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Abstract

In this paper, from the excess utility function we obtain a binary relation in the social
weights space and then, for an infinite dimensional economy, we prove the existence of equi-
librium, in our approach we don’t suppose the existence of a demand function. Finally, we
obtain a condition for the uniqueness of equilibrium, and we give some examples of economies
that satisfy this condition.

Introduction

In this paper without assuming the existence of the demand function, we prove from the excess

utility function an existence of equilibrium theorem, and we obtain a condition to uniqueness of

equilibrium. The introduction of the excess utility function, allow us to transform an infinite

dimensional problem in a finite dimensional case.

In the first section we characterize the model, and we introduce some standard definition in

general equilibrium theory. In the second section we introduce the excess utility function and

we show some of its properties. In the third section from the excess utility function we prove

that there exists a bijective relation between the equilibrium allocations set and the set of zeros

of excess utility function. In the fourth part from the excess utility function we obtain a binary

relation in the social weights space, we prove that the equilibrium set is not empty. Our main

tool is the Knaster, Kuratowski, Masurkiewicz lemma.

In the next section we define from the excess utility function the weak axiom of the revealed

preference. So defined, this axiom, is only formally similar with the classic one. It has the same

mathematical properties that the classic axiom of revealed preference but it has not the same

economical interpretation. We prove that if the excess utility function has this property then

uniqueness of equilibrium follows, that is there exists only one zero for this function. Finally
∗I wish to thank Aloisio Araujo, Paulo K. Monteiro, Flavio Menezes, Daniel Vaz and Ricardo Marchesini for

useful comments.
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examples of economies with weak axiom of revealed preference in the excess utility function are

giving.

1 The Model

Let us consider a pure exchange economy with n agents and l goods at each state of the world.

The set of states is a measure space : (Ω,A, ν).

We assume that each agent has the same consumption space, M = Πl
j=1Mj where Mj is

the space of all positive measurable functions defined on (Ω,A, ν).

Let be Rl++ = {x ∈ Rl with all components positives}.
Following [MC] we consider the space Λ of the C2 utility functions on Rl++, strictly monotone,

differentiably strictly concave and proper.

Definition 1 A C2 utility function u is differentiably strictly convex, if it is strictly convex and

every point is regular; that is the gaussian curvature, Cx of each level surface of u, is a non null

function in each x.

For x, y ∈ Rl we will write x > y if xi ≥ yi i = 1 . . . l and x 6= y.

Definition 2 A utility function is strictly monotone if x > y ⇒ u(x) > u(y).

Definition 3 We say that u ∈ C2 is proper if the limit of |u′(x)| is infinite, when x approach to

the boundary of Rl++, i.e: the set B = {x : xi = 0 for some i = 1, . . . , n}.

We will consider the space U of all measurable functions U : Ω × Rl++ → R, such that

U(s, ·) ∈ Λ for each s ∈ Ω.

We introduce the uniform convergence in this space: Un → U if ‖Un − U‖K → 0 for any

compact K ⊂ Rl++, where ‖Un − U‖K =

ess sup
s∈Ω

max
z ∈ K

{
|Un(s, z)− U(s, z)|+ |∂Un(s, z)− ∂U(s, z)|+ |∂2Un(s, z)− ∂2U(s, z)|

}
.

Each agent is characterized by his utility function ui and by his endowment wi ∈M.

From now on we will work with economies with the following characteristics:

a) The utility functions ui :M → R are separable. This means that they can be represented

by

ui(x) =
∫

Ω
Ui(s, x(s))dν(s) i = 1, . . . , n (1)

where Ui : Ω × Rl++ → R and Ui(s, ·) is for each agent his utility function at every state

s ∈ Ω.
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b) The utility functions Ui(s, .) belongs to a fixed compact subset of Λ, for each s ∈ Ω and

Ui ∈ U .

c) The agents’ endowments, wi ∈ M are bounded above and bounded away from zero in any

component, i.e. there exists, h and a̧l H with h< wij (s) < H for each j = 1 . . . l, and s ∈ Ω.

The following definitions are standard.

Definition 4 An allocation of commodities is a list x = (x1, . . . , xn) where x : Ω → Rln and∑n
k=1 xk(s) ≤

∑n
k=1wk(s).

Definition 5 A commodity price system is a measurable function p : Ω → Rl++, and for any

z ∈ Rl we denote by 〈p, z〉 the real number
∫
Ω p(s)z(s)dν(s). (We are not using any specific symbol

for the euclidean inner product in Rl.)

Definition 6 The pair (p, x) is an equilibrium if:

i) p is a commodity price system and x is an al location,

ii) 〈p, xi〉 ≤ 〈p, wi〉 < ∞ ∀ i ∈ {1, . . . , n}

iii) if 〈p, z〉 ≤ 〈p, wi〉 with z : Ω→ Rl++, then∫
Ω
Ui(s, xi(s))dν(s) ≥

∫
Ω
Ui(s, z(s))dν(s) ∀ i ∈ {1, . . . , n}.

