Structural change in a small natural resource intensive economy. Switching between diversification and reprimarization.
APPENDIX
Carolina Román
Henry Willebald

| ISSN | 1510-9305 | (en papel) |
| :---: | :---: | :---: |
| ISSN | 1688-5090 | (en línea) |

We thank the participants at Seminario de Investigación, PHES, FCS, UdelaR (Sep. 2012) and IV Jornadas Académicas, FCEA, UdelaR (Aug. 2013) and, in particular, Reto Bertoni, María Camou and Andrés Rius for their comments. Previous versions of this paper involved Nicolás Bonino-Gayoso; note our appreciation for his contributions. Maximiliano Presa provided excellent research assistance for the econometric exercises. We are solely responsible for any remaining errors.

Forma de citación sugerida para este documento: Román, C. Willebald, H. (2019) "Structural change in a small natural resource intensive economy. Switching between diversification and reprimarization". Serie Documentos de Trabajo, DT 31/2019. Instituto de Economía, Facultad de Ciencias Económicas y Administración, Universidad de la República, Uruguay.

## Appendix

## Appendix 1. Sources and estimation

## A1.1 Data sources

At current prices, for Manufacturing, Construction, Utilities, and Transport, we used the unpublished information kindly provided by Luis Bértola to cover the period 19001955 and Bértola (1998) to fill the period back to 1870. For Agriculture, we used Bértola (1998) between 1870 and 1936. The reason behind this decision is that using Bertola's new estimates for the 1900-1936 period produced very low levels for the primary sector, a result that is not consistent with the relevance of the agro-export model of Uruguay during the late $19^{\text {th }}$ century. The agricultural series corresponding to 1870-1936 presented in Bértola (1998) has been extensively used in the national historiography (Moraes, 2001; Araujo et al., 2015) and validated by the local scholars. For Communications, we developed new estimates for the $19^{\text {th }}$ century, as there was no information available to analyse this sector (see the next section, "A1.2 Own estimates" for the details).

For the case of Government, we combined several sources. First, we took the calculations of value added (total wages plus property rentals) of the public administration developed by Siniscalchi \& Willebald (2019) -data provided by the authors- for 1908, 1919, 1936 and 1955. Second, to fill in missing information we interpolated -and rescaled- with estimates of the Government value added provided by Bertino \& Tajam (1999) for 1900-1955 and by Bértola (1998) to go back as far as 1870.

At constant prices, the information for Agriculture, Manufacturing, Construction, Utilities and Transport corresponding to 1870-1955 is from Bértola (2016), with minor exceptions. For 1870-1874 the author does not provide figures for Transport and Utilities. Therefore, we used Bértola (1998) to complete the information for Transport, and we projected backward the levels of Utilities to fill 1870-1874 (calculating three-year moving average instead of taking the level of 1875).

For Communications, we used Bértola (2016) for 1900-1955, and provide new estimates for the previous period (see the next section for the details). Finally, for the case of Government, we used the evolution of the number of civil servants updated by Siniscalchi \& Willebald (2019) based on data developed by Azar et al. (2009). ${ }^{1}$ Then, to

[^0] to her PhD Thesis).
complete the $19^{\text {th }}$ century we rely on data provided by Millot \& Bertino (1996) and data provided by Camilo Martínez ${ }^{2}$ on civil servants and fill the gaps with linear interpolations.

## A1.2. Own estimates

## A1.2.1 Fishing and sea hunting

This division includes fishing on a commercial basis in the ocean, coastal or inland waters, and hunting and trapping for commercial use (exclusively sea mammals such as seals and sea lions). Information about the sector value added is available for 1936 and 1930 (Industrial Census of 1930 and 1936). ${ }^{3}$ We calculate the evolution of this activity to obtain the change in the production in 1936-1955 and 1930-1936 -rescaling values- and 1870-1930 -with the retropolation methodology. This is how we estimate the output of the sector.

We start with fishing. Information about fish harvest is available for 1935-1942 and from 1950 onwards (Marin, 2016, and data provided by the author) and for the rest of the period we assume a constant rate of per capita consumption in the cities ( 2 kg over 1943-1949 and 2.8 kg prior to 1935) ${ }^{4}$ (population from Nathan, 2014; Pellegrino, n/d, and percentage of urban population from Klein Goldewijk \& Van Drecht, 2006). With this information and the output, we calculate the unit value for 1955, 1936 and 1930. We obtain retail prices (per kg.; we consider sea bass and hake) for 1955, 1931-1940 (Dirección General de Estadística, 1940), 1920 (Nahum, 1993, p. 205), 1915, 1913 (Boletín de la Oficina de Trabajo, 1915, 1913) and 1910 (Bouyat, 1911). Intermediate years are interpolated and re-scaled using changes in a Food Price Index (1914-1955) (Nahum, 2007; Instituto de Economía, 1969, p. 93) and reptropolated with a Consumption Price Index (Bértola et al., 1999). The constant price series are developed using the evolution of the fish catch.

Next, we consider commercial hunting and trapping of seals and sea lions. Information about the value of production (skins and oil) is available from 1910 to 1943 (SOYP, 1943). Completing the rest of the period requires the use of information about prices and the number of animals captured.

[^1]The number of seals captured is available, yearly, from 1873 to 1900 and 1910-1941, is aggregate for 1943-1947 and yearly from 1950 onwards (Ponce de Leon, 2000). For 1901-1909, the production was marginal and we assume it equal to zero. For 1943-1947, we propose an exercise to distribute the data among years respecting the trend of the series and the total data of the period. Information about the accumulated value of production and total seal harvest in 1873-1888 is used to establish an average price for the period. The rest of the years are interpolated and re-scaled according to the evolution of fish prices. The constant price series are developed using the evolution of the total number of seals captured.

The sum of the two activities is the entire sector (in current and constant prices).

## A1.2.2 Mining

Historically, mining and quarrying was a marginal economic activity in Uruguay. It has included the extraction of minerals occurring naturally as solids, like iron, peat, mining of non-ferrous metal ores (copper, lead, zinc), precious metals (gold, silver), stone, sand and clay, granite and marble. However, it was not until 1983 when the National Account System disaggregated the value added of the activity as a particular sector; previously all statistics included the activity in other sectors considered as of similar nature. As the majority of the mineral products of Uruguay are materials for construction, it has been assumed that the production units are to an extent, or in some manner, vertically integrated and so mining has been classified under manufacturing; this is typically manufactured of non-metallic mineral products or materials for the construction industry. We took advantage of this decision to work backward from the level of 1983, but including some adjustments using other sources.

The value added of mining and manufacturing of 1936 is available (data from Industrial Census) and the total wages of both sectors of 1908 (Siniscalchi, 2019). We used the corresponding ratios to estimate the levels of mining value added according to our previous estimates of manufacturing GDP. ${ }^{5}$ Therefore, we have levels for the value added of mining for 1983, 1936 and 1908 and we linked them with the trajectory of the value added of materials of construction (1970-1982; BCU, 1989, p. 6), non-metallic minerals (1955-1969; BCU, 1973, p. 11), non-metallic minerals (excluding glass) (19001954; Bertino \& Tajam, 1999; applied re-scaling using figures from 1908 and 1936) and

5 We assume that the relation between total wages is a good proxy of the relation between valuesadded.
materials for construction (1872-1899; Bértola, 1998; 1870-1871: we used the same level as 1872).

In the last decades of the $19^{\text {th }}$ century, there were significant local expectations about gold extraction (see, e.g., Anuario Estadístico, 1890, p. 612) and the activity received the attention of several international investors (Macmillan, 1930) and official authorities (El Libro del Centenario, 1925). The extraction was significant until WWI, and this justifies including this production in our calculations. Stastitical Yearbook (1915) presents information about the production (in kg ) and sales (in pesos) of gold from the main mines of Uruguay from 1885 to 1913 . As we know the total wages paid by the gold mines in 1908 and that, in general, these businesses never resulted in large gains for the investors (Acevedo, 1934, p. 472), we can estimate the total value added by increasing total wages by a replacement rate of $10 \%$. Based on this assumption, we calculated each year's value added as $47 \%$ of the total sales of gold and used this relation from 1885 to 1908 (after this period, the extraction of gold declined severely).

Then, we count with two indicators: the production of non-metallic minerals (or similar to them) (1870-1983) and the extraction of gold (1883-1908). From 1909 onwards, changes in the magnitude of mining are measured by variations in the first one and, previously, we use the evolution of both indicators (with weights of $70 \%$ and $30 \%$ respectively). ${ }^{6}$

The calculation in constant prices uses the same series, sources and criteria. For the non-metallic output, we used the evolution of the same industrial sectors in constant prices and, for the production of gold, we considered the volume of output of the activity (kg of gold).

## A1.2.3 Communications

This division includes postal activities and telecommunications. We constructed an indicator for 1870-1899 consistent with that presented by Bertino \& Tajam (1999) for 1900-1955. We considered measures of volume and price of the output of three services: postal, telephone and telegraph communications.

In the case of the postal service, we used an indicator of the evolution of the total value of services for posted letters (Arocena \& Graciani, 1992). Information is available for

[^2]1870-1873 and 1878-1900, and we filled in the data for 1874-1877 by linear interpolation. We used these series to calculate backward from the figure of 1900 (Bertino \& Tajam, 1998) and obtain a series at constant prices. Sources for prices are scarce. The initial reference is the unit price of $\$ 0.039$ per letter for 1900 . We calculated this price as the ratio between the total production value of the postal service (Bertino \& Tajam, 1998) and the letters sent. From secondary sources, we obtained unit prices for other three years (revenues of the postal service divided by the letters sent): $\$ 0.033$ in 1890 (Mulhall \& Mulhall, 1892, p. 598); \$ 0.054 in 1895 (Mulhall \& Mulhall, 1892, p. 598) and \$ 0.1169 in 1872 (Mulhall \& Mulhall, 1875, p. 330). To fill in the gaps, we calculated linear interpolation except for 1870-1871, where we maintained the level of 1872 . We estimated the evolution of the gross value added (GVA) for the entire period using the number of letters sent by postal service and the prices.

In the case of the telegraph services, to calculate the evolution of output, we used the number of telegraph messages from 1882 to 1900 (Arocena \& Graciani, 1992). We used the population growth (Nathan, 2014; Pellegrino, n/d) to complete the information, which is equivalent to assuming that the messages per capita were constant between 1870 and 1882 . With this series, we projected backwards from the figure of 1900 and obtained the series at constant prices. From secondary sources, we obtained unit prices for several years. Prices are not available for Uruguay and we used the average price charged for telegrams among the Argentine provinces, which should represent a good proxy for the Uruguayan tariff ( $1873,1877,1878,1883,1886,1899$ : Berthold, 1921, p. 15; 1875: Mulhall \& Mulhall, 1875, p. 418). 7 To fill in the gaps, we calculated linear interpolations except for 1870-1874, where we maintain the level of 1875 .

In the case of the telephone services, we used the information on the telephone subscribers of two telephone companies -Compañia Telefónica de Montevideo and Sociedad Cooperativa Telefónica Nacional- (Arocena \& Graciani, 1992) available between 1886 and 1900. In the previous period, the activity was marginal. ${ }^{8}$ We used the physical volume to project backward from the level of 1900 and obtained the series at constant prices. From secondary sources, we obtained an estimation of the revenues of the telephone service assuming that there was a uniform charge of $\$ 4$ monthly per subscriber in 1892 (Mulhall \& Mulhall, 1892, p. 598). We assume one subscriber per house, annualize the monthly cost and obtain a tariff of $\$ 0.048$ (which is consistent with

[^3]the unit prices corresponding to 1900: 0.041 Uruguayan pesos). ${ }^{9}$ We calculated, by linear interpolation, the prices corresponding to 1893-1899 and, for the previous period, we maintain the same price as for 1892 .

We added these three gross value products (GVP) -respectively, in current and constant prices- and obtain the total value added of the ratio considering the same technical coefficient used by Bertino \& Tajam (1999) (VA/GVP = o.8o for current and constant prices).

## A1.2.4 Financial intermediation

This division includes activities related to obtaining and redistributing funds, namely deposits, financial leasing and other granting of credit. Commercial banks and other financial intermediaries earn explicit commissions from the services they offer, but the majority of their incomes were derived from credit operations. Banks pay lenders a lower interest rate than they charge borrowers. The difference between interest rates (active minus passive rates) is the profit they obtain.

Therefore, we construct an indicator of the performance according to the evolution of the following relationship: Output=C. $i_{a}-D . i_{p}$

Where,
$C$ : the total amount of loans.
$D$ : the total amount of deposits.
$i_{a}$ : the loan interest rate.
$i_{p}$ : the deposit interest rate.
We retropolate the figure of the sector's value added of 1955 using the movement of this indicator to obtain annual data (we assume the relation VA/GVP maintained constant).

We used the deposits series presented in Díaz \& Moreira (2017) which include shortand long-term transactions of private banks and Banco de la República Oriental del

[^4]Uruguay (BROU; a state bank) between 1929 and 1955. This series is linked with the deposits presented in Román (2012) -and data provided by the author- for 1870-1928 with a deposits series that also includes both types of deposits but considers fewer types of items (for instance, total deposits in 1929 was $\$ 176$ million for Díaz \& Moreira, 2017, and \$146 million for Román, 2012). However, the evolution of the two series is very similar).

The information on loans is from Díaz \& Moreira (2017) which considers loans from private banks and BROU to private and public agents from 1929 to 1966. This series is linked with the loans presented in Román (2012) for 1912-1928 that also includes both types of credit but only considers loans to private agents and not all the modalities (for instance, total loans in 1929 was $\$ 219$ million for Díaz \& Moreira, 2017, and $\$ 210$ million for Román, 2012; however, again, evolutions are very similar). For 1900-1911, loans from BROU are available and Acevedo (1934), p. 330, provides loans of the financial system for 1903-1905. Then, we take the difference between total loans to private agents and total loans from BROU as being total loans by private banks for 1903-1905. We link the levels corresponding to private banks in 1905 and 1912 with the movement of BROU's credits, and arrived at both levels. From 1904 backward until 1900, we assume a constant rate of change of loans from BROU. Data for the $19^{\text {th }}$ century is scarce and incomplete. We use information from measures of total loans (deudores) and deposits (acreedores) for 1871-1874 (Acevedo, 1933, p. 596, 731), 1883-1891 (Acevedo, 1934, p. 201) and calculate the ratio between them to obtain a coefficient to estimate total credits using the information on deposits. Coefficients for intermediate years -1875-1882, 1892-1899are the result of linear interpolations.

Information about interest rates is incomplete and very heterogeneous because there are changes in terms and types of transactions. We propose the following approaches to fill this gap.

Initially, we combined information on the annual loan interest rates from BCU ${ }^{10}$ (1999-2015), BCU Bulletins (1976-2001), Banda \& Múgica (1976) (1955-1975) and Román (2012) (1898-1954). For the preceding period, we have two levels of interest rates -1882 (Acevedo, 1934, p. 321) and 1867 (Acevedo, 1923, p. 719)- and estimate annual rates from changes in interest rate yields on public debt provided by Gastón Díaz (1884-
${ }^{10}$ Series Estadísticas - Tasas de Interés: http://www.bcu.gub.uy/Servicios-Financieros-SSF/Paginas/Series-Estadisticas-Tasas.aspx (Retrieved April, 2016).
$1897)^{11}$ and Obstfeld \& Taylor (1872-1883) (we maintain the level of 1872 to fill in the 1867-1871 period).

We adopted an approach similar to the previous one to calculate deposit interest rates. We combine information of three series from BCU (1998-2015), BCU Bulletins (19761997), Banda \& Múgica (1976) (1952-1975) and Román (2009) (1921-1951). For the preceding period, we find three levels of interest rates -for 1905 and 1882 (Acevedo, 1934, p. 332, both adjusted by an interpolated spread between 1867 and 1921) and 1867 (Acevedo, 1923, p. 719)- and estimate annual rates using changes in interest rate yields on public debt provided by Gastón Díaz (1884-1914) and Obstfeld \& Taylor (1872-1883, 1915-1920).

