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On Uniqueness of Equilibrium

for Complete Markets with Infinitely Many Goods

and in Finance Models.

Elvio Accinelli ∗†‡

Abstract

Our concern in this work is to obtain conditions for the uniqueness of equilibria, with
commodity bundles as consumption patterns which depend on the state of the world.

In the first section we consider an economy with complete markets, where consumption
spaces are a finite product of measurable function spaces, with separable and proper utility
functions and with strictly positive endowments. Using the excess utility function the infinite
dimensional problem stated above is reduced to a finite dimensional one. We obtain local
uniqueness. The degree theory and specially the Poincaré-Hopf theorem applied to this excess
utility function, allow us to characterize the cardinality of the equilibrium set, and we find
conditions for the global uniqueness of this set.

On the other hand, we obtain conditions for the uniqueness in economies with incomplete
markets and only one good available in each state of the world. When markets are incomplete,
equilibrium allocations are typically not Pareto efficient; then the results obtained in section 1,
can not be generalized here. Nevertheless we show that for the single consumption good case
the first theorem of welfare is satisfied, and then conditions for the uniqueness of equilibrium
can be obtained as straightforward extension of our results shown in the first section. This is
a particular simple case on incomplete markets but, is a very important one on finance theory.

1 Introduction

The first four sections of the paper concern exchange economies in which each agent’s utility

depends both upon his consumption vector and the realization of the world. Both trades and

prices can be state contingent. A Walrasian equilibrium thus consists of a pair of measurable

mappings (p, x) defined on the probability space Ω whose elements are the states of the world,

where p(·) specifies the prices and x(·) specifies the net trades as function of the state. The main

problem addressed in the first part of the paper concerns the nature of the set of equilibria of
∗I wish to thank Aloisio Araujo, Paulo K. Monteiro, Flavio Menezes, Daniel Vaz and Ricardo Marchesini for

useful comments.
†Facultad de Ingenieŕia (IMERL) CC 30, Montevideo-Uruguay.
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such an economy. This is complicated by the fact that the set of states can be infinite, which is

the sense in which the paper considers an infinite number of goods. In the more elementary case

in which there is not uncertainty (i.e., the state of the world is fixed), a Walrasian equilibrium is

given by the solutions of ε(p) = 0, where ε(·) is the excess demand function and p is the vector

of prices. Here, however, p(·) is a measurable mapping on a probability space, and so to obtain

a solution for the equation ε(p) = 0 is nontrivial. Moreover, the existence of the excess demand

function is not a necessary consequence of a maximization process, its existence is rare in infinite

dimensional cases.

In this paper we introduce the excess utility function to characterize the equilibrium set,

showing that it is a powerful tool in order to characterize the equilibrium set. In this sense,

the excess utility function appears as good substitute in infinite dimensional economies, for the

generally inexistent, excess demand function.

On the other hand the excess utility function allows us to obtain a structural relation between

the vector of welfare weights, the equilibrium prices and endowments. It follows, as we will show,

from the fact that there exists an one-to-one correspondence between the zeros of the excess utility

function and the set of Walrasian equilibria.

The excess utility function is definite on the n− 1 dimensional simplex, and interpreting each

element of this simplex as a vector of welfare weights, the weighted sum of the expected utilities

of the agents, is maximized subject to the resource constraint at some particular state contingent

allocation x(s). The solution to this constrained optimization problem determines implicit prices

p(s) (i.e., the Lagrange multipliers at the solution x(s)). The excess utility function e(·) calculates,

for each vector of welfare weights λ, the budget deficit of each of the n traders at the solution x(s)

to the constrained optimization problem. This budget deficit is calculated using the implicit prices

p(s) determined by the solution x(s) and λ. The Pareto optimality of a Walrasian equilibrium is

then invoked to establish that the set of Walrasian equilibrium is in one-to-one correspondence

with the solutions of the equation e(λ) = 0.

Note that, the aggregate utility function depends on the weighting, λ, and it will be affected

when we change their relative magnitudes. Each coordinate of a vector of welfare weights that is

a zero of the excess utility function, will be determined by the distribution of initial endowments

of individuals. Then the prices in the economy will be affected by the distribution of initial

endowments across individuals. In this way we obtain the above mentioned structural relation.