2 The Excess Utility Function

In order to obtain our results we introduce the excess utility function.

We begin by writing the following well known proposition:

Proposition 1 For each λ in the (n−1) dimensional open simplex, ∆n−1 = {λ ∈ Rn++;
∑
λi = 1},

there exists x̄(λ) = {x̄1(λ), · · · , x̄n(λ)} ∈ Rln++ solution of the following problem:

maxx∈Rln
∑
i λiUi(xi)

subject to
∑
i xi ≤

∑
iwi and xi ≥ 0.

(2)

If Ui depend also on s ∈ Ω, and Ui(s, ·) ∈ Λ for each s ∈ Ω, and λ ∈ 4n−1, there exists

x̄(s, λ) = x̄1(s, λ), ..., x̄n(s, λ) solution of the following problem:

maxx(s)∈Rln
∑
i λiUi(s, xi(s))

subject to
∑
i xi(s) ≤

∑
iwi(s) and xi(s) ≥ 0.

(3)
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If γj(s, λ) are the Lagrange multipliers of the problem (3), j ∈ {1, . . . l}, then from the first

order conditions we have that

λi
∂Ui(s, x(s, λ))

∂xj
= γj(s, λ) with i ∈ {1, . . . , n} and j ∈ {1, . . . , l}

Then the following identities hold

λi∂Ui(s, x(s, λ)) = γ(s, λ) ∀ i = 1, ..., n ; and ∀ s ∈ Ω. (4)

Remark 1 From the Inada condition of “infinite marginal utility” at zero (Definition 3), the

solution of (3) must be strictly positive almost everywhere. Since U(s, .) is a monotone function,

we can deduce that
∑n
i=1 x̄i(s) =

∑n
i=1wi(s).

Let us now define the excess utility function.

Definition 7 Let xi(s, λ); i ∈ {1, . . . , n} be a solution of (3).

We say that e : 4n−1 → Rn e(λ) = (e1(λ), ..., en(λ)), with

ei(λ) =
1
λi

∫
Ω
γ(s, λ)[xi(s, λ)− wi(s)]dν(s), i = 1, . . . , n. (5)

is the excess utility function.

Lemma 1 The excess utility function is bounded for above, that is, there exists k ∈ R such that

e(λ) ≤ k1, where 1 is a vector with all its components equal to 1.

Proof: To prove this property, note that from definition we can write

ei(λ) =
∫

Ω
∂Ui(s, xi(λ))[xi(s, λ)− wi(s)]dν(s).

From the concavity of Ui it follows that:

Ui(s, x(s, λ))− Ui(s, w(s)) ≥ ∂Ui(s, x(s, λ))(xi(s, λ)− w(s)).

Therefore,

ei(λ) ≤
∫

Ω
Ui(s, xi(s, λ))− Ui(wi(s)) dν(s) ≤

∫
Ω
Ui(

n∑
j=1

wj(s)) dν(s), ∀λ.

If we let

ki =
∫

Ω
Ui(

n∑
i=1

wi(s)) dν(s) and k = sup
1≤i≤n

ki

Property follows.

Remark 2 Since the solution of (3) is homogeneous of degree zero: i.e, x̄(s, λ) = x̄(s, αλ) for

any α > 0, then we can consider ei defined all over Rn++ by ei(αλ) = ei(λ) for all λ ∈ ∆n−1
++ .

4



3 Equilibrium and Excess Utility Function.

Let us now consider the following problem:

maxx∈M
∑
i λ̄i

∫
Ω Ui(s, xi(s))dν(s)

subject to
∑
i xi(s) ≤

∑
iwi(s) and xi(s) ≥ 0.

(6)

Is a well known proposition that for an allocation x̄, is Pareto optimal if and only if we can

choose a λ̄, such that x̄ solves the above problem, with λ = λ̄. Moreover, since a consumer with

zero social weight receive nothing of value at a solution of this problem, we have that if x̄ is a

strictly positive allocation, that is {x̄ ∈ Rl++}, all consumption has a positive social weight. See

for instance [Ke]. Reciprocally if λ̄ is in the interior of the simplex, then from remark (1) the

solution x(., λ) of (6) is a strictly positive Pareto optimal allocation. (This is guaranteed also by

the following boundary condition on preference: {v(s) ∈ Rl++ : v(s) �i wi(s)} is closed for a.e.s,

for all i and wi(s) strictly positive.)

From the first theorem of welfare, we have that every equilibrium allocation is Pareto optimal.

Let (x̄) be an equilibrium allocation, then there exists a λ̄ such that x̄ = {x̄1, . . . , x̄n} : Ω→ Rn,

is a solution for the problem in the beginning of this section.

