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Abstract

The aim of this paper is to characterize the set of singular economies, when there are a
finite set of consumers with infinitely many goods in the sense that goods differ in the time
which they are consumed or in the state of the world in which they become available. There
exist l available goods in each time or in each state of the world.

Employing well know results of the “ Singularity Theory” on differentiable maps, we char-
acterize the structure of the equilibrium set from the so called singular economies.

In the last section we introduce a continuous time economy and -although in a limited way-
we study the dynamics along the equilibrium path. We show that if there exist singularities
then the equilibrium set isn’t a finite set, moreover it may be a continuous set of equilibria.

It is important to notice that we will not describe our models in terms of the tâtonnement.
The process of endowments move the price system, we don’t need the demand law to charac-
terize the equilibrium manifold.

1 Introduction

A large part of the results of General Equilibrium Theory can be summarized by saying that

the equilibrium set does not show qualitative changes, as long as the initial endowments vary

within the same connected component of the set of regular economies. Changes in the number of

equilibria can be observed only when initial endowments are varied in such a way that they come

across singular economies, in the sense that we will define later. Our improvement to understand
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the nature of these changes in infinite dimensional models requires an investigation in the structure

of the equilibrium manifold, with special attention to their singularities.

It is well known that the demand function is a good tool to deal with the equilibrium manifold in

economies in which consumption spaces are subset ofRl [Mas-Colell, A. (1985)], but unfortunately

if the consumption spaces are subsets of infinite dimensional spaces, the demand function may

not exist, see [Araujo, A. (1987)]. However it is possible to characterize the equilibrium set from

the excess utility function, see for instance [Accinelli, E. (1996)].

In [Balasko, Y. 1997a] and [ Balasko, Y. 1997b] the submanifold of regular equilibria for infi-

nite dimensional economies is characterized using the natural projection method. In this paper we

will study the submanifold of singularities using the excess utility function for models with infinite

many goods. We will show that equilibrium manifold for these models has analogous properties to

the equilibrium manifold for models with a finite quantity of goods. On the other hand, we obtain

some properties of the equilibrium submanifold of singular economies. We employ the modern

classification of singularities to characterize this equilibrium submanifold in some special cases.

Finally we will describe an inter-temporal model of perfect foresight with a continuous set of

equilibrium paths.

2 The Model

In our work commodities are defined as physical goods which may differ in time at which will be

consumed or in the state of the world in which they become available. As we allow an infinite

variation in any of these contingentes, we consider economies with infinitely many goods and a

finite number of agents. We take as primitive {S,F , µ} a measure space, where S is the set of the

possible states how the world will be tomorrow, or is a time interval.

The characteristics of the economic model in this paper are the following:

i) The commodity-price system will be described by a dual pair (x, γ) of the dual system

(B,B∗). There are l goods available for consumption in each state of the world or in each

time. Commodity space B is a product space of the l Lq(µ) functional spaces, and B∗ is

the product of the l, Lp(µ) dual spaces of the prices, where 1
q + 1

p = 1.

As usual the evaluation < x, γ > is the natural duality function, for all x ∈ B and γ ∈ B∗.

ii) There are n consumers indexed by i such that:

ii.1) Each consumer i has the positive cone B+ as his consumption set.
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ii.2) Each consumer has an initial endowment

wi = (wi1, wi2, ..., wil), wij ∈ L+
q (µ), wij ≥ 0, wij 6= 0, ∀j = 1, 2, ...l.

Endowments, wi ∈ M are bounded from above and bounded away from zero in every

component, i.e. there exists, h and H with h < wij (s) < H for each j = 1 . . . l, and s ∈
Ω.

The total endowment of the economy will be denoted by w, i.e. w =
∑i=n
i=1 wi.

ii.3) The preference of each consumer i are represented by a monotone quasi concave utility

function: Ui : B+ → <, given by Ui(x) =
∫
S ui(s, x(s))dµ(s). Monotonicity means, of

course, that x > y (i.e., xj(s) ≥ yj(s), x 6= y, j = 1, 2, ..., l; in almost every way (a.e.)

s) implies Ui(x) > Ui(y).