On this subject, G. Becker says “In decentralized economies like our own, families, governments,

and other organizations influence what to produce... There is a kind of proportional representation

in which the influence of each person is not fixed nor shared equally. but is strictly proportional to
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his command over resources. Influence is exerted by offering to exchange these resources for the

goods and services that are desired” [Becker (71)]

On the other hand, this approach allows us to reduce an infinite dimensional problem to a

finite dimensional one. It is shown in lemma 2, that the excess utility function e(·) has some of

the useful properties that the excess demand function ε(·) exhibits when there is a single state.

The excess utility function was introduced in [Mas-Colell (85)], (Ch.5, P.174), it is proved that

the excess utility function in the finite dimensional case, has the same properties of the excess

demand function. In [Mas-Colell (91)], Proposition 1, it is proved that the set of zeros for the

excess utility function is generically finite. In this paper, for the infinite dimensional case, from

the excess utility function we prove that generically, in the conditions of the model (see section

1) the set of Walrasian equilibria is not empty and that the excess demand function is a vector

function in the conditions of the Poincaré-Hopf theorem, then we obtain conditions for uniqueness

of equilibrium.

Note that while the not existence of the demand function is not a serious obstacle for the

study of the existence of equilibrium, it is a serious one for the knowledge of the cardinality

(and uniqueness) of the equilibrium set. Our result generalizes one of Dana, [Dana (93)]. In

this work, R. A. Dana obtains a first result on uniqueness for economies with one good in each

state of the world, with infinitely many states. Our result concerns a finite number of goods in

each state of the world, and allows to use some of well know topological arguments to argue that

the set of Walrasian equilibria in infinite dimensional case, with separable utilities, has the local

uniqueness property, moreover it is generically finite, and we obtain some sufficient conditions for

its uniqueness.

Finally we extend this analysis for the incomplete markets in the special case of one commodity

and J assets. In this case the Walrasian equilibrium is Pareto optimal. This is a particular simple

case on incomplete markets but, it is a very important one on finance theory. In the general case

of incomplete markets, a Walrasian equilibrium need not be a Pareto optimal.

2 The Model

We shall consider a pure exchange economy with uncertainty in the states of the world Ω. We

shall treat uncertainty us a probability space (Ω,A, ν), where A is the σ− algebra of subsets of Ω

that are events, and ν a probability measure. In each state of the world, there are l commodities

available for consumption and n agents.

We assume that each agent has the same consumption space, M = Πl
j=1Mj where Mj is
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the space of all positive measurable functions defined on (Ω,A, ν).

Let Λ denote the set of functions h : Rl+ → R satisfying:

• h is C2 on Rl+, i.e. h has second derivatives on Rl++ = {x ∈ Rl with all component positive}
and one-sided second derivatives on Rl+/R

l
++, and these are continuous,

• h(x) = 0 for all x ∈ Rl+/Rl++,

• h is differentially monotonic on Rl+, i.e. ∂h(x) ≥ 0 (i.e ∂h(x)
∂xj
≥ 0 j = 1, 2, ...l.) for all x ∈ Rl+;

• h is differentially strictly concave on Rl++, i.e. for all x ∈ Rl++, the Hessian matrix of second

partial derivatives of h is negative definite and

• h satisfies the ’ ’ infinite marginal utility condition at zero, i.e. the limit of |∂h(x)| is infinite,

when x approaches to the boundary of Rl++, i.e: the set B = {x : xi = 0 for some i =

1, . . . , n}.

Let U be the set of all measurable functions U : Ω×Rl++ → R, such that U(s, ·) ∈ Λ for each

s ∈ Ω.

For x, y ∈ Rl we will x ≥ y if xi ≥ yi i = 1 . . . , and we will write x > y if xi ≥ yi i =

1 . . . l and x 6= y.

Definition 1 A function u is strictly monotone if x > y ⇒ u(x) > u(y).

We introduce in U the norm

‖U‖K = ess sup
s∈Ω

max
z ∈ K

{
|U(s, z)|+ |∂U(s, z)|+ |∂2U(s, z)|

}
.

for any compact K ⊂ Rl++.

