke and Wets (1969) developed the L-shape resolution method.
Birge and Louveaux (1988) developed a multi-cut variant of the method. The
assessing information metrics “expected value of perfect information” and
“value of the stochastic solution” were developed based on decision theory.
Madansky (1960), Dempster (1981), and Birge (1982) participated in their
development. Several authors participated in the extension of the scheme
from two to multiple stages (Beale, Forrest, and Taylor, 1980; Louveaux, 1980;
Birge, 1985; Noël and Smeers, 1986). The integer L-shape method was pro-
posed by Laporte and Louveaux (1993). Carøe and Tind (1998) proposed a
decomposition of the method based on duality theory. Norkin, Ermoliev, and
Ruszczyński (1998) developed a variant of the branch and cut method based
on a statistical estimation of the recourse function. Sen and Higle (2005) de-
veloped a decomposition-based algorithm for the two-stage stochastic inte-
ger programming problem. Ahmed (2013) proposed a scenario decomposi-
tion algorithm for stochastic binary programming.
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Chapter 3

Algebraic Modeling

This chapter is devoted to an algebraic formulation of the problem intro-
duced in Chapter 2. The formulation is developed using an integer program-
ming approach. The modelled problem deals with the minimization of the
cost expectation incurred in decisions made to meet the uncertain demand
of a product over a finite discrete time planning horizon. To satisfy the de-
mand, there are optional distinguishable shipments, denoted as orders, with
an indivisible quantity of the acquired product. The orders have relevant
delivery times in the planning horizon; so that a significant amount of time
elapses between the purchase decision and when the order is received. Due
to the passage of time and after demand uncertainty has been revealed, it
could happen that at any given time an order that was previously acquired
and not yet received is no longer necessary. In this case it could be decided to
cancel its acquisition or postpone its delivery; decisions, which, in turn, have
minimum execution times in relation to the time of delivery and associated
costs. After attending the demand in a given period, the amount of remain-
ing product is stored up to a certain capacity, to satisfy future demands in a
flexible manner.

The algebraic formulation of the problem is presented below. First, a de-
terministic model of the problem is developed, where definitions and gen-
eral structure are established. After defining the information structure of the
uncertainty from a discrete stochastic process, the stochastic variant of the
model is presented. The models presented in this chapter are part of the
publication Testuri, Cancela, and Albornoz (2019a), part of this thesis, and
included in Appendix A.

3.1 Deterministic model

The following is a formulation of the deterministic problem, where the de-
mand is assumed to be known with certainty. A discrete time sequential
decision process is considered, in which decisions are made to acquire possi-
ble orders, or to cancel and postpone orders already acquired. Main entities
of the problem are described as index sets in Table 3.1. The planning time is
represented by the set T of discrete time periods, from initial period 1 up to
horizon period h̄. The set O of orders is partitioned in two subsets: the set
A of already acquired orders –orders established in previous time execution
of the model– that are pending reception, and the set F of possible (future)
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orders to be acquired from now on. Acquisition decisions are made on orders
in set F, and cancellation or postponement decisions are taken on orders in
set A.

TABLE 3.1: Index sets

T periods, {1, ..., h̄} (ordered set)
A already acquired orders
F possible (future) orders to be acquired
O orders, A ∪ F

Due to the nature of the problem, these decisions have relevant compli-
ance times in the planning horizon. Each order has a minimum delivery
time, between the time the purchase decision is made and the order is re-
ceived. Decisions to cancel and postpone an already purchased order must
be made before a certain minimum time, prior to the receipt of the order.
In addition, when deciding to postpone a previously purchased order, the
time elapsed between the original reception period and the postponement
period cannot be less than a given minimum postponement time. All these
constraints cause some latency in the decision making process.

Parameters

Parameters are described in Table 3.2. The amount demanded dt for the prod-
uct in each period t is known. Due to storage constraints, the inventory of the
product at the end of each period is restricted between a minimum amount,
s, and a maximum amount, s, and there is an initial storage amount, s0, at the
beginning of the planning horizon.

The period τi in which an already acquired order i is received is fixed, and
it is decided in previous acquisitions (i.e. previous model resolutions). Each
order i has a given amount of product, qi. Decisions on each order have la-
tency times measured in periods. The delivery time of order i, γi, establishes
the length of the wait time (measured in periods) between the acquisition
decision and the actual arrival of the order. The minimum time for cancel-
lation of order i, δi, establishes the minimum number of periods prior to the
delivery period at which the order may be cancelled. The minimum post-
ponement time of order i, εi, establishes the minimum number of periods
after the delivery period in which the postponed order can be received. The
achievement period of decisions on acquisition, cancellation and postpone-
ment must take place within the planning horizon.

For each order i there are unitary costs associated with the decisions to
acquire, cai, cancel, cci, and postpone, cpi, it. In addition, there is a unitary
storage cost ht at each period t.

The already acquired amount that is scheduled to be received in each pe-
riod t ∈ T is determined by the sum of the amount of the orders that are
received in that period,

at := ∑
{i∈A|τi=t}

qi; (3.1)
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this is an auxiliary aggregate parameter.

TABLE 3.2: Parameters

dt demand amount in period t ∈ T
s0 initial inventory amount
s, s minimum and maximum storage capacities by period
τi period in which already acquired order i ∈ A is received
qi amount of order i ∈ O
γi delivery time of order i ∈ F, such that 0 ≤ γi ≤ h̄− 1
δi cancellation minimum time of already acquired order i ∈ A,

such that 0 ≤ δi ≤ τi − 1
εi postponement minimum time of already acquired order i ∈ A,

such that 0 ≤ εi ≤ h̄− τi

cai acquisition unit cost of order i ∈ O
cci cancellation unit cost of order i ∈ O
cpi postponement unit cost of order i ∈ O
ht storage unit cost in period t ∈ T
at already acquired amount that is received in period t ∈ T

Variables

Variables of the deterministic model are summarized in Table 3.3. The con-
tinuous variable st represents the storage amount of the product at the end of
each period t. The acquisition decision of each order i to be taken in period
t, subject to its delivery period γi, is modeled by the binary variable vi

t. De-
cisions to cancel each order i in period t, prior to their minimum cancellation
time, are established using binary variables xi

t. When postponing an order
reception, decisions must be made about when and until when it is done.
Since both decisions are independent, the decision to postpone an order i is
modeled with a prior cancellation decision and a decision whether to delay
its receipt to another period t after its minimum delay time, represented by
binary variables zi

t. In addition, there are continuous aggregate variables that
consolidate, per period t, the acquired amount incoming at period t, ut, the
cancelled amount outgoing from period t, wt, and the postponed amount in-
coming at period t, yt. These variables facilitate the legibility of inventory
balance constraints.

Objective function

The aim is to determine a minimum cost scheme of inventory, acquisition,
cancellation and postponement of orders that satisfy demand during the
planning horizon. The costs of acquisitions, cancellations and postpone-
ments accrue at the time of decision making. The objective function includes
budget costs of acquisition, cancellation and postponement, and inventory
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TABLE 3.3: Variables of the deterministic model

st inventory amount at the end of period t ∈ T
ut acquired amount at period t ∈ T
vi

t if order i ∈ F is acquired in period t ∈ {1, ..., h̄− γi} (binary)
wt cancelled amount outgoing from period t ∈ T
xi

t if already acquired order i ∈ A is cancelled in period
t ∈ {1, ..., τi − δi} (binary)

yt postponed amount incoming in period t ∈ T
zi

t if already acquired order i ∈ A is postponed to period
t ∈ {τi + εi, ..., h̄} (binary)

costs,

min ∑
t∈T

[
∑

{i∈F|t≤h̄−γi}
caiqivi

t (3.2)

+ ∑
{i∈A|t≤τi−δi}

(cci − cai)qixi
t (3.3)

+ ∑
{i∈A|τi+εi≤t}

(cpi + cai − cci)qizi
t (3.4)

+ htst

]
. (3.5)

The expression (3.2) represents the costs of acquiring possible orders, the ex-
pression (3.3) represents the costs of cancellation minus the budgeted acqui-
sition costs of already acquired orders that are cancelled, the expression (3.4)
represents the acquisition costs minus the costs of cancellation plus the costs
of postponement of the already acquired orders that are postponed, and the
expression (3.5) represents inventory costs. The postponement cost includes
the subtraction of cancellation costs, since a postponement is represented by
a prior cancellation, but it does not incur cancellation costs.

Constraints

The main requirement is to satisfy demand while maintaining the inventory
balance with contributions of the product previously stored, what was al-
ready acquired, what is acquired, and what is cancelled, postponed and re-
mains available in storage. This is determined, for all t ∈ T, by the equation

st−1 + at + ut + yt = dt + wt + st, (3.6)

where s0 is the given initial inventory.
The amount stored in each period t ∈ T is constrained between lower and

upper bounds by
s ≤ st ≤ s. (3.7)

The amount of acquired product that is received in each period is deter-
mined by the sum of orders acquired in the range of the delivery periods of
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the orders. This is accomplished for each period t ∈ T by

ut = ∑
{i∈F|γi+1≤t}

qivi
t−γi . (3.8)

If an order is acquired, the acquisition is decided in a single period be-
fore or equal to its possible receiving period less its delivery time. This is
established for each order i ∈ F by

h̄−γi

∑
t=1

vi
t ≤ 1. (3.9)

The already acquired amount that is cancelled in each period is deter-
mined by the cancellations of the orders in the possible range of the corre-
sponding cancellation periods. This is ensured for each period t ∈ T by

wt = ∑
{i∈A|τi=t}

(
qi

τi−δi

∑
t′=1

xi
t′

)
. (3.10)

If an order i ∈ A is cancelled, the cancellation is decided in a single period
before or equal to its receiving period τi minus its cancellation time δi, as
established by

τi−δi

∑
t=1

xi
t ≤ 1. (3.11)

The postponement of an order is modeled by the use of cancellation, that
is to say, it is only possible to postpone orders that are cancelled. The already
acquired amount that is postponed to a certain period is determined by the
postponements of the orders in the possible range of the corresponding post-
ponement periods. For a period t ∈ T this is accomplished by

yt = ∑
{i∈A|τi+εi≤t}

qizi
t. (3.12)

If an order i ∈ A is postponed, it is to be received in a single period
subsequent to or equal to its original receiving period τi plus its delay time
εi, as established by

h̄

∑
t=τi+εi

zi
t ≤ 1. (3.13)

An orden can be postponed, if its original arrival decision has been can-
celled. This is accomplished for each order i ∈ A by

h̄

∑
t=τi+εi

zi
t ≤

τi−δi

∑
t=1

xi
t. (3.14)
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Finally, there are domain constraints of the variables as stated by

st, ut, wt, yt ≥ 0, for all t ∈ T,
vi

t ∈ {0, 1}, for all i ∈ F and t ∈ {1, ..., h̄− γi},
xi

t ∈ {0, 1}, for all i ∈ A and t ∈ {1, ..., τi − δi},
zi

t ∈ {0, 1}, for all i ∈ A and t ∈ {τi + εi, ..., h̄}.
(3.15)

The deterministic problem formulation, (3.2)-(3.15), is denoted as (DCS)1.
The (DCS) formulation is a generalization of the discrete lot-sizing problem,
and it belongs to the NP-hard time complexity class, since the discrete lot-
sizing problem belongs to this class (Bitran and Yanasse, 1982; Wolsey, 2002).

The feasibility of this formulation is conditioned to the timely availability
of the product acquisition to satisfy its demand, as stated for each period
t ∈ T by the condition

s0 + ∑
{i∈A|τi≤t}

qi + ∑
{i∈F|γi+1≤t}

qi ≥
t

∑
t′=1

dt′ . (3.16)

3.2 Stochastic model with uncertain demand

The following model is a stochastic extension of the deterministic model in
which demand is a random parameter. Previously, the uncertain information
structure was established through stochastic optimization (Birge and Lou-
veaux, 2011). Subsequently, the entities and formulation of the stochastic
model are reported.

Uncertain information structure

The uncertain demand is represented by a discrete-time stochastic process in-
dexed in the planning periods; in such a way that each stage of the stochastic
process is associated to a period. The process is defined in a finite probabil-
ity space. It is assumed that the demand of the first period is deterministic,
and that the demands of the remaining periods are random with known dis-
tribution function. The decisions of a period only depend on the event out-
comes of the random parameters of previous periods. This process is non-
anticipatory of the future decisions or the realizations of the random events.
This information structure can be represented by a arborescence of events
with h̄ levels or stages called tree of scenarios (Römisch and Schultz, 2001).
The arborescence is a perfect directed tree, with the root node event in pe-
riod t = 1 and with leaf node events in period t = h̄. Each path of events
from the root node to a leaf node is denoted as a scenario.

Each node of the scenario tree describes the state of the process and is
identified by a period and a scenario. An alternative abbreviated notation is
to identify the nodes by a single index n in an numerable set of nodes, N. For
the first period, t = 1, there is a unique node, called r, that represents the root

1The same denomination used in the articles is maintained for compatibility reasons.
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(A) Indexed scenario tree

N = {1, 2, ..., 15}
r = 1
L = {8, 9, ..., 15}
t(4) = 3
p(4) = 2
p(4, 2) = 1
P(4) = (1, 2, 4)
S(2) = {4, 5, 8, 9, 10, 11}

(B) Set-value functions on nodes

FIGURE 3.1: Example of a scenario tree with four periods and
set-value functions on nodes

of the tree. Each node n ∈ N has an immediate time predecessor p(n) node;
the auxiliary node 0 is defined as the predecessor of the root node, 0 := p(r),
such that 0 /∈ N. The period corresponding to each node n is defined as
t(n). The probability of the state of each node n is defined as πn, such that
πn ≥ 0 and ∑n∈N|t(n)=t πn = 1, for all t = 1, ..., h̄. The k-th time predecessor
of node n is defined as p(n, k) := p(p(n, k − 1)) for k = 2, ..., t(n)− 1, such
that p(n, 1) := p(n). The ordered set of nodes on the path from the root node
to n is defined as sequence

(
r ≡ p(n, t(n) − 1), p(n, t(n) − 2), ..., p(n, 1), n

)
.

The set of nodes successors of node n ∈ N is defined as S(n) := {n′ ∈ N, k =
1, ..., h̄ − t(n)|n = p(n′, k)}. The set of leaf nodes is defined as L := {n ∈
N|t(n) = h̄}. An example of a perfect binary scenario tree with four periods
in conjunction with set-value functions is depicted in Figure 3.1.

The stochastic parameters and set-value functions on the nodes of the
stochastic model are summarized in Table 3.4. The stochastic demand pa-
rameter, dn, which in the deterministic model depends on the periods, in the
stochastic model depends on the nodes of the tree.

Derived subsets of the sets of nodes and periods that are indexed in the
parameters are established in Table 3.5 in order to facilitate the formulation.
There are subsets to abbreviate the denomination of nodes where it is pos-
sible to acquire each order i ∈ F, Ni

γ, and where it is possible to cancel and
postpone each order i ∈ A, Ni

δ. In addition, subsets of periods to where it is
possible to postpone each order i ∈ A are established, Ti

ε. The subscripts of
these subsets are part of their denomination.

In the stochastic model, decisions depend on the nodes of the tree in-
stead of the periods as in the deterministic formulation. The deterministic
formulation variables are redefined according to Table 3.6. In contrast to the
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TABLE 3.4: Parameters and set-value functions on nodes

dn demand at node n ∈ N
t(n) period of node n ∈ N
p(n) immediate time predecessor node of node n ∈ N in the tree
p(n, k) k-th time predecesor node of node n ∈ N in the tree
πn probability of node n ∈ N
P(n) set of ordered nodes in the path from root node to node n ∈ N
S(n) set of successor nodes of node n ∈ N in the tree
L set of leaf nodes of the tree

TABLE 3.5: Derived index sets

Ni
γ nodes where it is possible to acquire

order i ∈ F, {n ∈ N|t(n) ≤ h̄− γi}
Ni

δ nodes where it is possible to cancel and
postpone order i ∈ A, {n ∈ N|t(n) ≤ τi − δi}

Ti
ε periods to where it is possible to

postpone order i ∈ A, {t ∈ T|t ≥ τi + εi}

deterministic model, the decision to postpone a order, into a given period,
could be taken in different nodes; this is modeled by including a node index
into variable z.

TABLE 3.6: Variables of the stochastic model

sn inventory amount at the end of period in node n ∈ N
un acquired amount incoming at node n ∈ N
vi

n if order i ∈ F is acquired in node n ∈ Ni
γ (binary)

wn cancelled amount outgoing of node n ∈ N
xi

n if an already acquired order i ∈ A is cancelled in node n ∈ Ni
δ (binary)

yn postponed amount incoming at node n ∈ N
zi

nt if already acquired order i ∈ A is postponed in node n ∈ Ni
δ

to period t ∈ Ti
ε (binary)

The indexes of periods in expressions of deterministic parameters or vari-
ables may refer to the temporal realization of a node n by t(n). This is the case
for parameters corresponding to the already acquired amount and storage
unit cost, which could be indexed as at(n) and ht(n), respectively.

Based on the previous definitions of index sets, parameters and vari-
ables a multistage stochastic mixed-integer programming formulation of the
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stochastic capacitated sizing problem is

(SCS) : min ∑
n∈N

πn

[
∑

{i∈F|n∈Ni
γ}

caiqivi
n (3.17)

+ ∑
{i∈A|n∈Ni

δ}
(cci − cai)qixi

n (3.18)

+ ∑
{i∈A,t∈Ti

ε|n∈Ni
δ}
(cpi + cai − cci)qizi

nt (3.19)

+ ht(n)sn

]
, (3.20)

s.t.
sp(n) + at(n) + un + yn = dn + wn + sn, n ∈ N, (3.21)

s ≤ sn ≤ s, n ∈ N, (3.22)

un = ∑
{i∈F|t(n)≥γi+1}

qivi
p(n,γi), n ∈ N, (3.23)

∑
n′∈P(n)

vi
n′ ≤ 1, i ∈ F, n ∈ N, t(n) = h̄− γi, (3.24)

wn = ∑
{i∈A|t(n)=τi}


qi ∑

{n′∈P(n)|t(n′)≤τi−δi}
xi

n′


 , n ∈ N, (3.25)

∑
n′∈P(n)

xi
n′ ≤ 1, i ∈ A, n ∈ N, t(n) = τi − δi, (3.26)

xi
n ≥ zi

nt, i ∈ A, n ∈ Ni
δ, t ∈ Ti

ε, (3.27)

yn = ∑
{i∈A|t(n)≥τi+εi}


qi ∑

{n′∈P(n)∩Ni
δ}

zi
n′,t(n)


 , n ∈ N, (3.28)

∑
{n′∈P(n),t∈Ti

ε}
zi

n′t ≤ 1, i ∈ A, n ∈ Ni
δ, (3.29)

sn, un, wn, yn ≥ 0, n ∈ N, (3.30)

vi
n ∈ {0, 1}, i ∈ F, n ∈ Ni

γ, (3.31)

xi
n, zi

nt ∈ {0, 1}, i ∈ A, n ∈ Ni
δ, t ∈ Ti

ε. (3.32)

This formulation takes into account the information structure of the sce-
nario tree. The objective function minimizes expected costs. The expected
costs can be factored by stage, where for each stage there is a distribution of
costs with associated probability. The objective include expectation costs of
acquisition (3.17), cancellation less acquisition in case of cancellation (3.18),
postponement plus acquisition minus cancellation (3.19) –a postponement is
modeled in conjunction with a cancellation–, and storage costs (3.20).

Constraints (3.21) set the product material flow conservation over time for
each node, where the left and right expressions represent the incoming and
outgoing flow, respectively. The lower and upper storage bounds at each
node are determined by constraints (3.22). The amount of acquired product
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that is received at each node is determined by acquisitions of orders in the
possible range of the corresponding acquisition periods according to (3.23).
Constraints (3.24) state that each order is acquired at a single node at most in
each path from the root node to a node whose period coincides with the re-
ceiving period minus the delivery time of the order. The product previously
acquired that is cancelled at each node is determined by the cancellations of
the nodes in the path from the root node to the node, whose cancellation pe-
riods are less than the delivery period less the cancellation time, according
to (3.25). Constraints (3.26) state that each order to be cancelled is at a single
node in each path from the root node to a node whose period coincides with
the receiving period minus the cancellation time of the order. The postpone-
ment of the orders is modeled in conjunction with the cancellation, i.e. only
cancelled orders can be postponed, (3.27). The already acquired amount that
is postponed in a node is determined by the postponements of the orders in
the nodes in the path from the root to the node for all periods superior to the
period of reception plus the delay time of the node, according to (3.28). Con-
straints (3.29) state that each order to be postponed is at a single node in each
path from the root node to a node in some period greater than the receiving
period plus the time of postponement of the node. Constraints (3.30)–(3.32)
state the domain of the variables. The set of feasible solutions of (SCS) is
denoted by XSCS.

This formulation is a generalization of the deterministic one. The deter-
ministic formulation is a special case of the stochastic for the case of a unique
scenario in which the tree of scenarios is reduced to a path. Therefore, the
feasibility of the stochastic formulation is conditioned to the timely availabil-
ity of the product acquisition to satisfy its demand along the path of each
node of the tree, as stated for each n ∈ N by the condition

s0 + ∑
{i∈A|τi≤t(n)}

qi + ∑
{i∈F|γi+1≤t(n)}

qi ≥ ∑
n′∈P(n)

dn′ .

Furthermore, the formulation does not guarantee that all solutions that sat-
isfy constraints at initial stages are also feasible in the remaining stages; that
is, it does not have “complete recourse” (Walkup and Wets, 1967).
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Chapter 4

Valid Inequalities

In this chapter, a study of the time complexity of the problem based on its
deterministic formulation is presented. The problem is shown to belong to
the time complexity classNP-hard. Therefore, there is no known polyhedral
description of the convex hull of XSCS. It is nevertheless interesting to derive
valid inequalities which can be used to strengthen the formulation. In some
cases adding these inequalities can directly improve the capability of solvers
to find solutions for larger instances in shorter times. Even when this is not
the case, they may be used within a more sophisticated solving strategy, such
as branch and cut methods relying on constraint separation. It includes a
development of valid inequalities to strengthen the stochastic formulation of
the problem. It also includes a heuristic to determine non-dominated valid
inequalities. The chapter concludes with a proposal of an orderly tightening
scheme of a known pairing of valid inequalities.

4.1 Problem Complexity

Without loss of generality with respect to the stochastic formulation, the com-
plexity of the problem is analyzed from the (DCS) deterministic formula-
tion. (DCS) is a generalization of the discrete lot-sizing problem described
by Wolsey (2002). The discrete lot-sizing problem is a special case of (DCS)
in which the acquisition variables are selected among a special ordered set of
type one (v. constraint (3.9)).

Proposition 1. (DCS) belongs to the time complexity class NP-hard

Proof. The proof shows that (DCS) belongs toNP and that (DCS) is at least as
hard as the generalized multiple-choice knapsack problem (GMCKP) (Pisinger,
2001). Since (GMCKP) belongs to NP-hard, then (DCS) also belongs to this
class.

Assuming that the feasibility condition (3.16) is met, there is an optimal
solution on (v, x, z, s) in which s is the solution of a network flow problem in
which in turn (v, x, z) are assumed independent. This polinomial size solu-
tion can be used to obtain a bounded cost objective (Yes answer) by satisfying
the constraints in polinomial time.

It is proved that (GMCKP) is polynomially reducible to (DCS). As a pre-
vious step, it is necessary to establish a reduced equivalent instance of (DCS)
that still encodes (GMCKP). It is considered an instance of (DCS) in which
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the delivery time of every order to be acquired is zero, γi = 0 for all i ∈ F,
there are no already acquired orders on which to decide cancellations or post-
ponements, A = ∅, there are no inventory bounds, st = 0 and st = ∞ for all
t ∈ T, the initial inventory is zero, s0 = 0, and the inventory costs are zero,
ht = 0 for all t ∈ T. Let this instance be

(DCSI) : min ∑
t∈T

∑
i∈F

caiqivi
t

s.t.
st−1 + ut = dt + st, t ∈ T, (4.1)

ut = ∑
i∈F

qivi
t, t ∈ T, (4.2)

∑
t∈T

vi
t ≤ 1, i ∈ F,

s0 = 0, st, ut ≥ 0, t ∈ T,

vi
t ∈ {0, 1}, i ∈ F, t ∈ T.

