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Abstract

We previously reported a multigene family of monodomain Kunitz proteins from Echinococ-

cus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted

by larval worms to the host interface. In addition, functional studies and homology modeling

suggested that, similar to monodomain Kunitz families present in animal venoms, the E.

granulosus family could include peptidase inhibitors as well as channel blockers. Using

enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are

indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either

chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close para-

logs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (Kv); and also

pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-

4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions

from other parasite stages, notably from adult worms and metacestodes. Interestingly, data

from genome projects reveal that at least eight additional monodomain Kunitz proteins are

encoded in the genome; that particular EgKUs are up-regulated in various stages; and that

analogous Kunitz families exist in other medically important cestodes, but not in trematodes.

Members of this expanded family of secreted cestode proteins thus have the potential to

block, through high affinity interactions, the function of host counterparts (either peptidases

or cation channels) and contribute to the establishment and persistence of infection. From a

more general perspective, our results confirm that multigene families of Kunitz inhibitors

from parasite secretions and animal venoms display a similar functional diversity and thus,

that host-parasite co-evolution may also drive the emergence of a new function associated

with the Kunitz scaffold.
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Author summary

Parasite secretions are key players at host-parasite interfaces: parasite establishment and

persistence rely, to a great extent, on interactions between these molecules and their host

counterparts. We present the functional characterization of a multigene family of secreted

Kunitz proteins from the cestode Echinococcus granulosus. Kunitz proteins are a class of

metazoan high affinity serine peptidase inhibitors. In addition, families of Kunitz proteins

are frequent components of animal venoms; besides inhibiting peptidases, some of these

“Kunitz toxins” block cation channels and thus, provide a remarkable example of protein

evolution where natural selection has driven the emergence of a new function associated

with the same molecular scaffold. Using enzyme kinetics and electrophysiological assays,

we demonstrated that the E. granulosus Kunitz family includes peptidase inhibitors as well

as channel blockers. This diversity highlights an interesting similarity between animal tox-

ins and parasite secretions that had not been previously described. Furthermore, the pres-

ence of analogous families of Kunitz proteins appears to be a distinctive trait of cestode

genomes. We thus propose that these molecules contribute to a successful infection acting

at the parasite-host interface. In addition, because they bear a strong specificity towards

their targets, they are uniquely suited for the development of pharmaceuticals.

Introduction

Cestodes are a neglected group of platyhelminth parasites, despite causing chronic infections

to humans and domestic animals worldwide [1]. Together with other researchers around the

world [2], we have been using Echinococcus granulosus as a model to study the molecular basis

of the host-parasite cross-talk during cestode infections [3,4,5]. E. granulosus is the agent of

cystic echinococcosis, a medically and economically important worldwide zoonosis, with en-

demic foci in Central Asia, China, South America and Africa [6]. Like all taeniid cestodes, it

has a life cycle involving two mammals: a non carnivore intermediate host (harboring the

larva) and a carnivore definitive host (harboring the hermaphroditic adult). Intermediate

hosts (ungulates such as sheep, cattle and pigs; and, accidentally, also humans) become in-

fected by ingestion of eggs containing oncospheres that develop at visceral sites into bladder-

like metacestodes (hydatid cysts). These latter are bounded by a wall whose inner germinal

layer gives rise to larval worms (protoscoleces) by asexual budding; protoscoleces are bathed in

hydatid fluid that includes host plasmatic proteins and parasite secretions. Infection in the

definitive host (always a canid, most often dogs) arises from ingestion of protoscoleces that,

upon activation by contact with stomach acid, enzymes and bile acids, evaginate and attach to

the mucosa of the duodenum, where they develop into adult tapeworms that can reside in the

gut for long periods without causing any apparent damage [7]. Specific anatomical structures

allow such a close contact at the canid-worm interface that E. granulosus has been regarded as

both a tissue and a luminal parasite [8]. The molecular mechanisms underlying its successful

establishment and persistence in the hostile environment of the dog duodenum are unknown.

With the aim of identifying molecules participating in the E. granulosus–dog cross-talk, we

surveyed the genes expressed by protoscoleces and pepsin/H+-treated protoscoleces. We thus

identified a multigene family of Kunitz-type inhibitors (EgKUs). These molecules were associ-

ated mostly with treated protoscoleces, suggesting that they play roles at the initial phases of

infection [3]. Kunitz inhibitors are a class of metazoan serine peptidase inhibitors, whose pro-

totype is the bovine pancreatic inhibitor of trypsin (BPTI; family I2 of the MEROPS database;

http://merops.sanger.ac.uk/) [9]. They are competitive inhibitors acting in a substrate-like
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manner, that form very stable complexes of 1:1 stoichiometry with their target enzymes,

devoid of activity. The interaction between the enzyme and the inhibitor is highly dependent

on the residue located at the position P1 of the antipeptidase loop (position 15 of mature

BPTI) [10]. In addition, families of Kunitz inhibitors are frequent components of the saliva

and secretions from hematophagous animals and also of animal venoms. These “Kunitz-type

toxins” have been described in the venoms from snakes [11], sea anemones [12,13], cone snails

[14], spiders [15], scorpions [16,17] as well as in the saliva of blood-sucking arthropods [18,19]

and in the secretions of hematophagous nematodes [20]. Interestingly, besides inhibiting pep-

tidases, some Kunitz toxins, until now described only in animal venoms, block various types of

cation channels. Furthermore, some act solely as channel blockers. A set of neurotoxins pres-

ent in the venoms of mamba snakes (‘‘dendrotoxins”), whose function is to paralyze the prey,

is the best known example [21].

We previously reported the molecular features of eight EgKUs (that we named EgKU-1-

EgKU-8) and provided evidence that some of them (notably, EgKU-3 and EgKU-8) are secreted

by protoscoleces. Although diverse, these EgKUs were found to group into three pairs of close

paralogs (EgKU-1/EgKU-4; EgKU-3/EgKU-8; EgKU-6/EgKU-7), which would be the products

of recent gene duplications. In addition, we carried out detailed kinetic studies with native

EgKU-1 and EgKU-8 purified from protoscoleces that revealed their possible functionalities.

EgKU-8 behaved as a slow, tight-binding inhibitor of trypsins, with global inhibition constants

(KI

�

) in the 10−11 M range, and interacted with enzymes through a mechanism involving two

reversible steps; an initial relatively fast formation of an enzyme-inhibitor complex followed by

a slow transition to a tight complex. In sharp contrast, EgKU-1 did not inhibit any of the assayed

peptidases. Interestingly, molecular modeling revealed that structural elements associated with

activity in Kunitz cation-channel blockers are also present in EgKU-1. Indeed, α-dendrotoxin

(α-DTX), a well characterized blocker of specific voltage-activated K+-channels (Kv) [21], was—

at the time—the best overall template of EgKU-1; and several amino acids important for toxin

activity were found to be conserved in the consensus model of the parasite molecule, supporting

the notion that it is a putative cation channel blocker. Presumed orthologs of the EgKUs (pepti-

dase inhibitors as well as channel blockers) were also found to be present in the transcriptomes

from the other medically important cestodes (notably, E. multilocularis and Taenia solium, the

agents of alveolar echinococcosis and cysticercosis, respectively), indicating that families of

monodomain Kunitz inhibitors are also present in closely related organisms [3].

In this article, we characterize the activity of EgKU-1–EgKU-8 using enzyme kinetics and

whole-cell patch clamp assays. We thus demonstrate that the E. granulosus Kunitz family is

indeed functionally diverse. On the one hand, we show that all but EgKU-1 and EgKU-4 behave

as high affinity inhibitors of either chymotrypsin or trypsin. On the other hand, patch-clamp

assays on rat dorsal root ganglion (DRG) neurons confirmed that EgKU-1, and also its close

paralog EgKU-4, block Kv. Furthermore, the two proteins also block pH-dependent sodium

channels (acid sensing ion channels, ASICs), a previously unreported activity for Kunitz inhibi-

tors, that we recently described for α-DTX [22]. In addition, we provide further evidence of the

presence of EgKUs in parasite secretions. We discuss the significance of these results taking into

account available genomic and transcriptomic data from E. granulosus and related cestodes.

Results

Except for EgKU-1 and EgKU-4, the EgKUs are high affinity inhibitors of

serine peptidases

In our previous study, working with native EgKU-1 and EgKU-8, we demonstrated that EgKU-

8 is a high affinity inhibitor of trypsins, whereas EgKU-1 did not inhibit any of the assayed
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PLOS Pathogens | DOI:10.1371/journal.ppat.1006169 February 13, 2017 3 / 33



peptidases [3]. To further advance in the functional characterization of the family, we prepared

recombinants of the eight EgKUs. We carried out a preliminary screening of the serine pepti-

dase inhibition activity of recombinant EgKU-2–EgKU-7. Of note, in the case of EgKU-8 both

the native inhibitor and the recombinant protein behaved similarly (KI

�

60 ± 13 versus 50 ± 10

pM, for native and recombinant EgKU-8, respectively). Using pancreatic enzymes, we ana-

lyzed whether the EgKUs showed the inhibition profiles that may be predicted from the respec-

tive amino acid at position P1: EgKU-2 (Trp in P1) and EgKU-3 (Leu in P1) are candidate

chymotrypsin inhibitors, whereas EgKU-4-EgKU-7 (Arg in P1) are predicted to inhibit trypsin.

