

PROYECTO DE GRADO Instituto de Agrimensura – Facultad de Ingeniería – UDELAR

Nestor Cuentas - Laura Yáñez | Tutor: Ing. Agrim. Jorge Faure | 2017

Página de aprobación

FACULTAD DE INGENIERÍA

El tribunal docente integrado por los abajo firmantes aprueba la Tesis de Investigación:

Título

Autores

••••••	• • • • • • • • • • • • • • • • • • • •	

Tutor

•••••	 	• • • • • • • • • • • • • • • • • • • •

Carrera

Puntaje

Tribunal

Profesor	Nombre y	/ firma)
----------	----------	----------

Profesor.....(Nombre y firma)

Protesor(Nombre v firma

Fecha:

Tabla de contenido

Pá	gina d	de ap	robación	1
1.	Res	ume	n	6
2.	Intro	oduco	sión	7
3.	Obj	etivos	5	8
3	.1	Obje	etivo general	8
3	.2	Obje	etivos específicos	9
4.	Mar	со Те	eórico	9
4	.1	Siste	emas de Alturas	9
	4.1.	1	Generalidades	9
	4.1.	2	Números Geopotenciales	14
	4.1.	3	Alturas ortométricas	15
	4.1.	4	Alturas normales	20
	4.1.	5	Diferencia entre la ondulación geoidal y la anomalía de altura .	22
4	.2	Méte	odo de mínimos cuadrados	25
	4.2.	1	Ajuste de mínimos cuadrados de las magnitudes	26
	4.2.	2	Ajuste de mínimos cuadrados de las correcciones	27
	4.2.	3	Propagación de cofactores	29
4	.3	Posi	icionamiento satelital	31
	4.3.	1	Generalidades del sistema GNSS	31
	4.3.	2	Nivelación con GNSS	35
	4.3.	3	Modelo Global EGM-2008	
4	.4	Rele	evamiento Gravimétrico	
	4.4.	1	Mediciones de la gravedad	
	4.4.	2	Correcciones Gravitatorias	
	4.4.	3	Levantamiento en campo	
5.	Met	odolo	ogía	
5	.1	Zona	a de Estudio	
5	.2	Trab	pajos previos	
	5.2. del .	1 Arte)	Análisis de trabajos sobre alturas físicas realizados en la región 48	n (Estado
	5.2.	2	Análisis de datos existentes para la zona de estudio	51

5.3	Tare	eas de campo65
Ę	5.3.1	Nivelación geométrica67
Ę	5.3.2	Relevamiento GNSS73
Ę	5.3.3	Relevamiento gravimétrico75
5.4	Pro	cesamiento de datos y Análisis de resultados
Ę	5.4.1	Cálculo de números Geopotenciales97
Ę	5.4.2	Cálculo de alturas ortométricas106
Ę	5.4.3	Cálculo de alturas normales114
Ę	5.4.4	Cálculo de la ondulación geoidal (N) y de la anomalía de altura (ζ) 123
Ę	5.4.5 calculad	Comparación de las ondulaciones geoidales y alturas ortométricas as con las obtenidas del modelo global EGM08127
Ę	5.4.6	Modelo Geoidal Local
Ę	5.4.7	Validación del modelo y comparación con utilización de EGM08144
Ę	5.4.8 estudio	Diferencia entre ondulación geoidal y anomalía de altura en la zona de154
Ę	5.4.9	Modelo Cuasi-Geoidal Local
6.	Concl	usiones
7.	Recor	nendaciones y trabajos futuros161
8.	Biblio	grafía
9.	Anexo	s

Índice de Tablas

Tabla 1 – Desniveles geométricos expresados en metros5	54
Tabla 2 - Circuitos de nivelación - cierres calculados según desniveles medidos	s57
Tabla 3 – Datos GPS – Obtenidos de informe proyecto "Estudio y Refinamiento Modelos Geoidales" – Antonio Villaluenga y Jaime Betancur	de 0
Tabla 4 – Datos de estaciones gravimétricas (Nombre Estación, ubicación UTM, real, gravedad y profundidad) - Obtenida de Informe "Proyecto investigación Ge y Mapeo Litológico en la Fosa Santa Lucía, Uruguay" - Manuel Araneda C y Álva Araneda A	, altura ofísica aro 5
Tabla 5 – Planilla de nivelación del perfil7	2
Tabla 6 – Cotas oficiales para los puntos del perfil7	2
Tabla 7 – Datos GNSS perfil7	'3
Tabla 8 – Libreta de campo con datos crudos de relevamiento gravimétrico 8	34
Tabla 9 – Datos gravimétricos del perfil8	5
Tabla 10 – Cálculo de la Deriva Instrumental y valores finales de gravedad 8	6
Tabla 11 – Diferencia entre gravedad medida y gravedad interpoladas para punt perfil	tos del 8
Tabla 12 - Valores de gravedad corregidos existentes en la zona9	5
Tabla 13 – Valores de gravedad interpolados puntos malla nivelación9	6
Tabla 14 – Diferencia de números geopotenciales previo al ajuste para cada tran nivelación9	mo de 19
Tabla 15 – Comparación de cierres geopotenciales y geométricos10	0
Tabla 16 – Números Geopotenciales y desviación estándar10	3
Tabla 17 – Desniveles geopotenciales10)5
Tabla 18 – Alturas ortométricas de Helmert 10	9
Tabla 19 – Correcciones Ortométricas11	1
Tabla 20 – Comparación de desniveles ortométricos11	4
Tabla 21 – Alturas normales11	7
Tabla 22 – Correcciones normales 11	9
Tabla 23 - Comparación de desniveles normales 12	21
Tabla 24 – Comparación de alturas ortométricas y normales12	22
Tabla 25 – Cálculo de N y ζ en función de la altura elipsoidal obtenida por releva GNSS y alturas ortométricas y normales calculadas12	amiento 24
Tabla 26 – Datos GPS modelo geoidal EGM0812	29
Tabla 27 – Diferencia N calculado, EGM0813	80

Tabla 28 – Función paramétrica 4 parámetros clásica136
Tabla 29 - Función paramétrica 5 parámetros clásica
Tabla 30 - Función paramétrica 5 parámetros diferencial140
Tabla 31 - Función paramétrica 6 parámetros diferencial 142
Tabla 32 – Función paramétrica 7 parámetros diferencial
Tabla 33 – Diferencia de números geopotenciales para los tramos del perfil146
Tabla 34 – Números Geopotenciales para los puntos del perfil 146
Tabla 35 – Cálculo de alturas ortométricas para puntos del perfil 147
Tabla 36 - Cálculo de alturas normales para puntos del perfil148
Tabla 37 – Cálculo de ondulaciones geoidales y anomalías de alturas148
Tabla 38 – Ondulaciones geoidales para puntos del perfil
Tabla 39 – Comparación de desniveles ortométricos
Tabla 40 – Comparación de desniveles ortométricos con EGM08 152
Tabla 41 – Comparación por acumulación de tramos del perfil153
Tabla 42 – Datos crudos gravímetro169
Tabla 43 – Libreta de Campo gravimetría 170
Tabla 44 – Resultado ajuste geopotencial magnitudes
Tabla 45 – Valores para ajuste de funciones paramétricas diferenciales 177
Tabla 46 – Valores para ajuste de funciones paramétricas clásicas

1. Resumen

El presente trabajo se realiza a los efectos de ser presentado como Proyecto final de la carrera Agrimensura y tiene como principal objetivo estudiar los sistemas de alturas físicas partiendo de una nivelación geométrica, mediciones de gravedad y posicionamiento GNSS. Se determinan las ventajas y desventajas de utilizar los distintos tipos de alturas físicas. Se propone un modelo para el cálculo de alturas ortométricas y otro para el cálculo de alturas normales en la zona de estudio. En virtud de que las alturas normales son las recomendadas por la comunidad geodésica, se hará énfasis en estas a pesar de que por cualidades de la zona la altura normal y la altura ortométrica serán equivalentes.

Motiva la elección del tema el constante avance de las tecnologías GNSS. Es de público conocimiento que la técnica de nivelación más utilizada en la profesión del Ingeniero Agrimensor es la nivelación geométrica, pero esta resulta muy cara y requiere de mucho tiempo, más aún si se trata de un área extensa para nivelar. Los sistemas de posicionamiento satelital se presentan como la herramienta de medición más apropiada en el caso de áreas extensas por su practicidad y bajo costo. Es por esto que consideramos necesario profundizar en el estudio de determinación de alturas por tecnologías GNSS.

Al existir sobreabundancia de datos en la zona de estudio, se aprovechan los mismos para evaluar si existe una solución que brinde un mejor resultado

para el cálculo de alturas físicas en comparación con el cálculo de alturas considerando los modelos globales existentes. Para brindar dicha solución se utilizarán funciones paramétricas.

Palabras claves: Modelo Geoidal, Cuasigeoide Gravimetría, Nivelación Geométrica, Alturas físicas.

2. Introducción

En el año 2007 surgen la necesidad de saneamiento para Ciudad del Plata ubicada en el departamento de San José. Actualmente las obras vinculadas al proyecto no han sido ejecutadas. En su momento OSE recibe la solicitud de un trabajo de relevamiento en la zona que permita determinar el escurrimiento de las aguas por gravedad y para esto es necesario conocer bien la topografía. De esta forma O.S.E solicitó que se realizara un relevamiento de alturas en la zona para un ante-proyecto, se encomendó esta tarea a un equipo de trabajo incluyendo al Ingeniero Agrimensor Jorge Faure, se realizó una nivelación geométrica en toda la zona donde se establecieron puntos fijos. Esto permitió tener acceso a los datos del relevamiento realizado en Ciudad del Plata.

Se decide tomar esta zona para el estudio por la existencia de datos accesibles. Además, considerando la logística que implicaría realizar el trabajo en una zona alejada y donde no se encontrarían datos, se evalúo como mejor opción la zona de Ciudad del Plata.

En el año 2009 esta zona fue estudiada por los actuales Ingenieros Agrimensores Antonio Villaluenga y Jaime Betancur para su proyecto de fin de carrera "Estudio y Refinamiento de modelos Geoidales". En este trabajo se completó la nivelación geométrica y se relevaron con tecnologías GNSS todos los puntos nivelados.

Los equipos GNSS nos permiten obtener alturas elipsoidales, para poder obtener alturas físicas es necesario modelar la superficie de referencia de dichas alturas, esto es, una superficie física, por lo cual es necesario considerar las variaciones gravimétricas en la zona. En el año 2010 se realiza en la zona de Ciudad del Plata un relevamiento gravimétrico. Este trabajo fue presentado en el Congreso IPGH en el año 2015, los valores de los perfiles de gravedad medidos son utilizados en este trabajo para la determinación de alturas físicas.

Combinando los datos disponibles en la zona y aportando mediciones propias se realiza el estudio de alturas que se detallará en el presente trabajo.

3. Objetivos

3.1 Objetivo general

Realizar un estudio de las alturas físicas, derivando las mismas de los números geopotenciales obtenidos a través de la combinación de: nivelación geométrica, gravimetría y posicionamiento GNSS. Evaluar las ventajas y desventajas de utilizar los diferentes tipos de alturas físicas (ortométricas y normales)

3.2 Objetivos específicos

- Con la combinación de datos de la zona realizar el ajuste de la malla de nivelación en términos de números geopotenciales y evaluar los cierres de las mallas.
- Derivar las cotas ortométricas y normales y realizar una comparación de estas en la zona.
- Proponer un modelo a partir de funciones paramétricas que permita obtener las ondulaciones geoidales y las anomalías de alturas para cualquier punto de la zona de estudio. Evaluar este modelo comparándolo con el modelo global EGM08.
- Evaluar la solución que brinda el modelo para un perfil de puntos externos a la malla de nivelación que sirvió de base para el cálculo del mismo.

4. Marco Teórico

En esta sección se presentan y definen los conceptos considerados necesario para el correcto entendimiento y seguimiento del tema.

4.1 Sistemas de Alturas

4.1.1 Generalidades

"Los fines principales de la Geodesia son la determinación de la figura de la Tierra, el posicionamiento de puntos sobre la superficie física terrestre y el estudio del campo de gravedad externo del planeta. "(Alberto Benavidez Sosa).

En la nivelación geométrica el sistema de medición (instrumento y reglas graduadas o miras) se orienta verticalmente según la línea de la plomada del campo de gravedad terrestre; por lo tanto, el plano horizontal del instrumento de medición coincide con la línea tangente a la superficie equipotencial que pasa por el punto de observación. De acuerdo con esto, las diferencias de nivel dn medidas corresponden con la sección de la línea de la plomada, que coincide con el eje vertical de las miras, entre la superficie terrestre y la tangente a la equipotencial realizada por el instrumento. Como la separación entre dos superficies equipotenciales varía con la gravedad en proporción inversa, éstas no son paralelas y, en consecuencia, la determinación de alturas mediante la nivelación clásica se ve afectada por el campo de gravedad terrestre.

Por este motivo las diferencias de nivel **dn** medidas en un circuito cerrado contienen, además de los errores aleatorios de observación, el error de cierre teórico *(4-1)* ya que al variar la trayectoria el desnivel cambia. Por este motivo a la hora de calcular alturas debe corregirse el efecto de la gravedad. *(Determinación de alturas físicas en Colombia - Laura Sánchez*)

$$\varepsilon = \oint dn \tag{4-1}$$

Si se consideran dos puntos A y B, distantes uno del otro de forma que deba aplicarse el procedimiento que se muestra en la *Imagen 1* de forma repetitiva podemos apreciar que la suma de diferencias de nivel entre A y B no será igual a la diferencia de alturas ortométricas en dichos puntos. La razón es que el incremento δn es diferente al incremento δH_B de la altura ortométrica, debido al no paralelismo de las superficies equipotenciales de la gravedad.

Siendo δW el incremento del potencial W:

$$-\delta W = g\delta n = g'\delta H_B \tag{4-2}$$

Imagen 1 – Esquema básico de nivelación

Imagen 2 – Nivelación y alturas ortométricas

g la gravedad en la estación de nivelación.

g' la gravedad sobre la línea de la plomada de B en δH_B

$$\delta H_B = \frac{g}{g'} \delta n \neq \delta n \tag{4-3}$$

No hay una relación geométrica directa entre el resultado de una nivelación geométrica y las alturas ortométricas, es una relación física como se puede ver en la (4-3).

Por este motivo si además de realizar la nivelación geométrica se realizan mediciones de gravedad:

$$\delta W = -g\delta n \tag{4-4}$$

Para el caso de los puntos A y B:

$$W_B - W_A = -\sum_A^B g \,\delta n \tag{4-5}$$

Entonces combinando la nivelación tradicional con mediciones de gravedad obtenemos como resultado diferencias de potenciales que son cantidades físicas.

Siendo más rigurosos podemos cambiar la sumatoria por la integral:

$$W_B - W_A = -\int_A^B g \, dn \tag{4-6}$$

Es importante tener en cuenta que esta integral es independiente del camino de integración, por lo cual diferentes líneas de integración que parten del punto A y llegan al punto B deberían dar el mismo resultado. Esto es evidente porque W es una función de la posición únicamente. Para cada posición corresponde un único valor de W.

Si se realiza una nivelación cerrada y se vuelve al punto de inicio A, la integral total debe dar como resultado 0:

$$\oint g \, dn = -W_A + W_A = 0 \tag{4-7}$$

Imagen 3 – Circuito cerrado de nivelación

Por otro lado, las diferencias de alturas medidas, es decir, la suma de los incrementos de nivelación geométrica:

$$\Delta n_{AB} = \sum_{A}^{B} \delta n = \int_{A}^{B} dn \qquad (4-8)$$

Esta depende del camino de integración y en general no es igual a 0 aunque se considere precisión perfecta en la medición.

$$Error \ de \ cierre = \oint dn \neq 0 \tag{4-9}$$

Las diferencias de potencial son el resultado de la combinación de nivelación geométrica con mediciones de gravedad. Nivelar sin mediciones de gravedad si bien se aplica en la práctica, carece de significado desde el punto de vista riguroso ya que solo considerar las diferencias de nivel geométrico conduce a errores de cierre. (Physical Geodesy_Moritz).

4.1.2 Números Geopotenciales

Si consideramos un punto al nivel del mar, simplificando suponemos que se encuentra sobre el geoide (O). Consideramos otro punto, A y lo conectamos a O por nivelación geométrica. La diferencia de potencial entre A y O puede determinarse por:

$$\int_{0}^{A} g \, dn = W_{0} - W_{A} = C \tag{4-10}$$

Esta es la diferencia entre el potencial en el geoide y el potencial en el punto A. Esta diferencia se conoce como número geopotencial (C). La particularidad del número geopotencial es que esta diferencia de potencial es independiente del recorrido de nivelación realizado para conectar el punto con el nivel del mar. La unidad de medida del número geopotencial son las unidades geopotenciales (g.p.u) que equivale a 100 gal m. (Physical Geodesy_Moritz).

4.1.3 Alturas ortométricas

Imagen 4 – Altura ortométrica

Si consideramos un punto P sobre la superficie terrestre, P₀ será la intersección de la línea de la plomada por P con el geoide.

El número geopotencial en P será:

$$C = \int_0^H g \, dH \tag{4-11}$$

Sabemos que:

$$dC = -dW = gdH \tag{4-12}$$

De esta forma:
$$dH = -\frac{dW}{g} = \frac{dC}{g}$$
 (4-13)

Entonces:
$$H = -\int_{W_0}^{W} \frac{dW}{g} = \int_0^C \frac{dC}{g}$$
 (4-14)

Esta integración se hace sobre la línea de la plomada, esta forma de expresar H no es muy práctica por lo cual realizamos el siguiente cambio:

$$C = \int_0^H g \, dH = H \cdot \frac{1}{H} \int_0^H g \, dH$$
 (4-15)

Entonces:

$$=\bar{g}H \tag{4-16}$$

Siendo: $\bar{g} = \frac{1}{H} \int_{0}^{H} g \, dH$ (4-17)

С

gravedad media sobre la línea de la plomada entre el geoide y la superficie terrestre.

Despejando H de la ecuación (4-16) resulta: $H = \frac{c}{\bar{g}}$, de esta forma H queda determinada si se conoce el valor de \bar{g} .

No es posible conocer el valor de la gravedad media entre el Geoide y el elipsoide por lo cual se debe realizar una reducción de la gravedad en la superficie terrestre. Por este motivo existen muchas funciones que permiten aproximar la gravedad media. Una de ellas es la gravedad de Helmert donde:

$$\bar{g} = g + 0.0424. H (g en gal y H en km)$$
 (4-18)

Sustituyendo en la ecuación (4-16):

$$H = \frac{c}{g_{\pm 0.0424H}} (C \text{ en } g. p. u, g \text{ en } gal y H \text{ en } km) \text{ Altura de Helmert}$$
(4-19)

Es importante aclarar que para zonas montañosas puede ser necesario aplicar una reducción de la gravedad más rigurosa. Esto implica que existen distintos valores de \bar{g} dependiendo de la reducción de la gravedad que se utilice. Por este motivo no existe un único valor para la altura ortométrica.

4.1.3.1 Corrección ortométrica

La corrección ortométrica se suma a la diferencia de nivel medida entre dos puntos para convertirla en una diferencia de nivel ortométrica.

Consideremos una línea de nivelación que conecta dos puntos A y B y aplicamos un pequeño truco:

$$\Delta H_{AB} = H_B - H_A = H_B - H_A - H_B^{dyn} + H_A^{dyn} + (H_B^{dyn} - H_A^{dyn})$$
$$= \Delta H_{AB}^{dyn} + (H_B - H_B^{dyn}) - (H_A - H_A^{dyn})$$

(4-20)

Imagen 5 – Ilustración superficie terrestre y geoide

Sabemos que:

$$\Delta H_{AB}^{dyn} = \Delta_{nAB} + DC_{AB}$$

(4-21)

Esto surge de la deducción de la corrección dinámica, esta no se detalla en el presente informe porque no se trabajará con alturas físicas dinámicas.

(Physical Geodesy_Moritz).

Consideramos las diferencias entre la altura dinámica y ortométrica, $H_A - H_A^{dyn}$

$$y H_B - H_B^{dyn}$$
.

Imaginemos una línea de nivelación ficticia desde el punto A_0 en el geoide hasta el punto A en la superficie terrestre a lo largo de la línea de la plomada. Para el punto A: $\Delta_{nA_0A} = H_A$, entonces:

$$DC_{A_0A} = \Delta H_{A_0A}^{dyn} - \Delta n_{A_0A} = H_A^{dyn} - H_A$$
(4-22)

$$H_A - H_A^{dyn} = -DC_{A_0A} (4-23)$$

$$H_B - H_B^{dyn} = -DC_{B_0B} (4-24)$$

Sustituyendo las ecuaciones (4-21), (4-23) y (4-24) en (4-20):

$$\Delta H_{AB} = \Delta n_{AB} + DC_{AB} + DC_{A_0A} - DC_{B_0B}$$
 O

$$\Delta H_{AB} = \Delta n_{AB} + OC_{AB} \tag{4-25}$$

Donde $OC_{AB} = DC_{AB} + DC_{A_0A} - DC_{B_0B}$ es la corrección ortométrica, esta es una relación notable entre la corrección ortométrica y dinámica.

Escrito de otra forma:

$$OC_{AB} = DC_{AB} + DC_{A_0A} + DC_{BB_0}$$
(4-26)

Siendo $DC_{B_0A_0} = 0$

Podemos escribir:

$$OC_{AB} = DC_{AB} + DC_{BB_0} + DC_{B_0A_0} + DC_{A_0A}$$
(4-27)

Esto puede escribirse como:

$$OC_{AB} = DC_{ABB_0A_0A} \tag{4-28}$$

De esta forma la corrección ortométrica desde A hasta B equivale a la corrección

dinámica sobre ABB_0A_0A .

La corrección dinámica es:

$$DC_{AB} = \int_{A}^{B} \frac{g - \gamma_0}{\gamma_0} dn = \sum_{A}^{B} \frac{g - \gamma_0}{\gamma_0} \delta_n$$
 (Physical Geodesy_Moritz). (4-29)

Por lo cual se tiene:

$$DC_{AB} = \int_{A}^{B} \frac{g - \gamma_{0}}{\gamma_{0}} dn = \sum_{A}^{B} \frac{g - \gamma_{0}}{\gamma_{0}} \delta_{n}$$
(4-30)

$$DC_{A_0A} = \int_{A_0}^{A} \frac{g - \gamma_0}{\gamma_0} dH = \sum_{A}^{B} \frac{\bar{g}_A - \gamma_0}{\gamma_0} H_A$$
(4-31)

$$DC_{B_0B} = \int_{B_0}^{B} \frac{g - \gamma_0}{\gamma_0} dH = \sum_{A}^{B} \frac{\bar{g}_B - \gamma_0}{\gamma_0} H_B$$
(4-32)

Siendo \bar{g}_B y \bar{g}_A los valores medios de la gravedad a lo largo de la línea de la plomada de A hasta B.

Entonces la corrección ortométrica es:

$$OC_{AB} = \sum_{A}^{B} \frac{g - \gamma_0}{\gamma_0} \delta_n + \frac{\bar{g}_A - \gamma_0}{\gamma_0} H_A + \frac{\bar{g}_B - \gamma_0}{\gamma_0} H_B$$
(4-33)

Para esta necesitamos conocer los valores medios de gravedad a lo largo de la línea de la plomada. γ_0 es una constante arbitraria para la cual siempre se utiliza el valor de la gravedad normal para una latitud de 45°.

4.1.3.2 Evaluación de precisiones en la determinación de alturas ortométricas

Es posible evaluar el efecto sobre el valor de H (altura ortométrica) generado por un error en el valor de la gravedad media.

Si diferenciamos la expresión:

$$H = \frac{c}{\bar{g}} \tag{4-34}$$

Se obtiene:

$$\delta H = -\frac{c}{\bar{g}^2} \delta \bar{g} = -\frac{H}{\bar{g}} \,\delta \bar{g} \tag{4-35}$$

Como \bar{g} es aproximadamente 1000 gal podemos expresar la ecuación anterior como:

$$\delta H_{[mm]} \doteq \delta \bar{g}_{[mgal]} H_{[km]} \tag{4-36}$$

Siendo δH es el error en H, causado por el error $\delta \bar{g}$ en \bar{g} .

Para H = 1km

$$\delta H_{[mm]} \doteq \delta \bar{g}_{[mgal]} \tag{4-37}$$

Esto indica que un error en el orden de los 100 mgal genera un error de 10cm en una elevación de 1000m.

4.1.4 Alturas normales

Si asumimos por un momento que la gravedad de la tierra es normal, es decir,

W = U, $g = \gamma$, T=0. Con esta suposición hablaremos de alturas normales en

lugar de ortométricas y se nombrarán como H^* . De esta forma las ecuaciones (4-11) y (4-17) se convierten en:

$$W_0 - W = C = \int_0^{H^*} \gamma \, dH^*$$
 (4-38)

$$H^* = \int_0^C \frac{dC}{\gamma} \tag{4-39}$$

$$C = \bar{\gamma} H^* \tag{4-40}$$

Donde:

$$\bar{\gamma} = \frac{1}{H^*} \int_0^{H^*} \gamma dH^*$$
 (4-41)

Esta es la gravedad normal media a lo largo de la línea de la plomada.

Como el potencial normal U es una simple función analítica, estas fórmulas se pueden evaluar de manera directa, pero el potencial de la tierra evidentemente no es normal. Si consideramos un punto P en la superficie terrestre, este tiene un potencial W_P y también un potencial normal U_P , pero en general $W_P \neq U_P$. Sin embargo, existe un punto Q sobre la línea de la plomada de P tal que: $U_Q =$ W_P esto es, que el potencial normal Q es igual a el potencial real en P. La altura normal H^* de P no es más que la altura elipsoidal de Q sobre el elipsoide al igual que la altura ortométrica de P es la altura de P sobre el geoide.

$$\bar{\gamma} = \frac{1}{H^*} \int_0^{H^*} \gamma(z) dz$$
 (4-42)

Siendo Υ la gravedad normal al elipsoide que depende de la latitud:

$$\gamma(z) = \gamma \left[1 - \frac{2}{a} \left(1 + f + m - 2f seno^2(\varphi)\right) z + \frac{3}{a^2} z^2\right]$$
(4-43)

Calculando
$$\bar{\gamma} = \gamma \left[1 - \left(1 + f + m - 2f seno^2(\varphi) \right) * \frac{H^{*2}}{a} + \frac{H^{*2}}{a^2} \right]$$
 (4-44)

(Physical Geodesy_Moritz)

Despejando de la ecuación: C/γ

$$H^* = \frac{c}{\gamma} \left[1 + \left(1 + f + m - 2fseno^2(\varphi) \right) \frac{c}{a\gamma} + \left(\frac{c}{a\gamma} \right)^2 \right]$$
(4-45)

Donde Y es la gravedad normal al elipsoide, para la latitud φ .

4.1.4.1 Corrección normal

Al igual que en el caso de las alturas dinámicas y ortométricas existe una corrección normal NC. La fórmula que permite calcular esta corrección surge de reemplazar \bar{g} en la ecuación (4-33) por $\bar{\gamma}$ y *H* por *H*^{*}:

$$NC_{AB} = \sum_{A}^{B} \frac{g - \gamma_0}{\gamma_0} \delta n + \frac{\overline{\gamma}_A - \gamma_0}{\gamma_0} H_A^* - \frac{\overline{\gamma}_B - \gamma_0}{\gamma_0} H_B^*$$
(4-46)

4.1.5 Diferencia entre la ondulación geoidal y la anomalía de altura

Sabemos que la altura elipsoidal (h):

$$h = H + N \tag{4-47}$$

De acuerdo a la teoría moderna (Physical Geodesy_Moritz):

$$h = H^* + \zeta \tag{4-48}$$

De estas dos ecuaciones, se tiene:

$$N - \zeta = H^* - H \tag{4-49}$$

Esto significa que la diferencia entre la ondulación geoidal y la anomalía de altura es equivalente a la diferencia entre la altura normal y la altura ortométrica.

Z es la ondulación del cuasigeoide, por lo cual esta diferencia es también la distancia entre el geoide y el cuasigeoide.

Las alturas se definen como:

$$H = \frac{c}{\bar{g}} \tag{4-50}$$

$$H^* = \frac{c}{\overline{\gamma}} \tag{4-51}$$

Siendo:

C el número geopotencial

 \bar{g} la gravedad media a lo largo de la línea de la plomada entre el geoide y la superficie topográfica.

 $\bar{\gamma}$ es la gravedad normal media a lo largo de la línea de la plomada entre el elipsoide y el teluroide.

Restando las ecuaciones (4-51) y (4-50):

$$H^* - H = \frac{\bar{g} - \bar{\gamma}}{\bar{\gamma}} H \tag{4-52}$$

Entonces:

$$N = \zeta + \frac{\bar{g} - \bar{\gamma}}{\bar{\gamma}} H \tag{4-53}$$

El término $\bar{g} - \bar{\gamma}$ es aproximadamente equivalente a la anomalía de Bouguer, con:

$$\bar{\gamma} \doteq \gamma - \frac{1}{2} \frac{d\varphi}{dh} H \tag{4-54}$$

 $\bar{\gamma}$ en el denominador puede ser reemplazada por la constante γ_0 que siempre utilizamos gravedad normal para $\varphi = 45^{\circ}$

Como la anomalía de Bouguer es bastante insensible a las irregularidades topográficas locales, el coeficiente es localmente constante, de modo que existe una relación aproximadamente lineal entre ζ y las irregularidades locales de la altura H. En otras palabras, el cuasigeoide es como una copia de la superficie topográfica.

Para estimar la diferencia entre N y ζ usamos la ecuación:

$$N - \zeta = \frac{\bar{g} - \bar{\gamma}}{\bar{\gamma}} H \tag{4-55}$$

$$\frac{\bar{g}-\bar{\gamma}}{\bar{\gamma}} \doteq \frac{\Delta_{g_B}}{981 \, gal} \doteq 10^{-3} \Delta_{g_B} \tag{4-56}$$

Siendo: Δ_{g_b} es la anomalía de Bouguer in gal, entonces:

$$(\zeta - N)_{[m]} \doteq -\Delta_{g_{B[gal]}} H_{[km]}$$

$$(4-57)$$

Como Δ_{g_B} suele ser negativo en los continentes, la diferencia $\zeta - N$ son generalmente positivas allí. En otras palabras, la anomalía de altura es en general mayor que la ondulación geoidal correspondiente en tierra.

 $\zeta = N$ en los océanos. Si Δ_{q_B} =-100mgal=-0.1gal y H=1km, entonces:

 $\zeta-N=0.1m$

Además, la anomalía de Bouguer depende de la elevación media del terreno, disminuyendo aproximadamente en 0.1gal por elevación promedios de 1km. Esta es una estimación aproximada puede verificarse inspeccionando mapas de anomalías de Bouguer.

La diferencia $\zeta - N$ aumenta más rápido que la altura.

Un punto teóricamente importante es que el cuasigeoide puede determinarse sin suposiciones hipotéticas sobre la densidad, pero no así el geoide. Evitar este tipo de suposiciones ha sido la idea guía de la investigación de Molodensky. Sin embargo, las alturas ortométricas se ven muy poco afectadas por los errores de densidad. El error en H debido al conocimiento imperfecto de la densidad apenas excede 1 o 2 decímetros, incluso en casos extremos.

4.2 Método de mínimos cuadrados

Este método realiza un ajuste de las observaciones de forma tal que la suma cuadrática de los residuales debe ser mínima, modificando mínimamente las observaciones realizadas y realizando un ajuste con independencia del observador.

El método de mínimos cuadrados se puede aplicar mediante dos algoritmos de resolución:

- Ajuste de mínimos cuadrados de las magnitudes (AMC-M)
- Ajuste de mínimos cuadrados de las correcciones (AMC-C)

4.2.1 Ajuste de mínimos cuadrados de las magnitudes

Esta técnica mediante su proceso de resolución permite el cálculo directo de las magnitudes.

Este tipo de ajuste tiene las siguientes características:

Las ecuaciones de condición incluyen observaciones y parámetros incógnitas.

El número de ecuaciones de condición es el mismo que el de observaciones.

Cada ecuación de condición contiene una sola observación con un coeficiente igual a 1.

La forma en la que escribimos las ecuaciones es la siguiente:

$$\bar{l} + B\Delta = d \tag{4-58}$$

Donde:

$$\bar{l} = l + \nu \tag{4-59}$$

Siendo:

 \bar{l} magnitud ajustada

l magnitud observada

v errores residuales

Si llamamos B a la matriz formada por los coeficientes de los parámetros.