We suppose that the following regular conditions for the utility functions are satisfies:

a) Each ui(s, ·) is a strictly concave, C2 function, for a.e. s, and satisfy the Inada condition,

i.e.: |grad ui(s, 0)| =: limxj→0|grad ui(s, x)| =∞, j = {1, 2, ..., l}.

b) For each ui : S×B+ → < there exist ai ∈ (L+
p (µ))l and bi ∈ (L+

1 (µ))l such that: ui(s, x(s)) ≤
ai(s)x(s) + bi(s) for every (s, x(s)) ∈ S ×<l.

c) We will consider in the space V of all measurable functions u : S ×Rl++ → R, the topology

of the C2 convergence on compacta, where

‖u‖K = ess sup
s∈Ω

max
z ∈ K

{
u(s, z)|+ |∂u(s, z)|+ |∂2u(s, z)|

}
.

We will assume that all the u(s, ·) belong to a fixed compact subset Λ of V.

Recall that a real number M, is the essential supremun of f, and we write, ess sups∈Ω f(s)

if |f | ≤M for almost all s ∈ Ω.

Remark 1 In this paper utilities are fixed and each economy will be characterized by the endow-

ments. The utility functions ui(s, .) belongs to a fixed compact subset Λ, of V for each s ∈ Ω and

ui ∈V.

It is well know that in the classic Arrow-Debreu model the equilibrium manifold is:

E = {(p, w) ∈ Πl−1 × Ω : z(p, w) = 0},
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where z : Πl−1 × Ω → <l is the excess demand function, Πl−1 = {p ∈ <l;
∑l
i=1 p

2
i = 1} and

Ω = <ln.
It is important to insist that the demand function couldn’t exist in economies with infinite

dimensional commodity space, hence the characterization of the equilibrium manifold in the sense

of the standard Arrow-Debreu model cannot be extended to the infinite dimensional case.

To obtain the equilibrium manifold we follow the Negishi approach.

The sum of the weighted utilities of the agents is maximized subject to the resource constraint:

max
x

n∑
i=1

λiUi(x); s.t.
n∑
i=1

xi(s) ≤ w(s); ∀ s ∈ S.

The solution to this constrained optimization problem (or Negishi problem) determines implicit

vector prices γ(s, λ), i.e. the Lagrange multipliers at the solution x in the consumption set.

Let us define the excess utility function, e : 4n−1 × Ω∞ → <n :

e(λ,w) =
{

1
λ1

∫
S
γ(s, λ)(x1(s, λ)− w1(s))dµ(s), . . . ,

1
λn

∫
S
γ(s, λ)(xn(s, λ)− wn(s))dµ(s)

}
,

where 4n−1 = {λ : λ ∈ <n,
∑n
i=1 λi = 1, λi > 0, i = 1, 2, . . . n} is the n − 1 dimensional simplex,

Ω∞ = ×li=1B
+, and γ(·, λ) is the Lagrange multiplier associated with the optimization Negishi

problem.

Then the Pareto optimality of a walrasian equilibrium is invoked to establish that the set of

walrasian equilibria is in one-to-one correspondence with the zeros of the excess utility function,

see [Accinelli, E. (1996)]

In the conditions of this model the next proposition follows.

Proposition 1 A pair (γ, x) is an equlibrium if and only if there exists λ ∈ 4n−1 such that:

x(s, λ) solve the Negishi problem and γ(s, λ) is the Lagrange multiplier for this problem.

The proposition is proved in [Accinelli, E. (1996)].