All six EgKUs showed the expected activities. We subsequently performed titration assays to

analyze whether they behaved as high affinity inhibitors. These studies indicated that, except

for EgKU-4, the close paralog of EgKU-1, the EgKUs are high affinity inhibitors of bovine chy-

motrypsin (EgKU-2 and EgKU-3) or trypsin (EgKU-5-EgKU-8) (Table 1 and Fig 1). In view of

these results, we further characterized the inhibitory activity of EgKU-3, the closest paralog of

EgKU-8.

EgKU-3 inhibits chymotrypsin with high affinity through a two-step

mechanism

We carried out kinetic studies using bovine chymotrypsin A and also chymotrypsin purified

from dog pancreas, i. e. chymotrypsin B (chymotrypsin A is absent from dogs, see S01.001 at

MEROPS—http://merops.sanger.ac.uk). EgKU-3 inhibited with high affinity both peptidases;

Fig 2A shows a representative experiment with the bovine enzyme and Table 2 the global inhi-

bition constants calculated for the two chymotrypsins. The values of KI

�

were of the same

order (53 ± 19 and 84 ± 49 pM for the bovine and canine enzymes, respectively) indicating no

bias in specificity towards any of them. EgKU-3 also inhibited elastase, although with substan-

tially lower affinity than chymotrypsins (KI

�

of 5 ± 2 nM).

Table 1. Screening of serine peptidase inhibitory activity of EgKUs.

P1a Trypsinb Chymotrypsinb

EgKU-1c Q NId NId

EgKU-2 W NDe High

EgKU-3 L NId High

EgKU-4 R Low NDe

EgKU-5 R High NDe

EgKU-6 R High NDe

EgKU-7 R High NDe

EgKU-8c R High Low

The activity was considered “high” when curvatures were observed in titration assays (initial steady-state

rate versus enzyme concentration plots) and the KI
* values were < 10−10 M. The activity was considered

“low” when titration plots were linear and the KI
* values were > 10−9 M. Refer to Fig 1 and the text for further

details.
aAmino acid at position 15 (numbering as per mature BPTI), corresponding to the active site of serine

peptidase inhibitors.
bThe assays were carried out with cationic trypsin and chymotrypsin A from bovine pancreas.
cData with recombinant EgKU-1 and EgKU-8 reproduced those obtained with the native proteins ([3]; see

the text for further details).
dNI, not inhibited.
eND, not determined.

doi:10.1371/journal.ppat.1006169.t001
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In order to study the inhibition mechanism of EgKU-3 towards chymotrypsins, we carried

out time course experiments with chymotrypsin A. The progress curves for the inhibition (Fig

2B) indicated that the enzyme-inhibitor complex reaches equilibrium in a time scale of min-

utes and that EgKU-3 is a slow-binding inhibitor as defined by Morrison [23]. The interaction

of EgKU-3 with chymotrypsin was reversible, since progress curves reached appreciable slopes

even at higher than stoichiometric inhibitor concentrations. This is the expected behavior for

Kunitz-type inhibitors [10] and the one observed for EgKU-8 [3]. Similarly, the plot of the

apparent rate constant (kobs) versus EgKU-3 concentration was hyperbolical (Fig 2C), in accor-

dance with a mechanism involving two steps, a fast initial binding of the inhibitor to the target

enzyme followed by a slow transition [24]. The kinetic constants of EgKU-3 binding to chymo-

trypsin obtained from analyses of the progress curves are shown in Table 3. Note that the

value of KI

�

calculated from the kinetic constants compared very well with the value obtained

through the fit of steady-state rate versus inhibitor concentration data to the Morrison equa-

tion (Table 2).

EgKU-1 and EgKU-4 block voltage-activated potassium channels (Kv)

As already mentioned, our results indicate that the paralogs EgKU-1/EgKU-4 do not show the

typical serine peptidase inhibitory activity of Kunitz-type inhibitors. In fact, EgKU-1 did not

inhibit any assayed peptidase [3]; whereas EgKU-4 inhibited trypsin albeit with low affinity,

with a KI

�

of 47 ± 2 nM, i. e. 1000-fold higher than the KI

�

of EgKU-3 and EgKU-8 versus their

target enzymes (Table 2). In view of these results and taking into account the structural simi-

larity between EgKU-1 and α-DTX [3], we analyzed whether EgKU-1 and EgKU-4 acted on Kv

Fig 1. Titration assays of recombinant EgKUs: results for EgKU-3 and EgKU-4. Increasing concentrations of bovine chymotrypsin or trypsin were

pre-incubated with fixed amounts of recombinant EgKU-3 (A) or EgKU-4 (B), respectively, and mixed with the corresponding enzyme substrate. The plots

show the initial steady-state rate of substrate hydrolysis for each enzyme concentration; the activity in the absence of inhibitor is indicated in grey. (A)

EgKU-3 is a high affinity inhibitor of chymotrypsin. Note that the slope at the enzyme concentrations for which activity is detected compares very well with

the slope in the absence of inhibitor. The x-intercept of this plot (1.5 nM) represents the enzyme concentration interacting with 1.5 nM of EgKU-3. Thus,

EgKU-3 inhibits chymotrypsin with a 1:1 stoichiometry. (B) EgKU-4 is a low affinity inhibitor of trypsin. Note that trypsin activity is detected all over the

assayed enzyme range in the presence of an inhibitor concentration 1000-fold higher than the peptidase concentration. Representative results are shown.

Experiments with EgKU-3 and EgKU-4 were carried out five and two independent times, respectively. Within each experiment, measurements were

performed in duplicates.

doi:10.1371/journal.ppat.1006169.g001

Functional diversity of cestode Kunitz inhibitors

PLOS Pathogens | DOI:10.1371/journal.ppat.1006169 February 13, 2017 5 / 33



Fig 2. Inhibition studies with EgKU-3: results for bovine chymotrypsin A. (A) Enzyme inhibition. The enzyme (1 nM) was preincubated for 15 min

with EgKU-3 (0.1–3.0 nM) and mixed with substrate (Suc-Ala-Ala-Pro-Phe-AMC, 5 μM) in 50 mM Tris-HCl, pH 8.0, 0.01% Triton X-100, at 37˚C. Initial

steady-state rate measurements were performed in duplicates and the experiment was repeated 5 independent times. A representative experiment is

shown. KI
*
app values at equilibrium were determined using Eq (1) for tight binding inhibitors as described in Materials and Methods. The solid line

represents the best fit to this equation. (B) Representative progress curves for the inhibition. The enzyme (1 nM) was added to reaction mixtures

containing the substrate (Suc-Ala-Ala-Pro-Phe-AMC, 5 μM) and increasing concentrations of EgKU-3 (0, 0.5, 1, 2, 3, 6, and 15 nM, gray traces) in 50 mM

Tris-HCl, pH 8.0, 0.01% Triton X-100, at 37˚C. The black traces represent the best fit to Eq 3, from which kobs were obtained. (C) Dependence of kobs on

the concentration of inhibitor. The enzyme was added to reaction mixtures containing the substrate (Suc-Ala-Ala-Pro-Phe-AMC, 5 μM) and increasing

concentration of EgKU-3 in 50 mM Tris-HCl, pH 8.0, 0.01% Triton X-100, at 37˚C. The enzyme concentrations were: 1 nM for 0.5–3 nM of EgKU-3, 2 nM

for 3–6 nM of EgKU-3, and 3 nM for 6–10 nM of EgKU-3. kobs values were obtained from time course experiments according to Eq 3 and correspond to the

average of at least two time courses. The black trace represents the best fit to Eq 5 in agreement with Eq 4. The experiment was repeated 3 independent

times.

doi:10.1371/journal.ppat.1006169.g002
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using whole-cell patch-clamp assays on neurons isolated from DRG. Both EgKUs inhibited Kv;

Fig 3A illustrates the effect of recombinant EgKU-1. The blockade was more pronounced over

the steady-state component of the current than over the peak current: 25 ± 11% versus 20 ±
14% and 27 ± 12% versus 23 ± 7% for 200 nM of recombinant EgKU-1 and EgKU-4, respec-

tively (n = 7). We also tested the activity of native EgKU-1 and verified that the recombinant

inhibitor reproduced reasonably well the behavior of the native inhibitor (100 nM of native

EgKU-1 blocked the steady-state current by 19% and the peak current by 10%; n = 4). Thus,

the effect appeared to be stronger on the currents at the end of the pulse (accounting for non

inactivating -delayed-rectifier- K+ currents, IKDR) than on those at the beginning of the pulse

(corresponding to fast -transient A-type- K+ currents, IKA). The effect was only partially

reversible because about 60% persisted 3 min after washing (Fig 3B). In addition, it was clearly

observed on the currents elicited over -40 mV, as highlighted by the activity profile of the

EgKUs over the K+ currents activated by different voltages (Fig 3D–3F). In contrast, the perfu-

sion of 1 μM EgKU-8 (n = 7) produced no significant changes in the peak amplitude (2.6 ±
3.2%, P = 0.20) or the steady-state current (1.1 ± 3.5%, P = 0.38), whereas 1 μM of EgKU-3

(n = 10) produced a slight non-significant reduction of the peak current (6.3 ± 3.8%, P = 0.13)

Table 2. Global inhibition constants (KI
*) of EgKU-3, EgKU-4 and EgKU-8 acting on pancreatic serine peptidases.