 Δ matriz que contiene los parámetros y d formada por las constantes del método:

$$(l+v) + B\Delta = d \tag{4-60}$$

$$(v + B\Delta) = d - l = f \tag{4-61}$$

Por lo tanto, la forma de expresar las ecuaciones de condición es:

$$v + B\Delta = f \tag{4-62}$$

En este método intervienen μ parámetros a determinar y n residuales, teniendo un total de $n + \mu$ incógnitas, con lo que estamos en presencia de un sistema de n ecuaciones con $n + \mu$ incógnitas, por lo tanto, es indeterminado.

El método en su proceso resuelve la indeterminación incorporando μ ecuaciones de condición (ecuaciones normales), tal que el sistema tenga dimensión $(n + \mu) * (n + \mu)$ y con ellos obtener una única y óptima solución.

Algoritmo de resolución:

$$\begin{cases} v + B\Delta = f \\ W \\ N = B'WB \\ t = B'Wf \\ \Delta = N^{-1}t \end{cases}$$

4.2.2 Ajuste de mínimos cuadrados de las correcciones

Esta técnica mediante su proceso de resolución permite el cálculo directo de las correcciones.

Este tipo de ajuste tiene las siguientes características:

• En las ecuaciones de condición no se incluyen los parámetros incógnita.

• El número de ecuaciones de condición es igual al de mediciones redundantes.

La forma en la que se escriben las ecuaciones de condición es la siguiente:

$$A\bar{l} = d \tag{4-63}$$

$$A(l+v) = d \tag{4-64}$$

$$Al + Av = d \tag{4-65}$$

$$Av = d - Al = f \tag{4-66}$$

Por lo que las ecuaciones de condición se expresan:

$$Av = f \tag{4-67}$$

Cuando aplicamos el método de mínimos cuadrados se obtienen r ecuaciones de condición, con n residuales, no conocidos, donde

 $r = n - n_0$ y r < n, por lo tanto, no tenemos una única solución. Pero el método en su resolución incorpora r ecuaciones adicionales que hacen que el sistema sea determinado.

Algoritmo de resolución:

$$\begin{cases} Av = f \\ W \\ Q = W^{-1} \\ Q_e = AQA' \\ K = Q_e^{-1}f \\ v = QA'K \end{cases}$$

4.2.3 Propagación de cofactores

$$\sum_{XX} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \vdots & \vdots \\ \sigma_{1n} & \cdots & \cdots & \sigma_n^2 \end{pmatrix} \quad \sum_{XX} = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \ddots & \vdots \\ 0 & \cdots & \sigma_n^2 \end{pmatrix}$$

Matriz Covarianza

Matriz Varianza

$$Q_{XX} = W^{-1} = \frac{1}{\sigma_0^2} \cdot \sum_{XX} = \begin{pmatrix} \frac{1}{w_1} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \frac{1}{w_n} \end{pmatrix} \rightarrow \sum_{XX} = \sigma_0^2 \cdot Q_{XX}$$

Matriz Cofactor

SI desarrollamos estas expresiones para funciones lineales $y = ax + b \rightarrow$ $(\sum_{YY} = A, \sum_{XX}, A^T)$ y funciones linealizadas $y = f(x) \rightarrow (\sum_{YY} = J_{YX}, \sum_{XX}, J_{YX}^T)$ Obtenemos que:

$$Q_{YY} = A. Q_{XX}. A^T$$
$$Q_{YY} = J. Q_{XX}. J^T$$

Lo cual es la "Ley de Aplicación de Cofactores"

Propagación de Cofactores para AMC + M

La ecuación de condición utilizada para este ajuste es: v +

 $B\Delta = f$ considerando a f = d - l donde:

d: datos numéricos

l: observaciones

La Matriz Cofactor asociada a las observaciones $\rightarrow Q_{ll} = Q = W^{-1}$

Algoritmo de resolución:

$$N = B^t . W . B$$

$$t = B^T . W . f$$

$$\Delta = N^{-1} \cdot t$$

$$v = f - B.\Delta$$

 $\bar{l}=l+v$

Desarrollando el Algoritmo obtenemos las siguientes ecuaciones:

$$Q_{\Delta\Delta} = N^{-1} \rightarrow \sum_{\Delta\Delta} = \sigma_0^2 \cdot Q_{\Delta\Delta}$$
(4-68)

$$Q_{\nu\nu} = Q - B. N^{-1} B^T \to \sum_{\nu\nu} = \sigma_0^2 . Q_{\nu\nu}$$
 (4-69)

$$Q_{\overline{l}l} = B.N^{-1}.B^T \to \sum_{\overline{l}l} = \sigma_0^2.Q_{\overline{l}l}$$
(4-70)

Luego por (4-69) y (4-70) tenemos que $Q_{\bar{l}\bar{l}} = Q - Q_{\nu\nu}$, donde se deduce que las varianzas de las observaciones ajustadas son menores que las de las observaciones realizadas.

Se obtiene entonces con la propagación de cofactores del MMC de las magnitudes, el cálculo de las σ^2 o σ de las magnitudes ajustadas, de las observaciones ajustadas y de los residuales de cada observación.

Propagación de Cofactores para AMC + C

La ecuación de condición utilizada para este ajuste es A.v = f considerando a

$$f = d - l$$
 donde:

d: datos numéricos

l: observaciones

Algoritmo de resolución

$$Q_e = A. Q. A^T$$
$$W_e = Q_e^{-1}$$
$$k = w_e f$$
$$v = Q A^T k$$

 $\overline{l} = l + v$

Desarrollando el Algoritmo obtenemos las siguientes ecuaciones:

$$Q_{\nu\nu} = Q \cdot A^T \cdot W_e \cdot A \cdot Q \to \sum_{\nu\nu} = \sigma_0^2 \cdot Q_{\nu\nu}$$

$$(4-71)$$

$$Q_{\bar{l}\bar{l}} = Q - Q \cdot A^T \cdot W_e \cdot A \cdot Q \to \sum_{\bar{l}\bar{l}} = \sigma_0^2 \cdot Q_{\bar{l}\bar{l}}$$

$$(4-72)$$

De esta forma obtenemos que $Q_{\bar{l}\bar{l}} = Q - Q_{\nu\nu}$

4.3 Posicionamiento satelital

4.3.1 Generalidades del sistema GNSS

El sistema Global de Navegación por satélite (Global Navigation Satellite System) proporciona un posicionamiento y localización geoespacial con cobertura global o sea en todo el globo terrestre, tanto de forma autónoma como con sistemas de aumentación. Dentro de los sistemas activos se encuentran el GPS, GLONASS y GALILEO.

GPS

Sistema de posicionamiento satelital basado en la medición de la distancia a un mínimo de 4 satélites en simultáneo que, además, transmiten sus posiciones estimadas.

<u>Segmento Espacial</u>: Consiste de 27 satélites distribuidos en seis planos orbitales inclinados 55° respecto al ecuador. Los satélites se mueven a una altura aproximada de 20600 km, completando dos revoluciones por día sidéreo.

<u>Segmento de Control:</u> estaba compuesto en sus inicios por una estación de control maestro en Colorado Springs (EEUU), 5 estaciones de observación y 4 antenas de tierra distribuidas entre 5 puntos muy cercanos al ecuador terrestre.

En la actualidad se han anexado varias estaciones de rastreo: Australia, Quito, Usno, Buenos Aires, Bahrain, Inglaterra. El segmento de Control rastrea los satélites GPS, actualiza su posición Orbital determinando la órbita de cada satélite, predice su trayectoria para las siguientes 24 horas, calibra y sincroniza sus relojes.

<u>Segmento de Usuarios</u>: comprende a cualquiera que reciba las señales GPS con un receptor, determinando su posición y/o la hora.

GLONASS

El sistema GLONASS (Sistema Global de Navegación por Satélite) fue desarrollado por el antiguo ministro de defensa soviético en la década de los 70. Las características del mismo son similares al GPS pero también existen diferencias. Al igual que el sistema GPS, cuenta con un segmento de control, espacial y de usuario.

Segmento Espacial: formado por la constelación de satélites. La constelación completa se compone por 24 satélites en tres planos orbitales separados 120° entre sí. Cada plano contiene 8 satélites espaciados regularmente, con argumento de latitud de 45°. Los planos están inclinados 64, 8° respecto al Ecuador. Los satélites GLONASS se encuentran a una distancia de aproximadamente 19100 Km y se sitúan en órbitas casi circulares con semieje mayor de aproximadamente 25510 Km, siendo el periodo orbital de 11 horas y 15 minutos.

<u>Segmento de Control</u>: está formado por un Sistema Central de Control (SCC) en la región de Moscú y una red de estaciones de seguimiento y control,

emplazadas por toda el área alrededor de Rusia. El Sector de Control GLONASS, al igual que el de GPS, debe seguir y vigilar el estado de sus satélites, determinar las efemérides y errores de los relojes de los satélites, es decir, la diferencia entre el tiempo GLONASS y la escala de tiempo UTC. Además, también deben actualizar los datos de navegación de los satélites. <u>Segmento Usuario:</u> está comprendido tanto por los militares como los civiles.

GALILEO

Sistema Global de Navegación por Satélite (GNSS), desarrollado por la Unión Europea y la Agencia Espacial Europea (ESA). El principio de funcionamiento del sistema europeo será idéntico al GPS, pero será de uso civil. Estará formado por 30 satélites distribuidos en tres órbitas situadas aproximadamente a 24 mil kilómetros de altura sobre la Tierra. De ese total de satélites en órbita se encontrarán siempre operativos 27, mientras los 3 restantes se mantendrán en reserva. El sistema se pudo poner en marcha el 15 de diciembre del 2016 con alrededor de media constelación y será completado para 2020.

GNSS Diferencial

Dentro de los métodos para la determinación del posicionamiento a través de tecnología GNSS se encuentra el método diferencial, que es el más utilizado. El mismo se basa en la observación de dos receptores simultáneamente.

Se calculan las coordenadas de puntos respecto de al menos una estación de referencia que debe tener coordenadas conocidas a priori. La situación esperada es que el cálculo diferencial no se encuentre afectado por errores sistemáticos

apreciables. En este caso, la exactitud de las coordenadas calculadas estará dada por la de las coordenadas a priori de la estación de referencia. La precisión de las mismas en cambio estará determinada por el método diferencial en sí y por las condiciones en las que se lo utiliza.

Imagen 6 – Método diferencial

Cinemático en tiempo real RTK

El concepto general de las soluciones RTK real time kinematic se basa en la colocación de uno o varios receptores GNSS en una posición geográfica cuyas coordenadas son conocidas y a partir de la medida de observables, se determinan las ambigüedades iniciales de observación de la estación permanente y móvil, y se determina y modelan los errores recibidos en la recepción de la señal, generando el modelo de correcciones, luego se trasmite esta información al receptor móvil, para que corrija sus observables de acuerdo a esta información. Con esto se logra realizar relevamientos en tiempo real sin

la necesidad de post- proceso logrando precisiones centimétricas. Un factor importante es el lapso de tiempo que lleva el cálculo de las correcciones y el tiempo que tardan en llegar dichas correcciones al móvil. El receptor móvil recibe la señal de correcciones completa y aplica las correcciones pertinentes a las señales de los satélites que están recibiendo. Las correcciones se trasmiten en un formato llamado RTCM, y por diversos métodos y protocolos, sistemas de radio, internet y telefonía, etc.

Existen dos clasificaciones para RTK:

RTK Convencional o Clásica: se basa en una comunicación por radio entre la base y el móvil o sea que se necesitan dos receptores y puede haber una o varias estaciones y tiene un alcance entre móvil/base de 5 a 10km.

RTK Protocolo NTRIP: En este caso la comunicación es mediante internet. En donde existe una estación permanente del sistema y solo se necesita un receptor, ya que el fijo está en la red. Puede haber estación próxima, la corrección es individual y la distancia máxima recomendada es 30km. Otra forma puede ser mediante modelos de correcciones de red con una distancia máxima recomendada de 70km. (VRS estación de referencia, FKP,MAX,I-MAX).

4.3.2 Nivelación con GNSS

La nivelación geométrica es una operación que consume mucho tiempo, el GNSS ha introducido una revolución en este sentido.

La ecuación básica es:

$$H = h - N \tag{4-73}$$

Esta ecuación relaciona la altura ortométrica H (medida sobre el geoide) con la altura elipsoidal h (medida sobre el elipsoide) y la ondulación geoidal N. Si dos de estas magnitudes son medidas, se puede calcular la tercera.

Si h es obtenida por GPS y existe un modelo de ondulaciones geoidales, entonces la altura ortométrica H, queda determinada.

También puede calcularse N si h es obtenida por GPS y H por nivelación.

La nivelación GPS implica reemplazar la técnica clásica de nivelación por mediciones GPS.

$$H_A = h_A - N_A \tag{4-74}$$

$$H_B = h_B - N_B \tag{4-75}$$

Y la diferencia de alturas queda:

$$H_A - H_B = h_A - h_B - N_A - N_B \tag{4-76}$$

Siendo:

$$\delta H_{AB} = H_B - H_A \tag{4-77}$$

$$\delta h_{AB} = h_B - h_A \tag{4-78}$$

$$\delta N_{AB} = N_B - N_A \tag{4-79}$$

Entonces la relación queda:

$$\delta H_{AB} = \delta h_{AB} - \delta N_{AB} \tag{4-80}$$

Imagen 7 – Nivelación con GNSS

Con nivelación GNSS se obtiene δh_{AB} , además, si tenemos un modelo de geoide conocido conocemos δN_{AB} , por lo cual se puede calcular δH_{AB} la diferencia de alturas ortométricas.

4.3.3 Modelo Global EGM-2008

El modelo gravitacional EGM2008 fue publicado por la Agencia Nacional de Inteligencia Geoespacial (NGA). Los cálculos del geoide local se han basado tradicionalmente en la filosofía Helmert de condensación: la topografía se condensa en una capa delgada sobre el geoide. Numéricamente, esto se hace mediante la sustitución de la anomalía de la gravedad por la anomalía de Faye.

Este modelo ofrece gran precisión y resolución. Lograr mejores resultados en los cálculos utilizando el EGM08, dependerá de la forma en que las reducciones topográficas y de gravedad se lleven a cabo.

4.4 Relevamiento Gravimétrico

4.4.1 Mediciones de la gravedad

La gravedad se puede medir en forma:

Absoluta: para esto se requieren equipos sofisticados, dificiles de transportar y se necesita tiempo para hacer las mediciones. Con este método se obtiene la gravedad total del punto. Estos utilizan los métodos del péndulo y de caída libre (En general se utilizan en laboratorios).

Relativa: se requiere de equipos más simples, faciles de transportar. Se obtiene la medición a partir del Δ_g en dos estaciones. Usan un sistema con un resorte y una masa. Aplica ley de hooke.

Estos equipos nos dan la gravedad vertical o sea que si un cuerpo está afectando tengo que aplicar trigonometría para conocer las demás componentes.

Existen dos tipos de gravímetros:

Estáticos: se usa para mediciones relativas. Se observa cambio en la posición de equilibrio de un cuerpo bajo la acción del campo de gravedad.

Dinámicos: se observa movimiento del cuerpo bajo la acción de gravedad.

4.4.2 Correcciones Gravitatorias

- Deriva
- Corrección por latitud

- Corrección de aire libre
- Corrección de bouguer
- Corrección topográfica

Deriva:

Variación de lectura que se registra en un punto al transcurrir el tiempo. Afecta: la marea, la atracción luna-tierra, sol-tierra en el día. Depende del momento en el que hago la medición.

La deriva se corrige periódicamente regresando al punto inicial de las mediciones para obtener la variación temporal y esta se sustrae al resto de los datos.

Se utiliza una estación base para determinar las variaciones temporales.

Corrección por Latitud:

Si la tierra fuera homogénea y no existieran variaciones topográficas igual hay que corregir por latitud. La gravedad es mínima en el Ecuador y máxima en los polos. Con esto el radio de la tierra es mayor en el Ecuador y menor en los polos y como sabemos la fuerza de gravedad es inversamente proporcional a la distancia al centro de la tierra Esta variación se resta por cada km al norte.

Corrección de aire libre:

Debida a que la gravedad decrece con el aumento de altura, se realiza para llevar la superficie topográfica al nivel del mar.

Correccion de Bouguer:

Es una combinación de la corrección por aire libre y por capa intermedia. La corrección por capa intermedia es aquella que considera las masas responsables del cambio de elevación aquellas situadas entre el nivel del mar y el punto de interés.

Anomalía de Bouguer: esta anomalía no solo tiene en cuenta la variación de la gravedad con la altura sino que también tiene en cuenta las masas existentes entre el punto de observación y el geoide (superficie de referencia).

Corrección topográfica:

Tanto las elevaciones como los valles tienen el mismo efecto sobre el valor de g. El objetivo de la corrección topográfica es eliminar estos efectos y depende de la forma y densidad de la topografía. Se debe tener una detallada información sobre el relieve alrededor del punto de medición.

4.4.3 Levantamiento en campo

La metodología de campo para levantamientos gravimétricos es la siguiente:

- Establecimiento de los puntos básicos.
- Determinación de las elevaciones.
- Determinación de la posición horizontal.
- Obtención de los valores g_{obs}.
- Correctiones primarias a los valores g_{obs} .
- Correcciones gravimétricas.

Establecimiento de los puntos básicos:

En esta primer etapa se determinan los puntos de interés que deberán encontrarse bien definidos. Además se definen los puntos de control que se utilizarán.

Determinación de las elevaciones:

Se deberá tener conocimiento de la topografía de la zona y obtener las alturas de los puntos a relevar. Para esto puede realizarse un levantamiento topográfico, pueden usarse datos ya existentes en la zona o se puede recurrir a modelos de elevaciones del terreno.

Determinación de la posición horizontal:

Deberán encontrarse localizados los puntos, esto es importante para su posterior procesamiento e interpretación de los datos.

Obtención de los valores de g_{obs} :

Se coloca el equipo de medición en cada uno de los puntos de interés, se nivela y se realiza la medición de la gravedad en la superficie. Pueden realizarse más de una medición en cada punto o dejar el equipo durante un tiempo realizando la medición para obtener valores más exactos.

Correcciones primarias a g_{obs} :

Corrección por mareas: las mareas son provocadas por la interacción con la Luna y el Sol de las masas terrestres. Si bien influyen muy poco en los valores de gravedad observados pueden corregirse colocando un gravímetro fijo en el

área, utilizando tablas de mareas o realizando la corrección por deriva donde ya se encuentra incluída esta corrección.

Deriva:

La deriva del gravímetro es producida por la variación de tiempo, la variación de presión y las deformaciones del sistema sensible. Esto puede solucionarse teniendo una estación de control y realizando mediciones periódicas en la misma para luego calcular las variaciones y sustraerla a los datos.

Correcciones gravimétricas:

En esta etapa se calculan las correcciones según corresponda para el caso particular como: corrección por latitud, corrección de aire libre, corrección topográfica entre otras.

5. Metodología

5.1 Zona de Estudio

Para realizar el estudio de alturas, en un principio se pensó en la zona de la Laguna Merín, frontera entre Uruguay y Brasil. En el territorio uruguayo alcanza los departamentos de Cerro Largo, Treinta y Tres y Rocha. El interés en esta zona se debe a que en la zona sur de la laguna merín se ubica la anomalía gravimétrica positiva más importante del Uruguay. Presenta una amplitud de más de 100mGal en una extensión de más de 50km.

Si bien la variación en los valores de gravedad resulta interesante para el estudio, esta zona es muy extensa y al encontrarse a una altitud muy baja esta variación no se verá reflejada en los resultados y se sabe que en Uruguay el efecto de la gravedad es despreciable.

Imagen 8 – Instituto Federal de Geociencias y Recursos Naturales BGR Alemania

Otra de las zonas consideradas para realizar el estudio de alturas es la Sierra de las Ánimas, ubicada en los departamentos de Lavalleja y Maldonado muy próximo al límite con Canelones. Es un ramal de la Cuchilla Grande. En esta se ubica el Cerro de las Ánimas con 501m de alturas que es la segunda cumbre más alta del país. El interés sobre esta zona es su elevación ya que es el segundo punto más alto del Uruguay. Si bien es uno de los puntos más altos, una altura de 500m no implica una variación en los valores de gravedad que puedan afectar los valores de las alturas en la zona.

Imagen 9 – Sierra de las Ánimas

Las dos zonas descriptas anteriormente fueron descartadas principalmente por la logística que implicaba realizar el trabajo en estas. Además, para las mismas no se conocen trabajos que puedan aportar datos para su estudio.

Finalmente, la zona seleccionada para realizar el estudio de alturas es Ciudad del Plata (antiguamente conocida como Rincón de la Bolsa). Se encuentra ubicada al sureste del departamento de San José en Uruguay. Es una zona que presenta una topografía homogénea con alturas cercanas al nivel del mar.

Imagen 10 – Ubicación de la Zona de Estudio

En Ciudad del Plata se encuentran los centros poblados: Villa Olímpica, Playa Pascual, Santa Mónica, Safici, Penino, Autódromo, Parque Postel, San Fernando Chico, Villa Rives, San Fernando, Delta del Tigre y Sofima.

Imagen 11 - Centros poblados de Ciudad del Plata

Imagen 12 - Plan Local 2012 Ciudad del Plata

Cuenta aproximadamente con 30000 habitantes. Forma parte del área metropolitana de Montevideo ubicada a 22 km de la capital junto a la Ruta Nacional Nro. 1. Tiene una gran concentración de industrias en la zona. Actualmente no cuenta con obras de saneamiento si bien en 2007 surgen los proyectos con este fin.

El motivo de elección de esta zona es su proximidad a la capital que permite el desplazamiento para realizar las tareas de campo sin necesidad de una gran logística. Otro de los aspectos que influye en la elección, es la existencia de datos en la zona por trabajos que se realizaron previamente:

- "Proyecto investigación geofísica y mapeo litológico en la Fosa Santa Lucía Uruguay"– Informe gravimétrico – Manuel Araneda C. y Álvaro Araneda A. noviembre 2015. En este se presentan los resultados obtenidos del relevamiento gravimétrico para 4 perfiles trazados cerca de la zona de estudio.
- Nivelación geométrica realizada por O.S.E para el ante-proyecto de saneamiento de la zona.
- Proyecto de grado "Estudio y Refinamiento de Modelos Geoidales" Antonio Villaluenga y Jaime Betancur. Este trabajo es realizado en Ciudad del Plata. En este se completa la nivelación geométrica existente (realizada por O.S.E), agregando circuitos de nivelación en Playa Pascual y Delta del Tigre. Además, realiza un levantamiento GNSS de todos los puntos de nivelación.

5.2 Trabajos previos

5.2.1 Análisis de trabajos sobre alturas físicas realizados en la región (Estado del Arte)

En la etapa previa a las tareas de campo se considera importante realizar una revisión de trabajos existentes en la región, centrados en el estudio de alturas físicas y cálculo de números geopotenciales. El análisis de estos trabajos permite conocer las metodologías aplicadas para el cálculo de los diferentes tipos de alturas físicas. Cada trabajo explica las particularidades de la zona donde se desarrolla el mismo, la metodología aplicada y las conclusiones.

"Determinación de alturas físicas en Colombia" – Laura Sánchez

En el presente trabajo se comparan las diferentes reducciones utilizadas para el cálculo de alturas dinámicas, ortométricas y normales. La evaluación numérica se realiza sobre los 5 circuitos de nivelación más largos existentes en Colombia, los cuales contienen cerca de 4500 puntos sobre más de 6000 km de extensión y alturas hasta de 4000 metros. El objetivo principal de este estudio es identificar el procedimiento más ágil posible para la conversión de las alturas existentes en cantidades físicas de modo que se aprovechen al máximo las ventajas ofrecidas por las tecnologías modernas de posicionamiento. Como resultado de este trabajo se presenta el cálculo de las diferentes alturas físicas en términos de números geopotenciales y se evalúan las ventajas y desventajas de cada una, concluyendo que las alturas normales de Molodenski podrían ofrecer las mejores condiciones para constituir la componente física del nuevo sistema vertical de referencia para América del Sur.

<u>"Cálculo de números geopotenciales para el Ecuador Continental" – Ricardo</u> Coyago

Este trabajo presenta el ajuste de la Red Vertical para parte de Ecuador en términos de números geopotenciales utilizando 889 puntos con gravedad observada y 1066 puntos de nivelación distribuidos en 10 anillos. El 83% de los puntos tienen gravedad observada, para el resto se realiza la interpolación de los datos gravimétricos disponibles. En este trabajo no hace referencia al cálculo de alturas y concluye que, si bien se presentaron algunos problemas en ciertas líneas de nivelación luego del ajuste, esto es debido a puntos desplazados o cambiados.

Nuevo Modelo de Geoide Gravimétrico para Argentina GEOAR – D. A Piñon, K. Zhang, S. Wu, S.R. Cimbaro.

El nuevo modelo geoidal de Argentina muestra que se ajusta al sistema vertical argentino de mejor forma que el EGM08 y los modelos argentinos anteriores. Los resultados indican que este modelo geoidal permite llegar a precisiones menores a 10 cm, para evaluar esta precisión se usaron 1173 puntos que se relevaron con sistema GPS. También se compararon los resultados con el EGM08. Para la próxima versión del GEOAR se incorporarán más observaciones de gravedad terrestres y marinas proporcionadas por varias universidades y organismos públicos. Además, se aprobó un proyecto de densificación de las mediciones de gravedad en Argentina llevado a cabo por el Instituto Geográfico Nacional. Se espera que esto sea significantemente beneficioso para la generación del próximo geoide.

Cálculo de un nuevo modelo Geoidal para Uruguay – Servicio Geográfico Militar

El modelo denominado UruGeoide-2007 es un modelo de transformación de alturas, resultó de la combinación del modelo geopotencial, GGM02C, datos gravimétricos terrestres y marinos, así como datos del modelo digital de elevaciones SRTM. La estrategia fue calcular en primer lugar un cuasi-geoide para después obtener el modelo geoidal. Como conclusiones de la presentación de este modelo se destacan:

- Que el cubrimiento gravimétrico en el área de Uruguay es bueno, pudiendo mejorarse en zonas donde se carece de datos (Zona Este y Noreste).
- Se debería aumentar la resolución del modelo digital de terreno a aproximadamente 100-200m.
- La diferencia en Uruguay entre el Geoide y el cuasi-geoide es muy pequeña, siendo como máximo de 1 cm.

Las recomendaciones planteadas son:

- "Sería necesario densificar la Red de datos gravimétricos, obteniendo valores en los puntos intermedios de los polígonos."
- "Aumentar la cantidad de puntos fijos con mediciones GPS"
- "Investigar mejoras en los datos y adecuar los programas, de forma de visar para un futuro próximo, el cálculo de un modelo centimétrico que permita la sustitución parcial de la nivelación geométrica."

(Servicio Geográfico Militar)

Recomendación Oficial de SIRGAS - (página web SIRGAS)

"La recomendación oficial de SIRGAS acerca de las alturas físicas es la introducción de alturas normales; sin embargo, dado que algunos países quieren adoptar alturas ortométricas, el nuevo sistema vertical de referencia para SIRGAS se define en términos de cantidades de potencial (W0 como nivel de referencia y números o cotas geopotenciales como coordenadas fundamentales). De acuerdo con esto, en la realización del sistema cada país podrá introducir el tipo de alturas físicas que prefiera, junto con la superficie de referencia correspondiente: geoide para las alturas ortométricas o cuasigeoide para las alturas normales" (SIRGAS)

5.2.2 Análisis de datos existentes para la zona de estudio

5.2.2.1 Nivelación Geométrica

Tal como lo expresamos previamente para la zona de estudio se cuenta con nivelación geométrica realizada por la empresa O.S.E y complementada por los actuales Ingenieros Agrimensores Antonio Villaluenga y Jaime Betancur en el marco de su proyecto de grado.

Por O.S.E se tiene la nivelación correspondiente a la zona central de Ciudad del Plata. La nivelación geométrica de Playa Pascual y Delta del Tigre es realizada por Antonio Villaluenga y Jaime Betancur. En total se cuenta con 19 circuitos cerrados de nivelación con un total de 54 puntos de los cuales 2 son puntos fijos del SGM. La nivelación cubre un área aproximada de 1300 hectáreas.

Imagen 13 – Zonas de nivelación geométrica

Se realiza un control de los desniveles geométricos obtenidos para la zona. Los puntos fijos utilizados son:

1.21.005

ID:	1.21.005			
		WGS 84	φ:34°44'13,952"S	λ:56°26' 36,912"W
		UTM	X: 550935,716	Y:6155957,91
COOR	DENADAS	ROU		
		PLANAS	X:441096,878	Y:6156602,372
		ROU GEOG.	φ:34°44'13,880"S	λ:56°26' 35,380"W
ALTITUD		Nivel medio del mar		Z =13,71 mts
~ ~ / ~ / ~		Ext. Tipo		
SENAI	LIZACION	bulón	UBICACIÓN	KM 32 Ruta 1

Imagen 14 – Datos de la monografía del punto 1.21.005

1.21.003

ID:	1.21.003			
		WGS 84	ф:34º46'52,910"S	λ:56°21' 18,860"W
		UTM	X: 558991,97	Y:6151012,91
COOF	RDENADAS	ROU		
		PLANAS	X:449214,870	Y:6117151.960
		ROU GEOG.	φ:34°44'52,840"S	λ:56°21' 17,340"W
A	LTITUD	Nivel m	edio del mar	z=7,81 mts
~ /		Ext. Tipo		
SENA	LIZACION	bulón	UBICACIÓN	Barra S. Lucia

Imagen 15 - Datos de la monografía del punto 1.21.003

Imagen 16 - Ilustración de los circuitos de nivelación - Plano completo en Anexo

	Nivelación Geométrica				
	Tramos	ΔH (m)		Tramos	ΔH (m)
L1	1.21.005R - A	-1.203	L37	AU - AV	1.384
L2	A - D	-0.768	L38	AV - AY	-0.229
L3	D - J	-3.614	L39	AY - AZ	1.290
L4	J - K	-3.558	L40	AZ - K	-2.099
L5	A - B	2.291	L41	AV - AW	-1.808
L6	B - C	-1.749	L42	AW - AX	1.287
L7	C - N	-1.022	L43	AX - AY	0.280
L8	N - D	-0.280	L44	AZ - BA	-2.019
L9	J - M	3.005	L45	BA - L	0.783
L10	M - N	0.867	L46	1.21.005R - AM	0.448
L11	M - I	2.021	L47	AM - AL	0.276

L12	I - H	0.045	L48	AL - AK	-1.258
L13	H-L	-7.782	L49	AK - AJ	0.280
L14	L - K	-0.867	L50	AJ - AI	1.388
L15	K - P	-0.664	L51	AI - AH	0.283
L16	P - J	4.238	L52	AH - AG	-0.588
L17	D - O	-6.029	L53	AG - 1.21.005R	-0.853
L18	O - E	4.462	L54	AM - AE	0.000
L19	E - A	2.326	L55	AE - AD	-1.318
L20	0 - P	-1.811	L56	AD - AG	1.699
L21	E-F	-7.097	L57	AE - AC	-2.960
L22	F - G	-0.477	L58	AC - T	2.382
L23	G - O	3.116	L59	T - U	-2.227
L24	P - Q	-1.215	L60	U - S	3.034
L25	Q - G	-0.068	L61	S - R	-1.048
L26	1.21.003P - AN	-4.102	L62	R- AE	0.816
L27	AN - AO	-1.676	L63	AC -AB	-4.422
L28	AO - AP	0.412	L64	AB - X	-1.032
L29	AP - AQ	-0.303	L65	X - W	2.059
L30	AQ - AR	0.808	L66	W - V	0.285
L31	AR - AS	2.491	L67	V - U	3.282
L32	AS - AT	-2.510	L68	AB - AA	-0.074
L33	AT - AP	-0.472	L69	AA - Z	0.316
L34	AT - AO	-0.880	L70	Z - Y	3.449
L35	AO - AN	1.683	L71	Y -AD	2.344
L36	AN - AU	0.530		1.21.005R - 1.21.003P	-5.900

Tabla 1 – Desniveles geométricos expresados en metros

Se analizan los cierres de nivelación para determinar la precisión de la misma.