Each agent is characterized by his utility function ui and by his endowment wi ∈ M, i =

{1, 2, . . . , n}, satisfying the following additional conditions:

a) The utility functions ui :M → R are separable. This means that they can be represented

by

ui(x) =
∫

Ω
Ui(s, x(s))dν(s) i = 1, . . . , n (1)

where for each i = 1, 2, ..., n, Ui : Ω×Rl++ → R belongs to a fixed compact set of Λ and

b) for each s ∈ Ω the functions Ui(s, )̇ belong to U.
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c) The agent endowments, wi ∈ M are bounded away from zero in any component, i.e. there

exists, h and H two positive numbers such that, h < wij(s) < H for each j = 1 . . . l, and s ∈
Ω.

An economy E is a list (ui, wi), i ∈ I, where I is a set of agents or traders (in our case

I = {1, 2, . . . , n}).
The following definitions are standard.

Definition 2 An allocation of commodities is a list x = (x1, . . . , xn) where x : Ω → Rln+ and∑n
k=1 xk(s) ≤

∑n
k=1wk(s), for a.e.s ∈ Ω.

Definition 3 A commodity price system is a measurable function p : Ω → Rl++. For any

z : Ω → Rl we denote by 〈p, z〉 the real number
∫
Ω p(s)z(s)dν(s). (Note that p(s)z(s) is the

Euclidean inner product in Rl.)

The following definition is given in [Mas-Colell (91)]:

Definition 4 The pair (p, x) is an equilibrium if:

i) p is a commodity price system and x is an allocation,

ii) 〈p, xi〉 ≤ 〈p, wi〉 < ∞ ∀ i ∈ {1, . . . , n}

iii) if 〈p, z〉 ≤ 〈p, wi〉 with z : Ω→ Rl++, then∫
Ω
Ui(s, xi(s))dν(s) ≥

∫
Ω
Ui(s, z(s))dν(s) ∀ i ∈ {1, . . . , n}.

That is there is not an alternative allocation z superior in the sense that is feasible, i.e.
∑n
i=1 zi(s) ≤∑n

i=1wi(s) and ui(z) ≥ ui(x), i = 1, 2, ..., n, with strictly inequality for some i.

3 The Excess Utility Function

In order to obtain our results we introduce the excess utility function.

We begin by writing the following well known proposition, see [Kehoe (91)]:

Proposition 1 For each λ in the (n−1) dimensional open simplex, ∆n−1 = {λ ∈ Rn++;
∑
λi = 1}

and Ui ∈ Λ, there exists x̄(λ) = {x̄1(λ), · · · , x̄n(λ)} ∈ Rln++ a Pareto efficient solution of the

following problem:
maxx∈Rln

∑
i λiUi(xi)

subject to
∑
i xi ≤

∑
iwi and xi ≥ 0.

(2)
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If Ui depend also on s ∈ Ω, and Ui(s, ·) ∈ Λ for each s ∈ Ω, and λ ∈ 4n−1, there exists

x̄(s, λ) = x̄1(s, λ), ..., x̄n(s, λ) solution of the following problem:

maxx(s)∈Rln

∑
i λiUi(s, xi(s))

subject to
∑
i xi(s) ≤

∑
iwi(s) and xi(s) ≥ 0.

(3)

If γj(s, λ) are the Lagrange multipliers of the problem (3), j ∈ {1, . . . l}, then from the first

order conditions we have:

λi
∂Ui(s, x̄i(s, λ))

∂xj
= γj(s, λ) with i ∈ {1, . . . , n} and j ∈ {1, . . . , l}.

Remark 1 Due to the “infinite marginal utility” condition at zero, the solution of (3) must be

strictly positive almost everywhere. Since U(s, .) is a monotone function, we can deduce that∑n
i=1 x̄i(s) =

∑n
i=1wi(s).

Let us now define the excess utility function.

Definition 5 Let xi(s, λ); i ∈ {1, . . . , n} be a solution of (3).

We say that e : 4n−1 → Rn e(λ) = (e1(λ), ..., en(λ)), with

ei(λ) =
1
λi

∫
Ω
γ(s, λ)[xi(s, λ)− wi(s)]dν(s), i = 1, . . . , n. (4)

is the excess utility function.

Remark 2 Since the solution of (3) is homogeneous of degree zero: i.e, x̄(s, λ) = x̄(s, αλ) for any

α > 0, then we can consider ei defined all over Rn++ by ei(αλ) = ei(λ) for all λ ∈ ∆n−1
++ , α > 0.