KI
*(pM)a

Trypsinb Chymotrypsin Ab Chymotrypsin Bb Elastaseb

EgKU-3 NIc 53 ± 19 84 ± 49 (5 ± 2) x 103

EgKU-4 (47 ± 2) x 103 NDd NDd NDd

EgKU-8e 60 ± 13 (2.0 ± 0.2) x 103 NIc NIc

BPTIf 0.6 1.3 x 103 NIg 2.6 x 106

aKI
*, the global equilibrium dissociation constants, were calculated from inhibition assays (see Fig 2A) according to Eq 1 for tight-binding inhibitors and

minimally corrected for the effect of substrate concentration according to Eq 2. Values correspond to averages of independent experiments ± the standard

error (n� 3, except for EgKU-4 in which case n = 2).
bBovine cationic trypsin and chymotrypsin A, canine chymotrypsin B, and porcine elastase were used as target enzymes.
cNI, not inhibited.
dND, not determined.
eData are from native EgKU-8, as reported in [3].
f Data are from MEROPS (I02.001).
gThe lack of inhibition refers to bovine chymotrypsin B [66].

doi:10.1371/journal.ppat.1006169.t002

Table 3. Inhibitory kinetics of EgKU-3 on bovine chymotrypsin A.

Kinetic constant Chymotrypsin

k2
a (1.2 ± 0.2) x 10−2 s-1

KI
a 3.2 ± 1.2 nM

k2/KI
a (3.8 ± 2.0) x 106 M-1 s-1

k-2
b (2.8 ± 2.3) x 10−4 s-1

KI
*c 73 ± 30 pM

ak2, KI and k2/KI were calculated from time course experiments (see Fig 2B and 2C) according to the fit to Eq

5 of kobs versus [I] plots. Values are averages of independent measurements ± the standard error (n� 2).
bk-2 was calculated from time course experiments according to Eq 6. The value is the average of

independent measurements ± the standard deviation (n = 15).
cKI

* was calculated from Eq 7 using the values of k2, KI and k-2 obtained from time course experiments. The

value is the average of independent measurements ± the standard error (n� 3).

doi:10.1371/journal.ppat.1006169.t003
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and had no effect on the steady-state current (4.1 ± 4.5%, P = 0.13) (Fig 4). We also analyzed

the effect of EgKU-1 and EgKU-4 on voltage-activated sodium channels (Nav) and observed

no effect (S1 Fig).

Fig 3. Inhibition studies with EgKU-1 and EgKU-4: results for Kv from DRG neurons. Representative

experiments showing that recombinant EgKU-1 (200 nM) (A) blocks voltage dependent K+ currents elicited by

a pulse of -100 to 0 mV during 800 ms (holding potential Vh = -60 mV); and (B) that the inhibition effect is only

partially reversible after washout of the inhibitor. (C)–(F) Effect of the EgKUs on K+ currents activated by

increasing voltage pulses. The K+ currents were recorded following stepwise increments of 10 mV of the

membrane voltage between -110 and 30 mV from a holding potential of -60 mV. Recordings showing the

effect of recombinant EgKU-1 (200 nM) are shown in (C) and the current-voltage relationship of these traces

in (D). Similar analyses with native EgKU-1 (100 nM) and recombinant EgKU-4 (200 nM) are shown in (E) and

(F), respectively. The black traces correspond to control conditions and the gray ones after EgKU perfusion.

Note that the effects of native and recombinant EgKU-1 are of the same order.

doi:10.1371/journal.ppat.1006169.g003
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Subsequently, we further characterized the effect of EgKU-1 and EgKU-4 on Kv. For this

purpose, we recorded the currents after a pre-pulse of -120 mV to activate all voltage-depen-

dent K+ currents, transient IKA as well as slow-inactivating IKDR; and also those remaining

when the pre-pulse was of -45 mV, voltage at which IKA is inactivated. Thus, the second

recording corresponded to IKDR; whereas IKA could be deduced by subtracting IKDR from the

first recording. A representative experiment with recombinant EgKU-1 is shown in Fig 5.This

setup allowed us to analyze the effect of the inhibitors on total K+ currents (Fig 5A and 5C) as

well as on both types of isolated K+ currents, IKDR (Fig 5B and 5D) and IKA (Fig 5E). As antici-

pated by the previous experiment, EgKU-1 principally affected IKDR, with virtually no effect

on IKA (Fig 5D versus 5E). Finally, we studied the concentration-response relationship for

native EgKU-1 and estimated an IC50 of about 200 nM when acting on all K+ currents activated

by a pulse of -100 to 0 mV (Fig 6). Although we did not determine the IC50 for EgKU-4, its

behavior was similar to the one of EgKU-1.

EgKU-1 and EgKU-4 block Acid Sensing Ion Channels (ASICs)

Taking into account the recently described activity of α-DTX on ASIC currents in DRG neu-

rons [22], we also analyzed the effect of EgKU-1 and EgKU-4 on pH-dependent Na+ currents.

The sustained application of both EgKUs blocked the ASIC currents elicited by a pH change

from 7.4 to 6.1. The blocking effect was on the peak amplitude (Ipeak) and no significant effect

was observed on the desensitization time course (τdes). The effect on the current amplitude

was fully reversible after 1 min washing (Fig 7A–7C). We similarly analyzed the effect of

EgKU-3 and EgKU-8: EgKU-3 (n = 8) produced a slight but significant decrement of the Ipeak

(6.4 ± 3.0%; P = 0.02), whereas EgKU-8 (n = 7) had no effect (6.2 ± 5.1%; P = 0.11) (Fig 7D–

7E). Finally, we studied the concentration-response relationship for native EgKU-1 (Fig 8A);

the estimated IC50 value (about 8 nM) was 25-fold lower than the one determined for Kv

(about 200 nM), suggesting higher selectivity of EgKU-1 for ASICs than Kv.

Fig 4. Studies with EgKU-3 and EgKU-8 on total K+ currents from DRG neurons. Representative

experiments showing that recombinant EgKU-3 and EgKU-8 (1 μM) do not block voltage-dependent K+

currents elicited by a pulse of -100 to 0 mV during 800 ms (Vh = -60 mV). The superimposed traces

correspond to control recordings (black) and records after the perfusion of each EgKU (red). Positive and

negative controls were carried out in parallel, using α-DTX (100 nM) and albumin (15 μM), respectively.

doi:10.1371/journal.ppat.1006169.g004
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The EgKUs may be detected in metacestode and adult worm secretions

In our previous study, using mass spectrometry analysis, we showed that members of the

Kunitz family, notably EgKU-3 and EgKU-8, would be present in protoscolex secretions from

untreated and pepsin/H+-treated larval worms [3]. To further approach the question of

whether Kunitz inhibitors are secreted to the parasite-host interface, we similarly analyzed

hydatid fluid and adult worm secretions. Fig 9A shows a representative MALDI-TOF MS pro-

file (5000–10000 Da) of hydatid fluid from bovine cysts. Peaks of m/z 6407.5 and 6519.6,

matching the predicted MH+ value for EgKU-3 (6406.4 Da) and EgKU-8 (6520.4 Da), respec-

tively, were observed. Furthermore, the intensity of the signals putatively corresponding to

both EgKUs was substantially increased in the chymotrypsin A-affinity purified fraction from

the same sample (Fig 9B). In addition, the MS profile of an analogous fraction from the super-

natant of in vitro cultured immature adults (Fig 9C) also showed peaks matching the predicted

MH+ value for EgKU-3 and EgKU-8 (m/z of 6409.8 and 6521.3, respectively). Peptide mass fin-

gerprinting of the components purified from cyst fluid allowed the detection of signals that

could be assigned to tryptic peptides of these EgKUs. In particular, we detected signals with m/