For the construction of the constant price series, we used the series of credits and deposits -which represent the volume of money that banks and financial intermediaries commercialize- and considered the corresponding interest rates -the "price of the money"- using 1913 as the base year. All credits and deposits were valued at these "prices" to obtain the values at constant prices.

## A1.2.5 Wholesale and retail trade

In BROU (1965), this sector includes the intermediation for merchandise of industrial, agricultural and imported origin, corresponding to both wholesale and retail trade. Their output is measured by the value of the corresponding inputs and intermediation margins.

We use the same structure in current prices of the commercial value added -corresponding to 1955- to calculate the historical figures considering backward projections based on the same sectoral structure corresponding to Agriculture (26 percent) and Manufacturing (40 percent) as well as available estimates of total imports (29 percent; Román, 2017).

Analogously, we used the structure at constant prices of the commercial value added -corresponding to 1955- to calculate the historical figures consistently with the previous estimates of Agriculture ( 25 percent) and Manufacturing (49 percent) as well as available estimates of total imports (25 percent; Román, 2017).
${ }^{11}$ Data kindly provided by Gastón Díaz which will be presented as part of his forthcoming PhD thesis (Universidad de la República, Uruguay - University of Geneva, Switzerland).

## A1.2.6 Real estate activities

This sector includes real estate activities with self-owned or leased property (buying, selling, renting and operating self-owned or leased real estate and the provision of homes and furnished or unfurnished flats or apartments for more permanent use, typically on a monthly or annual basis), and on a fee or contract basis (agents and brokers of intermediation, management and appraisal services for real estate).

The value added corresponds to the value of the housing services -self-provided or provided by other agents- minus the intermediate consumption. We estimated the value of housing services by applying average rent to the occupied dwellings. The intermediate consumption should be estimated according to the value of maintenance and repair expenditures in housing, insurances and rental administrative expenses, calculated assuming this component to be a constant share of the 1955 figures.

To obtain the values back to 1889 , we use information on the rent of a one-room house for 1889 (Acevedo, 1933), 1908 (Housing's Census), 1914, 1937 and 1962 (Ministerio de Industrias, 1927; Ministerio de Industrias y Trabajo, 1946; Dirección General de Estadística y Censos, 1970). To fill the gaps, we used the evolution of the consumer price index (Bértola et al., 1999) and the housing price index (Nahum, 2007; Instituto de Economía, 1969) for 1889-1913 and 1914-1955, respectively, and re-scaling according to those levels. Information about occupied dwellings is from two sources: 1908 (Population Census); and 1910, 1920, 1930, 1940, 1950 (CIDE, 1967). To complete the series, we used changes in the population (Nathan, 2014; Pellegrino, n/d,). Finally, to obtain figures going back to 1870, we considered the household size (Population Census, 1908 and 1889, and linear interpolations to fill the gaps between the two) and population growth (for the rest of the period).

Calculations of the value added of the sector in constant prices consider the changes in aggregate occupied dwellings, and we assumed constant proportions relative to population size to project backward from 1955 with this indicator.

Education, health, social work, and other community, social and personal service activities

This heterogeneous sector includes private education, human health, veterinary activities, social work activities, sewage and refuse disposal, sanitation and similar activities, recreational, cultural and sporting activities and other services. Several of
these activities correspond to services provided collectively but which are consumed by individuals while benefitting society as a whole.

BROU (1965) includes five sub-sectors: (i) services consumed by households (private education, private medical and sanitary services and other services); (ii) services provided to business activities (legal advice and other technical advisory services, other commercial and professional services); (iii) recreational services (production, distribution and exhibition of films, theatres and other services); (iv) personal services (household domestic staff such as maids, cooks, waiters, valets, butlers, laundresses, hairdressing, photographic activities); (v) other services.

First, we used proxies for each type of service and we assumed constant proportions in the sector to project backward from 1955 to 1899. As several of these activities correspond to goods which are provided collectively and demanded by a large share of the population, we correct the indicators with the evolution of the urban population (Nathan, 2014; Pellegrino, n/d, and Klein Goldewijk \& Van Drecht, 2006) and the evolution of wages (Bértola et al., 1999).
(i) Household spending in this category was approximated by services provided to households in private education (Labat et al., 2018). These figures were the result of considering the total number of students in private education and the average spending per public school student.
(ii) Services provided to business activities were approximated by the evolution of real estate transactions, assuming that related activities processed by public notaries can measure the changes in this sector. There is no information about the notary fees, but we assumed the fee was calculated as a percentage of the transaction and was relatively stable over time. Historically, notaries authenticated contracts and legal agreements of very varied type but real estate transactions were a very common activity, and we used them as a point of reference. The statistical yearbooks provide the number of registrations, properties, area (hectares) and value (in pesos) of sales and partitions (1915-1955), sales (1910-1914), and sales of buildings (1899-1914).
(iii) Recreational services were measured by the local taxes on public entertainment (theatres, cinemas, racecourses) in Montevideo (Consejo Departamental de Montevideo, Bulletin).
(iv) The evolution of personal services was approximated by laundresses and photographic activities. We have the output of these activities for 1955 and data of total
wages for $1955,1936,1919$ and 1908 . We used the 1955 share to weight the estimates for the earlier years. Then, we calculated annual data by interpolation and re-scaling between the figures. For this purpose, we calculated an indicator that combines the evolution of urban population and retail prices. We considered the urban population because it is reasonable to think that personal services depend on urban population growth; we used retail prices to measure changes in prices per unit.

Finally, we calculated other services as an increasing share of the sum of the previous estimations. In 1955, this item represented $13.3 \%$ and, in 1963 , it represented $15.8 \%$, which meant a yearly growth rate of $2.1 \%$. We used this growth rate to estimate shares in earlier years and calculated the item as the remainder after considering other segments of the sector.

Second, to fill in the 1884-1899 period, we used information about the business license tax. Presa (2019) presents information about the number of business licenses (patentes de giro) and the corresponding taxes classified by economic activity and province for 1884-1890 and 1893-1899 (we obtained 1891 and 1892 by interpolation). We only considered those activities included in the sector and retropolated the previous estimate with this indicator.

Finally, we estimate the 1870-1884 series according to the urban population growth and the evolutions of wages, which represent the potential demand for these services.

We estimated the series at constant prices deflating the series at current prices by the Consumption Price Index (Bértola et al., 1999; Instituto Nacional de Estadística, webpage).

## Appendix A2. Data.

A2.1 Total Value Added (Uruguayan pesos) and sectoral shares (in percentage), 1870-2017

## Current prices

Percentage of total value added
(uruguayan pesos) Total value added

Agriculture Fishing Mining Manufacturing Utilities (1) Construction Wholesale and Transport Communications retail trade
$\qquad$
$\qquad$

|  |  |  |  |  |  | retail trade |  |  |  | intermediation activities |  |  | services (2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1870 | 30 | 32.9 | 0.0 | 0.3 | 16.8 | 2.3 | 4.8 | 20.0 | 3.0 | 0.2 | 5.6 | 1.6 | 12.1 | 0.2 |
| 1871 | 33 | 36.1 | 0.0 | 0.3 | 15.3 | 2.2 | 3.7 | 20.1 | 3.1 | 0.2 | 5.0 | 1.0 | 12.9 | 0.3 |
| 1872 | 40 | 35.6 | 0.0 | 0.2 | 15.3 | 1.8 | 4.1 | 19.3 | 4.5 | 0.2 | 4.2 | 0.8 | 13.9 | 0.2 |
| 1873 | 44 | 37.6 | 0.1 | 0.2 | 12.3 | 1.6 | 3.7 | 18.4 | 4.8 | 0.2 | 3.4 | 1.8 | 15.6 | 0.2 |
| 1874 | 40 | 37.2 | 0.1 | 0.2 | 12.9 | 1.8 | 3.1 | 18.7 | 4.2 | 0.2 | 4.1 | 2.3 | 15.0 | 0.2 |
| 1875 | 37 | 32.8 | 0.1 | 0.2 | 14.3 | 1.9 | 3.9 | 18.3 | 4.7 | 0.2 | 7.0 | 2.6 | 13.7 | 0.2 |
| 1876 | 41 | 32.9 | 0.1 | 0.1 | 14.3 | 1.2 | 3.1 | 18.0 | 3.9 | 0.2 | 7.1 | 3.6 | 15.2 | 0.2 |
| 1877 | 43 | 33.3 | 0.1 | 0.1 | 15.8 | 1.1 | 2.6 | 18.5 | 3.7 | 0.2 | 7.0 | 3.1 | 14.3 | 0.2 |
| 1878 | 46 | 35.2 | 0.2 | 0.1 | 16.3 | 1.0 | 2.4 | 19.1 | 3.6 | 0.1 | 5.0 | 3.0 | 13.8 | 0.2 |
| 1879 | 44 | 35.4 | 0.2 | 0.1 | 16.2 | 1.1 | 2.8 | 19.5 | 3.6 | 0.1 | 3.7 | 3.3 | 13.8 | 0.2 |
| 1880 | 47 | 37.7 | 0.2 | 0.1 | 17.4 | 1.0 | 3.0 | 20.6 | 3.3 | 0.1 | 2.3 | 3.1 | 10.8 | 0.2 |
| 1881 | 45 | 37.2 | 0.2 | 0.2 | 17.1 | 1.1 | 3.3 | 20.7 | 3.8 | 0.1 | 2.3 | 3.3 | 10.6 | 0.2 |
| 1882 | 49 | 38.3 | 0.1 | 0.1 | 16.4 | 1.1 | 2.8 | 20.7 | 3.9 | 0.1 | 1.7 | 3.4 | 11.1 | 0.2 |
| 1883 | 58 | 37.7 | 0.1 | 0.2 | 16.3 | 1.0 | 3.8 | 20.6 | 4.4 | 0.1 | 0.9 | 3.6 | 11.1 | 0.2 |
| 1884 | 60 | 33.8 | 0.1 | 0.2 | 15.2 | 1.0 | 5.0 | 21.7 | 4.8 | 0.2 | 1.1 | 4.5 | 12.1 | 0.2 |
| 1885 | 65 | 29.5 | 0.1 | 0.8 | 16.0 | 1.0 | 10.4 | 22.2 | 4.3 | 0.2 | 1.2 | 4.0 | 9.8 | 0.4 |
| 1886 | 64 | 26.9 | 0.1 | 0.8 | 14.4 | 1.2 | 9.8 | 21.6 | 3.9 | 0.3 | 2.0 | 5.2 | 13.4 | 0.4 |
| 1887 | 58 | 24.1 | 0.1 | 0.6 | 15.4 | 1.5 | 8.1 | 22.5 | 5.2 | 0.4 | 3.0 | 6.0 | 12.6 | 0.4 |
| 1888 | 71 | 24.2 | 0.1 | 0.5 | 15.5 | 1.2 | 10.1 | 21.0 | 6.1 | 0.4 | 5.3 | 4.4 | 10.7 | 0.4 |
| 1889 | 77 | 23.0 | 0.1 | 0.4 | 17.3 | 1.2 | 8.7 | 21.3 | 4.9 | 0.3 | 5.3 | 4.5 | 12.5 | 0.5 |
| 1890 | 72 | 26.1 | 0.1 | 0.7 | 14.3 | 1.3 | 8.0 | 19.9 | 5.4 | 0.4 | 5.6 | 4.1 | 13.4 | 0.5 |
| 1891 | 70 | 28.5 | 0.1 | 0.5 | 16.3 | 1.5 | 4.8 | 19.6 | 5.0 | 0.4 | 6.4 | 3.9 | 12.4 | 0.5 |
| 1892 | 60 | 28.9 | 0.1 | 0.4 | 16.0 | 1.4 | 4.4 | 18.6 | 6.0 | 0.4 | 4.3 | 4.3 | 14.5 | 0.6 |
| 1893 | 65 | 32.5 | 0.1 | 0.3 | 15.5 | 1.5 | 3.4 | 18.2 | 6.2 | 0.4 | 4.5 | 3.5 | 13.4 | 0.5 |
| 1894 | 68 | 34.5 | 0.1 | 0.2 | 15.1 | 1.4 | 2.8 | 18.5 | 6.4 | 0.4 | 4.4 | 3.6 | 12.2 | 0.5 |
| 1895 | 68 | 32.3 | 0.1 | 0.2 | 16.3 | 1.3 | 4.0 | 18.6 | 6.4 | 0.5 | 3.7 | 4.0 | 12.1 | 0.5 |
| 1896 | 71 | 31.8 | 0.2 | 0.3 | 17.0 | 1.4 | 3.9 | 18.8 | 5.8 | 0.5 | 4.2 | 4.1 | 11.5 | 0.5 |
| 1897 | 76 | 34.2 | 0.1 | 0.3 | 15.3 | 1.9 | 3.2 | 18.6 | 5.4 | 0.5 | 5.5 | 3.8 | 10.9 | 0.3 |
| 1898 | 74 | 28.6 | 0.2 | 0.3 | 17.5 | 2.0 | 3.8 | 18.2 | 5.8 | 0.5 | 7.0 | 4.6 | 11.1 | 0.4 |
| 1899 | 82 | 33.0 | 0.1 | 0.3 | 15.1 | 1.9 | 3.9 | 17.4 | 5.5 | 0.5 | 6.0 | 4.0 | 11.9 | 0.4 |
| 1900 | 83 | 29.1 | 0.2 | 0.3 | 17.7 | 1.9 | 3.5 | 18.5 | 5.6 | 0.6 | 6.3 | 4.6 | 11.4 | 0.5 |
| 1901 | 83 | 28.6 | 0.1 | 0.3 | 17.3 | 1.9 | 4.1 | 18.5 | 5.6 | 0.6 | 5.5 | 5.1 | 11.9 | 0.5 |
| 1902 | 85 | 32.2 | 0.1 | 0.5 | 15.4 | 1.8 | 2.8 | 18.5 | 5.8 | 0.5 | 6.0 | 4.3 | 11.7 | 0.5 |
| 1903 | 91 | 30.2 | 0.1 | 0.5 | 17.3 | 1.7 | 4.6 | 17.8 | 5.9 | 0.5 | 5.4 | 4.7 | 10.9 | 0.5 |
| 1904 | 94 | 33.1 | 0.1 | 0.4 | 15.6 | 1.7 | 2.2 | 19.3 | 5.4 | 0.5 | 6.1 | 4.4 | 11.0 | 0.4 |
| 1905 | 97 | 29.6 | 0.1 | 0.4 | 17.0 | 1.7 | 2.6 | 19.4 | 6.2 | 0.5 | 6.0 | 5.1 | 10.7 | 0.6 |
| 1906 | 113 | 32.6 | 0.1 | 0.4 | 16.3 | 1.6 | 2.4 | 21.3 | 5.6 | 0.5 | 4.5 | 4.9 | 9.2 | 0.6 |
| 1907 | 125 | 31.7 | 0.1 | 0.5 | 16.8 | 1.6 | 2.8 | 22.2 | 5.8 | 0.5 | 3.3 | 4.5 | 9.7 | 0.5 |
| 1908 | 133 | 30.7 | 0.0 | 0.4 | 16.7 | 1.6 | 2.8 | 22.8 | 5.5 | 0.5 | 2.8 | 4.2 | 11.3 | 0.6 |
| 1909 | 140 | 32.3 | 0.0 | 0.2 | 15.7 | 1.4 | 2.9 | 22.5 | 5.9 | 0.4 | 2.4 | 4.4 | 11.2 | 0.6 |
| 1910 | 150 | 31.3 | 0.1 | 0.3 | 16.7 | 1.5 | 3.7 | 22.2 | 5.9 | 0.5 | 2.4 | 4.1 | 10.5 | 0.7 |