CIRCUITO 1			
LINEAS	DH (m)	DISTANCIA (m)	
L5	2.291	1390	
L6	-1.749	1265	
L7	-1.022	685	
L8	-0.280	240	
-L2	0.768	1630	
	CIERRE (mm)	PERIMETRO (m)	
	8	5210	
		ERROR/KM (mm)	
		2	

CIRCUITO 2			
LINEAS	DH (m)	DISTANCIA (m)	
L3	-3.614	980	
L9	3.005	510	
L10	0.867	960	
L8	-0.280	240	
	CIERRE (mm)	PERIMETRO (m)	
	-22	2690	
		ERROR/KM (mm)	
		8	

CIRCUITO 4			
LINEAS	DH (m)	DISTANCIA (m)	
L4	-3.558	1100	
L15	-0.664	1010	
L16	4.238	430	
	CIERRE (mm)	PERIMETRO (m)	
	16	2540	
		ERROR/KM (mm)	
		6	

CIRCUITO 3			
LINEAS	DH (m)	DISTANCIA (m)	
L9	3.005	510	
L11	2.021	530	
L12	0.045	1285	
L13	-7.782	630	
L14	-0.867	895	
-L4	3.558	1100	
	CIERRE (mm)	PERIMETRO (m)	
	-20	4950	
		ERROR/KM (mm)	
		4	

CIRCUITO 6			
LINEAS	DH (m)	DISTANCIA (m)	
L2	-0.768	1630	
L17	-6.029	790	
L18	4.462	1540	
L19	2.326	800	
	CIERRE (mm)	PERIMETRO (m)	
	-9	4760	
		ERROR/KM (mm)	
		2	

CIRCUITO 5			
LINEAS	DH (m)	DISTANCIA (m)	
L3	-3.614	990	
-L16	-4.238	430	
-L20	1.811	950	
-L17	6.029	790	
	CIERRE (mm)	PERIMETRO (m)	
	-12	3160	
		ERROR/KM (mm)	
		4	

CIRCUITO 8			
LINEAS	DH (m)	DISTANCIA (m)	
L20	-1.811	950	
L24	-1.215	550	
L25	-0.068	985	
L23	3.116	435	
	CIERRE (mm)	PERIMETRO (m)	
	22	2920	
		ERROR/KM (mm)	
		8	

CIRCUITO 10			
DH (m)	DISTANCIA (m)		
0.412	760		
0.472	725		
-0.880	900		
CIERRE (mm)	PERIMETRO (m)		
4	2385		
	ERROR/KM (mm)		
	CIRCUIT DH (m) 0.412 0.472 -0.880 CIERRE (mm) 4		

CIRCUITO 7			
LINEAS	DH (m)	DISTANCIA (m)	
L18	4.462	1540	
L21	-7.097	675	
L22	-0.477	1055	
L23	3.116	435	
	CIERRE (mm)	PERIMETRO (m)	
	4	3705	
		ERROR/KM (mm)	
		1	

CIRCUITO 9						
LINEAS	DH (m) DISTANCIA (m)					
L29	-0.303	1100				
L30	0.808	675				
L31	2.491	630				
L32	-2.510	965				
L33	-0.472	725				
CIERRE (mm) PERIMETRO						

2	

CIRCUITO 12				
LINEAS	DH (m)	DISTANCIA (m)		
L1	-1.203	2125		
-L19	-2.326	800		
L21	-7.097	675		
L22	-0.477	1055		
-L25	0.068	985		
-L24	1.215	550		
-L15	0.664	1010		
-L40	2.099	795		
-L39	-1.290	800		
-L38	0.229	590		
-L37	-1.384	340		
-L36	-0.530	690		
-L26	4.102	710		
DH PF	5.900	9455		
	CIERRE (mm)	PERIMETRO (m)		
	-30	11125		
		ERROR/KM (mm)		
		3		

	14	4095
		ERROR/KM (mm)
		3
	CIRCUIT	0 11
LINEAS	DH (m)	DISTANCIA (m)
L27	-1.676	480
L35	1.683	480
	CIERRE (mm)	PERIMETRO (m)
	7	960
		ERROR/KM (mm)

		7			
	CIRCUITO 13				
LINEAS	DH (m)	DISTANCIA (m)			
L42	1.287	420			
L43	0.280	465			
-L38	0.229	590			
L41	-1.808	270			
	CIERRE (mm)	PERIMETRO (m)			
	-12	1745			
		ERROR/KM (mm)			
		7			

CIRCUITO 15				
LINEAS	DH (m)	DISTANCIA (m)		
L47	0.276	615		
L48	-1.258	970		
L49	0.280	485		
L50	1.388	620		
L51	0.283 485			
L52	-0.588	620		
L53	-0.853	330		
L46	0.448	65		
	CIERRE (mm)	PERIMETRO (m)		
	-24	4190		
		ERROR/KM (mm)		
		6		

CIRCUITO 14			
LINEAS	DH (m)	DISTANCIA (m)	
L45	0.783	260	
L14	-0.867	895	
-L40	2.099	795	
L44	-2.019	535	
	CIERRE (mm)	PERIMETRO (m)	
	-4	2485	
		ERROR/KM (mm)	
		2	

CIRCUITO 16				
LINEAS DH (m) DISTANCIA (m)				LIN
L55	-1.318	640		L

CIRCUITO 17					
LINEAS DH (m) DISTANCIA (m)					
L58	2.382	560			

L59

L60

L61

L62

L57

-2.227

3.034

-1.048

0.816

-2.960

CIERRE (mm)

-3

530

930

475

510

705

PERIMETRO (m) 3710

ERROR/KM (mm) 1

1.699	470
-0.853	330
0.448	65
0.000	490
CIERRE (mm)	PERIMETRO (m)
-24	1995
	ERROR/KM (mm)
	12
	1.699 -0.853 0.448 0.000 CIERRE (mm) -24

CIRCUITO 18			CIRCUITO 19		
LINEAS	DH (m)	DISTANCIA (m)	LINEAS	DH (m)	DISTANCIA (m)
L64	-1.032	465	L57	-2.960	705
L65	2.059	460	L63	-4.422	795
L66	0.285	535	L68	-0.074	515
L67	3.282	610	L69	0.316	420
-L59	2.227	530	L70	3.449	485
-L58	-2.382	555	L71	2.344	635
L63	-4.422	795	-L55	1.318	640
	CIERRE (mm)	PERIMETRO (m)		CIERRE (mm)	PERIMETRO (m)
	17	3950		-29	4195
		ERROR/KM (mm)			ERROR/KM (mm)
		4			7

Tabla 2 – Circuitos de nivelación – cierres calculados según desniveles medidos

Observando los errores por km obtenidos para los distintos circuitos podemos apreciar que el error máximo por kilómetro es de 12 mm, por lo cual se cuenta con una nivelación con precisión topográfica. Esto considerando la información del IGN (Instituto Geográfico Nacional de la República Argentina) donde se establece la clasificación de líneas de nivelación según el siguiente criterio:

- Líneas de alta precisión: la precisión expresada en milímetros es igual a la raíz cuadrada de la longitud kilométrica multiplicada por un factor igual a 3.
- Líneas de precisión: La precisión expresada en milímetros es igual a la raíz cuadrada de la longitud kilométrica multiplicada por un factor igual a 5.
- Líneas Topográficas La precisión expresada en milímetros es igual a la raíz cuadrada de la longitud kilométrica multiplicada por un factor igual a 7.

5.2.2.2 Relevamiento GNSS

Se cuenta con el relevamiento GNSS de los puntos de la malla de nivelación realizado por los Ingenieros Agrimensores Antonio Villaluenga y Jaime Betancur en el marco de su proyecto de grado. Los puntos se tomaron con un receptor GPS (Leica GPS 1230).

Datos GPS					
Punto	Latitud	Longitud	h (m)		
А	34° 44' 49.13230" S	56° 25' 25.25927" W	27.690		
В	34° 44' 18.65554" S	56° 24' 44.91015" W	29.990		
С	34° 44' 53.28654" S	56° 24' 18.39771" W	28.217		
D	34° 45' 20.55444" S	56° 24' 33.70883" W	26.912		
E	34° 45' 14.16798" S	56° 25' 33.60218" W	25.350		
F	34° 45' 35.87396" S	56° 25' 30.41482" W	18.266		
G	34° 45' 55.20189" S	56° 24' 56.14628" W	17.779		
Н	34° 45' 34.51591" S	56° 23' 03.18963" W	28.344		
	34° 45' 13.31296" S	56° 23' 41.04658" W	28.357		
J	34° 45' 40.92580" S	56° 24' 03.58051" W	23.311		
К	34° 46' 05.59926" S	56° 23' 32.71473" W	19.714		
L	34° 45' 54.87374" S	56° 22' 59.98775" W	20.550		
М	34° 45' 26.03695" S	56° 23' 54.72601" W	26.296		

Ν	34° 45' 13.51215" S	56° 24' 29.43115" W	27.184
0	34° 45' 44.28420" S	56° 24' 45.23792" W	20.888
Ρ	34° 45' 53.89919" S	56° 24' 09.86394" W	19.069
Q	34° 46' 09.08427" S	56° 24' 21.27422" W	17.844
R	34° 44' 11.22267" S	56° 27' 11.02087" W	28.610
S	34° 44' 02.14985" S	56° 27' 26.14561" W	29.670
Т	34° 44' 32.83692" S	56° 27' 27.92471" W	28.860
U	34° 44' 26.76906" S	56° 27' 47.32665" W	26.650
V	34° 44' 45.92820" S	56° 27' 53.09468" W	23.370
W	34° 45' 03.04528" S	56° 27' 56.78449" W	23.080
Х	34° 45' 05.42613" S	56° 27' 38.95286" W	21.020
Υ	34° 44' 52.25451" S	56° 26' 40.54820" W	25.730
Z	34° 45' 07.30210" S	56° 26' 46.19472" W	22.270
AA	34° 45' 00.87943" S	56° 27' 00.72341" W	21.970
AB	34° 45' 03.76742" S	56° 27' 20.67624" W	22.040
AC	34° 44' 40.16500" S	56° 27' 07.91704" W	26.480
AD	34° 44' 32.47229" S	56° 26' 33.82695" W	28.080
AE	34° 44' 20.33069" S	56° 26' 54.17838" W	29.410
AG	34° 44' 18.75280" S	56° 26' 25.53516" W	29.760
AH	34° 44' 29.23206" S	56° 26' 04.79758" W	30.330
AI	34° 44' 37.62927" S	56° 25' 48.67313" W	30.050
AJ	34° 44' 19.41588" S	56° 25' 38.49475" W	28.650
AK	34° 44' 08.71807" S	56° 25' 52.40689" W	28.400
AL	34° 43' 54.25856" S	56° 26' 26.29443" W	29.690
AM	34° 44' 11.79462" S	56° 26' 37.88610" W	29.400
AN	34° 46' 33.19806" S	56° 21' 33.61978" W	18.800
AO	34° 46' 17.81047" S	56° 21' 30.72319" W	17.110
AP	34° 45' 53.82151" S	56° 21' 37.22691" W	17.540
AQ	34° 45' 18.77642" S	56° 21' 45.04258" W	17.220
AR	34° 45' 33.06930" S	56° 22' 05.13981" W	18.030
AS	34° 45' 41.61290" S	56° 22' 27.74959" W	20.530
AT	34° 46' 04.83158" S	56° 22' 02.35208" W	18.000
AU	34° 46' 33.60452" S	56° 22' 00.67754" W	19.340
AV	34° 46' 32.60960" S	56° 22' 13.96473" W	20.720
AW	34° 46' 23.97512" S	56° 22' 14.92731" W	18.990
AX	34° 46' 15.97273" S	56° 22' 28.37470" W	20.280
AY	34° 46' 29.25989" S	56° 22' 36.90551" W	20.530
AZ	34° 46' 16.43246" S	56° 23' 04.31112" W	21.810
BA	34° 46' 01.51921" S	56° 22' 53.63065" W	19.810
1.21.003 P	34° 46' 52.70844" S	56° 21' 18.85543" W	22.926
1.21.005 R	34° 44' 13.74446" S	56° 26' 36.90524" W	28.963

Tabla 3 – Datos GPS – Obtenidos de informe proyecto "Estudio y Refinamiento de Modelos Geoidales" – Antonio Villaluenga y Jaime Betancur.

5.2.2.3 Relevamiento gravimétrico

Para poder trabajar con alturas físicas se debe integrar al aspecto geométrico de la nivelación, el aspecto físico. Para esto deben contemplarse los valores de gravedad en los puntos de nivelación. Como es de conocimiento público en general en la práctica no se toma la gravedad de cada punto a nivelar, se interpolan datos existentes en el área y se trabaja con esos valores de gravedad. Esto siempre depende de la zona donde estamos trabajando. En este caso al estar trabajando en la zona de Ciudad del Plata donde se presentan alturas bajas, es posible trabajar con los datos disponibles e interpolar los mismos.

Tal como se expresó anteriormente, en octubre del año 2015 se realiza una investigación gravimétrica en el sector de la Fosa del Río Santa Lucía para estudiar la morfología del basamento impermeable en el sector de la fosa tectónica. Con este fin se proyectaron cuatro perfiles gravimétricos con 124 estaciones gravimétricas en la zona, con espaciamientos entre estaciones de 1000, 500 y 300 metros. Este trabajo permite que en la zona de estudio se cuente con gran cantidad de datos gravimétricos. Además, este trabajo fue presentado en el Congreso IPGH del 2015 por lo cual se tiene acceso a los datos para poder trabajar con estos.

17 – Perfiles gravimétricos – Obtenida de Informe "Proyecto investigación Geofísica y Mapeo Litológico en la Fosa Santa Lucía, Uruguay"- Manuel Araneda C y Álvaro Araneda A.

Los datos de gravedad fueron medidos mediante un gravímetro LaCoste y Romberg. La precisión de este instrumento es de la centésima de un miligal.

Ре	rfil	1

Estación	Este [m]	Norte [m]	Altura [m]	Gravedad [mGal]	Profundidad [m]
P1.1	503876	6190675	17	979647.32	0
P1.2	506265	6188814	31	979647.60	0
P1.3	508672	6187007	38	979651.07	0
P1.4	511051	6185199	20	979657.19	0
P1.5	513449	6183386	18	979659.21	-57
P1.6	513802	6183115	20	979659.34	-40
P1.48	514258	6182820	30	979658.48	-14
P1.47	515088	6182201	30	979659.06	-36
P1.46	515848	6181621	30	979659.95	-43
P1.45	516654	6181008	28	979661.13	-57

P1.44	517466	6180393	24	979662.53	-71
P1.43	518042	6179643	30	979663.76	-14
P1.42	518834	6179237	40	979661.70	-50
P1.41	519714	6178693	44	979661.76	-43
P1.40	520570	6178045	41	979662.19	-100
P1.39	521367	6177445	40	979663.71	-93
P1.38	522153	6176851	39	979664.72	-100
P1.37	522949	6176251	31	979666.71	-128
P1.36	523750	6175645	30	979668.47	-107
P1.35	524553	6175038	40	979666.36	-142
P1.34	525340	6174442	35	979665.07	-271
P1.33	526007	6173722	40	979667.74	-171
P1.32	526616	6172900	41	979667.13	-221
P1.31	527269	6172166	50	979667.55	-171
P1.30	528187	6171818	50	979670.07	-114
P1.29	529138	6171516	39	979673.75	-107
P1.28	530108	6170837	42	979674.53	-100
P1.27	531620	6169698	40	979678.72	-28
P1.26	532118	6169317	45	979677.86	-50
P1.25	533165	6168423	41	979680.30	-43
P1.24	533638	6167576	34	979681.84	-85
P1.23	534133	6166693	29	979682.35	-140
P1.22	534918	6166192	37	979680.16	-128
P1.21	535869	6165765	30	979679.80	-192
P1.20	536768	6165357	40	979675.86	-235
P1.19	537609	6164684	34	979673.53	-356
P1.18	538226	6164157	29	979673.82	-392
P1.17	539080	6163578	39	979668.58	-484
P1.16	539993	6162987	29	979669.08	-534
P1.15	540852	6162438	32	979666.87	-577
P1.14	541683	6161911	22	979668.65	-584
P1.13	542478	6161405	21	979667.84	-606
P1.12	543343	6160855	30	979664.83	-634
P1.11	544216	6160289	16	979667.50	-641
P1.10	545047	6159755	13	979667.83	-641
P1.9	545857	6159243	9	979668.99	-620
P1.8	546734	6158679	5	979668.68	-655
P1.7	547582	6158139	17	979665.70	-655

PR LAURELES	548522	6157614	16	979665.73	-648
P1.49	549243	6157057	16	979666.35	-613
P1.50	550102	6156514	15	979667.60	-556
P1.51	550935	6155982	15	979667.89	-541
P1.52	551788	6155434	13	979667.98	-541
P1.53	552866	6154748	11	979669.15	-513
P1.54	553439	6154323	10	979668.84	-520
P1.55	554240	6153683	10	979671.26	-420
P1.56	554997	6153081	9	979673.03	-349
P1.57	555766	6152465	7	979674.84	-306
P1.58	556627	6151935	3	979675.99	-278
P1.59	557602	6151632	1	979677.35	-221
P1.60	558501	6151600	1	979679.71	-114
P1.61	558947	6151164	2	979680.86	-64
P1.62	558969	6150465	0	979683.44	0

Perfil 2

Estación	Este [m]	Norte [m]	Altura [m]	Gravedad [mGal]	Profundidad [m]
P2.20	537829	6155385	16	979676.29	-620
P2.19	538185	6155853	21	979674.00	-620
P2.18	538781	6156657	19	979674.10	-620
P2.17	539390	6157475	16	979675.25	-620
P2.16	540212	6157645	12	979676.97	-620
P2.15	540436	6158094	9	979677.53	-620
P2.14	540800	6159002	14	979678.47	-620
P2.13	541506	6159705	20	979673.41	-620
P2.12	541983	6160531	31	979667.51	-620
P2.1	542487	6161412	20	979668.15	-606
P2.2	542959	6162279	10	979669.16	-712
P2.3	543438	6163082	10	979669.26	-763
P2.4	543524	6164024	20	979668.52	-776
P2.5	543638	6164996	21	979672.28	-704
P2.6	543759	6165996	20	979679.60	-522
P2.7	543862	6166943	20	979682.00	-496
P2.8	543919	6167452	20	979683.03	-500
P2.9	543965	6167840	13	979685.40	-499

P2.10	544071	6168786	9	979686.12	-505
P2.11	544122	6169185	6	979686.99	-496

Perfil 3

Estación	Este [m]	Norte [m]	Altura [m]	Gravedad [mGal]	Profundidad [m]
P3.16	549785	6154390	0	979676.28	-543
P3.15	549851	6154563	4	979673.81	-577
P3.14	550051	6154966	11	979672.80	-515
P3.13	550271	6155395	12	979670.61	-531
P3.1	550493	6155823	15	979668.69	-531
P3.2	550771	6156079	15	979667.58	-543
P3.3	551082	6156345	15	979667.19	-531
P3.4	551325	6156802	15	979665.84	-543
P3.5	551562	6157236	16	979664.85	-531
P3.6	551804	6157670	16	979663.30	-548
P3.7	551999	6158041	16	979662.68	-548
P3.8	552223	6158469	16	979661.58	-548
P3.9	552439	6158875	11	979660.64	-588
P3.10	552687	6159323	4	979662.47	-537
P3.11	552900	6159714	4	979661.28	-548
P3.12	552956	6159814	4	979661.20	-543

Perfil 4

Estación	Este [m]	Norte [m]	Altura [m]	Gravedad [mGal]	Profundidad [m]
P4.13	555319	6152276	3	979676.28	-297
P4.11	555363	6152631	8	979674.93	-307
P4.10	555388	6152797	9	979673.88	-328
P4.9	555715	6152924	10	979672.35	-386
P4.8	556243	6153130	10	979670.84	-455
P4.7	556495	6153396	10	979669.21	-524
P4.6	557052	6153179	10	979670.08	-524
P4.5	557586	6153083	6	979672.02	-524
P4.4	558004	6153441	4	979670.64	-594
P4.3	558328	6153880	4	979669.42	-643
P4.2	558674	6154267	4	979669.09	-663

P4.1 559078 6154504 4 979668.77 -700

Tabla 4 – Datos de estaciones gravimétricas (Nombre Estación, ubicación UTM, altura real, gravedad y profundidad) - Obtenida de Informe "Proyecto investigación Geofísica y Mapeo Litológico en la Fosa Santa Lucía, Uruguay" - Manuel Araneda C y Álvaro Araneda A.

5.3 Tareas de campo

Como se especificó en los objetivos, además de calcular las alturas ortométricas y normales para los puntos de la malla de nivelación existente, se aprovecharán estos datos para crear un modelo local que permita obtener alturas físicas (ortométricas y normales). El modelo se calcula en base a la nivelación ya existente, pero para la validación del mismo se decide tomar puntos testigos externos a los utilizados previamente. Para esto se realiza el relevamiento de un perfil de 19 puntos en la zona. Se realiza la nivelación geométrica del perfil, relevamiento GNSS de los puntos y relevamiento gravimétrico. Si bien se cuenta con suficientes datos gravimétricos en la zona, se considera importante la utilización de datos propios, para verificar la veracidad de los existentes y para que los puntos del perfil sean testigos externos reales.

El perfil de puntos se traza sobre la ruta 1 ya que esta zona se encuentra comprendida en la zona que abarca la malla de nivelación existente. De esta forma se puede aplicar sobre este perfil el modelo para su validación.

Imagen 18 - Punto del perfil de validación

5.3.1 Nivelación geométrica

Imagen 19 - Trabajo de Campo - Nivelación del perfil de validación

Se realiza una nivelación geométrica de ida y vuelta simulada que incluye 19 puntos espaciados cada 80m y materializados con varillas de hierro de 8 mm de diámetro y 0.5m de largo. Se presta especial atención a la materialización de los mismos ya que los puntos deberán ser utilizados posteriormente para el relevamiento gravimétrico. Los mismos fueron balizados y debidamente

marcados con aerosol para su fácil localización. Se comienza con el perfil en el punto 1.21.003 punto fijo del SGM ubicado sobre el antiguo puente del río Santa Lucía avanzando hacia el noroeste-oeste sobre la ruta 1 vieja.

Imagen 20 - Materialización y marcado de los puntos

La nivelación se lleva a cabo con cuatro operadores, dos de ellos llevando las miras, uno en el nivel y el otro registrando las medidas en la planilla de campo.

Materiales utilizados:

• Dos miras centimetradas

- Nivel óptico PENTAX AL-M4c
- Trípode
- Clavos de techo
- Varillas de hierro de 8mm de diámetro
- Aerosol
- Planillas de nivelación
- Niveletas
- Maceta

Previo a realizar la nivelación se estipuló cual sería el error aceptable para la misma. Para esto se realiza el siguiente pre-análisis:

Imagen 21 – Esquema de nivelación

$$\Delta_h = l_A - l_B$$

Para una distancia: d = 40m entre nivel y mira puede estimarse 1mm (aumento 28X nivel) en la regla por lo cual consideramos $\sigma_l = 1 mm$ error de lectura.

Se realizará nivelación de ida y vuelta simulada por lo cual:

$$\Delta_H = \frac{\Delta_{h_1} + \Delta_{h_2}}{2}$$

Siendo:

$$\begin{split} \sigma_{\Delta_{h_1}} &= \sqrt{2} \times \sigma_l = \sqrt{2} \\ \sigma_{\Delta_{h_2}} &= \sqrt{2} \times \sigma_l = \sqrt{2} \\ \sigma_{\Delta_{H_2}}^2 &= \frac{1}{4} \sigma_{\Delta_{h_1}}^2 + \frac{1}{4} \sigma_{\Delta_{h_2}}^2 = 1 \ mm \end{split}$$

Se establece como tolerancia:

$$T = 3\sigma = 3 mm$$

Se aceptarán aquellos desniveles donde la diferencia entre los distintos planos colimadores no supera 3mm.

Las tareas de nivelación se desarrollaron en un mismo día, con una duración de 2 horas.

Imagen 22 – Nivelación del perfil de validación

Planilla de Nivelación									
	Prime	er plano colim	ador			Segundo plano colimador			
Puntos	L Atrás	L Adelante	$\Delta H1$		L Atrás	L Adelante	Δ H2	∆H1 - ∆H2	
SGM	1.798				1.729				
1	0.643	1.511	0.287		0.625	1.441	0.288	-0.001	
2	0.394	2.441	-1.798		0.312	2.423	-1.798	0.000	
3	1.562	1.522	-1.128		1.534	1.443	-1.131	0.003	
4	1.440	1.481	0.081		1.392	1.456	0.078	0.003	
5	1.179	1.512	-0.072		1.160	1.467	-0.075	0.003	
6	1.020	1.331	-0.152		0.961	1.312	-0.152	0.000	
7	0.939	0.941	0.079		0.883	0.879	0.082	-0.003	
8	1.374	1.809	-0.87		1.315	1.754	-0.871	0.001	

9	0.589	1.771	-0.397	0.548	1.709	-0.394	-0.003
10	1.335	1.420	-0.831	1.368	1.378	-0.83	-0.001
11	1.418	1.368	-0.033	1.349	1.399	-0.031	-0.002
12	1.492	1.349	0.069	1.449	1.281	0.068	0.001
13	0.921	0.849	0.643	0.943	0.804	0.645	-0.002
14	1.601	1.282	-0.361	1.586	1.307	-0.364	0.003
15	1.330	1.142	0.459	1.349	1.128	0.458	0.001
16	1.962	1.351	-0.021	1.977	1.368	-0.019	-0.002
17	1.141	1.519	0.443	1.129	1.532	0.445	-0.002
18		1.478	-0.337		1.463	-0.334	-0.003

Tabla 5 – Planilla de nivelación del perfil

Arrastrando la cota del punto 1.21.003 fijo del SGM (Cota: 7.81m) se obtienen las cotas oficiales para todos los puntos del perfil.

Puntos	Cotas oficiales (m)
SGM 1.21.003	7.810
1	8.098
2	6.300
3	5.170
4	5.250
5	5.176
6	5.024
7	5.105
8	4.234
9	3.839
10	3.008
11	2.976
12	3.045
13	3.689
14	3.326
15	3.785
16	3.765
17	4.209
18	3.873

5.3.2 Relevamiento GNSS

La siguiente tarea fue relevar los puntos materializados anteriormente por la nivelación geométrica, mediante técnicas GNSS.

Para esto se utilizó un equipo GPS Leica GS08 proporcionado por el Instituto de Agrimensura. El método de relevamiento elegido fue el diferencial RTK convencional por radio enlace. El motivo de esta elección radica en que los puntos de la malla de nivelación existente fueron relevados con esta misma técnica y además por la distancia de los puntos a la base era posible utilizar el radio enlace. Se estableció una base cercana al punto medio del perfil.

Id de punto	Latitud φ	Longitud λ	Altura elipsoidal (m)
SGM	34° 46' 52.72326" S	56° 21' 18.82219" W	22.926
1	34° 46' 50.03934" S	56° 21' 19.11227" W	23.200
2	34° 46' 47.70481" S	56° 21' 20.44772" W	21.462
3	34° 46' 45.57592" S	56° 21' 22.34170" W	20.260
4	34° 46' 43.43917" S	56° 21' 24.48076" W	20.337
5	34° 46' 41.37721" S	56° 21' 26.40068" W	20.293
6	34° 46' 39.26960" S	56° 21' 28.36209" W	20.108
7	34° 46' 36.98318" S	56° 21' 30.41889" W	20.178
8	34° 46' 34.87516" S	56° 21' 32.12923" W	19.369
9	34° 46' 33.33409" S	56° 21' 34.61998" W	18.945
10	34° 46' 33.06057" S	56° 21' 37.82773" W	18.030
11	34° 46' 32.89873" S	56° 21' 40.74460" W	18.062
12	34° 46' 32.64210" S	56° 21' 44.09368" W	18.166
13	34° 46' 32.76370" S	56° 21' 47.81948" W	18.776
14	34° 46' 32.34387" S	56° 21' 50.97730" W	18.451
15	34° 46' 32.32815" S	56° 21' 54.19815" W	18.882
16	34° 46' 32.37950" S	56° 21' 57.52345" W	18.858
17	34° 46' 32.34124" S	56° 22' 00.73873" W	19.333
18	34° 46' 32.39636" S	56° 22' 03.90431" W	18.991

Tabla 7 – Datos GNSS perfil

Imagen 23 – Base para levantamiento GNSS

De esta forma se obtiene latitud, longitud y altura elipsoidal de cada punto. La altura elipsoidal es fundamental para poder calcular las alturas físicas para cada punto y la posición permitirá poder validar con estos puntos el modelo generado. A los efectos de compatibilizar los datos obtenidos con los existentes en la zona se asigna al primer punto del perfil 1.21.003 la altura elipsoidal obtenida según los datos existentes.

5.3.3 Relevamiento gravimétrico

Como se explicó previamente, en las tareas de campo se busca obtener datos propios para tener puntos testigos para validar el modelo de alturas que será generado a partir de los datos existentes para la zona.

Los valores de gravedad de los puntos del perfil también fue necesario relevarlos. Como en el Instituto de Agrimensura no se cuenta con un gravímetro para realizar un levantamiento gravimétrico, se gestiona la solicitud del equipo ante ANCAP que cuenta con gravímetro propio. El contacto con ANCAP se realiza a través del Ingeniero Eléctrico Pablo Rodríguez. El mismo indicó que ANCAP podría estar interesado en realizar una prospección en la zona de estudio por lo cual nos proporcionó los pasos a seguir para dicha solicitud.

El primer paso es realizar una solicitud formal mediante una carta elevada por la dirección del instituto. Los destinatarios de la misma serían los jefes del área de exploración y producción de ANCAP Ingeniero Pablo Gristo y Doctor en geología Héctor de Santa Ana. Se eleva a la dirección del Instituto una carta donde constaba el trabajo a realizarse y donde se solicitaba a ANCAP el préstamo del instrumento con su operador. Esta carta fue avalada por la directora y enviada.

INSTITUTO DE AGRIMENSURA Facultad de Ingeniería Universidad de la República

Montevideo, 10 de octubre de 2017.

Sr. Gerente del Área Exploración y producción ANCAP

Por la presente nos dirigimos a Ud. para solicitar su apoyo para un proyecto de grado de Agrimensura en desarrollo que se lleva a cabo en el Instituto de Agrimensura de la Facultad de Ingeniería-UDELAR. El proyecto que están realizando los Bach. Laura Yañez y Néstor Cuentas consiste en la formulación de un modelo cuasigeoidal para la zona de Ciudad del Plata, Delta del Tigre y Playa Pascual. Para esto es necesario el cálculo de números geopotenciales para lo cual se combinarán datos gravimétricos con una nivelación geométrica.

Dado que en nuestro Instituto no contamos con gravímetro propio es que solicitamos su colaboración para realizar las mediciones necesarias con el préstamo de vuestro gravímetro.

Desde ya agradecemos su colaboración, saluda a Ud. atte.

MSc. Ing. Agrim. Rosario Casanova

Directora Instituto de Agrimensura

Imagen 24 - Carta enviada a ANCAP para solicitud de gravímetro

Luego de recibir la notificación por parte del Ing. Pablo Rodríguez de la confirmación de ANCAP, se comienza con la coordinación de las actividades para la prospección gravimétrica.

Se utiliza un gravímetro CG-5 Autograv Scintrex, este es un instrumento de medición de gravedad automatizado basado en un microprocesador que tiene rango de medición de más de 8000 mGals sin reiniciar y una resolución en la lectura de 0.001 mGal. Esto permite que Autograv se use para investigaciones de campo detalladas y estudios regionales o geodésicos a gran escala. Este instrumento es un gravímetro diferencial.

Imagen 25 – Gravímetro CG-5 Autograv Scintrex

Previamente a realizar las mediciones en campo se requiere contar con puntos fijos de referencia gravimétrica para referir los datos obtenidos. Los puntos gravimétricos del SGM que se encontraban cercanos a la zona de estudio son:

- Fortaleza de Montevideo
- Servicio Geográfico Militar en 8 de octubre.
- Escuela Militar de Toledo Canelones

El punto gravimétrico de la Escuela Militar de Toledo es un punto de alta precisión. Este punto se midió con un gravímetro de caída libre (gravímetro absoluto), se hicieron varias lecturas y se tomó la media de estos valores siendo la desviación estándar de 0.007 mGal mientras que para la mayoría de las estaciones del SGM la desviación es de entre 0.050 y 0.100 mGal. Esto se

obtiene de la publicación del "Ajuste de la Red Gravimétrica Nacional de Uruguay".