In the conditions of our model, the first order conditions for this problem are the same that for

(3). Then if a pair (p̄, x̄) is an price-allocation equilibrium, there exists a λ̄ such that x̄(s) = x̄(s, λ̄);

solves (6) and p̄(s) = γ(s, λ̄) , solves (4) for a.e.s.

Moreover we have the following proposition:

Proposition 2 A pair (p̄, x̄) is an equilibrium, if and if there exists λ̄ ∈ 4n−1 such that x̄(s) =

x̄(s, λ̄); solves (6), and p̄(s) = γ(s, λ̄) , solves (4) for a.e.s and e(λ̄) = 0.

Proof: Suppose that x̄(·, λ̄) solves (6) and γ(s, λ̄) solves (4). If for λ̄ ∈ 4n−1, we have that

e(λ̄) = 0, then the pair (p̄, x̄), with p̄ = γ(·, λ̄) and x̄ = x(·, λ̄), is an equilibrium.

Reciprocally, if (p̄, x̄) is an equilibrium, then is straightforward from definition that e(λ) = 0.

From de first welfare theorem, there exists λ̄ ∈ 4n−1, such that x̄ is a solution for (6). Since p is a

equilibrium price, it is a support for x̄, i.e. if for some x we have that ui(x) ≥ ui(x̄), i = {1, ..., n},
strictly for some i then 〈p̄, xi〉 > 〈p̄, wi〉 and from the first order conditions we have that: p̄(s) =

γ(s). The proposition is proved.

Let be 4n−1
++ = {λ ∈ 4n−1 : λi > 0 ∀ i = 1, · · · , n}.

We will now the definition of the equilibrium set.

Definition 8 We will say that λ is an equilibrium for the economy if λ ∈ E, where E = {λ ∈
4n−1

++ : e(λ) = 0}. The set E will be called, the equilibrium set of the economy.
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4 A Binary Relation In The Social Weights Space

Let e : Rn → Rn be a excess utility function.

Let us define � in 4̄n−1
ε = {λ ∈ Rn+ :

∑n
i=1 λ

i = 1;λi ≥ ε} a subset of the social weights space.

Definition 9 We define � as:

(λ1, λ2) ∈� iff λ1e(λ2) < 0.

We will write λ1 � λ2.

Properties of the Binary Relation �.

� is irreflexive, convex, and upper semi-continuous.

• irreflexive λ 6� λ because λ.e(λ) = 0.

• convex if λ1 � λ and λ2 � λ, then α λ1 + β λ2 � λ with α + β = 1.

• upper semi-continuous, A = {α ∈ 4n−1
ε ; λ � α} is open

Proof:

A = {α ∈ 4n−1
ε ; λ.e(α) < 0},

by the continuity of λ.e(.), exist an open neighborhood Vα of α, such that λ.e(Vα) < 0.

Then A is open.

5 Existence of Equilibrium.

Definition 10 We say that γ is a maximal element of � if there does not exist λ such that a

λ � γ.

Lemma 2 The set of maximal elements in 4̄n−1
ε is non-empty.

Proof: Note that

F (λ) = 4̄n−1
ε − {α ∈ 4̄n−1

ε such that λ � α} = {α ∈ 4̄n−1
ε such that λ.e(α) ≥ 0}

is a compact set.

We can also see that the convex hull of {λ1, · · · , λk} is contained in ∪ki=1F (λi) for all finite

subset λ1, · · · , λk ∈ 4̄n−1
ε . To this end let be λ1, . . . , λk ∈ 4̄n−1

ε . If γ =
∑k
i=1 aiλi is a convex
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combination and γ is not in ∪ki=1F (λi), then λi � γ for every i = 1, . . . , n, and so, since � is

convex value, we must have γ � γ. This is not possible because � is irreflexive.

Then from Fann-Theorem, (see for instance [BC]) it follows that ∩λ∈4̄n−1
ε

F (λ) 6= ∅. It is easy

to see that the set of maximal elements in 4̄n−1
ε is equal to ∩λ∈4̄n−1

ε
F (λ).

Then the theorem follows.

Theorem 1 Let E be an economy with infinite dimensional consumption space, with differentiable

strictly convex C2 and separable utilities. Then E has a non-empty, compact set of equilibrium.