|  |  |  |  |  |  | retail trade |  |  |  | intermediation activities |  |  | services (2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1911 | 149 | 31.0 | 0.1 | 0.3 | 15.9 | 1.7 | 4.3 | 21.3 | 6.6 | 0.5 | 2.5 | 4.3 | 10.7 | 0.8 |
| 1912 | 178 | 34.4 | 0.1 | 0.2 | 15.1 | 1.7 | 3.6 | 20.6 | 6.2 | 0.5 | 2.2 | 3.8 | 10.9 | 0.7 |
| 1913 | 199 | 33.8 | 0.0 | 0.1 | 14.3 | 1.7 | 5.2 | 18.3 | 5.9 | 0.5 | 2.5 | 3.8 | 13.0 | 0.6 |
| 1914 | 186 | 32.8 | 0.1 | 0.1 | 16.3 | 2.0 | 2.7 | 17.5 | 5.7 | 0.6 | 3.1 | 4.4 | 14.0 | 0.6 |
| 1915 | 198 | 37.4 | 0.0 | 0.1 | 15.0 | 1.9 | 1.6 | 17.2 | 4.7 | 0.6 | 3.1 | 4.4 | 13.4 | 0.6 |
| 1916 | 200 | 37.3 | 0.1 | 0.1 | 15.6 | 2.1 | 1.7 | 17.4 | 5.2 | 0.6 | 3.9 | 4.6 | 11.0 | 0.6 |
| 1917 | 254 | 40.9 | 0.0 | 0.0 | 15.0 | 1.8 | 1.2 | 18.3 | 4.5 | 0.6 | 3.3 | 3.8 | 10.1 | 0.5 |
| 1918 | 280 | 39.8 | 0.1 | 0.0 | 15.8 | 1.9 | 1.6 | 18.9 | 4.9 | 0.6 | 2.9 | 3.6 | 9.4 | 0.5 |
| 1919 | 325 | 42.8 | 0.1 | 0.1 | 12.9 | 1.8 | 1.7 | 19.2 | 5.0 | 0.6 | 3.3 | 3.2 | 8.7 | 0.6 |
| 1920 | 317 | 34.3 | 0.1 | 0.2 | 13.9 | 2.1 | 3.4 | 18.2 | 5.4 | 0.6 | 4.3 | 5.7 | 10.7 | 1.1 |
| 1921 | 290 | 28.1 | 0.1 | 0.1 | 15.5 | 2.5 | 3.4 | 18.2 | 5.9 | 0.8 | 4.6 | 6.6 | 13.0 | 1.3 |
| 1922 | 275 | 25.9 | 0.1 | 0.1 | 16.0 | 2.8 | 4.5 | 18.4 | 6.2 | 0.8 | 3.4 | 7.3 | 13.1 | 1.3 |
| 1923 | 301 | 27.0 | 0.1 | 0.2 | 15.7 | 2.6 | 4.6 | 18.5 | 6.3 | 0.8 | 3.8 | 7.1 | 12.1 | 1.2 |
| 1924 | 351 | 30.5 | 0.1 | 0.1 | 15.0 | 2.6 | 4.6 | 18.8 | 6.1 | 0.8 | 2.9 | 6.4 | 11.1 | 1.1 |
| 1925 | 350 | 28.6 | 0.1 | 0.1 | 15.5 | 2.8 | 4.9 | 18.7 | 6.6 | 0.8 | 3.1 | 6.8 | 10.7 | 1.2 |
| 1926 | 356 | 26.9 | 0.1 | 0.2 | 15.3 | 2.9 | 4.1 | 18.8 | 7.5 | 0.9 | 3.4 | 7.1 | 11.7 | 1.2 |
| 1927 | 392 | 25.0 | 0.1 | 0.2 | 16.7 | 2.8 | 5.3 | 18.8 | 7.6 | 0.8 | 2.7 | 6.7 | 12.0 | 1.2 |
| 1928 | 424 | 25.4 | 0.1 | 0.3 | 16.4 | 2.8 | 5.2 | 19.3 | 7.8 | 0.8 | 2.4 | 6.6 | 11.9 | 1.2 |
| 1929 | 426 | 23.6 | 0.1 | 0.2 | 16.5 | 3.0 | 5.5 | 19.0 | 8.6 | 0.9 | 2.3 | 6.8 | 12.1 | 1.4 |
| 1930 | 466 | 26.4 | 0.0 | 0.2 | 16.0 | 3.0 | 4.6 | 19.0 | 8.6 | 0.9 | 2.1 | 6.6 | 11.0 | 1.4 |
| 1931 | 405 | 20.8 | 0.1 | 0.2 | 16.7 | 3.9 | 4.7 | 18.0 | 10.2 | 1.2 | 1.6 | 8.0 | 13.0 | 1.7 |
| 1932 | 388 | 21.1 | 0.1 | 0.2 | 16.6 | 4.0 | 3.8 | 17.4 | 10.2 | 1.2 | 3.0 | 8.0 | 13.1 | 1.4 |
| 1933 | 354 | 20.8 | 0.1 | 0.1 | 15.6 | 4.3 | 3.8 | 16.3 | 10.4 | 1.3 | 3.5 | 8.2 | 14.1 | 1.6 |
| 1934 | 398 | 21.3 | 0.1 | 0.1 | 18.1 | 4.0 | 3.0 | 16.5 | 8.7 | 1.2 | 3.3 | 7.7 | 14.5 | 1.5 |
| 1935 | 430 | 22.7 | 0.1 | 0.1 | 16.5 | 3.9 | 3.6 | 16.3 | 8.5 | 1.2 | 3.1 | 7.5 | 15.1 | 1.6 |
| 1936 | 479 | 24.4 | 0.1 | 0.1 | 16.0 | 3.6 | 3.6 | 17.0 | 9.2 | 1.1 | 2.8 | 7.0 | 13.6 | 1.5 |
| 1937 | 541 | 22.9 | 0.0 | 0.1 | 16.6 | 3.4 | 4.3 | 17.2 | 8.8 | 1.3 | 2.9 | 7.4 | 13.5 | 1.7 |
| 1938 | 571 | 20.5 | 0.1 | 0.1 | 18.4 | 3.5 | 5.4 | 17.8 | 9.0 | 1.1 | 3.0 | 7.8 | 11.7 | 1.7 |
| 1939 | 601 | 20.8 | 0.0 | 0.1 | 17.5 | 3.6 | 5.7 | 17.4 | 8.7 | 1.1 | 2.9 | 9.2 | 11.0 | 1.9 |
| 1940 | 632 | 21.7 | 0.0 | 0.1 | 16.6 | 3.7 | 4.9 | 17.2 | 8.5 | 1.1 | 3.1 | 10.0 | 11.1 | 1.8 |
| 1941 | 702 | 22.2 | 0.0 | 0.1 | 18.6 | 3.6 | 5.1 | 16.6 | 7.9 | 1.1 | 2.6 | 10.0 | 10.1 | 1.9 |
| 1942 | 704 | 22.7 | 0.0 | 0.1 | 19.4 | 3.7 | 3.5 | 17.0 | 8.2 | 1.2 | 2.8 | 11.1 | 8.2 | 2.0 |
| 1943 | 721 | 20.9 | 0.0 | 0.1 | 19.3 | 3.7 | 3.8 | 16.7 | 9.4 | 1.2 | 2.1 | 12.2 | 8.4 | 2.3 |
| 1944 | 896 | 24.4 | 0.0 | 0.1 | 18.3 | 3.4 | 5.0 | 17.7 | 7.5 | 1.0 | 1.3 | 10.9 | 8.1 | 2.4 |
| 1945 | 1,027 | 20.4 | 0.0 | 0.1 | 19.1 | 3.3 | 6.7 | 18.1 | 7.3 | 0.9 | 2.7 | 10.6 | 8.2 | 2.6 |
| 1946 | 1,236 | 20.5 | 0.0 | 0.1 | 19.6 | 2.7 | 6.5 | 20.0 | 6.6 | 0.8 | 1.3 | 9.8 | 8.2 | 3.7 |
| 1947 | 1,454 | 20.5 | 0.0 | 0.1 | 19.4 | 2.5 | 7.7 | 19.9 | 7.0 | 0.7 | 1.4 | 9.3 | 7.4 | 4.1 |
| 1948 | 1,640 | 21.9 | 0.0 | 0.1 | 19.0 | 2.4 | 5.6 | 20.2 | 6.8 | 0.8 | 1.5 | 9.3 | 7.7 | 4.6 |
| 1949 | 1,934 | 23.1 | 0.0 | 0.1 | 19.0 | 2.1 | 5.2 | 19.3 | 6.8 | 0.7 | 1.7 | 9.7 | 7.9 | 4.4 |
| 1950 | 2,108 | 20.2 | 0.0 | 0.2 | 19.6 | 1.9 | 5.6 | 18.8 | 6.7 | 0.7 | 2.2 | 10.6 | 8.6 | 5.1 |
| 1951 | 2,574 | 19.5 | 0.0 | 0.1 | 19.5 | 1.7 | 6.2 | 18.2 | 7.3 | 0.6 | 3.2 | 9.6 | 8.5 | 5.4 |
| 1952 | 2,793 | 19.2 | 0.0 | 0.2 | 19.1 | 1.8 | 6.5 | 17.5 | 8.2 | 0.6 | 2.6 | 10.1 | 7.7 | 6.4 |
| 1953 | 3,212 | 18.4 | 0.0 | 0.2 | 19.4 | 1.6 | 5.6 | 17.0 | 7.8 | 0.6 | 3.3 | 10.6 | 8.1 | 7.6 |
| 1954 | 3,779 | 16.9 | 0.0 | 0.2 | 19.8 | 1.5 | 5.5 | 16.3 | 7.6 | 0.5 | 3.5 | 11.6 | 8.5 | 8.1 |
| 1955 | 4,109 | 15.5 | 0.0 | 0.2 | 19.2 | 1.5 | 5.5 | 15.2 | 7.5 | 0.8 | 3.9 | 11.8 | 8.9 | 9.9 |


| Total value added | Agriculture | Fishing | Mining | Manufacturing | Utilities (1) | Construction | Wholesale and retail trade | Transport | Communications | Financial intermediation | Real estate activities | Government | Other services (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4,644 | 14.7 | 0.0 | 0.2 | 20.5 | 1.5 | 5.9 | 14.5 | 7.7 | 0.7 | 4.1 | 11.7 | 8.4 | 10.0 |
| 5,618 | 14.8 | 0.0 | 0.2 | 20.0 | 1.5 | 5.4 | 16.5 | 7.5 | 0.8 | 4.0 | 10.9 | 9.2 | 9.1 |
| 6,186 | 13.5 | 0.0 | 0.3 | 21.9 | 1.5 | 5.1 | 14.0 | 7.9 | 0.8 | 4.3 | 11.2 | 9.6 | 9.8 |
| 8,443 | 16.7 | 0.0 | 0.3 | 23.9 | 1.2 | 5.0 | 16.7 | 6.8 | 0.7 | 4.1 | 8.6 | 7.7 | 8.3 |
| 12,615 | 19.2 | 0.1 | 0.3 | 20.8 | 1.5 | 5.1 | 18.6 | 7.2 | 0.7 | 4.3 | 6.1 | 8.1 | 8.0 |
| 15,435 | 15.8 | 0.1 | 0.2 | 21.7 | 1.8 | 5.4 | 17.7 | 7.6 | 0.8 | 4.4 | 5.6 | 10.0 | 8.8 |
| 17,229 | 13.8 | 0.1 | 0.2 | 20.1 | 1.8 | 4.8 | 17.0 | 8.0 | 0.9 | 5.0 | 5.9 | 12.8 | 9.7 |
| 20,599 | 15.1 | 0.1 | 0.2 | 21.0 | 2.1 | 4.5 | 15.2 | 7.8 | 0.8 | 5.1 | 5.6 | 12.4 | 10.1 |
| 29,762 | 16.0 | 0.1 | 0.2 | 22.1 | 1.8 | 3.9 | 15.4 | 7.8 | 1.1 | 4.9 | 4.5 | 12.3 | 10.0 |
| 48,898 | 14.7 | 0.1 | 0.2 | 26.6 | 1.7 | 3.7 | 15.7 | 6.9 | 0.9 | 4.8 | 3.6 | 12.6 | 8.5 |
| 86,971 | 16.7 | 0.1 | 0.2 | 23.5 | 1.4 | 4.3 | 16.0 | 8.4 | 0.8 | 4.6 | 2.9 | 11.7 | 9.3 |
| 152,856 | 12.7 | 0.1 | 0.2 | 23.4 | 1.5 | 4.5 | 16.3 | 7.5 | 1.0 | 4.4 | 3.5 | 13.1 | 11.7 |
| 334,064 | 12.4 | 0.1 | 0.2 | 27.3 | 1.4 | 3.9 | 16.0 | 7.9 | 0.8 | 3.6 | 3.7 | 12.5 | 10.2 |
| 451,373 | 12.3 | 0.1 | 0.2 | 24.7 | 1.4 | 3.5 | 15.8 | 8.2 | 0.8 | 3.4 | 4.8 | 14.1 | 10.7 |
| 536,599 | 12.5 | 0.1 | 0.3 | 23.4 | 1.5 | 3.8 | 14.8 | 8.0 | 0.8 | 3.9 | 5.4 | 14.3 | 11.5 |
| 649,778 | 12.8 | 0.1 | 0.3 | 21.1 | 1.6 | 4.4 | 14.1 | 8.1 | 0.8 | 3.5 | 6.0 | 14.8 | 12.7 |
| 1,036,210 | 17.8 | 0.1 | 0.3 | 20.5 | 1.6 | 4.4 | 15.1 | 7.8 | 0.8 | 4.8 | 4.8 | 12.1 | 10.0 |
| 2,256,114 | 19.1 | 0.1 | 0.2 | 22.4 | 1.8 | 3.6 | 15.0 | 6.6 | 0.9 | 3.9 | 3.2 | 13.0 | 10.2 |
| 4,138,309 | 16.0 | 0.1 | 0.2 | 24.8 | 2.0 | 3.8 | 14.8 | 6.8 | 1.3 | 3.5 | 3.1 | 13.4 | 10.2 |
| 7,365,443 | 11.5 | 0.1 | 0.2 | 26.0 | 2.0 | 4.4 | 16.4 | 6.8 | 0.9 | 4.5 | 4.7 | 12.0 | 10.6 |
| 11,035,513 | 10.9 | 0.1 | 0.3 | 23.9 | 1.9 | 4.6 | 17.2 | 7.0 | 0.8 | 5.0 | 5.4 | 12.4 | 10.6 |
| 17,430,956 | 12.5 | 0.2 | 0.4 | 23.8 | 1.4 | 4.2 | 19.1 | 6.6 | 0.7 | 4.3 | 5.9 | 10.7 | 10.3 |
| 26,292,000 | 10.9 | 0.3 | 0.3 | 24.2 | 1.4 | 5.0 | 18.2 | 5.8 | 0.7 | 5.2 | 6.8 | 11.1 | 10.1 |
| 49,811,389 | 12.6 | 0.3 | 0.3 | 26.9 | 1.2 | 5.3 | 18.4 | 5.5 | 0.6 | 5.4 | 6.2 | 9.0 | 8.2 |
| 79,950,863 | 12.5 | 0.2 | 0.4 | 25.0 | 1.6 | 5.7 | 15.9 | 6.0 | 0.6 | 5.9 | 8.0 | 9.1 | 9.0 |
| 107,294,625 | 11.2 | 0.3 | 0.3 | 21.5 | 1.9 | 6.4 | 14.5 | 6.1 | 0.7 | 6.6 | 11.4 | 9.6 | 9.4 |
| 116,389,793 | 11.0 | 0.2 | 0.2 | 17.6 | 2.6 | 6.7 | 10.6 | 6.3 | 1.1 | 8.0 | 16.2 | 9.8 | 9.7 |
| 167,879,957 | 13.6 | 0.4 | 0.2 | 21.2 | 3.0 | 4.2 | 10.5 | 4.5 | 1.3 | 9.3 | 15.1 | 7.8 | 8.9 |
| 272,689,897 | 14.0 | 0.4 | 0.2 | 21.9 | 2.9 | 3.6 | 12.3 | 4.3 | 1.4 | 12.3 | 12.2 | 6.5 | 8.0 |
| 485,711,617 | 12.9 | 0.3 | 0.1 | 23.6 | 3.0 | 3.1 | 13.0 | 4.7 | 1.4 | 11.9 | 10.6 | 6.8 | 8.6 |
| 894,474,473 | 12.0 | 0.3 | 0.1 | 24.3 | 3.2 | 3.0 | 14.0 | 5.6 | 1.4 | 10.1 | 9.7 | 7.1 | 9.3 |
| 1,651,584,579 | 13.1 | 0.4 | 0.2 | 24.1 | 3.1 | 3.8 | 14.5 | 5.6 | 1.3 | 8.0 | 9.9 | 6.8 | 9.3 |
| 2,772,083,658 | 12.4 | 0.3 | 0.1 | 23.2 | 2.5 | 4.2 | 14.6 | 5.0 | 1.3 | 10.0 | 10.4 | 6.6 | 9.5 |
| 5,064,110,368 | 10.9 | 0.3 | 0.2 | 22.4 | 2.0 | 4.5 | 14.5 | 4.9 | 1.6 | 11.3 | 11.5 | 6.4 | 9.5 |
| 10,518,302,989 | 9.1 | 0.3 | 0.1 | 23.6 | 2.5 | 3.8 | 15.3 | 4.9 | 1.8 | 10.8 | 11.8 | 6.3 | 9.7 |
| 21,863,290,332 | 8.3 | 0.4 | 0.1 | 24.1 | 2.6 | 4.4 | 15.2 | 4.9 | 1.8 | 8.8 | 12.3 | 6.0 | 11.0 |
| 37,745,368,740 | 8.6 | 0.3 | 0.2 | 21.2 | 2.6 | 5.3 | 16.0 | 5.1 | 1.8 | 7.6 | 14.3 | 5.7 | 11.3 |
| 59,573,706,499 | 6.9 | 0.2 | 0.2 | 17.6 | 2.3 | 5.9 | 16.8 | 5.0 | 1.8 | 9.1 | 15.6 | 5.8 | 12.9 |
| 88,166,157,864 | 7.5 | 0.2 | 0.2 | 16.0 | 2.7 | 6.2 | 17.4 | 5.2 | 1.9 | 6.9 | 16.9 | 5.5 | 13.5 |
| 123,636,565,500 | 8.1 | 0.2 | 0.2 | 16.7 | 3.1 | 5.8 | 15.7 | 5.1 | 2.1 | 5.9 | 17.9 | 5.4 | 13.8 |
| 165,320,044,129 | 7.5 | 0.2 | 0.2 | 16.4 | 3.1 | 5.9 | 15.4 | 5.1 | 2.4 | 6.0 | 18.5 | 5.8 | 13.5 |
| 208,198,046,458 | 6.9 | 0.2 | 0.3 | 16.2 | 3.1 | 6.0 | 15.6 | 5.4 | 2.5 | 6.0 | 18.7 | 5.5 | 13.8 |
| 245,597,149,084 | 7.2 | 0.2 | 0.2 | 15.3 | 3.2 | 6.6 | 15.4 | 5.2 | 2.8 | 6.1 | 18.5 | 5.3 | 13.9 |
| 253,626,176,005 | 6.1 | 0.2 | 0.2 | 14.4 | 3.1 | 7.3 | 14.8 | 5.5 | 3.3 | 6.2 | 19.0 | 5.6 | 14.4 |
| 257,820,322,409 | 6.2 | 0.2 | 0.2 | 13.4 | 3.2 | 6.8 | 14.3 | 5.6 | 3.6 | 6.5 | 19.4 | 5.7 | 15.0 |