Fig 5. Inhibition studies with EgKU-1 on isolated K+ currents from DRG neurons. Blocking effect of recombinant EgKU-1 (675 nM) on isolated K+

currents activated by increasing voltage pulses. (A) Voltage-dependent K+ currents (fast -transient A-type- currents, IKA; as well as non inactivating

-delayed-rectifier- currents, IKDR) were recorded from a holding potential of -100 mV, following stepwise increments of 10 mV of the membrane voltage,

between -65 and 55 mV. (B) IKDR currents were similarly recorded from a holding potential of -45mV, so as to inactivate IKA currents. (C) and (D) are the

corresponding current-voltage plots of (A) and (B), whereas (E) is the current-voltage plot accounting for IKA currents and was obtained by subtracting (D)

from (C).

doi:10.1371/journal.ppat.1006169.g005

Fig 6. Concentration-response analysis of native EgKU-1 on total K+ currents from DRG neurons. (A) Representative traces showing total K+ currents

elicited by a voltage pulse of -100 to 0 mV during 1000 ms (as indicated above the current trace) under control conditions, after 1 min perfusion of 200 nM of

native EgKU-1 and after washing. (B) Concentration-response analysis of EgKU-1 inhibitory effect on K+ currents, measured at the end of the voltage pulse,

on the steady-state component of the current. The black line shows the best fit to the dose-response equation, from which the IC50 was calculated (216 ± 26

nM). The data correspond to the mean ± standard error (n = 5 in all cases). The asterisks indicate Student’s t-test significance with respect to the effect in the

absence of inhibitor (P� 0.05).

doi:10.1371/journal.ppat.1006169.g006
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z values 1074.54 and 1491.63 that corresponded to EgKU-8 sequences 7LPLDPGFCR15 and

21WGFHQESGECVR32 with S-carboxymethylated cysteines (theoretical m/z values 1074.53

Fig 7. Inhibition studies with EgKU-1 and EgKU-4: results for ASIC currents from DRG neurons. (A-C)

Representative traces showing the acid (pH 6.1, 5 s) activated current under control conditions (left), after sustained (25

s) perfusion of 30 nM of each EgKU (center) and after 1 min washout of the inhibitors (right). Note that EgKU-1 and

EgKU-4 reduced the amplitude of the Na+ current, that recombinant EgKU-1 reproduced the effect of the native inhibitor

and that the recovery after washout was higher than 90% in all cases. (D-E) Representative traces from analogous

assays with 30 nM of EgKU-3 and EgKU-8. The slight decrement of the current amplitude induced by EgKU-3 was

significant (see the text for further details); EgKU-8 had no effect. (F) Albumin (15 μM) was used as negative control.

Calibration in each case applies to the control, effect and washout recordings of each panel.

doi:10.1371/journal.ppat.1006169.g007
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and 1491.64, respectively; see Fig 10C). In addition, a signal corresponding to EgKU-3

sequence 49–57 was detected in the same spectrum. MS/MS analysis of the corresponding ions

further corroborated the amino acidic sequences (S1 Dataset). Note that, although lower than

towards trypsins, the affinity of EgKU-8 towards chymotrypsin A (KI

�

10−9 M; Table 2) was

high enough to allow its purification from the secretions. In contrast, this approach is not suit-

able to purify EgKU-1 and EgKU-4 that have no affinity towards chymotrypsin; thus, even if

they had been present in the original sample, we would not have detected them.

Discussion

In the present study, we described the functional characterization of eight members of the E.

granulosus family of secreted Kunitz inhibitors (EgKUs). Using recombinant forms of EgKU-

1-EgKU-8 and native EgKU-1, we demonstrated that six EgKUs behave as high affinity inhibi-

tors of either chymotrypsin (EgKU-2 and EgKU-3) or trypsin (EgKU-5-EgKU-8), whereas the

close paralogs EgKU-1/EgKU-4 act as cation channel blockers (of Kv as well as ASICs), while

showing either null (EgKU-1, our previous study [3]) or marginal (EgKU-4) serine peptidase

inhibition activity. This degree of functional diversity, commonly observed in animal venoms,

had not been previously described for Kunitz inhibitors present in parasite secretions.

Regarding serine peptidase inhibition, detailed kinetic studies showed that the interaction

of EgKU-3 with chymotrypsins mimics the one of the close paralog EgKU-8 with trypsins: it is

slow, of very high affinity and involves two steps. EgKU-3 strongly inhibited isoforms A and B

of chymotrypsin with KI

�

in the 10−11 M range. Notably, according to MEROPS, dogs have

two chymotrypsins B (with > 95% identity, encoded by CTRB1 and CTRB2 genes) and lack

chymotrypsin A. The values of KI

�

are among the smaller registered for chymotrypsin inhibi-

tors. In fact, only two peptides have been reported to have similar affinity, both towards bovine

chymotrypsin A (see S01.001 in MEROPS) [25,26]. No high affinity inhibitors of chymotrypsin

B have been described so far, most likely because very few studies have been carried out with

this isoform (see S01.152 in MEROPS). Therefore, EgKU-3 appears as an interesting titration

reagent for chymotrypsins A and B, especially for the latter because adequate titration reagents

are currently unavailable. The stability of the EgKU-3-chymotrypsin A complex is similar to

that of EgKU-8 complexes with trypsins, with k2/KI, the apparent second order rate constant

for complex formation (kon), in the 106 M-1 s-1 range; and the dissociation rate constant (k-2)

in the 10−4 s-1 range (Table 3 and our previous study, [3]). These values of k2/KI are in good

agreement with reports for other members of the family, including BPTI with bovine trypsin

[27], whereas those of k-2 are several orders faster than the one reported for BPTI (10−8 s-1 with

bovine trypsin [27]).

The activity of EgKU-3 as a strong tight-binding inhibitor of chymotrypsins and a less

potent inhibitor of pancreatic elastase, as well as its lack of activity towards trypsin (Table 2)

are consistent with the presence of a Leu in P1. In turn, similar to BPTI (Lys in P1), EgKU-8

(Arg in P1) strongly inhibits trypsins, less potently chymotrypsin A and does not inhibit

Fig 8. Concentration-response analysis of native EgKU-1 on ASIC currents from DRG neurons. (A)

Analysis of native EgKU-1 inhibitory effect on the ASIC current amplitude (n = 26). The black line shows the

best fit to the dose-response equation, from which the IC50 was calculated (7.8 ± 0.7 nM). The data

correspond to the mean ± standard error (n� 6 in all cases, except for 1 nM in which n = 4). The asterisks

indicate Student’s t-test significance with respect to the effect in the absence of inhibitor (P� 0.05). (B) and

(C) correspond to positive and negative controls, respectively. (B) Representative traces showing the acid (pH

6.1, 5 s) activated current under control conditions (left), after sustained (25 s) perfusion of α-DTX (center),

and after 1 min washout (right). α-DTX (1 μM; n = 6) significantly decreased the current amplitude

(44.5 ± 7.0%; P = 0.045). (C) The application of EgKU-1 in extracellular solution, without any pH change, had

no effect.

doi:10.1371/journal.ppat.1006169.g008
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Fig 9. Detection of EgKU-3 and EgKU-8 in parasite secretions. Analysis by MALDI-TOF MS of hydatid fluid from

a bovine cyst (A), as well as of chymotrypsin-affinity purified fractions from the same sample (B) and from the

supernatant of cultured immature adults (C). Signals whose m/z values could derive from the EgKUs are indicated

(MH+ predicted for mature EgKU-3 and EgKU-8 are: 6406.8 and 6520.9, respectively). Note that the signals

putatively corresponding to the EgKUs are significantly enriched in the eluate from the affinity matrix. The identity of

EgKU-3 and EgKU-8 purified from cyst fluid was subsequently confirmed by peptide mass fingerprinting (see S1

Dataset and the text for further details), as previously described [3].

doi:10.1371/journal.ppat.1006169.g009

Fig 10. Structural analyses of EgKU-1/EgKU-4 and EgKU-3/EgKU-8. (A) Cartoon representation of structural models from the EgKUs and the crystal

structure of α-DTX (1DTX) featuring solvent-accessible (> 40 Å2) aromatic (purple), acid (red) and basic (blue) residues. N and C terminal ends are

labeled. Note the presence of patches of basic amino acids with close aromatic residues in the models of α-DTX, EgKU-1 and EgKU-4. (B) Molecular

surface electrostatic representations of the same proteins in the same orientation, highlighting global differences in charge distribution; scale represents

charge from positive blue to negative red. (C) Sequence alignment produced with TEXshade [82] and hand-edited, featuring aromatic, acid and basic

residues; those with solvent-accessibilities < 40 Å2 are grey shaded. Note that structurally equivalent positions in the EgKUs and α-DTX are shifted two

residues in the primary sequence. The P1 site of serine peptidase inhibitors, located at the center of the antipeptidase loop, is indicated with arrowheads in

(A) and (C).

doi:10.1371/journal.ppat.1006169.g010
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elastase (Table 2). Notably, neither EgKU-8 nor BPTI inhibit chymotrypsin B. The antipepti-

dase loops of EgKU-3 and EgKU-8 differ by 50% (the corresponding mature polypeptides dif-

fer by only 37%); differences are mainly on the P side of the loop (residues 10 to 15), and

involve some non-conservative substitutions (notably Asp10 instead of Lys10 in P6; see Fig

10C). Because the loop contributes to the inhibition specificity primarily determined by the P1

site, some of these residues are likely involved in the interaction with chymotrypsin B. In any

case, consistent with the fact that isoforms A and B have similar affinities towards substrates

with Phe as P1 residue [28], the values of KM for the substrate we used were of the same order.