The proposition proves that for infinite dimensional economies, with endowments in B, and

preferences as above the equilibrium set may be represented by :

E∞ = {(λ,w) ∈ ∆n−1 × Ω∞ : e(λ,w) = 0},

3 The Equilibrium Manifold

In this section we prove that E∞ is a Banach manifold. In the process of the demonstration, it

will show that the excess utility function play the same role that the excess demand function for

a standard Arrow-Debreu model with a finite number of goods.
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For general mathematical references and definitions we cite [Zeidler, E. (1993)].

Lemma 1 Assume that utility functions satifies conditions a), b), c), then the excess utility func-

tion e is differentiable with respect to λ in the interior of 4n−1.

Proof:

It suffices to prove the differentiability of e with respect to λ on subset of 4n−1 away from

zero, that is λi > 0, for every i = 1, 2, ...n. Applying the implicit function theorem to the first

order conditions, it follows that xij(s, ·) is differentiable for every s, see [Accinelli, E. (1996)].

Let Eij = 1
λi
γj(xi − wi), from the first condition in the Negishi problem, it follows

Eij(s, λ) =
∂ui(s, xi)
∂xj

(xi(s, λ)− wi(s)), i = 1, 2, ...n, j = 1, 2, ..., l

Taking derivatives we obtain:

∂Ei(s, λ)
∂λk

=
∂xi
∂λk

{
∂2ui(s, xi(s, λ))[xi(s, λ)− wi(s)]tr + [∂ui(s, xi(s, λ))]tr

}
,

where tr is the symbol of transposition, and

∂2ui =


∂2ui/∂x1

2 ∂2ui/∂x1∂x2 · · · ∂2ui/∂x1∂xl

∂2ui/∂x2∂x1 ∂2ui/∂x2
2 · · · ∂2ui/∂x2∂xl

...
...

...
∂2ui/∂xl∂x1 ∂2ui/∂xl∂x2 · · · ∂2ui/∂xl

2

 .

Then from item c, the Remark 1 (below c), and the Lebesgue dominated convergence theorem

it follows that e is differentiable with respect to λ and its derivative is:

∂ei(s, λ)
∂λk

=
∫
S

∂xi
∂λk

{
∂2ui(s, xi(s, λ))[xi(s, λ)− wi(s)]tr + [∂ui(s, xi(s, λ))]tr

}
.[]

Remark 2 Recall that 0 is a regular value of e : 4n−1 × Ω∞ → <n if e is a submersion for all

(λ,w) such that e(λ,w) = 0, i.e. the dimension of the rank of the jacobian matrix [Jλe(λ,w)] for

(λ,w) ∈ E∞ is n− 1 : dim (rank [Jλe(λ,w)]) = n− 1.

Definition 1 We call R the set of regular points (λ,w), if 0 is a regular value for the excess utility

function e(λ,w) with λ ∈ 4n−1, the n− 1 dimensional simplex and w ∈ Ω∞. The complementary

set of R, the critical points set, will be noted by C = E∞ −R.

Theorem 1 Let R be the regular points set. Then:
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1) R is an open and dense set in 4n−1 × Ω∞.

2) The equilibrium set, E∞ = {(λ,w) ∈ 4n−1 × Ω∞ : e(λ,w) = 0}, is a Banach manifold.

Proof:

• 1)See [Mas-Colell, A. (1990)].

• 2) Consider e(·, w) : 4n−1 → <n

i) For each parameter, w ∈ Ω∞, e(·, w) is a Fredholm Operator of index cero, because:

Jλe(·, w) : <n−1 → <n−1 and dim(ker [Jλe(·, w)]) = codim(rank [Jλe(·, w)]) = 0.

ii) Convergence e(λm, wm) → 0 as m → ∞ and convergence of (wm) in Ω∞ implies the

existence of a convergent subsequence of λm in 4n−1. It is sufficient consider only

compact subsets in 4n−1 bounded away from zero. Then existence of a convergent

subsequent {λm} follows from the compactness of the subset considered.

Recall that in equilibrium, there is not any λ in the simplex with cero in any of its

coordinates.