|  | Total value added | Agriculture | Fishing | Mining | Manufacturing | Utilities (1) | Construction | Wholesale and retail trade | Transport | Communications | Financial intermediation | Real estate activities | Government | Other services (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 260,070,656,862 | 5.8 | 0.2 | 0.2 | 13.6 | 3.4 | 6.3 | 13.6 | 5.5 | 3.7 | 7.3 | 19.6 | 5.8 | 15.1 |
| 2002 | 269,888,850,283 | 7.8 | 0.3 | 0.2 | 14.0 | 3.7 | 5.5 | 12.5 | 5.6 | 3.5 | 8.1 | 18.7 | 5.9 | 14.3 |
| 2003 | 311,731,260,115 | 10.2 | 0.3 | 0.2 | 16.2 | 4.1 | 4.7 | 13.2 | 5.9 | 3.3 | 7.0 | 16.3 | 5.6 | 13.1 |
| 2004 | 352,406,257,339 | 12.0 | 0.3 | 0.2 | 16.6 | 3.2 | 5.0 | 14.3 | 5.8 | 3.2 | 5.9 | 15.2 | 5.5 | 12.8 |
| 2005 | 379,260,409,628 | 9.6 | 0.2 | 0.3 | 16.6 | 3.5 | 6.2 | 14.3 | 5.7 | 3.6 | 6.0 | 15.4 | 5.5 | 13.2 |
| 2006 | 417,627,329,681 | 9.8 | 0.3 | 0.3 | 16.4 | 2.3 | 6.8 | 14.3 | 5.4 | 3.8 | 5.8 | 15.5 | 5.7 | 13.5 |
| 2007 | 489,132,645,062 | 9.3 | 0.2 | 0.3 | 15.4 | 3.6 | 7.2 | 15.2 | 5.3 | 3.4 | 5.4 | 15.5 | 5.7 | 13.3 |
| 2008 | 569,839,187,774 | 10.1 | 0.2 | 0.3 | 16.7 | 0.8 | 7.6 | 16.1 | 5.4 | 3.0 | 4.9 | 15.5 | 5.5 | 14.0 |
| 2009 | 645,504,478,626 | 8.5 | 0.2 | 0.5 | 16.4 | 1.5 | 8.2 | 15.5 | 5.2 | 2.8 | 4.8 | 16.0 | 5.8 | 14.7 |
| 2010 | 727,070,162,491 | 7.9 | 0.1 | 0.5 | 15.0 | 3.5 | 8.2 | 15.2 | 5.1 | 2.7 | 4.8 | 16.6 | 5.6 | 14.7 |
| 2011 | 832,101,930,812 | 9.7 | 0.1 | 0.5 | 14.2 | 2.1 | 8.5 | 15.3 | 4.9 | 2.5 | 4.8 | 16.8 | 5.6 | 14.9 |
| 2012 | 940,453,135,351 | 8.9 | 0.1 | 0.5 | 13.5 | 1.2 | 10.2 | 15.4 | 4.9 | 2.3 | 4.9 | 17.5 | 5.6 | 15.0 |
| 2013 | 1,065,073,967,610 | 8.3 | 0.1 | 0.5 | 12.5 | 2.5 | 10.7 | 15.2 | 4.5 | 2.2 | 4.9 | 17.8 | 5.6 | 15.3 |
| 2014 | 1,204,532,622,560 | 7.4 | 0.1 | 0.5 | 13.4 | 2.6 | 10.8 | 14.8 | 4.4 | 1.9 | 4.9 | 18.0 | 5.6 | 15.6 |
| 2015 | 1,323,346,681,195 | 6.7 | 0.1 | 0.5 | 14.6 | 2.4 | 10.5 | 14.3 | 4.2 | 1.9 | 5.1 | 18.5 | 5.5 | 15.7 |
| 2016 | 1,443,660,594,937 | 6.5 | 0.0 | 0.5 | 14.0 | 2.9 | 10.4 | 14.3 | 4.0 | 1.9 | 5.2 | 18.3 | 5.7 | 16.2 |
| 2017 | 1,539,090,549,974 | 5.7 | 0.0 | 0.5 | 12.9 | 3.0 | 10.4 | 15.5 | 4.2 | 1.8 | 5.2 | 18.6 | 5.7 | 16.6 |

Source: See Appendix A1
Notes;
(1) It includes electricity, gas and water
(2) It includes education, health, social work, and other community, social and personal service activities

## A2.2 Sectoral Value Added, 1870-2017. Thousands of pesos, at 2005 constant prices.

Thousands of
uruguayan pesos, at
constant 2005 prices

|  | Total value added | Agriculture | Fishing | Mining | Manufacturing | Utilities (1) |  |  |  |  |  | Real estate |  | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total value added | Agricuture | , | Mring | Manufacturing | Uties(1) | Construction | n retail trade | Transport | Communications | intermediation | activities | Government | services (2) |
| 1870 | 7,243,003.6 | 6.1 | 0.9 | 0.2 | 2.4 | 0.04 | 2.2 | 4.0 | 0.1 | 0.002 | 0.2 | 0.5 | 1.9 | 0.1 |
| 1871 | 7,280,821.2 | 6.5 | 0.9 | 0.2 | 2.4 | 0.04 | 1.8 | 4.1 | 0.2 | 0.002 | 0.2 | 0.3 | 2.2 | 0.1 |
| 1872 | 8,746,172.0 | 7.8 | 1.0 | 0.2 | 2.9 | 0.04 | 2.4 | 4.8 | 0.3 | 0.002 | 0.2 | 0.3 | 2.5 | 0.1 |
| 1873 | 9,113,816.2 | 8.3 | 1.0 | 0.2 | 2.6 | 0.04 | 2.4 | 4.9 | 0.5 | 0.003 | 0.2 | 0.8 | 2.9 | 0.1 |
| 1874 | 8,599,787.9 | 7.7 | 1.1 | 0.2 | 2.4 | 0.04 | 1.9 | 4.5 | 0.4 | 0.003 | 0.2 | 0.9 | 3.4 | 0.1 |
| 1875 | 7,549,399.1 | 6.0 | 1.1 | 0.2 | 2.4 | 0.04 | 2.2 | 3.8 | 0.3 | 0.003 | 0.2 | 0.9 | 2.8 | 0.1 |
| 1876 | 8,322,650.5 | 7.0 | 1.1 | 0.1 | 2.6 | 0.03 | 1.9 | 3.9 | 0.3 | 0.003 | 0.2 | 1.5 | 2.8 | 0.1 |
| 1877 | 8,549,243.2 | 7.2 | 1.2 | 0.1 | 2.9 | 0.03 | 1.7 | 4.2 | 0.3 | 0.003 | 0.2 | 1.3 | 2.7 | 0.1 |
| 1878 | 9,367,932.1 | 8.4 | 1.2 | 0.1 | 3.1 | 0.03 | 1.7 | 4.6 | 0.4 | 0.003 | 0.2 | 1.3 | 2.6 | 0.1 |
| 1879 | 8,583,571.0 | 7.0 | 1.3 | 0.1 | 2.8 | 0.03 | 1.8 | 4.4 | 0.4 | 0.003 | 0.1 | 1.3 | 2.6 | 0.1 |
| 1880 | 9,611,794.6 | 8.4 | 1.3 | 0.2 | 3.1 | 0.03 | 2.1 | 4.9 | 0.4 | 0.003 | 0.1 | 1.3 | 2.5 | 0.1 |
| 1881 | 9,460,512.2 | 7.6 | 1.4 | 0.2 | 3.1 | 0.03 | 2.2 | 4.8 | 0.5 | 0.003 | 0.1 | 1.4 | 3.0 | 0.1 |
| 1882 | 10,265,695.0 | 8.7 | 1.5 | 0.2 | 3.3 | 0.03 | 2.1 | 5.2 | 0.5 | 0.004 | 0.1 | 1.6 | 2.7 | 0.1 |
| 1883 | 12,508,427.8 | 10.9 | 1.6 | 0.3 | 3.8 | 0.04 | 3.3 | 6.0 | 0.7 | 0.004 | 0.1 | 1.9 | 3.9 | 0.1 |
| 1884 | 13,148,852.8 | 10.3 | 1.6 | 0.4 | 3.8 | 0.03 | 4.5 | 6.2 | 0.8 | 0.01 | 0.1 | 2.4 | 4.1 | 0.1 |
| 1885 | 15,522,987.6 | 10.4 | 1.7 | 1.3 | 4.8 | 0.04 | 10.1 | 6.5 | 0.8 | 0.01 | 0.1 | 2.8 | 4.3 | 0.2 |
| 1886 | 16,355,482.4 | 11.4 | 1.8 | 1.1 | 4.5 | 0.05 | 9.4 | 6.7 | 0.7 | 0.02 | 0.2 | 3.8 | 4.9 | 0.2 |
| 1887 | 15,212,189.8 | 9.6 | 1.9 | 0.7 | 4.4 | 0.05 | 7.0 | 6.4 | 0.9 | 0.02 | 0.3 | 4.2 | 4.7 | 0.2 |
| 1888 | 18,551,980.5 | 12.9 | 2.0 | 1.2 | 5.4 | 0.1 | 10.7 | 8.1 | 1.3 | 0.03 | 0.7 | 3.7 | 4.2 | 0.2 |
| 1889 | 17,793,586.2 | 12.0 | 2.1 | 0.4 | 5.1 | 0.1 | 10.1 | 8.2 | 1.1 | 0.03 | 0.8 | 3.0 | 5.1 | 0.2 |
| 1890 | 15,836,750.9 | 9.8 | 2.2 | 0.9 | 4.5 | 0.1 | 8.6 | 7.1 | 1.3 | 0.03 | 0.8 | 3.1 | 5.1 | 0.3 |
| 1891 | 15,862,399.5 | 11.5 | 2.2 | 0.5 | 5.3 | 0.1 | 5.0 | 6.9 | 1.2 | 0.03 | 0.3 | 3.2 | 5.1 | 0.3 |
| 1892 | 15,637,803.3 | 12.4 | 2.3 | 0.4 | 5.1 | 0.1 | 3.9 | 6.4 | 1.2 | 0.03 | 0.3 | 3.3 | 5.4 | 0.3 |
| 1893 | 16,636,696.4 | 13.1 | 2.4 | 0.3 | 5.8 | 0.1 | 3.2 | 7.0 | 1.3 | 0.03 | 0.3 | 3.4 | 5.6 | 0.3 |
| 1894 | 18,366,867.3 | 16.1 | 2.5 | 0.2 | 6.0 | 0.1 | 2.8 | 8.0 | 1.4 | 0.03 | 0.3 | 3.5 | 5.9 | 0.3 |
| 1895 | 18,862,591.1 | 16.0 | 2.6 | 0.3 | 6.0 | 0.1 | 4.1 | 8.2 | 1.4 | 0.04 | 0.3 | 3.6 | 5.9 | 0.3 |
| 1896 | 19,669,091.3 | 16.1 | 2.7 | 0.4 | 7.0 | 0.1 | 4.2 | 8.3 | 1.4 | 0.04 | 0.4 | 3.7 | 6.1 | 0.3 |
| 1897 | 19,061,429.1 | 16.0 | 2.8 | 0.3 | 6.4 | 0.1 | 3.7 | 8.1 | 1.4 | 0.04 | 0.4 | 3.7 | 6.2 | 0.2 |
| 1898 | 18,298,849.3 | 13.4 | 2.9 | 0.4 | 6.6 | 0.1 | 4.3 | 7.6 | 1.5 | 0.04 | 0.5 | 3.8 | 6.4 | 0.2 |
| 1899 | 18,412,422.5 | 12.8 | 3.0 | 0.4 | 6.6 | 0.1 | 4.7 | 7.7 | 1.5 | 0.05 | 0.5 | 3.9 | 6.6 | 0.3 |
| 1900 | 18,964,908.4 | 12.8 | 3.1 | 0.5 | 7.2 | 0.1 | 4.4 | 7.8 | 1.6 | 0.05 | 0.6 | 4.1 | 6.8 | 0.3 |
| 1901 | 19,741,588.7 | 15.0 | 3.1 | 0.5 | 6.6 | 0.1 | 5.0 | 8.0 | 1.8 | 0.05 | 0.6 | 4.3 | 6.9 | 0.3 |
| 1902 | 21,209,463.3 | 17.0 | 3.2 | 0.6 | 7.4 | 0.1 | 3.5 | 8.6 | 1.9 | 0.05 | 0.6 | 4.5 | 7.0 | 0.3 |
| 1903 | 22,396,891.1 | 17.6 | 3.3 | 0.6 | 7.9 | 0.1 | 4.4 | 9.1 | 2.0 | 0.05 | 0.6 | 4.8 | 7.1 | 0.3 |
| 1904 | 22,327,839.9 | 18.1 | 3.4 | 0.5 | 8.1 | 0.2 | 2.8 | 8.8 | 2.1 | 0.05 | 0.7 | 5.0 | 7.3 | 0.3 |
| 1905 | 21,547,192.0 | 13.9 | 3.6 | 0.7 | 8.2 | 0.2 | 3.5 | 9.2 | 2.3 | 0.1 | 0.8 | 5.2 | 7.4 | 0.4 |
| 1906 | 23,776,166.2 | 17.4 | 3.7 | 0.8 | 8.2 | 0.2 | 3.7 | 10.4 | 2.6 | 0.1 | 0.7 | 5.5 | 7.5 | 0.4 |
| 1907 | 26,119,011.5 | 18.5 | 3.8 | 1.0 | 9.5 | 0.2 | 4.8 | 11.4 | 3.2 | 0.1 | 0.8 | 5.8 | 7.7 | 0.5 |