(DCSI) can be equivalently formulated in the space of the v variables.
Since s0 = 0, equality constraints (4.1) may be substituted by inequality con-
straints of the form

∑
t′∈{1,...,t}

ut′ ≥ ∑
t′∈{1,...,t}

dt′ , t ∈ T, (4.3)

and then substituting u variables in constraints (4.3) by equations (4.2).
This transformation leads to the formulation

(DCSIR) : min ∑
t∈T

∑
i∈F

caiqivi
t

s.t.

∑
t′∈{1,...,t}

∑
i∈F

qivi
t′ ≥ ∑

t′∈{1,...,t}
dt′ , t ∈ T, (4.4)

∑
t∈T

vi
t ≤ 1, i ∈ F,

vi
t ∈ {0, 1}, i ∈ F, t ∈ T.

Furthermore, (DCSIR) is still constrained by establishing dt = 0 for t =
1, ..., h̄ − 1. Then constraints (4.4) are separated according to their bound,
whether it is zero or not. Constraints with zero bound are dropped since
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they are redundant. This reduction leads to the formulation

(DCSIR0) : min ∑
t∈T

∑
i∈F

caiqivi
t

s.t. ∑
t∈T

∑
i∈F

qivi
t ≥ ∑

t∈T
dt,

∑
t∈T

vi
t ≤ 1, i ∈ F,

vi
t ∈ {0, 1}, i ∈ F, t ∈ T.

Given an instance of the (complementary) generalized multiple-choice knap-
sack problem for a set i = 1, ..., m of items and a set j = 1, ..., n of variants of
the items. Let C be the capacity, and pij, ωij and χij be the price, weight and
binary variable, respectively, for each i = 1, ..., m and j = 1, ..., n. Then the
problem formulation is

(GMCKP) : min
m

∑
i=1

n

∑
j=1

pijχij

s.t.
m

∑
i=1

n

∑
j=1

ωijχij ≥ C,

m

∑
i=1

χij ≤ 1, j = 1, ..., n,

χij ∈ {0, 1}, i = 1, ..., m, j = 1, ..., n.

Given a (DCSIR0) instance with |T| = m, |F| = n, ∑t∈T dt = C, and
pij = cajqj and ωij = qj for i = 1, ..., m and j = 1, ..., n, then for any feasible
solution of the (DCSIR0) instance there is a corresponding feasible solution
of the (GMCKP) instance, and viceversa.

4.2 Valid Inequalities

Valid inequalities for XSCS are derived from the (`,S) valid inequalities for-
mulation for the deterministic uncapacitated lot-sizing problem of Barany,
Van Roy, and Wolsey (1984) while considering the extension for the stochas-
tic case of Guan et al. (2006). The derived inequalities establish bounds on
decision variables for the nodes of possible paths in the scenario tree.

Definition 1. An inequality

m

∑
j=1

αjχj ≥ α0,

is a valid inequality for a set X ⊆ Rm if ∑m
j=1 αjχj ≥ α0 for all χ ∈ X.

Two sets of valid inequalities are derived:
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(i) from equations (3.25) and inequalities (3.26) it holds that

wn ≤ ∑
{i∈A|t(n)=τi}

qi, for all n ∈ N.

From these inequalities and definition of at (v. (3.1)) it holds that

wn ≤ at(n), for all n ∈ N. (4.5)

Consider the material balance equation (3.21) of model (SCS), for all
n ∈ N

sp(n) + at(n) + un + yn = dn + wn + sn,

given that sp(n), at(n), yn ≥ 0 and inequalities (4.5) it follows that

un ≤ dn + sn. (4.6)

From inequalities (4.6) the following valid inequalities can be estab-
lished

un ≤ dnβ(n) + sn, for all n ∈ N, (4.7)

where β(n) := ∑{i∈F|t(n)≥γi+1} vi
p(n,γi)

, since for all n ∈ N, if β(n) =

0, then from (3.23) un = ∑{i∈F|t(n)≥γi+1} qivi
p(n,γi)

= 0. Otherwise, if
β(n) ≥ 1, then (4.7) holds.

In general, from the sum of material balance equation (3.21) between
n ∈ N and ` ∈ S(n), the following condition holds

un ≤ dn` + s`, (4.8)

where dn` := ∑n′∈P(`)\P(p(n)) dn′ is the accumulated demand in the nodes
in the path from n to `.

From (4.8) the following valid inequalities can be established

un ≤ dn`β(n) + s`, for all n ∈ N, ` ∈ S(n), (4.9)

similar to the provision for (4.7).

The valid inequalities (4.12) are obtained by adding the inequalities
(4.9) for each subset of the set of nodes of the path from the root node
to the ` node.

(ii) Given the material balance equation (3.21) of model (SCS), for all n ∈ N

sp(n) + at(n) + un + yn = dn + wn + sn,

given that sp(n), at(n), yn ≥ 0 it follows that

un ≤ dn + wn + sn. (4.10)
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From inequalities (4.10) and following similar provisions than case (i)
the following valid inequalities can be established

un ≤ dn`β(n) + wn` + s`, for all n ∈ N, ` ∈ S(n). (4.11)

The valid inequalities (4.13) are obtained by adding the inequalities
(4.11) for each subset of the set of nodes of the path from the root node
to the ` node.

Theorem 1. Let ` ∈ N and S ⊆ P(`) then the SCS-(`,S) inequalities

(i) ∑
n∈S

un ≤ ∑
n∈S

dn`β(n) + s`, (4.12)

(ii) ∑
n∈S

un ≤ ∑
n∈S

dn`β(n) + ∑
n∈S

wn` + s`, (4.13)

are valid for XSCS.

Proof. The proof of (4.12) is based on the deterministic case presented by
Barany, Van Roy, and Wolsey (1984). Given a point (s, v, x, z) ∈ XSCS there
are two cases.

1) If β(n) = ∑{i∈F|t(n)≥γi+1} vi
p(n,γi)

= 0 for all n ∈ S , then

un = ∑{i∈F|t(n)≥γi+1} qivi
p(n,γi)

= 0 for all n ∈ S and s` ≥ 0, therefore the
inequality holds.

2) Otherwise, there exists n ∈ S such that β(n) = 1. Let n′ = argmin{t(n)|n ∈
N, β(n) = 1}. Then β(n) = 0 and un = 0 for all n ∈ S ∩ P(p(n′)). Thus
∑n∈S un ≤ ∑n∈P(`)\P(p(n′)) un ≤ dn′` + s` ≤ ∑n∈S dn`β(n) + s`.

The proof of (4.13) is similar considering that ∑n∈S wn` ≥ 0.

Lemma 1. The SCS-(`,S) inequalities can be written alternatively as

(i) ∑
n∈P(`)\S

un + ∑
n∈S

dn`β(n) + ∑
n∈P(`)

(yn − wn) ≥

d1` − ∑
n∈P(`)

at(n) − s0, for all ` ∈ N,S ⊆ P(`). (4.14)

(ii) ∑
n∈P(`)\S

un + ∑
n∈S

dn`β(n) + ∑
n∈P(`)

(yn − wn) + ∑
n∈S

wn` ≥

d1` − ∑
n∈P(`)

at(n) − s0, for all ` ∈ N,S ⊆ P(`). (4.15)

Proof. The sum of equations (3.21), for all n ∈ P(`) of a given ` ∈ N, results
in

s0 + ∑
n∈P(`)

at(n) + ∑
n∈P(`)

yn + ∑
n∈P(`)

un = d1` + w1` + s`,

from where it is possible to solve for s` and substitute it in (4.12) and (4.13),
obtaining an alternative representation of the valid inequalities without in-
ventory variables, denoted as SCS-(`,S)-i and SCS-(`,S)-ii, respectively.
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The formulation variants in which the inequalities (4.14) and (4.15) are
added to (SCS) are called (SCS-(`,S)-i) and (SCS-(`,S)-ii), respectively.

4.3 Non-dominated Valid Inequalities

Given that the derived valid inequalities are highly dominated for most ex-
perimental instances, a heuristic scheme is established to determine non-
dominated ones.

Definition 2. Given a pair of valid inequalities, defined on vector variable
χ ∈ Rm

+,

m

∑
j=1

αjχj ≥ α0, (4.16)

m

∑
j=1

β jχj ≥ β0, (4.17)

for a set X ⊆ Rm
+. It is established that inequality (4.16) dominates inequality

(4.17) if there is µ > 0 such that αj ≤ µβ j for all j = 1, ..., m, α0 ≥ µβ0, and
there exist j = 1, ..., m such that αj 6= µβ j or α0 6= µβ0.

If (4.16) dominates (4.17) then {χ ∈ Rm
+ : (4.16)} ⊆ {χ ∈ Rm

+ : (4.17)}.

Depending on the instance values of parameters q and d, some of the
SCS-(`,S) valid inequalities of a given subset S ⊆ P(`), ` ∈ N, may be
dominated by other inequalities of a different subset. Therefore, a heuristic
procedure was established to determine non-dominated inequalities on the
power set of P(`).

Let χ := (v, x, z) ∈ {0, 1}m be the compound variable of variables v, x and
z such that m = ∑i∈F |Ni

γ|+ ∑i∈A |Ni
δ|+ ∑i∈F,n∈Ni

δ
|Ti

ε|. For each ` ∈ N, the
inequalities (4.14) and (4.15) can be rewritten by a projection of the n ∈ P(`)
terms of the compound variable as α(`)Tχ(`) ≥ α0(`), where its left-hand
side coefficients and variables are represented by α(`) and χ(`), respectively,
and the right-hand side by α0(`).

Given the power set of P(`), Sp
` := {S1, ..., SK`

}, let αk(`) be the coefficient
vector of variable χ(`) for subset Sk, k ∈ {1, ..., K`}. Therefore, inequalities
(4.14) and (4.15) can be denoted as

αk(`)
Tχ(`) ≥ α0(`), k ∈ {1, ..., K`}, ` ∈ N. (4.18)

For a given ` ∈ N, let k1, k2 ∈ {1, ..., K`} and that χ is nonnegative, αk1(`)
Tχ(`)

≥ α0(`) dominates αk2(`)
Tχ(`) ≥ α0(`), if the component-wise comparison

of vectors αk1(`) and αk2(`) is such that αk1 j(`) ≤ αk2 j(`) for each compo-
nent j = 1, ..., m(`) and at least for one component the inequality is strict (v.
Definition 2 for µ = 1). Let Sd

` be the subset of dominant inequalities on Sp
` .

The procedure to obtain Sd
` by pairwise comparison of inequalities has

and upper bound of O(K2
`m) operations. If Sd

` has few elements, an efficient
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heuristic to obtain a non-dominated inequality candidate within the set,

k∗ := argmink∈K`

m(`)

∑
j=1

αkj, (4.19)

takes Θ(K`m(`)) operations. It is denoted Sd∗
` := {k∗}.

A variant of the (SCS) formulation is generated by including to it the in-
equalities SCS-(`,S)-ii for the set Sd∗

` , for each ` ∈ N, establishing a formula-
tions denoted as (SCS-(`,S)-ii) subject to Sd∗.

4.4 Tightening the Pairing of Valid Inequalities

The objective is to combine valid inequalities, for an integer set, to obtain
new tight inequalities. For this purpose, the pairing procedure developed
by Guan, Ahmed, and Nemhauser (2007) is adapted to knapsack-set valid
inequalities and used in conjunction with the tightening of inequality coeffi-
cients.

Definition 3 (Guan, Ahmed, and Nemhauser (2007)). Given a pair of valid
inequalities

m

∑
j=1

αjχj ≥ α0 and
m

∑
j=1

β jχj ≥ β0 for a set X ⊂ {0, 1}m

represented by vectors α = (α0, α1, ..., αm) ∈ Rm+1 and β = (β0, β1, ..., βm) ∈
Rm+1. Their pairing, denoted as α ◦ β, for the case that β0 ≥ α0, is defined
component-wise as

(α ◦ β)0 :=β0, and

(α ◦ β)j :=





αj if αj ≥ β j
β j if αj ≤ β j, β j ≤ αj + β0 − α0
αj + β0 − α0 if αj ≤ β j, β j ≥ αj + β0 − α0,

for all j = 1, ..., m.

Theorem 2 (Guan, Ahmed, and Nemhauser (2007)). If vectors α and β define
two valid inequalities for X such that β0 ≥ α0, then α ◦ β defines a valid
inequality for X.

Definition 4. A valid inequality defined by vector α for a set X ⊂ {0, 1}m may
be tightened to a new inequality, denoted as α, by reduction of its components
αj to αj := min(αj, α0) for j = 1, ..., m.

Then by Definition 2 inequality ∑m
j=1 αjχj ≥ α0 may dominate inequal-

ity ∑m
j=1 αjχj ≥ α0, thus {χ ∈ [0, 1]m : ∑m

j=1 αjχj ≥ α0} ⊆ {χ ∈ [0, 1]m :
∑m

j=1 αjχj ≥ α0}.
For the case of knapsack-set valid inequalities the result of applying the

pairing and tightening procedures is dependent on their sequence order.
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Theorem 3. If vectors α and β define two valid inequalities for a set X ⊂
{0, 1}m such that β0 ≥ α0, then α ◦ β may dominate α ◦ β.

Proof. A case based proof is presented depending on the relationship be-
tween the values of αj and β j, for j = 1, ..., m, and α0 and β0. Table 4.1 depicts
the 12 cases of relationships with the corresponding component-wise evalu-
ations of (α ◦ β)j and (α ◦ β)j.

TABLE 4.1: Component-wise evaluations of procedures se-
quence by relationship case

# Relationship (α ◦ β)j ? (α ◦ β)j

1 αj ≤ α0 ≤ β j ≤ β0 min{β j, αj + β0 − α0} = min{β j, αj + β0 − α0}
2 αj ≤ β j ≤ α0 ≤ β0 min{β j, αj + β0 − α0} = min{β j, αj + β0 − α0}
3 α0 ≤ αj ≤ β j ≤ β0 β j = β j
4 α0 ≤ β j ≤ αj ≤ β0 β j ≤ αj
5 β j ≤ αj ≤ α0 ≤ β0 αj = αj
6 β j ≤ α0 ≤ αj ≤ β0 α0 ≤ αj
7 αj ≤ α0 ≤ β0 ≤ β j αj + β0 − α0 = αj + β0 − α0
8 α0 ≤ αj ≤ β0 ≤ β j β0 = β0
9 β j ≤ α0 ≤ β0 ≤ αj α0 ≤ β0

10 α0 ≤ β j ≤ β0 ≤ αj β j ≤ β0
11 α0 ≤ β0 ≤ αj ≤ β j β0 = β0
12 α0 ≤ β0 ≤ β j ≤ αj β0 = β0

For most cases (α ◦ β)j is equal to (α ◦ β)j, except for cases 4, 6, 9, and 10,
where (α ◦ β)j is less than or equal (α ◦ β)j. The claim follows from Defini-
tion 2.

Example 1. Given the set

X = {χ ∈ {0, 1}3 : χ1 + 4χ2 + 8χ3 ≥ 2, 4χ1 + χ2 + 6χ3 ≥ 3}

The inequalities of X are denoted by α = (2, 1, 4, 8) and β = (3, 4, 1, 6). Then
the inequality corresponding to α ◦ β is 2χ1 + 4χ2 + 8χ3 ≥ 3, and the one
corresponding to α ◦ β is 2χ1 + 3χ2 + 3χ3 ≥ 3. Moreover, the inequality cor-
responding to α ◦ β is 2χ1 + 2χ3 + 3χ3 ≥ 3. While inequality α ◦ β allows to
deduce inequality χ2 + χ3 ≥ 1, inequality α ◦ β allows to deduce inequalities
χ1 + χ3 ≥ 1 and χ2 + χ3 ≥ 1, and cut out point (0, 1, 0). �

This procedure may be sequentially applied to cases of inequalities (4.14)
and (4.15) for different ` ∈ N to obtain new tight inequalities. Most ad-
vanced algebraic languages and MIP solvers tighten constraint coefficients
in their presolving phases; therefore, it could be advantageous to coordinate
presolving phases with the pairing procedure.
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Chapter 5

Computational experiments

A series of computational experiments and results for the solution of the
(SCS) stochastic formulation and its variants are presented. The chapter
summarizes experiments to determine the value of information and solution
of the stochastic formulation. It outlines the experimentation performed to
determine the performance of formulations derived from valid inequalities.
Also, it recapitulates experiments performed to evaluate a stochastic formu-
lation obtained by the heuristic determination of non-dominated of valid in-
equalities. In the thesis work various experiments were done, and the detail
of the experiments was published in works Testuri, Cancela, and Albornoz
(2019a) and Testuri, Cancela, and Albornoz (2019b), and under review pro-
cess in work Testuri, Cancela, and Albornoz (2019c), which are annexed in
Appendix A. The current chapter presents a summary, to allow for a more
compact and high-level vision of the results, and to gather all of them in one
place.

5.1 Value of information and solution of (SCS)

Computational experiments were carried out to assess the goodness of the
formulation by calculating stochastic programming metrics that allow the
comparison of stochastic and deterministic formulations. Details of the ex-
periments are published in the work Testuri, Cancela, and Albornoz (2019a)
(v. Section A.1). It is important to note that, in the aforementioned publica-
tion, orders are denoted as cargos, and that they are indexed by character c
instead of i.

The experiments were performed on the resolution of various instances of
the (SCS) formulation for four information structures of uncertainty (scenario
tree). The sizes of each scenario tree (number of scenarios and nodes) and for-
mulation instance (numbers of constraints, variables, and binary variables)
for a given distribution of scenario tree arity, periods and already acquired
orders (A) and possible orders to be acquired (F) are shown in Table 5.1.
Three data instances were randomly generated for each tree structure and
cargo distribution, totaling 12 instances.

Computational implementation was performed using AMPL (Fourer, Gay,
and Kernighan, 2002) for the algebraic coding of the stochastic model, and
GUROBI 6.5 (Gurobi Optimization, LLC, 2018) for the resolution of the in-
stances through its branch and cut solver. The calculations were carried out
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TABLE 5.1: Instance size by scenario tree and order distribution

Arity Periods Orders [|O| (|A|+ |F|)] Scenarios Nodes Cons. Var. (binary)
2 5 10 (2+8) 16 31 225 249 (124)
2 6 12 (3+9) 32 63 480 549 (296)
3 5 10 (3+7) 81 121 827 809 (324)
3 6 12 (4+8) 243 364 2542 2485 (1028)

on an Intel Core i7 5960X 3.5GHz computer with 20MB cache and 64GB RAM,
operating with CentOS-7 Linux system, with a time limit of 900 s.

Optimal value of the instances for the original, “recourse problem” (RP),
and the corresponding “wait and see” (WS) and “expected value of perfect
information” (EVPI) metrics are shown in Table 5.2 together with average RP
resolution time. RP represents the value of the optimum for the original prob-
lem. WS represent the lower bound of the optimum in the idealized case of
knowing the future with certainty; and EVPI is defined as the difference be-
tween RP and WS. It can be seen that EVPI shows a good performance, since
large values validate the use of the stochastic programming approach. Ad-
ditional experiments were performed to evaluate the “value of the stochastic
solution” (VSS) metric for each period of a pair of instances, following the
proposal of Escudero et al. (2007) (v. Testuri, Cancela, and Albornoz (2019a)).

TABLE 5.2: Optimal values of recourse problem (RP) and “wait
and see” approach (WS), and expected value of perfect infor-

mation measure (EVPI) by instance

Instance Arity Periods Orders RP Time(s) WS EVPI
1

2 5 10
10,254 0.07 8,993 1,261

2 11,699 0.32 10,428 1,271
3 12,755 0.66 10,601 2,154
4

2 6 12
8,091 6.65 6,961 1,130

5 11,760 14.76 10,415 1,345
6 17,014 31.59 15,561 1,453
7

3 5 10
8,186 1.14 6,177 2,009

8 13,284 20.76 10,945 2,339
9 16,719 17.05 14,294 1,632

10
3 6 12

12,371 (2.34%)† 10,008 2,363
11 6,346 202.68 4,468 1,878
12 11,580 (1.60%)† 9,003 2,577

(†) MIP gap for instances that reached the time limit of 900 s.

The experimental optimal values and stochastic rating metrics obtained
show the validity and interest of the stochastic formulation, as well as the
benefits that can be obtained with respect to a deterministic variant of the
model that considers average demand.
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5.2 Valid inequality formulations

Computational experiments were carried out to evaluate if the derived valid
inequality formulation (SCS-(`,S)-i) improve the quality and resolution time
(Testuri, Cancela, and Albornoz, 2019c) (v. Section A.2).

The experiments were carried out to compare the resolution of various
instances of the (SCS) formulation and the derived valid inequalities formu-
lation (SCS-(`,S)-i) with set S fixed with the root node. Six scenario tree
structures were considered based on rooted perfect directed trees by number
of immediate time successors of each node (Arity) and number of periods of
the planning horizon as depicted in Table 5.3.

TABLE 5.3: Size of scenario tree structures

Arity(g) Horizon(h̄) Scenarios(|L|) Nodes(|N|)
2 5 16 31
2 6 32 63
2 7 64 127
3 5 81 121
3 6 243 364
3 7 729 1,093

A distribution of orders by quantity is associated to each tree structure.
Each distribution of orders by quantity (|O|) is identified by the sum of num-
bers of already acquired orders (|A|) and possible orders to be acquired (|F|),
as showed in column labelled “Orders” in Table 5.4. The 3-uple 〈Arity, Hori-
zon, Orders〉 identifies table rows, denominated as categories of data instances.
The table depicts, for each category, the numbers of constraints, (`,S) in-
equalities, total variables and binary variables.

TABLE 5.4: Size of instance categories defined by scenario tree
structure and order distribution

Arity(g) Horizon(h̄) Orders(|O|) (SCS)-const. (`,S)-ineq. Variables (binary)
2 5 10 (2+ 8) 225 31 249 (124)
2 6 12 (3+ 9) 480 63 549 (296)
2 7 14 (3+11) 1,012 127 1,223 (714)
3 5 10 (3+ 7) 827 121 809 (324)
3 6 12 (4+ 8) 2,542 364 2,485 (1,028)
3 7 14 (4+10) 7,987 1,093 8,091 (3,718)

Thirty data instances were randomly generated for each of the six in-
stance categories, totaling 180 instances. The same software and hardware
described in Section 5.1 was used for the computational implementation. For
each instance, the formulations were solved either within a time limit of 900 s
or without a gap between the objective and its lower bound (MIP-gap = 0).
The instances average results of the (SCS) and (SCS-(`,S)-i) formulations by
instance category are presented in Table 5.5 and Table 5.6, respectively (v.
Testuri, Cancela, and Albornoz (2019c) for detailed results)
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TABLE 5.5: Average results of 30 instances of formulation (SCS)
by instance category

g h̄ |O| Time(s) MIP-gap(%) Nodes Cuts LP-gap(%)
2 5 10 1.60 0 15,261 159 10.31
2 6 12 27.61 0 111,228 473 11.25
2 7 14a 868.58 0.73 2,752,608 855 9.89
3 5 10 21.99 0 42,727 444 12.40
3 6 12b 821.46 2.86 868,850 1,797 19.69
3 7 14c 900.20 5.81 46,457 2,031 24.43
3 7 14cd 900.14 4.47 33,177 1,520 21.32

a28 of 30 instances reach the 900 s time limit. b27 of 30 instances reach the 900 s time limit.
cAll instances reach the 900 s time limit. dMedian value results.

TABLE 5.6: Average results of 30 instances of formulation (SCS-
(`,S)-i) by instance category

g h̄ |O| Time(s) MIP-gap(%) Nodes Cuts LP-gap(%)
2 5 10 0.67 0 3,835 108 7.48
2 6 12 17.65 0 61,852 431 9.51
2 7 14a 542.96 0.48 1,311,339 1,218 7.01
3 5 10 7.94 0 18,532 318 9.74
3 6 12b 728.13 2.46 495,200 2,211 17.26
3 7 14c 900.32 7.15 55,149 2,048 26.08
3 7 14cd 900.16 4.75 31,722 1,716 17.08

a15 of 30 instances reach the 900 s time limit. b22 of 30 instances reach the 900 s time limit.
cAll instances reach the 900 s time limit. dMedian value results.
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The results depicted are solver mean elapsed time at columns “Time”,
solver mean relative mixed-integer programming gap for instances that reach
the time limit of 900 s at column “MIP-gap(%)”, solver mean number of
nodes of solver branch and cut method at column “Nodes”, mean number
of cuts added by solver’s branch and cut method at column “Cuts”, and
mean relative linear programming relaxation gap at column “LP-gap(%)”.
The types of cuts most frequently added by the solver are mixed integer
rounding, generalized upper bound cover, infeasibility proof, Gomory, mod-
k, cover and network.