Then following [Zeidler, E. (1993)],vol.1 pag. 189, we obtain that the solution set of

e(λ,w) = 0 λ ∈ 4n−1, w ∈ Ω∞,

is a Banach manifold.[]

Corollary 1 The set of critical points C is closed and has empty interior.

Proof: As the regular points is open and dense, his complement C satisfies this corollary[].

In the next section from the excess utility function, we will analyze the submanifold of critical

points in the equilibrium set.

4 Singularities on the Equilibrium Manifold

Regular values of maps are related with situations where infinitesimal variations of the arguments,

entails infinitesimal variation of the values. The number of preimages are locally constant for

regular values, changes in the number of preimages are observed only in a neighborhood of a

singular value.
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The changes in the number of equilibrium are observed only when endowments come across w

in the critical points set. As application of the Sard-Smale theorem we will prove that this set is

meager and rare in Ω∞.

Nevertheless this singular set play a very special role, when the endowments w cross these

points each equilibrium leads to several new equilibrium forms (the bifurcation case). In this

points we obtain abrupt changes in prices or in social weights.

This apparently inexplicable and unpredictable discontinuity leads to the serious, sometimes

heated question of the market mechanism, and even to irrational behaviour that occasionally ends

in widespread destruction of resources through futile attempts to get back to the former price

levels.

In this section we show that the excess utility function allow us to transform the infinite

dimensional problem stated above in a finite dimensional one, this approach allow us obtain in

a natural way, a deeper insight in the structure of the equilibrium set in the infinite dimensional

case. We work like [ Balasko, Y. 1997b] say, “to draw an almost perfect parallel between the

finite an infinite dimensional models in terms of the properties of the natural projection”, but

in our case is done in terms of the equilibrium manifold, permitting us to work with differential

techniques in General Equilibrium Theory.

We prove that:

i) For each singular economy w the set of critical points (or λ−singularities) in the equilibrium

manifold is a submanifold with dimension less than n− 1.

ii) The set above mentioned has zero measure.

As it is well know for finite dimensional cases there exist the same kind of results. As we will

show they are valid for both finite and infinite dimensional cases.

We recall the following mathematical facts:

a) Let X and Y be smooth manifold of the dimension n and f : X → Y be a differentiable

mapping, the set of singularities of corank k of f is

Sk(f) = {x̄ ∈ X : dim([rankJxf(x̄)]) = n− k} .

b) The set k - jet J k(X,Y ) is the family of the equivalence classes: Cf , Cg, . . . , of differentiable

functions, f, g, . . . such that for all f1, f2 belong to Cf hold that f1(x) = f2(x) and Jf1(x) =

Jf2(x) has k − 1 order contact.

c) The one jet of f is: jf : X → J (X,Y ).
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d) Given Sk(f), its image under the one-jet of f

jf [Sk(f)] = Sk ⊂ J (X,Y )

is the equivalence class of function f of which singularities are corank k. Recall that Sk is a

submanifold of J (X,Y ).

e) f is one-generic if the one jet of f is transversal to Sk for all k.

From the Thom Transversality Theorem the set of one generic is residual in the Whitney

Topology. Recall that a set is residual if contains a countable intersection of open dense sets, see

[Golubistki, M. and Guillemin,V.(1973)].

The above facts able us to set some properties of the excess utility function.

Definition 2 1) Let ew(·) = e(·, w) : 4n−1 → <n−1, with images ew(λ) = y and the jacobian

of this function evaluated in λ is: Jew(λ) : Tλ4n−1 → Tew(λ)<n−1 where T denote the

tangent space.

2) Let SEk(ew(·) = 0) be the set of social weights λ where dim (rank [Jλe(λ,w)]) = n−1−k and

SE(w) = ∪n−1
k=1SEk(ew(·) = 0) then SE = ∪w∈Ω∞ {w : SE(w) 6= Φ} is the set of singular

economies that belong to the set of exchange economies E.