|  | Total value added | Agriculture | Fishing | Mining | Manufacturing | Utilities (1) | Construction | Wholesale and retail trade | Transport | Communications | Financial intermediation | Real estate | Government | Other services (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 19.4 |  |  | 10.1 |  | 5.2 | 11.7 | 3.3 | 0.1 | 0.7 | activities | 9.4 | 0.5 |
| 1909 | 27,551,586.7 | 19.6 | 4.1 | 1.0 | 9.9 | 0.2 | 5.5 | 11.6 | 3.4 | 0.1 | 0.7 | 5.5 | 9.9 | 0.6 |
| 1910 | 29,645,684.8 | 19.7 | 4.2 | 1.2 | 11.4 | 0.3 | 7.7 | 12.6 | 3.7 | 0.1 | 0.8 | 5.3 | 10.8 | 0.7 |
| 1911 | 29,622,327.7 | 18.4 | 4.4 | 1.8 | 10.8 | 0.4 | 8.8 | 12.7 | 4.1 | 0.1 | 1.0 | 5.5 | 11.7 | 0.8 |
| 1912 | 33,902,656.5 | 23.5 | 4.5 | 1.3 | 12.1 | 0.5 | 8.9 | 14.7 | 4.5 | 0.1 | 1.0 | 5.7 | 12.8 | 0.8 |
| 1913 | 34,169,511.6 | 20.3 | 4.7 | 0.9 | 12.1 | 0.6 | 14.2 | 14.2 | 5.0 | 0.2 | 1.0 | 5.9 | 14.0 | 0.7 |
| 1914 | 29,274,859.4 | 15.8 | 4.8 | 0.6 | 11.5 | 0.6 | 6.9 | 12.1 | 4.5 | 0.2 | 0.9 | 6.1 | 14.1 | 0.7 |
| 1915 | 27,286,383.3 | 15.7 | 4.9 | 0.5 | 10.3 | 0.6 | 4.4 | 10.8 | 4.5 | 0.2 | 0.8 | 6.2 | 14.2 | 0.6 |
| 1916 | 28,543,373.8 | 15.9 | 5.1 | 0.4 | 11.8 | 0.7 | 4.2 | 10.9 | 4.9 | 0.2 | 0.9 | 6.4 | 14.3 | 0.6 |
| 1917 | 30,910,574.8 | 18.9 | 5.2 | 0.3 | 12.3 | 0.8 | 3.6 | 12.8 | 4.4 | 0.3 | 0.9 | 6.6 | 14.4 | 0.6 |
| 1918 | 32,753,412.0 | 19.7 | 5.4 | 0.2 | 14.1 | 0.9 | 4.2 | 12.8 | 4.8 | 0.3 | 0.9 | 6.8 | 14.7 | 0.7 |
| 1919 | 34,733,528.8 | 23.4 | 5.6 | 0.4 | 13.0 | 1.0 | 5.2 | 14.1 | 5.2 | 0.3 | 1.1 | 7.0 | 14.9 | 0.9 |
| 1920 | 32,711,689.4 | 16.4 | 5.7 | 1.2 | 13.3 | 1.2 | 9.2 | 11.8 | 5.8 | 0.4 | 1.4 | 7.2 | 15.2 | 1.3 |
| 1921 | 34,003,048.6 | 17.3 | 5.8 | 1.1 | 13.3 | 1.3 | 8.5 | 13.2 | 5.6 | 0.4 | 1.6 | 7.4 | 15.7 | 1.5 |
| 1922 | 37,208,717.9 | 19.3 | 6.0 | 1.1 | 15.8 | 1.3 | 10.7 | 13.7 | 5.3 | 0.4 | 1.5 | 7.7 | 15.8 | 1.5 |
| 1923 | 39,252,660.1 | 21.4 | 6.2 | 1.8 | 15.9 | 1.4 | 12.5 | 14.5 | 5.5 | 0.5 | 1.6 | 8.0 | 15.9 | 1.6 |
| 1924 | 42,565,628.5 | 23.5 | 6.4 | 2.1 | 17.2 | 1.5 | 14.0 | 15.9 | 6.4 | 0.5 | 1.7 | 8.3 | 16.6 | 1.8 |
| 1925 | 43,186,287.5 | 22.1 | 6.5 | 2.5 | 17.4 | 1.6 | 15.1 | 16.0 | 6.9 | 0.5 | 1.7 | 8.6 | 18.2 | 1.8 |
| 1926 | 45,440,528.4 | 25.6 | 6.8 | 3.5 | 17.7 | 1.7 | 13.0 | 17.6 | 8.0 | 0.6 | 1.9 | 8.9 | 17.7 | 1.9 |
| 1927 | 51,445,121.7 | 28.8 | 6.9 | 4.9 | 20.0 | 1.9 | 19.6 | 19.6 | 9.4 | 0.6 | 2.0 | 9.2 | 18.1 | 2.2 |
| 1928 | 54,638,834.6 | 29.2 | 7.1 | 6.6 | 22.1 | 2.1 | 21.1 | 20.8 | 10.6 | 0.7 | 2.3 | 9.5 | 18.5 | 2.4 |
| 1929 | 55,972,663.4 | 28.3 | 7.3 | 7.2 | 22.9 | 2.4 | 22.6 | 21.1 | 11.2 | 0.8 | 2.5 | 9.8 | 18.9 | 2.7 |
| 1930 | 61,435,658.3 | 36.6 | 7.5 | 7.3 | 24.8 | 2.7 | 20.4 | 22.9 | 12.3 | 0.9 | 2.9 | 10.1 | 19.4 | 2.9 |
| 1931 | 53,434,679.1 | 26.0 | 7.7 | 6.4 | 21.4 | 3.0 | 18.7 | 18.9 | 12.8 | 1.0 | 2.8 | 10.6 | 19.8 | 3.0 |
| 1932 | 49,685,240.0 | 24.4 | 7.9 | 5.0 | 20.0 | 2.9 | 14.3 | 16.6 | 12.3 | 1.0 | 2.9 | 11.0 | 20.4 | 2.5 |
| 1933 | 46,116,710.9 | 21.8 | 8.1 | 4.0 | 17.1 | 2.8 | 13.2 | 14.7 | 12.4 | 0.9 | 2.9 | 11.4 | 21.4 | 2.8 |
| 1934 | 51,744,818.8 | 25.8 | 8.3 | 3.4 | 21.5 | 3.0 | 11.6 | 16.6 | 12.9 | 1.0 | 2.9 | 11.8 | 22.5 | 2.9 |
| 1935 | 54,045,346.2 | 27.8 | 8.9 | 3.2 | 21.0 | 3.1 | 15.0 | 17.2 | 13.7 | 1.0 | 2.9 | 12.1 | 23.9 | 3.1 |
| 1936 | 56,728,277.1 | 26.3 | 8.7 | 3.5 | 23.0 | 3.3 | 17.0 | 18.7 | 14.5 | 1.1 | 2.9 | 12.5 | 24.4 | 3.5 |
| 1937 | 60,340,645.7 | 25.4 | 8.5 | 5.0 | 25.0 | 3.7 | 21.9 | 19.0 | 15.5 | 1.3 | 3.2 | 12.9 | 26.1 | 4.1 |
| 1938 | 66,558,484.8 | 28.1 | 10.8 | 5.4 | 28.1 | 4.1 | 28.8 | 20.4 | 16.6 | 1.2 | 4.0 | 13.3 | 26.5 | 4.4 |
| 1939 | 66,705,263.3 | 28.9 | 7.9 | 5.4 | 27.3 | 4.5 | 28.4 | 20.1 | 17.1 | 1.3 | 4.1 | 13.6 | 26.5 | 4.9 |
| 1940 | 63,454,961.2 | 25.9 | 6.1 | 4.7 | 25.4 | 5.0 | 25.3 | 18.9 | 17.4 | 1.1 | 4.0 | 13.9 | 27.8 | 4.8 |
| 1941 | 68,179,387.9 | 26.4 | 7.5 | 6.5 | 29.3 | 5.4 | 29.0 | 19.9 | 17.1 | 1.2 | 4.1 | 14.4 | 27.8 | 5.5 |
| 1942 | 65,405,795.7 | 27.3 | 7.4 | 5.6 | 28.2 | 5.3 | 17.9 | 19.1 | 16.6 | 1.3 | 4.7 | 14.9 | 29.2 | 5.5 |
| 1943 | 63,557,507.0 | 27.7 | 7.4 | 5.1 | 25.8 | 5.1 | 16.4 | 17.8 | 16.5 | 1.4 | 3.8 | 15.4 | 30.3 | 6.2 |
| 1944 | 71,047,573.1 | 32.5 | 7.5 | 3.8 | 29.0 | 5.8 | 22.2 | 19.7 | 15.6 | 1.4 | 3.1 | 15.8 | 32.4 | 7.9 |
| 1945 | 77,503,024.1 | 27.8 | 7.7 | 4.3 | 34.7 | 6.6 | 32.0 | 21.3 | 16.3 | 1.5 | 3.3 | 16.3 | 34.2 | 8.7 |
| 1946 | 88,449,925.9 | 30.5 | 7.8 | 4.7 | 40.7 | 6.8 | 34.4 | 25.2 | 17.6 | 1.6 | 4.6 | 16.8 | 35.4 | 13.5 |
| 1947 | 90,121,517.8 | 27.4 | 8.0 | 6.1 | 39.7 | 7.8 | 38.5 | 24.8 | 20.7 | 1.7 | 6.8 | 17.3 | 36.6 | 15.1 |
| 1948 | 93,411,525.3 | 30.0 | 8.2 | 6.7 | 41.5 | 8.7 | 27.4 | 25.5 | 22.4 | 1.8 | 8.8 | 17.9 | 37.8 | 18.9 |
| 1949 | 101,418,974.8 | 34.6 | 8.3 | 7.2 | 46.8 | 9.1 | 28.5 | 27.4 | 23.1 | 1.9 | 10.0 | 18.4 | 39.1 | 20.1 |
| 1950 | 113,870,396.5 | 34.4 | 8.3 | 13.0 | 54.1 | 9.8 | 34.9 | 30.5 | 25.5 | 2.1 | 11.6 | 18.8 | 40.5 | 26.4 |


