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RESUMEN

En este trabajo se analizan las implicaciones que tiene la presencia de observaciones atípicas y
heteroscedasticidad condicional en series temporales con características similares a las observadas
en las series mensuales de IPC de los países del G-7. Se realizan estimaciones del nivel y la
volatilidad de la inflación para estas economías y se discuten algunos de los problemas que
presenta la investigación aplicada de la relación entre el nivel y la volatilidad de la inflación. Los
resultados empíricos indican que en la mayor parte de las series de IPC del G-7 se detecta
simultáneamente la presencia de observaciones atípicas y heteroscedasticidad condicional y que las
estimaciones de volatilidad condicional son sensibles a la presencia de observaciones atípicas. Se
observa que la dependencia temporal encontrada en la varianza condicional es duradera.

ABSTRACT

This paper focus on the problems faced in the empirical investigation of the relation between the
level and volatility of inflation. Monthly inflation series seem to be affected by both the presence of
outliers and conditional heteroscedasticity. First, the paper illustrates the implications that the
presence of outliers and conditional heteroscedasticity have on the usual residual diagnostics. Then,
estimates of the level and volatility of inflation are obtained for each of the countries of the G-7
group. Empirical evidence for the majority of the inflation series for these countries indicates both
the presence of outliers and conditional heteroscedasticity, and that estimates of the latter are
sensitive to the presence of outliers. Finally, the temporal dependence found in the conditional
variance is enduring.
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1. INTRODUCTION

Economists often argued that there is a positive relationship between inflation and uncertainty
about future inflation; see, for example, Okun (1971), Friedman (1977), and Ball (1992). Testing this
hypothesis involves, first of all, testing for the temporal evolution of uncertainty. In this sense, most
empirical studies, using US inflation data, find that uncertainty, measured by the conditional variance,
evolves over time. However, these studies reach different results when analyzing the Friedman
hypothesis. Engle (1983) and Bollerslev (1986) fitted ARCH (AutoRegressive Conditional
Heteroscedasticity) and GARCH (Generalized ARCH) models respectively to US inflation and concluded
that, although the conditional variance of inflation evolves over time, there is no relation between the
level and future uncertainty of inflation. In a related paper, Cosimano and Jansen (1988) found little
evidence of a link between the level and uncertainty when the level of inflation is high and none when it
is low. In subsequent papers, Ball and Cecchetti (1990) and Evans (1991) found evidence of the Friedman
hypothesis in the long run. Brunner and Hess (1993), using a state-dependent model with asymmetric
relationships, also found strong evidence of the inflation-uncertainty link. Kim (1993) considering regime
shifts in both the level and variance of inflation find that higher inflation is associated with higher long-
run uncertainty. Finally, Baillie et al. (1996) analyzing monthly inflation series for ten countries found
that for three high inflation economies (Argentina, Brazil, and Israel) and the United Kingdom there is
evidence that the mean and volatility of inflation interact.

In order to test properly the Friedman hypothesis it is fundamental to consider carefully the
econometric methodology used. It is well known that inflation series are often affected by the presence of
outliers that may affect substantially the modeling of their dynamics. Lorenzo (1997), analyzing the
dynamic properties of monthly series of inflation of the G7 countries (Germany, Canada, United States,
France, Italy, Japan and United Kingdom), found outliers in all of them. However, none of the previous
papers take into account the potential presence of outliers in time series of inflation and how these
outliers can influence the estimated models of both the conditional mean and conditional variance.
Furthermore, usual methods for outlier identification are based on the assumption of homoscedasticity;
see, for example, Chen et al. (1991) and Chen and Liu (1993). If conditional variances evolve over time,
observations corresponding to periods when these variances are high (over the constant marginal
variance), may have higher probability of being identified as outliers are. In sum, it seems worthwhile to
account for the presence of both outliers and conditional heteroscedasticity when analyzing time series of
inflation. Both effects have rather different economic interpretations and, consequently, it is fundamental
to properly separate them. Furthermore, some authors argue that conditional heteroscedasticity is often
found in macroeconomic time series because of the presence of outliers. For example, Balke and Fomby
(1994) after analyzing several US macroeconomic series show that, with the exception of inflation,
controlling for outliers eliminates most of the evidence of non-linearity found in the raw series. They also
present evidence of clustering of outliers across time, which could be confused with heteroscedasticity.
They argue that conditional heteroscedasticity models are parsimonious characterizations of the large
shocks hypothesis, but that outliers may be a better characterization of the data than conditional
heteroscedasticity.