3) The one-jet of the excess utility function is jew : 4n−1 → J
(
4n−1,<n−1

)
.

4) The set image of SEk(ew(·) = 0) by the one-jet of the excess utility function will be denoted

by SEk ⊂ J
(
4n−1,<n−1

)
.

From the above definitions it follows that for all k, SEk(ew(·) = 0) = 4n−1 ∩ C and SE =

Ω∞ ∩C. It is important to recall at this point, like any exchange economy, each singular economy

w is a vectorial field depending of a state variable, like time or states of the world.

We prove in the next theorem that SEk(ew(·) = 0)is a submanifold. The notation and the

aim of the proof follows from [Golubistki, M. and Guillemin,V.(1973)].

Theorem 2 Let ew be one generic map, then the set of λ−singularities, SEk(ew(·) = 0) with

corank [Jew] = k is a submanifold with

dim (SEk(ew(·) = 0)) < (n− 1)− k2.
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Proof: Let J(4n−1,<n−1) the equivalence class of ew for mappings f : 4n−1 → <n−1 under the

one order of contact. From the fact that ew is one generic, the set of λ− singularities,

SEk(ew(·) = 0) = (jew)−1 [SEk]

is a submanifold with codim (SEk (ew(·) = 0)) = k2. []

Remark 3 From the definition above it follows that SE(w) and SE are stratified sets.

Theorem 3 The set of singular economies SE is a subset of zero measure.

Proof: It follows from the fact that every stratum SEk(ew(·) = 0) is a submanifold with

strictly positive codimension, therefore it has measure zero. As S(w) is a finite union of sets of

measure zero, itself has measure zero. Moreover the infinite union of S(w) is also a set of zero

measure.[]

Corollary 2 If w ∈ SE then the set SE(w) has an empty interior, and each one of his strata

SEk(ew(·) = 0) too.

Proof It follows straightforward from the fact that all these sets have zero measure .[]

Following [Golubistki, M. and Guillemin,V.(1973)] we say that the subspaces H1, H2, ...Hk of

<n−1 are in General Position if and only if, given v1, v2, ...vk in <n−1, there exists hi ∈ Hi and

z ∈ <n−1 such that vi = z + hi for all i.

Definition 3 We say that the subspace H is defined by λ ∈ e−1
w (0) if H = [Jew|(λ)]Tλ4n−1

Theorem 4 For each singular economy given by w the set of λ−singularities in e−1
w (0), that

define subspaces H in general position, has at most n− 1 points.

Proof: We shall argue by contradiction. Suppose that Λ = {λ1, λ2, ..., λn} consists of distinct

λ−singularities of e−1
w (0) that define subspaces in general position. Let Hi = [Jew|(λi)]Tλi

4n−1 .

Thus, from [Golubistki, M. and Guillemin,V.(1973)], lemma 1.7, n− 1 ≥ codim(H1 ∩ ...∩Hn) =∑n
i=1 codimHi ≥ n. The last inequality holds since if λi is a λ−singularity and because the

codimHi = codim
(
[Jew(λi)]Tλi4n−1

)
≥ 1.[]
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5 Some Kinds of Singularities

In this section we show that different economic models have the same kind of singularities. Regular

economies have a similar behaviour. Singular economies are characterize by the fact that small

variation in the initial endowments cause sudden changes in equilibrium social weights. Then for

economic models with the same kind of singularities we will be able to observe, from time to time,

the same critical behavior.

From these observations and the modern theory of singularities, we are able to obtain a

classification of the economies according to the kind of the singularities.

The next theorem characterize the singularities in a general but simple economic model.

Theorem 5 For a given singular economy w with two agents, the set of λ−singularities is a

0-dimensional submanifold, i.e. these singularities are isolates points.

Proof: From the theorem 2 it follows that dim (SEk(ew(·) = 0)) < 1. []

We recall the following statement:

Let Lr(X,Y ) be the space of linear maps of X into Y which drop rank by r. Then Lr(X,Y ) is

a submanifold of the homomorphisms H(X,Y ) of codimension r2 +ar where a = |dimX−dimY |.