Regarding cation channel inhibition, patch-clamp studies carried out on rat DRG neurons

showed that EgKU-1 and EgKU-4 block voltage-activated potassium currents. The effect was

voltage-dependent and, as described for dendrotoxins, it was not totally reversible (Fig 3;

[29]). The detailed characterization of EgKU-1 activity on isolated K+ currents indicated that it

preferentially blocks IKDR, as compared to IKA. This behavior differs from the one of α–DTX

and resembles the one of δ–DTX [29]. In any case, the IC50 determined for EgKU-1 was two

orders of magnitude higher than those of dendrotoxins assayed on DRG neurons (10−7 versus
10−9 M [29]). This could be due, at least in part, to the fact that, although EgKU-1 shares with

dendrotoxins several residues that would participate in channel interaction (notably Leu7,

Lys26 and Lys27), it lacks the Lys5 that has been described as a primary determinant of activity

([21]; this is also the case for EgKU-4 that shares Leu7 and Lys27 with α–DTX and EgKU-1;

see Fig 10C). Because we studied the effect of the EgKUs on total Kv currents of primary cul-

tures, we cannot comment on their activity over specific Kv. Nevertheless, our results indicate

that EgKU-1 could be more active over some Kv than others. Indeed, the dose-response curve

does not start from zero (Fig 6), as if a specific Kv was highly blocked at low concentrations of

the inhibitor.

EgKU-1 and EgKU-4 also showed a potent dose-dependent blocking effect on the ASIC cur-

rents in DRG neurons, which was totally reversible after one minute washing (Fig 7). These

neurons express at least two subpopulations of transient ASIC currents as judged by their inacti-

vation constants [30]. One of them derives from channels of ASIC1a, ASIC1b and ASIC3 sub-

units; the other from channels of ASIC2a subunits (reviewed by [31]), which are the least

expressed in DRG [32]. Although our experimental setup does not allow us to conclude which

channels are sensitive to the EgKUs, the dispersion of the values in the dose-response study with

native EgKU-1 (Fig 8A) points to some variability of the blocking effect among different cells,

suggesting that the effect could be stronger for some channel(s). EgKU-1 could thus mimic the

performance of other peptide blockers of ASICs, such as APETx2 (reviewed by [31]).

We recently reported that α-DTX, the well-known blocker of voltage activated K+ channels,

also inhibits ASIC currents in rat DRG, although with significantly less potency than Kv (IC50

~ 10−7 M [22] versus 10−9 M [29], respectively; see also Figs 4 and 8B). This result indicates

that the Kunitz domain is yet another structural scaffold for ASIC-blocking polypeptides.

Interestingly, an exposed basic-aromatic cluster identified in structurally different ASIC

blocking peptides [33] was also found to be present in the structure of α-DTX [22]. Notably,

this feature is observable towards one side of the model structures of EgKU-1 and EgKU-4 and

not in those of EgKU-3/EgKU-8 (Fig 10A). In any case, functionally distinct EgKUs differ

mainly in surface charge distribution (Fig 10B). The relatively low selectivity of Kunitz inhibi-

tors towards cation channels contrasts with the high specificity of their interaction with serine

peptidases. Not surprisingly, structure-activity analyses focused at identifying the “channel-

blocking site” of Kunitz proteins have usually highlighted regions on their surface involved in

channel interaction but not a defined structural motif comparable to the antipeptidase loop

involved in serine peptidase interaction. Furthermore, key residues for channel blockade are

frequently located in the N- or C-terminal extensions of the Kunitz domain [17,34]
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The availability of the E. granulosus genome [5,35] has allowed us to identify genes coding

for at least eight additional monodomain Kunitz proteins with the same molecular architecture

as EgKU-1–EgKU-8, i. e. a signal peptide followed by a single Kunitz domain. Similar to the

rest of the family, the newly-identified members are diverse and include several pairs of close

paralogs, consistent with an accelerated evolution of the family. Fig 11 shows an unrooted phy-

logenetic tree of the Kunitz domains from the sixteen EgKUs together with eleven close para-

logs from T. solium and five from functionally characterized monodomain Kunitz proteins

from Lophotrochozoa, including four from trematodes. A true phylogenetic tree is not in-

tended, as the signal might be blurred by homoplasy. Rather, the tree is aimed to mirror func-

tional groupings of the sequences in an approximate evolutionary context. Not surprisingly,

the sequences from T. solium pair with their close E. granulosus paralogs. The groupings

roughly correlate with functional features, whereas EgKU-2 (and a putative T. solium ortholog)

appears very distant from the rest. The red sub-clade includes several serine peptidase inhibi-

tors: in addition to EgKU-3/EgKU-8 and EgKU-5, EGR_07242 (EgKI-2 in [36]) and the schis-

tosome proteins SjKI-1 [37] and SmKI-1 [38]. EGR_07242 (Arg in P1) was recently found to

inhibit trypsin, although with relatively low affinity (KI ~ 10−9 M; [36]), probably due to the

lack of Cys14, i. e. the one forming the disulphide bond that stabilizes the antipeptidase loop.

SjKI-1 and SmKI-1 (both with Arg in P1) also inhibit trypsin with IC50 in the 10−10 and 10−8

M range, respectively [37,38]. The green sub-clade appears to group a different set of serine

peptidase inhibitors (EgKU-6/EgKU-7 and closely related proteins from T. solium). In turn,

the blue sub-clade includes the channel blockers EgKU-1/EgKU-4 together with another pair

of close E. granulosus paralogs (EgrG001136600/EgrG001137000), and two T. solium proteins

(TsM_000410200 and TsM_000513000). Although it is difficult to predict their function

without further data, these proteins could also act as channel blockers because, similar to

EgKU-1/EgKU-4, they feature the conserved Leu7 and a positively charged β–turn that form

the Kv-blocking site of α-DTX and related toxins [34,39,40,41]. As to the other groupings,

EgrG_001136500 (Leu in P1) was recently found to be a potent inhibitor of neutrophil elastase

(KI ~ 10−11 M) and cathepsin G (KI ~ 10−10 M) and, interestingly, to reduce neutrophil infiltra-

tion in a local inflammation model (EgKI-2 in [36]); thus, its close paralog (EgrG_00113800;

Arg in P1) could also be a serine peptidase inhibitor. Finally, the sequences from Fasciola
hepatica (FhKTM [42] and FhKT1 [43], both with Leu in P1, whose Kunitz domains differ

in 3/51 amino acids) define a basal, separate sub-clade, that could also reflect functional diver-

sity: FhKTM was found to be a marginal inhibitor of trypsin with virtually no effect over chy-

motrypsin [42] but, notably, FhKT1 was recently characterized as an inhibitor of cysteine

peptidases, including the major parasite cathepsin L secreted peptidases and related human

peptidases [43]).

Another interesting finding of our work refers to the demonstration of the presence of

some EgKUs (notably, EgKU-3 and EgKU-8) in cyst fluid (from bovine cysts) and secretions

from immature adult worms, which complement our previous results with secretions from

protoscoleces and pepsin/H+-treated protoscoleces [3]. EgKU-8 was also detected by proteo-

mic analyses in fertile cyst fluids from ovine and human infections, but not in infertile cysts

from infected cattle [44]. Members of the Kunitz family could thus be secreted to the E. granu-
losus-dog interface not only at the initial stages of infection (as indicated by their presence in

larval worm secretions) but also at late stages, and contribute to the establishment and persis-

tence of dog echinococcosis. In turn, their presence in cyst fluid would point to a role at the

onset of infection in dogs and/or during the chronic stage of infection in intermediate hosts.

In addition, available RNASeq data [5,35] indicate that members of the family are expressed

in all the analyzed stages (immature adult, activated oncosphere, cyst, protoscolex, pepsin/H+-

treated protoscolex); interestingly, most EgKUs are expressed in adults. Furthermore, several
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Fig 11. Expanded view of the E. granulosus Kunitz family. Unrooted phylogenetic tree highlighting

sequence groupings within the family that roughly correlate with functional features described in the main text.