4 Equilibrium and the Excess Utility Function.

For λ = {λ1, λ2, ..., λn} ∈ Rn, let us consider the following problem:

maxx∈M
∑
i λi

∫
Ω Ui(s, xi(s))dν(s)

subject to
∑
i xi(s) ≤

∑
iwi(s) and xi(s) ≥ 0.

(5)

It is a well known proposition, [Mas-Colell (91)] that an allocation x̄, is Pareto optimal if and

only if we can choose a λ̄, such that x̄ solves the above problem with λ = λ̄. Moreover, since a

consumer with zero social weight receive nothing of value at a solution of this problem, we have

that if x̄ is a strictly positive allocation, that is {x̄ ∈ Rl++}, all consumption has a positive social

weight. See for instance [Kehoe (91)]. Reciprocally if λ̄ is in the interior of the simplex, then from

remark (1) the solution x(., λ) of (6) is a strictly positive Pareto optimal allocation, [Kehoe (91)])
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The first theorem of welfare establishes that every equilibrium allocation is Pareto

optimal. In our setting this theorem hold. To see this, suppose that there exists a feasible

allocation z that Pareto dominates the equilibrium allocation x. As the equilibrium price p, is

nonnegative for all s ∈ Ω it follows that < p, zi >≥< p,wi >, for all i = 1, 2, ..., n, and strictly

form some of them. It follows that < p,
∑n
i=1 zi > > < p,

∑n
i=1wi > (∗). As z is a feasible

allocation, < p,
∑n
i=1 zi > ≤ < p,

∑n
i=1wi >, holds, contrary to (*).

Let x̄ be an equilibrium allocation, then there exists a λ̄ such that x̄ = {x̄1, . . . , x̄n} : Ω→ Rn,

is a solution for the problem (6).

In the conditions of our model, the first order conditions either for problem (6) or for (3)

are the same. Then if a pair (p̄, x̄) is an price-allocation equilibrium, there exists a λ̄ such that

x̄(s) = x̄(s, λ̄); solves (6) and p̄(s) = γ(s, λ̄) , solves (4) for a.e.s ∈ Ω.

Moreover we have the following proposition:

Proposition 2 A pair (p̄, x̄) is an equilibrium, if and only if there exists λ̄ ∈ 4n−1 such that

x̄(s) = x̄(s, λ̄) solves (6), and p̄(s) = γ(s, λ̄) , solves (4) for a.e.s and e(λ̄) = 0.

Proof: Suppose that x̄(·, λ̄) solves (6) and γ(s, λ̄) solves (4), then e(λ̄) = 0. Because x̄ is

Pareto optimal and from the strictly concavity of each ui, i = 1, 2, ..., n there is not a feasible

allocation z such that ui(z) ≥ ui(x̄) and < p, z >=< p,wi > for all consumer. Then the pair

(p̄, x̄), with p̄ = γ(·, λ̄) and x̄ = x(·, λ̄), is an equilibrium. Reciprocally, if (p̄, x̄) is an equilibrium,

then from the first welfare theorem, there exists λ̄ ∈ 4n−1, such that x̄ is a solution for (6). Since

p is an equilibrium price, it is a support for x̄, i.e. if for some x we have that ui(x) ≥ ui(x̄), i =

{1, ..., n}, strictly for some i, then 〈p̄, xi〉 > 〈p̄, wi〉 and from the first order conditions we have

that: p̄(s) = γ(λ̄, s). Then e(λ̄) = 0. 2

Let be Sn++ = {λ ∈ Rn : ‖λ‖2 =
∑n
i=1 λ

2
i = 1, λi > 0}.

From remark 2, with α = 1
‖λ‖ , we can consider e defined on Sn++.

We give now the definition of the equilibrium set.

Definition 6 We say that λ is an equilibrium for the economy if λ ∈ E, where E = {λ ∈ Sn++ :

e(λ) = 0}. The set E will be called, the equilibrium set of the economy.

A pair formed by a utility function and an endowment will be called a characteristic.

We will endow the set of characteristics C = U ×M with the topology generated by the norm

:

‖(U,w)‖K = ‖(U)‖K + ‖w‖ = ess sup
s∈Ω

max
K

(|U |+ |∂U |+ |∂2U |+ ‖w(s)‖).
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Let Γ be the set of economies with characteristics in C such that zero is a regular value of its

excess utility function. That is, for any λ such that e(λ) = 0 we have that rank of the Jacobian

of e(λ), is n − 1, i.e: rankJ [e(λ)] = n − 1. from [Mas-Colell (91)], we know that Γ is open and

dense in the set of economies. From now on we will work with economies in Γ.