The results of formulation (SCS-(`,S)-i) are better than those of formula-
tion (SCS). Formulation (SCS-(`,S)-i) has shorter execution times and smaller
number of nodes of the branch and cut tree than formulation (SCS) for all
instance categories except for category (3,7,14) that are similar. For this cate-
gory median results are presented on an additional italic font row, due to the
presence of outliers. For all instance categories where some of its instances
reach the 900 s time limit, the formulation (SCS-(`,S)-i) obtains a lower or
equal number of these instances and a lower MIP-gap average than formu-
lation (SCS). Specifically in the case of instance category (2,7,14), while for-
mulation (SCS) is solved to optimality for 12 instances in the allotted time,
formulation (SCS-(`,S)-i) is solved for 18 instances. This is also the case
for category (3,6,12), whereas formulation (SCS) is optimally solved for 3 in-
stances, formulation (SCS-(`,S)-i) is solved for 8 instances.

5.3 Non-dominated valid inequality formulation

Computational experiments were carried out to evaluate the stochastic for-
mulation (SCS-(`,S)-ii) instantiated by non-dominated sets of valid inequal-
ities Sd∗ (Testuri, Cancela, and Albornoz, 2019b) (v. Section A.3).

The non-dominated sets were obtained heuristically. To implement the
heuristic, it was necessary to instantiate the constraints, in symbolic form,
with data of the instances. Because the indexing of some variables in con-
straints is not a simple function of the data (e.g. (3.23)), it is difficult to factor
the constraints’ coefficients of each variable in symbolic form (as required
by the compounded notation (4.18)), although the functions are total com-
putable (Enderton, 1977). When instantiating a model with its data, AMPL
generates (scalar) identifiers of constraints and variables, but it does not gen-
erate identifiers of coefficients of variables in constraints. Therefore, in order
to determine the input of the heuristic, it was necessary to parse the instan-
tiated constraints to uniquely determine the coefficients of each variable by
constraint. The parser and the heuristic were implemented as a callback pro-
cedures with C++ programming language.

The experiments were performed on the same data categories and in-
stances of Section 5.2 (v. Table 5.4). The same computational tools from the
previous sections were used, except the GUROBI solver that was upgraded
to the 7.5 version.

For each instance, the formulations (SCS) and (SCS-(`,S)-ii) were solved,
and a summary of the results is presented in Table 5.7 and Table 5.8.
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TABLE 5.7: Average results of 30 instances of formulation (SCS)
by instance category

g h̄ |O| Mean(s) Median(s) MIP(%) Nodes Cuts LP(%)
2 5 10 0.68 0.48 - 6,449 125 10.31
2 6 12 13.07 8.09 - 30,706 189 11.25
2 7 14a 493.45 346.92 0.26 1,093,185 713 9.84
3 5 10 13.39 4.35 - 31,260 300 12.40
3 6 12b 758.80 900.32 1.90 733,244 1,319 19.64
3 7 14c 900.25 900.17 5.02 27,291 1,264 23.42

a12 of 30 instances reach the time limit of 900 s. b24 of 30 instances reach the time
limit of 900 s. cAll instances reach the time limit of 900 s.

TABLE 5.8: Average results of 30 instances of formulation (SCS-
(`,S)-ii) subject to Sd∗ by instance category

g h̄ |O| Mean(s) Median(s) Heur.(s) MIP(%) Nodes Cuts LP(%)
2 5 10 0.48 0.36 0.05 - 2,693 98 7.46
2 6 12 13.22 3.54 0.17 - 37,603 249 11.25
2 7 14a 435.25 186.76 0.67 0.28 1,005,992 1,024 6.97
3 5 10 5.87 2.73 0.15 - 12,281 239 9.72
3 6 12b 720.13 900.20 0.76 1.71 513,898 1,609 17.24
3 7 14c 900.19 900.13 5.34 4.66 41,495 1,367 20.53

a12 of 30 instances reach the time limit of 900 s. b12 of 30 instances reach the time limit of
900 s. cAll instances reach the time limit of 900 s.

The average results depicted are solver mean and median elapsed times at
columns “Mean” and “Median”, respectively, parser and heuristic process-
ing mean time at column “Heuristic”, solver mean relative mixed-integer
programming gap for instances that reach the time limit of 900 s at column
“MIP”, solver mean number of nodes of solver branch and cut method at
column “Nodes”, mean number of cuts added by solver’s branch and cut
method at column “Cuts”, and mean relative linear programming relaxation
gap at column “LP”. Formulation (SCS-(`,S)-ii) subject to Sd∗ obtains better
overall results than formulation (SCS) for all categories. Except for category
(2,6,12), where their mean times are similar; but, their median times are 3.54
and 8.09 s, respectively.
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Chapter 6

Conclusions

In this thesis, a stochastic multistage capacitated discrete procurement prob-
lem derived from a real fuel supply problem is formulated. Original and
recourse decisions over distinguishable orders in the problem are modeled
with time delays. The structure of the uncertain information is modeled by
a discrete time stochastic process with finite probability, summarized in a
scenario tree. Stochastic programming with entities indexed by functions of
data was used to formulate a multistage stochastic discrete mixed-integer
problem based on the lot-sizing scheme with lead times.

Computational experiments on the formulation were performed for sev-
eral randomly generated instances within a variety of scenario trees. Most of
the experiments were solved to optimality for medium-size instances. The
experimental results showed the validity of the model with respect to deter-
ministic formulations over expected value data.

To tighten the problem formulation, two variants of valid inequalities
were generated based on the (`,S) inequalities approach. Further, a tight-
ened ordering scheme of a known pairing of valid inequalities was proposed.
Computational experiments were carried out on two formulation variants as-
sociated with the derived valid inequality for randomly generated instances
of six tree structures and order distributions categories. Most of the computa-
tional experiments were solved to optimality in the small and medium sized
categories for the allocated time. One of the formulation variants shows im-
proved performance over the original formulation in terms of execution time,
MIP-gap, number of branch and bound nodes, and number of solver cuts.

Since the inequalities are highly dominated for most experimental in-
stances, a heuristic scheme to determine non-dominated ones was estab-
lished. Computational experiments were performed on one formulation vari-
ant of the valid inequalities over a subset of non-dominated ones. Most
computational experiments could be solved to optimality for the small and
medium-size categories on the allocated time. The non-dominated set vari-
ant formulations obtain a slightly better results than the original one.

One aspect of modeling that could be considered in future research may
be the inclusion of cancellation and postponement decisions in the set of or-
ders that will be acquired. This aspect was evaluated incipiently; but, it was
ruled out given the complexity that the formulation would take. The number
of constraints could increase considerably. In addition, nonlinear restrictions
may be required for postponement decisions. Another task would be to con-
sider alternative constraints for the generation of valid inequalities. Further
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direction of future research could be to experiment with the tightening order-
ing scheme of pairing of valid inequalities while considering the dominance
of the inequalities involved.

For this type of formulations, it could be advantageous if the algebraic
modeling language allowed the access and operation on “medium level en-
tities” of a model obtained after the higher level symbolic entities are instan-
tiated with data. Some of this medium level entities are already available
in advanced languages, but it would be necessary to generate identifiers of
coefficients of variables in constraints after data instantiation. This could
be done after the current languages pre-solving stage or maybe, even better
for control and not for efficiency, providing a novel previous stage of data
instantiation. Then, the medium level entities should be available for opera-
tion with the current command sub-language (scripting), such that the enti-
ties (e.g. constraints) can be modified or generated, by using the high-level
knowledge of the problem, and the model can be updated before the solving
stage.
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location of Indivisibles Under Uncertainty”. In: Operations Research 46.3,
pp. 381–395.

Pisinger, David (2001). “Budgeting with bounded multiple-choice constraints”.
In: European Journal of Operational Research 129.3, pp. 471 –480. ISSN: 0377-
2217. DOI: 10.1016/S0377-2217(99)00451-8. URL: http://www.sciencedirect.
com/science/article/pii/S0377221799004518.

Pochet, Yves and Laurence A. Wolsey (1993). “Lot-Sizing with Constant Batches:
Formulation and Valid Inequalities”. In: Mathematics of Operations Research
18.4, pp. 767–785. ISSN: 0364765X, 15265471. URL: http://www.jstor.
org/stable/3690122.

— (1994). “Polyhedra for lot-sizing with Wagner—Whitin costs”. In: Math-
ematical Programming 67.1, pp. 297–323. ISSN: 1436-4646. DOI: 10.1007/
BF01582225. URL: https://doi.org/10.1007/BF01582225.

Römisch, Werner and Rüdiger Schultz (2001). “Multistage Stochastic Integer
Programs: An Introduction”. English. In: Online Optimization of Large Scale
Systems. Ed. by Martin Grötschel, Sven O. Krumke, and Jörg Rambau.
Springer Berlin Heidelberg, pp. 581–600. ISBN: 978-3-642-07633-6. DOI:
10.1007/978- 3- 662- 04331- 8\_29. URL: http://dx.doi.org/10.
1007/978-3-662-04331-8\_29.

https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/s10479-017-2641-x
https://doi.org/10.1007/s10479-017-2641-x
http://www.jstor.org/stable/2627007
http://www.jstor.org/stable/4132419
http://www.jstor.org/stable/4132419
https://doi.org/10.1002/9781118627372.fmatter
https://doi.org/10.1007/BF01585752
https://doi.org/10.1007/BF01585752
https://doi.org/10.1016/S0377-2217(99)00451-8
http://www.sciencedirect.com/science/article/pii/S0377221799004518
http://www.sciencedirect.com/science/article/pii/S0377221799004518
http://www.jstor.org/stable/3690122
http://www.jstor.org/stable/3690122
https://doi.org/10.1007/BF01582225
https://doi.org/10.1007/BF01582225
https://doi.org/10.1007/BF01582225
https://doi.org/10.1007/978-3-662-04331-8\_29
http://dx.doi.org/10.1007/978-3-662-04331-8\_29
http://dx.doi.org/10.1007/978-3-662-04331-8\_29


40 BIBLIOGRAPHY

Schrijver, Alexander (1986). Theory of Linear and Integer Programming. West
Sussex, England: John Wiley & Sons, Ltd.

Sen, Suvrajeet and Julia L. Higle (2005). “The C3 Theorem and a D2 Algo-
rithm for Large Scale Stochastic Mixed-Integer Programming: Set Con-
vexification”. In: Mathematical Programming 104.1, pp. 1–20. ISSN: 1436-
4646. DOI: 10.1007/s10107-004-0566-z. URL: https://doi.org/10.
1007/s10107-004-0566-z.

Sox, C.R. et al. (1999). “Review of the stochastic lot scheduling problem”. In:
International Journal of Production Economics 62.3. cited By 87, pp. 181–200.
DOI: 10.1016/S0925-5273(98)00247-3. URL: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-0032685588&doi=10.1016%2fS0925-

5273%2898%2900247-3&partnerID=40&md5=b3525f15e4d3546208f01c8e1c7a4f21.
Testuri, Carlos E., Héctor Cancela, and Víctor M. Albornoz (2019a). “Stochas-

tic discrete lot-sizing with lead times for fuel supply optimization”. In:
Pesquisa Operacional 39, pp. 37 –55. ISSN: 0101-7438. DOI: 10.1590/0101-
7438.2019.039.01.0037. URL: http://www.scielo.br/scielo.php?
script=sci_arttext&pid=S0101-74382019000100002&nrm=iso.

— (2019b). “Undominated valid inequalities for a stochastic capacitated dis-
crete lot-sizing problem with lead times, cancellation and postponement”.
In: Proceedings of the 8th International Conference on Operations Research and
Enterprise Systems. SCITEPRESS Digital Library, pp. 390–397. DOI: 10 .
5220/0007395203900397.

— (2019c). “Valid inequalities for a stochastic capacitated discrete lot-sizing
problem with lead times, cancellation and postponement”. In: Tech. report.
Instituto de Computación, Facultad de Ingeniería, Universidad de la República
Under review process.

Testuri, Carlos E., Bernardo Zimberg, and Germán Ferrari (2012). Modelado
estocástico múltiple etapa de adquisición de combustible para la generación de
electricidad bajo demanda incierta. Tech. rep. INCO RT 12-07. Instituto de
Computación, Facultad de Ingeniería, Universidad de la República. URL:
https://www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR1207.

pdf.
Van Eijl, C.A. and C.P.M. Van Hoesel (1997). “On the discrete lot-sizing and

scheduling problem with Wagner-Whitin costs”. In: Operations Research
Letters 20.1, pp. 7 –13. ISSN: 0167-6377. DOI: 10.1016/S0167- 6377(96)
00043-0. URL: http://www.sciencedirect.com/science/article/pii/
S0167637796000430.

Van Hoesel, Stan et al. (1994). “The single-item discrete lotsizing and schedul-
ing problem: optimization by linear and dynamic programming”. In: Dis-
crete Applied Mathematics 48.3, pp. 289 –303. ISSN: 0166-218X. DOI: 10 .
1016/0166-218X(92)00182-L. URL: http://www.sciencedirect.com/
science/article/pii/0166218X9200182L.

Van Slyke, R. and R.J-B. Wets (1969). “L-shaped linear programs with applica-
tions to control and stochastic programming”. In: SIAM Journal on Applied
Mathematics 17, pp. 638–663.

https://doi.org/10.1007/s10107-004-0566-z
https://doi.org/10.1007/s10107-004-0566-z
https://doi.org/10.1007/s10107-004-0566-z
https://doi.org/10.1016/S0925-5273(98)00247-3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032685588&doi=10.1016%2fS0925-5273%2898%2900247-3&partnerID=40&md5=b3525f15e4d3546208f01c8e1c7a4f21
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032685588&doi=10.1016%2fS0925-5273%2898%2900247-3&partnerID=40&md5=b3525f15e4d3546208f01c8e1c7a4f21
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032685588&doi=10.1016%2fS0925-5273%2898%2900247-3&partnerID=40&md5=b3525f15e4d3546208f01c8e1c7a4f21
https://doi.org/10.1590/0101-7438.2019.039.01.0037
https://doi.org/10.1590/0101-7438.2019.039.01.0037
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000100002&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000100002&nrm=iso
https://doi.org/10.5220/0007395203900397
https://doi.org/10.5220/0007395203900397
https://www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR1207.pdf
https://www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR1207.pdf
https://doi.org/10.1016/S0167-6377(96)00043-0
https://doi.org/10.1016/S0167-6377(96)00043-0
http://www.sciencedirect.com/science/article/pii/S0167637796000430
http://www.sciencedirect.com/science/article/pii/S0167637796000430
https://doi.org/10.1016/0166-218X(92)00182-L
https://doi.org/10.1016/0166-218X(92)00182-L
http://www.sciencedirect.com/science/article/pii/0166218X9200182L
http://www.sciencedirect.com/science/article/pii/0166218X9200182L


BIBLIOGRAPHY 41

Vargas, V. and R. Metters (2011). “A master production scheduling proce-
dure for stochastic demand and rolling planning horizons”. In: Interna-
tional Journal of Production Economics 132.2. cited By 18, pp. 296–302. DOI:
10.1016/j.ijpe.2011.04.025. URL: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-79957682405&doi=10.1016%2fj.ijpe.2011.

04.025&partnerID=40&md5=db28551df0f61a3cbc32114923f41edb.
Wagelmans, Albert, Stan Van Hoesel, and Antoon Kolen (1992). “Economic

Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the
Wagner-Whitin Case”. In: Operations Research 40, S145–S156. ISSN: 0030364X,
15265463. URL: http://www.jstor.org/stable/3840844.

Wagner, Harvey M. and Thomson M. Whitin (1958). “Dynamic Version of
the Economic Lot Size Model”. In: Management Science 5.1, pp. 89–96. DOI:
10.1287/mnsc.5.1.89. URL: http://mansci.journal.informs.org/
content/5/1/89.abstract.

Walkup, David W. and Roger J.B. Wets (1967). “Stochastic Programs with
Recourse”. In: SIAM Journal on Applied Mathematics 15.5, pp. 1299–1314.
ISSN: 00361399. URL: http://www.jstor.org/stable/2099170.

Wets, Roger J.B. (1966). “Programming Under Uncertainty: The Equivalent
Convex Program”. In: SIAM Journal on Applied Mathematics 14.1, pp. 89–
105. ISSN: 00361399. URL: http://www.jstor.org/stable/2946179.

Wolsey, Laurence A. (2002). “Solving Multi-Item Lot-Sizing Problems with
an MIP Solver Using Classification and Reformulation”. In: Management
Science 48.12, pp. 1587–1602.

— (2006). “Lot-sizing with production and delivery time windows”. In: Math-
ematical Programming 107.3, pp. 471–489. ISSN: 1436-4646. DOI: 10.1007/
s10107-005-0675-3. URL: http://dx.doi.org/10.1007/s10107-005-
0675-3.

Zimberg, Bernardo, Carlos E. Testuri, and Germán Ferrari (2019). “Stochastic
modeling of fuel procurement for electricity generation with contractual
terms and logistics constraints”. In: Computers & Chemical Engineering 123,
pp. 49 –63. ISSN: 0098-1354. DOI: 10.1016/j.compchemeng.2018.12.
021. URL: http : / / www . sciencedirect . com / science / article / pii /
S0098135418304939.

https://doi.org/10.1016/j.ijpe.2011.04.025
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79957682405&doi=10.1016%2fj.ijpe.2011.04.025&partnerID=40&md5=db28551df0f61a3cbc32114923f41edb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79957682405&doi=10.1016%2fj.ijpe.2011.04.025&partnerID=40&md5=db28551df0f61a3cbc32114923f41edb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79957682405&doi=10.1016%2fj.ijpe.2011.04.025&partnerID=40&md5=db28551df0f61a3cbc32114923f41edb
http://www.jstor.org/stable/3840844
https://doi.org/10.1287/mnsc.5.1.89
http://mansci.journal.informs.org/content/5/1/89.abstract
http://mansci.journal.informs.org/content/5/1/89.abstract
http://www.jstor.org/stable/2099170
http://www.jstor.org/stable/2946179
https://doi.org/10.1007/s10107-005-0675-3
https://doi.org/10.1007/s10107-005-0675-3
http://dx.doi.org/10.1007/s10107-005-0675-3
http://dx.doi.org/10.1007/s10107-005-0675-3
https://doi.org/10.1016/j.compchemeng.2018.12.021
https://doi.org/10.1016/j.compchemeng.2018.12.021
http://www.sciencedirect.com/science/article/pii/S0098135418304939
http://www.sciencedirect.com/science/article/pii/S0098135418304939




43

Appendix A

Publications

A.1 Stochastic discrete lot-sizing with lead times
for fuel supply optimization



Pesquisa Operacional (2019) 39(1): 37-55
© 2019 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2019.039.01.0037

STOCHASTIC DISCRETE LOT-SIZING WITH LEAD TIMES
FOR FUEL SUPPLY OPTIMIZATION
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ABSTRACT. We address the problem of expected cost minimization of meeting the uncertain fuel demand
during a time planning horizon, where supply is provided by selecting discrete shipments with lead times.
Due to uncertainty and the passage of time, corrective actions can be taken such as cancellation and post-
ponement on supply of shipments with associated costs and delays. This problem is modeled as a stochastic
multi-stage capacitated discrete lot-sizing problem with lead times. Computational experiments were per-
formed on the resolution of various instances of the model for four information structures of uncertainty.
The experimental optimal values and stochastic rating measures obtained show the validity and interest of
the stochastic model, as well as the benefits that can be obtained with respect to a deterministic variant of
the model that considers average demand.

Keywords: oil and gas procurement, oil supply chain, stochastic lot-sizing, multi-stage stochastic integer
programming, postponement.

1 INTRODUCTION

Distribution and storage of primary products are downstream oil supply chain activities. These
involve complex logistic planning under uncertainty of product features and resources. In most
non-oil producing countries, or where the production is not sufficient to cover the internal de-
mand, it is necessary to import either crude oil, or even refined products, to cover demand. One
of the most important and cheapest transportation modes is by ship. This has an important im-
pact in the supply chain, as it is necessary to negotiate not only volume and price, but also how
the delivery will be carried out; shipments are of fixed sizes, ship routes are complex and travel
times are usually long. This means that supply contracts must be fixed much in advance of the
actual times where the fuel will be needed as stated by Moraes and Faria [20]. Additionally, the
demands may vary significantly from the best forecasts; this stochastic component introduces an
additional complexity and is a source of costs.
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This paper focuses on the minimization of the expectation of costs incurred in decisions made
to meet the uncertain demand of fuel over a finite discrete time planning horizon. The fuel is
purchased through distinguishable optional shipments with a given size and a time of delivery
delay. Shipment delivery delay is relevant in the planning horizon. Due to the passage of time
and the unveil of demand uncertainty, it is possible that an acquired shipment that has not been
received is no longer necessary. In this case, it could be decided to cancel its acquisition or
postpone its delivery; decisions, which require minimum accomplishment times and associated
costs. The motivation for this model is a real problem arising in a state-owned Uruguayan oil
company that deals with fuel acquisition under contractual and logistic conditions for the energy
sector. The demand that the company faces is uncertain, given that thermal electricity generation,
as a complement in an electrical system, is highly dependent on renewable sources [24, 32].
While this particular situation of the company focuses on the application of fuel procurement for
thermal generation, the present work discusses the formulation and solution of a more general
variant of the problem, which can represent all situations in which oil procurement is carried out
by selecting discrete cargo options in the context of uncertain demand.

Among different approaches to assist planning decisions in the oil industry, stochastic program-
ming has been shown to be a very successful technique, as demonstrated by Dempster et al. [10]
and Pinto et al. [22]. Another successful application is presented by Al-Othman et al. [3], who
developed a multi-period stochastic supply chain planning model under uncertain market de-
mands and prices. Christiansen et al. [8] described a comprehensive review on ship routing and
scheduling. A stochastic problem of shipping of oil products among ports and the management
of product storage was described by Agra et al. [1]. Mixed-integer programming models are
used for scheduling refined-oil shipping as shown by Ye, Liang, and Zhu [31]. Xu et al. [30]
incorporated the uncertainty of crude shipping delays within crude oil planning and schedul-
ing operations. Oliveira and Hamacher [21] considered an integrated fuel distribution network
design and binary capacity expansion problem under a multi-product and multi-period setting.

The fuel-supply problem tackled in this paper can be modeled as an extension of the lot-sizing
formulation of Wagner and Whitin [27]; and particularly of the variant with variable capacity or
discrete lot-sizing of Fleischmann [12]. For the case in which the parameters are known with
certainty (deterministic case), the size of the lot is continuous, and without capacity or with
constant capacity, the problem has efficient resolution through dynamic programming as shown
by Wagner and Whitin [27] and Wagelmans et al. [26]. Bitran and Yanasse [6] established that
the variant with discrete sizing is a generalization of the binary knapsack problem, and belongs
to the NP-hard complexity class.

In the case that the parameters are random (stochastic case), the problem can be formulated by
stochastic programming [5]. Stochastic programming model decisions are over time interspersed
with random events. These events are assumed discrete establishing, by the time dynamics, a
tree of scenarios. The objective of the model is to determine an optimal solution that provides
coverage for all the scenarios. Haugen, Løkketangen, and Woodruff [16] describe the scenario-
based stochastic lot-sizing problem. Ahmed, King and Parija [2] establish an adjusted extended
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formulation of the non-capacitated problem and showed that the Wagner-Whitin conditions are
not satisfied for the stochastic variant. Guan et al. [13, 14] propose valid inequalities and a
branch-and-cut algorithm for the non-capacitated variant.

Shipping delay or delivery time of lots, due to production, transport or capacity restrictions, is
modeled in some deterministic continuous no-capacitated lot-sizing problems. Lee et al. [19]
present a variant in which demands have a compliance interval that has efficient resolution by
dynamic programming. Brahimi and Dauzère-Pérès et al. [7, 9] present two variants according
to whether the lots are or are not distinguishable with respect to delivery times. These authors
propose efficient algorithms of dynamic programming for the distinguishable case and for the
undistinguishable case when the order-delivery windows are not inclusive. For these variants,
Wolsey [28] sets tight extended formulations. Van den Heuvel and Wagelmans [25] show the
equivalence of the lot-sizing problem with production time windows. For the stochastic scenario-
based case, Huang and Küçükyavuz [17] establish that the problem can be efficiently solved in
the scenario tree size when delivery windows do not intersect in time. Furthermore, Jiang and
Guan improve the efficiency of this procedure [18]. The peculiar aspects of the treated problem
that were not found in the literature are the corrective decisions of cancellation and postponement
with time delay in a stochastic modeling.