Proof: From lemma 2 we know that there exists γεn a maximal element in 4̄n−1
εn . The collection

{4̄n−1
εn } may be directed by inclusion. Consider εn → 0, and γεn ∈ 4̄n−1

εn ⊂ 4̄n−1, since 4̄n−1

is a compact set, there exists γ ∈ 4̄n−1 = {λ ∈ Rn+
∑n
i=1 λi = 1} and a subnet {γε′n} such that

γε′n → γ. If we prove that: γ ∈ 4n−1
++ = {λ ∈ 4̄n−1, and λ >> 0} and that e(γ) = 0, then the

theorem follows. Suppose that γ ∈ ∂4̄n−1 = {λ ∈ 4̄n−1and at least one λi = 0 i ∈ {1, · · · , n}}.
Is straightforward from the definition that limλ→∂4̄n−1 ‖e(λ)‖ = ∞ since e is bounded above,

see lemma 2), then there exists ξ ∈ 4n−1
++ and ε0 such that ξe(γε′′ ) < 0,∀ε′′ < ε0. Since ξ ∈

4̄n−1
ε′′′

,∀ε′′′ < ε
′
0 ≤ ε0, the last inequality contradicts the maximality of γε′′ .

Suppose now there exists a ei(γ) < 0 i = {1, · · · , n, } then for same ξ ∈ 4n−1
++ we have that

ξe(γ) < 0. From the continuity of ξe(·) we obtain that ξe(γε′0) < 0,∀ε′0 > ε0, this contradicts the

maximality of γε′0 . Then e(γ) ≥ 0 follows. Since γ ∈ S and γe(γ) = 0, then e(γ) = 0.

The theorem is proved.

Then the set E = {λ : e(λ) = 0} is non empty. That is, there exists at least one equilibrium

(x(s, λ), p(s, λ)) for E . .

6 Uniqueness From W.A.R.P.

Let us now to define the weak axiom of revealed preference (W.A.R.P.) from the excess utility

function.

Definition 11 We say that the excess utility function satisfies the weak axiom of revealed prefer-

ence (WARP) if

λ1.e(λ2) ≥ 0 then λ2.e(λ1) < 0

Theorem 2 WARP implies uniqueness of equilibrium.

Proof: We argue by contradiction. Suppose that λ1 and λ2 are two equilibria.
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From Proposition 6) we have that e(λ1) = e(λ2) = 0.

Then λie(λj) = 0, thus W.A.R.P. yield the following inequality λje(λi) < 0, i = {1, 2}, j =

{1, 2}.
Uniqueness follows.

Definition 12 Let e be a excess utility function, then e is monotone on Tλ = {λ̄ ∈ Rn : λ̄λ = 0}
if (λ1 − λ2)(e(λ1)− e(λ2)) > 0, whenever (λ1 − λ2) ∈ Tλ, e(λ1) 6= (λ2).

Proposition 3 If (e(·)) is a monotone function, e(·) has W.A.R.P.

Proof: Suppose that λ2e(λ1) ≥ 0. Since λiλ > 0; i = 1, 2, there exists α > 0 such that

λ1−αλ2 ∈ Tλ. Hence (λ1−αλ2)(e(λ1)−e(αλ2)) > 0, follows, and then −λ1e(αλ2) > αλ2e(λ1) ≥ 0.

Since e is a homogeneous degree zero function, λ1e(λ2) < 0. We have concluded our proof.

6.1 Some Applications

Proposition 4 If the central planner chooses λ using the rule �, and if the excess utility function

has WARP, then the λ selected by the central planner is an equilibrium.

From WARP we have that λ̄e(λ) < 0. That is λ̄ � λ.

Economies with WARP in the Excess Utility Function

Example 1 Suppose an economy with the following utility functions:

Ui(x) = x(s)
1
2 , endowments w1(s) = as and w2(s) = (1− a)s, with 0 < a < 1, s ∈ (0, 1)

and µ the Lebesgue mesure.

The excess utility function is,

e(λ) =
{∫ 1

2
x
− 1

2
1 (x1 − w1)dµ(s),

∫ 1
2
x
− 1

2
2 (x2 − w2)dµ(s)

}
From the first order condition:

xi(s) =
λ2
i

λ2
1 + λ2

2

s

Substituing in the above equation we obtain that:

e(λ̄) = 0, iff λ̄ =

{ √
a

√
a+
√

1− a
,

√
1− a

√
a+
√

1− a

}
.

Is ease to see that :

λ̄e(λ) < 0 ∀ λ, i.e. λ̄ � λ.

Example 2 For economies with utilities Ui(x) = Lgx, i = (1, 2) we obtain WARP in the excess

utility function.
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7 Concluding Remarks.

In economies with infinite dimensional consumption spaces, the agent’s budget may not be com-

pact. Hence the existence of demand function need not be a consequence of the utility maxi-

mization problem. In our approach without assuming its existence, with a simple proof, we have

obtained the existence of the competitive equilibrium. So the excess utility function appears as

a powerful tool in order to obtain a deeper insight in the structure of the equilibrium set. Some

additional assumptions about the behavior of the excess utility function allow us to obtain a

sufficient condition for uniqueness of the Walrasian equilibrium. Unfortunately its economical

interpretations are not straightforward.
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