Para solicitar la monografía de estos puntos y el acceso a los mismos se contacta a José María Pampillón (Jefe de la División de Geodesia y Topografía). No logramos obtener autorización para el acceso a la Escuela Militar, punto de interés por ser un punto de alta precisión. Por lo cual se decide tomar como referencia los puntos ubicados en la fortaleza de Montevideo y en el Servicio Geográfico Militar. Se consideran ambos puntos para un mejor control de la medición. En esta etapa se logra detectar un error en los valores de gravedad que indicaban las monografías, tal error se detecta al realizar la comparación de la monografía del punto SGM con la previamente utilizada en julio 2017 para una práctica en la asignatura Geofísica. Al constatar la diferencia entre las monografías que referían al mismo punto se informa a José María Pampillón, de esta forma comienzan una revisión de toda la base de datos y nos informa que a comienzos del año 2017 actualizaron el formato de las monografías y esto generó que la monografía del punto ubicado en el SGM tuviera el valor de un punto cercano, por ese mismo medio nos confirmó el valor real del punto SGM 979737.006 mGal.

Una vez recabadas las monografías, se coordina la salida a campo con el Ing. Pablo Rodríguez. El procedimiento utilizado coincide con el descripto en el marco teórico. Los puntos del perfil ya se encontraban materializados por lo cual se mide la gravedad en cada uno de estos.

Imagen 26 – Medición con gravímetro

En cada punto se estaciona el gravímetro mediante los calantes del trípode de apoyo, se mide la altura del instrumento (hasta la base del gravímetro, luego a esta medida se le suma la altura a la que se encuentra el sensor de medición en el equipo) y se comienza la medición dejando el equipo durante aproximadamente 3 minutos en cada punto, el equipo brinda una lectura cada 45 segundos, esa lectura es un promedio de las medidas tomadas durante ese lapso de tiempo. En el caso de los puntos gravimétricos conocidos se toma una serie de 5 lecturas y en los puntos del perfil se toman 3 lecturas.

Se comienza el relevamiento por el punto gravimétrico ubicado en el edificio del SGM. Luego se releva el punto ubicado en la fortaleza de Montevideo y posteriormente se viaja a Ciudad del Plata para las mediciones en el perfil.

Imagen 27 – Punto gravimétrico Servicio Geográfico Militar 8 de octubre

Imagen 28 – Punto gravimétrico Fortaleza de Montevideo

El punto fijo del SGM 1.21.003 es donde se comenzó la medición, este punto se encuentra sobre el puente en un lugar inaccesible para estacionar el gravímetro por lo cual se tomó la medida en un punto muy cercano y se tomó la altura desde la base del gravímetro al punto SGM.

Imagen 29 – Medición en Punto SGM 1.21.003

Posteriormente se tomaron el resto de los 18 puntos del perfil los cuales se localizaron rápidamente y en buen estado por la materialización que se realizó de los mismos durante la nivelación geométrica.

Una vez finalizado el relevamiento del perfil se realizó la medición de 7 puntos más en la zona a solicitud de ANCAP. Estos puntos también fueron relevados por GNSS.

Regresando a Montevideo se vuelven a relevar los puntos gravimétricos del edificio del SGM y de la fortaleza de Montevideo. Estos fueron los puntos de control, para realizar el cálculo de la deriva se utiliza el punto del SGM, esto se debe a que no fue posible medir en el punto exacto de la Fortaleza de Montevideo

(igualmente se midió en un punto cercano y este punto sirvió de control ya que la variación es mínima). Al volver a Montevideo, se decide realizar la medición gravimétrica de un punto en la Facultad de Ingeniería para que pueda ser utilizado en trabajos posteriores. Este punto se encuentra en el Estacionamiento del Cuerpo Sur, materializado por un bulón de hierro.

Imagen 30 – Monografía del punto gravimétrico FING – Completo en Anexo

Luego del trabajo de campo se procesan las mediciones. Se realizan las correcciones a los valores de gravedad observada y se refieren las mediciones al valor del punto gravimétrico del SGM. El equipo ya realiza correcciones automáticamente: por marea luni-solar, por inclinación del equipo y filtro sísmico (filtra el ruido de pequeños sismos y por ejemplo minimiza el ruido cuando se mide cerca de la carretera). Para esto se configura el equipo para que lo haga de forma automática.

Estación	Observaciones	h Base Grav (cm)	Lectura Bruta (mGal)
1000	SGM Geodesia	16.5	5312.270
1001	Fortaleza	16.3	5308.168
1002	Próx 1.21.003 SGM	16.5	5307.020
1003	1	17.0	5307.019
1004	2	9.7	5307.482
1005	3	14.5	5307.836
1006	4	13.5	5307.689
1007	5	12.3	5307.446
1008	6	15.0	5307.280
1009	7	16.4	5307.020
1010	8	16.0	5306.960
1011	9	12.0	5306.850
1012	10	13.3	5306.840
1013	11	16.4	5306.520
1014	12	15.0	5306.108
1015	13	13.5	5305.650
1016	14	13.0	5305.420
1017	15	12.0	5305.060
1018	16	17.0	5304.780
1019	17	17.0	5304.490
1020	18	15.0	5304.540
1035	Fortaleza	15.7	5307.537
1036	SGM Geodesia	16.0	5311.645
1037	FING	17.0	5312.136

Tabla 8 – Libreta de campo con datos crudos de relevamiento gravimétrico

Estación	h Base Grav	Lectura Bruta	h_base (m)	h_Sensor (m)	g_obs (mGal)	G (mGal)
SGM Geodesia	16.5	5312.270	0.165	0.254	5312.264	979737.006
Fortaleza	16.3	5308.168	0.163	0.252	5308.177	979732.862
Próx 1.21.003 SGM	16.5	5307.020	0.671	0.760	5307.018	979731.761
1	17.0	5307.019	0.170	0.259	5307.009	979731.751
2	9.7	5307.482	0.097	0.186	5307.473	979732.215
3	14.5	5307.836	0.145	0.234	5307.828	979732.571
4	13.5	5307.689	0.135	0.224	5307.676	979732.418

5	122	5207 446	0 1 2 2	0.212	5207 425	070722 177
5	12.3	5507.440	0.123	0.212	5507.455	919132.111
6	15.0	5307.280	0.150	0.239	5307.271	979732.013
7	16.4	5307.020	0.164	0.253	5307.014	979731.756
8	16.0	5306.960	0.160	0.249	5306.946	979731.688
9	12.0	5306.850	0.120	0.209	5306.839	979731.582
10	13.3	5306.840	0.133	0.222	5306.827	979731.569
11	16.4	5306.520	0.164	0.253	5306.518	979731.260
12	15.0	5306.108	0.150	0.239	5306.096	979730.839
13	13.5	5305.650	0.135	0.224	5305.785	979730.527
14	13.0	5305.420	0.130	0.219	5305.407	979730.149
15	12.0	5305.060	0.120	0.209	5305.057	979729.800
16	17.0	5304.780	0.170	0.259	5304.769	979729.512
17	17.0	5304.490	0.170	0.259	5304.486	979729.229
18	15.0	5304.540	0.150	0.239	5304.553	979729.295
Fortaleza	15.7	5307.537	0.157	0.246	5307.525	979732.268
SGM Geodesia	16.0	5311.645	0.160	0.249	5311.637	979736.379
FING	17.0	5312.136	0.170	0.259	5312.120	979736.863

Tabla 9 – Datos gravimétricos del perfil

Estación	G (mGal)	Hora	DEC.TIME (días)	Res.Drift (mGal)	G_Corregida (mGal)
SGM Geodesia	979737.006	8:35:06	43021.357	0.000	979737.006
Fortaleza	979732.862	9:38:26	43021.401	0.069	979732.862
Próx 1.21.003 SGM	979731.761	10:47:57	43021.449	0.144	979731.905
1	979731.751	10:56:35	43021.455	0.154	979731.905
2	979732.215	11:05:21	43021.461	0.163	979732.378
3	979732.571	11:12:18	43021.466	0.171	979732.742
4	979732.418	11:19:33	43021.471	0.179	979732.597
5	979732.177	11:27:27	43021.477	0.187	979732.365
6	979732.013	11:33:19	43021.481	0.194	979732.207
7	979731.756	11:40:35	43021.486	0.202	979731.958
8	979731.688	11:48:09	43021.491	0.210	979731.898
9	979731.582	11:53:40	43021.495	0.216	979731.798
10	979731.569	12:00:39	43021.500	0.223	979731.792
11	979731.260	12:06:53	43021.504	0.230	979731.491
12	979730.839	12:13:29	43021.509	0.237	979731.076
13	979730.527	12:21:08	43021.514	0.246	979730.773
14	979730.149	12:30:47	43021.521	0.256	979730.405
15	979729.800	12:36:23	43021.524	0.262	979730.062

16	979729.512	12:42:35	43021.529	0.269	979729.781
17	979729.229	12:48:36	43021.533	0.276	979729.504
18	979729.295	12:56:40	43021.538	0.284	979729.580
Fortaleza	979732.268	17:21:08	43021.722	0.572	979732.862
SGM Geodesia	979736.379	18:11:56	43021.757	0.627	979737.006
FING	979736.863	18:54:54	43021.787	0.674	979737.537

Tabla 10 – Cálculo de la Deriva Instrumental y valores finales de gravedad

Para determinar la altura del sensor se suma una constante del equipo (0.089m) a la altura medida desde el punto a la base del gravímetro. Los valores de gravedad se refieren al punto gravimétrico del SGM por lo especificado previamente. La deriva instrumental se corrige tomando un punto de control y realizando lectura del mismo al comenzar y finalizar la tarea de campo. La deriva instrumental para una lectura se calcula según la siguiente ecuación:

$$d = \frac{(g_{obs PC1} - g_{obs PC2}) * (t_{lect} - t_{PC1})}{(t_{PC2} - t_{PC1})}$$
(5-1)

Siendo:

 $g_{obs PC 1}$: la gravedad observada en el punto de control la primera vez $g_{obs PC 2}$: la gravedad observada en el punto de control la segunda vez t_{lect} : tiempo de la lectura $t_{PC 1}$: tiempo de lectura del punto de control por primera vez

 t_{PC2} : tiempo de lectura del punto de control por segunda vez

Se tiene la hora de cada lectura y se calcula el DEC.TIME (días), el DEC.TIME es una medida de tiempo transcurrido, es la cantidad de días desde el 1/1/1900, por ejemplo: el día 43021 fue el 14/11/2017 a las 0hs.

Como se explicó previamente en la zona de Ciudad del Plata se cuenta con gran cantidad de datos gravimétricos por la investigación gravimétrica realizada en el sector de la Fosa del Río Santa Lucía. Con estos datos a través de una interpolación se obtienen los valores de gravedad de los puntos de la malla de nivelación base sobre la cual se calcularán los modelos de altura.

Al tener datos propios medidos en la zona se decide verificar los datos de gravedad existente, de esta forma a través del software de interpolación PREDGRAV se obtienen los valores de gravedad para los puntos del perfil a partir de los datos de gravedad existentes en la zona. Este análisis permite detectar una diferencia de 52mGal en todos los valores de gravedad para los puntos del perfil.

El software PREDGRAV fue creado por Hermann Drewes, este programa permite la interpolación de valores de gravedad según puntos de coordenada, altura y gravedad conocidas hasta puntos de coordenada y altura conocidas, con el método de predicción por mínimos cuadrados.

Para poder obtener la gravedad de los puntos de interés en función de puntos con gravedad conocida, se deben ingresar dos archivos en formato .in, uno de ellos con los datos de los puntos con gravedad conocida y el otro con los datos de los puntos de interés. Como resultado el software brinda un archivo de salida .out con los valores de gravedad interpolados para los puntos solicitados. El

formato de los archivos de entrada debe seguirse con rigurosidad para que los datos sean procesados correctamente, en el caso de la posición del punto para latitud y longitud es necesario ingresar estos ángulos en grados sexadecimales. Este software es recomendado por la comunidad geodésica, recomendado por SIRGAS, ha sido utilizado en trabajos como: "la compensación del marco de referencia altimétrico de argentina".

Estación	G_Corregida (mGal)	G_Interpolada (mGal)	Diferencia (mGal)
Próx 1.21.003 SGM	979731.905	979680.00	-51.91
1	979731.905	979679.70	-52.20
2	979732.378	979680.00	-52.38
3	979732.742	979679.90	-52.84
4	979732.597	979679.70	-52.90
5	979732.365	979679.50	-52.86
6	979732.207	979679.30	-52.91
7	979731.958	979679.10	-52.86
8	979731.898	979679.00	-52.90
9	979731.798	979679.00	-52.80
10	979731.792	979679.20	-52.59
11	979731.491	979679.00	-52.49
12	979731.076	979678.70	-52.38
13	979730.773	979678.30	-52.47
14	979730.405	979678.10	-52.31
15	979730.062	979677.80	-52.26
16	979729.781	979677.60	-52.18
17	979729.504	979677.30	-52.20
18	979729.580	979677.20	-52.38
		Promedio	-52.52

Tabla 11 – Diferencia entre gravedad medida y gravedad interpoladas para puntos del
perfil.

En esta tabla se puede ver el sesgo que existe entre los valores medidos de gravedad y los valores interpolados a partir de los datos existentes para los puntos del perfil. Si bien existe una diferencia en los valores de 52mGal no es

posible concluir que existe un sesgo, sin antes realizar un análisis más profundo. Para esto se solicita la ayuda del Ing. Pablo Rodríguez especialista en mediciones gravimétricas. El mismo expresa que 52mGal es una gran diferencia por lo cual es necesario analizar los valores.

En primer lugar, se analiza el informe presentado en el congreso IPGH donde se presenta la prospección gravimétrica realizada en la fosa del Santa Lucía. En este informe podemos ver que el valor de la anomalía de Bouguer mínima para el perfil 4 es cercano a -45mGal, sin embargo, el Ingeniero nos informa que el valor de Anomalía de Bouguer más negativo de la Cuenca de Santa Lucía se midió cercano a la localidad de Sauce y fue de unos -11mGal y en Uruguay entero el valor fue de -27mGal, esto indica que algo no coincide.

Imagen 31 – Gráfica de informe IPGH para perfil 4

Además, observando el video de la presentación del trabajo en el congreso IPGH 2015, vemos que al final del video Norbertino Suarez hace una pregunta sobre como fue el referenciado de los datos y el Ing. De los Santos (presentador)

expresa que siempre se comenzaban y terminaban las medidas en una estación en el kilómetro 34 (empalme de R1 con R1 vieja) y que el último día ataron esa estación con la de la Fortaleza del Cerro. Se considera que el error pueda estar en referenciar esa estación base. Otro dato no menor es que la estación de referencia elegida no es la más precisa. Sin embargo, al no contarse con los datos brutos del informe no se puede concluir nada con esto. Por otro lado, en las mediciones realizadas con el equipo de ANCAP se tiene un doble control ya que se midieron dos estaciones gravimétricas (Fortaleza y SGM) y la diferencia medida que se obtuvo entre estos puntos es correcta.

Continuando con la investigación, se elabora un mapa donde figuran puntos de la Bureau Gravimétrico Internacional (repositorio de datos de gravedad) y los puntos de los perfiles del trabajo existente en la zona.

Imagen 32 – Datos de la BGI y datos del Informe gravimétrico para la zona

Aquí se refleja una diferencia de unos 50mGal entre los valores de la BGI y los valores de gravedad medidos en los perfiles.

Imagen 33 - Mapa con datos gravimétricos ANCAP, SGM, FING

Además, se logró obtener los datos de gravedad de la línea Montevideo-Rosario del SGM publicados en 1970. A los datos de la publicación hay que restarle 15mGal que es lo que se corrigió el potencial gravimétrico de referencia Potsdam, ya que en 1984 se adoptó un nuevo valor para el Datum (G=9797325.5 $\mu m s^{-2}$), al tomarse en cuenta el valor corregido en unos 150 $\mu m s^{-2}$ de Potsdam.

Se puede ver que los valores medidos coinciden con los del SGM corregidos y los de BGI por lo cual se decide sumar a los datos existentes para la zona el sesgo determinado de 52mGal, lo mejor en este caso sería localizar el punto base utilizado para el trabajo de prospección gravimétrica y referenciarlo nuevamente al punto gravimétrico de la Fortaleza, pero no se logra conseguir los

datos crudos del trabajo realizado. A los efectos del presente trabajo y habiendo analizado datos existentes por varias fuentes para la zona es válido sumar a los datos proporcionados por el trabajo de prospección 52mGal ya que asumimos que es un error sistemático que se presenta en todas las medidas. Para los fines de este trabajo 52mGal en todos los valores no implica una variación que pueda afectar los cálculos de forma significativa pero igualmente se decide hacer el estudio y corregir los valores.

De esta forma se corrigen los valores de gravedad existentes en la zona.

Puntos	Latitud	Longitud	Gravedad
G1	-34 42539162	-56 957817	979699 32
G10	-34 51244338	-56 818563	979713 13
G100	-34 77018164	-56 395465	979728.28
G101	-34 76697811	-56 395007	979726.23
G102	-34 76547989	-56 394745	979725.88
G102	-34 76431688	-56 391180	979724 35
G104	-34 76243033	-56 385/25	070722.84
G10 4	-34 76001781	-56 382689	979722.04
G105	-34 76194355	-56 376588	979721.21
G100	-34 76277010	-56 370747	979722.00
G107	-34.70277919	56 366204	979724.02
G108	-34.75952733	-50.500204	979722.04
G105	-34.73333020	56 800705	979721.42
G11 C12	-34.51797000	-50.809705	979714.55
G12	-34.3247297	-50.603413	979715.70
GI3	-34.52037004	-50.794774	979713.70
G14	-34.53520019	-50.765173	979713.76
GI5	-34.53909313	-56.775829	979714.19
G16	-34.54448771	-50.707129	979715.71
GI7	-34.54982778	-50.758547	979710.72
G18	-34.55522113	-56.749855	979718.71
G19	-34.56066784	-56.741107	979720.47
G2	-34.44216289	-56.931803	979699.60
G20	-34.56612288	-56.732336	979718.36
G21	-34.57147849	-56.723739	979717.07
G22	-34.57795474	-56.716446	979719.74
G23	-34.58535189	-56.709780	979719.13

G24	-34.59195391	-56.702636	979719.55
G25	-34.59506734	-56.692614	979722.07
G26	-34.59776419	-56.682233	979725.75
G27	-34.60385933	-56.671631	979726.53
G28	-34.61408517	-56.655098	979730.72
G29	-34.61750549	-56.649652	979729.86
G3	-34.45844144	-56.905584	979703.07
G30	-34.62553409	-56.638196	979732.30
G31	-34.63315676	-56.633002	979733.84
G32	-34.6411031	-56.627566	979734.35
G33	-34.64559455	-56.618980	979732.16
G34	-34.64941226	-56.608585	979731.80
G35	-34.65305962	-56.598758	979727.86
G36	-34.659098	-56.589550	979725.53
G37	-34.66382748	-56.582793	979725.82
G38	-34.66901647	-56.573446	979720.58
G39	-34.67431063	-56.563453	979721.08
G4	-34.47472363	-56.879659	979709.19
G40	-34.67922738	-56.554050	979718.87
G41	-34.68394615	-56.544953	979720.65
G42	-34.68847635	-56.536249	979719.84
G43	-34.69339973	-56.526777	979716.83
G44	-34.69846629	-56.517216	979719.50
G45	-34.70324539	-56.508115	979719.83
G46	-34.70782634	-56.499242	979720.99
G47	-34.71287249	-56.489635	979720.68
G48	-34.71770279	-56.480344	979717.70
G49	-34.72239274	-56.470048	979717.73
G5	-34.49104508	-56.853518	979711.21
G50	-34.72738095	-56.462141	979718.35
G51	-34.73223563	-56.452727	979719.60
G52	-34.73699168	-56.443596	979719.89
G53	-34.74189028	-56.434245	979719.98
G54	-34.74802092	-56.422426	979721.15
G55	-34.75182344	-56.416139	979720.84
G56	-34.75755226	-56.407346	979723.26
G57	-34.76294014	-56.399036	979725.03
G58	-34.76845302	-56.390593	979726.84
G59	-34.77318471	-56.381148	979727.99
G6	-34.49348434	-56.849668	979711.34
G60	-34.7758623	-56.370473	979729.35
G61	-34.77609965	-56.360646	979731.71
G62	-34.78000546	-56.355742	979732.86

G63	-34.7863072	-56.355452	979735.44
G64	-34.74294503	-56.586733	979728.29
G65	-34.73871154	-56.582865	979726.00
G66	-34.73143893	-56.576391	979726.10
G67	-34.72403923	-56.569777	979727.25
G68	-34.7224742	-56.560808	979728.97
G69	-34.71841646	-56.558383	979729.53
G7	-34.49613848	-56.844697	979710.48
G70	-34.71021401	-56.554451	979730.47
G71	-34.70384621	-56.546777	979725.41
G72	-34.69637819	-56.541609	979719.51
G73	-34.68841286	-56.536151	979720.15
G74	-34.68057487	-56.531042	979721.16
G75	-34.6733135	-56.525854	979721.26
G76	-34.66481524	-56.524964	979720.52
G77	-34.65604525	-56.523770	979724.28
G78	-34.64702244	-56.522501	979731.60
G79	-34.63847831	-56.521427	979734.00
G8	-34.50170889	-56.835645	979711.06
G80	-34.63388588	-56.520831	979735.03
G81	-34.63038505	-56.520349	979737.40
G82	-34.62184978	-56.519242	979738.12
G83	-34.61824953	-56.518707	979738.99
G84	-34.75140414	-56.456064	979728.28
G85	-34.7498409	-56.455353	979725.81
G86	-34.7461971	-56.453192	979724.80
G87	-34.74231781	-56.450814	979722.61
G88	-34.7384474	-56.448415	979720.69
G89	-34.73612516	-56.445393	979719.58
G9	-34.50692799	-56.827356	979711.95
G90	-34.73371101	-56.442012	979719.19
G91	-34.72957787	-56.439386	979717.84
G92	-34.72565237	-56.436824	979716.85
G93	-34.72172657	-56.434207	979715.30
G94	-34.7183712	-56.432100	979714.68
G95	-34.71450032	-56.429681	979713.58
G96	-34.71082818	-56.427347	979712.64
G97	-34.70677562	-56.424667	979714.47
G98	-34.70323881	-56.422366	979713.28
G99	-34.70233416	-56.421760	979713.20

Tabla 12 - Valores de gravedad corregidos existentes en la zona

Luego se realizó la interpolación por el software PREDGRAV para obtener los valores de gravedad en los puntos de la malla de nivelación.

Puntos	Gravedad (mGal)	Puntos	Gravedad (mGal)
А	979732.40	AB	979727.20
В	979720.70	AC	979720.00
С	979721.30	AD	979725.90
D	979725.80	AE	979721.50
E	979727.00	AG	979722.80
F	979724.30	AH	979722.70
G	979721.90	AI	979725.10
Н	979721.50	AJ	979726.10
1	979720.50	AK	979721.50
J	979720.10	AL	979722.30
К	979720.50	AM	979725.20
L	979720.10	AN	979727.90
М	979719.70	AO	979725.10
Ν	979719.10	AP	979723.50
0	979720.40	AQ	979722.40
Р	979731.40	AR	979725.10
Q	979729.50	AS	979726.80
R	979726.20	AT	979727.30
S	979722.30	AU	979721.40
Т	979723.50	AV	979720.70
U	979723.70	AW	979723.20
V	979727.10	AX	979723.20
W	979729.90	AY	979725.00
Х	979728.90	AZ	979725.70
Y	979728.50	BA	979726.70
Z	979727.30	1.22.003	979723.70
AA	979728.20	1.22.005	979725.20

Tabla 13 – Valores de gravedad interpolados puntos malla nivelación

5.4 Procesamiento de datos y Análisis de resultados

5.4.1 Cálculo de números Geopotenciales

Todos los datos existentes para la zona de estudio permiten hacer el ajuste de la red de nivelación en término de números geopotenciales. Para este ajuste se utiliza el método de mínimos cuadrados.

Se realiza el ajuste de los **dC** (diferencia de números geopotenciales).

Se calcula dC para cada tramo:

$$dC = gdH$$

Siendo g la gravedad media entre los puntos correspondientes al tramo y dH el desnivel geométrico entre los puntos.

Los desniveles geométricos se obtienen de la nivelación realizada en la zona. Es necesario conocer la gravedad en cada punto de la malla, que se obtuvo por la interpolación de los datos en la zona.

Durante la etapa previa, luego de analizar los datos disponibles para la zona se puede realizar el ajuste de la red de nivelación en términos de números geopotenciales. Se tienen datos gravimétricos y geométricos que pueden combinarse para la obtención de números geopotenciales. Sin embargo, luego de haber realizado el trabajo de campo del presente trabajo como se explicó previamente, se detectó un error en los datos gravimétricos disponibles para la zona. El error no impidió seguir trabajando con estos datos ya que se pudo corregir. Por este motivo los cálculos que se realizaron en un inicio (ajuste de la red en término de números geopotenciales, cálculo de alturas normales y

ortométricas de los puntos de la malla y modelos) debieron realizarse nuevamente con los datos corregidos.

Este error detectado permite ver la importancia de trabajar con datos propios donde se conoce el origen de los mismos y las metodologías aplicadas para su obtención.

Observando los valores de gravedad podemos ver que la máxima variación es de 13 mGal. Por lo cual el valor de gravedad en la zona es prácticamente constante.

Igualmente, al tratarse de un trabajo académico y para realizar ajuste de números geopotenciales y calcular alturas físicas es necesario considerar los valores de gravedad.

Se calculan los *dC* para cada tramo y se comparan los cierres de cada circuito según las diferencias de números geopotenciales y según los desniveles geométricos medidos.

	Diferencia de números geopotenciales				
	Tramos	dC (m ² /s ²)		Tramos	dC (m ² /s ²)
L1	1.21.005R - A	-11.714	L37	AU - AV	13.548
L2	A – D	-7.461	L38	AV - AY	-2.294
L3	D - J	-35.329	L39	AY - AZ	12.612
L4	J – K	-34.926	L40	AZ - K	-20.589
L5	A – B	22.432	L41	AV - AW	-17.699
L6	B – C	-17.148	L42	AW - AX	12.637
L7	C – N	-10.018	L43	AX - AY	2.769
L8	N – D	-2.727	L44	AZ - BA	-19.782
L9	J - M	29.491	L45	BA - L	7.670
L10	M – N	8.566	L46	1.21.005R - AM	4.400
L11	M – I	19.814	L47	AM - AL	2.731
L12	I–H	0.470	L48	AL - AK	-12.283

1 1 2	ы	-76 223	1 40		2 768
	H-L	-70.223	L49		2.700
L14	L – K	-8.478	L50	AJ - AI	13.625
L15	K – P	-6.577	L51	AI - AH	2.794
L16	P - J	41.502	L52	AH - AG	-5.734
L17	D – O	-59.040	L53	AG - 1.21.005R	-8.302
L18	0 – E	43.714	L54	AM - AE	0.090
L19	E – A	22.786	L55	AE - AD	-12.892
L20	0 – P	-17.792	L56	AD - AG	16.703
L21	E – F	-69.530	L57	AE - AC	-28.962
L22	F – G	-4.672	L58	AC - T	23.359
L23	G – O	30.488	L59	T - U	-21.797
L24	P – Q	-11.949	L60	U - S	29.699
L25	Q – G	-0.747	L61	S - R	-10.280
L26	1.21.003P - AN	-40.213	L62	R- AE	7.980
L27	AN – AO	-16.455	L63	AC -AB	-43.305
L28	AO – AP	4.017	L64	AB - X	-10.142
L29	AP – AQ	-3.014	L65	X - W	20.138
L30	AQ – AR	7.889	L66	W - V	2.757
L31	AR – AS	24.379	L67	V - U	32.114
L32	AS – AT	-24.625	L68	AB - AA	-0.665
L33	AT – AP	-4.630	L69	AA - Z	3.136
L34	AT – AO	-8.646	L70	Z - Y	33.880
L35	AO – AN	16.455	L71	Y -AD	23.024
L36	AN – AU	5.169		1.21.005R - 1.21.003P	-57.663

Tabla 14 – Diferencia de números geopotenciales previo al ajuste para cada tramo de nivelación

Comparación de cierres geométricos y por diferencia de números geopotenciales				
Circuitos	Cierre dH (m)	Cierre dC (m ² /s ²)	Cierre dC (m)	Diferencia (m)
1	0.008	0.078	0.008	0.000
2	0.022	-0.216	0.022	0.000
3	0.020	-0.196	0.020	0.000
4	0.016	0.157	0.016	0.000
5	0.012	-0.118	0.012	0.000
6	0.009	-0.088	0.009	0.000
7	0.004	0.039	0.004	0.000
8	0.022	0.216	0.022	0.000
9	0.014	0.137	0.014	0.000
10	0.004	0.039	0.004	0.000

11	0.007	0.069	0.007	0.000
12	0.030	-0.293	0.030	0.000
13	0.012	-0.118	0.012	0.000
14	0.004	-0.039	0.004	0.000
15	0.024	-0.235	0.024	0.000
16	0.024	-0.235	0.024	0.000
17	0.003	-0.029	0.003	0.000
18	0.017	-0.166	0.017	0.000
19	0.029	-0.284	0.029	0.000

Tabla 15 – Comparación de cierres geopotenciales y geométricos

Para poder comparar los cierres geométricos de los cierres en término de números geopotenciales, es necesario expresar los cierres geopotenciales en metros, para esto se divide el cierre en términos de números geopotenciales por la gravedad promedio de todos los puntos del circuito.

La tabla de comparación refleja que los cierres de los circuitos no cambian al agregar los valores de gravedad y realizando el cierre en término de números geopotenciales, sin embargo, esto ocurre porque para este fin solo nos interesan los valores hasta el milímetro ya que con los instrumentos de medición no es posible llegar a precisiones mejores, si los valores se trabajan con mayor precisión efectivamente según la teoría se reflejará cómo el cierre mejora integrando en la nivelación el aspecto geométrico y el físico. Esto ocurre para esta zona en particular, en otros lugares es necesario contemplar el aspecto físico ya que los cierres mejoran significativamente. Esto muestra que en la zona el no paralelismo de las superficies equipotenciales no afecta en la nivelación.

Luego de realizar la comparación de los cierres de nivelación se ajusta la malla por el método de mínimos cuadrados de las magnitudes. Obteniendo de esta

forma para cada tramo un dC y los números geopotenciales ajustados, de estos valores se derivarán posteriormente las alturas normales y ortométricas.

En primer lugar, para realizar el ajuste se debieron plantear las ecuaciones.

 $\overline{l} = l + v$

Se expresan las mismas de la siguiente forma:

$$v + B\Delta = f$$

Existe una ecuación por cada tramo de nivelación.

Ejemplo: $v_1 - A = -1.21.005 - l_1$

Se obtienen 71 ecuaciones.

De las ecuaciones, se obtienen las matrices necesarias que deben ingresarse al ajuste según el algoritmo del MMC de las magnitudes.

Se ingresa la matriz B (conformada por los coeficientes de las cotas de los puntos), W (matriz peso, se consideró como peso de las observaciones, el inverso de la distancia de los tramos) y f (matriz con términos independientes).

Los números geopotenciales de los puntos fijos SGM 1.21.003 y 1.21.005 son conocidos y se consideran para este trabajo libres de error. Estos valores se obtienen del cálculo realizado por el SGM a cargo del Coronel Norbertino Suarez, en conjunto con el Ingeniero Agrimensor Jorge Faure para el ajuste de la red de nivelación de primer orden, en este trabajo se realizó el ajuste en término de números geopotenciales por lo cual todos los puntos fijos de la red de primer

orden tienen cota geopotencial conocida. Esto fue presentado en el año 2016 en el Simposio de SIRGAS en Ecuador.

Los cálculos para el ajuste se realizan en Matlab, de esta forma se obtienen los números geopotenciales ajustados de todos los puntos de la malla de nivelación. Además, se realiza la propagación de cofactores para evaluar las precisiones de los resultados obtenidos.