The objective of this paper is twofold. First, we are interested in illustrating the econometric
problem faced when outliers and conditional heteroscedasticity appear together in a time series. Notice
that we are not proposing a methodology to handle this problem but pointing out the problems faced when
modeling uncertainty in the presence of outliers. Secondly, we want to analyze the existence of the
inflation-uncertainty relationship. The analysis will be based on univariate seasonal ARIMA models with
interventions and heteroscedastic disturbances. We are modeling conditional heteroscedasticity using
stochastic volatility models so we can obtain smoothed estimates of volatility which can be compared
with estimated levels of inflation.
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The rest of the paper is organized as follows. In section 2 we simulate several time series to
analyze how the presence of outliers and conditional heteroscedasticity interact and can be confused
when looking at the usual residual diagnostic statistics. First, we show how the presence of outliers in a
time series may affect the diagnostics of residuals from ARIMA models and can be missed with
conditional heteroscedasticity. On the other hand, conditional heteroscedasticity can generate what can be
identified by traditional procedures as outliers. Finally, if both outliers and conditional heteroscedasticity
appear together in a series, it will be difficult to identify and separate properly both effects. In section 3,
we analyze monthly series of inflation for the G7 countries. First, we fit seasonal ARIMA models with
intervention analysis for the conditional mean. Then, we consider the estimation of the conditional
variance of the residuals. In section 4, we analyze the causal relationship between the level and
uncertainty of inflation. Finally, section 5 contains the conclusions.

2. RELATION BETWEEN OUTLIERS AND CONDITIONAL HETEROSCEDASTICITY

Conditional heteroscedastic time series are characterized by having slowly decaying
autocorrelations in the squared observations and non-normal distributions with excess kurtosis; see, for
example, Bollerslev et al. (1994) and Gyshels et al. (1996). Therefore, tests for evolving conditional
variances are usually based on sample autocorrelations of squared residuals and tests of non-normality.
On the other hand, outliers may also cause non-normal distributions with excess kurtosis and, if they
appear in clusters, autocorrelations of squares. Consequently, it is of interest to analyze how the presence
of outliers in a time series may be confused with conditional heteroscedasticity when carrying out
diagnostics on the residuals. In this sense, using asymptotic arguments, van Dijk et al. (1996) show that
the bias in estimating the conditional mean in presence of outliers, adversely affects both the size and
power properties of the standard Lagrange Multiplier (LM) test for ARCH. This test was originally
proposed by Engle (1982) and it is asymptotically equivalent to the McLeod and Li (1983) test based on
the autocorrelations of squared observations. They show that the test rejects the null hypothesis of
homoscedasticity too often when it is in fact true, while having difficulty detecting genuine ARCH
effects. Finally, they proposed a robust test, which has better size and power properties than the standard
test when the proportion of outliers is low (1%). However, the size and power of the robust test are also
badly affected by the presence of outliers when the proportion is 5%.

On the other hand, conditional heteroscedasticity may generate what may be confused with
outliers. Traditional methods for detecting outliers are based on a constant variance; see, for example,
Chen et al. (1991). However, if conditional variances evolve over time following a specific process, then
there will be periods of time when they are over the marginal (constant) variance and observations
corresponding to these periods could be identified as outliers. Finally, if conditional heteroscedasticity
and outliers appear together in a time series, genuine conditional heteroscedasticity could be masked by
outliers, because they can distort the shape of the correlogram of squared residuals.

To illustrate the effects of the presence of outliers on residual diagnostics designed to detect
conditional heteroscedasticity, in this section we generate several time series by ARIMA models with
additive outliers. Also, we will simulate conditionally heteroscedastic series and test for outliers. Finally,
we generate series with both outliers and conditional heteroscedasticity.

Conditional means of prices have been generated by stationary seasonal multiplicative ARIMA
models. In particular, we choose the ARIMA (0,2,1) x (1,0,0) 12 given by:

(1 - φ12 L
12 ) ∆2 pt = ( 1 - θ1 L) at (1)
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where pt are nominal prices and at is a Gaussian white noise process. Model (1) has been chosen because
it represents most of the empirical properties often found in the conditional mean of inflation; see, for
example, Lorenzo (1997). Inflation is characterized by having a stochastic level with low persistence,
reflected by the MA(1) parameter being close to unity,  i.e. normal innovations have little effect over
long-run expectations of inflation (Campbell and Mankiw, 1987). Model (1) also takes into account the
seasonal correlations usually detected in monthly series of inflation. In particular, to represent these
properties, we generate series with φ12 = 0.5 and θ1 = 0.9. Most of the results presented in this section are
robust to the model chosen for the conditional mean. We will point out when this is not the case. All the
series have been generated using the SCA program of Liu and Hudak (1992) with a sample size of 340
observations and at ∼  NID(0, 1) . Then, we through out the first 100 observations and work with the other
240 observations.

To analyse the effect of the presence of outliers over tests for conditional heteroscedasticity, we
generate time series with both additive and level shift outliers using the following model:

∆2 pt = ω1∆2 D1
 t + ω2∆2 D2

 t + (1 - 0.9 L) / (1 – 0.5 L12 ) at, (2)

where D1
 t  and D2

 t are dummy variables. For additive outliers, these variables are pulse variables taking
value 1 at time t = 40 and t = 160 respectively. For level shifts, the variables are step changes taking value
1 after t = 40 and t = 160 respectively. The parameters, ω1 and ω2, have been chosen equal to 3, 4.5 and 6
times the marginal standard deviation of the innovation at. After generating 100 time series, we estimate4

the “true” ARIMA(0,2,1)×(1,0,0)12 model for each of them and compute some sample moments of the
residuals, in particular, autocorrelations of squared residuals and their coefficient of kurtosis.