The content of the present work is described below. In Section 2 the algebraic model of the
problem is presented in two subsections, first a deterministic variant is described, together with
the entities of the problem, and then the stochastic variant is presented. In Section 3 experiments
are established to determine validity of the model. In Section 4, conclusions and future work are
discussed.

2 MODEL

The modelled problem deals with the minimization of the cost expectation incurred in decisions
made to meet the uncertain demand of fuel over a finite discrete time planning horizon. The
problem is reduced to a single fuel in order to simplify the proposal without loss of generality.
To satisfy the demand, there are optional distinguishable shipments, denoted as cargoes, with a
non-splittable quantity of the acquired product. The cargoes have relevant delivery times in the
planning horizon; so that a significant amount of time elapses between the purchase decision and
when the cargo is received. Due to the passage of time and the unveil of demand uncertainty, it
could happen that at any given time a cargo, that was previously acquired and not received is no
longer necessary. In this case it could be decided to cancel its acquisition or postpone its delivery;
decisions, which, in turn, have minimum execution times in relation to the time of delivery and
associated costs. After attending the demand in a given period, the amount of remaining fuel is
stored up to a certain capacity, to satisfy future demand in a flexible manner.

The mathematical formulation of the problem is presented below. First, a deterministic model of
the problem is developed, where definitions and general structure are established. After defining
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the information structure of the uncertainty from a discrete stochastic process, the stochastic
variant of the model is presented.

2.1 Deterministic model

The following is a deterministic formulation of the problem, where the data are assumed to
be known with certainty. A discrete time sequential decision process is considered, in which the
decisions taken at a given period depend only on the information available up to that period. Main
entities of the problem are described as index sets in Table 1. The planning time is represented
by a set of discrete time periods, T . The set of cargoes, C, is categorized into already acquired
cargoes, A, and possible cargoes to be acquired, P. Decisions are made to purchase possible
cargoes, or to cancel and postpone already acquired cargoes for different periods. Due to the
nature of the problem, these decisions have relevant compliance times in the planning horizon.
Each cargo has a minimum delivery time, between the time the purchase decision is made and the
cargo is received. Decisions to cancel and postpone an already purchased cargo must be made
before a certain minimum time, prior to the receipt of the cargo. In addition, when deciding to
postpone a previously purchased cargo, the time elapsed between the original reception period
and the postponement period can not be less than a given minimum postponement time. All these
constraints cause some latency in the decision making process.

Table 1 – Index sets.

T periods, t ∈ T := {1, ...,H}
A already acquired cargoes
P possible cargoes to be acquired
C cargoes, c ∈C := A∪P

Parameters

Parameters are described in Table 2. As mentioned before, we consider a single product (or
multiple products which are interchangeable). The demand for the product in each period, dt , is
known. Due to store constraints, the inventory of the product at the end of each period is restricted
between a minimum volume, s, and a maximum volume, s, and there is an initial storage volume,
s0, at the beginning of the planning horizon.

The period in which an already acquired cargo is received, τc, is fixed, and it is decided in
previous acquisitions (i.e. previous model resolutions). Each cargo has a given volume, qc.
Decisions on each cargo have latency times measured in periods. The delivery time of a cargo,
γc, establishes the length of the wait time (measured in periods) between the acquisition decision
and the actual arrival of the cargo. The minimum time for cancellation of a cargo, δ c, establishes
the minimum number of periods prior to the delivery period at which the cargo may be cancelled.
The minimum postponement time for a cargo, εc, establishes the minimum number of periods
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after the delivery period in which the postponed cargo can be received. The achievement period
of decisions on acquisition, cancellation and postponement must take place within the planning
horizon.

For each cargo there are unit costs per volume associated with the decisions to acquire, cac,
cancel, ccc, and postpone, cpc, it. In addition, there is a unit cost associated with storage in each
period, ht .

The already acquired volume that is scheduled to be received in each period is determined by the
sum of the cargoes that are received in that period as

at := ∑
{c∈A|τc=t}

qc, ∀t ∈ T ;

this is an auxiliary summary parameter.

Table 2 – Parameters.

dt demand volume in period t ∈ T
s0 initial storage volume
s,s minimum and maximum storage capacities by period

τc period in which already acquired cargo c ∈ A is received
qc volume of cargo c ∈C
γc delivery time of cargo c ∈ P, such that 0≤ γc ≤ H−1
δ c cancellation minimum time of already acquired cargo c ∈ A,

such that 0≤ δ c ≤ τc−1
εc postponement minimum time of already acquired cargo c ∈ A,

such that 0≤ εc ≤ H− τc

cac acquisition unit cost of cargo c ∈C
ccc cancellation unit cost of cargo c ∈C
cpc postponement unit cost of cargo c ∈C
ht storage unit cost in period t ∈ T

at already acquired volume that is received in period t ∈ T

Variables

Variables are summarized in Table 3. The variables st represent the fuel inventory at the end
of each period t. The acquisition decision of each cargo c to be acquired in period t, subject
to its delivery period, is modeled by the binary variables vc

t . Decisions to cancel each cargo
c in period t, prior to their minimum cancellation time, are established using binary variables
xc

t . When postponing a cargo reception, decisions must be made about when and until when it
is done. Since both decisions are independent, the decision to postpone a cargo c is modeled
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with a prior cancellation decision and a decision whether to delay its receipt to another period t
after its minimum delay time, represented by binary variables zc

t . In addition, there are auxiliary
variables for totals per period t of acquired, ut , cancelled, wt , and postponed volume, yt . These
totals variables facilitate the representation of inventory balance constraints.

Table 3 – Variables.

st storage volume at the end of period t ∈ T
ut acquired volume into period t ∈ T
vc

t if cargo c ∈ P is acquired in period t ∈ {1, ...,H− γc}, (binary)
wt cancelled volume out of period t ∈ T
xc

t if already acquired cargo c ∈ A is cancelled in period
t ∈ {1, ...,τc−δ c} (binary)

yt postponed volume into period t ∈ T
zc
t if already acquired cargo c ∈ A is postponed to period

t ∈ {τc + εc, ...,H} (binary)

Objective function

Our aim is to determine a minimum cost scheme of inventory, acquisition, cancellation and
postponement of fuel cargoes that satisfy demand during the planning horizon. The costs of
acquisitions, cancellations and postponements accrue at the time of decision making. The objec-
tive function includes budget costs of acquisition, cancellation and postponement, and inventory
costs,

min ∑
t∈T

[
∑

{c∈P|t≤H−γc}
cacqcvc

t (1)

+ ∑
{c∈A|t≤τc−δ c}

(ccc− cac)qcxc
t (2)

+ ∑
{c∈A|τc+εc≤t}

(cac− ccc + cpc)qczc
t (3)

+htst

]
. (4)

where: the expression (1) represents the costs of acquiring possible cargoes, the expression (2)
represents the costs of cancellation minus the budgeted acquisition costs of already acquired
cargoes that are cancelled, the expression (3) represents the acquisition costs minus the costs of
cancellation plus the costs of postponement of the already acquired cargoes that are postponed,
and the expression (4) represents inventory costs. The postponement cost includes the subtraction
of cancellation costs, since a postponement is represented by a prior cancellation, but it does not
incur cancellation costs.
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Constraints

The main requirement is to satisfy demand while maintaining the inventory balance with contri-
butions of the fuel previously stored, what was already acquired, what is acquired, and what is
cancelled, postponed and available in storage,

st−1 +at +ut + yt = dt +wt + st , ∀t ∈ T, (5)

where s0 is the given initial storage.

The amount stored in each period is constrained between lower and upper bounds,

s≤ st ≤ s, ∀t ∈ T. (6)

The amount of acquired fuel that is received in each period is determined by the sum of the cargo
acquisitions in the possible range of the corresponding acquisition periods,

ut = ∑
{c∈P|γc≤t−1}

qcvc
t−γc , ∀t ∈ T. (7)

If a cargo is acquired, the acquisition has been decided in a single period before or equal to its
possible receiving period less its delivery time γc,

H−γc

∑
t=1

vc
t ≤ 1, ∀c ∈ P. (8)

The already acquired volume that is cancelled in each period is determined by the cancellations
of the cargoes in the possible range of the corresponding cancellation periods,

wt = ∑
{c∈A|τc=t}

(
qc

τc−δ c

∑
t ′=1

xc
t ′

)
, ∀t ∈ T. (9)

If a cargo is cancelled, the cancellation is decided in a single period before or equal to its receiving
period τc minus its cancellation time δ c,

τc−δ c

∑
t=1

xc
t ≤ 1, ∀c ∈ A. (10)

The postponement of a cargo is modeled by the use of cancellation, that is to say, it is only
possible to postpone cargoes that are cancelled. The already acquired volume that is postponed
to a certain period is determined by the postponements of the cargoes in the possible range of the
corresponding postponement periods,

yt = ∑
{c∈A|τc+εc≤t}

qczc
t , ∀t ∈ T. (11)
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If a cargo is postponed, it is to be received in a single period subsequent to or equal to its original
receiving period τc plus its delay time εc,

H

∑
t=τc+εc

zc
t ≤ 1, ∀c ∈ A. (12)

A cargo can be postponed, if its original arrival decision has been cancelled,

H

∑
t=τc+εc

zc
t ≤

τc−δ c

∑
t=1

xc
t , ∀c ∈ A. (13)

Finally, there are domain constraints of the variables

st ,ut ,wt ,yt ≥ 0, ∀t ∈ T,
vc

t ∈ {0,1}, ∀c ∈ P, t ∈ {1, ...,H− γc},
xc

t ∈ {0,1}, ∀c ∈ A, t ∈ {1, ...,τc−δ c},
zc

t ∈ {0,1}, ∀c ∈ A, t ∈ {τc + εc, ...,H}.

(14)

This formulation is a generalization of the discrete lot-sizing problem (DLS-C) described by
Wolsey [29]. The problem DLS-C is a special case of the formulation in which the acquisition
variables are selected among a special ordered set of type one (cf. constraint (8)), the delivery
time of each cargo is zero, and there are no decisions of cancellation or postponement. This
formulation belongs to the NP-hard class, since DLS-C belongs to the same class [6].

The feasibility of this formulation is conditioned to the timely availability of fuel acquisition to
satisfy its demand,

s0 + ∑
{c∈A|τc≤t}

qc + ∑
{c∈P|γc≤t−1}

qc ≥
t

∑
t ′=1

dt ′ , ∀t ∈ T.

2.2 Stochastic model with uncertain demand

The following model is a stochastic extension of the deterministic model in which demand is
a random parameter. Previously, the uncertain information structure was established through
stochastic optimization [5]. Subsequently, the entities and formulation of the stochastic model
are reported.

Uncertain information structure

The uncertain demand is represented by a discrete-time stochastic process indexed in the plan-
ning periods; in such a way that each stage of the stochastic process is associated to a period. The
process is defined in a finite probability space. It is assumed that the demand of the first period is
deterministic, and that the demands of the remaining periods are random with known distribution
function. The decisions of a period only depend on the outcomes of the random parameters of
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previous periods. This process is non-anticipatory of the future decisions or the realizations of
the random event outcomes. This information structure can be represented by a tree structure
with H levels or stages called tree of scenarios [23]. This is a perfect directed tree, with the root
node in period t = 1 and with leaf nodes in period t = H (identifying the scenarios).

Each node of the scenario tree describes the state of the process and is identified by a period
and a scenario. An alternative abbreviated notation is to identify the nodes by a single index n
in a numerable set of nodes, N. For the first period, t = 1, there is a unique node, called r, that
represents the root of the tree. Each node n ∈ N has an immediate predecessor p(n) node; the
auxiliary node 0 is defined as the predecessor of the root node, 0 := p(r), such that 0 /∈ N. The
period corresponding to each node n is defined as t(n). The probability of the state of each node
n is defined as π(n), such that ∑n∈N|t(n)=t π(n) = 1, for all t = 1, ...,H. The t-th predecessor
of node n is defined as p(n, t) and the nodes of the path from the root node to n as P(n). The
successors of node n are defined as S(n) := {n′ ∈ N, t = 1, ...,H− t(n)|n = p(n′, t)}. The nodes
of the path from a given node n1 to a successor node n2 ∈ S(n1) is defined as P(n1,n2). Leaf
nodes are defined as L := {n ∈ N|t(n) = H}.

Stochastic model formulation

From the scenario tree notation, the formulation of the deterministic model (cf. Section 2.1) is
extended into a multi-stage stochastic optimization scheme considering the uncertainty in de-
mand.

New index sets are established according to Table 4. First of all, the set of nodes and their subset
of leaf nodes are incorporated into the formulation. Subsets of the set of nodes are established to
abbreviate the denomination of nodes where it is possible to acquire each cargo, Nc

γ , and where
it is possible to cancel and postpone each cargo, Nc

δ . In addition, subsets of periods to where
it is possible to postpone each cargo are established, T c

ε . With the purpose of disambiguation
with respect to the original sets, these subsets are named with the parameters that define them as
suffixes.

Table 4 – Stochastic model index sets.

N nodes of the scenario tree
L leaf nodes of the scenario tree, L := {n ∈ N|t(n) = H}
Nc

γ nodes where it is posible to acquire cargo c ∈ P
Nc

γ := {n ∈ N|t(n)≤ H− γc}
Nc

δ nodes where it is posible to cancel and postpone cargo c ∈ A
Nc

δ := {n ∈ N|t(n)≤ τc−δ c}
T c

ε periods to where it is possible to postpone cargo c ∈ A
T c

ε := {t ∈ T |t ≥ τc + εc}
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The random parameter and mapping operators on the nodes of the stochastic model are estab-
lished in Table 5. The demand parameter, dn, which in the deterministic model depends on the
periods, in the stochastic model depends on the nodes of the tree.

Table 5 – Parameters and operators of the stochastic model.

dn demanded volume in node n ∈ N

t(n) period of node n ∈ N

p(n) immediate predecessor node of node n ∈ N in the tree

p(n, t) t-th predecesor node of node n ∈ N in the tree

π(n) probability of node n ∈ N

P(n) nodes in the path from root node to node n ∈ N

S(n) successor nodes of node n ∈ N in the tree

P(n1,n2) nodes in the path from node n1 to a successor node n2 ∈ S(n1)

In the stochastic model, most decisions depend on the nodes of the tree according to Table 6. In
contrast to the deterministic model, the decision to postpone a cargo, into a given period, could
be taken in different nodes; this is modeled by variable zc

nt .

Table 6 – Variables of the stochastic model.

sn stored volume at the end of period in node n ∈ N

un acquired volume into node n ∈ N

vc
n if cargo c ∈ P is acquired in node n ∈ Nc

γ , (binary)

wn cancelled volume out of node n ∈ N

xc
n if already acquired cargo c ∈ A is cancelled in node n ∈ Nc

δ (binary)

yn postponed volume into node n ∈ N

zc
nt if already acquired cargo c ∈ A is postponed in node n ∈ Nc

δ

to period t ∈ T c
ε (binary)

The indexes of periods in deterministic parameters or variables are referred to the temporary
realization of a node n by t(n). This is the case for the already acquired volume parameter, which
is indexed as at(n).
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From the previous definitions, the formulation of the multi-stage stochastic optimization model
is

min ∑
n∈N

π(n)
[

∑
{c∈P|n∈Nc

γ }
cacqcvc

n (15)

+ ∑
{c∈A|n∈Nc

δ }
(ccc− cac)qcxc

n (16)

+ ∑
{c∈A,t∈T c

ε |n∈Nc
δ }
(cpc + cac− ccc)qczc

nt (17)

+ ht(n)sn

]
, (18)

s.a.

sp(n)+at(n)+un + yn = dn +wn + sn, ∀n ∈ N, (19)

s≤ sn ≤ s, ∀n ∈ N, (20)

un = ∑
{c∈P|γc+1≤t(n)}

qcvc
p(n,γc), ∀n ∈ N, (21)

∑
n′∈P(n)

vc
n′ ≤ 1, ∀c ∈ P,∀n ∈ N|t(n) = H− γc, (22)

wn = ∑
{c∈A|t(n)=τc}

(
qc ∑
{n′∈P(n)|t(n′)≤τc−δ c}

xc
n′

)
, ∀n ∈ N, (23)

∑
n′∈P(n)

xc
n′ ≤ 1, ∀c ∈ A,∀n ∈ N|t(n) = τc−δ c, (24)

yn = ∑
{c∈A|t(n)≥τc+εc}


qc ∑

{n′∈P(n)∩Nc
δ }

zc
n′t


 , ∀n ∈ N, (25)

∑
{n′∈P(n),t∈T c

ε }
zc

n′t ≤ 1, ∀c ∈ A,∀n ∈ Nc
δ , (26)

xc
n ≥ zc

nt , ∀c ∈ A,∀n ∈ Nc
δ ,∀t ∈ T c

ε , (27)

sn,un,wn,yn ≥ 0, ∀n ∈ N,

vc
n ∈ {0,1}, ∀c ∈ P,∀n ∈ Nc

γ ,

xc
n,z

c
nt ∈ {0,1}, ∀c ∈ A,∀n ∈ Nc

δ ,∀t ∈ T c
ε .

This formulation takes into account the same structural properties of the deterministic model
extended with the information structure of the scenario tree. It minimizes the expectation of
acquisition costs (15), cancellation costs minus acquisition costs in case of cancellation (16),
postponement costs plus acquisition costs minus postponement costs (a postponement is modeled
in conjunction with a cancellation) and storage costs (18).

The constraint (19) sets the volume balance for each node. The lower and upper storage bounds
at each node are determined by (20). The amount of acquired fuel that is received in each node
is determined by acquisitions of cargoes in the possible range of the corresponding acquisition

Pesquisa Operacional, Vol. 39(1), 2019



48 STOCHASTIC DISCRETE LOT-SIZING WITH LEAD TIMES FOR FUEL SUPPLY OPTIMIZATION

periods according to (21). The constraint (22) states that each cargo is acquired at a single node
in each path from the root node to a node whose period coincides with the receiving period
minus the delivery time of the cargo. The fuel previously acquired that is cancelled at each
node is determined by the cancellations of the nodes in the path from the root node to the node,
whose cancellation periods are less than the delivery period less the cancellation time, according
to (23). The constraint (24) states that each cargo to be cancelled is at a single node in each
path from the root node to a node whose period coincides with the receiving period minus the
cancellation time of the cargo. The postponement of the cargoes is modeled in conjunction
with the cancellation, i.e. only cancelled cargoes can be postponed, (27). The already acquired
volume that is postponed in a node is determined by the postponements of the cargoes in the
nodes in the path from the root to the node for all periods superior to the period of reception plus
the delay time of the node, according to (25). The constraint (26) states that each cargo to be
postponed is at a single node in each path from the root node to a node in some period greater
than the receiving period plus the time of postponement of the node. The formulation does not
need nonanticipativity constraints because the direct indexing of the decisions on the scenario
tree implicitly establishes this condition.

The stochastic formulation does not guarantee that all solutions that satisfy constraints at initial
stages are also feasible in the remaining stages; that is, it does not have complete recourse [5].
This formulation is a generalization of the deterministic one. The deterministic formulation is a
special case of the stochastic for the case of a unique scenario in which the tree of scenarios is
reduced to a path. Therefore, the feasibility of the stochastic formulation is conditioned to the
timely availability of fuel to satisfy its demand along the path of each node of the tree,

s0 + ∑
{c∈A|τc≤t(n)}

qc + ∑
{c∈P|γc+1≤t(n)}

qc ≥ ∑
n′∈P(n)

dn′ , ∀n ∈ N.

3 EMPYRICAL ANALYSIS

In order to generate a number of diverse test instances, four scenario tree structures were consid-
ered. Each structure, depicted in Table 7, is determined by the number of direct descendants of
each node (tree arity) and the number of periods of the planning horizon. The time size of the
periods is measured in weeks. For each tree structure with arity g and H periods there are gH−1

escenarios and (gH −1)/(g−1) nodes.

Table 7 – Size of scenario tree structures.

Arity Periods Scenarios Nodes

2 5 16 31
2 6 32 63
3 5 81 121
3 6 243 364
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In order to show how the stochastic process is considered, the scenario tree structure with arity
g = 2 and H = 5 periods is depicted in Figure 1.

16
8

17
4

18
9

19
2

20
10

21
5

22
11

23
1

24
12

25
6

26
13

27
3

28
14

29
7

30
15

31

t1 2 3 4 5

Figure 1 – Tree structure with arity g = 2 and H = 5 periods where the set of 31 nodes is numbered

sequentially by stage increase and the 16 scenarios are defined as the paths from root node 1 to each leaf

node 16 to 31.

The size of each tree structure model instance (number of equations and variables) for a given
distribution of already acquired cargoes (A) and possible cargoes to be acquired (P) is shown in
Table 8.

Table 8 – Instance size of scenario tree structures by cargo distribution.

Arity Periods Cargoes [|C| (|A|+ |P|)] Equations Variables (binary)

2 5 10 (2+8) 225 249 (124)
2 6 12 (3+9) 480 549 (296)
3 5 10 (3+7) 827 809 (324)
3 6 12 (4+8) 2542 2485 (1028)

Three data instances were generated for each tree structure and cargo distribution, totaling 12
instances. Each instance has an initial storage, s0 = 20, and a lower and an upper bound storage,
s= 0 and s= 80, respectively. For each cargo c∈C there is an uniformly distributed volume, qc∼
U [10,50], and there are costs evenly distributed according to the operations of acquisition, cac ∼
U [150,250], cancellation, ccc ∼ U [30,50], and postponement, cpc ∼ U [5,12]. Each already
acquired cargo c ∈ A has delivery period τc = 1 or 2 with equal probability. Each cargo c ∈ C
has delivery time γc = 1, cancellation time δ c = 1 and delay time εc = 1. The unit storage cost
in each period t is ht = 1. For each scenario n ∈ L (leaf node), a probability of state π(n) is
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established from a distribution Beta(α = 2,β = 2); the probability of the remaining nodes is
obtained from the sum of the probabilities of their corresponding immediate successor nodes.
Finally, the demand for each node is evenly distributed, dn ∼U [10,50].

The computational implementation was performed using AMPL [4] for the algebraic coding of
the stochastic model, and GUROBI 6.5 [15] for the resolution of the instances through its branch
and cut solver. The calculations were carried out on an Intel Core i7 5960X 3.5GHz computer
with 20MB cache and 64GB RAM, operating with CentOS-7 Linux system.

Optimal values of the instances are shown in Table 9. The optimal value and time of resolution of
the stochastic model, denoted as recourse problem, is depicted at attributes RP and Time, the op-
timal value of the “wait and see” approach is represented with attribute WS, and the uncertainty
measure “expected value of perfect information” is shown at attribute EVPI [5]. WS represent
the lower bound of the optimum in the idealized case of knowing the future with certainty; and
EVPI is defined as the difference between RP and WS. It can be seen that EVPI shows a good
performance, since large values validate the use of the stochastic programming approach. Un-
surprisingly, instances of larger problems take longer execution time. Particularly the instances
10 and 11 reach the time limit of 900 s. Their best feasible solutions do not change after 48 and
294 s, respectively, and both optimality MIP gap’s marginal rate reduction, at the time limit, are
5×10−6 per second.

Table 9 – Optimal values of recourse problem (RP) and “wait and see” approach

(WS), and expected value of perfect information measure (EVPI) of the instances.

Instance Arity Periods Cargoes RP Time(s) WS EVPI

1
2 5 10

10,254 0.07 8,993 1,261
2 11,699 0.32 10,428 1,271
3 12,755 0.66 10,601 2,154
4

2 6 12
8,091 6.65 6,961 1,130

5 11,760 14.76 10,415 1,345
6 17,014 31.59 15,561 1,453
7

3 5 10
8,186 1.14 6,177 2,009

8 13,284 20.76 10,945 2,339
9 16,719 17.05 14,294 1,632

10
3 6 12

12,371 (2.34%)† 10,008 2,363
11 6,346 202.68 4,468 1,878
12 11,580 (1.60%)† 9,003 2,577

(†) MIP gap for instances that reach the time limit of 900 s.