Let be TλSn++ = {λ̄ ∈ Rn : λ̄λ = 0, λ ∈ Sn++}, and Πλ the orthogonal projection from Rn

onto TλSn++. Since whenever e(λ̄) = 0, J [e(λ̄)] maps Tλ̄S
n
++ into Tλ̄S

n
++ (to verify it differentiate

λe(λ) = 0), if λ̄ is a regular value, J [e(λ̄)] maps Tλ̄S
n−1
++ . onto Tλ̄S

n−1
++ . Its determinant is equal

to the determinant of the following matrix, (see [Mas-Colell (85)] B.5.2):

[Πλ̄J [e(λ̄)]] =

[
J(e(λ̄)) λ̄
−λ̄t 0

]
.

Since Πλ̄J [e(λ̄)] is an isomorphism from Tλ̄S
n−1
++ onto Tλ̄S

n−1
++ , its determinant is not zero.

We will put signJ(e(λ)) = +1(−1) according to whether det[ΠTJ(e(λ))] > 0(< 0)

We may now state our main result:

Theorem 1 Consider an economy in Γ with infinitely dimensional consumption set, differentiable

strictly convex proper and separable utilities functions and satisfying the conditions a), b), c) in

section (1,1), then:

(1) The cardinality of E is finite and odd,

(2) If signJ(e(λ)) is constant in E, there exists an unique equilibrium, where J(e(λ)) denotes

the Jacobian of the excess utility function.

The main tool that will be used to prove theorem 1, is the Poincaré Hopf theorem.

Let us recall it.

Poincaré Hopf theorem. Let N be a compact n-dimensional C1 manifold with boundary

and f a continuous vector field on N. Suppose that:

(i) f points outward at δN [ this means that f(x)g(x) > 0 for all x ∈ δN, where g is the Gauss

map 1] and

(ii) f has a finite number of zeros.

then the sum of the indices of f at the different zeros equals the Euler characteristic of N.
1Recall that if N is a closed C2 n-dimensional manifold with boundary, then we can define a C1 function g from

the boundary of M into Sn−1, called the Gauss map, see [Mas-Colell (85)].
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For the definition of index of f at x (zero of f) and the Euler characteristic of N, see

[Mas-Colell (85)].

We need, also, the following lemmas:

Lemma 1 The excess utility function is C1.

Proof: The lemma follows immediately from the following assertion: The Lagrange multiplier

γ(s, λ) and the Pareto optimal allocation xi(s, λ) are C1 with respect to λ. Let us consider the

following system of equations:

λi∂Ui(s, x(s, λ)) = γ(s, λ)∑n
i=1 xi(s, λ) =

∑n
i=1wi(s).

(6)

From the implicit function theorem, taking derivatives in the above system, with respect to x and

γ, we obtain a matrix with the following form:

M =

[
A B
Bt 0

]

where A is a (nl)× (nl) matrix; and B is a (nl)× l matrix and U jkh = ∂2Uh

∂xj∂xk ,

A =



U11
1 · · · U l11 0 · · · · · · 0
...

...
... 0 · · · · · · 0

U1l
1 · · · U ll1 0 · · · · · · 0

0 · · · 0
. . . · · · · · · 0

...
...

... · · · U11
n · · · U l1n

...
...

...
...

...
...

...
0 0 0 · · · U l1n · · · U1l

n


and

B =



1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1
1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1


That is B is a (nl)× l matrix

We claim that there is no vector z = (v, w) 6= 0 with v ∈ Rnl and w ∈ Rl such that Mz = 0.

9



Indeed, if v is such that Mz = 0, then

Btv = 0 (7)

and

Av +Bw = 0. (8)

Then from (8) and (9), we have that

vtAv = 0 (9)

If v is in the kernel of Bt then

v1 + vl+1 + · · ·+ v(n−1)l+1 = 0
v2 + vl+2 + · · ·+ v(n−1)l+2 = 0

...
...

...
...

vl + v2l + · · ·+ vnl = 0.