In table 1.A, we report results of the mean values of the residual moments. In table 1.B, we report,
as an example, the results for one of the simulated series. As expected, the presence of outliers produces
excess kurtosis both for additive and level shift outliers. However, the results on the autocorrelations of
squares are different depending on the class of the outlier. For additive outliers, there is a strong first
order autocorrelation and for level shifts there are not significant autocorrelations. This difference could
be due to the fact that after taking two differences the residuals corresponding to an additive outlier show
two extreme consecutive values of opposite sign while, if the outlier is a level shift, there is only one
extreme value. However, notice that the effect in the case of the step variable depends on the value of the
moving average parameter. In model (1), this parameter equals 0.9 being near to cancel the unit root in the
autoregressive part of the model. If this parameter were smaller, implying more persistence in levels, then
the effect of a step variable should be similar to the effect of a pulse, generating a strong first order
autocorrelation in the squares. Finally, note that the outliers detected in the series used as an example, are
exactly the outliers present in the data.

                                                     
4 All estimations of ARIMA models have been carried out using the exact estimation procedure of the SCA

program. The identification of outliers have also been carried out with the SCA program.
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Table 1

Sample moments of residuals of ARIMA(0,2,1)x(1,0,0)12 models

A. Time series simulated with normal innovations, at ∼  N(0,1)
Outliers at t=40 and t=160.
Number of simulations: 100

pulse variables step variables

3σa 4.5σa 6σa 3σa  4.5σa 6σa

Mean -0.0022 -0.0017 -0.0014 -0.0018 -0.0024 -0.0021
Standard 1.0787 1.1884 -1.3197 1.0273 1.0862 1.1613
Skewness -0.0382 0.0983 -0.1627 0.1882 0.5460 1.0854
Exc. Kurtosis 1.0250 3.7326 6.1655 0.4911 2.3151 5.2071
r (1) 0.1730 0.3302 0.4048 -0.0078 -0.0062 -0.0050
r (2) -0.0143 -0.0173 -0.0185 -0.0069 -0.0059 -0.0053
r (3) -0.0063 -0.0163 -0.0190 0.0017 -0.0032 -0.0054
r (4) -0.0015 -0.0105 -0.0149 -0.0038 -0.0045 -0.0051

B. Example

pulse variables step variables

3σa 4.5σa 6σa 3σa  4.5σa 6σa

Mean 0.0993 0.1198 0.1406 0.0842 0.0927 0.1027

Standard
eviation

1.0975 1.2133 1.3499 1.0280 1.0887 1.1388

Skewness 0.0011 -0.0293 -0.0860 0.1081 0.4989* 1.0906*

Exc. Kurtosis 1.0878* 3.6381* 7.4995* 0.4822 2.3887* 6.0533*

r2(1) 0.35* 0.44* 0.47* 0.09 0.03 0.01

r2(2) -0.02 -0.03 -0.03 0.03 0.01 -0.01

r2(3) -0.06 -0.06 -0.05 -0.02 -0.05 -0.04

r2(4) 0.02 0.01 -0.00 0.06 0.02 0.00

Q2(26) 70.4* 78.1* 69.9* 27.3 19.1 11.8

Outliers ** 40(4.28)A
160(6.02)

A

40(6.34)A
160(7.35)

A

40(8.08)A
160(8.31)

A

40(3.27)I
160(4.2)A

40(4.75)I
160(5.11)

A

40(6.11)I
160(5.88)I

     * Significant at 5% level.
     ** “I” indicates that the outlier is innovative and “A” that it is additive.
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The second set of simulated series is based on model (1) with the innovations, at, being
substituted by the following process with conditional heteroscedasticity:

ε t = σ* at σ t (3.a)
logσ 2

t = β log σ 2
t-1 + η t, (3.b)

where the constant σ* is a scale parameter, |β| < 1 and η t is a Gaussian white noise uncorrelated withε t.
Model (3) is a stochastic volatility, ARV(1), model previously used in the literature to represent
conditional heteroscedasticity in financial time series. The ARV model has some advantages over more
traditional ARCH models to represent evolving variances; see, for example, Harvey et al. (1994). The
disadvantage of stochastic volatility models with respect to models of the GARCH class is that their
estimation by maximum likelihood based methods can only be carried out using computer intensive
techniques. However, a quasi-maximum likelihood (QML) method is relatively easy to apply and is often
reasonably efficient; see Harvey et al. (1994). This is the estimation approach taken in this paper.