The “expectation of the expected value problem” for each period t, EEVt , is obtained by solving
the problem while fixing the solution of its variables up to time t with the solution of a variant
of the problem in which the uncertain parameter is substituted by the mean. Then the “values
of the stochastic solution” measure corresponding to period t, VSSt , is defined as the difference
between each EEVt and RP. The values of VSSt for the periods of the first two instance are
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reported in Table 10. These values measures the importance of using the distribution of the
uncertain outcomes, and they are calculated according to the proposal of Escudero et al. [11].
The VSSt values depicted confirm the model time-step advantage with respect to the solution of
the expected value problem. For the case of Instance 1 an t = 3, the value of VSS3 indicates that
the stochastic model obtains a solution with an expected reduced cost of 3,489 with respect to
a deterministic variant of the model that consider expected value demand. For larger values of
t, the tightening of the solution of the expected value problems turn the EEVt values infeasible,
since the formulation does not have complete recourse and the settling of the variable makes the
EEVt problems increasingly restrictive as t increases.

Table 10 – Optimal value of expected result of using the ex-

pected value problem (EEV) and value of the stochastic solution

measure (VSS) for the periods by selected instances.

Instance Arity Periods Cargoes t EEVt VSSt

1 2 5 10

1 10,254
2 10,524 270
3 13,743 3,489
4 infeas. ∞
5 infeas. ∞

2 2 5 10

1 11,699
2 11,699 0
3 12,125 426
4 12,146 21
5 infeas. ∞

Note that EEV1 = RP, therefore VSS1 = 0.

Table 11 shows a summary of the optimal solution of the instances. For each instance, it de-
picts the number of cargoes that are acquired, #AcqCrg = |{c ∈ P : n ∈ Nc

γ ,v
c
n = 1}|, among

the available ones that total between 7 and 8 depending upon the instance (cf. Table 8). The
number of decisions on acquisition made is depicted in #Acq = |{c ∈ A,n ∈ Nc

γ : vc
n = 1}|. The

results show a high granularity of the acquisition process, because the optimal acquisition deci-
sions are made at many different nodes; and the number of nodes where acquisition decisions
are made grows as the scenario tree size increases. The number of decisions on cancellation
and postponement, among the already acquired cargoes that total between 2 and 4 depending
upon the instance (cf. Table 8), made are depicted in #Can = |{c ∈ A,n ∈ Nc

δ : xc
n = 1}| and

#Pos = |{c ∈ A,n ∈ Nc
δ , t ∈ T c

ε : zc
nt = 1}|, respectively, for each instance. As can be seen that

these decisions are sporadic, which is valuable from the commercial and logistical point of view.
Furthermore, it may be difficult to detect them in advance without the support of a model. The
model’s advantage of detecting all these decisions in advance allows an early probabilistic con-
sideration of their execution.
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Table 11 – Optimal solution summary with cardinality of selected cargos and cardinality

of acquisition, cancellation and postponement decisions by instances.

Inst. Arity Periods Cargoes #AcqCrg #Acq #Can #Pos

1
2 5 10

4 8 0 0
2 4 12 0 0
3 5 11 0 0
4

2 6 12
7 32 1 0

5 6 36 1 0
6 7 30 0 0
7

3 5 10
4 36 0 0

8 6 36 1 0
9 6 31 0 0

10†

3 6 12
7 74 3 0

11 6 87 1 1
12† 6 81 2 1

(†) Instances that reach the time limit of 900 s.

4 CONCLUSIONS

In this paper, we proposed a stochastic multi-stage capacitated discrete lot-sizing model formu-
lation for a discrete cargo fuel supply with lead times problem. The decisions of the problem
were represented in detail with their delay time, aspect that for cancellation and postponement
decisions is not covered in previous literature. The structure of the uncertain information was
modeled by a discrete time stochastic process with finite probability, summarized in a scenario
tree. Stochastic programming methodology with entities indexed by nodes of the scenario tree
was used to formulate the model. The model extends deterministic models of the literature, which
implied the revision of the definitions of the variables and the restrictions to take into account the
structure of the scenario tree.

Computational experiments where carried out for several instances with scenarios of a variety of
sizes and characteristics. Most of these experiments were solved to optimality for the medium-
size generated instances. The experimental results have shown the validity of the model. Results
shows a considerable advantage over the expected value of corresponding deterministic models.
Although medium-sized instances could be solved, computational times grew significantly, and
for scenarios with more stages or more decisions per stage it is important to improve computa-
tional efficiency. Therefore, for future work, it is recommended to study reformulations of the
stochastic model with tight high level relaxations, and develop resolution techniques according
to them.
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Abstract

A stochastic capacitated discrete procurement problem with lead times, cancellation and postponement is ad-
dressed. The problem determines the expected cost minimization of meeting the uncertain demand of a product
during a time planning horizon. The supply of the product is made through the purchase of optional distinguishable
orders of fixed size with lead time. Due to the uncertainty of demand, corrective actions, such as order cancellation
and postponement, may be taken with associated costs and time limits. The problem is modeled as an extension
of a capacitated discrete lot-sizing problem with uncertain demand and lead times through a multi-stage stochastic
mixed-integer programming approach. To improve the resolution of the model by tightening its formulation, valid
inequalities are generated based on the conventional (`,S) inequalities approach. Computational experiments are
performed for several instances with different uncertainty information structure. The experimental results allow to
conclude that the inclusion of a subset of the generated valid inequalities enable a more efficient resolution of the
model.

Keywords: stochastic lot-sizing; multi-stage stochastic mixed-integer programming; valid inequalities, lead time

1. Introduction

This work deals with the resolution of a capacitated discrete procurement problem with lead times,
cancellation and postponement. The problem is about the minimization of the expectation of the costs
incurred in decisions taken to meet the uncertain demand of a product over a finite discrete time planning
horizon. To meet the demand, there are optional distinguishable orders with an indivisible amount of the
product. The orders can be acquired at most once with an associated cost and a delivery time. After

∗Author to whom all correspondence should be addressed (e-mail: ctesturi@fing.edu.uy).
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meeting the demand of the product in a given period, the remaining quantity is stored up to a certain
capacity, to satisfy future demand in subsequent periods. The orders have significant delivery times
within the planning horizon; so that a considerable amount of time elapses between the purchase decision
and the moment when the product is received. As the time passes, the uncertainty of the demand is
revealed. Then it can happen that, at a given time, a purchase order which has not yet been received is
no longer necessary. In this case, it could be decided to cancel its acquisition or postpone its delivery;
decisions that in turn, have minimum execution times in relation to the time of delivery and associated
costs.

The problem can be modeled as an extension of the lot-sizing formulation of Wagner and Whitin
(1958) and particularly of the variant with variable capacity and discrete dimensioning of Nemhauser
and Wolsey (1988). For the case where the parameters are known with certainty (deterministic case),
the dimensioning is continuous, and without capacity constraints or with constant capacity, the problem
has efficient resolution through dynamic programming as shown by Wagner and Whitin (1958) and
Wagelmans et al. (1992). In addition, there are known formulations which determine the convex hull of
the feasible region: the extended facility location formulation of Krarup and Bilde (1977) and the (`,S)
valid inequalities formulation of Barany et al. (1984). Bitran and Yanasse (1982) established that the
deterministic variant with discrete sizing is a generalization of the binary knapsack problem, and that it
belongs to the NP-hard complexity class.

In the case that the parameters are random variables (stochastic variant) the problem can be formulated
by stochastic programming (Birge and Louveaux, 2011). Ahmed et al. (2003) established an adjusted
extended formulation of the stochastic continuos non-capacitated problem and showed that the Wagner-
Whitin conditions are not satisfied for the stochastic variant. Guan et al. (2006) showed that the (`,S)
inequalities are also valid for the stochastic continuous variant, and they extend the inequalities to a
general class that allow to define facets of the feasible set.

Other variants of the deterministic continuous non-capacitated lot-sizing problem model delivery time
of the lots (e.g. due to production time). Lee et al. (2001) present a variant in which demands have a
compliance interval that has efficient resolution by dynamic programming. Brahimi et al. (2006) present
two variants according to whether the lots are or are not distinguishable with respect to delivery times.
These authors propose efficient algorithms based on dynamic programming for the distinguishable case
and for the undistinguishable case when the order-delivery windows are not inclusive. For these variants,
Wolsey (2006) sets tight extended formulations. For the stochastic case, Huang and Küçükyavuz (2008)
establish that the problem with random lead times can be efficiently solved when delivery windows do
not intersect in time and Jiang and Guan (2011) establish an quadratic polinomial time algorithm. Liu and
Küçükyavuz (2018) propose valid inequalities for the static probabilistic lot-sizing problem. Hosseini
and MirHassani (2017) generate valid inequalities for tightening a refueling station location model. A
stronger formulation based on valid inequalities for simple assembly line balancing is proposed by Ritt
and Costa (2018). Testuri et al. (2019) present a specific example of the proposed new problem, which
details the complexity of its resolution and motivates the present work.

In this work the problem under study is modeled by a new extension of the stochastic capacitated
discrete lot-sizing problem with corrective actions and lead times. The model is formulated through
a multi-stage stochastic mixed-integer programming approach. The formulation is tightened by valid
inequalities derived of the conventional (`,S) inequalities approach. Computational experiments show
that the derived inequalities are adequate to improve the resolution of the model.



The work is organized as follows. In Section 2 an algebraic model of the problem is presented. Valid
inequalities for the model are presented in Section 3. In Section 4 experiments are established to deter-
mine utility of the valid inequalities formulation. Work is completed with Section 5, where conclusions
and future work are discussed.

2. Stochastic model formulation

The model formulation is based on the mathematical programming approach. Basic entities represented
by index sets are described as:

T periods, {1, ...,H} (ordered set),
A already acquired orders,
F possible (future) orders to be acquired,
O orders, A ∪ F ,
N nodes of the scenario tree.

The planning time is represented by the set T of discrete time periods, from initial period 1 up to horizon
period H . The set O of orders is partitioned in two sets: the set A of already acquired orders –orders
established in previous time execution of the model– that are pending reception, and the set F of possible
(future) orders to be acquired from now on. Acquisition decisions are made on orders in set F , and
cancellation or postponement decisions are taken on orders in set A.

The uncertain demand is represented by a discrete-time stochastic process indexed in the planning
periods. The process is defined in a finite probability space. It is assumed that the demand of the first
period is deterministic, and that the demands of the remaining periods are random with known distri-
bution functions. The decisions made in a period can not anticipate the revelation of the uncertainty of
the next period. These decisions must simultaneously take into account the entire distribution of uncer-
tain demand in the following periods. This information structure can be represented by an arborescence
structure called tree of scenarios (Römisch and Schultz, 2001). The structure is a directed rooted tree,
with the root node in period t = 1 and with leaf nodes in period t = H (identifying the scenarios).

Each node of the scenario tree describes the state of the process and is identified by a period and a
scenario. An useful abbreviated notation is to identify the nodes by a single index n in a numerable set
of nodes, N . For the first period, t = 1, there is a unique node, denoted by 1, that represents the root of
the tree.

Set-valued functions on the nodes of the scenario tree are described as:

t(n) period corresponding to node n ∈ N ,
p(n) immediate time predecessor node of node n ∈ N ; the auxiliary node 0 is defined as the

predecessor of the root node, such that 0 /∈ N ,
p(n, k) k-th time predecessor of node n ∈ N ; defined as p(n, k) := p(p(n, k − 1)) for k =

2, ..., t(n)− 1, such that p(n, 1) := p(n),
P (n) set of ordered nodes on the path from the root node to node n ∈ N . It is defined as

sequence
(
p(n, t(n)− 1), p(n, t(n)− 2), ..., p(n, 1), n

)
,



S(n) set of nodes successors of node n ∈ N ; defined as S(n) := {n′ ∈ N, k = 1, ...,H −
t(n)|n = p(n′, k)},

L set of leaf nodes of the tree; defined as L := {n ∈ N |t(n) = H}.
A perfect binary scenario tree with four periods in conjunction with set-value functions is depicted as

an example in Figure 1.
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(a) Indexed scenario tree

N = {1, 2, ..., 15}
L = {8, 9, ..., 15}
t(4) = 3
p(4) = 2
p(4, 2) = 1
P (4) = (1, 2, 4)
S(4) = {8, 9}

(b) Sets and set-value functions on nodes

Fig. 1: Example of a scenario tree with four periods and set-value functions on nodes

The parameters of the model are described as:

dn demand volume at node n ∈ N ,
πn probability of node n ∈ N ,
s0 initial inventory volume,
s, s minimum and maximum storage capacities by period,
τ i period in which already acquired order i ∈ A is received,
qi volume of order i ∈ O,
γi delivery time of order i ∈ F , such that 0 ≤ γi ≤ H − 1,
δi cancellation minimum time of already acquired order i ∈ A, such that 0 ≤ δi ≤ τ i− 1,
εi postponement minimum time of already acquired order i ∈ A, such that 0 ≤ εi ≤

H − τ i,
cai acquisition unit cost of order i ∈ O,
cci cancellation unit cost of order i ∈ O,
cpi postponement unit cost of order i ∈ O,
ht storage unit cost in period t ∈ T ,
at already acquired volume that is received in period t ∈ T .



In the stochastic setting the product demand at each node n is defined as dn. The probability of the
state on each node n is denoted as πn, such that πn ≥ 0 and

∑
n∈N |t(n)=t πn = 1, for each t ∈ T . The

demand distribution for each period t ∈ T is represented by (dn, πn) such that n ∈ N and t(n) = t.
Due to storage constraints, the inventory of the product at the end of each period is restricted between
a minimum volume, s, and a maximum volume, s, and there is an initial inventory volume, s0, at the
beginning of the planning horizon.

The period at which an already acquired order i, τ i, is received is fixed, and it is decided in previous
acquisitions (i.e. previous model resolutions). Each order i has a given volume, qi. Decisions on each
order have a delay time of achievement of its results measured in periods. The delivery time of order
i, γi, establishes the length of the wait time (measured in periods) between the acquisition decision
and the actual arrival of the order. The minimum time for cancellation of order i, δi, establishes the
minimum number of periods prior to the delivery period at which the order may be cancelled. The
minimum postponement time of order i, εi, establishes the minimum number of periods after the delivery
period in which the posponed order can be received. The achievement period of decisions on acquisition,
cancellation and postponement must take place within the planning horizon.

For each order i there are unit costs per volume associated with the decisions to acquire, cai, cancel,
cci, and postpone, cpi. In addition, there is a unit cost associated with storage at each period t, ht. The
already acquired volume that is scheduled to be received at each period is determined by the sum of the
volume of the orders that are received in that period,

at :=
∑

{i∈A|τ i=t}
qi, t ∈ T ; (1)

this is an auxiliary summary parameter.
In order to facilitate the formulation, derived subsets of the sets of nodes and periods that are indexed

in the parameters are established as

N i
γ nodes where it is possible to acquire order i ∈ F , {n ∈ N |t(n) ≤ H − γi},

N i
δ nodes where it is possible to cancel and postpone order i ∈ A, {n ∈ N |t(n) ≤ τ i−δi},
T iε periods to where it is possible to postpone order i ∈ A, {t ∈ T |t ≥ τ i + εi}.

These subsets abbreviate the denomination of nodes where, for each order i, it is possible to acquire
it, N i

γ , and where it is possible to cancel and postpone it, N i
δ . In addition, subsets of periods to where it

is possible to postpone each order i are established, T iε . The subscripts of this subsets are part of their
denomination.

In the stochastic model all decisions depend on the nodes of the tree according to the following defi-
nitions of the variables:

sn inventory volume at the end of the period of node n ∈ N
un acquired volume incoming at node n ∈ N
vin if order i ∈ F is acquired at node n ∈ N i

γ (binary)
wn cancelled volume outgoing from node n ∈ N
xin if an already acquired order i ∈ A is cancelled in node n ∈ N i

δ (binary)
yn postponed volume incoming at node n ∈ N
zint if an already acquired order i ∈ A is postponed in node n ∈ N i

δ to period t ∈ T iε



(binary)

There are binary variables associated with decisions on order i taken at node n for acquisition, vin,
cancellation, xin, and postponement zint towards period t. There are three continuous auxiliary variables
that consolidate the volume, at each node n, by type of decision: sn integrates the inventory volume at
the end of the period of the node, un unifies the acquired volume incoming at the node, wn unites the
cancelled volumen outgoing of the node, and yn combines the postponed volume incoming at the node.

The indexes of periods in deterministic parameters or variables are reduced to the temporary realiza-
tion of a node n by t(n). This is the case for parameters corresponding to the already acquired volume
and storage unit cost.

Based on the previous definitions of index sets, parameters and variables a multi-stage stochastic
mixed-integer programming formulation of the problem is

(SCS) : min
∑

n∈N
πn

[ ∑

{i∈F |n∈N i
γ}
caiqivin (2)

+
∑

{i∈A|n∈N i
δ}
(cci − cai)qixin (3)

+
∑

{i∈A,t∈T iε |n∈N i
δ}
(cpi + cai − cci)qizint (4)

+ ht(n)sn

]
, (5)

s.t.

sp(n) + at(n) + un + yn = dn + wn + sn, n ∈ N, (6)

s ≤ sn ≤ s, n ∈ N, (7)

un =
∑

{i∈F |t(n)≥γi+1}
qivip(n,γi), n ∈ N, (8)

∑

n′∈P (n)

vin′ ≤ 1, i ∈ F, n ∈ N, t(n) = H − γi, (9)

wn =
∑

{i∈A|t(n)=τ i}


qi

∑

{n′∈P (n)|t(n′)≤τ i−δi}
xin′


 , n ∈ N, (10)

∑

n′∈P (n)

xin′ ≤ 1, i ∈ A,n ∈ N, t(n) = τ i − δi, (11)

xin ≥ zint, i ∈ A,n ∈ N i
δ, t ∈ T iε , (12)

yn =
∑

{i∈A|t(n)≥τ i+εi}


qi

∑

{n′∈P (n)∩N i
δ}
zin′,t(n)


 , n ∈ N, (13)



∑

{n′∈P (n),t∈T iε }
zin′t ≤ 1, i ∈ A,n ∈ N i

δ, (14)

sn, un, wn, yn ≥ 0, n ∈ N, (15)

vin ∈ {0, 1}, i ∈ F, n ∈ N i
γ , (16)

xin, z
i
nt ∈ {0, 1}, i ∈ A,n ∈ N i

δ, t ∈ T iε . (17)

This formulation takes into account the information structure of the scenario tree. It minimizes the
expectation of acquisition costs (2), cancellation costs less acquisition costs in case of cancellation (3),
postponement costs plus acquisition costs minus cancellation costs (4) –a postponement is modeled in
conjunction with a cancellation–, and storage costs (5).

Constraints (6) set the product volumen flow conservation over time for each node, where the left and
right expressions represent the incoming and outgoing flow, respectively. The lower and upper storage
bounds at each node are determined by constraints (7). The amount of acquired product that is received at
each node is determined by acquisitions of orders in the possible range of the corresponding acquisition
periods according to (8). Constraints (9) state that each order is acquired at a single node at most in each
path from the root node to a node whose period coincides with the receiving period minus the delivery
time of the order. The product previously acquired that is cancelled at each node is determined by the
cancellations of the nodes in the path from the root node to the node, whose cancellation periods are
less than the delivery period less the cancellation time, according to (10). Constraints (11) state that each
order to be cancelled is at a single node in each path from the root node to a node whose period coincides
with the receiving period minus the cancellation time of the order. The postponement of the orders is
modeled in conjunction with the cancellation, i.e. only cancelled orders can be postponed, (12). The
already acquired volume that is postponed in a node is determined by the postponements of the orders
in the nodes in the path from the root to the node for all periods superior to the period of reception plus
the delay time of the node, according to (13). Constraints (14) state that each order to be postponed is at
a single node in each path from the root node to a node in some period greater than the receiving period
plus the time of postponement of the node. Constraints (15)–(17) state the domain of the variables. The
set of feasible solutions of (SCS) is denoted by XSCS.

3. Valid inequalities for the stochastic model

The problem belongs to the time complexity class NP-hard, since it is an extension of the discrete
lot-sizing problem. Therefore, there is no known polyhedral description of the convex hull of XSCS. It
is nevertheless interesting to derive valid inequalities which can be used to strengthen the formulation.
In some cases adding these inequalities can directly improve the capability of solvers to find solutions
for larger instances in shorter times. Even when this is not the case, they may be used within a more
sophisticated solving strategy, such as branch and cut methods relying on constraint separation.

Valid inequalities for XSCS are derived from the (`,S) valid inequalities formulation for the deter-
ministic uncapacitated lot-sizing problem of Barany et al. (1984) while considering the extension for the
stochastic case of Guan et al. (2006). The derived inequalities establish bounds on decision variables for
the nodes of possible paths in the scenario tree.



Two sets of valid inequalities are derived:

(i) from equations (10) and inequalities (11) it is satisfied that

wn ≤
∑

{i∈A|t(n)=τ i}
qi, n ∈ N.

From these inequalities and definition of at (cf. (1)) it holds that

wn ≤ at(n), n ∈ N. (18)

Consider the material balance equation (6) of model (SCS), for all n ∈ N

sp(n) + at(n) + un + yn = dn + wn + sn,

given that sp(n), at(n), yn ≥ 0 and inequalities (18) it follows that

un ≤ dn + sn. (19)

From inequalities (19) the following valid inequalities can be established

un ≤ dnβ(n) + sn, for all n ∈ N, (20)

where β(n) :=
∑
{i∈F |t(n)≥γi+1} v

i
p(n,γi), since for all n ∈ N , if β(n) = 0, then from (8) un =∑

{i∈F |t(n)≥γi+1} q
ivip(n,γi) = 0. Otherwise, if β(n) ≥ 1, then (20) holds.

In general, from the sum of material balance equation (6) between n ∈ N and ` ∈ S(n), the following
condition holds

un ≤ dn` + s`, (21)

where dn` :=
∑

n′∈P (`)\P (p(n)) dn′ is the accumulated demand in the nodes in the path from n to `.
From (21) the following valid inequalities can be established

un ≤ dn`β(n) + s`, for all n ∈ N, ` ∈ S(n), (22)

similar to the provision for (20).

The valid inequalities (25) are obtained by adding the inequalities (22) for each subset of the set of
nodes of the path from the root node to the ` node.

(ii) Given the material balance equation (6) of model (SCS), for all n ∈ N

sp(n) + at(n) + un + yn = dn + wn + sn,

given that sp(n), at(n), yn ≥ 0 it follows that

un ≤ dn + wn + sn. (23)



From inequalities (23) and following similar provisions than case (i) the following valid inequalities
can be established

un ≤ dn`β(n) + wn` + s`, for all n ∈ N, ` ∈ S(n). (24)

The valid inequalities (26) are obtained by adding the inequalities (24) for each subset of the set of
nodes of the path from the root node to the ` node.

Theorem 1. Let ` ∈ N and S ⊆ P (`) then the SCS-(`,S) inequalities

(i)
∑

n∈S
un ≤

∑

n∈S
dn`β(n) + s`, (25)

(ii)
∑

n∈S
un ≤

∑

n∈S
dn`β(n) +

∑

n∈S
wn` + s`, (26)

are valid for XSCS.

Proof. The proof of (25) is based on the deterministic case presented by Barany et al. (1984). Given a
point (s, v, x, z) ∈ XSCS there are two cases.

1) If β(n) =
∑
{i∈F |t(n)≥γi+1} v

i
p(n,γi) = 0 for all n ∈ S, then

un =
∑
{i∈F |t(n)≥γi+1} q

ivip(n,γi) = 0 for all n ∈ S and s` ≥ 0, therefore the inequality holds.
2) Otherwise, there exists n ∈ S such that β(n) = 1. Let n′ = argmin{t(n)|n ∈ N, β(n) = 1}. Then

β(n) = 0 and un = 0 for all n ∈ S ∩ P (p(n′)). Thus
∑

n∈S un ≤
∑

n∈P (`)\P (p(n′)) un ≤ dn′` + s` ≤∑
n∈S dn`β(n) + s`.
The proof of (26) is similar considering that

∑
n∈S wn` ≥ 0.

Lemma 1. The SCS-(`,S) inequalities can be written alternatively as

(i)
∑

n∈P (`)\S
un +

∑

n∈S
dn`β(n) +

∑

n∈P (`)

(yn − wn) ≥

d1` −
∑

n∈P (`)

at(n) − s0, for all ` ∈ N,S ⊆ P (`). (27)

(ii)
∑

n∈P (`)\S
un +

∑

n∈S
dn`β(n) +

∑

n∈P (`)

(yn − wn) +
∑

n∈S
wn` ≥

d1` −
∑

n∈P (`)

at(n) − s0, for all ` ∈ N,S ⊆ P (`). (28)

Proof. The sum of equations (6), for all n ∈ P (`) of a given ` ∈ N , results in

s0 +
∑

n∈P (`)

at(n) +
∑

n∈P (`)

yn +
∑

n∈P (`)

un = d1` + w1` + s`,

from where it is possible to solve for s` and substitute it in (25) and (26), obtaining an alternative



representation of the valid inequalities without inventory variables, denoted as SCS-(`,S)-i and SCS-
(`,S)-ii, respectively.