Theorem 6 Given an economy with n agents and

k >
√
n− 1. (1)

then the set SEk(ew(·) = 0) is empty.

Proof: The codimension of SEk(ew(·) = 0) is equal to the codimension of Lk(4n−1,<(n−1)) in

H(4n−1,<(n−1)), it follows that dim[SEk(ew(·) = 0)] = k2 +ak, where a = dim(4n−1)−(n−1) =

0. Then if eq. 1 we hold that (n − 1) − k2 < 0, then the codim[SEk(ew(·) = 0)] < 0 and for this

contradiction it follows that the set is empty. []

Example 1 In a model of pure exchange with 2 agents, there is no singular economies with k > 1.

Substituing in 1 the result follows.[]

Example 2 Now we will consider an economy with three agents, suppose that the endowments

w = {w1, w2, w3} are fixed. In this case the excess utility function e = {e1, e2, e3} : 42 → <2,

where 42 = {λ ∈ <3
+ : λ1 + λ2 + λ3 = 1}. Then e is a map between 2-manifolds. Their critical

points set is a submanifold, and e|SEk(ew(·) = 0) is again a map between manifolds. By our

computation S1 has codimension 1 in 42, and SE2(ew(·) = 0) does not occur since it would have

to be of codimension 4.
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Then from [Golubistki, M. and Guillemin,V.(1973)] we know that generically only one of the

following two situations can occur:

Let λ̄ be in SE1(ew(·) = 0).

a) Tλ̄SE1(ew(·) = 0)⊕ ker
(
Jew(λ̄)

)
= Tλ̄42

b) Tλ̄SE1(ew(·) = 0) = ker
(
Jew(λ̄)

]
.

If (a) occurs then one can choose a system of coordinates (λ1, λ2) centered at λ̄ and (y1, y2)

centered at 0 such that ew is the map: {
y1 = λ1

y2 = λ2
2

This is a special case of the submersion with folds. Recall that near a regular economy, the

number of elements of λ ∈ E∞ are constant, and the set of singular economies is exactly the set of

economies in which the number of equilibria is not locally constant. This set is called envelope,

see [Thom, R. (1962)].

In case (b) λ̄ is a cusp. In this case can find coordinates (λ1, λ2) centered at λ̄ and (y1, y2)

centered at 0 such that ew is the map:{
y1 = λ1

y2 = λ1λ2 + λ3
2

The proof of these claims follow as straightforward applications of theorems 2.2 , 2.4 and 2.5

of chapter III in [Golubistki, M. and Guillemin,V.(1973)].

We conclude that the singularities in an economic model, where ew is a smooth mapping

between 2-manifold, are folds or cusps.

Definition 4 For each economy w such that ew is a one generic map, we define SEk,s(ew) as

the set of points where the jacobian of the restricted map ew|SEk(ew(·) = 0) drops rank s and let

SEk,s(e) = ∪wSEk,s(ew).

Recall that as SEk(ew(·) = 0) is a manifold, then we can ask about the characteristics that

exhibit ew restricted to SEk(ew(·) = 0). In the theory of singularities it is proved that the singular-

ities of this restricted map are unstable, in the sense that if the function ew is slightly perturbed it

exhibit a different qualitative character, for instance new critical point appear in the neighborhood

of the original initial point, thereby these singular economies, w with degenerates λ in equilibrium

will be called catastrophe set. Perturbation in the function ew may appear from slightly changes

in the utility functions or from a reallocation of the endowments.
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Example 3 In an economic model with n = 3 the points SE1,0(e) are folds, and the points

SE1,1(e) are cusp, and there is not another kind of singularities..

Theorem 4.1 of the chapter VII in [Golubistki, M. and Guillemin,V.(1973)] show the possibility

to obtain a generic characterization of the set of the singularities Sk(f) where a one generic map

f restricted to this set, drops rank s. The set is noted Ss,k(f).