Puntos	Números Geopotenciales (m²/s²)	Desviación estándar (m²/s²)
А	122.502	0.107
В	144.934	0.138
С	127.786	0.132
D	115.041	0.118
E	99.716	0.125
F	30.185	0.135
G	25.513	0.127
Н	129.487	0.136
1	129.017	0.133
J	79.712	0.118
К	44.786	0.118
L	53.264	0.123
М	109.203	0.123
Ν	117.768	0.120
0	56.001	0.122
Р	38.209	0.119
Q	26.260	0.129
R	130.726	0.085
S	141.006	0.095
Т	133.103	0.095
U	111.307	0.097
V	79.193	0.106
W	76.436	0.108
Х	56.298	0.104
Y	102.791	0.087
Z	68.910	0.101
AA	65.775	0.102
AB	66.440	0.095

AC	109.744	0.083
AD	125.814	0.062
AE	138.706	0.062
AG	142.518	0.045
AH	148.252	0.074
AI	145.458	0.085
AJ	131.833	0.090
AK	129.064	0.088
AL	141.347	0.067
AM	138.616	0.022
AN	36.340	0.071
AO	19.885	0.086
AP	23.902	0.107
AQ	20.888	0.133
AR	28.777	0.136
AS	53.156	0.130
AT	28.532	0.108
AU	41.510	0.093
AV	55.057	0.100
AW	37.358	0.108
AX	49.995	0.113
AY	52.764	0.107
AZ	65.376	0.115
BA	45.593	0.123
1.22.005	134.216	0.000
1.22.003	76.553	0.000

Tabla 16 – Números Geopotenciales y desviación estándar

Tramos	Desniveles Geopotenciales ajustados (m²/s²)
1.21.005 – A	-11.714
A – D	-7.461
D - J	-35.329
J – K	-34.926
A – B	22.432
B – C	-17.148
C – N	-10.018
N – D	-2.727
J – M	29.491
M – N	8.566

M – I	19.814
I – H	0.470
H-L	-76.223
L-K	-8.478
K – P	-6.577
P-J	41.502
D – O	-59.040
0 – E	43.714
E – A	22.786
0 – P	-17.792
E – F	-69.530
F–G	-4.672
G – O	30.488
P – Q	-11.949
Q – G	-0.747
1.22.003 – AN	-40.213
AN – AO	-16.455
AO – AP	4.017
AP – AQ	-3.014
AQ – AR	7.889
AR – AS	24.379
AS – AT	-24.625
AT – AP	-4.630
AT – AO	-8.646
AO – AN	16.455
AN – AU	5.169
AU – AV	13.548
AV – AY	-2.294
AY – AZ	12.612
AZ – K	-20.589
AV – AW	-17.699
AW – AX	12.637
AX – AY	2.769
AZ – BA	-19.782
BA – L	7.670
1.21.005 – AM	4.400
AM – AL	2.731
AL – AK	-12.283
AK – AJ	2.768
AJ – AI	13.625
AI – AH	2.794
AH – AG	-5.734
AG - 1.21.005	-8.302

AM – AE	0.090
AE – AD	-12.892
AD – AG	16.703
AE – AC	-28.962
AC – T	23.359
T – U	-21.797
U – S	29.699
S – R	-10.280
R- AE	7.980
AC -AB	-43.305
AB – X	-10.142
X – W	20.138
W – V	2.757
V – U	32.114
AB – AA	-0.665
AA – Z	3.136
Z – Y	33.880
Y -AD	23.024
1.21.005 - 1.21.003	-57.663

Tabla 17 – Desniveles geopotenciales

Estos cálculos se verificaron realizando un ajuste por mínimos cuadrados de las correcciones. De esta forma se tiene un control de los resultados obtenidos.

Teniendo los números geopotenciales para todos los puntos de la malla de nivelación, se procede a realizar el cálculo de las alturas físicas.

Imagen 34 – Sistema de alturas, ilustración basada en trabajo de Laura Sánchez – "Determinación de alturas físicas en Colombia"

5.4.2 Cálculo de alturas ortométricas

Mediante la siguiente ecuación, se puede realizar el cálculo de la altura ortométrica:

$$H^{ORT} = \frac{C}{\bar{g}}$$

Siendo:

HORT: Altura ortométrica

C: Número Geopotencial

 \bar{g} : Gravedad media entre el punto en la superficie terrestre y el geoide

El valor de la gravedad media entre la superficie terrestre y el geoide no es posible determinarlo instrumentalmente, para poder obtener este valor se debe tener conocimiento de la distribución interna de masas en la tierra. Por este motivo el valor de \bar{g} es un valor aproximado y existen diversos geodestas que han propuesto fórmulas para su cálculo como ser: Niethammer, Mader, Mueller, Ramsayer, Ledersteger, Baranov y Helmert. Estas ecuaciones permiten calcular el valor de \bar{g} a partir de la gravedad del punto en la superficie terrestre, que es lo que puede medirse instrumentalmente. Esto hace que existan tantos valores de altura ortométrica para un punto como aproximaciones de gravedad existan.

En el caso de este trabajo se decide utilizar la gravedad de Helmert. La hipótesis de Helmert es que la gravedad varía linealmente con la altura, es decir, la densidad de las masas internas es constante. El efecto de la topografía se evalúa mediante una placa de Bouguer, cuyo espesor equivale a la altura del punto de observación y es condensada en una capa infinitamente delgada sobre el geoide. De esta forma \bar{g} equivale al promedio de la gravedad medida en la superficie terrestre y la correspondiente sobre el geoide. La gravedad sobre el geoide se obtiene mediante las reducciones de Poincaré y Prey (Heiskanen y Moritz 1967).

De esta forma se llega a la ecuación:

$$\bar{g} = g_p + 0.0424 * H^{ORT}$$
(5-2)

Siendo:

 g_p : la gravedad observada en el punto de la superficie terrestre en Gal

H^{ORT}: Altura ortométrica en km

Se decide utilizar la gravedad de Helmert siguiendo la justificación de Laura Sánchez, la misma expresa que el significado de las alturas ortométricas está estrechamente relacionado con el Geoide, por este motivo se prefiere que dichas alturas sean determinadas con la menor cantidad posible de hipótesis, de modo que la realización de su superficie de referencia pueda acercarse más al geoide. Bajo este criterio, la formulación de Helmert es la más adecuada, aunque genera correcciones de mayor magnitud.

Entonces:

$$H^{ORT} = \frac{C}{g_p + 0.0424 * H^{ORT}}$$
(5-3)

Como podemos ver, es necesario realizar iteraciones para el cálculo de la altura. Como valor inicial para *H*^{ORT} se ingresa el valor de la altura nivelada para cada punto.

Cotas Ortométricas					
Puntos	Gravedad Helmert (mGal)	Altura ortométrica (m)	Puntos	Gravedad Helmert (mGal)	Altura ortométrica (m)
А	979726.60	12.504	AB	979729.88	6.781
В	979726.27	14.793	AC	979729.05	11.202
С	979727.03	13.043	AD	979727.34	12.842
D	979727.78	11.742	AE	979727.50	14.158
E	979727.02	10.178	AG	979726.67	14.547

F	979726.41	3.081	AH	979726.52	15.132
G	979727.20	2.604	AI	979726.80	14.847
Н	979727.10	13.217	AJ	979725.81	13.456
1	979727.88	13.169	AK	979725.29	13.174
J	979728.65	8.136	AL	979725.22	14.427
К	979729.84	4.571	AM	979726.40	14.148
L	979727.41	5.437	AN	979732.97	3.709
М	979728.23	11.146	AO	979730.36	2.030
N	979727.50	12.021	AP	979727.23	2.440
0	979727.52	5.716	AQ	979723.20	2.132
Р	979728.45	3.900	AR	979724.75	2.937
Q	979728.44	2.680	AS	979726.00	5.426
R	979727.06	13.343	AT	979728.33	2.912
S	979726.80	14.392	AU	979731.70	4.237
Т	979728.96	13.586	AV	979731.28	5.620
U	979728.02	11.361	AW	979730.12	3.813
V	979728.43	8.083	AX	979729.46	5.103
W	979729.01	7.802	AY	979730.48	5.386
Х	979729.14	5.746	AZ	979730.03	6.673
Υ	979728.15	10.492	BA	979727.87	4.654
Z	979728.18	7.034	1.22.003	979735.71	7.814
AA	979728.65	6.714	1.22.005	979726.51	13.699

Tabla	18 –	Alturas	ortométricas	de	Helmert

5.4.2.1 Corrección Ortométrica

La corrección ortométrica como es la corrección que debe hacerse al desnivel geométrico para convertirlo en un desnivel ortométrico.

$$OC_{AB} = \sum_{A}^{B} \frac{g - \gamma_{0}}{\gamma_{0}} \delta_{n} + \frac{\bar{g}_{A} - \gamma_{0}}{\gamma_{0}} H_{A} + \frac{\bar{g}_{B} - \gamma_{0}}{\gamma_{0}} H_{B}$$
(5-4)

g: es la gravedad en el punto

 \bar{g}_A y \bar{g}_B : gravedad media de Helmert entre el punto A/B en la superficie terrestre

y el geoide a lo largo de la línea de la plomada.

 γ_0 : valor arbitrario de gravedad normal en el elipsoide para un punto de latitud

45°. $\gamma_0 = 9.806199203$

 H_A y H_B : alturas ortométricas correspondientes a los puntos A y B.

Tramos	Corrección Ortométrica - OC (mm)	Desnivel geométrico (m)	Desnivel Ortométrico (m)
1.21.005 - A	0.012	-1.203	-1.203
A - D	-0.005	-0.768	-0.768
D - J	0.014	-3.614	-3.614
J-K	-0.004	-3.558	-3.558
A - B	-0.010	2.291	2.291
B-C	-0.001	-1.749	-1.749
C - N	-0.001	-1.022	-1.022
N - D	0.000	-0.280	-0.280
J - M	-0.004	3.005	3.005
M - N	0.011	0.867	0.867
M - I	-0.005	2.021	2.021
I-H	0.013	0.045	0.045
H-L	0.030	-7.782	-7.782
L-K	-0.009	-0.867	-0.867
K - P	0.001	-0.664	-0.664
P-J	-0.014	4.238	4.238
D - O	0.028	-6.029	-6.029
0 - E	-0.011	4.462	4.462
E - A	-0.007	2.326	2.326
0 - P	-0.005	-1.811	-1.811
E-F	0.025	-7.097	-7.097
F-G	-0.002	-0.477	-0.477
G - O	-0.011	3.116	3.116
P - Q	-0.002	-1.215	-1.215
Q - G	-0.004	-0.068	-0.068
1.22.003 - AN	0.036	-4.102	-4.102
AN - AO	0.007	-1.676	-1.676
AO - AP	0.005	0.412	0.412
AP - AQ	0.005	-0.303	-0.303
AQ - AR	-0.007	0.808	0.808

AR - AS	-0.012	2.491	2.491
AS - AT	-0.009	-2.510	-2.510
AT - AP	0.003	-0.472	-0.472
AT - AO	-0.006	-0.880	-0.880
AO - AN	-0.013	1.683	1.683
AN - AU	0.002	0.530	0.530
AU - AV	-0.002	1.384	1.384
AV - AY	0.000	-0.229	-0.229
AY - AZ	-0.003	1.290	1.290
AZ - K	0.004	-2.099	-2.099
AV - AW	0.012	-1.808	-1.808
AW - AX	0.003	1.287	1.287
AX - AY	-0.004	0.280	0.280
AZ - BA	0.016	-2.019	-2.019
BA - L	0.001	0.783	0.783
1.21.005 - AM	0.000	0.448	0.448
AM - AL	0.018	0.276	0.276
AL - AK	0.010	-1.258	-1.258
AK - AJ	-0.006	0.280	0.280
AJ - AI	-0.020	1.388	1.388
AI - AH	0.004	0.283	0.283
AH - AG	0.004	-0.588	-0.588
AG - 1.21.005	0.013	-0.853	-0.853
AM - AE	-0.008	0.000	0.000
AE - AD	0.012	-1.318	-1.318
AD - AG	0.005	1.699	1.699
AE - AC	0.000	-2.960	-2.960
AC - T	-0.010	2.382	2.382
T - U	0.026	-2.227	-2.227
U - S	-0.003	3.034	3.034
S - R	0.001	-1.048	-1.048
R- AE	-0.012	0.816	0.816
AC -AB	0.011	-4.422	-4.422
AB - X	0.005	-1.032	-1.032
X - W	-0.008	2.059	2.059
W - V	0.000	0.285	0.285
V - U	-0.014	3.282	3.282
AB - AA	0.014	-0.074	-0.074
AA - Z	0.006	0.316	0.316
Z - Y	-0.004	3.449	3.449
Y-AD	0.009	2.344	2.344
1.21.005 - 1.21.003	-0.061	-5.900	-5.900

Tabla 19 – Correcciones Ortométricas

Se expresan las correcciones en milímetros para apreciar que todas son menores al mm. Las correcciones ortométricas son pequeñas, esto indica que los desniveles geométricos son equivalentes a los ortométricos para esta zona particular. Esto quiere decir que en la zona la influencia del aspecto gravimétrico es despreciable.

Tramos	Desnivel Ortométrico por diferencia de cotas ortométricas (m)	Desnivel ortométrico a partir de correcciones ortométricas (m)	Diferencia (m)
1.21.005 - A	-1.196	-1.203	0.007
A - D	-0.762	-0.768	0.006
D - J	-3.606	-3.614	0.008
J - K	-3.565	-3.558	-0.007
A - B	2.290	2.291	-0.001
B - C	-1.750	-1.749	-0.001
C - N	-1.022	-1.022	0.000
N - D	-0.278	-0.280	0.002
J - M	3.010	3.005	0.005
M - N	0.874	0.867	0.007
M - I	2.022	2.021	0.001
I-H	0.048	0.045	0.003
H-L	-7.780	-7.782	0.002
L - K	-0.865	-0.867	0.002
K - P	-0.671	-0.664	-0.007
P-J	4.236	4.238	-0.002
D - O	-6.026	-6.029	0.003
0 - E	4.462	4.462	0.000
E - A	2.326	2.326	0.000
O - P	-1.816	-1.811	-0.005
E-F	-7.097	-7.097	0.000
F - G	-0.477	-0.477	0.000
G - O	3.112	3.116	-0.004
P - Q	-1.220	-1.215	-0.005
Q - G	-0.076	-0.068	-0.008

1 22 003 - AN	-4 104	-4 102	-0.002
AN - AO	-1 679	-1.676	-0.002
	0.410	0.412	-0.003
	-0.308	-0.303	-0.002
	0.805	0.808	-0.003
AR - AS	2 488	2 491	-0.003
AS - AT	-2 513	-2.510	-0.003
AT - AP	-0.473	-0.472	-0.001
AT - AO	-0.883	-0.880	-0.003
AO - AN	1.679	1.683	-0.003
AN - AU	0.528	0.530	-0.002
AU - AV	1.383	1.384	-0.001
AV - AY	-0.234	-0.229	-0.005
AY - AZ	1.287	1.290	-0.003
AZ - K	-2.102	-2.099	-0.003
AV - AW	-1.807	-1.808	0.001
AW - AX	1.290	1.287	0.003
AX - AY	0.283	0.280	0.003
AZ - BA	-2.019	-2.019	0.000
BA - L	0.783	0.783	0.000
1.21.005 - AM	0.449	0.448	0.001
AM - AL	0.279	0.276	0.003
AL - AK	-1.254	-1.258	0.004
AK - AJ	0.283	0.280	0.003
AJ - AI	1.391	1.388	0.003
AI - AH	0.285	0.283	0.002
AH - AG	-0.585	-0.588	0.003
AG - 1.21.005	-0.847	-0.853	0.006
AM - AE	0.009	0.000	0.009
AE - AD	-1.316	-1.318	0.002
AD - AG	1.705	1.699	0.006
AE - AC	-2.956	-2.960	0.004
AC - T	2.384	2.382	0.002
T - U	-2.225	-2.227	0.002
U - S	3.031	3.034	-0.003
<u>S - R</u>	-1.049	-1.048	-0.001
R- AE	0.814	0.816	-0.001
AC -AB	-4.420	-4.422	0.002
AB - X	-1.035	-1.032	-0.003
X - W	2.055	2.059	-0.003
W - V	0.281	0.285	-0.004
V - U	3.278	3.282	-0.004
AB - AA	-0.068	-0.074	0.006

AA - Z	0.320	0.316	0.004
Z - Y	3.458	3.449	0.009
Y -AD	2.350	2.344	0.006
1.21.005 - 1.21.003	-5.886	-5.900	0.014

Tabla 20 – Comparación de desniveles ortométricos

Al realizar la comparación de los desniveles ortométricos obtenidos por diferencia de cotas ortométricas calculadas y convirtiendo los desniveles geométricos en ortométricos mediante la corrección ortométrica vemos que existen diferencias de hasta un centímetro. Esto se debe a que las correcciones ortométricas brindan una aproximación, estas nos dan idea de la influencia del aspecto gravitatorio, pero no puede considerarse solo su ecuación para la obtención de los desniveles ortométricos, lo correcto es luego de calcular los números geopotenciales y derivar las alturas ortométricas calcular la diferencia de estas para obtener los desniveles ortométricos.

5.4.3 Cálculo de alturas normales

Las alturas normales al contrario de las ortométricas, pueden ser determinadas unívocamente, ya que no requieren de la formulación de hipótesis en la estimación del valor medio de gravedad. Su precisión depende de las diferencias de nivel medidas, de los valores de gravedad observada o interpolada, de la latitud del punto de medición y de la precisión de la fórmula de gravedad teórica.

$$H^{NOR} = \frac{c}{\gamma_m} \tag{5-5}$$

Siendo:

HNOR: Altura normal

C: Número geopotencial

γ_m: gravedad media teórica

$$\gamma_m = \frac{1}{H^{NOR}} \int_0^{H^N} \gamma \, dH^{NOR} \tag{5-6}$$

Para esta integral existen muchas aproximaciones, una de las más conocidas y la utilizada en este caso es la ecuación de Molodenski.

$$\gamma_m = \gamma_0^{\varphi} \left[1 - (1 + f + m - 2fseno(\varphi)^2) \frac{H^{NOR}}{a} + \frac{(H^{NOR})^2}{a^2} \right]$$
(5-7)

Siendo:

 γ_0^{φ} : gravedad normal sobre el elipsoide del punto de observación.

a y *f* : parámetros del elipsoide de referencia, en este caso el WGS84. (Semieje mayor y achatamiento geométrico)

m: relación entre la fuerza de atracción gravitacional y la centrífuga en el Ecuador.

Podemos ver que también en el caso de la altura normal es necesario usar la iteración para su cálculo, como primera aproximación se vuelve a utilizar la altura nivelada.

 $\gamma_0^{\varphi} = \frac{a\gamma_b seno(\varphi)^2 + b\gamma_a \cos(\varphi)^2}{\sqrt{a^2 seno(\varphi)^2 + b^2 \cos(\varphi)^2}}$

(5-8)

Siendo:

- γ_a : gravedad normal en el elipsoide en el ecuador
- γ_b : gravedad normal en el elipsoide en el polo
- a y b: parámetros del elipsoide, semieje mayor y menor

	Cotas Normales				
Puntos	Gravedad normal (mGal)	Altura normal (m)	Puntos	Gravedad normal (mGal)	Altura normal (m)
А	979688.02	12.504	AB	979705.40	6.782
В	979677.66	14.794	AC	979692.57	11.202
С	979685.99	13.044	AD	979686.31	12.842
D	979691.61	11.743	AE	979680.54	14.158
E	979696.75	10.178	AG	979678.78	14.547
F	979711.78	3.081	AH	979676.34	15.133
G	979712.66	2.604	AI	979677.86	14.848
Н	979686.26	13.217	AJ	979683.51	13.457
1	979685.96	13.169	AK	979684.42	13.174
J	979703.15	8.136	AL	979678.74	14.428
К	979710.72	4.571	AM	979680.38	14.149
L	979709.13	5.437	AN	979712.47	3.709
М	979693.84	11.147	AO	979713.60	2.030
Ν	979690.42	12.021	AP	979712.75	2.440
0	979708.40	5.716	AQ	979712.14	2.132
Р	979711.32	3.900	AR	979711.85	2.937
Q	979712.92	2.680	AS	979708.84	5.426
R	979683.78	13.344	AT	979712.62	2.912
S	979679.08	14.393	AU	979711.84	4.237
Т	979683.28	13.586	AV	979709.71	5.620
U	979691.71	11.361	AW	979712.14	3.813
V	979701.99	8.083	AX	979710.17	5.103

W	979703.08	7.802	AY	979710.03	5.386
Х	979707.44	5.746	AZ	979707.33	6.673
Y	979695.23	10.492	BA	979710.51	4.654
Z	979704.94	7.034	1.22.003	979705.63	7.814
AA	979705.47	6.714	1.22.005	979682.35	13.700

Tabla 21 – Alturas normales

5.4.3.1 Corrección Normal

La corrección normal al igual que la corrección ortométrica es aquella que se suma al desnivel geométrico para obtener el desnivel normal.

$$NC_{AB} = \sum_{A}^{B} \frac{g - \gamma_{0}}{\gamma_{0}} \delta n + \frac{\overline{\gamma}_{A} - \gamma_{0}}{\gamma_{0}} H_{A}^{*} - \frac{\overline{\gamma}_{B} - \gamma_{0}}{\gamma_{0}} H_{B}^{*}$$
(5-9)

g: es la gravedad en el punto

 $\bar{\gamma}_A$ y $\bar{\gamma}_B$: gravedad normal media de A y B.

 γ_0 : valor arbitrario de gravedad normal en el elipsoide para un punto de latitud 45°. $\gamma_0 = 9.806199203$

 H_A y H_B : alturas normales correspondientes a los puntos A y B.

Tramos	Corrección Normal - NC (mm)	Desnivel geométrico (m)	Desnivel Normal (m)
1.21.005 - A	-0.113	-1.203	-1.203
A - D	-0.064	-0.768	-0.768
D - J	-0.208	-3.614	-3.614
J-K	-0.127	-3.558	-3.558
A - B	0.232	2.291	2.291

B-C	-0.189	-1.749	-1.749
C - N	-0.092	-1.022	-1.022
N - D	-0.022	-0.280	-0.280
J - M	0.176	3.005	3.005
M - N	0.075	0.867	0.867
M - I	0.167	2.021	2.021
I-H	0.000	0.045	0.045
H-L	-0.419	-7.782	-7.782
L-K	-0.021	-0.867	-0.867
K - P	-0.020	-0.664	-0.664
P-J	0.130	4.238	4.238
D - O	-0.294	-6.029	-6.029
0 - E	0.192	4.462	4.462
E - A	0.171	2.326	2.326
0 - P	-0.049	-1.811	-1.811
E-F	-0.244	-7.097	-7.097
F-G	-0.009	-0.477	-0.477
G - O	0.062	3.116	3.116
P - Q	-0.028	-1.215	-1.215
Q - G	-0.008	-0.068	-0.068
1.22.003 - AN	-0.126	-4.102	-4.102
AN - AO	-0.036	-1.676	-1.676
AO - AP	0.006	0.412	0.412
AP - AQ	-0.007	-0.303	-0.303
AQ - AR	0.007	0.808	0.808
AR - AS	0.044	2.491	2.491
AS - AT	-0.057	-2.510	-2.510
AT - AP	-0.008	-0.472	-0.472
AT - AO	-0.018	-0.880	-0.880
AO - AN	0.030	1.683	1.683
AN - AU	0.010	0.530	0.530
AU - AV	0.036	1.384	1.384
AV - AY	-0.011	-0.229	-0.229
AY - AZ	0.039	1.290	1.290
AZ - K	-0.062	-2.099	-2.099
AV - AW	-0.041	-1.808	-1.808
AW - AX	0.034	1.287	1.287
AX - AY	0.008	0.280	0.280
AZ - BA	-0.056	-2.019	-2.019
BA - L	0.020	0.783	0.783
1.21.005 - AM	0.047	0.448	0.448
AM - AL	0.038	0.276	0.276
AL - AK	-0.124	-1.258	-1.258

AK - AJ	0.025	0.280	0.280
AJ - AI	0.140	1.388	1.388
AI - AH	0.038	0.283	0.283
AH - AG	-0.060	-0.588	-0.588
AG - 1.21.005	-0.081	-0.853	-0.853
AM - AE	0.007	0.000	0.000
AE - AD	-0.129	-1.318	-1.318
AD - AG	0.178	1.699	1.699
AE - AC	-0.262	-2.960	-2.960
AC - T	-10.076	2.382	2.372
T - U	-0.186	-2.227	-2.227
U - S	0.277	3.034	3.034
S-R	-0.110	-1.048	-1.048
R- AE	0.077	0.816	0.816
AC -AB	-0.236	-4.422	-4.422
AB - X	-0.037	-1.032	-1.032
X - W	0.071	2.059	2.059
W - V	0.012	0.285	0.285
V - U	0.189	3.282	3.282
AB - AA	0.004	-0.074	-0.074
AA - Z	0.014	0.316	0.316
Z - Y	0.181	3.449	3.449
Y-AD	0.195	2.344	2.344
1.21.005 - 1.21.003	-0.438	-5.900	-5.900

Tabla 22 – Correcciones normales

Tramos	Desnivel Normal por diferencia de cotas Normales (m)	Desnivel Normal a partir de correcciones normales (m)	Diferencia (m)
1.21.005 - A	-1.196	-1.203	0.007
A - D	-0.762	-0.768	0.006
D - J	-3.606	-3.614	0.008
J - K	-3.565	-3.558	-0.007
A - B	2.290	2.291	-0.001
B - C	-1.750	-1.749	-0.001
C - N	-1.023	-1.022	0.000
N - D	-0.278	-0.280	0.002
J - M	3.010	3.005	0.005
M - N	0.874	0.867	0.007
M - I	2.023	2.021	0.001
I - H	0.048	0.045	0.003
H-L	-7.780	-7.782	0.002

L - K	-0.865	-0.867	0.002
K - P	-0.671	-0.664	-0.007
P - J	4.236	4.238	-0.002
D - O	-6.026	-6.029	0.003
O - E	4.462	4.462	0.000
E - A	2.326	2.326	0.000
0 - P	-1.816	-1.811	-0.005
E-F	-7.097	-7.097	0.000
F-G	-0.477	-0.477	0.000
G - O	3.112	3.116	-0.004
P - Q	-1.220	-1.215	-0.005
Q - G	-0.076	-0.068	-0.008
1.22.003 - AN	-4.105	-4.102	-0.002
AN - AO	-1.680	-1.676	-0.003
AO - AP	0.410	0.412	-0.002
AP - AQ	-0.308	-0.303	-0.005
AQ - AR	0.805	0.808	-0.003
AR - AS	2.488	2.491	-0.003
AS - AT	-2.513	-2.510	-0.003
AT - AP	-0.473	-0.472	-0.001
AT - AO	-0.883	-0.880	-0.003
AO - AN	1.680	1.683	-0.003
AN - AU	0.528	0.530	-0.002
AU - AV	1.383	1.384	-0.001
AV - AY	-0.234	-0.229	-0.005
AY - AZ	1.287	1.290	-0.003
AZ - K	-2.102	-2.099	-0.003
AV - AW	-1.807	-1.808	0.001
AW - AX	1.290	1.287	0.003
AX - AY	0.283	0.280	0.003
AZ - BA	-2.019	-2.019	0.000
BA - L	0.783	0.783	0.000
1.21.005 - AM	0.449	0.448	0.001
AM - AL	0.279	0.276	0.003
AL - AK	-1.254	-1.258	0.004
AK - AJ	0.283	0.280	0.003
AJ - AI	1.391	1.388	0.003
AI - AH	0.285	0.283	0.002
AH - AG	-0.585	-0.588	0.003
AG - 1.21.005	-0.847	-0.853	0.006
AM - AE	0.009	0.000	0.009
AE - AD	-1.316	-1.318	0.002
AD - AG	1.705	1.699	0.006

AE - AC	-2.956	-2.960	0.004
AC - T	2.384	2.372	0.013
T - U	-2.225	-2.227	0.002
U - S	3.032	3.034	-0.003
S - R	-1.049	-1.048	-0.001
R- AE	0.815	0.816	-0.001
AC -AB	-4.420	-4.422	0.002
AB - X	-1.035	-1.032	-0.003
X - W	2.056	2.059	-0.003
W - V	0.281	0.285	-0.004
V - U	3.278	3.282	-0.004
AB - AA	-0.068	-0.074	0.006
AA - Z	0.320	0.316	0.004
Z - Y	3.458	3.449	0.009
Y -AD	2.350	2.344	0.006
1.21.005 - 1.21.003	-5.886	-5.900	0.014

Tabla 23 - Comparación de desniveles normales

(Comparación alturas ort	tométricas y normal	es
Puntos	Alturas Ortométricas	Alturas Normales	Diferencia
А	12.504	12.504	0.000
В	14.793	14.794	-0.001
С	13.043	13.044	-0.001
D	11.742	11.743	0.000
Е	10.178	10.178	0.000
F	3.081	3.081	0.000
G	2.604	2.604	0.000
Н	13.217	13.217	-0.001
1	13.169	13.169	-0.001
J	8.136	8.136	0.000
К	4.571	4.571	0.000
L	5.437	5.437	0.000
М	11.146	11.147	0.000
Ν	12.021	12.021	0.000
0	5.716	5.716	0.000
Р	3.900	3.900	0.000
Q	2.680	2.680	0.000
R	13.343	13.344	-0.001
S	14.392	14.393	-0.001

Т	13.586	13.586	-0.001
U	11.361	11.361	0.000
V	8.083	8.083	0.000
W	7.802	7.802	0.000
Х	5.746	5.746	0.000
Y	10.492	10.492	0.000
Z	7.034	7.034	0.000
AA	6.714	6.714	0.000
AB	6.781	6.782	0.000
AC	11.202	11.202	0.000
AD	12.842	12.842	-0.001
AE	14.158	14.158	-0.001
AG	14.547	14.547	-0.001
AH	15.132	15.133	-0.001
AI	14.847	14.848	-0.001
AJ	13.456	13.457	-0.001
AK	13.174	13.174	-0.001
AL	14.427	14.428	-0.001
AM	14.148	14.149	-0.001
AN	3.709	3.709	0.000
AO	2.030	2.030	0.000
AP	2.440	2.440	0.000
AQ	2.132	2.132	0.000
AR	2.937	2.937	0.000
AS	5.426	5.426	0.000
AT	2.912	2.912	0.000
AU	4.237	4.237	0.000
AV	5.620	5.620	0.000
AW	3.813	3.813	0.000
AX	5.103	5.103	0.000
AY	5.386	5.386	0.000
AZ	6.673	6.673	0.000
BA	4.654	4.654	0.000
1.22.003	7.814	7.814	0.000
1.22.005	13.699	13.700	-0.001

Tabla 24 – Comparación de alturas ortométricas y normales

La comparación de las cotas normales y ortométricas nos permite determinar que en la zona las cotas ortométricas y normales son prácticamente equivalente. La máxima diferencia entre estas es de 1 mm.

5.4.4 Cálculo de la ondulación geoidal (N) y de la anomalía de altura (ζ)

Para los puntos de la malla de nivelación existente es posible calcular la ondulación geoidal y la anomalía de altura ya que se calcularon las alturas ortométricas y normales y además se tiene el relevamiento GNSS de todos estos puntos que nos aporta el valor de la altura elipsoidal (h).

$$h = H^{ORT} + N \tag{5-10}$$

$$h = H^{NOR} + \zeta \tag{5-11}$$

_			H Normal		
Punto	h (m)	H Ortométrica (m)	(m)	N (m)	ζ (m)
А	27.690	12.504	12.504	15.186	15.186
В	29.990	14.793	14.794	15.197	15.196
С	28.217	13.043	13.044	15.174	15.173
D	26.912	11.742	11.743	15.170	15.169
E	25.350	10.178	10.178	15.172	15.172
F	18.266	3.081	3.081	15.185	15.185
G	17.779	2.604	2.604	15.175	15.175
Н	28.344	13.217	13.217	15.127	15.127
I	28.357	13.169	13.169	15.188	15.188
J	23.311	8.136	8.136	15.175	15.175
К	19.714	4.571	4.571	15.143	15.143
L	20.550	5.437	5.437	15.113	15.113
Μ	26.296	11.146	11.147	15.150	15.149
Ν	27.184	12.021	12.021	15.163	15.163
0	20.888	5.716	5.716	15.172	15.172
Р	19.069	3.900	3.900	15.169	15.169

Q	17.844	2.680	2.680	15.164	15.164
R	28.610	13.343	13.344	15.267	15.266
S	29.670	14.392	14.393	15.278	15.277
Т	28.860	13.586	13.586	15.274	15.274
U	26.650	11.361	11.361	15.289	15.289
V	23.370	8.083	8.083	15.287	15.287
W	23.080	7.802	7.802	15.278	15.278
Х	21.020	5.746	5.746	15.274	15.274
Υ	25.730	10.492	10.492	15.238	15.238
Z	22.270	7.034	7.034	15.236	15.236
AA	21.970	6.714	6.714	15.256	15.256
AB	22.040	6.781	6.782	15.259	15.258
AC	26.480	11.202	11.202	15.278	15.278
AD	28.080	12.842	12.842	15.238	15.238
AE	29.410	14.158	14.158	15.252	15.252
AG	29.760	14.547	14.547	15.213	15.213
AH	30.330	15.132	15.133	15.198	15.197
AI	30.050	14.847	14.848	15.203	15.202
AJ	28.650	13.456	13.457	15.194	15.193
AK	28.400	13.174	13.174	15.226	15.226
AL	29.690	14.427	14.428	15.263	15.262
AM	29.400	14.148	14.149	15.252	15.251
AN	18.800	3.709	3.709	15.091	15.091
AO	17.110	2.030	2.030	15.080	15.080
AP	17.540	2.440	2.440	15.100	15.100
AQ	17.220	2.132	2.132	15.088	15.088
AR	18.030	2.937	2.937	15.093	15.093
AS	20.530	5.426	5.426	15.104	15.104
AT	18.000	2.912	2.912	15.088	15.088
AU	19.340	4.237	4.237	15.103	15.103
AV	20.720	5.620	5.620	15.100	15.100
AW	18.990	3.813	3.813	15.177	15.177
AX	20.280	5.103	5.103	15.177	15.177
AY	20.530	5.386	5.386	15.144	15.144
AZ	21.810	6.673	6.673	15.137	15.137
BA	19.810	4.654	4.654	15.156	15.156
1.21.003	22.926	7.814	7.814	15.112	15.112
1.21.005	28.963	13.699	13.700	15.264	15.263

Tabla 25 – Cálculo de N y ζ en función de la altura elipsoidal obtenida por relevamiento GNSS y alturas ortométricas y normales calculadas.