The formulation variants in which the inequalities (27) and (28) are added to (SCS) are called (SCS-
(`,S)-i) and (SCS-(`,S)-ii), respectively.

4. Computational experiments

This section explores the computational impact of adding a subset of the SCS-(`,S) inequalities intro-
duced in the previous section to the original formulation. Specifically, the original formulation and its
variants where the set S is fixed with the root node, are tested over a set of instances, checking the quality
of the obtained solutions and the computational effort invested by the solver.

In order to generate a number of diverse test instances, six scenario tree structures were considered
based on rooted perfect directed trees. Each tree structure, depicted in Table 1, is determined by the
number of immediate time successors of each node (tree arity) and the number of periods of the planning
horizon. Each tree structure with arity g and time horizonH contains gH−1 scenarios and (gH−1)/(g−
1) nodes.

Table 1: Size of scenario tree structures

Arity Horizon Scenarios Nodes

2 5 16 31
2 6 32 63
2 7 64 127
3 5 81 121
3 6 243 364
3 7 729 1,093

A distribution of orders by quantity is associated to each tree structure. Each distribution of orders by
quantity (|O|) is identified by the sum of numbers of already acquired orders (|A|) and possible orders
to be acquired (|F |), as shown in column labelled “Orders” in Table 2. The 3-uple 〈arity, horizon, dis-
tribution of orders〉 identifies table rows, denominated as categories of data instances. The table depicts,
for each category, the numbers of constraints, (`,S) inequalities, variables and binary variables.

Thirty data instances were generated for each of the six instance categories, totaling 180 instances.
Each instance has an initial storage, s0 = 20, and a lower and an upper bound storage, s = 0 and s = 80,
respectively. For each order i ∈ O there is an uniformly distributed volume, qi ∼ U [10, 50], and there
are costs evenly distributed according to the operations of acquisition, cai ∼ U [150, 250], cancellation,
cci ∼ U [30, 50], and postponement, cpi ∼ U [5, 12]. Each already acquired order i ∈ A has delivery
period τ i = 1 or 2 with equal probability. Each order i ∈ O has delivery time γi = 1, cancellation
time δi = 1 and delay time εi = 1. The unit storage cost at each period t is ht = 1. For each scenario,
identified as leaf node n ∈ L, a probability of state πn is established from a distribution Beta(α =
2, β = 2); the probability of the remaining nodes is obtained from the sum of the probabilities of



Table 2: Size of instance categories defined by scenario tree structure and order distribution

Arity Horizon Orders [|O| (|A|+ |F |)] (SCS)-constraints (`,S)-inequalities Variables (binary)

2 5 10 (2+ 8) 225 31 249 (124)
2 6 12 (3+ 9) 480 63 549 (296)
2 7 14 (3+11) 1,012 127 1,223 (714)
3 5 10 (3+ 7) 827 121 809 (324)
3 6 12 (4+ 8) 2,542 364 2,485 (1,028)
3 7 14 (4+10) 7,987 1,093 8,091 (3,718)

their corresponding immediate successor nodes. Finally, the demand for each node is evenly distributed,
dn ∼ U [10, 50].

The computational implementation was performed using AMPL (Fourer et al., 2002) for the algebraic
coding of the stochastic model, and GUROBI 6.5 (Gurobi Optimization, LLC, 2018) for the resolution
of the instances through its branch and cut solver. The calculations were carried out on an Intel Core i7
5960X 3.5 GHz computer with 20 MiB cache and 64 GiB RAM, operating with CentOS-7 Linux system.

For each instance, the original model and the variants were solved within a time limit of 900 s or
without gap between the objective and its lower bound (MIP-gap = 0). The instances average results of
the original model and the variants by instance category are presented in Table 3, Table 4 and Table 5,
respectively for formulations (SCS), (SCS-(`,S)-i) and (SCS-(`,S)-ii). Detailed result of each instance
by category and formulations (SCS), (SCS-(`,S)-i), and (SCS-(`,S)-ii) are given in Tables 6–11 at the
Appendix.

Table 3: Average results of 30 instances of formulation (SCS) by instance category

g H |O| Time-mean(s) Time-median(s) MIP-gap(%) Nodes Cuts LP-gap(%)

2 5 10 1.60 0.87 0 15,261 159 10.31
2 6 12 27.61 19.53 0 111,228 473 11.25
2 7 14a 868.58 900.80 0.73 2,752,608 855 9.89
3 5 10 21.99 12.61 0 42,727 444 12.40
3 6 12b 821.46 900.39 2.86 868,850 1,797 19.69
3 7 14c 900.20 900.14 5.81 46,457 2,031 24.43
3 7 14cd 900.20 900.14 4.47 33,177 1,520 21.32

a28 of 30 instances reach the 900 s time limit.
b27 of 30 instances reach the 900 s time limit.

cAll instances reach the 900 s time limit.
dMedian value results.

These summary tables show, for each instance category average results of the 30 instances of the
model (SCS) and its variants (SCS-(`,S)-i) and (SCS-(`,S)-ii). The metric results by instance category,
depicted by columns labeled g, H and |O|, are solver mean and median elapsed time at columns “Time-
mean” and “Time-median”, solver mean relative mixed-integer programming gap for instances that reach
the time limit of 900 s at column “MIP-gap(%)”, mean number of nodes of solver branch and cut method



Table 4: Average results of 30 instances of formulation (SCS-(`,S)-i) by instance category

g H |O| Time-mean(s) Time-median(s) MIP-gap(%) Nodes Cuts LP-gap(%)

2 5 10 0.67 0.36 0 3,835 108 7.48
2 6 12 17.65 6.10 0 61,852 431 9.51
2 7 14a 542.96 727.28 0.48 1,311,339 1,218 7.01
3 5 10 7.94 3.17 0 18,532 318 9.74
3 6 12b 728.13 900.23 2.46 495,200 2,211 17.26
3 7 14c 900.32 900.16 7.15 55,149 2,048 26.08
3 7 14cd 900.32 900.16 4.75 31,722 1,716 17.08

a15 of 30 instances reach the 900 s time limit.
b22 of 30 instances reach the 900 s time limit.

cAll instances reach the 900 s time limit.
dMedian value results.

Table 5: Average results of 30 instances of formulation (SCS-(`,S)-ii) by instance category

g H |O| Time-mean(s) Time-median(s) MIP-gap(%) Nodes Cuts LP-gap(%)

2 5 10 1.13 0.88 0 11,346 159 9.51
2 6 12 18.19 12.78 0 56,467 483 11.00
2 7 14a 743.11 900.68 0.56 1,766,353 1,349 8.89
3 5 10 18.13 5.81 0 30,371 476 11.77
3 6 12b 819.11 900.32 2.46 593,253 2,387 19.47
3 7 14c 900.27 900.17 6.52 39,807 1,712 25.18
3 7 14cd 900.27 900.17 4.80 30,776 1,260 21.24

a23 of 30 instances reach the 900 s time limit.
b27 of 30 instances reach the 900 s time limit.

cAll instances reach the 900 s time limit.

at column “Nodes”, mean number of cuts added by solver’s branch and cut method at column “Cuts”, and
mean relative gap of the best objective with respect to the corresponding one under linear programming
relaxation at column “LP-gap(%)”. The median elapsed time is shown as a summary statistic since most
of the instance categories present outliers for the metric. Due that most of the metrics are bounded below,
the median tends to be smaller than the mean. The types of cuts added by the solver are by descending
frequency of occurrence: mixed integer rounding, flow cover, Gomory passes, implied bound, mod-k,
zero-half, generalized upper bound cover, implied bound, and cover. There are almost no cases of cut
types: strong Chvátal-Gomory, infinity proof, network, and lift and project. The distribution of cut type
frequency of the original model and its variants are similar.

The results of formulation (SCS-(`,S)-i) are better than those of formulation (SCS) except for instance
category (3,7,14) that are equally hard for both. Formulation (SCS-(`,S)-i) has smaller mean metric
values than formulation (SCS) for the remaining instance categories. For all instance categories where
some of its instances reach the 900 s time limit, the formulation (SCS-(`,S)-i) obtains a lower or equal
number of these instances and a lower MIP-gap average than formulation (SCS). Specifically in the
case of instance category (2,7,14), while formulation (SCS) is solved to optimality for 2 instances in



the allotted time, formulation (SCS-(`,S)-i) is solved for 15 instances. Nevertheless formulation (SCS-
(`,S)-ii) presents mixed results with respect to formulation (SCS) depending on instance categories, and
overall worse results than formulation (SCS-(`,S)-i).

5. Conclusions

A stochastic multi-stage capacitated discrete lot-sizing model formulation of the provision with lead
times of the uncertain demand of a product has been proposed. The decisions on product orders are
modeled with delay time, aspect that for cancellation and postponement decisions is not covered in the
previous literature of the problem. A discrete time stochastic process with finite probability, summarized
in a scenario tree, is used to model the information structure of the uncertain demand. The model is
formulated by stochastic mixed-integer programming with entities indexed by nodes of the scenario
tree. The model incorporates decisions to cancel and postpone orders with delay time, which implied
the revision of the definitions of the variables and the restrictions to take into account the structure of
the scenario tree. To tighten the formulation, two types of valid inequalities were generated based in the
(`,S) inequalities approach.

Computational experiments where carried out for several instances of six tree structures and order
distributions of different sizes. All of the computational experiments were solved at optimum for the
structures of small and medium sized instance categories. The (SCS-(`,S)-i) formulation shows im-
proved performance over the (SCS) original formulation for execution time, MIP-gap, number of branch
and bound nodes, and number of solver cuts. The experimental results shows the interest of the (SCS-
(`,S)-i) formulation, which can be used to solve larger instances in shorter computational time. As future
work, the development of reduction and separation algorithms, the determination of dominated and vio-
lated valid inequalities, and the study of formulations that combine the derived (`,S) valid inequalities
for different node paths in the scenario tree are considered.
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Appendix



Table 6: Results of 30 instances for (g,H, |O|) = (2,5,10) instance category by formulations

(SCS) (SCS-(`,S)-i) (SCS-(`,S)-ii)
Instance Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap

1 16117 2.81 0 35139 272 0.0721 16117 1.58 0 15684 225 0.0721 16117 3.07 0 45955 278 0.0721
2 10254 0.07 0 88 22 0.2155 10254 0.08 0 0 0 0.1966 10254 0.15 0 96 32 0.2155
3 11699 0.35 0 7045 117 0.1235 11699 0.21 0 0 14 0.0907 11699 0.36 0 2072 146 0.1125
4 12755 0.71 0 2924 33 0.1856 12755 0.18 0 0 24 0.1005 12755 0.15 0 721 86 0.1705
5 21232 3.19 0 32636 338 0.0927 21232 1.17 0 5132 114 0.0436 21232 1.16 0 11395 213 0.0781
6 12877 0.51 0 2996 106 0.1263 12877 0.38 0 3065 118 0.1263 12877 0.23 0 3696 121 0.1263
7 21445 1.72 0 8483 155 0.0945 21445 1.28 0 1764 73 0.0728 21445 2.2 0 13428 276 0.0945
8 19249 11.31 0 44771 221 0.0512 19249 2.29 0 17356 239 0.0456 19249 4.99 0 68732 395 0.0490
9 14811 0.86 0 7450 186 0.1610 14811 0.31 0 3181 197 0.0728 14811 0.87 0 2282 90 0.1338

10 15772 1.18 0 5977 179 0.0867 15772 1.20 0 5757 167 0.0867 15772 1.02 0 9687 203 0.0867
11 15407 0.88 0 4474 142 0.0784 15407 0.90 0 9261 108 0.0784 15407 1.25 0 3608 112 0.0784
12 19838 2.79 0 56968 231 0.1219 19838 0.72 0 1538 41 0.1053 19838 1.3 0 9197 186 0.1201
13 8987 0.76 0 7716 149 0.0854 8987 1.26 0 7132 172 0.0854 8987 1.06 0 5626 161 0.0854
14 16745 0.11 0 0 30 0.0464 16745 0.30 0 3580 169 0.0464 16745 0.2 0 1921 102 0.0464
15 18621 1.49 0 18691 240 0.1122 18621 0.29 0 2499 91 0.0736 18621 0.69 0 3184 120 0.0978
16 16488 0.94 0 3830 172 0.0800 16488 0.94 0 2067 67 0.0453 16488 0.89 0 3188 150 0.0713
17 20002 0.62 0 6043 127 0.0654 20002 0.30 0 1613 122 0.0654 20002 0.86 0 3664 111 0.0654
18 19150 3.54 0 66603 307 0.1002 19150 1.23 0 12041 230 0.0891 19150 3.16 0 48701 303 0.0945
19 19036 0.50 0 4223 76 0.1389 19036 0.19 0 741 90 0.0766 19036 0.24 0 3166 118 0.1198
20 15028 0.14 0 357 69 0.0751 15028 0.21 0 0 9 0.0454 15028 0.47 0 7801 152 0.0653
21 17702 1.46 0 9990 309 0.1674 17702 1.80 0 1910 40 0.0695 17702 1.06 0 4337 167 0.1357
22 21816 4.08 0 57284 361 0.0820 21816 0.27 0 1150 137 0.0512 21816 2.73 0 41866 263 0.0729
23 17552 0.14 0 1663 101 0.1028 17552 0.19 0 52 35 0.0595 17552 0.17 0 2630 115 0.0891
24 16526 3.37 0 40264 229 0.0637 16526 0.40 0 4856 168 0.0637 16526 1.19 0 14991 173 0.0637
25 11129 0.10 0 45 21 0.1871 11129 0.12 0 0 2 0.0844 11129 0.11 0 0 31 0.1555
26 21238 1.98 0 20763 256 0.1398 21238 0.33 0 3892 99 0.0984 21238 1.41 0 9390 189 0.1278
27 18169 0.56 0 2993 134 0.0358 18169 0.45 0 3408 208 0.0358 18169 0.86 0 4544 124 0.0358
28 16351 0.68 0 3069 102 0.0550 16351 1.09 0 6096 132 0.0550 16351 1.06 0 6829 162 0.0550
29 13472 0.15 0 1878 67 0.0537 13472 0.21 0 55 22 0.0443 13472 0.14 0 162 34 0.0495
30 15545 1.01 0 3454 22 0.0936 15545 0.27 0 1226 114 0.0628 15545 0.82 0 7520 149 0.0845

Total 495013 48.01 0 457817 3003 3.0939 495013 20.15 0 115056 3227 2.2433 495013 33.87 0 340389 4762 2.8531
Median 0.87 0 6010 146 0.0932 0.36 0 2283 111 0.0725 0.88 0 4441 150 0.0861
Mean 1.60 0 15261 159 0.1031 0.67 0 3835 108 0.0748 1.13 0 11346 159 0.0951

Maximum 11.31 0 66603 361 0.2155 2.29 0 17356 239 0.1966 4.99 0 68732 395 0.2155



Table 7: Results of 30 instances for (g,H, |O|) = (2,6,12) instance category by formulations

(SCS) (SCS-(`,S)-i) (SCS-(`,S)-ii)
Instance Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap

1 8091 6.78 0 48106 428 0.2056 8091 2.76 0 6687 312 0.2056 8091 9.96 0 57228 452 0.2056
2 11760 14.81 0 76127 498 0.1403 11760 9.34 0 66511 491 0.1352 11760 12.67 0 64247 527 0.1402
3 17014 31.33 0 45509 249 0.0792 17014 1.28 0 5453 199 0.0698 17014 12.20 0 65005 624 0.0774
4 10895 1.36 0 5375 162 0.2989 10895 1.35 0 3298 157 0.2407 10895 0.65 0 8930 183 0.2909
5 14198 2.52 0 7604 219 0.1800 14198 5.01 0 22548 352 0.1741 14198 4.40 0 11050 292 0.1800
6 15234 1.82 0 12849 362 0.1279 15234 0.38 0 3103 142 0.0929 15234 1.37 0 8638 239 0.1234
7 11462 14.20 0 46751 383 0.1810 11462 2.51 0 12780 246 0.1317 11462 4.93 0 11687 308 0.1810
8 14742 40.02 0 73061 648 0.1746 14742 outlier outlier outlier outlier 0.1746 14742 34.76 0 84926 786 0.1746
9 12075 25.73 0 46813 338 0.1899 12075 1.84 0 2179 144 0.0884 12075 12.88 0 67719 612 0.1657

10 22733 42.36 0 85613 724 0.0435 22733 6.10 0 21336 312 0.0362 22733 38.57 0 59626 674 0.0407
11 11928 62.02 0 403777 840 0.2169 11928 35.90 0 88001 716 0.2169 11928 49.40 0 177655 1059 0.2169
12 8741 2.35 0 2178 55 0.3968 8741 0.90 0 6321 117 0.3963 8741 1.21 0 5387 182 0.3968
13 16204 27.71 0 94167 554 0.1536 16204 36.97 0 71112 688 0.1536 16204 33.63 0 66162 350 0.1536
14 11043 5.26 0 11927 423 0.1316 11043 16.87 0 60143 702 0.1316 11043 7.10 0 2820 188 0.1316
15 16868 17.96 0 117128 573 0.1501 16868 2.54 0 11226 210 0.0836 16868 5.43 0 21724 435 0.1400
16 18497 1.46 0 5757 226 0.0993 18497 1.95 0 6557 232 0.0867 18497 1.23 0 2469 136 0.0964
17 20697 94.37 0 646716 831 0.0810 20697 7.40 0 27499 380 0.0578 20697 44.07 0 79107 1051 0.0766
18 14827 20.35 0 43185 86 0.0733 14827 7.02 0 7479 222 0.0733 14827 16.07 0 42166 67 0.0733
19 11139 54.12 0 104203 754 0.0953 11139 61.09 0 135826 971 0.0953 11139 46.17 0 139957 1000 0.0953
20 151 18.71 0 106300 726 -1.1411 151 13.19 0 59565 517 -1.1411 151 8.33 0 39518 350 -1.1411
21 9049 40.67 0 94220 839 0.3309 9049 33.96 0 117377 830 0.3109 9049 32.66 0 71814 672 0.3309
22 15268 15.06 0 79360 564 0.1679 15268 0.71 0 5525 204 0.0968 15268 2.84 0 4650 252 0.1578
23 14065 23.34 0 58417 603 0.0883 14065 23.36 0 57485 515 0.0883 14065 24.09 0 47508 433 0.0883
24 5902 26.46 0 48555 411 0.1634 5902 23.70 0 51274 469 0.1634 5902 22.19 0 94833 653 0.1634
25 13951 35.42 0 46810 221 0.1757 13951 26.30 0 126225 789 0.1749 13951 19.72 0 77823 645 0.1757
26 11692 15.80 0 44239 328 0.1147 11692 5.38 0 29990 361 0.1074 11692 18.94 0 44339 223 0.1147
27 13254 62.68 0 232988 753 0.0632 13254 43.76 0 166833 912 0.0632 13254 23.83 0 63176 667 0.0632
28 10012 6.86 0 36830 419 0.0999 10012 4.28 0 2978 177 0.0526 10012 2.44 0 4291 252 0.0940
29 6741 1.74 0 4172 231 0.1963 6741 2.67 0 3272 179 0.1963 6741 1.40 0 5215 240 0.1963
30 16334 115.01 0 708098 737 0.0957 16334 133.43 0 607306 959 0.0957 16334 52.59 0 174352 947 0.0957

Total 384567 828.28 0 3336835 14185 3.3737 384567 511.95 0 1785889 12505 2.8528 384567 545.73 0 1604022 14499 3.2989
Median 19.53 0 48331 426 0.1452 6.10 0 22548 352 0.1021 12.78 0 52368 434 0.1401
Mean 27.61 0 111228 473 0.1125 17.65 0 61582 431 0.0951 18.19 0 53467 483 0.1100

Maximum 115.01 0 708098 840 0.3968 133.43 0 607306 971 0.3963 52.59 0 177655 1059 0.3968



Table 8: Results of 30 instances of (g,H, |O|) = (2,7,14) instance category by formulations

(SCS) (SCS-(`,S)-i) (SCS-(`,S)-ii)
Instance Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap

1 15366 900.96 0.0020 3137444 918 0.1025 15366 270.83 0 786948 1340 0.1025 15366 900.41 0.0008 3954405 1547 0.1025
2 20402 900.37 0.0009 3424678 739 0.1357 20402 17.21 0 58670 517 0.0544 20402 111.63 0.0000 142243 1187 0.1078
3 19329 900.74 0.0038 2167463 797 0.0641 19329 386.43 0 1241489 1245 0.0554 19329 756.30 0.0000 1143643 1247 0.0615
4 18164 900.68 0.0062 1725779 764 0.0862 18163 900.44 0.0037 1231979 1161 0.0660 18165 900.87 0.0072 1833474 1251 0.0863
5 18149 901.02 0.0141 2071166 1030 0.0717 18149 900.79 0.0142 1746174 1613 0.0717 18156 900.66 0.0170 1388290 1704 0.0722
6 24021 901.85 0.0045 3972141 960 0.0647 24021 232.20 0.0000 613161 1246 0.0261 24021 900.69 0.0039 2172518 1515 0.0502
7 19186 900.33 0.0012 3128238 828 0.0975 19186 485.24 0 2421332 1194 0.0784 19186 166.61 0.0000 226715 1386 0.0946
8 25987 901.49 0.0079 3345386 738 0.0566 25987 900.33 0.0031 2283690 1295 0.0532 25987 900.45 0.0058 1729862 1173 0.0548
9 16849 902.13 0.0129 3801549 789 0.0585 16849 900.90 0.0096 2216006 1511 0.0583 16848 900.86 0.0135 1868487 1261 0.0584

10 24740 900.42 0.0032 1267931 848 0.0884 24740 265.40 0.0000 298798 1258 0.0332 24740 900.50 0.0016 1609297 1356 0.0689
11 26590 900.69 0.0085 1599586 947 0.0472 26590 901.13 0.0050 2237633 1679 0.0472 26590 900.38 0.0070 953227 1573 0.0472
12 22882 901.74 0.0037 4572707 773 0.0784 22882 93.99 0 119365 859 0.0712 22882 901.20 0.0053 2630617 1363 0.0766
13 11686 903.51 0.0217 5514996 885 0.1425 11686 902.08 0.0221 3682411 1516 0.1425 11636 902.25 0.0140 4092200 1357 0.1377
14 16044 902.13 0.0092 4058014 808 0.1223 16044 900.86 0.0072 2056671 1409 0.1218 16044 901.67 0.0074 3349432 1381 0.1223
15 14858 900.75 0.0037 3106888 888 0.0973 14858 900.55 0.0011 3405142 1305 0.0973 14858 900.77 0.0017 3867310 1205 0.0973
16 22878 901.53 0.0099 3576851 937 0.0451 22851 900.44 0.0013 2990304 1644 0.0379 22851 900.80 0.0025 2432331 1567 0.0399
17 22188 900.74 0.0034 1911426 765 0.0693 22188 118.37 0 162626 1200 0.0503 22188 900.73 0.0028 2350524 1248 0.0639
18 25223 900.92 0.0080 1885349 930 0.1018 25207 554.23 0.0000 413536 1241 0.0278 25207 900.51 0.0041 1406100 1558 0.0742
19 22962 900.48 0.0006 2431644 800 0.0798 22962 88.45 0 249936 988 0.0601 22962 214.58 0.0000 234329 1268 0.0718
20 24067 900.57 0.0014 1899704 925 0.1579 24067 22.97 0 29964 567 0.0328 24067 118.45 0.0000 91065 1107 0.1091
21 19425 900.62 0.0145 1605238 830 0.0482 19425 900.74 0.0161 1496294 1381 0.0482 19425 900.59 0.0120 1224220 1304 0.0482
22 19161 901.61 0.0042 3500900 822 0.1374 19161 105.32 0 88711 1159 0.0525 19161 900.30 0.0020 1310901 1291 0.1103
23 21624 900.54 0.0013 3568223 888 0.1100 21624 106.41 0 159532 1231 0.0574 21624 900.69 0.0018 2268061 1260 0.0943
24 16377 900.84 0.0270 1684915 884 0.2278 16365 900.96 0.0248 1721591 1312 0.2269 16365 900.79 0.0193 1773505 1318 0.2269
25 27192 900.58 0.0192 1281687 856 0.0532 27061 900.97 0.0123 1693686 1456 0.0475 27046 900.81 0.0131 1453014 1396 0.0474
26 22044 901.75 0.0032 3185615 865 0.1037 22042 900.70 0.0036 1661186 1291 0.0833 22042 901.34 0.0034 2644434 1318 0.1036
27 20959 901.76 0.0079 3567392 877 0.0799 20972 901.31 0.0075 2977777 1331 0.0805 20972 901.37 0.0086 2601981 1315 0.0805
28 12557 199.46 0 1048364 791 0.1749 12557 9.47 0 10995 369 0.0980 12557 120.83 0.0000 256113 1290 0.1495
29 18298 625.87 0 2258918 777 0.2042 18298 19.58 0 23910 571 0.0618 18298 85.07 0.0000 61383 1103 0.1508
30 21024 901.25 0.0161 2278062 1000 0.0595 21013 900.54 0.0136 1260639 1664 0.0589 21013 901.06 0.0144 1920907 1613 0.0590