The theorem above allow us to give the following characterization for this kind of singular

economies.

If jewf is transversal to SEk,s(ew) and λ̄ ∈ SEk(ew(·) = 0) then there exist a coordinates

system centered at λ̄ and a coordinates system y1, y2, ..., yn centered at ew(λ̄) such that ew has

the form :

ew(λ1, λ2, ...λn) = (h(λ), λ2, ...λn)

h(λ) = λ2λ1 + . . .+ λkλ
k−1
1 + λk+1

1 .

The two examples below are a straightforward application of the later statement.

Example 4 The swallows tail form may appear in economic models with 5 or more agents.

To prove this claim consider ew : 44 → <4 by the last statement, there exist a coordinate

system λ1, λ2, λ3, λ4 centered at critical λ̄ and a coordinates system in <4, centered at 0, such that

the

e(λ) = (h(λ), λ2, λ3, λ4)

h(λ) = λ5
1 + λ3

1λ2 + λ2
1λ3 + λ1λ4.

Example 5 In a model with 4 consumers for a neighborhood of a singular economy, w̄ has a

generic singularity SE1,3(ew̄), definite by the map:


y1 = λ4

1 + λ2
1λ3 + λ1λ2

y2 = λ2

y3 = λ3

6 Dynamics on the Equilibrium Manifold of an Inter-temporal
Perfect Foresight Model

We consider a economy with finite horizon T, with n agents, and l goods in each t ∈ [0, T ]. Each

agent has a utility function :

12



Ui(x) =
∫

[0,T ]
ui(x(t))dµ(t), i ∈ {1, 2 . . . , n} .

Where {S = [0, T ],F , µ} is a measure space, x : [0, T ] → Rl is a vectorial field of Lq(µ), 2 ≤
q <∞, measurable functions on [0, T] into Rl, and for each agent ui is a C2 and strictly concave

function, such that limxj(t)→0
∂ui(x(t))
∂xj

= ∞ for all i ∈ {1, 2, ...n} and j ∈ {1, 2, ...l}. Each agent

has a measurable set of endowments,wi ∈ (Lq(µ))l such that wi : [0, T ] → Rl, and has a perfect

foresight; that is, he knows both current and future values of wi, and take them as given. In these

condition the Negishi approach follows as in [Accinelli, E. (1996)].

The agent’s decision problem is described as the simultaneous choice of an allocation in the

current period and a plan for the future, constrained to lie in his budget set. This simultane-

ous decision will be represented by a measurable vector field xi, on Lq(µ), 2 ≤ q < ∞ into Rl

constrained to lie in his budget constraint, such that maximize his utility function.

Let w = {w1, w2, ...wn} be an endowment process, each wi is a vector field of l measurable

functions of Lq(µ). From section 3 we have that for each w, there exists a finite set of λ ∈ ∆n−1,

such that e(λ,w) = 0.

For each λ there exists a system of equilibrium prices P (t), and the respective allocation x(t)

of equilibrium. The number of λ for each w in the equilibrium manifold is odd.i The set of singular

economies is exactly the set of economies for which the number of equilibria is not locally constant.

Suppose now that the inter-temporal agent maximizes from t = 0 for all t ∈ [0, T ], as he knows

his function w each agent knows his potential paths of equilibrium. That is, from t = 0 each agent

knows the future prices and the future allocations of the equilibrium.

Let us consider a model with singular economies. For a w fixed, we obtain a multivoque

function Λ : [0, T ]→ ∆n−1, such that Λ(t) = {λ ∈ Rn : e(λ,w(t)) = 0} . In this way, the evolution

of economic system is then viewed as a sequence of competitive equilibrium in each point of time.

Let γ : [0, T ]→ ∆n−1 a selection that satisfies γ(t) ∈ Λ(t) each γ(t) is a vector field in ∆n−1.