Los valores de N y ζ son prácticamente iguales para la zona que se está trabajando. Para el caso de la ondulación geoidal calculada puede establecerse una comparación con la ondulación geoidal obtenida de modelos globales como lo es el modelo EGM08. Sin embargo, para el caso de las anomalías de altura no se cuenta con un modelo de cuasigeoide para poder establecer una comparación.

La variación máxima de N para los puntos de la malla es de 0.209m y en el caso de ζ también.

Imagen 35 – Variación de N en la zona

Imagen 36 – Curvas de Nivel cada 1 cm de valores de N

Imagen 37 - Variación de ζ en la zona

Imagen 38 - Curvas de Nivel cada 1 cm de valores de ζ

5.4.5 Comparación de las ondulaciones geoidales y alturas ortométricas calculadas con las obtenidas del modelo global EGM08

En la práctica comúnmente para la obtención de alturas ortométricas a partir de relevamiento GNSS se utilizan los modelos globales, uno de ellos y el más utilizado al momento es el EGM08.

	DATOS	GPS MODELO GEOID	AL EGM08	3	
Punto	Latitud	Longitud	h (m)	N (m) EGM08	H ortométrica (m)
А	34° 44' 49.13230" S	56° 25' 25.25927" W	27.690	14.968	12.722
В	34° 44' 18.65554" S	56° 24' 44.91015" W	29.990	14.962	15.028
С	34° 44' 53.28654" S	56° 24' 18.39771" W	28.217	14.942	13.275
D	34° 45' 20.55444" S	56° 24' 33.70883" W	26.912	14.939	11.973
E	34° 45' 14.16798" S	56° 25' 33.60218" W	25.350	14.964	10.386
F	34° 45' 35.87396" S	56° 25' 30.41482" W	18.266	14.956	3.310
G	34° 45' 55.20189" S	56° 24' 56.14628" W	17.779	14.937	2.842
Н	34° 45' 34.51591" S	56° 23' 03.18963" W	28.344	14.905	13.439
	34° 45' 13.31296" S	56° 23' 41.04658" W	28.357	14.923	13.434

J	34° 45' 40.92580" S	56° 24' 03.58051" W	23.311	14.923	8.388
К	34° 46' 05.59926" S	56° 23' 32.71473" W	19.714	14.906	4.808
L	34° 45' 54.87374" S	56° 22' 59.98775" W	20.550	14.898	5.652
М	34° 45' 26.03695" S	56° 23' 54.72601" W	26.296	14.924	11.372
N	34° 45' 13.51215" S	56° 24' 29.43115" W	27.184	14.940	12.244
0	34° 45' 44.28420" S	56° 24' 45.23792" W	20.888	14.936	5.952
Р	34° 45' 53.89919" S	56° 24' 09.86394" W	19.069	14.921	4.148
Q	34° 46' 09.08427" S	56° 24' 21.27422" W	17.844	14.921	2.923
R	34° 44' 11.22267" S	56° 27' 11.02087" W	28.610	15.025	13.585
S	34° 44' 02.14985" S	56° 27' 26.14561" W	29.670	15.034	14.636
Т	34° 44' 32.83692" S	56° 27' 27.92471" W	28.860	15.024	13.836
U	34° 44' 26.76906" S	56° 27' 47.32665" W	26.650	15.035	11.615
V	34° 44' 45.92820" S	56° 27' 53.09468" W	23.370	15.030	8.340
W	34° 45' 03.04528" S	56° 27' 56.78449" W	23.080	15.026	8.054
Х	34° 45' 05.42613" S	56° 27' 38.95286" W	21.020	15.017	6.003
Y	34° 44' 52.25451" S	56° 26' 40.54820" W	25.730	14.998	10.732
Z	34° 45' 07.30210" S	56° 26' 46.19472" W	22.270	14.995	7.275
AA	34° 45' 00.87943" S	56° 27' 00.72341" W	21.970	15.003	6.967
AB	34° 45' 03.76742" S	56° 27' 20.67624" W	22.040	15.010	7.030
AC	34° 44' 40.16500" S	56° 27' 07.91704" W	26.480	15.013	11.467
AD	34° 44' 32.47229" S	56° 26' 33.82695" W	28.080	15.002	13.078
AE	34° 44' 20.33069" S	56° 26' 54.17838" W	29.410	15.014	14.396
AG	34° 44' 18.75280" S	56° 26' 25.53516" W	29.760	15.003	14.757
AH	34° 44' 29.23206" S	56° 26' 04.79758" W	30.330	14.991	15.339
AI	34° 44' 37.62927" S	56° 25' 48.67313" W	30.050	14.982	15.068
AJ	34° 44' 19.41588" S	56° 25' 38.49475" W	28.650	14.984	13.666
AK	34° 44' 08.71807" S	56° 25' 52.40689" W	28.400	14.993	13.407
AL	34° 43' 54.25856" S	56° 26' 26.29443" W	29.690	15.012	14.678
AM	34° 44' 11.79462" S	56° 26' 37.88610" W	29.400	15.010	14.390
AN	34° 46' 33.19806" S	56° 21' 33.61978" W	18.800	14.864	3.936
AO	34° 46' 17.81047" S	56° 21' 30.72319" W	17.110	14.866	2.244
AP	34° 45' 53.82151" S	56° 21' 37.22691" W	17.540	14.874	2.666
AQ	34° 45' 18.77642" S	56° 21' 45.04258" W	17.220	14.885	2.335
AR	34° 45' 33.06930" S	56° 22' 05.13981" W	18.030	14.887	3.143
AS	34° 45' 41.61290" S	56° 22' 27.74959" W	20.530	14.892	5.638
AT	34° 46' 04.83158" S	56° 22' 02.35208" W	18.000	14.879	3.121
AU	34° 46' 33.60452" S	56° 22' 00.67754" W	19.340	14.872	4.468
AV	34° 46' 32.60960" S	56° 22' 13.96473" W	20.720	14.876	5.844
AW	34° 46' 23.97512" S	56° 22' 14.92731" W	18.990	14.878	4.112
AX	34° 46' 15.97273" S	56° 22' 28.37470" W	20.280	14.883	5.397
AY	34° 46' 29.25989" S	56° 22' 36.90551" W	20.530	14.883	5.647
AZ	34° 46' 16.43246" S	56° 23' 04.31112" W	21.810	14.894	6.916
BA	34° 46' 01.51921" S	56° 22' 53.63065" W	19.810	14.895	4.915

1.21.003	34° 46' 52.70844" S	56° 21' 18.85543" W	22.926	14.855	8.071
1.21.005	34° 44' 13.74446" S	56° 26' 36.90524" W	28.963	15.009	13.954
	Tabla 26 –	- Datos GPS modelo ge	oidal EGN	108	

A 14.968 15.186 0.218 B 14.962 15.197 0.233 C 14.942 15.174 0.233 D 14.939 15.170 0.233 E 14.964 15.172 0.208
A 14.968 15.166 0.216 B 14.962 15.197 0.238 C 14.942 15.174 0.233 D 14.939 15.170 0.233 E 14.964 15.172 0.203
B 14.962 15.197 0.233 C 14.942 15.174 0.233 D 14.939 15.170 0.233 E 14.964 15.172 0.203
C 14.942 15.174 0.232 D 14.939 15.170 0.233 E 14.964 15.172 0.208
D 14.939 15.170 0.23 E 14.964 15.172 0.208 Image: Second
F 14.956 15.185 0.225 Q 44.027 45.475 0.000
G 14.937 15.175 0.238
H 14.905 15.127 0.222
J 14.923 15.175 0.252
N 14.900 15.143 0.231 14.900 15.143 0.241
M 14.924 15.150 0.220
N 14.940 15.163 0.22
P 14.921 15.169 0.240
R 15.025 15.207 0.242 P 15.024 15.278 0.244
5 15.034 15.278 0.244 T 45.024 45.274 0.254
U 15.035 15.289 0.254
V 15.030 15.287 0.251
W 15.020 15.270 0.252 X 45.017 45.274 0.252
X 15.017 15.274 0.251 X 14.009 15.229 0.244
1 14.990 15.230 0.240 7 14.005 15.230 0.240
2 14.995 15.256 0.24
AR 15.003 15.250 0.240
AC 15.010 15.239 0.243
AD 15.002 15.278 0.230
AE 15.014 15.252 0.230
AC 15.014 15.252 0.250 AC 15.003 15.213 0.210
AH 14 001 15 108 0 201
ΔΙ 14.982 15.190 0.20
11.302 13.203 0.22 14.984 15.194 0.210
ΔK 14.993 15.226 0.220
ΔΙ 15.012 15.263 0.254
AM 15.010 15.252 0.242

AN	14.864	15.091	0.227
AO	14.866	15.080	0.214
AP	14.874	15.100	0.226
AQ	14.885	15.088	0.203
AR	14.887	15.093	0.206
AS	14.892	15.104	0.212
AT	14.879	15.088	0.209
AU	14.872	15.103	0.231
AV	14.876	15.100	0.224
AW	14.878	15.177	0.299
AX	14.883	15.177	0.294
AY	14.883	15.144	0.261
AZ	14.894	15.137	0.243
BA	14.895	15.156	0.261
1.21.003	14.855	15.112	0.257
1.21.005	15.009	15.264	0.255
		Promedio	0.238

Tabla 27 – Diferencia N calculado, EGM08

5.4.6 Modelo Geoidal Local

Teniendo una abundante cantidad de datos para la zona, se evaluará la posibilidad de generar modelos a partir de los cuales se pueda determinar alturas ortométricas y normales.

Sabemos que para la obtención de alturas ortométricas a partir de la altura elipsoidal por relevamiento GNSS es necesario tener un modelo geoidal que permita obtener según la posición del punto el valor de ondulación geoidal.

Para la generación de modelos geoidales en general se utilizan métodos estadísticos combinando gran cantidad de datos como: Modelos de elevaciones, modelos gravitacionales, entre otros.

En este caso como existe una gran concentración de datos en la zona se evaluará la posibilidad de modelar las ondulaciones geoidales en la zona a través de funciones paramétricas.

Comúnmente las funciones paramétricas son utilizadas para transformar alturas oficiales en alturas físicas, estas funciones modelan pequeñas diferencias.

$$H^{ORT} = h - N_{EGM} \tag{5-12}$$

$$H^{NIV} = h - N_{LOC} \tag{5-13}$$

Restando las ecuaciones:

$$H^{ORT} - H^{NIV} = N_{LOC} - N_{EGM} = \Delta N \approx 0$$
(5-14)

Este ΔN es lo que se modela en estos casos.

Para este trabajo es necesario modelar las ondulaciones geoidales calculadas, por este motivo se aplica una analogía, se decide restar a cada una de las ondulaciones geoidales el promedio de las mismas, logrando de esta forma tener pequeñas variaciones de las mismas entorno al promedio.

$$dN_i = N_i - \overline{N} \approx 0 \tag{5-15}$$

$$dN = f(\varphi, \lambda) \tag{5-16}$$

 \overline{N} : promedio de ondulaciones geoidales

dN se modela con funciones paramétricas.

Luego teniendo $dN + \overline{N}$ se obtiene la ondulación geoidal en el punto y aplicando la ecuación: $h - N = H^{ORT}$, se obtienen las alturas ortométricas.

dN se modela con funciones paramétricas. Para esto nos basamos en las funciones paramétricas que presenta Georgia Fotopoulos en su trabajo "An Analysis on the Optimal Combination of Geoid, Orthometric and Ellipsoidal Height Data"

Modelo clásico de 4 parámetros:

$$a = x_1 + x_2 \cos(\varphi) \cos(\lambda) + x_3 \cos(\varphi) \operatorname{seno}(\lambda) + x_4 \operatorname{seno}(\varphi)$$
(5-17)

Modelo clásico de 5 parámetros:

$$a = x_1 + x_2 \cos(\varphi) \cos(\lambda) + x_3 \cos(\varphi) \operatorname{seno}(\lambda) + x_4 \operatorname{seno}(\varphi) + x_5 \operatorname{seno}(\varphi)^2$$
(5-18)

También existen los modelos diferenciales de 5, 6 y 7 parámetros:

$$a = x_1 \cos(\varphi) \cos(\lambda) + x_2 \cos(\varphi) \operatorname{seno}(\lambda) + x_3 \operatorname{seno}(\varphi) + x_4 \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \operatorname{seno}(\lambda)}{W}\right) + x_5 \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \cos(\lambda)}{W}\right) + x_6 \left(\frac{1 - f^2 \operatorname{seno}(\varphi)^2}{W}\right) + x_7 \left(\frac{\operatorname{seno}(\varphi)^2}{W}\right)$$
(5-19)

$$W = \sqrt{1 - e^2 seno(\varphi)^2}$$
 (5-20)

 e^2 : excentricidad y f: achatamiento del elipsoide de referencia.

Con las ondulaciones geoidales calculadas para todos los puntos de la malla de nivelación existente en la zona se obtienen los parámetros de las diferentes funciones paramétricas.

Para realizar el cálculo de los parámetros se vuelve a utilizar el método de mínimos cuadrados de las magnitudes.

Se tienen 54 ecuaciones, una para cada punto. La mismas tienen la siguiente forma:

$$N - \overline{N} = x_1 + x_2 \cos(\varphi) \cos(\lambda) + x_3 \cos(\varphi) \operatorname{seno}(\lambda) + x_4 \operatorname{seno}(\varphi)$$
(5-21)

Ejemplo para modelo clásico de 4 parámetros.

Siendo φ y λ la latitud y longitud del punto obtenidos por el relevamiento GNSS.

Luego de calculados los parámetros para cada una de las funciones paramétricas, se evalúa la bondad del ajuste.

Una de las formas más realistas de obtener una medida de precisión de los modelos es conocida como cross-validation. El proceso general se puede resumir en 4 pasos:

- Seleccionar un subconjunto de puntos de control vertical en el área de interés.
- Usar los puntos seleccionados en el ajuste de mínimos cuadrados para cálculos los parámetros del modelo.
- Utilizar el modelo calculado para predecir los valores residuales en nuevos puntos que no estén incluidos en el conjunto original.
- Comparar los valores obtenidos en el paso anterior con los errores de las alturas calculadas para esos puntos.

En el presente trabajo se cuenta con un total de 54 puntos con los cuales se calcula el modelo paramétrico y además se cuenta con 19 puntos externos de control.

En primer lugar, se calculan los parámetros de las funciones que mejor se ajusten para los 54 puntos de la malla de nivelación.

Se realiza este procedimiento para los distintos tipos de funciones paramétricas mostradas anteriormente. El ajuste se realiza a través de Matlab por el método de mínimos cuadrados de las magnitudes.

Modelo paramétrico para calcular N siendo:

$$\overline{N} = 15.187 \ m$$

Clásica 4 parámetros:

 $N - \overline{N} = x_1 + x_2 \cos(\varphi) \cos(\lambda) + x_3 \cos(\varphi) \operatorname{seno}(\lambda) + x_4 \operatorname{seno}(\varphi)$ (5-22)

Parámetros	62068.354
	-28309.89
	42411.532
	35387.973

Puntos	N s/Modelo	N Calculado	Diferencia	Valor absoluto
А	15.199	15.186	0.013	0.013
В	15.182	15.197	-0.015	0.015
С	15.166	15.174	-0.008	0.008
D	15.172	15.170	0.002	0.002
E	15.202	15.172	0.030	0.030
F	15.200	15.185	0.015	0.015
G	15.183	15.175	0.008	0.008
Н	15.133	15.127	0.006	0.006
1	15.149	15.188	-0.040	0.040

J	15.158	15.175	-0.017	0.017
K	15.145	15.143	0.003	0.003
L	15.132	15.113	0.019	0.019
М	15.154	15.150	0.004	0.004
Ν	15.170	15.163	0.007	0.007
0	15.177	15.172	0.005	0.005
Р	15.161	15.169	-0.008	0.008
Q	15.167	15.164	0.003	0.003
R	15.263	15.267	-0.004	0.004
S	15.274	15.278	-0.004	0.004
Т	15.272	15.274	-0.003	0.003
U	15.285	15.289	-0.004	0.004
V	15.287	15.287	0.000	0.000
W	15.288	15.278	0.010	0.010
Х	15.276	15.274	0.003	0.003
Υ	15.241	15.238	0.003	0.003
Z	15.243	15.236	0.007	0.007
AA	15.252	15.256	-0.004	0.004
AB	15.265	15.259	0.006	0.006
AC	15.258	15.278	-0.020	0.020
AD	15.238	15.238	0.000	0.000
AE	15.252	15.252	-0.001	0.001
AG	15.235	15.213	0.022	0.022
AH	15.222	15.198	0.024	0.024
AI	15.212	15.203	0.009	0.009
AJ	15.209	15.194	0.015	0.015
AK	15.218	15.226	-0.009	0.009
AL	15.239	15.263	-0.024	0.024
AM	15.243	15.252	-0.009	0.009
AN	15.105	15.091	0.014	0.014
AO	15.103	15.080	0.023	0.023
AP	15.104	15.100	0.004	0.004
AQ	15.107	15.088	0.019	0.019
AR	15.113	15.093	0.020	0.020
AS	15.120	15.104	0.016	0.016
AT	15.112	15.088	0.025	0.025
AU	15.114	15.103	0.010	0.010
AV	15.118	15.100	0.018	0.018
AW	15.118	15.177	-0.059	0.059
AX	15.122	15.177	-0.055	0.055
AY	15.126	15.144	-0.019	0.019
AZ	15.135	15.137	-0.002	0.002
BA	15.130	15.156	-0.026	0.026

	1.21.003	15.103	15.112	-0.009	0.009
1.21.005 15.242 15.264 -0.021 0.02	1.21.005	15.242	15.264	-0.021	0.021
Promedio 0.000 0.01			Promedio	0.000	0.013

Tabla 28 – Función paramétrica 4 parámetros clásica

Para cada una de las funciones luego de obtenidos los parámetros se calcula el valor de N según el modelo para todos los puntos utilizados para el ajuste y se compara con el valor de N calculado para ver de qué forma se ajusta el modelo a estos datos. Calculando la diferencia N según modelo – N calculado para cada punto y promediando estas diferencias podemos saber si existe un sesgo que deba corregirse en el ajuste, solo podrá corregirse este sesgo en el caso de funciones con término independiente donde se pueda sumar o sustraer esta diferencia.

Además de esto, luego de calcular si existe sesgo, se calcula el valor absoluto de las diferencias para cada punto para luego calcular el promedio de estos valores, este es un indicador de que tan bien se ajusta el modelo a los puntos. Cuanto menor es el promedio de los valores absolutos de las diferencias mejor se ajusta el modelo. Con este indicador se selecciona el modelo que mejor se ajusta a los datos de la malla de nivelación existente.

Para el caso de la función clásica de 4 parámetros podemos ver que no presenta sesgo.

Clásica 5 parámetros:

 $N - \overline{N} = x_1 + x_2 \cos(\varphi) \cos(\lambda) + x_3 \cos(\varphi) \operatorname{seno}(\lambda) + x_4 \operatorname{seno}(\varphi) + x_5 \operatorname{seno}(\varphi)^2 (5-23)$

Parámetros 113287.001

-13632.366
20298.758
310011.085
257031.596

Puntos	N s/Modelo	N Calculado	Diferencia	Valor absoluto
А	15.197	15.186	0.010	0.010
В	15.187	15.197	-0.010	0.010
С	15.162	15.174	-0.012	0.012
D	15.167	15.170	-0.003	0.003
E	15.198	15.172	0.026	0.026
F	15.198	15.185	0.013	0.013
G	15.185	15.175	0.011	0.011
Н	15.125	15.127	-0.002	0.002
1	15.141	15.188	-0.047	0.047
J	15.155	15.175	-0.020	0.020
К	15.149	15.143	0.006	0.006
L	15.129	15.113	0.016	0.016
М	15.148	15.150	-0.001	0.001
Ν	15.165	15.163	0.002	0.002
0	15.177	15.172	0.005	0.005
Р	15.162	15.169	-0.007	0.007
Q	15.174	15.164	0.010	0.010
R	15.270	15.267	0.003	0.003
S	15.284	15.278	0.007	0.007
Т	15.269	15.274	-0.005	0.005
U	15.283	15.289	-0.006	0.006
V	15.280	15.287	-0.007	0.007
W	15.279	15.278	0.001	0.001
Х	15.268	15.274	-0.005	0.005
Y	15.237	15.238	-0.002	0.002
Z	15.238	15.236	0.001	0.001
AA	15.247	15.256	-0.010	0.010
AB	15.258	15.259	-0.001	0.001
AC	15.255	15.278	-0.023	0.023
AD	15.239	15.238	0.001	0.001
AE	15.255	15.252	0.003	0.003
AG	15.240	15.213	0.027	0.027
AH	15.224	15.198	0.026	0.026
AI	15.212	15.203	0.009	0.009
AJ	15.214	15.194	0.020	0.020

AK	15.228	15.226	0.001	0.001
AL	15.256	15.263	-0.007	0.007
AM	15.251	15.252	-0.001	0.001
AN	15.112	15.091	0.021	0.021
AO	15.101	15.080	0.020	0.020
AP	15.093	15.100	-0.008	0.008
AQ	15.090	15.088	0.002	0.002
AR	15.099	15.093	0.007	0.007
AS	15.111	15.104	0.007	0.007
AT	15.108	15.088	0.020	0.020
AU	15.123	15.103	0.020	0.020
AV	15.128	15.100	0.028	0.028
AW	15.123	15.177	-0.054	0.054
AX	15.124	15.177	-0.053	0.053
AY	15.136	15.144	-0.008	0.008
AZ	15.141	15.137	0.004	0.004
BA	15.129	15.156	-0.027	0.027
1.21.003	15.121	15.112	0.008	0.008
1.21.005	15.249	15.264	-0.014	0.014
		Promedio	0.000	0.012

Tabla 29 - Función paramétrica 5 parámetros clásica

En este caso tampoco presenta sesgo y se ajusta mejor que el modelo clásico de 4 parámetros.

Diferencial de 5 parámetros:

$$N - \overline{N} = x_1 \cos(\varphi) \cos(\lambda) + x_2 \cos(\varphi) \operatorname{seno}(\lambda) + x_3 \operatorname{seno}(\varphi) + x_4 \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \sin(\lambda)}{W}\right) + x_5 \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \cos(\lambda)}{W}\right)$$
(5-24)

$$W = \sqrt{1 - e^2 seno(\varphi)^2} \tag{5-25}$$

Parámetros	-41845.024
	-34508.738
	-16862.964
	-77428.191
	-61801.484

Puntos	N s/Modelo	N Calculado	Diferencia	Valor absoluto
А	15.199	15.186	0.013	0.013
В	15.179	15.197	-0.018	0.018
С	15.163	15.174	-0.011	0.011
D	15.171	15.170	0.001	0.001
E	15.201	15.172	0.029	0.029
F	15.198	15.185	0.013	0.013
G	15.181	15.175	0.007	0.007
Н	15.130	15.127	0.003	0.003
1	15.145	15.188	-0.043	0.043
J	15.158	15.175	-0.017	0.017
K	15.147	15.143	0.004	0.004
L	15.132	15.113	0.019	0.019
М	15.153	15.150	0.003	0.003
Ν	15.169	15.163	0.005	0.005
0	15.176	15.172	0.005	0.005
Р	15.161	15.169	-0.008	0.008
Q	15.167	15.164	0.004	0.004
R	15.269	15.267	0.002	0.002
S	15.281	15.278	0.004	0.004
Т	15.272	15.274	-0.002	0.002
U	15.286	15.289	-0.003	0.003
V	15.283	15.287	-0.004	0.004
W	15.280	15.278	0.001	0.001
Х	15.269	15.274	-0.005	0.005
Y	15.240	15.238	0.002	0.002
Z	15.240	15.236	0.003	0.003
AA	15.249	15.256	-0.007	0.007
AB	15.259	15.259	0.001	0.001
AC	15.258	15.278	-0.020	0.020
AD	15.241	15.238	0.002	0.002
AE	15.256	15.252	0.003	0.003
AG	15.239	15.213	0.025	0.025
AH	15.224	15.198	0.026	0.026
AI	15.214	15.203	0.010	0.010
AJ	15.210	15.194	0.017	0.017
AK	15.221	15.226	-0.006	0.006
AL	15.245	15.263	-0.018	0.018
	15.248	15.252	-0.004	0.004
AN	15.110	15.091	0.019	0.019
	15.104	15.080	0.023	0.023
AP	15.098	15.100	-0.002	0.002
AQ	15.092	15.088	0.004	0.004

AR	15.104	15.093	0.012	0.012
AS	15.116	15.104	0.012	0.012
AT	15.111	15.088	0.024	0.024
AU	15.119	15.103	0.016	0.016
AV	15.123	15.100	0.023	0.023
AW	15.121	15.177	-0.056	0.056
AX	15.124	15.177	-0.053	0.053
AY	15.130	15.144	-0.014	0.014
AZ	15.138	15.137	0.001	0.001
BA	15.131	15.156	-0.026	0.026
1.21.003	15.112	15.112	0.000	0.000
1.21.005	15.247	15.264	-0.017	0.017
		Promedio	0.000	0.012

Tabla 30 - Función paramétrica 5 parámetros diferencial

El modelo diferencial de 5 parámetros no presenta sesgo y se logra un buen ajuste, mejor ajuste que el logrado por el modelo clásico de 5 parámetros (0.01231) diferencial: 0.01230.

Diferencial de 6 parámetros:

$$N - \overline{N} = x_1 \cos(\varphi) \cos(\lambda) + x_2 \cos(\varphi) \operatorname{seno}(\lambda) + x_3 \operatorname{seno}(\varphi) + x_3 \operatorname{$$

$$x_4\left(\frac{seno(\varphi)\cos(\varphi)seno(\lambda)}{W}\right) + x_5\left(\frac{seno(\varphi)\cos(\varphi)\cos(\lambda)}{W}\right) + x_6\left(\frac{1-f^2seno(\varphi)^2}{W}\right)$$
(5-26)

$$W = \sqrt{1 - e^2 seno(\varphi)^2}$$
(5-27)

Parámetros	-9874.435
	-19164.555
	-43526.447
	-88534.997
	19453.226
	0.001

Puntos	N s/Modelo	N Calculado	Diferencia	Valor absoluto
А	15.199	15.179	0.020	0.020
В	15.182	15.190	-0.008	0.008

С	15.165	15.168	-0.003	0.003
D	15.173	15.164	0.008	0.008
E	15.201	15.166	0.035	0.035
F	15.194	15.179	0.015	0.015
G	15.179	15.170	0.010	0.010
Н	15.135	15.123	0.012	0.012
1	15.149	15.184	-0.035	0.035
J	15.158	15.170	-0.013	0.013
К	15.146	15.139	0.007	0.007
L	15.130	15.110	0.021	0.021
М	15.154	15.145	0.009	0.009
Ν	15.170	15.158	0.012	0.012
0	15.175	15.167	0.008	0.008
Р	15.159	15.164	-0.006	0.006
Q	15.166	15.159	0.007	0.007
R	15.267	15.255	0.011	0.011
S	15.280	15.266	0.014	0.014
Т	15.274	15.263	0.011	0.011
U	15.285	15.278	0.008	0.008
V	15.283	15.275	0.008	0.008
W	15.284	15.267	0.017	0.017
Х	15.270	15.262	0.008	0.008
Y	15.240	15.227	0.013	0.013
Z	15.239	15.225	0.014	0.014
AA	15.248	15.245	0.003	0.003
AB	15.260	15.247	0.013	0.013
AC	15.258	15.267	-0.009	0.009
AD	15.240	15.227	0.013	0.013
AE	15.255	15.241	0.014	0.014
AG	15.239	15.202	0.037	0.037
AH	15.225	15.187	0.039	0.039
AI	15.215	15.192	0.023	0.023
AJ	15.210	15.183	0.027	0.027
AK	15.219	15.215	0.004	0.004
AL	15.244	15.251	-0.008	0.008
AM	15.247	15.240	0.007	0.007
AN	15.110	15.093	0.017	0.017
AO	15.101	15.082	0.019	0.019
AP	15.097	15.102	-0.006	0.006
AQ	15.091	15.090	0.002	0.002
AR	15.102	15.095	0.008	0.008
AS	15.115	15.106	0.009	0.009
AT	15.109	15.090	0.019	0.019

AU	15.119	15.104	0.016	0.016
AV	15.125	15.100	0.025	0.025
AW	15.120	15.176	-0.056	0.056
AX	15.124	15.176	-0.052	0.052
AY	15.131	15.143	-0.012	0.012
AZ	15.139	15.134	0.005	0.005
BA	15.129	15.153	-0.024	0.024
1.21.003	15.117	15.116	0.002	0.002
1.21.005	15.246	15.252	-0.007	0.007
		Promedio	0.006	0.015

Tabla 31 - Función paramétrica 6 parámetros diferencial

En el caso del modelo diferencial de 6 parámetros podemos ver que existe un sesgo que no es posible corregir porque no existe término independiente en la función paramétrica diferencial. Igualmente, el ajuste es mejor con el modelo diferencial de 5 parámetros.