|  | Total value added | Agriculture | Fishing | Mining | Manufacturing | Utilities (1) |  | Wholesale and retail trade |  |  | Financial intermediation | Real estate | Government | Other services (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Totalvalue added | Agricuture | , | Ming | Manufacturing | (1) | Construction | retail trade | Transport | Communications | intermediation | activities | Government | services (2) |
| 1951 | 122,699,581.3 | 37.5 | 8.3 | 9.2 | 55.6 | 10.8 | 41.2 | 32.0 | 31.4 | 2.3 | 15.0 | 19.1 | 41.9 | 30.2 |
| 1952 | 124,772,918.9 | 38.2 | 7.0 | 12.5 | 54.1 | 11.6 | 39.1 | 31.6 | 35.3 | 2.3 | 15.4 | 19.5 | 43.4 | 33.9 |
| 1953 | 138,319,679.8 | 42.1 | 4.1 | 11.0 | 60.5 | 12.7 | 42.2 | 34.4 | 36.6 | 2.3 | 16.5 | 20.0 | 44.9 | 43.2 |
| 1954 | 146,138,676.6 | 44.2 | 6.2 | 11.6 | 62.1 | 13.6 | 45.5 | 35.6 | 37.8 | 2.4 | 20.4 | 20.5 | 46.5 | 48.6 |
| 1955 | 150,963,295.1 | 44.3 | 7.0 | 14.5 | 60.3 | 14.8 | 40.2 | 35.1 | 39.1 | 2.4 | 24.1 | 20.9 | 47.8 | 59.8 |
| 1956 | 154,473,615.2 | 43.4 | 9.3 | 20.7 | 63.4 | 16.0 | 43.6 | 33.6 | 39.4 | 2.6 | 25.5 | 21.6 | 49.1 | 60.9 |
| 1957 | 155,377,324.4 | 40.6 | 11.7 | 24.4 | 64.5 | 17.2 | 42.6 | 37.2 | 39.6 | 2.6 | 25.9 | 22.3 | 50.0 | 58.0 |
| 1958 | 150,849,504.5 | 41.2 | 8.2 | 24.8 | 63.7 | 18.6 | 39.4 | 31.1 | 36.6 | 2.7 | 27.1 | 22.9 | 50.9 | 56.9 |
| 1959 | 146,227,381.5 | 37.7 | 10.5 | 25.5 | 61.1 | 18.4 | 38.8 | 31.5 | 36.6 | 2.8 | 26.1 | 23.5 | 51.8 | 52.7 |
| 1960 | 149,750,602.0 | 37.8 | 14.0 | 30.8 | 62.8 | 18.6 | 40.5 | 35.2 | 39.8 | 2.9 | 27.2 | 24.1 | 52.8 | 49.5 |
| 1961 | 152,439,770.6 | 43.4 | 12.8 | 21.4 | 61.5 | 20.4 | 36.9 | 38.4 | 38.8 | 2.9 | 27.7 | 24.6 | 53.9 | 49.6 |
| 1962 | 149,166,845.2 | 36.4 | 8.2 | 21.4 | 61.5 | 22.2 | 31.1 | 39.3 | 38.9 | 3.1 | 31.6 | 25.2 | 56.7 | 45.8 |
| 1963 | 148,692,015.3 | 45.8 | 7.0 | 16.7 | 60.9 | 22.3 | 27.8 | 35.2 | 35.8 | 3.3 | 32.5 | 25.6 | 58.2 | 44.6 |
| 1964 | 152,204,234.4 | 41.6 | 11.7 | 16.7 | 65.0 | 23.7 | 27.7 | 36.5 | 40.5 | 3.6 | 31.8 | 26.1 | 60.4 | 44.3 |
| 1965 | 152,249,783.2 | 44.2 | 16.3 | 25.4 | 64.6 | 23.1 | 27.0 | 38.1 | 40.3 | 3.6 | 32.2 | 26.7 | 62.2 | 40.0 |
| 1966 | 159,154,885.0 | 48.4 | 16.3 | 25.4 | 65.6 | 24.6 | 30.5 | 35.8 | 40.8 | 3.8 | 30.0 | 27.3 | 65.6 | 48.6 |
| 1967 | 154,309,562.8 | 41.5 | 15.2 | 29.5 | 62.6 | 25.6 | 28.3 | 35.5 | 37.0 | 3.7 | 28.3 | 27.9 | 67.3 | 49.7 |
| 1968 | 159,017,015.2 | 40.9 | 16.3 | 29.5 | 65.7 | 25.7 | 29.2 | 34.3 | 37.5 | 3.8 | 23.4 | 28.8 | 70.4 | 56.3 |
| 1969 | 165,764,109.0 | 46.8 | 17.5 | 38.6 | 69.2 | 27.4 | 30.4 | 38.2 | 38.8 | 3.9 | 23.8 | 29.4 | 75.6 | 51.9 |
| 1970 | 172,080,546.1 | 50.9 | 18.7 | 38.6 | 71.9 | 29.5 | 33.2 | 40.2 | 39.9 | 4.0 | 27.6 | 30.0 | 78.2 | 49.9 |
| 1971 | 170,646,443.6 | 50.3 | 19.8 | 36.8 | 70.5 | 31.0 | 35.2 | 38.7 | 41.0 | 4.2 | 24.6 | 30.2 | 78.1 | 50.3 |
| 1972 | 163,064,331.6 | 45.2 | 29.2 | 36.8 | 70.2 | 30.5 | 35.7 | 38.0 | 38.8 | 4.2 | 30.6 | 30.3 | 78.5 | 37.6 |
| 1973 | 174,843,639.2 | 47.1 | 24.5 | 38.9 | 69.8 | 30.9 | 28.9 | 36.5 | 39.9 | 4.4 | 26.9 | 30.4 | 80.6 | 65.3 |
| 1974 | 180,878,318.2 | 47.3 | 22.2 | 38.9 | 72.3 | 29.7 | 32.0 | 38.6 | 42.5 | 4.6 | 26.2 | 30.3 | 83.7 | 68.7 |
| 1975 | 186,835,056.8 | 48.7 | 37.4 | 50.4 | 76.8 | 33.0 | 43.5 | 40.3 | 44.1 | 4.9 | 34.3 | 30.4 | 85.1 | 60.1 |
| 1976 | 194,861,603.0 | 47.7 | 47.9 | 50.4 | 79.8 | 34.8 | 48.9 | 43.1 | 47.2 | 5.4 | 38.9 | 30.5 | 87.2 | 62.4 |
| 1977 | 197,111,997.3 | 48.3 | 68.9 | 68.7 | 84.1 | 36.5 | 49.4 | 45.0 | 48.0 | 5.6 | 33.9 | 31.1 | 89.3 | 57.7 |
| 1978 | 213,637,315.8 | 45.2 | 105.0 | 70.7 | 89.1 | 39.9 | 63.1 | 48.3 | 47.8 | 5.8 | 42.9 | 31.6 | 86.4 | 71.4 |
| 1979 | 227,776,436.2 | 47.8 | 141.3 | 84.6 | 94.0 | 42.9 | 74.2 | 51.4 | 50.1 | 6.6 | 52.0 | 34.7 | 87.5 | 72.0 |
| 1980 | 241,471,810.7 | 59.9 | 149.6 | 81.4 | 94.8 | 48.0 | 80.6 | 53.7 | 51.4 | 7.5 | 65.7 | 38.5 | 88.2 | 70.8 |
| 1981 | 249,184,772.2 | 67.6 | 164.4 | 94.3 | 89.2 | 52.5 | 86.9 | 53.2 | 48.1 | 8.2 | 82.2 | 42.4 | 88.2 | 72.8 |
| 1982 | 233,066,569.3 | 67.7 | 128.7 | 73.7 | 73.0 | 55.1 | 88.3 | 40.4 | 39.7 | 9.3 | 101.2 | 46.5 | 88.7 | 64.2 |
| 1983 | 221,970,392.3 | 73.8 | 142.6 | 58.0 | 66.9 | 58.4 | 61.3 | 35.8 | 35.5 | 10.0 | 119.9 | 50.8 | 90.5 | 49.4 |
| 1984 | 224,603,609.2 | 63.7 | 160.8 | 49.3 | 70.5 | 57.9 | 56.2 | 40.4 | 34.3 | 9.9 | 164.4 | 39.8 | 92.7 | 47.0 |
| 1985 | 226,975,130.5 | 71.5 | 161.1 | 39.3 | 70.0 | 59.8 | 42.5 | 45.3 | 37.3 | 10.7 | 162.9 | 38.9 | 96.4 | 46.3 |
| 1986 | 242,637,877.5 | 69.7 | 120.5 | 45.9 | 78.8 | 62.3 | 46.5 | 52.6 | 44.8 | 12.1 | 148.5 | 41.5 | 97.2 | 57.5 |
| 1987 | 263,380,516.7 | 72.7 | 110.6 | 52.4 | 87.3 | 70.5 | 60.5 | 60.2 | 48.2 | 13.6 | 126.5 | 50.2 | 99.0 | 66.4 |
| 1988 | 273,495,994.5 | 71.5 | 78.3 | 41.9 | 87.3 | 76.5 | 68.2 | 63.0 | 52.2 | 14.9 | 161.5 | 48.6 | 100.8 | 63.2 |
| 1989 | 283,708,962.7 | 73.9 | 96.7 | 43.6 | 88.0 | 69.1 | 70.9 | 63.7 | 54.8 | 18.5 | 183.7 | 50.3 | 100.1 | 66.7 |
| 1990 | 281,796,139.4 | 70.8 | 82.2 | 35.3 | 87.5 | 76.6 | 63.1 | 63.9 | 53.4 | 22.3 | 169.1 | 53.0 | 100.1 | 70.7 |
| 1991 | 287,594,129.8 | 72.7 | 102.9 | 44.4 | 87.9 | 82.7 | 71.9 | 70.6 | 58.0 | 24.2 | 139.3 | 59.2 | 105.3 | 68.5 |
| 1992 | 310,260,412.2 | 81.1 | 90.5 | 52.8 | 90.1 | 94.6 | 85.0 | 81.5 | 66.1 | 26.8 | 124.9 | 68.7 | 104.3 | 75.7 |
| 1993 | 324,710,708.2 | 75.9 | 92.1 | 60.8 | 82.8 | 92.6 | 101.5 | 96.8 | 76.0 | 30.2 | 154.4 | 65.9 | 105.5 | 77.8 |


|  | Total value added | Agriculture | Fishing | Mining | Manufacturing | Utilities (1) | Construction | Wholesale and retail trade | Transport | Communications | Financial intermediation | Real estate | Governmen | Other services (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1994 | 343,496,180.7 | 84.7 | 92.5 | 67.5 | 86.9 | 88.9 | 112.5 | 109.2 | 93.3 | 34.3 | 120.0 | 76.9 | 104.4 | 80.7 |
| 1995 | 339,759,593.5 | 88.9 | 103.9 | 84.5 | 85.2 | 94.7 | 103.1 | 100.3 | 98.7 | 38.2 | 100.2 | 83.0 | 101.2 | 84.2 |
| 1996 | 359,208,876.5 | 96.9 | 102.5 | 94.1 | 89.5 | 98.2 | 103.4 | 108.0 | 105.2 | 43.7 | 103.1 | 88.1 | 98.6 | 91.8 |
| 1997 | 378,541,199.0 | 90.5 | 112.3 | 119.1 | 95.7 | 104.0 | 108.2 | 119.5 | 110.4 | 48.6 | 105.2 | 93.1 | 97.7 | 100.5 |
| 1998 | 397,532,082.6 | 94.2 | 111.2 | 118.6 | 96.2 | 114.3 | 119.4 | 127.1 | 113.6 | 59.7 | 119.8 | 95.6 | 97.6 | 104.9 |
| 1999 | 390,735,889.2 | 90.1 | 92.5 | 115.3 | 91.8 | 105.1 | 122.5 | 121.5 | 116.6 | 66.1 | 124.5 | 94.3 | 97.6 | 103.7 |
| 2000 | 384,124,142.6 | 86.8 | 101.5 | 114.8 | 88.4 | 111.3 | 112.5 | 114.6 | 115.2 | 67.4 | 131.0 | 94.8 | 97.0 | 104.3 |
| 2001 | 370,998,274.5 | 79.6 | 92.6 | 97.7 | 82.4 | 120.7 | 103.1 | 108.3 | 105.5 | 69.4 | 138.3 | 94.7 | 95.8 | 101.0 |
| 2002 | 342,098,963.6 | 81.6 | 87.8 | 90.9 | 77.7 | 114.0 | 84.3 | 89.1 | 88.5 | 67.6 | 122.9 | 92.5 | 95.8 | 96.8 |
| 2003 | 340,806,760.8 | 89.6 | 86.3 | 80.3 | 81.5 | 109.1 | 81.8 | 85.7 | 89.5 | 68.3 | 99.2 | 94.6 | 97.7 | 96.9 |
| 2004 | 355,208,553.0 | 96.9 | 96.5 | 82.7 | 87.6 | 94.2 | 87.2 | 93.2 | 93.3 | 78.3 | 95.8 | 98.0 | 99.6 | 98.3 |
| 2005 | 379,260,409.6 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 2006 | 390,347,511.9 | 105.2 | 106.1 | 119.0 | 104.8 | 74.3 | 107.0 | 104.6 | 106.6 | 118.2 | 95.4 | 101.2 | 101.4 | 102.6 |
| 2007 | 415,183,158.1 | 94.7 | 87.4 | 126.4 | 113.5 | 111.6 | 117.1 | 113.7 | 115.3 | 150.7 | 95.9 | 104.7 | 101.0 | 108.0 |
| 2008 | 443,301,871.5 | 96.8 | 85.1 | 128.6 | 122.7 | 54.6 | 120.1 | 127.2 | 124.5 | 238.6 | 106.2 | 107.0 | 99.6 | 115.5 |
| 2009 | 464,553,836.4 | 100.2 | 82.4 | 168.6 | 129.2 | 60.9 | 123.3 | 128.4 | 125.1 | 302.4 | 113.4 | 106.7 | 104.9 | 119.4 |
| 2010 | 497,922,599.0 | 98.8 | 78.6 | 228.5 | 132.5 | 115.4 | 126.3 | 143.3 | 136.8 | 359.1 | 122.7 | 109.6 | 104.6 | 121.8 |
| 2011 | 522,664,208.3 | 112.2 | 77.5 | 180.2 | 135.1 | 87.4 | 129.4 | 153.4 | 140.5 | 414.8 | 141.2 | 112.6 | 105.3 | 125.5 |
| 2012 | 541,125,114.7 | 111.6 | 66.5 | 176.0 | 129.8 | 68.2 | 150.5 | 162.0 | 149.9 | 463.9 | 156.7 | 115.3 | 104.8 | 128.2 |
| 2013 | 568,366,432.1 | 114.4 | 44.2 | 180.5 | 131.3 | 105.6 | 151.9 | 175.0 | 148.7 | 514.5 | 169.9 | 117.3 | 107.8 | 131.6 |
| 2014 | 587,747,728.1 | 114.9 | 38.4 | 161.1 | 136.8 | 122.1 | 153.0 | 174.1 | 148.4 | 570.5 | 183.9 | 118.6 | 109.4 | 136.1 |
| 2015 | 592,533,216.1 | 113.8 | 24.2 | 136.2 | 143.5 | 113.9 | 143.7 | 167.1 | 133.7 | 632.8 | 194.4 | 119.6 | 108.6 | 136.6 |
| 2016 | 602,695,492.7 | 116.9 | 16.0 | 161.0 | 144.1 | 131.6 | 138.1 | 162.4 | 122.9 | 718.7 | 198.2 | 119.6 | 107.7 | 136.4 |
| 2017 | 612,362,668.9 | 116.0 | 19.5 | 127.2 | 139.4 | 126.3 | 131.6 | 174.5 | 130.8 | 784.2 | 188.1 | 121.2 | 105.9 | 136.6 |

Source: See Appendix A1
Notes:
(1) It includes electricity, gas and water
(2) It includes education, health, social work, and other community, social and personal service activities

## Appendix A3. Time series analysis

All the time series analysis was done using the series estimated in this work, in EVIEWS 10 (©)
A3.1. Augmented Dickey-Fuller tests
A3.1.1. GDP pc
A3.1.1.1. 1871-2017 sample
Null Hypothesis: LPIBPC has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=13)

|  | t -Statistic | Prob.* |  |
| :--- | :---: | :---: | :---: |
| Augmented Dickey-Fuller test statistic | -2.887546 | 0.1697 |  |
| Test critical values: | 1\% level | -4.022586 |  |
|  | 5\% level | -3.441111 |  |
|  | $10 \%$ level | -3.145082 |  |

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LPIBPC)
Method: Least Squares
Sample (adjusted): 18732017
Included observations: 145 after adjustments

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :--- | ---: | ---: | ---: | ---: |
| LPIBPC(-1) | -0.077457 | 0.026825 | -2.887546 | 0.0045 |
| D(LPIBPC(-1)) | 0.162688 | 0.080428 | 2.022794 | 0.0450 |
| $\quad$ C | 0.738263 | 0.256705 | 2.875922 | 0.0047 |
| @TREND("1870") | 0.001352 | 0.000418 | 3.232876 | 0.0015 |
|  | 0.091924 | Mean dependent var | 0.013795 |  |
| R-squared | 0.072604 | S.D. dependent var | 0.060237 |  |
| Adjusted R-squared | 0.058009 | Akaike info criterion | -2.829235 |  |
| S.E. of regression | 0.474473 | Schwarz criterion | -2.747118 |  |
| Sum squared resid | 209.1195 | Hannan-Quinn criter. | -2.795868 |  |
| Log likelihood | 4.757804 | Durbin-Watson stat | 2.005491 |  |
| F-statistic | 0.003432 |  |  |  |
| Prob(F-statistic) |  |  |  |  |

A3.1.1.2. 1871-1929 sample
Null Hypothesis: LPIBPC has a unit root
Exogenous: Constant
Lag Length: o (Automatic - based on SIC, maxlag=10)

|  | t-Statistic | Prob.* |  |
| :--- | :---: | :---: | :---: |
| Augmented Dickey-Fuller test statistic | -1.714700 | 0.4187 |  |
| Test critical values: | $1 \%$ level | -3.548208 |  |
|  | $5 \%$ level | -2.912631 |  |
|  | $10 \%$ level | -2.594027 |  |

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LPIBPC)
Method: Least Squares
Sample (adjusted): 18721929
Included observations: 58 after adjustments

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :--- | ---: | :--- | ---: | ---: |
| LPIBPC(-1) | -0.143613 | 0.083754 | -1.714700 | 0.0919 |
| C | 1.450645 | 0.841370 | 1.724146 | 0.0902 |
| R-squared | 0.049884 | Mean dependent var | 0.008044 |  |
| Adjusted R-squared | o.032918 | S.D. dependent var | 0.075050 |  |
| S.E. of regression | 0.073804 | Akaike info criterion | -2.340923 |  |
| Sum squared resid | 0.305037 | Schwarz criterion | -2.269873 |  |
| Log likelihood | 69.88675 | Hannan-Quinn criter. | -2.313247 |  |
| F-statistic | 2.940195 | Durbin-Watson stat | 1.747917 |  |
| Prob(F-statistic) | 0.091930 |  |  |  |

A3.1.1.3. 1930-1971 sample
Null Hypothesis: LPIBPC has a unit root
Exogenous: None
Lag Length: o (Automatic - based on SIC, maxlag=9)

|  | t-Statistic | Prob.* |  |
| :--- | :---: | :---: | :---: |
| Augmented Dickey-Fuller test statistic | 1.627989 | 0.9729 |  |
| Test critical values: | $1 \%$ level | -2.621185 |  |
|  | $5 \%$ level | -1.948886 |  |
|  | $10 \%$ level | -1.611932 |  |

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LPIBPC)
Method: Least Squares
Sample: 19301971
Included observations: 42

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :--- | ---: | :--- | ---: | ---: |
| LPIBPC(-1) | 0.001406 | 0.000863 | 1.627989 | 0.1112 |
| R-squared | -0.001338 | Mean dependent var | 0.015185 |  |
| Adjusted R-squared | -0.001338 | S.D. dependent var | 0.059793 |  |
| S.E. of regression | 0.059833 | Akaike info criterion | -2.770984 |  |
| Sum squared resid | 0.146781 | Schwarz criterion | -2.729611 |  |
| Log likelihood | 59.19066 | Hannan-Quinn criter. | -2.755819 |  |
| Durbin-Watson stat | 1.504484 |  |  |  |

A3.1.1.4. 1972-2017 sample
Null Hypothesis: LPIBPC has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

|  | t-Statistic | Prob.* |  |
| :--- | ---: | ---: | ---: |
| Augmented Dickey-Fuller test statistic | -3.476631 | 0.0540 |  |
| Test critical values: | $1 \%$ level | -4.170583 |  |
|  | $5 \%$ level | -3.510740 |  |
|  | $10 \%$ level | $=-3.185512$ |  |