Observe that

∂
n∑
i=1

λiUi =

{λ1
∂U1

∂x1
, λ1

∂U1

∂x2
, . . . , λ1

∂U1

∂xl
, · · · , λn

∂Un
∂x1

, λn
∂Un
∂x2

, . . . , λn
∂Un
∂xl
} =

= {γ1, γ2, . . . , γl, · · · , γ1, γ2, . . . , γl, · · · , γ1, γ2, . . . , γl}.

Then

∂{
n∑
i=1

λiU i}.v = γ1(v1 + vl+1 + . . .+ v(n−1)l+1) + · · ·+ γl(vl + v2l + . . .+ vnl) = 0. (10)

From (8), (9) and the strictly differentiable convexity of
∑n
i=1 λ

iU i we deduce that v = 0.

Then since B is a injective matrix, from (6) w = 0. We have that z = 0, proving our claim.

From the claim and the fact that (Ui(s, ·), is in a compact set of Λ, the lemma follows. 2

Lemma 2 The excess utility function has the following properties:

1) e(λ) is homogeneous of degree zero;

2) λe(λ) = 0, ∀λ ∈ Rn++;
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3) there exists k ∈ R such that e(λ) << k1, where 1 = (1, 1, 1..., 1) ∈ Rn.

4) ||e(λ)|| → ∞ as λj → 0 for any j ∈ {1, ..., n} and λ ∈ 4n−1;

5) Let e : Sn → Rn for economies in Γ, and λ̄ ∈ E rankJ [e(λ̄)] = n− 1 i.e. maps Tλ̄S
n
++ onto

Tλ̄S
n
++.

Proof: Property 1) follows from remark 2. Property 2) follows from remark 2), and definition

7). Property 5) That, whenever e(λ̄) = 0, J [e(λ̄)] maps into Tλ̄S
n is a general property of the

vector field, [Mas-Colell (85)]. An economy is regular if and only if Tλ̄S
n maps onto Tλ̄S

n. This

property identifies de concept of regularity with the non nullity of determinants.

To prove property 3), note that from equation (2) we can write

ei(λ) =
∫

Ω
∂Ui(s, xi(λ))[xi(s, λ)− wi(s)]dν(s).

From the concavity of Ui it follows that:

Ui(s, xi(s, λ))− Ui(s, wi(s)) ≥ ∂Ui(s, xi(s, λ))(xi(s, λ)− wi(s)).

Therefore,

ei(λ) ≤
∫

Ω
Ui(s, xi(s, λ))− Ui(wi(s)) dν(s) ≤

∫
Ω
Ui(

n∑
j=1

wj(s)) dν(s), ∀λ.

If we let

ki =
∫

Ω
Ui(

n∑
i=1

wi(s)) dν(s) and k = sup
1≤i≤n

ki.

Hence, property 3) follows.

To see property 4) recall that γ(s, λ) > 0 and that a consumer with zero social weight receive

nothing of value. Then, since endowments are strictly positive and xi(s, ·) is a continuous function

(see lemma 1), the property follows. 2

We can now prove the following lemma:

Lemma 3 : The excess utility function is an outward pointing vector field at the boundary of

Sn++.

Proof: From property 2 of lemma 2 it follows that e(λ) ∈ TλSn++.

To prove that e(λ) is an outward pointing vector field, let us now define zi

zi = lim
λm→λ∈δSn

++

ei(λm)
‖e(λm)‖

.
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By Property 3 of Lemma 2, we know that ei(λm) is uniformly bounded above, and because

‖e(λ)‖ → ∞ ( Property 4 of Lemma 2), the limit of ei(λm)/|e(λm)| must be non-positive. Then

we conclude that zi ≤ 0.

Furthermore, zi could be different from zero only if λi were zero. This follows from the fact

that if λi is different from zero, then we can write

ei(λm) =
−1
λmi

∑
j 6=i

ej(λm) ≥ − kn
λmi

.

Letting k′ = −kn/λmi , we have that k′ ≤ ei(λm) ≤ k. Hence zi = 0. 2

Strictly speaking, we have proved that we have a continuous outward pointing vector field for

almost any point in the boundary of Sn−1
++ . The excess utility function has properties similar to

those of the excess demand function. Mas-Colell (1985) proves that for excess demand functions

there is an homotopic inward vector field for all points of the boundary Sn−1
++ . In our case, with

an analogous proof, we can obtain an homotopic outward vector field for excess utility functions.