Total 610232 26057.33 0.2202 82578254 25659 2.9663 610045 16288.84 0.14520 39340156 36553 2.1033 609988 22293.17 0.1692 52990588 40462 2.6676
Median 900.80 0.0044 2769266 852 0.0873 727.28 0.00055 1251064 1275 0.0586 900.68 0.0037 1751684 1317 0.0786
Mean 868.58 0.0073 2752608 855 0.0989 542.96 0.00484 1311339 1218 0.0701 743.11 0.0056 1766353 1349 0.0889

Maximum 903.51 0.0270 5514996 1030 0.2278 902.08 0.02480 3682411 1679 0.2269 902.25 0.0193 4092200 1704 0.2269



Table 9: Results of 30 instances of (g,H, |O|) = (3,5,10) instance category by formulations

(SCS) (SCS-(`,S)-i) (SCS-(`,S)-ii)
Instance Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap

1 17109 42.26 0 46270 631 0.1318 17109 3.32 0 2001 233 0.0652 17109 25.77 0 92465 872 0.1191
2 8186 1.18 0 3809 162 0.1789 8186 0.44 0 2788 213 0.1789 8186 1.06 0 2753 153 0.1789
3 13284 20.69 0 43023 117 0.1090 13284 20.00 0 43642 122 0.1090 13284 20.07 0 44858 115 0.1090
4 16719 17.04 0 73701 708 0.1420 16719 0.54 0 1345 274 0.1121 16719 5.61 0 8755 423 0.1343
5 9743 3.08 0 2957 181 0.1116 9743 1.00 0 11546 251 0.1116 9743 1.65 0 2265 121 0.1116
6 21919 73.12 0 121561 1137 0.0433 21919 15.60 0 59803 547 0.0433 21919 83.57 0 80619 1093 0.0433
7 14515 29.55 0 43728 133 0.1662 14515 4.52 0 1658 132 0.1223 14515 18.88 0 69250 793 0.1548
8 12154 2.28 0 2178 63 0.1946 12154 1.66 0 2856 157 0.1860 12154 1.27 0 1808 127 0.1895
9 23147 98.88 0 184585 1193 0.0792 23147 4.71 0 4883 351 0.0344 23147 57.51 0 62864 1127 0.0695

10 14146 3.30 0 6885 234 0.1800 14146 0.59 0 1774 216 0.1096 14146 2.20 0 4263 246 0.1583
11 10491 2.88 0 3265 260 0.1342 10491 2.90 0 2874 278 0.1342 10491 8.32 0 29868 516 0.1342
12 14169 13.39 0 59468 563 0.1109 14169 2.13 0 2317 211 0.0867 14169 4.44 0 6485 320 0.1045
13 14129 2.08 0 4638 304 0.1205 14129 0.65 0 1396 264 0.0687 14129 2.49 0 2717 244 0.1089
14 9842 7.45 0 37499 489 0.2742 9842 0.88 0 6755 215 0.1039 9842 2.42 0 2696 283 0.2332
15 17830 43.24 0 59007 839 0.0959 17830 28.52 0 72609 755 0.0959 17830 56.55 0 68648 1020 0.0959
16 12560 3.39 0 2705 196 0.1088 12560 0.61 0 2808 215 0.0897 12560 2.24 0 3059 263 0.1065
17 15102 1.87 0 2218 139 0.1990 15102 0.26 0 78 102 0.1260 15102 0.50 0 3072 209 0.1822
18 18978 42.17 0 46003 398 0.1030 18978 3.59 0 3067 245 0.0808 18978 4.71 0 11232 446 0.0947
19 10735 35.69 0 136321 918 0.0589 10735 5.02 0 17319 456 0.0551 10735 25.37 0 61793 826 0.0584
20 13696 3.09 0 7391 354 0.0917 13696 2.17 0 1836 135 0.0885 13696 3.57 0 3064 322 0.0911
21 10879 1.76 0 3097 201 0.1804 10879 4.88 0 1906 92 0.1804 10879 3.13 0 2900 177 0.1804
22 14134 4.29 0 1876 128 0.1021 14134 0.67 0 3837 274 0.1021 14134 1.17 0 7230 363 0.1021
23 15817 28.33 0 44665 245 0.2054 15817 3.43 0 3161 71 0.0912 15817 10.60 0 59610 582 0.1865
24 13947 17.90 0 42546 130 0.0858 13947 5.89 0 26038 537 0.0858 13947 33.40 0 41625 19 0.0858
25 20582 51.91 0 48613 647 0.0438 20582 22.22 0 88504 781 0.0438 20582 54.37 0 53823 1056 0.0438
26 19503 11.82 0 54850 747 0.1115 19503 0.60 0 840 216 0.0700 19503 6.00 0 25448 480 0.1015
27 17465 11.46 0 56864 641 0.0670 17465 3.16 0 6429 303 0.0577 17465 9.27 0 49100 607 0.0624
28 12699 26.83 0 44846 292 0.0765 12699 27.00 0 47059 318 0.0765 12699 30.89 0 42734 287 0.0765
29 15750 55.37 0 95374 1134 0.0639 15750 68.00 0 132477 1307 0.0639 15750 62.57 0 64343 1143 0.0639
30 11591 3.53 0 1868 138 0.1502 11591 3.17 0 2353 260 0.1502 11591 4.40 0 1789 37 0.1502

Total 440821 659.83 0 1281811 13322 3.7204 440821 238.13 0 555959 9531 2.9233 440821 544.00 0 911136 14270 3.5309
Median 12.61 0 43376 298 0.1112 3.17 0 2971 248 0.0905 5.81 0 18340 343 0.1077
Mean 21.99 0 42727 444 0.1240 7.94 0 18532 318 0.0974 18.13 0 30371 476 0.1177

Maximum 98.88 0 184585 1193 0.2742 68.00 0 132477 1307 0.1860 83.57 0 92465 1143 0.2332



Table 10: Results of 30 instances for (g,H, |O|) = (3,6,12) instance category by formulations

(SCS) (SCS-(`,S)-i) (SCS-(`,S)-ii)
Instance Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap

1 6327 901.92 0.0177 3730778 1389 0.3979 6327 162.90 0 48584 838 0.3745 6327 900.75 0.0123 2309079 2192 0.3979
2 15960 901.43 0.0079 2348271 1888 0.1169 15960 413.26 0 72033 1619 0.0921 15960 900.48 0.0087 759479 1754 0.1163
3 12371 900.29 0.0234 513844 1911 0.2785 12371 900.68 0.0072 1525181 1888 0.2213 12371 900.36 0.0156 596614 1991 0.2785
4 5598 38.60 0 27606 555 0.2440 5598 19.66 0 1880 38 0.1798 5598 72.95 0 10368 674 0.2360
5 7739 900.14 0.0324 250541 2015 0.2006 7740 900.27 0.0368 451567 2622 0.2007 7739 900.29 0.0301 430574 2802 0.2006
6 7557 900.50 0.0492 831253 1881 0.1993 7557 900.27 0.0523 510301 2915 0.1993 7557 900.40 0.0439 684202 3037 0.1993
7 14247 900.20 0.0204 328170 2170 0.0969 14233 900.18 0.0175 277018 2662 0.0927 14228 900.25 0.016 459347 2859 0.0950
8 10178 900.78 0.0218 1371786 1794 0.1395 10176 900.67 0.0286 1082345 2752 0.1393 10176 900.59 0.027 946497 2664 0.1393
9 15810 900.25 0.0182 454755 2236 0.1211 15810 900.19 0.0194 314766 2799 0.1211 15810 900.15 0.0173 197750 2093 0.1211

10 6346 200.25 0 148102 1345 0.2514 6346 20.63 0 13155 778 0.1917 6346 156.61 0 124587 1095 0.2504
11 9207 900.19 0.0263 341574 2192 0.1852 9207 900.19 0.025 245126 2681 0.1852 9207 900.31 0.0204 485952 2621 0.1852
12 7941 900.43 0.0356 756663 1884 0.1293 7924 900.28 0.0327 260053 2797 0.1268 7924 900.21 0.019 235500 2560 0.1268
13 9062 901.11 0.0249 2008184 1589 0.2146 9062 900.61 0.0209 1253083 2486 0.2146 9062 900.37 0.0218 679235 2449 0.2146
14 -1190 90.08 0 140692 1150 -0.4374 -1190 72.04 0 16685 806 -0.4374 -1190 33.85 0 7541 645 -0.4374
15 11580 900.67 0.0160 1346720 1989 0.2216 11580 349.23 0 478517 1667 0.1752 11580 900.71 0.0159 1425838 2497 0.2164
16 10077 900.90 0.0241 1689468 1734 0.2571 10070 900.89 0.0155 1927095 2278 0.2096 10070 900.29 0.0248 526566 2698 0.2562
17 -1905 900.35 0.0849 650281 1565 -0.2538 -1905 900.50 0.0895 985314 1766 -0.2538 -1911 900.31 0.0762 553401 1758 -0.2515
18 13769 900.28 0.0191 452851 2175 0.1786 13769 900.22 0.0172 322059 2587 0.1585 13769 900.23 0.0112 415921 2495 0.1751
19 8428 900.48 0.0476 737467 1867 0.3472 8402 900.71 0.0425 1032391 2458 0.3430 8409 900.41 0.0367 669298 2501 0.3441
20 16790 900.73 0.0184 1242881 1725 0.1591 16789 900.30 0.0105 546247 2652 0.1051 16789 900.54 0.017 789884 2916 0.1520
21 14480 900.37 0.0206 556920 2080 0.2508 14459 608.47 0 137552 2222 0.0985 14460 900.20 0.0239 257901 2820 0.2325
22 7812 900.29 0.0284 476752 1932 0.3667 7802 900.24 0.0181 417212 3096 0.3260 7812 900.35 0.0272 550710 3151 0.3607
23 10093 900.63 0.0351 929580 1836 0.2553 10094 900.41 0.0376 604982 2793 0.2555 10089 900.33 0.0225 538581 3035 0.2549
24 12622 900.40 0.0383 631726 1946 0.2275 12570 900.38 0.0361 572386 2256 0.2224 12600 900.29 0.0383 477190 2043 0.2253
25 6730 900.50 0.0624 792165 1647 0.4053 6730 900.37 0.0612 576174 2641 0.4053 6732 900.21 0.0613 285404 2888 0.4057
26 10682 900.27 0.0741 399237 2398 0.2031 10742 900.15 0.0762 187211 2504 0.2098 10632 900.34 0.0608 529057 2927 0.1974
27 20108 900.48 0.0167 780356 1499 0.0900 20100 900.26 0.0137 340903 2760 0.0767 20102 900.40 0.0162 694601 2584 0.0875
28 10064 900.37 0.0057 677989 1555 0.2914 10064 900.11 0.005 247528 2581 0.2188 10064 900.21 0.0066 251075 2374 0.2914
29 4262 900.32 0.0743 550181 1876 0.5715 4232 900.19 0.0741 300996 2211 0.5605 4261 900.69 0.0603 1078921 2418 0.5712
30 8249 900.49 0.0141 898703 2073 0.1986 8249 389.51 0 107669 2175 0.1651 8249 900.35 0.0078 826508 3061 0.1972

Total 290994 24643.70 0.8576 26065496 53896 5.9079 290868 21843.77 0.7376 14856013 66328 5.1782 290822 24573.43 0.7388 17797581 71602 5.8402
Median 900.39 0.0226 664135 1878.5 0.2088 900.23 0 331481 2495 0.1885 900.32 0.0197 533819 2530.5 0.2076
Mean 821.46 0.0286 868850 1797 0.1969 728.13 0.0246 495200 2211 0.1726 819.11 0.0246 593253 2387 0.1947

Maximum 901.92 0.0849 3730778 2398 0.5715 900.89 0.0895 1927095 3096 0.5605 900.75 0.0762 2309079 3151 0.5712



Table 11: Results of 30 instances for (g,H, |O|) = (3,7,14) instance category by formulations

(SCS) (SCS-(`,S)-i) (SCS-(`,S)-ii)
Instance Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap Objective Time (s) MIPGap Nodes Cuts LPGap

1 11499 900.37 0.1039 29967 1000 0.1760 11459 900.32 0.0988 33894 965 0.1719 11812 900.26 0.1246 29752 1028 0.2080
2 15946 900.14 0.0201 30940 1165 0.1836 15935 900.11 0.0103 50457 2296 0.0613 15955 900.37 0.0223 29184 1255 0.1448
3 15617 900.12 0.1107 37733 1286 0.2456 15017 900.17 0.0743 30010 1269 0.1977 14745 900.12 0.0562 29946 1264 0.1760
4 8952 900.11 0.1355 43469 2817 0.3415 8854 900.13 0.1252 30733 888 0.3268 8828 900.14 0.1202 65985 2893 0.3229
5 16448 900.15 0.0221 72359 2993 0.2510 16445 900.46 0.0195 29500 1181 0.1337 16447 900.32 0.0192 28982 1160 0.2296
6 30853 900.14 0.0473 44693 2343 0.0897 29831 900.97 0.0144 30157 1276 0.0505 29876 900.12 0.0172 63628 2666 0.0552
7 17256 900.52 0.0278 33687 1177 0.2522 17269 900.27 0.0290 31654 1219 0.1658 17249 900.21 0.0293 29123 1185 0.2452
8 6164 900.25 0.0608 32666 1113 0.6178 7387 900.19 0.2185 17813 1178 0.9388 6156 900.62 0.0568 30019 1311 0.6157
9 20272 900.09 0.0270 30202 1155 0.1280 20372 900.13 0.0279 26599 3111 0.0810 21824 900.14 0.0971 28949 2382 0.2036

10 15190 901.00 0.0355 29256 917 0.2234 15179 900.10 0.0346 30769 1041 0.1644 15185 900.23 0.0373 29921 869 0.2230
11 12878 900.07 0.1179 29410 1174 0.2025 12515 900.14 0.0923 61791 3378 0.1686 14631 900.14 0.2227 29901 1190 0.3662
12 10633 900.30 0.0809 63181 3026 0.3722 11223 900.24 0.1287 30060 1260 0.4481 11100 900.28 0.1180 30874 1306 0.4324
13 8633 900.10 0.0235 115086 2844 0.2636 8631 900.21 0.0040 271268 2895 0.2105 8632 900.14 0.0235 71300 3317 0.2635
14 12155 900.14 0.0727 39341 1754 0.1844 12151 900.13 0.0716 31790 1396 0.1840 12130 900.10 0.0681 36192 2045 0.1819
15 5723 900.27 0.0865 31778 1020 0.4329 5740 900.22 0.0917 182061 3480 0.4372 5745 900.46 0.0775 30084 1031 0.4384
16 14258 900.19 0.0305 31747 1763 0.2132 14311 900.15 0.0343 29541 2496 0.1650 14257 900.14 0.0319 32557 1103 0.2132
17 14634 900.15 0.0741 30407 1100 0.1372 14374 901.22 0.0564 36244 1090 0.1169 14148 900.13 0.0399 31125 1114 0.0994
18 19048 900.11 0.0345 60787 3406 0.0814 19091 900.14 0.0377 54597 2739 0.0838 19276 900.14 0.0465 75384 3160 0.0943
19 15907 900.13 0.0861 29693 1060 0.2756 15604 900.16 0.0687 15465 1478 0.2513 15336 900.27 0.0495 30533 1109 0.2298
20 13114 900.13 0.0233 77216 4140 0.2956 13114 900.09 0.0185 30646 1175 0.1696 13160 900.26 0.0258 33301 1315 0.2798
21 13216 900.12 0.0337 66356 3747 0.1542 13229 902.62 0.0374 31177 954 0.1554 13200 900.09 0.0351 29861 990 0.1528
22 11302 900.14 0.0421 109871 3018 0.2132 11296 900.16 0.0403 149590 4267 0.1978 11298 900.15 0.0445 109117 4042 0.2116
23 11877 900.17 0.0684 50862 3763 0.2456 12248 900.12 0.0975 34553 2441 0.2845 12239 900.47 0.0948 30147 1304 0.2836
24 4044 900.12 0.1508 62962 3039 0.7424 6202 900.11 0.4477 32887 1676 1.6721 3894 900.16 0.1100 71955 4655 0.6777
25 19226 900.20 0.0596 30307 1019 0.0969 19108 900.14 0.0546 23519 1846 0.0901 20797 900.29 0.1300 31836 1019 0.1865
26 16114 900.09 0.0361 29313 640 0.1227 16686 900.12 0.0688 29663 2205 0.1625 17296 901.67 0.0993 30974 1105 0.2050
27 15947 900.12 0.0540 24467 2776 0.1784 16277 900.18 0.0734 37140 2639 0.2028 16198 900.17 0.0681 31184 1318 0.1969
28 10219 900.37 0.0275 3069 1037 0.2042 10209 900.13 0.0238 93842 2843 0.1981 10220 900.15 0.0365 32105 1748 0.2043
29 21022 900.14 0.0196 30294 1240 0.0794 20979 900.19 0.0182 45970 3166 0.0610 21227 900.18 0.0291 29598 1254 0.0862
30 7749 900.15 0.0319 92586 3412 0.3253 7742 900.18 0.0272 121068 3597 0.2729 7752 900.10 0.0251 30678 1219 0.3258

Total 415896 27006.10 1.7444 1393705 60944 7.3297 418478 27009.50 2.1453 1654458 61445 7.8245 420613 27008.02 1.9561 1194195 51357 7.5536
Median 900.14 0.0447 33177 1520 0.2132 900.16 0.0475 31722 1761 0.1708 900.17 0.0480 30776 1260 0.2124
Mean 900.20 0.0581 46457 2031 0.2443 900.32 0.0715 55149 2048 0.2608 900.27 0.0652 39807 1712 0.2518

Maximum 901.00 0.1508 115086 4140 0.7424 902.62 0.4477 271268 4267 1.6721 901.67 0.2227 109117 4655 0.6777
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Abstract: The problem addresses the expected cost minimization of meeting the uncertain demand of a product during
a discrete time planning horizon. The product is supplied by selecting fixed quantity shipments that have lead
times. Due to the uncertainty of demand, corrective actions, such as shipment cancellations and postpone-
ments, must be taken with associated costs and delays. The problem is modeled as an extension of the discrete
lot-sizing problem with different capacities and uncertain demand, which belongs to the N P -hard class. To
improve the resolution of the problem by tightening its formulation, valid inequalities based on the (`,S) in-
equalities approach are used. Given that the inequalities are highly dominated for most experimental instances,
a scheme is established to determine undominated ones. Computational experiments are performed on the res-
olution of the model and variants that include subsets of undominated and representative valid inequalities for
instances of several information structures of uncertainty. The experimental results allow to conclude that the
inclusion of undominated and representative derived (`,S) valid inequalities enable a more efficient resolution
of the model.

1 INTRODUCTION

The studied problem is the minimization of the ex-
pectation of the costs incurred in decisions taken to
meet the uncertain demand of a product over a finite
discrete time planning horizon. To meet the demand,
there are certain optional distinguishable shipments
(denominated as cargoes) with a non-fractional quan-
tity of the product that can be acquired at most once
with an associated cost. The cargoes have meaning-
ful delivery lead times within the planning horizon; so
that a significant amount of time elapses between the
purchase decision and the moment when the cargo is
received. After meeting the demand in a given period,
the remaining quantity of product is stored, keeping
an inventory up to a certain capacity, to flexibly sat-
isfy the future demand in subsequent periods. Due to
the passage of time, while the uncertainty of the de-
mand is revealed and changes, it could happen that at
a given time a cargo, that was already acquired (or-
dered) and has not yet been received, is no longer
necessary. In this case it could be decided to can-
cel its acquisition order or postpone its delivery; deci-
sions, which, in turn, have minimum execution times

in relation to the time of delivery and associated costs.
These decisions hedge against the risk of excess in-
ventory.

The problem can be modeled as an extension of
the lot-sizing formulation (Wagner and Whitin, 1958)
and particularly of the variant with variable capacity
and discrete dimensioning (Nemhauser and Wolsey,
1988). For the case where the parameters are known
with certainty (deterministic case), the dimension-
ing is continuous, and without capacity constraints or
with constant capacity, the problem has efficient res-
olution through dynamic programming (Wagner and
Whitin, 1958; Wagelmans et al., 1992). In addition,
there are known formulations which determine the
convex hull of the feasible region: the extended facil-
ity location formulation (Krarup and Bilde, 1977) and
the (`,S) valid inequalities formulation (Barany et al.,
1984). The deterministic variant with discrete sizing
is a generalization of the binary knapsack problem,
and belongs to the N P -hard complexity class (Bitran
and Yanasse, 1982).

In the case that the parameters are random vari-
ables (stochastic variant) the problem can be for-
mulated by stochastic programming (Birge and Lou-
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veaux, 1997). An adjusted extended formulation
of the stochastic continuos non-capacitated problem
with Wagner-Whitin conditions are not satisfied for
the stochastic variant (Ahmed et al., 2003). The (`,S)
inequalities are also valid for the stochastic continu-
ous variant, and they were extended to a general class
that allow to define facets of the feasible set (Guan
et al., 2006).

Other variants of the deterministic continuous
non-capacitated lot-sizing problem model delivery
time of the lots (e.g. due to production time). A
variant in which demands have a compliance inter-
val has efficient resolution by dynamic programming
(Lee et al., 2001). There are two variants accord-
ing to whether the lots are or are not distinguish-
able with respect to delivery times (Brahimi et al.,
2006). For there are efficient algorithms based on
dynamic programming for the distinguishable case
and for the undistinguishable case when the order-
delivery windows are not inclusive. For these vari-
ants, there are tight extended formulations (Wolsey,
2006). For the stochastic case, the problem can be
efficiently solved when delivery windows do not in-
tersect in time (Huang and Küçükyavuz, 2008). The
distinctive features of the problem under study in the
present work are cancellation and postponement cor-
rective decisions with time delays in a stochastic set-
ting; these aspects are novel and were not found in the
literature review.

The present work is organized as follows. In Sec-
tion 2 an algebraic model of the problem is presented.
Valid inequalities for the model are presented in Sec-
tion 3. In Section 4 experiments are established to
determine utility of the valid inequalities formulation.
Work is completed with Section 5, where conclusions
and future work are discussed.

2 STOCHASTIC MODEL
FORMULATION

Basic index sets are established according to Table 1.
The planning time is represented by the set T of dis-
crete time periods. The set C of cargoes is partitioned
in two sets: the set A of already acquired cargoes –
cargoes ordered in past resolutions of the model– that
are pending reception, and the set P of possible car-
goes to be acquired from now on. Acquisition de-
cision could be made on possible cargoes to be ac-
quired, and cancellation and postponement decisions
could be made on cargoes that were acquired before
the actual planning horizon.

The uncertain demand is represented by a
discrete-time stochastic process indexed in the plan-

ning periods. The process is defined in a finite prob-
ability space. It is assumed that the demand of the
first period is deterministic, and that the demands of
the remaining periods are random with known dis-
tribution functions. The decisions made in a period
can not anticipate the realization of the uncertainty of
the next period. These decisions must simultaneously
take into account all possible revelations of the de-
mand uncertainty of the following periods. This infor-
mation structure can be represented by a tree structure
called tree of scenarios (Römisch and Schultz, 2001).
This is a perfect directed tree, with the root node rep-
resenting the present time at period t = 1, and with
leaf nodes identifying the future scenarios at period
t = H.