Once more, we generate series by model (1) withε t instead of at. We are considering three
parameter sets for the ARV model: i) β = 0.95 and σ2

η = 0.1, ii) β = 0.98 and σ2
η = 0.05, and iii) β = 0.99

and σ2
η = 0.03. These values have been chosen because they are close to the values often estimated with

real data. Then, we estimate the “true” ARIMA model and compute the residuals. In table 2.A we report,
the mean value of the sample moments of the residuals for the 100 replicates and in part B, the results for
one of the simulated series. As expected, in table 2 we can observe that conditional heteroscedasticity in
the disturbances can cause excess kurtosis and significant autocorrelations of squared residuals. In
contrast with the results reported in table 1, these autocorrelations are not only significant for the first lag.
Notice that, although the series considered in table 2 have been generated without outliers, the usual
procedures detect outliers who usually are innovative and sometimes bigger than 4 standard (marginal)
deviations. Therefore, it is necessary to be very cautious before removing outliers from heteroscedastic
time series.

In sum, comparing tables 1 and 2, we can observe that both outliers and conditional
heteroscedasticity, generate excess kurtosis and significant autocorrelations of squared residuals.
Therefore, both effects can be confused when looking at usual diagnostic tests. Furthermore, conditional
heteroscedasticity can generate what can be identified as outliers by traditional procedures.

Finally, we simulate series by model (1) with both conditional heteroscedasticity and outliers.
Then, we estimate model (1) for each of the series and compute the mean of the sample moments of the
residuals. The results appear in table 3, where we can observe that the presence of level shift outliers in a
heteroscedastic time series can distort the correlogram of squared residuals with none of the
autocorrelations being significant. On the other hand, when the outliers are additive, there is a strong first
order autocorrelation with all other autocorrelations being not significant, i.e. a pattern similar to a MA(1)
model. In table 2, we have seen that when the series are generated by an heteroscedastic model without
outliers, the pattern of the autocorrelations of the squared residuals is similar to an ARMA(1,1) model.
Therefore, genuine heteroscedastic effects can be masked by outliers. Finally, notice that among the
outliers identified in table 3 are the genuine outliers, and that they are the biggest in terms of the standard
deviation. However, looking at the outliers detected in table 3, it is difficult to decide which are genuine
and which are effect of the conditional heteroscedasticity.
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Table 2
Sample moments of residuals of ARIMA(0,2,1)x(1,0,0)12 models

A. Time series simulated with ARV(1) innovations
Number of simulations: 100

φ = 0.95, ση
2  = 0.1 φ  = 0.98, ση

2  = 0.05 φ  = 0.99, ση
2  = 0.03

Mean 0.0016 0.0005 -0.0019

Standard Deviation 0.9442 0.9158 0.8942

Skewness 0.0830 0.0566 0.0366

Exc. Kurtosis 2.4755 2.0612 1.5518

r2(1) 0.1447 0.1316 0.1141

r2(2) 0.1471 0.1477 0.1354

r2(3) 0.1429 0.1445 0.1327

r2(4) 0.1208 0.1310 0.1191

3 σε ≤ outliers < 3.5 σε 4.17 3.65 3.59

3.5 σε ≤ outliers < 4 σε 1.49 1.75 1.89

outliers > 4 σε 1.51 1.23 0.82

Total Outliers 7.17 6.63 6.30

B. Example

φ = 0.95, ση
2  = 0.1 φ  = 0.98, ση

2  = 0.05 φ  = 0.99, ση
2  = 0.03

Mean 0.0643 0.1125 0.0743

Standard Deviation 0.8756 0.9417 0.9142

Skewness -0.2769 -0.1365 -0.0667

Exc. Kurtosis 1.6497* 1.2166* 0.7258*

r2(1) 0.24* 0.18* 0.22*

r2(2) 0.09 0.04 0.04

r2(3) 0.24* 0.22* 0.15*

r2(4) 0.35* 0.26* 0.25*

Q2(26) 81.4* 51.8* 48.5*

Outliers ** 107 (-4.50) I
111 (3.62) I
104 (-3.26) I
146 (3.10) A

107 (-4.11) I
111 (3.47) I
146 (3.17) A
104 (-3.23) I

107 (-3.74) I
111 (3.21) I
146 (3.24) A
104 (-3.06) I
173 (3.01) I
174 (3.05) I

     * Significant at 5% level.