Diferencial de 7 parámetros:

$$N - \overline{N} = x_1 \cos(\varphi) \cos(\lambda) + x_2 \cos(\varphi) \operatorname{seno}(\lambda) + x_3 \operatorname{seno}(\varphi) + x_4 \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \sin(\lambda)}{W}\right) + x_5 \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \cos(\lambda)}{W}\right) + x_6 \left(\frac{1 - f^2 \operatorname{seno}(\varphi)^2}{W}\right) + x_7 \left(\frac{\operatorname{seno}(\varphi)^2}{W}\right)$$
(5-28)

$$W = \sqrt{1 - e^2 seno(\varphi)^2}$$
(5-29)

Parámetros	-408183.846
	196257.451
	596947.298
	409111.634
	-758310.318
	0.000
	302428.541

Puntos	N s/Modelo	N Calculado	Diferencia	Valor absoluto
А	15.204	15.179	0.025	0.025

В	15.158	15.190	-0.033	0.033
С	15.163	15.168	-0.005	0.005
D	15.178	15.164	0.013	0.013
E	15.206	15.166	0.040	0.040
F	15.192	15.179	0.013	0.013
G	15.168	15.170	-0.001	0.001
н	15.138	15.123	0.015	0.015
1	15.150	15.184	-0.034	0.034
J	15.162	15.170	-0.008	0.008
К	15.143	15.139	0.005	0.005
L	15.138	15.110	0.028	0.028
М	15.160	15.145	0.015	0.015
Ν	15.176	15.158	0.017	0.017
0	15.173	15.167	0.007	0.007
Р	15.158	15.164	-0.006	0.006
Q	15.150	15.159	-0.009	0.009
R	15.272	15.255	0.016	0.016
S	15.282	15.266	0.016	0.016
Т	15.281	15.263	0.018	0.018
U	15.295	15.278	0.017	0.017
V	15.288	15.275	0.012	0.012
W	15.274	15.267	0.007	0.007
Х	15.264	15.262	0.002	0.002
Y	15.247	15.227	0.020	0.020
Z	15.241	15.225	0.016	0.016
AA	15.252	15.245	0.006	0.006
AB	15.258	15.247	0.011	0.011
AC	15.266	15.267	-0.001	0.001
AD	15.247	15.227	0.020	0.020
AE	15.260	15.241	0.019	0.019
AG	15.239	15.202	0.037	0.037
AH	15.226	15.187	0.040	0.040
Al	15.217	15.192	0.025	0.025
AJ	15.202	15.183	0.020	0.020
AK	15.207	15.215	-0.009	0.009
AL	15.226	15.251	-0.025	0.025
AM	15.246	15.240	0.006	0.006
AN	15.112	15.093	0.019	0.019
AO	15.112	15.082	0.030	0.030
AP	15.108	15.102	0.005	0.005
AQ	15.085	15.090	-0.005	0.005
AR	15.108	15.095	0.014	0.014
AS	15.124	15.106	0.018	0.018

AT	15.120	15.090	0.030	0.030
AU	15.115	15.104	0.012	0.012
AV	15.118	15.100	0.017	0.017
AW	15.121	15.176	-0.056	0.056
AX	15.126	15.176	-0.050	0.050
AY	15.122	15.143	-0.021	0.021
AZ	15.133	15.134	-0.002	0.002
BA	15.135	15.153	-0.018	0.018
1.21.003	15.104	15.116	-0.011	0.011
1.21.005	15.246	15.252	-0.007	0.007
		Promedio	0.006	0.017

Tabla 32 – Función paramétrica 7 parámetros diferencial

Al igual que en el caso anterior se aprecia un sesgo. Habiendo determinado los parámetros para todas las funciones paramétricas y realizando el análisis como se explicó anteriormente, el modelo que mejor ajusta las diferencias de N (con el promedio $N - \overline{N}$) es el modelo paramétrico diferencial de 5 parámetros.

$$N - \overline{N} = -41845.024 \times \cos(\varphi) \cos(\lambda) - 34508.738 \times \cos(\varphi) \operatorname{seno}(\lambda) - 16862.964 \times \operatorname{seno}(\varphi) - 77428.191 \times \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \operatorname{seno}(\lambda)}{W}\right) - 61801.484 \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \cos(\lambda)}{W}\right)$$
(5-30)

Siendo:

$$W = \sqrt{1 - e^2 seno(\varphi)^2}$$
(5-31)
$$\overline{N} = 15.187 m$$

5.4.7 Validación del modelo y comparación con utilización de EGM08

Luego de obtener el modelo paramétrico que mejor ajusta la variación de las ondulaciones geoidales de los puntos de la malla de nivelación, se procede a la validación del mismo. Tal como expresábamos previamente para la validación es necesario utilizar un conjunto de puntos externos a los utilizados para crear el modelo, por este motivo se relevó el perfil de 19 puntos sobre la ruta 1 para el cual se obtuvo datos propios de nivelación geométrica, relevamiento GNSS y gravimetría.

Para estos puntos al igual que para los puntos de la malla de nivelación se calculó el número geopotencial de cada uno, las alturas ortométricas y normales y se derivaron los valores de ondulación geoidal y anomalía de altura.

Se calcula para cada tramo de nivelación la diferencia de números geopotenciales multiplicando la gravedad media de los puntos del tramo por el desnivel geométrico, luego partiendo del punto fijo del SGM 1.21.003 con cota geopotencial conocida se obtienen los números geopotenciales para todos los puntos del perfil.

Tramos	Gravedad Media(m/s2)	Desniveles dH (m)	Diferencia de números Geopotenciales (dC)
1 - SGM	9.7967985	0.288	2.817
2 - 1	9.7967985	-1.798	-17.615
3 - 2	9.7967995	-1.130	-11.065
4 - 3	9.796798	0.080	0.779
5 - 4	9.796796	-0.074	-0.720
6 - 5	9.796794	-0.152	-1.489
7 - 6	9.796792	0.080	0.789
8 - 7	9.7967905	-0.871	-8.528
9 - 8	9.79679	-0.396	-3.875
10 - 9	9.796791	-0.831	-8.136

11 - 10	9.796791	-0.032	-0.313
12 - 11	9.7967885	0.069	0.671
13 - 12	9.796785	0.644	6.309
14 - 13	9.796782	-0.363	-3.551
15 - 14	9.7967795	0.459	4.492
16 - 15	9.796777	-0.020	-0.196
17 - 16	9.7967745	0.444	4.350
18 - 17	9.7967725	-0.336	-3.287

Tabla 33 – Diferencia de números geopotenciales para los tramos del perfil

Puntos	Números Geopotenciales C (m²/s²)
SGM	76.553
1	79.370
2	61.755
3	50.689
4	51.468
5	50.748
6	49.259
7	50.048
8	41.520
9	37.645
10	29.509
11	29.195
12	29.866
13	36.176
14	32.624
15	37.116
16	36.920
17	41.270
18	37.983

Tabla 34 – Números Geopotenciales para los puntos del perfil

Luego se derivaron de los números geopotenciales las cotas ortométricas y normales. Para estos cálculos se aplicó la misma metodología usada para el cálculo de alturas de los puntos de la malla de nivelación existente.

Puntos	Gravedad de	Cotas
Funios	Helmert (m/s ²)	ortométricas (m)

SGM	9.796833	7.814
1	9.796831	8.102
2	9.796827	6.304
3	9.796821	5.174
4	9.796819	5.254
5	9.796817	5.180
6	9.796814	5.028
7	9.796813	5.109
8	9.796808	4.238
9	9.796806	3.843
10	9.796805	3.012
11	9.796803	2.980
12	9.796800	3.049
13	9.796799	3.693
14	9.796795	3.330
15	9.796794	3.789
16	9.796792	3.769
17	9.796791	4.213
18	9.796788	3.877

Tabla 35 – Cálculo de alturas ortométricas para puntos del perfil

Puntos	Gravedad normal media (m/s ²)	Cotas Normales (m)
SGM	9.797056	7.814
1	9.797049	8.101
2	9.797088	6.303
3	9.797108	5.174
4	9.797106	5.253
5	9.797106	5.180
6	9.797108	5.028
7	9.797107	5.108
8	9.797119	4.238
9	9.797123	3.842
10	9.797132	3.012
11	9.797132	2.980
12	9.797131	3.048
13	9.797125	3.692
14	9.797129	3.330
15	9.797124	3.788
16	9.797124	3.768
17	9.797118	4.212
18	9.797123	3.877

Tabla 36 - Cálculo de alturas normales para puntos del perfil

Teniendo la altura elipsoidal h por relevamiento GNSS, se obtienen N y ζ .

Puntos	h (m)	H ^o (m)	H ^ℕ (m)	N (m)	ξ (m)
SGM	22.926	7.814	7.814	15.112	15.112
1	23.200	8.102	8.101	15.098	15.099
2	21.462	6.304	6.303	15.158	15.159
3	20.260	5.174	5.174	15.086	15.086
4	20.337	5.254	5.253	15.083	15.084
5	20.293	5.180	5.180	15.113	15.113
6	20.108	5.028	5.028	15.080	15.080
7	20.178	5.109	5.108	15.069	15.070
8	19.369	4.238	4.238	15.131	15.131
9	18.945	3.843	3.842	15.102	15.103
10	18.030	3.012	3.012	15.018	15.018
11	18.062	2.980	2.980	15.082	15.082
12	18.166	3.049	3.048	15.117	15.118
13	18.776	3.693	3.692	15.083	15.084
14	18.451	3.330	3.330	15.121	15.121
15	18.882	3.789	3.788	15.093	15.094
16	18.858	3.769	3.768	15.089	15.090
17	19.333	4.213	4.212	15.120	15.121
18	18.991	3.877	3.877	15.114	15.114

Tabla 37 – Cálculo de ondulaciones geoidales y anomalías de alturas

Podemos ver que la diferencia entre la ondulación geoidal y la anomalía de altura es mínima para el caso de la zona de estudio como también lo pudimos ver previamente para los puntos de la malla de nivelación.

Estos puntos se utilizaron para validar el modelo seleccionado. Se calcula la ondulación geoidal de cada punto a partir de la función diferencial de 5 parámetros que mejor ajustaba las variaciones de N para los puntos de la malla de nivelación.

De esta forma se podrá comparar la ondulación geoidal obtenida por el modelo paramétrico y la ondulación calculada a partir de los datos relevados para los puntos del perfil.

Función diferencial de 5 parámetros:

$$N - \overline{N} = -41845.024 \times \cos(\varphi) \cos(\lambda) - 34508.738 \times \cos(\varphi) \operatorname{seno}(\lambda) - 16862.964 \times \operatorname{seno}(\varphi) - 77428.191 \times \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \operatorname{seno}(\lambda)}{W}\right) - 61801.484 \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \cos(\lambda)}{W}\right)$$
(5-32)

Siendo:

$$W = \sqrt{1 - e^2 seno(\varphi)^2}$$
(5-33)
$$\overline{N} = 15.187 m$$

Esta función permite que pueda calcularse N para cada punto de la zona ingresando la latitud y longitud del mismo. De esta forma puede calcularse según el modelo la ondulación geoidal para cada punto del perfil.

Puntos	N (s/Modelo)	N (EGM08)	N (Calculado)
SGM	15.112	14.855	15.112
1	15.111	14.856	15.098
2	15.111	14.857	15.158
3	15.111	14.858	15.086
4	15.110	14.859	15.083
5	15.110	14.860	15.113
6	15.110	14.861	15.080
7	15.110	14.862	15.069
8	15.110	14.863	15.131
9	15.110	14.864	15.102
10	15.111	14.865	15.018
11	15.112	14.866	15.082
12	15.113	14.867	15.117

1415.11514.8691515.11614.8701615.11814.871	
1515.11614.8701615.11814.871	5.121
16 15.118 14.871	5.093
	5.089
17 15.099 14.872	5.120
18 15.100 14.873	5.114

Tabla 38 – Ondulaciones geoidales para puntos del perfil

En esta tabla puede verse la ondulación geoidal calculada a partir de datos de nivelación geométrica, gravedad y GNSS, la ondulación geoidal para los puntos obtenida a partir del modelo paramétrico generado y además la ondulación geoidal obtenida del modelo global EGM08.

Puntualmente la comparación no es tan fácil por lo cual se decide hacer la comparación de los desniveles para cada tramo del perfil de forma de poder evaluar la bondad del modelo. Para esto se calculan las alturas ortométricas según las diferentes ondulaciones geoidales y luego se obtiene el desnivel ortométrico.

Tramos	dHº según modelo (m)	dHº según EGM08 (m)	dH° calculado (m)
1 - SGM	0.275	0.273	0.288
2 - 1	-1.738	-1.739	-1.798
3 - 2	-1.202	-1.203	-1.129
4 - 3	0.077	0.076	0.080
5 - 4	-0.044	-0.045	-0.073
6 - 5	-0.185	-0.186	-0.152
7 - 6	0.070	0.069	0.081
8 - 7	-0.809	-0.810	-0.870
9 - 8	-0.424	-0.425	-0.395
10 - 9	-0.916	-0.916	-0.830
11 - 10	0.031	0.031	-0.032
12 - 11	0.103	0.103	0.069
13 - 12	0.609	0.609	0.644
14 - 13	-0.326	-0.326	-0.362

15 - 14	0.430	0.430	0.458
16 - 15	-0.025	-0.025	-0.020
17 - 16	0.494	0.474	0.444
18 - 17	-0.343	-0.343	-0.335

Tabla 39 – Comparación de desniveles ortométricos

En la tabla se comparan los desniveles ortométricos obtenidos por el modelo generado, el modelo global EGM08 y calculado.

En este análisis se compara el modelo generado con el modelo EGM08 evaluando para los puntos testigos del perfil. Para esto se compara la diferencia del desnivel ortométrico obtenido por el modelo y el desnivel calculado con la diferencia entre el desnivel ortométrico según el EGM08 y el desnivel calculado

$$dH_{CALCULADO}^{O} - dH_{MODELO}^{O}$$
 VS $dH_{CALCULADO}^{O} - dH_{EGM08}^{O}$

Motiva esta comparación, evaluar si para la zona de estudio el modelo paramétrico se ajusta mejor que el modelo global normalmente utilizado EGM08.

Tramos	dH ^o Calculado - dH ^o EGM08	dH ^o Calculado - dH ^o Modelo			
1 - SGM	0.015	0.013			
2 - 1	-0.059	-0.060			
3 - 2	0.074	0.072			
4 - 3	0.004	0.002			
5 - 4	-0.028	-0.030			
6 - 5	0.034	0.033			
7 - 6	0.012	0.010			
8 - 7	-0.060	-0.062			
9 - 8	0.030	0.029			
10 - 9	0.086	0.085			

11 - 10	-0.063	-0.063
12 - 11	-0.034	-0.034
13 - 12	0.035	0.035
14 - 13	-0.036	-0.037
15 - 14	0.028	0.029
16 - 15	0.005	0.005
17 - 16	-0.030	-0.050
18 - 17	0.008	0.008

Tabla 40 – Comparación de desniveles ortométricos con EGM08

Los valores señalados en la tabla corresponden a tramos del perfil donde el modelo generado se ajusta mejor que el modelo global EGM08. Sin embargo, podemos apreciar que los desniveles ortométricos que se obtienen por el modelo local generado son equivalentes a los obtenidos por el modelo global EGM08 y las diferencias entre estos son mínimas en general. El desnivel ortométrico calculado es considerado el desnivel real ya que fue medido y calculado a partir de datos propios relevados en la zona, nivelación geométrica, GNSS y gravimetría.

Podemos ver que la media de diferencia que existe entre ambos modelos y los desniveles calculados es de 4cm, aunque existen puntos donde las diferencias llegan hasta los 9cm.

También se hizo un análisis para diferentes extensiones de tramos, acumulando desniveles del perfil:

Tramos	dHº según modelo (m)	dHº según EGM08 (m)	dH° calculado (m)
SGM - 2	-1.463	-1.466	0.288
SGM - 3	-2.664	-2.669	-1.510
SGM -4	-2.587	-2.593	-2.640
SGM -5	-2.631	-2.638	-2.560

SGM -6	-2.816	-2.824	-2.634
SGM -7	-2.746	-2.755	-2.786
SGM -8	-3.555	-3.565	-2.705
SGM -9	-3.979	-3.990	-3.576
SGM -10	-4.895	-4.906	-3.971
SGM -11	-4.864	-4.875	-4.802
SGM -12	-4.761	-4.772	-4.834
SGM -13	-4.152	-4.163	-4.765
SGM -14	-4.478	-4.489	-4.121
SGM -15	-4.048	-4.059	-4.484
SGM -16	-4.073	-4.084	-4.025
SGM -17	-3.579	-3.610	-4.045
SGM -18	-3.922	-3.953	-3.601

Tabla 41 – Comparación por acumulación de tramos del perfil

Tramos	dH ^o Calculado - dH ^o EGM08	dH ^o Calculado - dH ^o Modelo			
SGM - 2	-0.044	-0.048			
SGM - 3	0.029	0.024			
SGM -4	0.033	0.027			
SGM -5	0.004	-0.003			
SGM -6	0.038	0.030			
SGM -7	0.050	0.040			
SGM -8	-0.011	-0.021			
SGM -9	0.019	0.007			
SGM -10	0.104	0.093			
SGM -11	0.041	0.030			
SGM -12	0.007	-0.005			
SGM -13	0.042	0.031			
SGM -14	0.005	-0.006			
SGM -15	0.034	0.023			
SGM -16	0.039	0.028			
SGM -17	0.009	-0.022			
SGM -18	0.016	-0.015			

En esta también es posible ver que existe una diferencia máxima de 10cm entre el desnivel calculado y los que permiten obtener los modelos, sin embargo, también se puede apreciar que los valores proporcionados por los modelos son

similares no notando una suficiente mejora en los desniveles obtenidos para el modelo local.

5.4.8 Diferencia entre ondulación geoidal y anomalía de altura en la zona de estudio

Existe una expresión que permite calcular la diferencia de N y ζ para una zona en particular conociendo la anomalía de Bouguer y la altura media.

Siendo: Δ_{a_h} es la anomalía de Bouguer in gal:

$$(\zeta - N)_{[m]} \doteq -\Delta_{g_{B}[gal]} \cdot H_{[km]}$$
 (5-34)

En este caso se requiere el máximo valor de la anomalía de Bouguer para la zona, ANCAP lo ha calculado y nos proporciona los datos. El máximo valor de anomalía de Bouguer se tiene sobre la Ruta 1 vieja y es de 19mGal y el mínimo es de 13 mGal. Este cálculo se realiza a través del Software "Gravity and Terrain Correction" de Geosoft donde se usa como insumo el MDE del SGM. La altura media para la zona sobre el nivel del mar es de 10m.

Entonces sustituyendo en la ecuación:

$$(\zeta - N)_{[m]} \doteq -0.019 \times 0.01 = 0.00019 m$$
 (5-35)

Esto muestra que en la zona ζ y N son prácticamente coincidentes y se ve reflejado en los resultados donde la máxima variación entre estos valores es de 1mm.

De esta forma si bien no se tiene un modelo cuasigeoidal para validar el generado, es posible contrastarlo con el modelo geoidal ya que coinciden para la zona de estudio el cuasi-geoide y el geoide.

5.4.9 Modelo Cuasi-Geoidal Local

Para generar este modelo también se utiliza la función diferencial de 5 parámetros, para el caso de la anomalía de altura los parámetros cambiar por las pequeñas diferencias entre N y ζ .

Parámetros	-39883.790
	-33936.395
	-18698.927
	-78284.658
	-57129.791

$$\zeta - \bar{\zeta} = -39883.790 \times \cos(\varphi) \cos(\lambda) - 33936.395 \times \cos(\varphi) \operatorname{seno}(\lambda) - 18698.927 \times \operatorname{seno}(\varphi) - 78284.658 \times \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \operatorname{seno}(\lambda)}{W}\right) - 57129.791 \left(\frac{\operatorname{seno}(\varphi) \cos(\varphi) \cos(\lambda)}{W}\right)$$
(5-36)

Siendo:

$$W = \sqrt{1 - e^2 seno(\varphi)^2}$$
(5-37)
$$\bar{\zeta} = 15.187 m$$

6. Conclusiones

- Uno de los objetivos específicos planteados es comparar los cierres geométricos de la nivelación con los cierres en términos de números geopotenciales, se pudo determinar que los cierres son equivalentes para ambos casos, esto nos permite concluir que para la zona de estudio la influencia del no paralelismo de las superficies equipotenciales es despreciable, es decir que el efecto de la gravedad es despreciable para esta zona en particular. Para una nivelación siempre lo recomendado es realizar los cierres en términos de números geopotenciales para eliminar los errores de cierre teórico que produce el no paralelismo de las superficies equipotenciales, sin embargo, para este caso se comprueba que no hay influencia de la gravedad, esto era esperable por las características de la zona de estudio ya que la zona se encuentra a nivel del mar y la extensión de estudio es reducida. Esto posiblemente ocurre en todo el país por su comportamiento topográfico homogéneo.
- Al realizar el cálculo de las alturas normales y ortométricas derivando las mismas de los números geopotenciales ajustados para los puntos de la malla de nivelación, detectamos que estas alturas físicas son equivalentes para la zona en cuestión, la máxima diferencia entre estas es de 1mm, esto nos permite concluir que en la zona las superficies del geoide y cuasigeoide coinciden. Igualmente, como se planteó al inicio del informe se opta por la utilización de las alturas normales y se propone como

modelo principal el modelo cuasigeoidal por las razones que se detallarán a continuación:

- Las alturas normales no dependen de una hipótesis inicial asociada a) al gradiente vertical de la gravedad y a la distribución interna de masas en la tierra. Las alturas ortométricas si dependen de esta hipótesis, tal como se planteó en el informe existen muchos geodestas que han propuesto fórmulas para el cálculo de la gravedad media entre el geoide y la superficie terrestre, pero para esto hacen suposiciones de la distribución interna de masas. Esto hace que el valor de la altura ortométrica para un punto no sea único ya que depende de la hipótesis inicial que se considera. Las alturas ortométricas no son calculables a partir de los datos medidos en la superficie y además no es posible medir instrumentalmente la gravedad media entre el geoide y la superficie terrestre. Las alturas normales si pueden ser determinadas unívocamente a partir de mediciones realizadas en la superficie terrestre y el campo de gravedad normal, este no requiere de suposiciones.
- b) Otro de los argumentos para seleccionar las alturas normales sobre las ortométricas es que como existen diferentes formulaciones para la estimación del valor medio de gravedad entre el geoide y la superficie terrestre, esto conduce a diferentes "geoides", cercanos al geoide, pero no corresponden a una superficie equipotencial, esto implica que, aunque las alturas

ortométricas puedan determinarse con la mayor precisión, las hipótesis de distribución de masas, densidades, etc, cambian por lo cual esto implicaría que con cada cambio se vuelva a calcular las alturas ortométricas y por ende también la superficie de referencia adoptada.

- c) La superficie de las alturas normales (el cuasi-geoide) no es una superficie equipotencial, esto hace que no tenga significado físico, sin embargo, para el caso de nuestra zona de estudio el cuasigeoide y el geoide coinciden como se comprobó en este trabajo, por lo cual esto no es inconveniente. Igualmente, viéndolo desde este punto de vista tampoco es correcto decir que las alturas ortométricas son mejores ya que los cogeoides no son superficies equipotenciales. Cogeoides son aquellas superficies generadas utilizando las diferentes hipótesis iniciales para el cálculo de alturas ortométricas.
- d) La comunidad geodésica SIRGAS propone la introducción de alturas normales. Varios de los países de América ya se encuentran trabajando en esto. En Uruguay el último modelo geoidal se propuso en el año 2007.
- En el trabajo se obtuvieron modelos de alturas físicas a partir de cálculo por funciones paramétricas, al evaluar las distintas funciones paramétricas se concluye que la que se adapta mejor a los puntos de la malla de nivelación existente es la función paramétrica diferencial de 5

parámetros, sin embargo, la diferencia entre las diferentes funciones paramétricas es mínima. Para validar este modelo se evaluó su aplicación para un perfil de 19 puntos externos. Se realiza la comparación de los resultados obtenidos con este modelo y los que se obtienen de aplicar un modelo global como lo es el EGM08, de esta comparación se puede concluir que las precisiones no son mejores al aplicar el modelo generado por los datos existentes. No es posible concluir que esto se debe a la forma de cálculo utilizada (funciones paramétricas) ya que los datos base a partir de los cuales se calculó el modelo no son de alta precisión. Además, la validación se realizó utilizando un único perfil de nivelación, para evaluar el comportamiento del modelo en toda la zona de estudio deberían agregarse más perfiles para validar su aplicación. El modelo generado en la zona se comporta de manera similar al EGM08. Con precisiones de aproximadamente 9 cm. Si bien no es posible concluir que las funciones paramétricas son una buena forma de modelar alturas, para este caso brinda un buen resultado similar al del modelo global EGM08. La elección de modelar utilizando funciones paramétricas y no utilizando otros métodos que se utilizan normalmente para la generación de modelos geoidales y cuasigeiodales radica a que no se tienen los conocimientos necesarios en estadística como para la aplicación de un modelo estadístico combinando diversos datos.

 Realizando este trabajo llegamos a detectar la importancia de trabajar con datos propios, si bien esto no siempre es posible y muchas veces se deben utilizar y combinar datos de diversas fuentes, es sumamente

importante contar con los datos crudos y saber las metodologías aplicadas, es decir, conocer la calidad de los datos que se utilizarán. Esto se refleja en los errores que se detectaron en los valores de gravedad y las precisiones de la nivelación geométrica. Igualmente, la detección de estos errores permitió la investigación de los mismos y el tratamiento para no descartarlos y poder utilizarlos igualmente. Para el caso de los valores de gravedad provenientes del informe de Investigación Gravimétrica en la Fosa del Santa Lucía, se detectó un sesgo en todos los valores. Si bien, la variación detectada no necesariamente influía de forma significante en los cálculos, se decide corregirlos para trabajar sobre datos más sólidos y que los mismos fueran comparables con el relevamiento realizado. Una de las monografías que facilitó el SGM tenía un error en el valor de gravedad que pudo detectarse porque la misma había sido utilizada para otro trabajo presentado en el congreso IPGH 2017.

- Con la cantidad de datos que se tiene para la zona de estudio, teóricamente sería posible crear un modelo que pueda superar en precisión localmente el EGM08, pero para esto los datos base deberían ser de alta precisión.
- Para poder llevar a cabo un trabajo de alta precisión en una zona como la de estudio, con datos propios totalmente, se requiere una gran cantidad de recursos humanos, económicos y tiempo. Por este motivo, fue necesario utilizar los datos disponibles. En un inicio del proyecto se evaluó la posibilidad de realizar un relevamiento desde el inicio en la zona de la

Laguna Merín, pero requería una gran logística y no se contaba con financiamiento económico para esta actividad.

7. Recomendaciones y trabajos futuros

- Se cuenta con gran cantidad de datos gravimétricos para la zona que pueden aprovecharse para diversos fines, en este trabajo se supone que el error detectado proviene del "atado" de datos a la referencia gravimétrica, esto debería comprobarse, para esto debe conseguir los datos crudos del trabajo y en caso de constatar que efectivamente el error está en la referencia, localizar el punto de referencia utilizado en la zona de estudio por los especialistas y volver a "atarlo" con la referencia gravimétrica.
- Como trabajo futuro se propone con tiempo y con una posible financiación evaluar la posibilidad de generar un modelo local que permita obtener mejores precisiones que el modelo global EGM08, realizando nivelación de alta precisión, relevamiento GNSS y gravimétrico.
- Siguiendo el lineamiento de la comunidad SIRGAS, sería buena opción, reevaluar los modelos geoidales uruguayos y planificar la creación de uno nuevo si se detecta que puede lograrse con esto mejores precisiones que utilizando el modelo global.

8. Bibliografía

MORITZ, Bernhard Hoffman - Wellenhof Helmut Moritz. 2005. Physical Geodesy. Segunda edición. Austria: SpringerWienNewYork.

SANCHEZ, Laura Sánchez. 2002. *Determinación de alturas físicas en Colombia.* Institut für planetare geodäsie technische universität. Alemania.

COYAGO, Ricardo Coyago - Alfonso Tierra - Alexander Robayo. Cálculo de números geopotenciales para el Ecuador Continental. Ecuador.

FAURE, Jorge Faure - Norbertino Suarez. 2015 Integración de datos altimétricos y gravimétricos para la determinación de números geopotenciales en la red geodésica nacional vertical del Uruguay. Simposio SIRGAS 2015. República Dominicana.

FAURE, Jorge Faure - Norbertino Suarez. 2016 Integración de datos altimétricos y gravimétricos para la determinación de números geopotenciales en la red geodésica nacional vertical del Uruguay. Simposio SIRGAS 2016. Ecuador.

INSTITUTO DE AGRIMENSURA, Danilo Blanco – Rocío López. *Método de mínimos cuadrados.* Curso de Teoría de errores 2. Facultad de Ingeniería. Uruguay

BERNÉ, Berné Valero, José Luis – Anquela Julián, Ana Belén – Garrido Villén, Natalia. GNSS: GPS: Fundamentos y aplicaciones en Geomática. 2014. Editorial de la Universidad Politécnica de Valencia. España.

INSTITUTO DE AGRIMENSURA, Apuntes de la asignatura Geodesia 3. Departamento de Geodesia. Facultad de Ingeniería. Uruguay.

MARQUEZ, Ingeniero Raúl A. Márquez. *Altimetría Satelital: Modelos Locales de Geoide y Nivelación GPS*. Departamento de Ingeniería en Agrimensura. Facultad de Ingeniería UNSJ. Argentina.

ARANEDA, Manuel Araneda – Alvaro Araneda. Proyecto Investigación Geofísica y Mapeo Litológico en la Fosa Santa Lucía, Uruguay: Informe Gravimétrico. 2015. Proyecto IPGH.

SIRGAS, W. Martínez – M.V Mackern – V. Cioce – S.R Correia de Freitas – R. Pérez Rodino. *Sistema de Referencia Geocéntrico para Las Américas. Reporte 2016. Boletín informativo 21.* 2017.

BENAVIDEZ, Alberto Benavidez Sosa. *Fundamentos de Geodesia Física.* 2004. Montevideo Uruguay.

SGM, Cálculo de un nuevo modelo geoidal para Uruguay (UruGeoide-2007). Uruguay

INSTITUTO DE AGRIMENSURA, Julián Ramos. Apuntes del curso Geofísica 2017. Facultad de Ingeniería. Uruguay.

VILLALUENGA, Antonio Villaluenga – Jaime Betancur. *Estudio y refinamiento de modelos geoidales: Proyecto Final Tutor: Jorge Faure.* 2009. Instituto de Agrimensura, Facultad de Ingeniería, Uruguay.

FOTOPOULOS, Georgia Fotopoulos. *An Analysis on the Optimal Combination of Geoid, Orthometric and Ellipsoidal Height Data.* 2003. University of Calgary. Canadá.

INSTITUTO GEOGRÁFICO NACIONAL. *Nuevo Modelo de Geoide Gravimétrico para Argentina (GEOAR)*. [Sitio web] 2015. Argentina. Disponible y acceso: http://www.ign.gob.ar

INSTITUTO GEOGRÁFICO NACIONAL. *Nivelación Geométrica.* [Sitio web]. Argentina. Disponible y acceso: http://www.ign.gob.ar

SIRGAS. *Recomendaciones oficiales de SIRGAS.* [Sitio web]. Disponible y acceso: http://www.sirgas.org

SGM, W. Subiza. Ajuste de la Red Gravimétrica Nacional de Uruguay. 1996. Uruguay

HEISKANEN, Weikko A. Heiskanen – Helmut Moritz. Physical *Geodesy*. 1967.W. H Freeman and Company. EEUU

LAPIS, Claudia Tocho y Luis Guarracino – Lecture and Seminar Notes: The Determination and Use of the Geoid. 2010 - La Plata Argentina.