Of outmost notice are sub-clades which include pairs such as the serine peptidase inhibitors EgKU-3/EgKU-8

(red clade) and EgKU-6/EgKU-7 (green clade); and the channel blockers EgKU-1/EgKU-4 (blue clade). Note

that the sequences from T. solium pair with their close E. granulosus paralogs. Interestingly, the serine

peptidase inhibitors SjKI-1 [37], SmKI-1 [38] and EGR_07242 (EgKI-2 in [36]) group in the red clade. The

sequences from F. hepatica (FhKTM [42] and FhKT1 [43]) define a basal, separate clade that could reflect

functional diversity (cysteine peptidase inhibition; [43]). The long branch of EgKU-2 (and its putative T. solium

ortholog) may reflect either a basal position of the protein (ancient/extreme sequence divergence), an
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of them appear up-regulated in this stage, notably, EgKU-3, EgKU-7, EgKU-8, and also

EGR_07242 and EgrG_0001137000 [35]. In addition, the orthologs of EgKU-1 and EgKU-4

were found to be highly up-regulated in E. multilocularis gravid adults (as compared to non-

gravid worms) [5], whereas EgrG_001136500 and a close paralog (EmuJ_001136900) were

among the transcripts with higher expression in oncospheres from E. granulosus [35] and E.

multilocularis [45], respectively. Together with our results highlighting the presence of EgKUs

in parasite secretions, these data support the concept that Kunitz proteins are involved in para-

site interaction with definitive and intermediate hosts, and indicate that specific members of

the family would be engaged in particular moments of the life-cycle.

Given the activity profile of EgKU-1-EgKU-8 and the fact that they are mostly expressed

and secreted by larval and adult worms [3,35], we can speculate about their potential counter-

parts in the dog duodenum. The apical end of the scolex contains a gland (the rostellar gland)

whose secretion is believed to play a key role in host-parasite cross-talk, due to the very inti-

mate contact of the scolex with the mucosa (reviewed by [2]). Interestingly, seminal studies

demonstrated that the rostellar gland secretion is cystine-rich [46]; the gland could thus be the

site of synthesis and concentration of the EgKUs. Pancreatic enzymes appear as clear targets of

the EgKUs acting as serine peptidase inhibitors: those present in cyst fluid could initially pro-

tect the larval worms from digestion; whereas those secreted could protect the scolex (whose

glycocalix is thin) after the parasite has attached to the mucosa. The EgKUs could also inhibit

other serine peptidases, such as those secreted by immune cells (see for example [47]) and

membrane peptidases from epithelial cells (see for example [48,49]); in turn, this effect could

prevent the activation of proteinase-activated receptors (PARs; [50]). As to putative targets of

EgKU-1/EgKU-4, very little is known about the expression and functional properties of Kv

and ASICs in the gut. In any case, both types of channels participate in the physiology of epi-

thelial cells and afferent neurons [51,52,53]. In addition, Kv and ASICs are involved in the acti-

vation and maturation of dendritic cells and macrophages. In particular, Kv1.3 and Kv1.5

modulate the Ca2+-dependent functions of these cells and their blockade down-regulates their

activation [54]. Regarding ASICs, dendritic cells express ASIC1, ASIC2 and ASIC3, and extra-

cellular acidosis induces currents that are blocked by ASIC inhibitors. In addition, acidosis

triggers the activation of dendritic cells and macrophages and ASIC inhibitors block these

effects [54,55]. Taking into account that extracellular acidosis is a hallmark of inflammation,

the blockade of ASICs may be crucial to weaken the induction of innate immunity and to

favor the development of a chronic infection. In this context, it is pertinent to mention that

excretory-secretory (E/S) products from E. granulosus adults have recently been found to

impair dendritic cell function and induce the development of regulatory T cells [56]. Further-

more, a similar result was observed with the Kunitz protein FhKTM from the trematode F.

hepatica, which is known to be present in parasite E/S products [57].As already mentioned,

FhKTM showed a marginal serine peptidase inhibitory activity [42] but, notably, the very

closely related FhKT1 (> 90% overall identity with FhKTM) was recently found to inhibit cys-

teine peptidases [43].

In our previous study, we included data from an extensive survey of platyhelminth ESTs

available at the time, indicating that the expression of families of monodomain Kunitz proteins

accelerated evolution (e.g. through positive selection) or even relaxed selective pressures resulting in high

tolerance to mutation accumulation. Data are insufficient to distinguish between such alternative scenarios.

EgrG_001136500, in a black clade to the left, was also found to be a potent serine peptidase inhibitor (EgKI-1

in [36]). The position of the mollusk sequence (Conkunitzin S1), which was characterized as a channel blocker

[14], is probably derived from the fact that, similar to EGR_07242, it lacks Cys14. This artifact is to be

expected in short sequences. Bottom scale bar denotes average substitutions per site.

doi:10.1371/journal.ppat.1006169.g011
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would be a distinctive trait of cestodes [3]. Genomic and transcriptomic data currently avail-

able (accessible from WormBase ParaSite: http://parasite.wormbase.org/; [58]) confirm and

extend these initial observations, in particular, for the other medically important cestodes, E.

multilocularis and T. solium, and indicate that this family is expanded in cestodes. Putative

orthologs of virtually all the EgKUs are present in the E. multilocularis genome, and several are

also predicted for T. solium (Fig 11). In addition, recent genome-wide analyses of E/S proteins

showed that the Kunitz domain is either the most (in E. multilocularis, 17/673 predicted E/S

proteins; [59]) or the third most (in T. solium, 14/838 predicted E/S proteins; [60]) represented

domain in the predicted secretome of these parasites, whereas manual inspection of the puta-

tive secreted Kunitz proteins indicates that a majority of them contain a single Kunitz domain.

In contrast, parasitic trematodes express only a few monodomain Kunitz inhibitors (see for

example [61]).

The secretion of monodomain Kunitz proteins thus appears to be a strategy evolved by ces-

todes to block, through high affinity interactions, the function of host proteins (either serine

peptidases or cation channels) and contribute to the establishment and persistence of infec-

tion. The putative immunomodulatory role of these molecules opens the way to further studies

of their involvement in immunoevasion, acting as single molecules as well as synergistically.

From a more general perspective, the data confirm that multigene families of Kunitz inhibitors

from parasite secretions and animal venoms display a similar functional diversity. As we had

previously mentioned, because the genes coding for parasite secretions and predator toxins

arise from an arms race between different organisms, it is interesting to consider that both sets

of molecules display analogous evolutionary patterns. Finally, the strong target specificity of

some of these molecules makes them uniquely suited as tools for the characterization of biolog-

ical processes as well as for the development of pharmaceuticals.

Materials and methods

Preparation of EgKUs

Native EgKU-1 and EgKU-8 were purified to homogeneity from a protoscolex lysate by cation

exchange followed by reverse-phase chromatography, as previously described [3].

EgKU-1–EgKU-8 [3] were overexpressed as amino-terminal His6-tagged fusion proteins in

Escherichia coli strain BL21(DE3) using pET28a recombinant plasmids prepared according to

standard procedures. The expression constructs included the His6 leader sequence followed by

the cDNA sequence encoding the corresponding predicted full-length mature EgKU. These

were amplified from E. granulosus pepsin/H+-activated protoscolex cDNA [62] using Vent
DNA polymerase (New England Biolabs) and specific primers containing restriction sites to

allow directional cloning into the pET28a vector. BamHI and HindIII sites were used except for

EgKU-6 and EgKU-7 whose coding sequences are cleaved by BamHI; EcoRI was used instead.

The integrity of the expression constructs was checked by sequencing. The His6-tagged EgKU

fusion proteins were expressed in transformed E. coli grown in LB containing 10 mg/L of kana-

mycin and induced at 37˚C with 0.1 mM isopropyl thiogalactopyranoside. Induction of expres-

sion was at late-log-phase (A600 0.6–1.0) during 4 h, in the case of the pairs of paralogs EgKU-1/

EgKU-4 and EgKU-3/EgKU-8 that yielded good amounts of soluble recombinant peptides [63].

Expression of EgKU-2, EgKU-5 and the paralogs EgKU-6/EgKU-7, whose recombinants are

recovered mostly as inclusion bodies [63], was induced earlier (A600 0.2–0.3) to maximize the

yield of the soluble proteins. In all cases, the induced cells were harvested by centrifugation, the

pellet was suspended in “lysis” buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole),

and the cells were lyzed by sonication. The lysates were centrifuged (20,000 g for 30 min at 4˚C)

and the supernatants used to purify the His-tagged fusion proteins using a Ni2+-charged affinity
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matrix (Ni-NTA, Invitrogen), following the manufacturer’s instructions. The soluble fraction of

the bacterial lysates was loaded onto the column equilibrated with lysis buffer, washed with

equilibration buffer including 30 mM imidazole, and the recombinant EgKUs eluted with the

same buffer containing 250 mM imidazole, that was subsequently dialyzed.