Proof of Theorem 1

Since Sn−1
++ is homeomorphic to the (n− 1)-dimensional disk, its Euler characteristic is one.

The equilibrium set E, is a compact set. Moreover, from the fact that zero is a regular value

of e, we have that E is a finite set. On the other hand, e(λ) is a C1 vector field on the tangent

space pointing outward at the boundary of Sn−1
++ . Then we can apply the Poincaré Hopf theorem.

In our case the index of the vector field e at λ ∈ E is the sign of determinant of J [e(λ)].

So, we obtain that:

1 =
∑

{λ:e(λ)=0}
signdetJ(e(λ)).

The theorem follows by simple cardinality arguments. 2

5 The Case of Incomplete Markets

The exchange economy has n traders and two periods, t = 0, 1. There is a state space (Ω,A, ν),

which is a probability space. There is one commodity available in each s ∈ Ω.

Utility functions and endowments are the same as in section 1. At t = 0 there are J < ∞
assets. Each asset is specified by a measurable bounded return function fj : Ω → Rl++. Assets

have real returns. There are not initial endowments for assets.

Following [Mas-Colell, Monteiro (96)] we define an equilibrium for the economy as a set (q, θ̄, p, x̄),

where:

(a) q ∈ Rj , q 6= 0 is an asset price.

12



(b) θ̄ = (θ̄1, · · · , θ̄n) ∈ RJn is a vector of assets portfolios such that
∑n
i=1 θ̄

i = 0, and qθ̄i ≤
0 ∀i = 1, . . . , n.

(c) p : Ω→ R+ is a non zero, measurable spot commodity price function.

(d) x̄ = (x̄1, . . . , xn) is an allocation. Each xi : Ω → R is a (measurable) function such that:∑n
i=1 x

i(s) =
∑n
i=1w

i(s), for a.e. s and for every i.

(e) (x̄i, θ̄i) solves:

max
x

∫
Ω
U i(s, xi(s))dν(s) (11)

subject to p(s)xi(s) ≤ p(s)(wi(s) +
J∑
i=1

θijfj(s), for a.e. s and qθ̄i ≤ 0

It is proved that the equilibrium exists. [Mas-Colell, Monteiro (96)]

As we have a single commodity we can suppose that the spot price p(s) = 1 ∀s ∈ Ω. Then the

decision problem (3.1) can be reduced to the pure portfolio choice problem:

max
θ
ui(θ) =

∫
Ω
U i(s,

J∑
j=1

wi(s) + θijfj(s))dν(s) (12)

subject to wi(s) +
J∑
j=1

θijfj(s) ≥ 0 and qθi ≤ 0

Definition 7 An equilibrium in incomplete markets (GEI equilibrium) with one consumption good

is a vector of asset prices q̄ ∈ RJ and an allocation of assets θ̄ ∈ RnJ , such that :

1) θ̄i solves (13).

2) θ̄ is a feasible allocation; i.e.
∑n
i=1 θ̄

i = 0.

3) If θ � θ̄ i.e.: ui(θ̄) ≥ ui(θ), for all i = 1, 2, ..., n and with strictly inequality for at least one

of them, θ is not in the budget set.

Since U i(·) is a strictly concave function, and fj is a positive one, then U i(wi(s)+
∑J
j=1 fj(s)(·)) :

Rj → R is a strictly concave function. The set Θi = {θ ∈ RJ ;wi(s)+
∑J
j=1 fj(s)θj ≥ 0 for a.e.s ∈

Ω} is a lower bounded set. Then an economy with incomplete markets and only one good available

in each state of the world is an Arrow-Debreu model.

The following proposition proves this statement.
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Proposition 3 Every equilibrium assets allocation is Pareto optimal.