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LPIBPC)
Method: Least Squares
Sample (adjusted): 19722017
Included observations: 46 after adjustments

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :--- | ---: | :--- | ---: | ---: |
| LPIBPC(-1) | -0.223225 | 0.064207 | -3.476631 | 0.0012 |
| D(LPIBPC(-1)) | 0.620980 | 0.121468 | 5.112311 | 0.0000 |
| C | 2.465320 | 0.706153 | 3.491198 | 0.0011 |
| @TREND("1972") | 0.004900 | 0.001437 | 3.410301 | 0.0014 |
|  | 0.426382 | Mean dependent var | 0.022807 |  |
| R-squared | 0.385409 | S.D. dependent var | 0.039031 |  |
| Adjusted R-squared | 0.030598 | Akaike info criterion | -4.052801 |  |
| S.E. of regression | 0.039323 | Schwarz criterion | -3.893789 |  |
| Sum squared resid | 97.21443 | Hannan-Quinn criter. | -3.993234 |  |
| Log likelihood | 10.40649 | Durbin-Watson stat | 2.099850 |  |
| F-statistic | 0.000030 |  |  |  |
| Prob(F-statistic) |  |  |  |  |

A3.1.2. SCI
A3.1.2.1. 1871-2017 sample
Null Hypothesis: SCI has a unit root
Exogenous: Constant, Linear Trend
Lag Length: o (Automatic - based on SIC, maxlag=13)

|  | t-Statistic | Prob.* |  |
| :--- | :---: | :---: | :---: |
| Augmented Dickey-Fuller test statistic | -3.274023 | 0.0747 |  |
| Test critical values: | 1\% level | -4.022135 |  |
|  | $5 \%$ level | -3.440894 |  |
|  | $10 \%$ level | -3.144955 |  |

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(SCI)
Method: Least Squares
Included observations: 146 after adjustments

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :--- | ---: | :---: | :---: | ---: |
| SCI(-1) | -0.137892 | 0.042117 | -3.274023 | 0.0013 |
| C | -0.002622 | 0.007031 | -0.372924 | 0.7098 |
| @TREND("1870") | 0.000890 | 0.000268 | 3.320785 | 0.0011 |
| R-squared | 0.072353 | Mean dependent var | 0.005986 |  |
| Adjusted R-squared | 0.059379 | S.D. dependent var | 0.042237 |  |
| S.E. of regression | 0.040964 | Akaike info criterion | -3.531921 |  |
| Sum squared resid | 0.239959 | SCIwarz criterion | -3.470614 |  |
| Log likelihood | 260.8302 | Hannan-Quinn criter. | -3.507010 |  |
| F-statistic | 5.576708 | Durbin-Watson stat | 1.959669 |  |

Prob(F-statistic)
A3.1.2.2. 1871-1929 sample

| Null Hypothesis: SCI has a unit root |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| Exogenous: Constant |  |  |  |  |  |
| Lag Length: o (Automatic - based on SIC, maxlag=10) |  |  |  |  |  |
|  | t-Statistic | Prob.* |  |  |  |

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(SCI)
Method: Least Squares
Included observations: 58 after adjustments

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :--- | ---: | :--- | ---: | ---: |
| SCI(-1) | -0.192050 | 0.087263 | -2.200805 | 0.0319 |
| C | 0.032118 | 0.013632 | 2.356072 | 0.0220 |
| R-squared | 0.079607 | Mean dependent var | 0.003315 |  |
| Adjusted R-squared | 0.063171 | S.D. dependent var | 0.030010 |  |
| S.E. of regression | 0.029047 | Akaike info criterion | -4.205956 |  |
| Sum squared resid | 0.047247 | SCIwarz criterion | -4.134907 |  |
| Log likelihood | 123.9727 | Hannan-Quinn criter. | -4.178281 |  |
| F-statistic | 4.843542 | Durbin-Watson stat | 2.044483 |  |
| Prob(F-statistic) | 0.031890 |  |  |  |

A3.1.2.3. 1930-1971 sample
Null Hypothesis: SCI has a unit root
Exogenous: Constant, Linear Trend
Lag Length: o (Automatic - based on SIC, maxlag=9)

|  | t-Statistic | Prob.* |  |
| :--- | :---: | :---: | :---: |
| Augmented Dickey-Fuller test statistic | -3.582158 | 0.0436 |  |
| Test critical values: | $1 \%$ level | -4.192337 |  |
|  | $5 \%$ level | -3.520787 |  |
|  | 10\% level | -3.191277 |  |

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(SCI)
Method: Least Squares
Sample: 19301971
Included observations: 42

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :---: | :---: | :---: | :---: | :---: |


| SCI(-1) | -0.496921 | 0.138721 | -3.582158 | 0.0009 |
| :--- | ---: | ---: | ---: | ---: |
| C | 0.141235 | 0.039802 | 3.548399 | 0.0010 |
| @TREND("1930") | 0.003941 | 0.001218 | 3.236346 | 0.0025 |
| R-squared |  | 0.247775 | Mean dependent var | 0.008264 |
| Adjusted R-squared | 0.209200 | S.D. dependent var | 0.049442 |  |
| S.E. of regression | 0.043967 | Akaike info criterion | -3.341991 |  |
| Sum squared resid | 0.075392 | SCIwarz criterion | -3.217872 |  |
| Log likelihood | 73.18181 | Hannan-Quinn criter. | -3.296497 |  |
| F-statistic | 6.423104 | Durbin-Watson stat | 1.919897 |  |
| Prob(F-statistic) | 0.003880 |  |  |  |

A3.1.2.4. 1972-2017 sample
Null Hypothesis: SCI has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=9)

|  | t-Statistic | Prob.* |  |
| :--- | :---: | :---: | :---: |
| Augmented Dickey-Fuller test statistic |  | -3.242706 | 0.0890 |
| Test critical values: | 1\% level | -4.170583 |  |
|  | $5 \%$ level | -3.510740 |  |
|  | $10 \%$ level | -3.185512 |  |

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(SCI)
Method: Least Squares
Sample (adjusted): 19722017
Included observations: 46 after adjustments

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :--- | ---: | ---: | ---: | ---: |
| SCI(-1) | -0.321592 | 0.099174 | -3.242706 | 0.0023 |
| D(SCI(-1)) | 0.329148 | 0.144091 | 2.284308 | 0.0275 |
| C | 0.180233 | 0.056408 | 3.195181 | 0.0027 |
| @TREND("1972") | 0.002864 | 0.000964 | 2.970326 | 0.0049 |
| R-squared | 0.226949 | Mean dependent var | 0.007273 |  |
| Adjusted R-squared | 0.171731 | S.D. dependent var | 0.048627 |  |
| S.E. of regression | 0.044255 | Akaike info criterion | -3.314740 |  |
| Sum squared resid | o.082558 | SCIwarz criterion | -3.155728 |  |
| Log likelihood | 80.23903 | Hannan-Quinn criter. | -3.255174 |  |
| F-statistic | 4.110068 | Durbin-Watson stat | 1.545562 |  |
| Prob(F-statistic) | 0.012077 |  |  |  |

A3.2. Vector Error Correction models' outputs, cointegration tests and weak exogeneity tests
A3.2.1. 1871-2017
A3.2.1.1. VEC output
Vector Error Correction Estimates
Sample (adjusted): 18732017
Included observations: 145 after adjustments
Standard errors in ( ) \& t-statistics in []
Cointegration Restrictions:

| $\mathrm{B}(1,1)=1, \mathrm{~A}(2,1)=0$ |  |  |
| :---: | :---: | :---: |
| Convergence achieved after 1 iterations. |  |  |
| Restrictions identify all cointegrating vectors |  |  |
| LR test for binding restrictions (rank $=1$ ): |  |  |
| Chi-square(1) | 0.001778 |  |
| Probability | 0.966368 |  |
| Cointegrating Eq: | CointEq1 |  |
| $\mathrm{SCI}(-1)$ | 1.000000 |  |
| LPIBPC(-1) | -0.417114 |  |
|  | (0.01514) |  |
|  | [-27.5430] |  |
| C | 4.039710 |  |
| Error Correction: | D(SCI) | D(LPIBPC) |
| CointEq1 | -0.281635 | 0.000000 |
|  | (0.05117) | (0.00000) |
|  | [-5.50397] | [NA] |
| $\mathrm{D}(\mathrm{SCI}(-1))$ | 0.023685 | -0.110313 |
|  | (0.06857) | (0.10634) |
|  | [0.34540] | [-1.03733] |
| D(LPIBPC(-1)) | 0.004837 | 0.142391 |
|  | (0.05105) | (0.07917) |
|  | [0.09474] | [ 1.79850] |
| C | 0.008579 | 0.017689 |
|  | (0.00296) | (0.00459) |
|  | [ 2.90024] | [ 3.85616] |
| D (@YEAR $>=1875$ ) | -0.054827 | -0.167860 |
|  | (0.03320) | (0.05149) |
|  | [-1.65122] | [-3.25987] |
| D(@YEAR > = 1879) | -0.010458 | -0.144765 |
|  | (0.03287) | (0.05097) |
|  | [-0.31819] | [-2.84016] |
| D(@YEAR $>=1888$ ) | 0.009268 | 0.168108 |
|  | (0.03344) | (0.05186) |
|  | [0.27714] | [ 3.24150] |
| D(@YEAR $>=1890$ ) | -0.058693 | -0.153685 |
|  | (0.03307) | (0.05128) |
|  | [-1.77498] | [-2.99695] |
| D(@YEAR>=1914) | -0.030036 | -0.190683 |
|  | (0.03313) | (0.05138) |
|  | [-0.90661] | [-3.71129] |
| D(@YEAR>=1931) | 0.096147 | -0.189861 |
|  | (0.03319) | (0.05148) |
|  | [ 2.89656 ] | [-3.68824] |


| D(@YEAR>=1959) | -0.093883 | -0.045785 |
| :--- | :---: | :---: |
|  | $[-0.03317)$ | $(0.05144)$ |
|  |  |  |
| D(@YEAR>=1960) | -0.115252 | -0.001147 |
|  | $(0.03366)$ | $(0.05221)$ |
|  | $[-3.42353]$ | $[-0.02197]$ |
| D(@YEAR>=1972) | -0.157117 | -0.049707 |
|  | $(0.03291)$ | $(0.05104)$ |
|  | $[-4.77415]$ | $[-0.97393]$ |
| R-squared | 0.455184 | 0.351487 |
| Adj. R-squared | 0.405656 | 0.292531 |
| Sum sq. resids | 0.140892 | 0.338851 |
| S.E. equation | 0.032671 | 0.050666 |
| F-statistic | 9.190315 | 5.961882 |
| Log likelihood | 297.1498 | 233.5263 |
| Akaike AIC | -3.919307 | -3.041743 |
| SCIwarz SC | -3.652428 | -2.774863 |
| Mean dependent | 0.005928 | 0.013795 |
| S.D. dependent | 0.042378 | 0.060237 |
| Determinant resid covariance (dof adj.) | $2.73 \mathrm{E}-06$ |  |
| Determinant resid covariance | $2.27 \mathrm{E}-06$ |  |
| Log likelihood |  | 530.8222 |
| Akaike information criterion | -6.935479 |  |
| SCIwarz criterion | -6.360661 |  |
| Number of coefficients |  | 28 |

A3.2.1.2. Cointegration tests and weak exogeneity test (restrictions over "alphas")
Sample (adjusted): 18732017
Included observations: 145 after adjustments
Trend assumption: Linear deterministic trend
Series: SCI LPIBPC
Exogenous series: D(@YEAR $>=1875$ ) D (@YEAR $>=1879$ ) D(@YEAR $>=1888$ ) D (@YEAR $>=1890$ )
$\mathrm{D}(@ Y E A R>=1914) \mathrm{D}(@ Y E A R>=1931) \mathrm{D}(@ Y E A R>=1959) \mathrm{D}(@ Y E A R>=1960) \mathrm{D}(@ Y E A R>=1972)$
Warning: Critical values assume no exogenous series
Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

| Hypothesized No. of CE(s) | Eigenvalue | Trace Statistic | 0.05 <br> Critical Value | Prob.** |
| :---: | :---: | :---: | :---: | :---: |
| None * | 0.186668 | 30.00489 | 15.49471 | 0.0002 |
| At most 1 | 0.000315 | 0.045616 | 3.841466 | 0.8308 |

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level
${ }^{* *}$ MacKinnon-Haug-Michelis (1999) p-values
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

| Hypothesized <br> No. of CE(s) | Eigenvalue | Max-Eigen <br> Statistic | 0.05 <br> Critical Value | Prob.** |
| :---: | :---: | :---: | :---: | :---: |
| None* | 0.186668 | 29.95927 | 14.26460 | 0.0001 |

$\left.\begin{array}{cccc}\text { At most } 1 & \text { 0.000315 } & 0.045616 & 3.841466\end{array}\right) 0.8308$

1 Cointegrating Equation(s): Convergence achieved after 1 iterations.

| Restricted cointegrating coefficients (standard error in parentheses) |  |
| :---: | :---: |
| SCI | LPIBPC |
| 1.000000 | -0.417114 |
| (0.00000) | $(0.01514)$ |
|  |  |
| Adjustment coefficients (standard error in parentheses) |  |
| D(SCI) | -0.281635 |
|  | $(0.05117)$ |
| D(LPIBPC) | o.000000 |
|  | $(0.00000)$ |


| A3.2.2. 1871-1929 |  |  |
| :---: | :---: | :---: |
| A3.2.2.1. VEC output |  |  |
| Vector Error Correction Estimates |  |  |
| Sample (adjusted): 18731929 |  |  |
| Included observations: 57 after adjustments |  |  |
| Standard errors in () \& t-statistics in [] |  |  |
| Cointegration Restrictions:$\mathrm{B}(1,1)=1, \mathrm{~A}(2,1)=0$ |  |  |
| Convergence achieved after 8 iterations. |  |  |
| Restrictions identify all cointegrating vectors |  |  |
| LR test for binding restrictions (rank = 1): |  |  |
| Chi-square(1) | 1.403312 |  |
| Probability | 0.236170 |  |
| Cointegrating Eq: | CointEq1 |  |
| LPIBPC(-1) | 1.000000 |  |
| SCI(-1) | -3.316549 |  |
|  | (0.74208) |  |
|  | [-4.46928] |  |
| C | -9.545619 |  |
| Error Correction: | D(LPIBPC) | $\mathrm{D}(\mathrm{SCI})$ |


| CointEq1 | $\begin{gathered} -0.310982 \\ (0.08764) \\ {[-3.54830]} \end{gathered}$ | 0.000000 <br> (0.00000) <br> [NA] |
| :---: | :---: | :---: |
| D(LPIBPC(-1)) | $\begin{gathered} -0.035156 \\ (0.12354) \\ {[-0.28456]} \end{gathered}$ | $\begin{gathered} -0.054600 \\ (0.03686) \\ {[-1.48142]} \end{gathered}$ |
| $\mathrm{D}(\mathrm{SCI}(-1))$ | $\begin{gathered} -0.350675 \\ (0.32966) \\ {[-1.06374]} \end{gathered}$ | $\begin{gathered} -0.179739 \\ (0.09835) \\ {[-1.82760]} \end{gathered}$ |
| C | $\begin{gathered} 0.015575 \\ (0.00851) \\ {[1.82961]} \end{gathered}$ | $\begin{aligned} & 0.005066 \\ & (0.00254) \\ & {[1.99496]} \end{aligned}$ |
| D(@YEAR $>=1890$ ) | $\begin{gathered} -0.223836 \\ (0.06276) \\ {[-3.56671]} \end{gathered}$ | $\begin{gathered} -0.066922 \\ (0.01872) \\ {[-3.57451]} \end{gathered}$ |
| D @YEAR $>=1891$ ) | $\begin{gathered} -0.111186 \\ (0.06697) \\ {[-1.66032]} \end{gathered}$ | $\begin{gathered} -0.093562 \\ (0.01998) \\ {[-4.68328]} \end{gathered}$ |
| D(@YEAR > = 1875) | $\begin{gathered} -0.204616 \\ (0.06169) \\ {[-3.31690]} \end{gathered}$ | $\begin{gathered} -0.066034 \\ (0.01840) \\ {[-3.58816]} \end{gathered}$ |
| D(@YEAR>=1873) | $\begin{gathered} 0.073354 \\ (0.06434) \\ {[1.14003]} \end{gathered}$ | $\begin{gathered} 0.082479 \\ (0.01920) \\ {[4.29682]} \end{gathered}$ |
| $\mathrm{D}($ @YEAR=1919) | $\begin{aligned} & 0.068042 \\ & (0.04332) \\ & {[1.57060]} \end{aligned}$ | $\begin{aligned} & 0.060532 \\ & (0.01292) \\ & {[4.68361]} \end{aligned}$ |
| D(@YEAR > = 1885) | $\begin{gathered} 0.114960 \\ (0.06018) \\ {[1.91041]} \end{gathered}$ | $\begin{gathered} 0.057069 \\ (0.01795) \\ {[3.17902]} \end{gathered}$ |
| D(@YEAR > = 1887) | $\begin{gathered} -0.154100 \\ (0.06062) \\ {[-2.54199]} \end{gathered}$ | $\begin{aligned} & 0.028302 \\ & (0.01808) \\ & {[1.56492]} \end{aligned}$ |
| R-squared | 0.456731 | 0.717115 |
| Adj. R-squared | 0.338629 | 0.655619 |
| Sum sq. resids | 0.162777 | 0.014487 |
| S.E. equation | 0.059486 | 0.017746 |
| F-statistic | 3.867253 | 11.66104 |
| Log likelihood | 86.08558 | 155.0312 |
| Akaike AIC | -2.634582 | -5.053728 |
| SCIwarz SC | -2.240309 | -4.659455 |
| Mean dependent | 0.005498 | 0.003122 |
| S.D. dependent | 0.073147 | 0.030240 |
| Determinant resid covariance (dof adj.) |  | $1.11 \mathrm{E}-06$ |
| Determinant resid covariance |  | $7.23 \mathrm{E}-07$ |
| Log likelihood |  | 240.6406 |
| Akaike information criterion |  | -7.601426 |


| SCIwarz criterion | -6.741194 |
| :--- | :---: |
| Number of coefficients | 24 |