9. Anexos

Burto	Latitud	Longitud	Altura
Punto	Latitud	Longitud	elipsoidal
SGMP	34 46 52.708254 S	56 21 18.855784 W	22,900
AN	34 46 33.198034 S	56 21 33.619891 W	18,800
AO	34 46 17.810467 S	56 21 30.723035 W	17,110
AP	34 45 53.821492 S	56 21 37.227073 W	17,540
AQ	34 45 18.776499 S	56 21 45.042496 W	17,220
AR	34 45 33.069314 S	56 22 5.139952 W	18,030
AS	34 45 41.612768 S	56 22 27.749672 W	20,530
AT	34 46 4.831717 S	56 22 2.352128 W	18,000
AU	34 46 33.604612 S	56 22 0.677496 W	19,340
AV	34 46 32.609446 S	56 22 13.964554 W	20,720
AW	34 46 23.975133 S	56 22 14.927329 W	18,990
AX	34 46 15.972736 S	56 22 28.374552 W	20,280
AY	34 46 29.260036 S	56 22 36.905393 W	20,530
AZ	34 46 16.432438 S	56 23 4.311135 W	21,810
A	34 44 49.132300 S	56 25 25.2592 W	27,690
В	34 44 18.6554 S	-56 24 44.91 W	29,990
C	34 44 53.2867 S	56 24 18.3979 W	28,217
D	34 45 20.5544 S	56 24 33.7087 W	26,912
E	34 45 14.168 S	58 25 33.8022 W	25,350
F	34 45 35.8739 S	56 25 30.4148 W	18,266
G	34 45 55.202 S	58 24 58.1484 W	17,779
н	34 45 34.516 S	56 23 03.1897 W	28,344
1	34 45 13.3128 S	56 23 41.0465 W	28,357
J	34 45 40.9257 S	56 24 03.5807 W	23,311
к	34 46 05.5994 S	56 23 32.7149 W	19,714
L	34 45 54.8736 S	56 22 59.9879 W	20,550
M	34 45 26.0371 S	56 23 54.7259 W	26,296
0	34 45 44.2841 S	58 24 45.2379 W	20,888
P	34 45 53.8992 S	56 24 09.8639 W	19,069
g	34 46 09.0843 S	56 24 21.2744 W	17,844
AE	34 44 20.330673 S	56 26 54.178463 W	29,410
AD	34 44 32.472419 S	56 26 33.826934 W	28,080
AG	34 44 18.752742 S	56 26 25.535055 W	29,760
AM	34 44 11.794740 S	56 26 37.886112 W	29,400
AL	34 43 54.258652 S	56 26 26.294396 W	29,690
AK	34 44 8.718122 S	56 25 52.406780 W	28,400
AJ	34 44 19.415746 S	56 25 38.494756 W	28,650
AI	34 44 37.629267 S	56 25 48.673059 W	30,050
AH	34 44 29.232052 S	56 26 4.797669 W	30,330
AC	34 44 40.165126 S	56 27 7.916863 W	26,480
AB	34 45 3.767470 S	56 27 20.676078 W	22,040
AA	34 45 0.879402 S	56 27 0.723054 W	21,980
Z	34 45 7.301849 S	56 26 46.194570 W	22,270
Y	34 44 52.254508 S	56 26 40.548357 W	25,730
R	34 44 11.222636 S	56 27 11.020851 W	28,610
S	34 44 2.149722 S	56 27 26.145769 W	29,670
U	34 44 26.952478 S	56 27 46.808295 W	26,650
V	34 44 45.928302 S	56 27 53.094845 W	23,370
W	34 45 3.045269 S	56 27 56.784466 W	23,080
X	34 45 5.426177 S	56 27 38.952995 W	21,020
T	34 44 32.836855 S	56 27 27.924697 W	28,850

Imagen 39 – Relevamiento GPS – Informe Villaluenga Betancur

1						Linea		Anomalia	8
-		and the second s				Gravedad	A.	L.	A. L. y B.
-	ti stación	Latitud	Landinud	Attitud	Gravedad	reorice	+42	,78	+39.07
MO	NTEVIDEO		songrad	Autor		079,733,21 m	+29	0,76	+27,26
AI	M/01	-38°7270"	1 COLLEGAD		079.765.66 mg	731,85	+23	3,65	+21,23
	02	7090"	-02"4740"	33,58m.	754.63	730,32	+2	1,87	+21.60
	03	6890"	5220	22,70	747,23	727,21	+1!	5,58	+14.74
	04	6480"	5160"	21,91	748,34	725,46			
	05	6250"	6600"	2,40	738,71	723,56	+1	6.70	+15 70
	06	6000"	7120"	7,57	734,33	721,20	1,-		1 10,70
	07	5690"	7710"	0.00	735,13	719.46	1.2	0.60	100-
	08	5460"	81707	9,00	733,94	71733	+3	0,09	+27,91
(99	5180"	8670"	05 10	740.27	714.68			
1	10	4830"	0160"	25,19	748.72	714,00	+4	2,78	+37,08
1	1	4490"	+6200700"	51.50	739.01	712,10	+3	6,34	+31.6
1.	2	4190"	162 9700	51,59	733.18	709,82			10
13	2	3920"	0620"	42,19	721 35	707,78			
14	6 1	3560"	1100		731,55	705,05	10	07 90	1.00
14		3200"	1790"		729,14	702.32	1	20,70	+27,0
15		2000"	1780"	14,90	720,44	700.05			
10		2500"	2250"		717,08	60771	+:	22,69	+20'
17		2220	2750"	22,20	713,57	604.01	+	22.05	-1171
18		1040"	3350"	39,00	704,96	094,91	Constant Inco		1 4 / 3
19		1750"	3810"		700,09	692,79	in the second	1451	
20		1700"	4530"	13.30	701.85	691,43	1	14,51	+13.
21		1660"	5260"	36.40	607.53	690.67	10188-+	18,06	+14
22		1570"	5920"	20.30	602.66	680.00	+	12.68	1 0
ROSARIO		1480"	6630"	29,50	095,00	600.21		0.02	1.9
ano brittio	-3	8°1270"	L6307200"	22,20	691,71	689,31	1	9,23	+ 6
			-03 7200		979.689,11	979.687,73			

Imagen 40 – Datos gravimétricos SGM Línea Montevideo – Rosario Biblioteca Nacional

ACULIX	2		Mod	elado d	el Cuasi	i-Geoide	a parti	r de			
	RIA GRAV	ivelació	n geom	étrica,g	ravime	tría y po TIDE	sicionar DUR	niento	satelital	INSTITUTO DE AGRIMENSURA	
Est	(mGal)	SD	TILTX	TILTY	TEMP	(mGal)	(seg)	REJ	TIME	TimDec	Date
1000.000	5312.246	0.041	-3.1	-0.7	-2.93	0.051	45	2	8:35:06	43021.3571	14/11/2017
1000.000	5312.257	0.021	-3.7	-1.3	-2.93	0.052	45	0	8:35:57	43021.3577	14/11/2017
1000.000	5312.264	0.02	-3.9	-1.7	-2.93	0.052	45	0	8:36:46	43021.3583	14/11/2017
1000.000	5312.273	0.023	-4	-2.2	-2.93	0.052	45	0	8:37:35	43021.3589	14/11/2017
1000.000	5312.278	0.023	-3.9	-2.5	-2.93	0.053	45	0	8:38:25	43021.3594	14/11/2017
1001.000	5308.158	0.053	-6.1	1.3	-2.83	0.081	45	1	9:38:26	43021.4011	14/11/2017
1001.000	5308.168	0.036	-8.6	3.6	-2.84	0.082	45	0	9:39:18	43021.4017	14/11/2017
1001.000	5308.178	0.026	-10.9	5.7	-2.85	0.082	45	0	9:40:08	43021.4022	14/11/2017
1001.000	5308.186	0.032	-12.1	5.5	-2.87	0.082	45	0	9:40:58	43021.4028	14/11/2017
1001.000	5308.193	0.028	-14.8	3.8	-2.88	0.083	45	3	9:41:49	43021.4034	14/11/2017
1002.000	5306.998	0.172	-8.4	4	-2.9	0.092	45	0	10:47:57	43021.4493	14/11/2017
1002.000	5307.02	0.058	-11.5	5.1	-2.89	0.092	45	0	10:48:49	43021.4499	14/11/2017
1002.000	5307.037	0.036	-14	4.9	-2.89	0.092	45	0	10:49:40	43021.4504	14/11/2017
1003.000	5306.98	0.094	-12.8	1.9	-2.93	0.091	45	3	10:56:35	43021.4552	14/11/2017
1003.000	5307.019	0.069	-19.5	2.6	-2.92	0.091	45	3	10:57:27	43021.4558	14/11/2017
1003.000	5307.027	0.167	-24.6	2.9	-2.92	0.091	45	1	10:58:18	43021.4564	14/11/2017
1004.000	5307.464	0.03	-5.3	-2.9	-2.96	0.09	45	0	11:05:21	43021.4613	14/11/2017
1004.000	5307.472	0.042	-5.9	-4.2	-2.96	0.09	45	7	11:06:13	43021.4619	14/11/2017
1004.000	5307.482	0.05	-5.8	-5.4	-2.97	0.09	45	0	11:07:04	43021.4625	14/11/2017
1005.000	5307.819	0.022	0.7	-5	-2.99	0.089	45	0	11:12:18	43021.4661	14/11/2017
1005.000	5307.83	0.025	1	-6.2	-2.99	0.089	45	0	11:13:10	43021.4667	14/11/2017
1005.000	5307.836	0.018	1.4	-7.1	-2.98	0.089	45	0	11:14:01	43021.4673	14/11/2017
1006.000	5307.657	0.022	-8.9	-1	-3.01	0.088	45	1	11:19:33	43021.4712	14/11/2017
1006.000	5307.681	0.02	-11	0.8	-3	0.088	45	0	11:20:25	43021.4718	14/11/2017
1006.000	5307.689	0.039	-11.6	1.6	-3	0.087	45	7	11:21:16	43021.4723	14/11/2017
1007.000	5307.423	0.025	-5.2	4.1	-3.02	0.086	45	1	11:27:27	43021.4766	14/11/2017
1007.000	5307.436	0.022	-4.3	8	-3.01	0.086	45	4	11:28:19	43021.4772	14/11/2017
1007.000	5307.446	0.031	-3.4	6.6	-3.02	0.085	45	1	11:29:10	43021.4778	14/11/2017
1008.000	5307.251	0.03	-4.3	-0.2	-3.04	0.084	45	0	11:33:19	43021.4807	14/11/2017
1008.000	5307.271	0.032	-5	0.7	-3.03	0.084	45	2	11:34:11	43021.4813	14/11/2017
1008.000	5307.29	0.024	-5.4	0.6	-3.03	0.084	45	0	11:35:02	43021.4819	14/11/2017
1009.000	5307	0.049	4.8	2.1	-3.03	0.082	45	9	11:40:35	43021.4857	14/11/2017
1009.000	5307.016	0.072	10.5	5.2	-3.02	0.082	45	1	11:41:27	43021.4863	14/11/2017
1009.000	5307.026	0.039	14.4	8.4	-3.02	0.082	45	5	11:42:18	43021.4869	14/11/2017
1010.000	5306.927	0.083	-8.2	-6.2	-3.03	0.08	45	4	11:48:09	43021.491	14/11/2017
1010.000	5306.95	0.113	-8.2	-7.2	-3.02	0.079	45	0	11:49:01	43021.4916	14/11/2017
1010.000	5306.96	0.341	-9.8	-8.6	-3.02	0.079	45	0	11:49:52	43021.4922	14/11/2017
1011.000	5306.823	0.054	-5.3	1.1	-3.03	0.077	45	0	11:53:40	43021.4948	14/11/2017
1011.000	5306.842	0.16	-6.1	1.8	-3.03	0.077	45	0	11:54:32	43021.4954	14/11/2017
1011.000	5306.853	0.145	-7.8	1.7	-3.02	0.077	45	0	11:55:23	43021.496	14/11/2017
1012.000	5306.812	0.121	-9.3	0.7	-3.03	0.075	45	5	12:00:39	43021.4997	14/11/2017
1012.000	5306.827	0.13	-6.6	1.2	-3.03	0.075	45	0	12:01:31	43021.5003	14/11/2017
1012.000	5306.841	0.09	-6	1.1	-3.02	0.074	45	4	12:02:22	43021.5008	14/11/2017
1013.000	5306.535	0.196	-6.6	-3.7	-3.03	0.072	45	18	12:06:53	43021.504	14/11/2017

1013.000	5306.497	0.166	-7.4	-5.6	-3.02	0.072	45	5	12:07:45	43021.5046	14/11/2017
1013.000	5306.522	0.094	-7.8	-6.4	-3.02	0.072	45	0	12:08:36	43021.5052	14/11/2017
1014.000	5306.08	0.333	-5.2	-3	-3.03	0.069	45	0	12:13:29	43021.5086	14/11/2017
1014.000	5306.101	0.17	-5.6	-3.1	-3.02	0.069	45	2	12:14:21	43021.5092	14/11/2017
1014.000	5306.108	0.221	-5	-3.3	-3.02	0.068	45	11	12:15:12	43021.5097	14/11/2017
1015.000	5305.65	0.457	-4.4	-1.2	-3.01	0.065	45	2	12:21:08	43021.5139	14/11/2017
1015.000	5306.054	1.054	-6.1	-1	-3.01	0.065	45	20	12:22:00	43021.5145	14/11/2017
1015.000	5305.65	0.209	-3	-0.8	-3.01	0.064	45	1	12:22:51	43021.515	14/11/2017
1016.000	5305.393	0.301	-2.2	2.2	-3.01	0.06	45	0	12:30:47	43021.5205	14/11/2017
1016.000	5305.405	0.125	1.6	3.2	-3.01	0.06	45	8	12:31:39	43021.5211	14/11/2017
1016.000	5305.422	0.422	5.4	3.8	-3	0.06	45	0	12:32:30	43021.5217	14/11/2017
1017.000	5305.047	0.409	-0.8	1.8	-3.02	0.058	45	0	12:36:23	43021.5244	14/11/2017
1017.000	5305.063	0.236	0.8	2.2	-3.01	0.057	45	3	12:37:15	43021.525	14/11/2017
1017.000	5305.062	0.34	1.6	2.9	-3.01	0.057	45	1	12:38:06	43021.5256	14/11/2017
1018.000	5304.761	0.164	-3.7	-3.6	-3.02	0.054	45	0	12:42:35	43021.5287	14/11/2017
1018.000	5304.76	0.18	-3.8	-4	-3.02	0.054	45	5	12:43:27	43021.5293	14/11/2017
1018.000	5304.787	0.195	-2.4	-2.8	-3.01	0.053	45	0	12:44:18	43021.5299	14/11/2017
1019.000	5304.466	0.345	-1.1	2.3	-3.02	0.051	45	0	12:48:36	43021.5329	14/11/2017
1019.000	5304.494	0.167	-2.4	2.7	-3.01	0.051	45	0	12:49:28	43021.5335	14/11/2017
1019.000	5304.499	0.321	-4.1	3.5	-3.01	0.05	45	0	12:50:19	43021.5341	14/11/2017
1020.000	5304.542	0.114	-8.2	-4.7	-3	0.046	45	1	12:56:40	43021.5385	14/11/2017
1020.000	5304.575	0.09	-9.7	-5.1	-3	0.046	45	0	12:57:32	43021.5391	14/11/2017
1020.000	5304.542	0.115	-9.6	-3.5	-2.99	0.045	45	0	12:58:23	43021.5397	14/11/2017
1021.000	5300.583	0.022	-6.1	-4.6	-3.01	0.037	45	0	13:11:38	43021.5489	14/11/2017
1021.000	5300.576	0.03	-10.1	-7.4	-3.01	0.037	45	21	13:12:30	43021.5495	14/11/2017
1021.000	5300.612	0.02	-11.2	-8.4	-3	0.036	45	0	13:13:21	43021.5501	14/11/2017
1022.000	5300.725	0.051	-7.6	-4	-3.01	0.034	30	5	13:16:45	43021.5524	14/11/2017
1022.000	5300.75	0.025	-8.8	-5.1	-3	0.034	30	0	13:17:21	43021.5528	14/11/2017
1022.000	5300.758	0.035	-9.9	-5.5	-3	0.033	30	2	13:17:56	43021.5532	14/11/2017
1023.000	5300.343	0.037	-6.5	-2.3	-3	0.03	30	0	13:22:46	43021.5566	14/11/2017
1023.000	5300.357	0.022	-6.5	-2.4	-3	0.03	30	0	13:23:22	43021.557	14/11/2017
1023.000	5300.367	0.023	-7.2	-2.9	-3.01	0.029	30	0	13:23:57	43021.5574	14/11/2017
1024.000	5300.633	0.031	-2.6	1.8	-3.03	0.027	30	0	13:27:56	43021.5602	14/11/2017
1024.000	5300.643	0.042	0.2	1.7	-3.03	0.027	30	1	13:28:32	43021.5606	14/11/2017
1024.000	5300.648	0.028	3.4	1.4	-3.02	0.026	30	1	13:29:07	43021.561	14/11/2017
1025.000	5300.564	0.032	-3.8	-1.1	-3.03	0.022	30	0	13:36:39	43021.5662	14/11/2017
1025.000	5300.581	0.021	-3.9	0.3	-3.02	0.021	30	0	13:37:15	43021.5666	14/11/2017
1025.000	5300.593	0.03	-3.7	-0.4	-3.01	0.02	30	0	13:37:50	43021.567	14/11/2017
1026.000	5301.092	0.03	-4.1	-2.5	-3	0.013	30	0	13:50:22	43021.5757	14/11/2017
1026.000	5301.104	0.03	-3.7	-2.4	-2.99	0.012	30	0	13:50:58	43021.5761	14/11/2017
1026.000	5301.113	0.032	-3	-3.1	-2.98	0.012	30	0	13:51:33	43021.5765	14/11/2017
1027.000	5301.337	0.05	-4.6	-4.7	-2.94	0.005	30	0	14:03:15	43021.5847	14/11/2017
1027.000	5301.348	0.063	-2.2	-4.1	-2.93	0.004	30	1	14:03:51	43021.5851	14/11/2017
1027.000	5301.352	0.051	0	-4.4	-2.92	0.004	30	7	14:04:26	43021.5855	14/11/2017

1028.000	5301.617	0.053	-3.8	-3	-2.89	0	30	0	14:11:14	43021.5902	14/11/2017
1028.000	5301.636	0.05	-3.9	-3.6	-2.89	0	30	0	14:11:50	43021.5906	14/11/2017
1028.000	5301.637	0.067	-5.7	-3.5	-2.89	0	30	0	14:12:25	43021.591	14/11/2017
1029.000	5287.258	0.046	-2	-3.2	-2.97	-0.026	30	0	14:56:12	43021.6214	14/11/2017
1029.000	5287.276	0.027	-2.6	-2.7	-2.97	-0.026	30	0	14:56:48	43021.6218	14/11/2017
1029.000	5287.29	0.053	-1.7	-2.3	-2.97	-0.026	30	0	14:57:23	43021.6222	14/11/2017
1030.000	5290.901	0.024	-11.2	-3.9	-2.89	-0.034	30	0	15:14:17	43021.6339	14/11/2017
1030.000	5290.924	0.025	-12.9	-4.9	-2.88	-0.035	30	0	15:14:53	43021.6343	14/11/2017
1030.000	5290.942	0.028	-14.6	-5.9	-2.88	-0.035	30	0	15:15:28	43021.6347	14/11/2017
1031.000	5290.592	0.02	-0.4	1.1	-2.86	-0.043	30	0	15:33:02	43021.6469	14/11/2017
1031.000	5290.602	0.024	1.9	1.1	-2.86	-0.043	30	0	15:33:38	43021.6473	14/11/2017
1031.000	5290.611	0.03	3.2	1.2	-2.86	-0.043	30	0	15:34:13	43021.6477	14/11/2017
1032.000	5293.574	0.024	2.9	-2.5	-2.82	-0.049	30	2	15:52:40	43021.6605	14/11/2017
1032.000	5293.594	0.028	5.2	-3.8	-2.82	-0.05	30	1	15:53:16	43021.6609	14/11/2017
1032.000	5293.603	0.023	8	-4.1	-2.82	-0.05	30	5	15:53:51	43021.6613	14/11/2017
1033.000	5294.513	0.183	-0.3	15.4	-2.85	-0.056	30	0	16:15:55	43021.6766	14/11/2017
1033.000	5294.516	0.106	4.4	26	-2.85	-0.056	30	0	16:16:31	43021.6771	14/11/2017
1033.000	5294.523	0.142	2.5	36.5	-2.85	-0.056	30	1	16:17:06	43021.6775	14/11/2017
1034.000	5308.537	0.081	-4.2	-3.9	-2.87	-0.06	30	20	16:55:46	43021.7043	14/11/2017
1034.000	5308.487	0.197	-4.5	-5.9	-2.87	-0.06	30	22	16:56:22	43021.7047	14/11/2017
1034.000	5308.538	0.093	-3.8	-5.8	-2.86	-0.06	30	17	16:56:57	43021.7051	14/11/2017
1035.000	5307.518	0.172	1.5	-1.3	-2.84	-0.059	45	2	17:21:08	43021.7219	14/11/2017
1035.000	5307.509	0.087	-0.3	1.3	-2.84	-0.059	45	4	17:22:00	43021.7225	14/11/2017
1035.000	5307.536	0.104	0.1	0	-2.83	-0.059	45	0	17:22:50	43021.723	14/11/2017
1035.000	5307.526	0.095	1	-0.1	-2.84	-0.058	45	5	17:23:40	43021.7236	14/11/2017
1035.000	5307.537	0.092	4.1	0	-2.84	-0.058	45	3	17:24:31	43021.7242	14/11/2017
1036.000	5311.625	0.02	0.3	-3.5	-2.78	-0.048	45	0	18:11:56	43021.7571	14/11/2017
1036.000	5311.632	0.022	1	-4.2	-2.78	-0.047	45	0	18:12:48	43021.7577	14/11/2017
1036.000	5311.64	0.018	1.5	-5	-2.79	-0.047	45	0	18:13:38	43021.7583	14/11/2017
1036.000	5311.641	0.019	1.8	-5.7	-2.79	-0.047	45	0	18:14:28	43021.7588	14/11/2017
1036.000	5311.645	0.017	2	-6.2	-2.8	-0.047	45	0	18:15:19	43021.7594	14/11/2017
1037.000	5312.097	0.034	-1.1	0	-2.94	-0.031	45	2	18:54:54	43021.7869	14/11/2017
1037.000	5312.114	0.024	0.3	0.3	-2.94	-0.031	45	1	18:55:46	43021.7875	14/11/2017
1037.000	5312.123	0.019	0.4	0	-2.95	-0.031	45	0	18:56:36	43021.788	14/11/2017
1037.000	5312.132	0.018	0.1	0	-2.95	-0.03	45	0	18:57:26	43021.7886	14/11/2017
1037.000	5312.136	0.026	0	-0.3	-2.95	-0.03	45	14	18:58:17	43021.7892	14/11/2017

Tabla 42 – Datos crudos gravímetro

Estación	Obs	h Base Grav	Lectura Bruta
1000	SGM	16.5	5312.27
1001	Fortaleza	16.3	5308.168

1002		16.5	5307.02
1003		17	5307.019
1004		9.7	5307.482
1005		14.5	5307,836
1006		13.5	5307.689
1007		12.3	5307.446
1008		15	5307.440
1009		16.4	5307.20
1010		16	5306.96
1010		12	5306.55
1011		13.3	5306.84
1012		16.4	5306.52
1013		15	5306.108
1014		12 5	5205.65
1015		12	5205.03
1010		13	5305.42
1017		17	5303.00
1018		17	5304.78
1019		15	5304.49
1020		15	5304.54
1021		16	5300.61
1022		10.0	5300.70
1025		15.9	5300.57
1024		17	5300.05
1025	Aprovimado	15	5201 112
1020	Aproximado	16.8	5201.25
1027	Aproximado	17	5201.55
1020		16	5301.05
1029	GF3001	10	5207.29
1021	GP3002	14 14 E	5290.94
1031	GPS003	14.5	5290.61
1032	GPS004	14	5293.6
1033	GPS007	15.7	5995
1034	GPS008	16	5308.53
1035	Fortaleza	15 7	5307 537
1036	SGM	16	5311 645
1037	FING	17	5312 136
1007		± ′	3312.130

Tabla 43 – Libreta de Campo gravimetría

A CONTRACT OF CONTRACT.	REI	PUBLICA ORIENTAI SERVICIO GEOGRAI División GEODESIA y	L DEL URUGUAY FICO MILITAR TOPOGRAFIA	٩
RED C Mono Estación Gravimétr Fecha: 18 de Febre Zona: La Blanque Coo Latitud: 34° 52' 4 Gravedad:	GRAVIMETRICA NA grafía de Punto Grav ica: S.G.M. Geodesia ro de 2008 eada Dpto.: Mo rdenadas SIRGAS R 8.88" S Longitud:	CIONAL imétrico a ontevideo OU 98 56° 9' 2.22" W 979.737,006 mGal	Pentro Governeticico "B.G.M. Geodesia" Divisió Geodesia y Toj Comm B.K. Dama B.K. Cataltero CROQU	n pografia
Ubicación General: Ubicación Particular:	Servicio Geográfico I En el ángulo S.E. de Geodesia y Topogra	Militar la División fía del S.G.M.	Force	

Avda. 8 de Octubre 3255 - Tel: (598)2 487 1810 - Fax: (598)2 487 0868 - E-mail: sgmventas@sgm.gub.uy

ESTACIÓN GRAVIMÉTRICA I - FORTALEZA (5130004)

Fecha	18 de febrero de 2008
Zona	Fortaleza del Cerro
Opto:	Montevideo

Latitud	0
Longitud	5
Altitud	
Gravedad	- 3

1

-34°53'311 -56°15'625 134.822 m 979.732,8621

UBICACIÓN: Fortaleza del Cerro de Montevideo, próximo a la esquina N lado E .

 $\label{eq:PARTICULAR: Ubicado a 3.81 m de la muralla E y a 4.20 m de la muralla N Junto a la tapa de la cámara, lado N .$

ACCESO: desde la entrada a la Fortaleza se rodea el edificio al N luego de pasar frente al catalejo próximo a la muralla E, se llega al punto.-

Vista al NW

Vista al NE

Imagen 41 – Monografías de puntos gravimétricos

INSTITUTO DE AGRIMENSURA Facultad de Ingeniería Universidad de la República

Montevideo, 16 de febrero de 2018

Sr. Gerente del Área Exploración y producción de ANCAP

Por la presente nos dirigimos a Ud. para agradecer el apoyo brindado para nuestro proyecto de grado "Modelado del Cuasi-Geoide a partir de nivelación geométrica, relevamiento GNSS y gravimetría".

Se completó con éxito el relevamiento gravimétrico del perfil de puntos de interés, esto permitió incorporar los datos obtenidos a nuestro proyecto.

Queremos agradecer la disposición del Ing. Pablo Rodríguez que acompaño en todo momento el proyecto y a ANCAP por brindar la posibilidad de utilizar su gravímetro.

Estamos muy conformes con el trabajo realizado y con la rápida y efectiva respuesta por parte de vuestro equipo.

Saludan atentamente.

Laura Yáñez (laura.yanez149@gmail.com) Nestor Cuentas (nestorcuentas@gmail.com) Estudiantes de la carrera Agrimensura Instituto de Agrimensura – Facultad de Ingeniería - UdelaR

Montevideo, 16 de febrero de 2018

Imagen 42 - Carta para finalizar expediente por solicitud de gravímetro ANCAP

Puntos	Nros Geopotenciales	V	SIGMA
А	122.502	7.17E-02	0.107
В	144.934	6.37E-02	0.138
С	127.786	7.79E-02	0.132
D	115.041	-6.69E-02	0.118
E	99.716	-1.33E-02	0.125
F	30.185	-1.25E-02	0.135
G	25.513	-4.84E-03	0.127
Н	129.487	1.60E-02	0.136
1	129.017	5.02E-02	0.133
J	79.712	7.15E-02	0.118
К	44.786	1.39E-02	0.118
L	53.264	2.92E-02	0.123
М	109.203	1.89E-02	0.123

Ν	117.768	1.67E-02	0.120
0	56.001	-7.14E-02	0.122
Р	38.209	-1.85E-02	0.119
Q	26.260	2.79E-02	0.129
R	130.726	-1.17E-03	0.085
S	141.006	-2.20E-03	0.095
Т	133.103	-4.91E-02	0.095
U	111.307	8.58E-04	0.097
V	79.193	1.12E-03	0.106
W	76.436	-4.00E-02	0.108
Х	56.298	-4.53E-02	0.104
Y	102.791	-8.10E-02	0.087
Z	68.910	-2.45E-02	0.101
AA	65.775	-3.43E-02	0.102
AB	66.440	-1.99E-02	0.095
AC	109.744	-4.53E-02	0.083
AD	125.814	-2.74E-02	0.062
AE	138.706	-2.56E-02	0.062
AG	142.518	-3.35E-02	0.045
AH	148.252	-5.29E-03	0.074
AI	145.458	-2.46E-02	0.085
AJ	131.833	-3.43E-02	0.090
AK	129.064	-2.31E-02	0.088
AL	141.347	-1.15E-02	0.067
AM	138.616	-5.01E-02	0.022
AN	36.340	-2.67E-02	0.071
AO	19.885	-2.50E-02	0.086
AP	23.902	1.42E-02	0.107
AQ	20.888	2.78E-02	0.133
AR	28.777	2.54E-02	0.136
AS	53.156	-1.57E-03	0.130
AT	28.532	-9.27E-04	0.108
AU	41.510	1.06E-02	0.093
AV	55.057	2.73E-02	0.100
AW	37.358	4.21E-02	0.108
AX	49.995	2.52E-02	0.113
AY	52.764	2.67E-02	0.107
AZ	65.376	2.10E-02	0.115
BA	45.593	2.70E-02	0.123
		5.53E-02	
		9.03E-02	
		2.11E-02	
		5.79E-02	

3.82E-02	
2.20E-02	
2.19E-02	
-2.53E-02	
-1.27E-02	
-1.46E-02	
1.86E-02	
-3.08E-02	
-3.43E-02	
-3.53E-02	
-4.09E-02	
6.00E-02	
 3.99E-02	
8.95E-02	
5.90E-02	

Tabla 44 - Resultado ajuste geopotencial magnitudes

Parameter and value	Description
a = 6378137 m	semimajor axis of the ellipsoid
f = 1/298.257223563	flattening of the ellipsoid
$GM = 3986004.418\cdot10^8{\rm m}^3{\rm s}^{-2}$	geocentric gravitational constant of
	the earth (including the atmosphere)
$\omega = 7292115\cdot 10^{-11}\mathrm{rad}\mathrm{s}^{-1}$	angular velocity of the earth

.....

Imagen 43 - Parámetros WGS84 - Moritz

Parameter and value	Description
Geometrical constants	
$ \begin{split} \bar{C}_{20} &= -0.484166774985\cdot10^{-3} \\ b &= 6356752.3142 \text{ m} \\ e &= 8.1819190842622\cdot10^{-2} \\ e^2 &= 6.69437999014\cdot10^{-3} \\ e' &= 8.2094437949696\cdot10^{-2} \\ e'^2 &= 6.73949674228\cdot10^{-3} \\ E &= 52185400842339\cdot10^5 \end{split} $	normalized second-degree harmonic semiminor axis of the ellipsoid first eccentricity first eccentricity squared second eccentricity second eccentricity second eccentricity linear eccentricity
c = 6399593.6258 m	polar radius of curvature
b/a = 0.996647189335	axis ratio
Physical constants	
$\begin{array}{ll} U_0 &= 62636851.7146\mathrm{m^2s^{-2}}\\ \gamma_a &= 9.7803253359\mathrm{ms^{-2}}\\ \gamma_b &= 9.8321849378\mathrm{ms^{-2}}\\ \bar{\gamma} &= 9.7976432222\mathrm{ms^{-2}}\\ M &= 5.9733328\cdot10^{24}\mathrm{kg} \end{array}$	normal potential at the ellipsoid normal gravity at the equator normal gravity at the pole mean value of normal gravity mass of the earth (includes atmosphere)
m = 0.00344978650684	$m = \omega^2 a^2 b/(GM)$

Imagen 44 – Constantes para elipsoide de referencia - Moritz

cos(φ) x	cos(φ) x		sen(φ) x cos(φ) x	sen(φ) x cos(φ) x		(1-
cos (λ)	sen (λ)	sen (φ)	sen(λ)/W	cos(λ)/W	a W + h	$f^2 sen(\phi)^2)/W$
0.454	-0.685	-0.570	0.391	-0.259	6371210.777	1.001
0.455	-0.685	-0.570	0.391	-0.259	6371216.038	1.001
0.455	-0.684	-0.570	0.391	-0.259	6371210.938	1.001
0.455	-0.684	-0.570	0.391	-0.259	6371206.995	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371206.017	1.001
0.454	-0.684	-0.570	0.391	-0.259	6371196.841	1.001
0.454	-0.684	-0.570	0.391	-0.259	6371194.507	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371207.128	1.001
0.455	-0.684	-0.570	0.391	-0.260	6371209.166	1.001
0.455	-0.684	-0.570	0.391	-0.259	6371201.444	1.001
0.455	-0.684	-0.570	0.391	-0.260	6371195.484	1.001
0.455	-0.684	-0.570	0.391	-0.260	6371197.372	1.001
0.455	-0.684	-0.570	0.391	-0.259	6371205.870	1.001
0.455	-0.684	-0.570	0.391	-0.259	6371207.948	1.001
0.454	-0.684	-0.570	0.391	-0.259	6371198.675	1.001
0.455	-0.684	-0.570	0.391	-0.259	6371195.947	1.001
0.455	-0.684	-0.570	0.391	-0.259	6371193.251	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371215.302	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371217.230	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371213.458	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371211.807	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371206.693	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371204.750	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371202.468	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371208.478	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371203.563	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371203.876	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371203.657	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371210.381	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371212.740	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371215.232	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371215.748	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371215.317	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371214.235	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371214.598	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371215.373	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371218.041	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371216.053	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371191.974	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371191.770	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371194.510	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371197.566	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371196.986	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371198.649	1.001

0.455	-0.684	-0.570	0.390	-0.260	6371193.894	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371192.459	1.001
0.455	-0.684	-0.570	0.391	-0.260	6371193.928	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371193.030	1.001
0.455	-0.684	-0.570	0.391	-0.260	6371195.084	1.001
0.455	-0.684	-0.570	0.391	-0.260	6371194.048	1.001
0.455	-0.684	-0.570	0.391	-0.260	6371196.550	1.001
0.455	-0.684	-0.570	0.391	-0.260	6371195.995	1.001
0.455	-0.684	-0.570	0.390	-0.260	6371194.226	1.001
0.454	-0.685	-0.570	0.391	-0.259	6371215.428	1.001

Tabla 45 – Valores para ajuste de funciones paramétricas diferenciales

	cos(φ) x cos (λ)	cos(φ) x sen (λ)	sen (φ)	sen (φ)²
1	0.454	-0.685	-0.570	0.325
1	0.455	-0.685	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.684	-0.570	0.325
1	0.454	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.454	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325

1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.454	-0.685	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.455	-0.684	-0.570	0.325
1	0.454	-0.685	-0.570	0.325

Tabla 46 – Valores para ajuste de funciones paramétricas clásicas