     ** “I” indicates that the outlier is innovative and “A” that it is additive.
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Table 3
Sample moments of residuals of ARIMA(0,2,1)x(1,0,0)12 models

Time series simulated with ARV(1) innovations
Outliers at t=40 and t=160

Number of simulations: 100

φ = 0.95, ση
2 = 0.1

pulse variables step variables

3σa 4.5σa 6σa 3σa  4.5σa 6σa

Mean 0.0021 0.0058 0.0040 0.0027 0.0034 0.0041

Standard Deviation 1.0502 1.1631 1.2980 0.9966 1.0595 1.1377

Skewness -0.0034 -0.0815 -0.1526 0.3259 0.7570 1.3759

Exc. Kurtosis 2.9757 4.9467 3.7817 2.6353 4.3744 4.3874

r2(1) 0.2378 0.3391 0.3991 0.1032 0.0624 0.0340

r2(2) 0.0710 0.0254 0.0035 0.1012 0.0572 0.0294

r2(3) 0.0656 0.0218 0.0008 0.0952 0.0546 0.0274

r2(4) 0.0593 0.0205 0.0020 0.0785 0.0443 0.0216

φ = 0.98, ση
2 = 0.05

pulse variables step variables

3σa 4.5σa 6σa 3σa  4.5σa 6σa

Mean 0.0020 0.0064 0.0075 0.0012 0.0013 0.0015

Standard Deviation 1.0302 1.1466 1.2849 0.9719 1.0377 1.1195

Skewness -0.0403 -0.1265 -0.1879 0.4212 0.9956 1.7264

Exc. Kurtosis 3.5757 3.9073 3.2938 2.9916 3.5939 3.5724

r2(1) 0.2593 0.3494 0.4019 0.0806 0.0472 0.0260

r2(2) 0.0582 0.0209 0.0024 0.0885 0.0500 0.0268

r2(3) 0.0558 0.0191 0.0017 0.0841 0.0471 0.0245

r2(4) 0.0537 0.0201 0.0041 0.0725 0.0432 0.0242

φ = 0.99, ση
2 = 0.03

pulse variables step variables

3σa 4.5σa 6σa 3σa  4.5σa 6σa

Mean -0.0004 0.0040 0.0055 -0.0012 -0.0009 -0.0007

Standard Deviation 1.0204 1.1432 1.2849 0.9594 1.0301 1.1157

Skewness -0.0848 -0.1678 -0.2153 0.6521 1.4085 2.2417

Exc. Kurtosis 3.1043 3.2771 2.4822 2.5985 2.9981 3.1925

r2(1) 0.2814 0.3631 0.4074 0.0606 0.0364 0.0216

r2(2) 0.0435 0.0147 0.0005 0.0710 0.0402 0.0222

r2(3) 0.0402 0.0115 -0.0007 0.0661 0.0357 0.0189

r2(4) 0.0405 0.0155 0.0031 0.0584 0.0367 0.0225
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In this section, we have illustrated that the effects of conditional heteroscedasticity and outliers
can be badly confused. As the economic interpretation of both phenomena is rather different, it is
important to distinguish between them when analyzing real data. In particular, when analyzing the
relation between the level and uncertainty of inflation, the implications of both phenomena are different
in terms of the hypothesis to be tested. However, it is difficult to see how to solve this methodological
problem. At the moment, available methods for detection of outliers are based on assuming that the
variance is constant over time. As previously illustrated, these methods seem to be not adequate under
conditional heteroscedasticity. On the other hand, as proposed by van Dijk et al. (1996), we can use
robust methods to test and estimate the conditional heteroscedasticity model. However, it seems to us that
these methods are once more based on identifying observations which are abnormal with respect to a
constant standard deviation and, consequently, using them we can loose information on the  "true"
heteroscedastic  model.  That is the reason why, to analyse the inflation series in the next section we are
first, considering ARIMA models with intervention analysis only for the very “big” outliers, say bigger
than 4.5 marginal standard deviations. Then, we fit a model for the variance and use the observations
standardized using the conditional standard deviation, to identify further outliers. If "conditional" outliers
are present, we include new interventions in the model and start the procedure until the residuals look as a
Gaussian white noise.

3. EMPIRICAL ANALYSIS OF INFLATION

3.1 Models for conditional means

In this section we are modeling monthly observations of inflation measured by the first difference
of logarithmic prices from January 1976 to December 1995 for the G7 countries. The series have been
plotted in figure 1. Each inflation series has been transformed by taking first differences to achieve
stationarity in the mean.

All inflation series have been modeled by seasonal ARIMA(p,2,q)×(P,0,Q)12 models5. Some
sample moments of the residuals from each of the countries appear in table 4 where it is possible to
observe that, with the exception of Japan, all series of residuals have excess kurtosis and all except Japan
and US have asymmetric distributions. With respect to the autocorrelations of squared residuals,
Germany, U.S. and U.K. have a strong first order autocorrelation, Canada, France and Japan have no
significant autocorrelations and Italy have a strong significant autocorrelation at lag four. In all the series
several outliers are identified.