A3.2.2.2. Cointegration tests and weak exogeneity test (restrictions over "alphas")
Sample (adjusted): 18731929
Included observations: 57 after adjustments
Trend assumption: Linear deterministic trend
Series: LPIBPC SCI
Exogenous series: D(@YEAR>=1890) D(@YEAR>=1891) D(@YEAR>=1875) D(@YEAR>=1873)
$\mathrm{D}(@ \mathrm{YEAR}=1919) \mathrm{D}(@ Y E A R>=1885) \mathrm{D}(@ Y E A R>=1887)$
Warning: Critical values assume no exogenous series
Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

| Hypothesized <br> No. of CE(s) | Eigenvalue | Trace <br> Statistic | $\begin{gathered} 0.05 \\ \text { Critical Value } \end{gathered}$ | Prob.** |
| :---: | :---: | :---: | :---: | :---: |
| None * | 0.230609 | 17.40607 | 15.49471 | 0.0255 |
| At most 1 | 0.042293 | 2.463143 | 3.841466 | 0.1165 |

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

| Hypothesized <br> No. of CE(s) | Eigenvalue | Max-Eigen <br> Statistic | 0.05 <br> Critical Value | Prob.** |
| :---: | :---: | :---: | :---: | :---: |
| None* | 0.230609 | 14.94293 | 14.26460 | 0.0390 |
| At most 1 | 0.042293 | 2.463143 | 3.841466 | 0.1165 |

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values
Restrictions:
$\mathrm{b}(1,1)=1, \mathrm{a}(2,1)=0$

Tests of cointegration restrictions:

| Hypothesized <br> No. of CE(s) | Restricted <br> Log-likehood | LR <br> Statistic | Degrees of <br> Freedom | Probability |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 240.6406 | 1.403312 | 1 | 0.236170 |

1 Cointegrating Equation(s): Convergence achieved after 8 iterations.
Restricted cointegrating coefficients (standard error in parentheses)

| LPIBPC | SCI |
| :---: | :---: |
| 1.000000 | -3.316549 |
| $(0.00000)$ | $(0.74208)$ |

Adjustment coefficients (standard error in parentheses)

| D(LPIBPC) | -0.310982 |
| :---: | :---: |
|  | $(0.08764)$ |
| $\mathrm{D}(\mathrm{SCI})$ | 0.000000 |
|  | $(0.00000)$ |

## A3.2.3. 1930-1971

A3.2.3.1. VEC output
Vector Error Correction Estimates
Sample: 19301971
Included observations: 42
Standard errors in ( ) \& t-statistics in [ ]

| Cointegration Restrictions:$\mathrm{B}(1,1)=1, \mathrm{~A}(2,1)=0$ |  |  |
| :---: | :---: | :---: |
| Convergence achieved after 9 iterations. |  |  |
| Restrictions identify all cointegrating vectors |  |  |
| LR test for binding restrictions (rank = 1): |  |  |
| Chi-square(1) | 1.131350 |  |
| Probability | 0.287488 |  |
| Cointegrating Eq: | CointEq1 |  |
| SCI(-1) | 1.000000 |  |
| LPIBPC(-1) | $\begin{gathered} -0.447465 \\ (0.06122) \end{gathered}$ |  |
|  | [-7.30969] |  |
| C | 4.352416 |  |
| Error Correction: | D(SCI) | D(LPIBPC) |
| CointEq1 | -0.244880 | 0.000000 |
|  | (0.06485) | (0.00000) |
|  | [-3.77636] | [NA] |
| D(SCI(-1)) | -0.135430 | -0.013683 |
|  | (0.10899) | (0.20115) |
|  | [-1.24255] | [-0.06802] |
| D(LPIBPC(-1)) | -0.016464 | 0.344319 |
|  | (0.09280) | (0.17127) |
|  | [-0.17741] | [ 2.01041] |
| C | 0.011571 | 0.016024 |
|  | (0.00528) | (0.00974) |
|  | [ 2.19313] | [ 1.64564] |
| D(@YEAR $>=1960$ ) | -0.139846 | 0.023697 |
|  | (0.03304) | (0.06098) |
|  | [-4.23262] | [ 0.38862 ] |
| D(@YEAR>=1931) | 0.089130 | -0.188083 |
|  | (0.03010) | (0.05555) |
|  | [ 2.96139] | [-3.38603] |
| D (@YEAR $>=1959$ ) | -0.094999 | -0.044552 |
|  | (0.02987) | (0.05513) |


|  | $[-3.18033]$ | $[-0.80815]$ |
| :--- | :---: | :---: |
| D(@YEAR=1966) | -0.066495 | 0.038484 |
|  | $(0.02106)$ | $(0.03887)$ |
|  | $[-3.15747]$ | $[0.99016]$ |
| D(@YEAR>=1943) | 0.069523 | -0.047426 |
|  | $(0.02984)$ | $(0.05507)$ |
|  | $[2.32980]$ | $[-0.86115]$ |
| R-squared | 0.727419 | 0.365198 |
| Adj. R-squared | 0.661339 | 0.211306 |
| Sum sq. resids | 0.027319 | 0.093053 |
| S.E. equation | 0.028773 | 0.053102 |
| F-statistic | 11.00814 | 2.373085 |
| Log likelihood | 94.49893 | 68.76202 |
| Akaike AIC | -4.071378 | -2.845810 |
| SCIwarz SC | -3.699020 | -2.473453 |
| Mean dependent | 0.008264 | 0.015185 |
| S.D. dependent | 0.049442 | 0.059793 |
| Determinant resid covariance (dof adj.) | $2.20 E-06$ |  |
| Determinant resid covariance | $1.36 \mathrm{E}-06$ |  |
| Log likelihood | 163.9544 |  |
| Akaike information criterion | -6.854972 |  |
| SCIwarz criterion | -6.027510 |  |
| Number of coefficients |  | 20 |

A3.2.3.2. Cointegration tests and weak exogeneity test (restrictions over "alphas")
Sample: 19301971
Included observations: 42
Trend assumption: Linear deterministic trend
Series: SCI LPIBPC
Exogenous series: $\mathrm{D}(@ Y E A R>=1960) \mathrm{D}(@ Y E A R>=1931) \mathrm{D}(@ Y E A R>=1959) \mathrm{D}(@ Y E A R=1966)$
D(@YEAR>=1943)
Warning: Critical values assume no exogenous series
Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

| Hypothesized <br> No. of CE(s) | Eigenvalue | Trace <br> Statistic | Critical Value | Prob.** |
| :---: | :---: | :---: | :---: | :---: |
| None* | 0.315250 | 17.33545 | 15.49471 | 0.0261 |
| At most 1 | 0.033474 | 1.429995 | 3.841466 | 0.2318 |

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

| Hypothesized <br> No. of CE(s) | Eigenvalue | Max-Eigen <br> Statistic | 0.05 <br> Critical Value | Prob.** |
| :---: | :---: | :---: | :---: | :---: |
| None* | 0.315250 | 15.90545 | 14.26460 | 0.0273 |
| At most 1 | 0.033474 | 1.429995 | 3.841466 | 0.2318 |

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level
${ }^{* *}$ MacKinnon-Haug-Michelis (1999) p-values
Restrictions:
$\mathrm{b}(1,1)=1, \mathrm{a}(2,1)=0$

Tests of cointegration restrictions:

| Hypothesized <br> No. of CE(s) | Restricted <br> Log-likehood | LR <br> Statistic | Degrees of <br> Freedom | Probability |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 163.9544 | 1.131350 | 1 | 0.287488 |

1 Cointegrating Equation(s): Convergence achieved after 9 iterations.
Restricted cointegrating coefficients (standard error in parentheses)

| SCI | LPIBPC |
| :---: | :---: |
| 1.000000 | -0.447465 |
| $(0.00000)$ | $(0.06122)$ |

Adjustment coefficients (standard error in parentheses)

| $\mathrm{D}(\mathrm{SCI})$ | -0.244880 |
| :---: | :---: |
| D (LPIBPC) | $(0.06485)$ |
|  | $(0.000000$ |
|  | $(0.00000)$ |

A3.3. Vector Autorregresive model output, and Granger causality tests, 1972-2017
A3.3.1. VAR model
Vector Autoregression Estimates
Sample (adjusted): 19722017
Included observations: 46 after adjustments
Standard errors in ( ) \& t -statistics in [ ]

|  | DLPIBPC | DSCI |
| :---: | :---: | :---: |
| DLPIBPC(-1) | 0.351322 | 0.215906 |
|  | $[0.11320)$ | $(0.12038)$ |
|  | $[3.10346]$ | $[1.79349]$ |
|  |  |  |
| DLPIBPC(-2) | 0.057072 | 0.164111 |
|  | $(0.11946)$ | $(0.12704)$ |
|  | $[0.47773]$ | $[1.29178]$ |
|  | -0.091827 | -0.043263 |
| DSCI(-1) | $(0.08796)$ | $(0.09354)$ |
|  | $[-1.04394]$ | $[-0.46250]$ |
|  |  |  |
|  | -0.114975 | -0.370518 |
|  | $(0.07848)$ | $(0.08346)$ |
|  | $[-1.46499]$ | $[-4.43947]$ |
|  |  |  |
|  | 0.022296 | 0.010243 |
|  | $(0.00531)$ | $(0.00564)$ |
|  | $[4.20212]$ | $[1.81536]$ |


| D(@YEAR $>=1972$ ) | $\begin{gathered} -0.054133 \\ (0.02450) \\ {[-2.20948]} \end{gathered}$ | $\begin{gathered} -0.178646 \\ (0.02605) \\ {[-6.85673]} \end{gathered}$ |
| :---: | :---: | :---: |
| D(@YEAR>=1982) | $\begin{gathered} -0.125715 \\ (0.02417) \\ {[-5.20154]} \end{gathered}$ | $\begin{aligned} & 0.070575 \\ & (0.02570) \\ & {[2.74592]} \end{aligned}$ |
| D @ YEAR $>=1975$ ) | $\begin{gathered} 0.015057 \\ (0.02465) \\ {[0.61084]} \end{gathered}$ | $\begin{gathered} 0.077337 \\ (0.02621) \\ {[2.95030]} \end{gathered}$ |
| D (@YEAR>=1979) | $\begin{gathered} 0.016850 \\ (0.02453) \\ {[0.68682]} \end{gathered}$ | $\begin{gathered} -0.071070 \\ (0.02609) \\ {[-2.72409]} \end{gathered}$ |
| D(@YEAR $>=2002$ ) | $\begin{gathered} -0.092899 \\ (0.03591) \\ {[-2.58689]} \end{gathered}$ | $\begin{gathered} 0.078825 \\ (0.03819) \\ {[2.06406]} \end{gathered}$ |
| TC2002 | $\begin{gathered} 0.031687 \\ (0.02904) \\ {[1.09109]} \end{gathered}$ | $\begin{aligned} & -0.138315 \\ & (0.03088) \\ & {[-4.47863]} \end{aligned}$ |
| TC1999 | $\begin{gathered} -0.058752 \\ (0.01876) \\ {[-3.13260]} \end{gathered}$ | $\begin{aligned} & 0.024253 \\ & (0.01994) \\ & {[1.21603]} \end{aligned}$ |
| R-squared | 0.728886 | 0.802477 |
| Adj. R-squared | 0.641172 | 0.738572 |
| Sum sq. resids | 0.018586 | 0.021018 |
| S.E. equation | 0.023380 | 0.024863 |
| F-statistic | 8.309855 | 12.55741 |
| Log likelihood | 114.4512 | 111.6222 |
| Akaike AIC | -4.454399 | -4.331402 |
| SCIwarz SC | -3.977362 | $-3.854365$ |
| Mean dependent | 0.022807 | 0.007273 |
| S.D. dependent | 0.039031 | 0.048627 |
| Determinant resid covariance (dof adj.) |  | $3.23 \mathrm{E}-07$ |
| Determinant resid covariance |  | $1.77 \mathrm{E}-07$ |
| Log likelihood |  | 227.0790 |
| Akaike information criterion |  | -8.829523 |
| SCIwarz criterion |  | -7.875450 |
| Number of coefficients |  | 24 |

A3.3.2. Granger causality tests
VAR Granger Causality/Block Exogeneity Wald Tests Sample: 19722018
Included observations: 46

Dependent variable: DLPIBPC

| Excluded | Chi-sq | df | Prob. |
| :---: | :---: | :---: | :---: |
| DSCI | 3.521726 | 2 | 0.1719 |


| All | 3.521726 | 2 | 0.1719 |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Dependent variable: DSCI |  |  |  |
| Excluded | Chi-sq | df | Prob. |
| DLPIBPC | 9.591131 | 2 | 0.0083 |
| All | 9.591131 | 2 | 0.0083 |


[^0]:    ${ }^{1}$ We are grateful to Sabrina Siniscalchi for sharing her unpublished calculations with us (related

[^1]:    ${ }^{2}$ We are grateful to Camilo Martínez by sharing his unpublished calculations with us (related to his Master's Thesis).
    3 Data corresponding to 1930 is presented in the Industrial Census of 1936.
    4 Bertullo (1959).

[^2]:    ${ }^{6}$ With these weights we are sure that: (i) the gold production never exceeded the production of other minerals and (ii) the share of the value added of mining never exceeded $1 \%$ of the GDP. Both decisions are consistent with the history of the sector (Bauman, 2018).

[^3]:    ${ }^{7}$ The original figure is expressed in gold pesos and is converted to Uruguayan pesos using the exchange rate presented in Bonino et al. (2015).
    ${ }^{8}$ Compañía Telefónica de Montevideo was founded in 1882 (Barachini, 1981, pp. 106-107).

[^4]:    ${ }^{9}$ Current prices expressed in monetary values of 2005; remember that Uruguayan peso suffered several changes and, in facts, the Uruguayan pesos previous to the 1970 m must be divided by 1 million for being comparable with the monetary values of the end of century. In this sense we talk about series in current prices expressed in "pesos actuales".