The purity of the EgKUs was checked by SDS-PAGE analysis and the protein concentration

was determined with the bicinchoninic acid reagent (BCA, Pierce, USA) using bovine serum

albumin as standard, or by A280. The quality of the recombinants was further controlled by: i)

confirming the presence of three disulphide bonds (i. e. that the proteins were fully oxidized)

through determination of the molecular masses of the EgKUs and their reduced and alkylated

derivatives by MALDI-TOF MS, as described by Calvete [64] (S2 Fig); ii) checking that recom-

binant EgKU-8 reproduced the performance of the native inhibitor towards bovine trypsin

and thus, that the recombinant was properly folded and the N-terminal extension contributed

by the expression vector did not interfere with enzyme interaction (Ki

�

was 50 ± 10 pM for

recombinant EgKU-8 and 60 ± 13 pM for the native inhibitor [3]); iii) during this study, we

also verified that recombinant EgKU-1 reproduced reasonably well the performance of the

native inhibitor acting on Kv and ASIC currents from DRG neurons (Figs 3 and 7, respec-

tively). Usual yields of the EgKUs recovered as soluble recombinants and used for activity

assays were as follows: ~5 mg/L of culture for EgKU-1/EgKU-4 and EgKU-3/EgKU-8; ~300 μg/

L for EgKU-7 (~30% of the total); and ~5 μg/L for EgKU-2, EgKU-5 and EgKU-6 (~5% of the

total). The purity of the proteins used for detailed activity studies (EgKU-1, EgKU-3, EgKU-4

and EgKU-8) was always> 95%.

Assays of peptidase inhibition by EgKUs

The inhibitory activity of recombinant EgKU-1–EgKU-8 was tested against bovine trypsin (EC

3.4.21.4), bovine and canine chymotrypsins (EC 3.4.21.1), and porcine elastase (3.4.21.36),

essentially as previously described [3]. Bovine enzymes and porcine elastase were obtained

from Sigma-Aldrich, whereas the canine peptidase was purified from the pancreas of a dog

that had passed away due to an accidental cause, following the procedure of Waritani et al.
[65]. According to MEROPS, dogs have two chymotrypsins B (with > 95% identity, encoded

by CTRB1 and CTRB2 genes); the fraction we isolated from dog pancreas most likely con-

tained a mixture of both enzymes.The following peptidases were thus assayed (MEROPS—

http://merops.sanger.ac.uk—identifiers are indicated in brackets; [9]): from Bos taurus, chy-

motrypsin A (S01.001) and trypsin 1 (cationic, S01.151); from Sus scrofa, elastase (S01.153);

from Canis familiaris, chymotrypsin B (S01.152)).

Prior to inhibition studies, proteolytic activity in enzyme preparations was determined with

fluorogenic substrates using initial steady-state rate conditions at 37˚C and pH 8.0. Assays

(200 μl) were performed in black 96-well microplates (Costar, Corning Life Sciences).

Enzymes and substrates were dissolved in 50 mM Tris-HCl, pH 8.0 containing 0.01% Triton

X-100 (v/v), and reactions were initiated by the addition of enzyme. The changes in fluores-

cence intensity, corresponding to the formation of the hydrolysis product 7-amino-4-methyl-

coumarin (AMC), were registered at excitation and emission wavelengths of 390 and 460 nm,

respectively, with a microplate fluorescence reader (FLUOstar� OPTIMA, BMG Labtechnolo-

gies). For trypsin activity, the artificial substrate N-t-BOC-Ile-Glu-Gly-Arg-AMC was used;

for chymotrypsin, Suc-Ala-Ala-Pro-Phe-AMC; and for elastase, Suc-Ala-Ala-Ala-AMC. Cali-

bration curves using AMC were carried out in each experiment. Initial steady-state rates of

substrate hydrolysis were calculated from the linear portion of product (AMC) versus time

plots when less than 10% of substrate had been consumed. The substrates and AMC were also

obtained from Sigma-Aldrich.
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Protein concentrations of enzyme preparations were determined with the BCA reagent

using bovine serum albumin as standard; and the active site concentration of trypsin and

bovine chymotrypsin A by specific titration with the high affinity inhibitor BPTI. Initially, the

active site concentration of canine chymotrypsin could not be estimated because, similar to

bovine chymotrypsin B [66], it was not inhibited by BPTI. The enzyme was subsequently

titrated with EgKU-3 that inhibits chymotrypsins A and B with high affinity (see results).

The kinetic parameters for substrate and enzyme pairs were calculated from the non-linear fit-

ting to the Michaelis-Menten equation. The values determined with the substrates specified above

were: KM = 85 ± 9 μM and kCat = 50 ± 6 s-1 for bovine trypsin; KM = 30 ± 2 μM and kCat = 19 ± 2

s-1 for bovine chymotrypsin A; KM = 39 ± 2 μM and kCat = 6 ± 1 s-1 for canine chymotrypsin B.

For inhibition studies, each of the enzymes was incubated with the purified recombinant

EgKUs for 15 min at 37˚C prior to the addition of the appropriate fluorogenic substrate, to

allow for the equilibration of the enzyme-inhibitor complexes. The substrate concentration

(5 μM) was chosen so as to be well below the corresponding KM, as specified above.

To check whether the EgKUs behaved as high affinity inhibitors, the purified recombinants

were titrated against active-site titrated bovine trypsin and chymotrypsin, as described by

Olson et al. [67].

Peptidase inhibition studies with EgKU-3 and EgKU-4

The activities of EgKU-3 and EgKU-4 were further analyzed by characterizing the kinetics of

enzyme inhibition, as previously described for EgKU-8 [3]. All experiments were carried out at

least two independent times. Within each experiment, measurements were performed in

duplicates. The inhibition and rate constants reported are the average ± standard error of inde-

pendent experiments.

Tight-binding kinetics. In order to determine the global inhibition constants (KI

�

) of the

recombinant inhibitors towards the assayed serine peptidases, the initial steady-state rates of

substrate hydrolysis in the presence of increasing concentrations of each inhibitor were mea-

sured after pre-incubation of the enzyme with inhibitor. The inhibition constants were calcu-

lated by nonlinear fitting to the Morrison equation for tight binding inhibitors [68,69]:

vi ¼
v

2½E�
fð½E� � ½I� � K�I appÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð½I� þ K�I app � ½E�Þ
2
þ 4K�I app½E�

q

g ð1Þ

where KI

�

app is the apparent global dissociation constant of the enzyme-inhibitor complex, vi
is the inhibited steady-state rate, v is the uninhibited rate, [I] is the total inhibitor concentra-

tion and [E] is the total enzyme concentration. The true inhibition constants, KI

�
, were cor-

rected from KI

�

app according to the Eq 2 for competitive inhibitors:

K�I ¼
K�I app

1þ
½S�
KM

ð2Þ

Slow-binding kinetics. The decrease in the rate of product formation during the first

minutes after mixing the enzyme with the inhibitor and substrate (5 μM) was studied for

increasing inhibitor concentrations. Progress curves were analyzed using the Eq 3 [70] that

describes the slow establishment of equilibrium between the enzyme and the inhibitor accord-

ing to:

P ¼ vit þ
ðv0 � viÞð1 � e� kobstÞ

kobs
ð3Þ
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where P is the concentration of AMC produced by hydrolysis of the substrate, vo is the initial

rate, vi is the rate once the enzyme-inhibitor equilibrium was reached, and kobs represents the

apparent first order rate constant. Computer fitting of progress curves estimated values for vo,
vi and kobs.

For Kunitz inhibitors that bind to the enzyme rapidly and reversibly forming an initial

“loose” complex EI that isomerizes slowly to the final complex EI�, the reaction mechanism

can be represented by Eq 4:

Eþ I⇌EI⇌EI� ð4Þ

In this mechanism, the value of the apparent rate constant (kobs) is related to the kinetic

constants of the second step, k2 and k-2, and to the equilibrium dissociation constant of the ini-

tial loose complex KI (KI = k-1/k1), by Eq 5 [24]:

kobs ¼ k� 2 þ
k2½I�

½I� þ KIð1þ ½S�=KMÞ
ð5Þ

In the case of EgKU-3 that was found to follow the mechanism represented in Eq 4, the con-

stants k2 and KI were determined from plots of kobs versus [I], by computer fitting to Eq 5.

Because k-2 was too small to be accurately estimated from these plots, it was determined with

Eq 6 [23] using data from situations where the ratio vi/vo was higher than 0.05:

k� 2 ¼ kobs
vi
v0

ð6Þ

The values of k-2, k2 and KI thus determined allowed to corroborate the inhibition constant

KI

�

, according to Eq 7:

K�I ¼ KI
k� 2

k2 þ k� 2

ð7Þ

Data analysis. Computer fitting to non-linear equations was performed using the soft-

ware Origin version 8 (OriginLab).