                                                     
5 Details on stationarity transformations and estimated models available from the authors upon request.
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Figure 1
Monthly CPI data for G-7 countries

Period: 1976.01 - 1995.12
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We consider the intervention of some of the "big" outliers identified in table 4. We choose as big,
residuals over 3.75 times the standard deviation of the innovations. Consequently, we re-estimate  the
multiplicative  ARIMA  models  with  dummy  variables  for  such  interventions. The  sample  moments
of  the  residuals  from these models are reported in table 5 where  we can observe that, after modeling the
interventions, there is a clearer autocorrelation pattern in the squared residuals of Canada, US, France and
Italy suggesting the presence of conditional heteroscedasticity. Germany and UK seem to have no
conditional heteroscedasticity, meaning that inflation uncertainty has a constant mean. Finally, Japan has
only a strong first order autocorrelation. There are still several outliers identified in table 5 but none of
them is "big" enough as to be considered for intervention at the moment. Comparing tables 4 and 5 we
can also notice that the Skewness has been clearly reduced, being not significant for any of the series
analyzed. Also, the excess kurtosis parameter is not significant, except for UK inflation.

Table 4

Sample moments of residuals of ARIMA models without Intervention Analysis
Estimation sample: 1976.01 - 1995.12

Germany Canada United
States

France Italy Japan United
Kingdom

St. 0.0023 0.0032 0.0024 0.0021 0.0032 0.0038 0.0045
Skewness 0.64* 0.81* -0.42 0.27 0.72* 0.27 2.36*

Ex. 2.69* 6.06* 2.17* 3.40* 6.19* 0.02 18.72*

r2(1) 0.19* 0.05 0.27* 0.00 0.07 0.07 0.18*

r2(2) -0.02 0.08 0.05 0.03 0.08 -0.02 0.00
r2(3) 0.01 0.12* 0.07 0.01 0.04 0.02 -0.01
r2(4) -0.04 -0.01 0.05 0.14* 0.37* -0.06 -0.03
Q2(26) 24.7 12.1 90.2 27.4 146.0* 26.0 16.6
Outliers 43(3.10)A

50(3.48)I
178(4.35)

A·
187(5.53)

A·

33(-3.93)I
85(-3.21)I
181(6.72)I

·
218(-
3.29)I

55(-5.07)I·
83(-3.22)I
88(3.07)I

169(3.37)I

49(4.80)I·
79(-4.85)I·
133(3.98)I

·

24(-
3.24)A

26(-
3.04)A

37(3.02)I
45(5.32)I·
49(5.70)I·

54(-
3.19)A

61(-
5.42)A·

80(3.03)I

43(3.29)A
104(-

3.06)A
160(3.82)I

·

43(9.69)I·
44(-3.92)I·

48(-
3.77)A·

104(3.13)I
172(3.81)I

·
179(-
3.11)I
205(-

3.15)A

      * Significant at 5% level.
     ** “I” indicates that the outlier is innovative and “A” that it is additive.
      · “Big” outliers.
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Table 5

Sample moments of residuals of ARIMA models with Intervention of “big” outliers
Estimation sample: 1976.01 - 1995.12

Germany Canada United
States

France Italy Japan United
Kingdom

St. 0.0020 0.0028 0.0023 0.0018 0.0026 0.0035 0.0033
Skewness 0.2448 -0.2862 -0.0135 -0.1876 0.0598 0.1002 0.1718
Ex. 0.3711 0.6088 0.3807 0.4643 0.4888 -0.6277 0.8476*

r2(1) -0.09 0.15* 0.12* 0.16* 0.08 0.15* 0.07
r2(2) 0.03 0.12* 0.13* 0.10 0.13* 0.04 0.07
r2(3) 0.17* 0.05 0.13* 0.05 0.07 0.08 -0.01
r2(4) -0.08 0.14* 0.14* -0.03 0.21* 0.04 0.02
Q2(26) 37.6 24.3 75.8* 31.4 165.0* 31.2 23.1
Outliers 43(3.35)A

50(3.43)I
33(-4.02)I
85(-3.33)I

218(-
3.43)I

69(3.21)A
169(3.32)

I

37(3.12)A
40(-

3.03)A
80(-3.30)I
81(-3.14)I

82(-
3.04)A
122(-
3.11)I
235(-

3.01)A

26(-
3.10)A

67(-3.54)I
80(3.12)I

43(3.41)A 52(3.81)I
104(3.10)I

179(-
3.12)I
205(-

3.03)A

    * Significant at 5% level.
    ** “I” indicates that the outlier is innovative and “A” that it is additive.

3.2 Models for conditional variances

In this section we are fitting the ARV(1) model in (3) to the residuals from the ARIMA models
with intervention analysis. As mentioned previously, to estimate the parameters of the volatility process,
we use a QML method as described in Harvey et al. (1994) applied to the standardized residuals. Then we
use the Kalman filter and a smoothing algorithm to obtain estimates of the volatility, �σ t/T. The scale
parameter, σ*, can be estimated by the sample variance of the heteroscedasticity corrected residuals; see
Harvey and Shephard (1993). In table 6 we report the estimated values of the volatility parameters
together with some sample moments of the standardized residuals, i.e. �a t = �ε t / �σ * �σ t/T, which should
behave as a standard normal white noise process. We can observe that the estimates of the parameter β
are close to unity for Italy, Japan and UK, suggesting persistence of the conditional variance. For these
three countries, the squared standardized residuals have not any more significant autocorrelations.
Furthermore, there are not outliers with respect to the conditional deviation, meaning that the outliers
detected in table 5 could be due to the conditional heteroscedasticity. However, we detect “conditional
outliers” for Germany, Canada, France, and US. These outliers were also detected in table 5. However, in
table 5, we identified outliers which do not appear in table 6. Finally, we incorporate the "conditional
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outliers" identified in table 6 to the ARIMA models and reestimate the models.