Proof. Suppose that θ̄ ∈ Rnj is an equilibrium allocation, and there is a feasible θ with

θ � θ̄. That is, U i(wi(s) +
∑J
i=1 fj(s)θ

i
j) ≥ U i(wi(s) +

∑J
i=1 fj(s)θ̄

i
j) strictly for at least one

j ∈ {1, 2, . . . , n}, and
∑n
i=1 θ

i = 0,∀ s in a non null subset of Ω. Then qθj > qθ̄i. From 0 =∑n
i=1 θ

i =
∑n
i=1 θ̄

i we have 0 =
∑n
i=1 qθ

i =
∑n
i=1 qθ̄

i. Therefore, qθk < qθ̄k must hold for at

least one k, and thus θk 6= θ̄k. Then, it follows from the strict convexity of the preferences that
1
2θ
k + 1

2 θ̄
k �k θ̄k holds. Therefore we have 1

2qθ
k + 1

2qθ̄
k > 0 > qθ̄k. From this we have qθk > qθ̄k,

which is a contradiction. Then θ̄, is a Pareto optimal allocation. 2

So, it is possible to derive the equilibrium set using the excess utility function.

5.1 Equilibrium in The Portfolio Choice Problem

In the above conditions, for the portfolio choice problem, if θ̄ is a Pareto optimal portfolio, we

know that there exists a positive “social weight” vector λ ∈ Rn such that θ̄ solves the problem:

sup
θ

n∑
i=1

λi

∫
Ω
Ui(w(s) +

J∑
j=1

θijfj(s))dν(s) subject to
n∑
i

θi = 0. (13)

First order equations for this maximization problem are:

λi
∂

∂θ

∫
Ω
Ui(w(s) +

J∑
j=1

fj(s)θi(λ)dν(s) = γ(λ). (14)

As in section 1, we construct the excess utility function:

ei(λ) =
1
λi
γ(λ)θi(λ) (15)

e(λ) = {e1(λ), · · · , en(λ)}.

As in this case,

∂

∂θ

∫
Ω
Ui(w(s) +

J∑
j=1

fj(s)θij(λ)dν(s) =
∫

Ω

∂

∂θ
Ui(w(s) +

J∑
j=1

fj(s)θij(λ)dν(s).

From the first order conditions we obtain the following equation:

ei(λ) =
∫

Ω
∂

[
Ui(wi(s) +

J∑
i

θij(λ)fj(s))

]
θi(λ)dν(s). (16)

We say that the “social weight” vector λ̄ is an equilibrium if and only if e(λ̄) = 0.
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As in section 1, in order to obtain conditions for the uniqueness of equilibrium we consider the

Jacobian of the excess utility function.

The term in the i row and j column in the Jacobian of the excess utility function, is given by

J(e(λ))i(λj) =
∫

Ω

∂θi
∂λj

[
∂2Ui.θi + ∂Ui

]
dν(s). (17)

An Example with Uniqueness

In order to obtain an example with a unique of equilibrium, consider an economy with two

agents and two assets.

From the above equations we obtain that the Jacobian of the excess utility function has the

following form:

∂ei(λ)
∂λj

=
∫

Ω

[
f1
∂θi1
∂λj

+ f2
∂θi2
∂λj

] [
∂2Ui(wi + f1θ1 + f2θ2) (f1θ1 + f2θ2) + ∂Ui(wi + f1θ1 + f2θ2)

]
dν(s).

(18)

Suppose that there are two agents with endowments wi > 0, two assets and only one good

available in each state.

Let us consider the following utility functions:

ui(x) =
∫

Ω
x(s)

1
2dν(s), i = {1, 2}.

We have the following portfolio choice problem:

sup
θ

2∑
i=1

λi

∫
Ω

wi(s) +
2∑
j=1

θijfj(s)

 1
2

dν(s)

s.t.
2∑
i=1

θi = 0.

The excess utility function is:

ei(λ) =
∫

Ω

1
2

wi(s) +
2∑
j=1

fj(s)θij(λ)

− 1
2

 2∑
j=1

fj(s)θij(λ)

 dν(s).

From this equation we obtain:

∂ei
∂λi

=
1
2

∫
Ω

 2∑
j=1

fj
∂θij
∂λi

 ∂2Ui[
2∑
j=1

fjθij ] + ∂Ui)

 dν(s).

15



Since θ1j + θ2j = 0, j = {1, 2}, we obtain that: ∂θij

∂λi
= −∂θkj

∂λi
; i 6= k and i = {1, 2}; k = {1, 2}.

Since ∂2Ui
[∑2

i=1 fj(s)θij(λ)
]

+ ∂Ui ≥ 0 we obtain:

if
∂ei
∂λi

> (<)0 then
∂ei
∂λj

< (>)0,

hence e(λ) has the ”Gross Substitute” property [Dana (93)] and uniqueness of equilibrium follows.

2
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