Each node of the scenario tree describes the state
of the process at a given period, and it is identified
by a period and a scenario. An useful abbreviated
notation is to identify the nodes by a single index n
in a numerable set of nodes, N. For the first period,
t = 1, there is a unique node, denoted by 1, that rep-
resents the root of the tree. Each node n ∈ N has an
immediate time predecessor node, p(n); the auxiliary
node 0 is defined as the predecessor of the root node,
0 := p(1), such that 0 /∈ N. The period correspond-
ing to each node n is denoted as t(n). The proba-
bility of the state of each node n is denoted as πn,
such that ∑n∈N|t(n)=t πn = 1, for all t = 1, ...,H. The
t-th time predecessor of node n is defined as p(n, t) :=
p(p(n, t−1)), such that p(n,1) := p(n). The nodes of
the path from the root node to node n are denoted as
the ordered set P(n) := {p(n, t(n)−1), ..., p(n,1),n}.
The set of successors of node n is defined as S(n) :=
{n′ ∈ N,k = 1, ...,H − t(n)|n = p(n′,k)}. The set of
leaf nodes is L := {n ∈ N|t(n) = H}.

Table 1: Basic index sets.

T periods, {1, ...,H}
A already acquired cargoes
P possible cargoes to be acquired
C cargoes, A∪P
N nodes of the scenario tree
L leaf nodes of the scenario tree

Parameters are described in Table 2. The demand
volume of the product at each node n is known and
denoted as dn. The demand distribution for period
t = 1, ...,H is represented by (dn,πn) such that n ∈ N
and t(n) = t. Due to storage constraints, the inventory
of the product at the end of each period is restricted
between a minimum volume, s, and a maximum vol-
ume, s, and there is an initial storage volume, s0, at
the beginning of the planning horizon.

The period at which an already acquired cargo
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Table 2: Parameters.

dn demand volume at node n ∈ N
πn probability of node n ∈ N
s0 initial inventory volume
s,s min. and max. storage capacities by period

τc period in which already acquired cargo c ∈ A
is received

qc volume of cargo c ∈C
γc delivery time of cargo c ∈ P, such that

0≤ γc ≤ H−1
δc cancellation minimum time of already

acquired cargo c ∈ A,
such that 0≤ δc ≤ τc−1

εc postponement minimum time of already
acquired cargo c ∈ A,
such that 0≤ εc ≤ H− τc

cac acquisition unit cost of cargo c ∈C
ccc cancellation unit cost of cargo c ∈ A
cpc postponement unit cost of cargo c ∈ A
ht storage unit cost in period t ∈ T

at already acquired volume that is received in
period t ∈ T (auxiliary deducted parameter)

c ∈ A is received is fixed, τc, and it is decided in pre-
vious acquisitions (i.e. previous model resolutions).
Each cargo c∈C has a given volume, qc. The achieve-
ment of decisions on cargoes have latency times mea-
sured in periods. The delivery time of a cargo c ∈ P,
γc, establishes the length of the wait time (measured
in periods) between the acquisition decision and the
actual arrival of the cargo. The minimum time for
cancellation of a cargo c ∈ A, δc, establishes the min-
imum number of periods prior to the delivery period
at which the cargo may be cancelled. The minimum
postponement time for a cargo c ∈ A, εc, establishes
the minimum number of periods after the initial de-
livery period in which the posponed cargo can be re-
ceived. The achievement period of decisions on ac-
quisition, cancellation and postponement must take
place within the planning horizon.

For each cargo c ∈C there are unit costs per vol-
ume associated with the decisions to acquire, cac,
cancel, ccc, and postpone, cpc. In addition, there is a
unit cost associated with storage at each period t ∈ T ,
ht .

The already acquired volume that is scheduled to
be received at each period is determined by the sum
of the cargoes that are received in that period,

at := ∑
{c∈A|τc=t}

qc, ∀t ∈ T ;

this is an auxiliary parameter that summarize deci-
sions of previous model resolutions on a rolling hori-
zon scheme.

Table 3: Derived index sets.

Nc
γ nodes where it is possible to acquire

cargo c ∈ P, {n ∈ N|t(n)≤ H− γc}
Nc

δ
nodes where it is possible to cancel and
postpone cargo c ∈ A, {n ∈ N|t(n)≤ τc−δc}

T c
ε periods to where it is possible to

postpone cargo c ∈ A, {t ∈ T |t ≥ τc + εc}

Table 4: Functions and mappings of nodes.

t(n) period of node n ∈ N
p(n) immediate predecessor node of node

n ∈ N in the tree
p(n, t) t-th time predecessor node of node

n ∈ N in the tree
P(n) nodes in the path from root node to node

n ∈ N in the tree
S(n) successor nodes of node n ∈ N in the tree

Table 5: Variables.

sn inventory volume at the end of the period of
node n ∈ N

un acquired volume incoming at node n ∈ N
vc

n if cargo c ∈ P is acquired at node n ∈ Nc
γ ,

(binary)
wn cancelled volume outgoing of node n ∈ N
xc

n if already acquired cargo c ∈ A is cancelled
in node n ∈ Nc

δ
(binary)

yn postponed volume incoming at node n ∈ N
zc

nt if already acquired cargo c ∈ A is postponed
in node n ∈ Nc

δ
to period t ∈ T c

ε (binary)

Derived subsets of the sets of nodes and periods
that are indexed in the parameters are established in
Table 3 in order to facilitate the formulation. There
are subsets to abbreviate the denomination of nodes
where it is possible to acquire each cargo c ∈ P, Nc

γ ,
and where it is possible to cancel and postpone each
cargo c ∈ A, Nc

δ
. In addition, subsets of periods to

where it is possible to postpone each cargo c ∈ A are
established, T c

ε . The subset subscripts are part of their
denomination.

Functions and mappings on the nodes of the tree
are summarized in Table 4.

In the stochastic model, all decisions depend on
the nodes of the tree according to Table 5. An ac-
quisition decision on a cargo c ∈ P at node n ∈ Nc

γ

is represented by binary variable vc
n. For each of

these decisions, the delivery of cargo c will be on the
nodes of the subtree rooted on n with period t(n)+γc,
{n′ ∈ S(n)|t(n′) = t(n)+ γc}. A cancellation decision
of an already acquired cargo c ∈ A at node n ∈ Nc

δ
is

represented by binary variable xc
n. For each of these

decisions, the already acquired volume of cargo c that
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was budgeted to be delivered on the nodes of the sub-
tree rooted at n with period τc, {n′ ∈ S(n)|t(n′) = τc},
is cancelled. A postponement decision of an already
acquired cargo c ∈ A is modeled by a cancellation de-
cision of the cargo in conjunction with a decision to
postpone it towards period t ∈ T c

ε , that is represented
by binary variable zc

nt . For each of these decisions, the
already acquired volume of cargo c that was budgeted
to be delivered on the nodes of the subtree rooted on
n at period τc, {n′ ∈ S(n)|t(n′) = τc}, is postponed to
the nodes of the subtree rooted on n at period t ∈ T c

ε ,
{n′ ∈ S(n)|t(n′) ∈ T c

ε }. The amounts of inventory,
acquisition, cancellation and postponement at node n
are summarized and represented by the variables, sn,
un, wn and yn, respectively.

The indexes of periods in deterministic parame-
ters or variables are reduced to the temporary realiza-
tion of a node n by t(n). This is the case for parame-
ters corresponding to the already acquired volume and
storage unit cost.

From the previous definitions the formulation of
the multi-stage stochastic optimization model (SCS)
is

min ∑
n∈N

πn

[
∑

{c∈P|n∈Nc
γ }

cacqcvc
n (1)

+ ∑
{c∈A|n∈Nc

δ
}
(ccc− cac)qcxc

n (2)

+ ∑
{c∈A,t∈T c

ε |n∈Nc
δ
}
(cpc + cac− ccc)qczc

nt (3)

+ ht(n)sn

]
, (4)

s.t.
sp(n)+at(n)+un + yn = dn +wn + sn, ∀n ∈ N,

(5)

s≤ sn ≤ s, ∀n ∈ N, (6)

un = ∑
{c∈P|γc+1≤t(n)}

qcvc
p(n,γc), ∀n ∈ N, (7)

∑
n′∈P(n)

vc
n′ ≤ 1, ∀c ∈ P,∀n ∈ N|t(n) = H− γ

c, (8)

wn = ∑
{c∈A|t(n)=τc}

(
qc

∑
{n′∈P(n)|t(n′)≤τc−δc}

xc
n′

)
,

∀n ∈ N, (9)

∑
n′∈P(n)

xc
n′ ≤ 1, ∀c ∈ A,∀n ∈ N|t(n) = τ

c−δ
c,

(10)

xc
n ≥ zc

nt , ∀c ∈ A,∀n ∈ Nc
δ
,∀t ∈ T c

ε , (11)

yn = ∑
{c∈A|t(n)≥τc+εc}

qc
∑

{n′∈P(n)∩Nc
δ
}
zc

n′,t(n)

 ,

∀n ∈ N, (12)

∑
{n′∈P(n),t∈T c

ε }
zc

n′t ≤ 1, ∀c ∈ A,∀n ∈ Nc
δ
, (13)

sn,un,wn,yn ≥ 0, ∀n ∈ N,

vc
n ∈ {0,1}, ∀c ∈ P,∀n ∈ Nc

γ ,

xc
n,z

c
nt ∈ {0,1}, ∀c ∈ A,∀n ∈ Nc

δ
,∀t ∈ T c

ε .

This formulation takes into account the information
structure of the scenario tree. It minimizes the expec-
tation of acquisition costs (1), cancellation costs less
acquisition costs in case of cancellation (2), postpone-
ment costs plus acquisition costs minus postponement
costs (3) (a postponement is modeled in conjunction
with a cancellation) and storage costs (4).

Constraints (5) set the volume balance for each
node. The lower and upper storage bounds at each
node are determined by inequalities (6). The amount
of product acquired that is received at each node is
determined by acquisitions of cargoes in the possi-
ble range of the corresponding acquisition periods ac-
cording to equalities (7). The constraints (8) state
that each cargo is acquired at a single node at most
in each path from the root node to a node whose pe-
riod coincides with the latest acquisition period of the
cargo. The product previously acquired that is can-
celled at each node is determined by the cancellations
of the nodes in the path from the root node to the
node, whose cancellation periods are less than the de-
livery period less the cancellation time, according to
(9). Constraints (10) state that each cargo to be can-
celled is at a single node at most in each path from
the root node to a node whose period coincides with
the receiving period minus the cancellation time of the
cargo. The postponement of the cargoes is modeled in
conjunction with the cancellation, i.e. only cancelled
cargoes can be postponed, (11). The already acquired
volume that is postponed in a node is determined by
the postponements of the cargoes in the nodes in the
path from the root to the node for all periods supe-
rior to the period of reception plus the delay time of
the node, according to (12). Constraint (13) state that
each cargo to be postponed is at a single node at most
in each path from the root node to a node in some pe-
riod greater than the receiving period plus the time of
postponement of the node.
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3 VALID INEQUALITIES FOR
THE STOCHASTIC MODEL

Since (SCS) belongs to the time complexity class
N P -hard, there is no known polyhedral description
of the convex hull of its feasible solutions. It is nev-
ertheless interesting to derive valid inequalities which
can be used to strengthen the original formulation. In
some cases adding these inequalities can directly im-
prove the capacity of the solver to find solutions for
larger instances in shorter times; even when this is
not the case, they may be used within a more sophis-
ticated solving strategy, such as branch and cut meth-
ods relying on constraint separation.

In this section, we discuss a variation of classic
(`,S) valid inequalities for the stochastic capacitated
discrete lot-sizing problem with lead times, cancella-
tion and postponement, and a scheme to obtain un-
dominated valid inequalities of the variation.

3.1 Derived (`,S) Valid Inequalities

A set of valid inequalities are derived por (SCS) based
on the (`,S) valid inequalities formulation for the de-
terministic uncapacitated lot-sizing problem (Barany
et al., 1984) while considering the extension for the
stochastic case (Guan et al., 2006). The derived in-
equalities establish bounds on decision variables for
the nodes of possible paths in the scenario tree (Tes-
turi et al., 2018).
Proposition 1 . Let ` ∈ N and S ⊆ P(`) then the de-
rived (`,S) inequality

∑
n∈S

un ≤ ∑
n∈S

dn`β(n)+ ∑
n∈S

wn`+ s`, (14)

where
β(n) := ∑{c∈P|γc+1≤t(n)} vc

p(n,γc),
dn` := ∑n′∈P(`)\P(p(n)) dn′ and
wn` := ∑n′∈P(`)\P(p(n)) wn′ ,

is valid for the feasible region of (SCS).
As shown by the authors the derived (`,S) valid

inequalities has alternative and equivalent inequalities
without inventory variable, sn,

∑
n∈P(`)\S

un + ∑
n∈S

dn`β(n)+ ∑
n∈S

wn`−w1`+ ∑
n∈P(`)

yn ≥

d1`− ∑
n∈P(`)

at(n)− s0, for all ` ∈ N,S⊆ P(`).

(15)

3.2 Undominanted (`,S) Valid
Inequalities

Depending on the instance values of the parameters
qc and dn, some of the derived (`,S) inequalities (15)

of a given subset S ⊆ P(`), ` ∈ N, may be dominated
by other inequalities of a different subset. Therefore,
a procedure was established to determine undomi-
nanted inequalities on the power set of P(`).

Let χχχ := [(vc
n)c∈P,n∈Nc

γ
,(xc

n)c∈A,n∈Nc
δ
,(zc

nt)c∈A,n∈Nc
δ
,t∈T c

ε
]

be the composite variable. Let b := d1` −
∑n∈P(`) at(n) − s0, for each ` ∈ N, be the indepen-
dent term of (15). Given the power set of P(`),
Sp
` := {S1, ...,SK`

}, let αααk be the coefficient vector of
variable χχχ on the inequality (15) for subset Sk,k ∈
{1, ...,K`}. Therefore, the inequalities (15) can be es-
tablished as

ααα
T
k χχχ≥ b, k ∈ {1, ...,K`}, ` ∈ N.

Given i, j ∈ {1, ...,K`} and that χχχ is nonnegative, it
is said that αααT

i χχχ ≥ b dominantes αααT
j χχχ ≥ b, if the

componentwise comparison of αααi and ααα j is such that
αiλ ≤ α jλ for each component λ ∈ Λ, and at least for
one component the inequality is strict. Let Sd

` be the
subset of dominant inequalities on Sp

` .
The procedure to obtain Sd

` by pairwise compari-
son of inequalities has and upper bound of O(K2

` |Λ|)
operations. If Sd

` has few elements, an efficient heuris-
tic to obtain a promising undominanted inequality
candidate,

i∗ := argmini∈K` ∑
λ∈Λ

αiλ, (16)

takes Θ(K`|Λ|) operations. Lets denote Sd∗
` := {i∗}.

Furthermore, lets denote Sr
` the case where the

power set, Sp
` , is approximated by a representative

subset of Sp
` that contains only the root node, n = 1.

Tree variants of the original formulation, (SCS),
are generated by including to it the inequalities of the
sets Sp

` , Sd∗
` and Sr

`, for each `∈N, establishing formu-
lations denoted as (SCS-Sp), (SCS-Sd∗) and (SCS-Sr),
respectively.

4 COMPUTATIONAL
EXPERIMENTS

This section explores the computational impact of
adding three families of inequalities introduced in the
previous section to the original formulation. These
are the power set inequalities (Sp), the dominance re-
duction inequalities (Sd∗), and the root representative
inequalities (Sr). The original formulation and the
three modified formulations are tested over a set of
test instances, checking the quality of the obtained so-
lutions and the computational effort invested by the
solver.

In order to generate a number of diverse test in-
stances, six scenario tree structures were considered.
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Each structure, depicted in Table 6, is determined by
the number of direct descendants of each node (tree
arity) and the number of periods of the planning hori-
zon. For each tree structure with arity g and H periods
there are gH−1 escenarios and (gH−1)/(g−1) nodes.

Table 6: Size of scenario tree structures.

Arity(g) Periods(H) Scenarios Nodes
2 5 16 31
2 6 32 63
2 7 64 127
3 5 81 121
3 6 243 364
3 7 729 1093

The size of each tree structure model instance (num-
ber of equations and variables) for a given distribution
of cargos (C) is shown in Table 7.

Table 7: Instance size of scenario tree structures by cargo
distribution.

g H |C|(|A|+ |P|) Eqs. Vars. (binary)
2 5 10 (2+ 8) 225 249 (124)
2 6 12 (3+ 9) 480 549 (296)
2 7 14 (3+11) 1.012 1.223 (714)
3 5 10 (3+ 7) 827 809 (324)
3 6 12 (4+ 8) 2.542 2.485 (1.028)
3 7 14 (4+10) 7.987 8.091 (3.718)

Thirty data instances were randomly generated for
each tree structure and cargo distribution, totaling 180
instances. Each instance has an initial storage, s0 =
20, and a lower and an upper bound storage, s = 0
and s = 80, respectively. For each cargo c ∈ C there
is an uniformly distributed volume, qc ∼ U [10,50],
and there are costs evenly distributed according to
the operations of acquisition, cac ∼U [150,250], can-
cellation, ccc ∼U [30,50], and postponement, cpc ∼
U [5,12]. Each already acquired cargo c ∈ A has de-
livery period τc = 1 or 2 with equal probability. Each
cargo c∈C has delivery time γc = 1, cancellation time
δc = 1 and delay time εc = 1. The unit storage cost at
each period t is ht = 1. For each scenario n ∈ L (leaf
node), a probability of state πn is established from a
distribution Beta(α = 2,β = 2); the probability of the
remaining nodes is obtained from the sum of the prob-
abilities of their corresponding immediate successor
nodes. Finally, the demand for each node is evenly
distributed, dn ∼U [10,50].

The computational implementation was per-
formed using AMPL (Fourer et al., 2002) for the al-
gebraic coding of the stochastic model, and GUROBI
7.5 (Gurobi Optimization, LLC, 2018) for the resolu-
tion of the instances through its branch and cut solver.

The calculations were carried out on an Intel Core
i7 5960X 3.5GHz computer with 20MB cache and
64GB RAM, operating with CentOS-7 Linux system.

For each instance, the original model and the vari-
ants were solved. A summary of the results of the
original model and each variant is presented in Ta-
ble 8, Table 9, Table 10 and Table 11, respectively for
(SCS), (SCS-Sp), (SCS-Sd∗) and (SCS-Sr).

Table 8: Average results of formulation (SCS) by tree struc-
ture and cargoes.

g-H-C Time(s) MIP Nodes Cuts LP
2-5-10 0.68 - 6,449 125 10.31
2-6-12 13.07 - 30,706 189 18.85
2-7-14 †493.45 0.26 1,093,185 713 9.84
3-5-10 13.39 - 31,260 300 12.40
3-6-12 ‡758.80 1.90 733,244 1,319 19.64
3-7-14 #900.25 5.02 27,291 1,264 23.42

(†) 12 of 30 instances reach the time limit of 900 s.
(‡) 24 of 30 instances reach the time limit of 900 s.

(#) All instances reach the time limit of 900 s.

Table 9: Average results of formulation (SCS-Sp) by tree
structure and cargoes.

g-H-C Time(s) MIP Nodes Cuts LP
2-5-10 1.11 - 2,132 88 7.44
2-6-12 17.48 - 24,885 253 11.25
2-7-14 †430.79 0.25 431,172 1,184 6.97
3-5-10 7.51 - 3,189 206 9.72
3-6-12 ‡692.13 1.36 174,553 1,539 17.21
3-7-14 #900.83 12.85 5,754 ? 36.60

(†) 12 of 30 instances reach the time limit of 900 s.
(‡) 19 of 30 instances reach the time limit of 900 s.

(#) All instances reach the time limit of 900 s.

Table 10: Average results of formulation (SCS-Sd∗) by tree
structure and cargoes.

g-H-C Time(s) MIP Nodes Cuts LP
2-5-10 0.48 - 2,693 98 7.46
2-6-12 13.22 - 37,603 249 11.25
2-7-14 †435.25 0.28 1,005,992 1,024 6.97
3-5-10 5.87 - 12,281 239 9.72
3-6-12 ‡720.13 1.71 513,898 1,609 17.24
3-7-14 #900.19 4.66 41,495 1,367 20.53

(†) 12 of 30 instances reach the time limit of 900 s.
(‡) 21 of 30 instances reach the time limit of 900 s.

(#) All instances reach the time limit of 900 s.

The summary shows, for each tree structure defined
by arity, periods and number of cargoes, depicted at
column “g-H-C”, the average results of the 30 in-
stances of the model (SCS) and its variant with the
corresponding valid inequalities. The average results
depicted are solver elapsed time at column “Time”,
solver MIP gap percentage for instances that reach the
time limit of 900 s at column “MIP”, solver number
of nodes of solver branch and cut method at column
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Table 11: Average results of formulation (SCS-Sr) by tree
structure and cargoes.

g-H-C Time(s) MIP Nodes Cuts LP
2-5-10 0.45 - 3,361 94 7.48
2-6-12 11.90 - 26,885 237 11.25
2-7-14 †443.32 0.27 1,145,992 978 6.99
3-5-10 4.87 - 11,584 264 9.74
3-6-12 ‡449.50 0.73 330,166 1,546 17.20
3-7-14 #900.18 4.84 29,881 1,416 20.90

(†) 12 of 30 instances reach the time limit of 900 s.
(‡) 12 of 30 instances reach the time limit of 900 s.

(#) All instances reach the time limit of 900 s.

“Nodes”, number of cuts added by solver’s branch
and cut method at column “Cuts”, and the relative ra-
tio percentage of the objective value with respect of
the objective value of the linear programming relax-
ation of the model, at column “LP”.

In the case of formulation (SCS-Sp), it can be seen
that the average Time results for the tree structures (2-
5-10) and (2-6-12) are worse than the corresponding
to formulation (SCS). On the other hand, the aver-
age Time and MIP-gap results of the formulation for
the tree structures (2-7-14), (3-5-10) and (3-6-12) are
better than the corresponding to formulation (SCS).
Also, the formulation reduces to 19 the number of in-
stances of structure (3-6-12) that reach the time limit
of 900 s, compared with 24 of the (SCS) formulation.
Finally, except for structure (3-7-14), the formulation
obtains a reduction of the LP-gap of the remaining
structures compared with formulation (SCS).

In the case of formulation (SCS-Sd∗), only the
average Time results for the tree structures (2-6-12)
are slightly worse than the corresponding ones of
formulation (SCS). The formulation has lower LP-
gap for all tree structures compared to formulation
(SCS). With regards to its comparison with formu-
lation (SCS-Sp), the formulation obtains better Time
results for the tree structures (2-5-10), (2-6-12) and
(3-5-10); and it obtains equal or slightly worse MIP-
gap results, except for formulation (3-7-14), where it
gets better result.

Formulation (SCS-Sr) obtains better Time results
than formulations (SCS) and (SCS-Sp) for all tree
structures. While it get better MIP-gap results for
all tree structures than the formulation (SCS), it
gets slightly worse MIP-gap results than formulation
(SCS-Sp), except for structure (3-7-14), where it gets
better result. In comparison with formulation (SCS-
Sd∗), it has slightly better Time results, and similar
MIP-gap results. It reduces to 12 the number of in-
stances of structure (3-6-12) that reach the time limit
of 900 s, compared with 21 of the (SCS-Sd∗) formu-
lation.

5 CONCLUSIONS

A stochastic multi-stage capacitated discrete lot-
sizing model formulation of the provision with lead
time of the uncertain demand of a product has been
proposed. The decisions on product lots are modeled
with their delay time, aspect that for cancellation and
postponement decisions is not covered in the previ-
ous literature. A discrete time stochastic process with
finite probability, summarized in a scenario tree, is
used to model the information structure of the uncer-
tain demand. The model is formulated by stochas-
tic programming with entities indexed by nodes of
the scenario tree. The model incorporates the cancel-
lation and postponement decisions with delay time,
which implied the revision of the definitions of the
variables and the restrictions to take into account the
structure of the scenario tree. To tighten the formula-
tion valid inequalities based on the (`,S) inequalities
approach were used. Since the inequalities are highly
dominated for most experimental instances, a scheme
is established to determine undominated ones. Three
variants of the formulation are obtained from the in-
clusion of the power-set, undominated and represen-
tative valid inequations. The original formulation and
the three variants are tested over a set of test instances,
checking the quality of the obtained solutions and the
computational effort invested by the solver. Compu-
tational experiments where carried out for several in-
stances within a few tree structures of different sizes.
Most computational experiments could be solved to
optimality for the small and medium-size tree struc-
tures. The representative and undominated formula-
tions obtains a slightly better results than the original
and power set formulations for all tree structures.
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