Table 6

Estimated ARV(1) models after intervention of “big” outliers

Germany Canada United States France Italy Japan United
Kingdom

σ 3.34 × 10- 5.99 × 10- 4.72 × 10-6 2.79 × 5.60 × 1.19 × 9.34 × 10-6

φ 0.7040 0.9143 0.5733 0.8926 0.9850 0.9846 0.9190
ση

2 0.3301 0.0577 0.1095 0.0872 0.0197 0.0073 0.0726
σξ

2 4.9348** 4.0642 5.9672 4.4222 5.2375 3.7476 3.5658
logL -277.97 -61.43 -315.05 -270.06 -304.48 -263.64 -264.14
Skewness 0.1138 -0.0180 0.0270 0.0109 0.1166 0.0389 0.2594
Ex. 0.0335 -0.2926 0.2633 0.1649 -0.1233 -0.5347 0.4783
r2(1) -0.0836 -0.0501 0.0697 0.0128 -0.0796 0.0517 -0.0374
r2(2) -0.1401 -0.0189 0.0868 -0.0515 -0.0464 -0.0215 0.0448
r2(3) 0.0372 0.0410 0.1081 -0.0468 -0.0240 0.0164 -0.1025
r2(4) -0.1298 0.1454 0.0999 -0.0721 -0.0147 -0.0584 -0.0318
Q2(10) 19.88 10.71 38.95* 5.53 6.10 9.28 11.26
Conditiona
l Outliers 50 (3.40) --- 169 (3.27) 236(3.24

)
--- --- ---

     ** Parameter fixed in the estimation process.

Table 7 shows the estimated parameters of the ARV(1) model and sample moments of the
standardized residuals from the ARIMA models with “conditional” interventions. After introducing the
“conditional” interventions in the ARIMA models, the estimates of the parameter β change fundamentally
for Canada and US, being much closer to unity than in table 6. However, the estimates for France do not
change much suggesting constant uncertainty. Finally, it is important to note that the estimates for
Germany, although have changed, keep indicating a constant conditional variance. In table 7, we also
observe that there are not any significant autocorrelations in the squared standardized residuals.
Therefore, the stochastic volatility model has been able to properly represent the dynamic behavior of the
uncertainty of the inflation series. Only, the volatility of inflation in Germany seems to have specification
problems. In this case, to obtain sensible estimates we are forced to keep the parameter σ2

ξ = 4.9348
during the estimation procedure. This value of the parameter is the one implied if the distribution of εt

were conditionally normal. Notice, that the estimates of σ2
ξ for all other countries do not suggest

important deviations from the normality hypothesis. Finally, we could not find any more “conditional
outliers” for any of the inflation series. Figures 2 to 4 represent the smoothed estimates of the uncertainty
of inflation for each of the countries analyzed. Comparing the plots in these figures, we may observe that
the uncertainty of inflation in USA, Canada and UK have very similar shapes, with a big increase in the
early 80´s going down afterwards due to the control of inflation policies. On the other hand, Italy and
Japan may have a change in the level of the volatility process. Finally, the uncertainty in France seems to
fluctuate around a constant level, while in Germany we could not reject the homoscedasticity hypothesis.
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Table 7

Estimated ARV(1) models after intervention of “big” and conditional outliers

Germany United States France

σ 3.00 × 10-6 4.33 × 10-6 2.63 × 10-6

φ 0.9919 0.9506 0.8843

ση
2 0.0000 0.0166 0.0874

σξ
2 4.9398 4.7817 4.1788

log L -283.08 -290.44 -264.17
Skewness. -0.077 -0.0320 -0.1839
Exc. Kurtosis -0.341 -0.2404 -0.0407
r2(1) -0.079 0.0706 0.0035
r2(2) -0.103 0.0746 -0.0022
r2(3) 0.101 0.0745 -0.0033
r2(4) -0.119 0.0786 -0.0435
Q2(10) 17.77 11.16 3.58
Conditional Outliers --- --- ---

Summarizing, after taking into account the effects of outliers on the inflation series, USA, Canada
and UK seem to have conditional heteroscedasticity with high persistence in the uncertainty process.
France show a shape of volatility slightly changing around a constant level, and Germany exhibit a
constant level of inflation uncertainty. Finally, Italy and Japan may have a change in the unconditional
variance of inflation.