Then for a given endowments process w we can define the equilibrium in terms of a welfare

weights paths as follows.

Definition 5 A selection γ, such that γ(t) ∈ Λ(t) is an equilibrium selection if e(γ,w) = 0.

A singular economy w̄ is a bifurcation point, going through w̄ the number of branches of

equilibrium increase by two. Then there exist a regular economy with at least three equilibrium

welfare weights, λ1, λ2, λ3.

Let us now consider the following multivoque function:
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Λ(t) =

{
= λ0 ∈ 4n−1 t < t̄ ,
= {λ1, λ2, λ3} t > t̄, λk ∈ 4n−1 ,

where e(λ1, w) = 0, 0 ≤ t < t̄, and for each k = 1, 2, 3; e(λk, w) = 0, t̄ ≤ t ≤ T.
Consider now the following partition T of [0, T ] :

T = {[0, t1], (t1, t2)(t2, t3)(t3, T ]}, t1 = t̄.

Let us now define the following sequence of equilibrium selections:

γ1(t) =

{
λ0 0 ≤ t ≤ t1
λk t ∈ (tk, tk+1) k = {1, 2, 3}

Let (t11, t12)(t12, t13)(t13, t14) be a partition of (t1, t2), t1 = t11; t2 = t14.

γ12(t) =

{
f1(t) t 6∈ (t1, t2)
λi t ∈ (t1i, t1(i+1)) i = {1, 2, 3}

Let {γk1k2...kn} k ∈ {1, 2, 3},m ∈ {1, 2, ...} be the sequence of selections built in this way.

Let Pk be the unique equilibrium system of prices for λk, i = 1, 2, 3, from this correspondence

we can find, for each selection in the sequence, an unique equilibrium price system Pk1k2...km ∈
Lp(µ), k ∈ {1, 2, 3} and m ∈ {1, 2, ...}, such that for a given ε > 0, ‖Pk1k2...km −Pk1k2...km+r‖p < ε,

for all m > m0 and r > 0.

Then we had proved the following theorem:

Theorem 7 Inter-temporal perfect foresight model, with separable, C2 and strictly concave utility

function, with Lq as consumption space, and with singular economies, have infinite number of

pairs (x, P ) of equilibrium paths and this set is not isolate.

Observe that there exists the possibility to obtain a chaotic path of equilibrium, because the

system of equilibrium prices P may has a infinite number of jump across the branches in the

equilibrium manifold.

7 Final Comments

The follow statements are comments about the infinite dimensional economies.

• In this paper we introduce the excess utility function showing that it is a powerful tool in

order to characterize the equilibrium set. In this sense, the excess utility function appears
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as a good substitute in infinite dimensional economies, for the generally inexistent, excess

demand function. However this similar mathematical form, the excess utility function and

the excess demand function do not have the same economic interpretation.

• The main object of this work is to characterize the singular submanifold of equilibria

(SE). The emphasis on singular economies is the specific difference to the recent papers of

[Balasko, Y. 1997a] and [ Balasko, Y. 1997b]. However the relatively small size in mathe-

matical terms of the singular economies in the equilibrium manifold, has a significant im-

portance from an economic point of view, principally if the object of the economic analysis

is the change in the structure of the endowment distribution.

• In section five we show that the modern theory of singularities is very relevant for the clas-

sification of singular economies on the equilibrium manifold in infinite dimensional models.

Similar proves can be done for finite dimensional models. In this cases the excess demand

function would be a good tool to analice the set of singular economies.

• Finally we would like to indicate that the future may be an absolutely unpredictable path

inside a deterministic model. The possibility of chaos emerge in a very predictable model as

our inter-temporal perfect foresight model set in the last section.

In order to continue with other studies about this subject, we think that the singular economies

should be analyzed with the methods of the “ Bifurcation Theory”, see for instance

[Castrigiano, P. L. D.; Hayes, S. A.].
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