4. RELATION BETWEEN LEVEL AND UNCERTAINTY OF INFLATION

There are important methodological limitations to test the Friedman hypothesis. Ba`  illie et al.
(1996) carried out likelihood ratio tests on whether lagged inflation Granger causes volatility and of
whether lagged volatility Granger causes inflation. However, as we have seen previously, estimated
volatilities are close to be not stationary and in such circumstances, usual tests of causality may not be
reliable. Furthermore, as suggested by Cosimano and Jansen (1988), the relation between the level and
uncertainty of inflation may depend on the level and, consequently, is not constant over time. Finally,
some authors suggest a relation between level and uncertainty only in the long run. In order to obtain a
first approximation to the nature of the relationship between the level and uncertainty of inflation for the
G-7 countries, figures 2 o 4 represent the smoothed estimates of volatility together with smoothed
estimates of inflation levels for each of such countriesˆ . When looking at the relation between
uncertainty and the level of inflation, we may observe three different patterns. First, consider the cases of
US, Canada and UK, represented in figure 2. For all three economies, it seems rather difficult to find a
constant relationship between uncertainty and level of inflation for the whole sample period. Up to
approximately mid 80´s, the reduction of inflation levels seems to be followed by a gradual reduction in
inflation volatility, supportg the Friedman hypothesis. However, during the period of control of inflation

                                                     
6 Inflation levels in figures 2, 3 and 4 have been obtained using the program STAMP 5.0 (Koopman et al.,

1995).
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this relation seems to disappear. This may support the results of Cosimano and Jansen (1988) who find
the relation only when inflation is high.

When looking at the plots of inflation and uncertainty corresponding to France and Germany in
figure 3, we observe that the level of inflation is evolving over time, while the uncertainty fluctuates
around a constant level. Consequently, we do not observe any relationship supporting the Friedman
hypothesis for these countries.

Finally, figure 4 represents inflation level and uncertainty for Italy and Japan. When looking at
the relationship in Italy, both the level and the uncertainty of inflation seem to have very similar shapes
over time, supporting the hypothesis that greater inflation rates are associated with greater uncertainty
about future inflation. There is a structural change from high levels of inflation and uncertainty to lower
ones with a very smooth adjustment to the new level. Finally, in Japan the deceleration of inflation is
accompanied by a systematic reduction of uncertainty. However, the level of inflation has a rather quick
adjustment to the new level, while the uncertainty adjustment is much slower. Furthermore, during 1986
and up to 1990 the level of inflation increased and then has an important decrease with no significant
movements in uncertainty.

Summarizing the conclusions from previous figures, we can see that there are important
heterogeneity’s in the joint evolution of inflation levels and uncertainty in the different countries of the
G-7 group. The empirical evidence presented suggests that the relationship between the level and
uncertainty of inflation presents different characteristics depending on the country and perhaps, on the
period considered. Such relationship seems far from being simple and homogeneous among the
economies of the G-7 group. For an empirical analysis of such relationship, it seems necessary to use
multivariate non-linear models able to represent the short and long run relationships between levels and
volatility and this is beyond the scope of this paper.



15

Figure 2

Inflation level and volatility
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Figure  3

Inflation level and volatility

France
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Figure 4

Inflation level and volatility
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5. CONCLUSIONS AND FINAL REMARKS

The hypothesis of a positive relationship between the level and uncertainty about the level of
inflation is often postulated by economists. It seems rather clear that univariate analysis of monthly series
of inflation suggests that there is some kind of non-linearity which could be due to the presence of
conditional heteroscedasticity. On the other hand, inflation series are often affected by the presence of
outliers which may affect substantially the modeling of their dynamics. Since conditional
heteroscedasticity and outliers have rather different economic interpretations, it is fundamental to
properly separate them.

From an econometric point of view, we have illustrate with simulations that, when both effects
appear together in a time series, we can identify as outliers observations corresponding to periods of time
when the conditional variance is over the marginal variance and that usual diagnostics on the residuals
have difficulty detecting genuine conditional heteroscedasticity.

In this paper we are not proposing a methodological solution to this problem. Our proposal is
empirical and consists in modeling first interventions only for the very big outliers. Then, we estimate the
stochastic variance model of the residuals which are standardized using the smoothed estimates of the
conditional variance. The standardized residuals are then used to find further "conditional outliers" which
are included as additional interventions in the model. Then, we re-estimate the intervention ARIMA
model and fit the stochastic volatility model to the new residuals. Applying this strategy to inflation series
for the G-7 group countries we find that heteroscedasticity effects which were not clear in the first step
appear clearly after including interventions for the "big" outliers. The estimation of the heteroscedasticity
model seems to be very sensible to the presence of outliers in the series.

With respect to the results relating the estimates of the uncertainty of inflation, we find that its
evolution over time follows different patterns in the different countries. Finally, we also find that there
are important heterogeneities in the joint evolution of inflation levels and uncertainty. The empirical
evidence presented suggests that the relationship between the level and uncertainty of inflation presents
different characteristics depending on the country and perhaps, on the period considered. Such
relationship seems far from being simple and homogeneous among the economies of the G-7 group.
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