Patch-clamp experiments with EgKU-1 and EgKU-4 on DRG neurons

The effect of EgKU-1 and EgKU-4 on voltage-gated (Na+ and K+) and ASIC currents was stud-

ied using the whole cell patch-clamp technique in primary cultured rat DRG neurons. The

effect of EgKU-3 and EgKU-8 on voltage-gated K+ and ASIC currents was similarly analyzed.

α-DTX (kindly donated by Dr. Carlos Cerveñansky from the Unidad de Bioquı́mica y Proteó-

mica Analı́ticas, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Cle-

mente Estable, Montevideo, Uruguay) and Bovine Serum Albumin (Sigma Chemicals) were

used as positive and negative controls, respectively.

Ethics statement. The study was performed in strict accordance with the Guiding Princi-

ples from the Committee on Guide for the Care and Use of Laboratory Animals of the Na-

tional Research Council of the National Academies of the United States of America and with

the regulations of the General Law of Health and of Research in Health Matters of the Ministry

of Health of Mexico and Technical Specifications for production, use and Care of laboratory

animals (NOM-062-ZOO-1999). The animal protocol was reviewed and approved by the Insti-

tutional Animal Care and Use Committee (IACUC) of the Vice-rectory of Research and Post-

graduate Studies of the Autonomous University of Puebla (BUAP/VIEP 2014–236, BUAP/

VIEP 2015–273 and BUAP/VIEP 2016–265). All efforts were made to minimize animal
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suffering and to reduce the number of animals used. The animals were provided by the

“Claude Bernard” animal facility of the Autonomous University of Puebla.

Cell culture. The DRG neurons were isolated from the vertebral column of Wistar rats at

postnatal ages P5 to P9 without sex distinction, and cultured according to the procedure

described by Salceda and coworkers [71]. In brief, the neurons were incubated (30 min at

37˚C) in Leibovitz L15 medium (Invitrogen, USA) containing 1.25 mg/ml trypsin and 1.25

mg/ml collagenase (both from Sigma-Aldrich). After the enzymatic treatment, the ganglia

were washed 3 times with sterile L15. Cells were mechanically dissociated and plated on

12-mm x 10-mm glass coverslips (Corning, USA), pretreated with poly-D-lysine (Sigma-

Aldrich), which were placed onto 35-mm culture dishes (Corning). The isolated cells were

allowed to settle and adhere to the coverslips during 4 to 8 h in a humid atmosphere (95% air

and 5% CO2, at 37˚C) using a CO2 water-jacketed incubator (Nuaire, USA). The plating

medium was L15 supplemented with 15.7 mM NaHCO3 (Merck, Mexico), 10% fetal bovine

serum, 2.5 μg/ml fungizone (both from Invitrogen), 100 U/mL penicillin (Lakeside, Mexico),

and 15.8 mM HEPES (Sigma-Aldrich).

Electrophysiological recording. A coverslip with attached cells was transferred to a 500 μl

perfusion chamber mounted on the stage of an inverted phase-contrast microscope (TMS,

Nikon Co, Japan). Cells were bath-perfused with extracellular solution by means of a peristaltic

pump (Masterflex, L/S Easy-Load II; Cole Parmer, USA). Current recording was carried out at

room temperature (23–25˚C) using an Axopatch 1D amplifier (Molecular Devices, USA). The

cells selected for recording were refringent, they were not adhered to other cells, showed no

neurite outgrowth, and had a round soma. Command-pulse generation and data sampling were

controlled with the pClamp 9.2 software (Molecular Devices) using a 16-bit data-acquisition

system (Digidata 1320, Molecular Devices). Signals were low-pass filtered at 5 kHz and digitized

at 10 or 20 kHz, depending on the experiment. Patch pipettes were pulled from borosilicate

glass capillaries (TW120-3; WPI, USA) using a Flaming-Brown electrode puller (P-80/-PC; Sut-

ter Instruments, USA). They typically had a resistance of 1 to 3 MO when filled with intracellu-

lar solution. The series resistance was electronically compensated for by� 80%. Seal and series

resistance were continuously monitored to guarantee stable recording conditions.

Experimental protocols and data analysis. To study their effects on voltage-gated K+ and

Na+ currents, the EgKUs were ejected under pressure using a microinjector (Baby Bee, USA)

from a micropipette positioned in the vicinity of the cell under recording. For the recording

of total currents, the cells were perfused with an extracellular solution containing (mM):

140 NaCl, 5.4 KCl, 1.8 CaCl2, 1.2 MgCl2, 10 HEPES, adjusted to pH 7.4 with NaOH. For the

recording of ASIC currents, the same solution was employed but HEPES was substituted by

MES (10 mM) and pH was adjusted to 6.1. For these experiments, the patch pipettes were filled

with an intracellular solution containing (mM): 10 NaCl, 125 KCl, 0.1 CaCl2, 10 EGTA, 5

HEPES, 1 NaGTP, 2 MgATP, adjusted to pH 7.2 with KOH.

Potassium transmembrane currents were elicited by a single-step voltage protocol applying

a 120 ms pre-pulse to -100 mV before the 0 mV (800 ms) test pulse with an interval between

sweeps of 8 s (holding potencial, Vh = -60 mV). For current-voltage (I/V) analyses, the total

potassium current was obtained from a Vh of -45 mV through a series of voltage steps (from

-65 to 55 mV, every 8 s) preceded by a conditioning step to -120 mV (200 ms). To record the

sustained component of the current (IKDR), the conditioning step was set to -45 mV to inacti-

vate the transient component of the current (IKA). Then IKA was calculated by a trace by trace

subtraction between the aforementioned protocols. For this group of experiments, the extra-

cellular solution contained (mM): 10 KCl, 1.8 CaCl2, 1.2 MgCl2, 0.3 CdCl2, 130 choline chlo-

ride, 10 HEPES, adjusted to pH 7.4; and the intracellular solution (mM): 50 KCl, 60 choline

chloride, 0.1 CaCl2, 40 KF, 10 EGTA, 5 HEPES, adjusted to pH 7.2.
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The EgKUs were always co-applied with the single-step voltage protocol. I/V analyses were

carried out after the effect had stabilized. Two parameters were used to evaluate the effect: the

maximum amplitude of the current and the amplitude of the current in the last 10 ms of the

test pulse.

Sodium currents were evoked by a 40 ms depolarization step to a membrane potential of

-10 mV from a Vh of -100 mV, with an interval between sweeps of 8 s. Three parameters were

used to evaluate the effect of the EgKUs: the maximum amplitude of the current (INamax), the

time constant of the current inactivation (τh), as derived from an exponential fit, and the ratio

between the current amplitude at the end of the voltage pulse and INamax (INaend/INamax),

which gives an estimate of the probability for the channels not being inactivated at the end of

the voltage pulse. Cells were bath-perfused with an extracellular solution containing (mM): 20

NaCl, 70 choline chloride, 1.8 CaCl2, 1 MgCl2, 10 HEPES, 45 tetraethylammonium chloride,

10 4-aminopyridine adjusted to pH 7.4. Pipettes were filled with the following intracellular

solution (mM): 10 NaCl, 30 CsCl, 100 CsF, 5 HEPES, 8 EGTA, 10 tetraethylammonium chlo-

ride, adjusted to pH 7.2.

The ASIC currents were generated by a fast (about 100 ms) pH change from 7.4 to 6.1, by

shifting one of the three outlets of a fast change perfusion system (SF-77B, Warner Inst, USA)

while keeping the cell at a Vh of -60 mV (the extracellular solution of pH 6.1 contained MES,

pK = 6.15, instead of HEPES, pK = 7.55). The pH was kept at 6.1 during 5 s. The time between

pH changes was 1 min to guarantee that the ASIC current was completely recovered from

desensitization. The transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine

(10 μM) (Sigma-Aldrich) was added to the extracellular solution (pH 6.1) to prevent activation

of the TRPV1 receptor present in DRG neurons. The ASIC currents were characterized by the

maximum peak amplitude (Ipeak), the desensitization time-constant (τdes, determined by fit-

ting the decay phase of the current with a single exponential function), and the amplitude at

the steady state (Iend) measured at the last 100 ms of the acid pulse. The EgKUs were applied

20 s before and during the acid pulse (sustained application). At least two control responses

were recorded before any experimental manipulation. The pH of the perfusion solution was

checked not to be affected by addition of the inhibitors.

Concentration-response data were fitted with the function Y = min + (max-min)/[1+(x/

EC50)H], where Y is the effect of the inhibitor, x is the concentration, max and min are the

maximum and minimum effects, EC50 is the concentration at which 50% of the effect is

obtained and H is the Hill coefficient. Experimental data are presented as the mean ± standard

error. To define the statistical significance, a paired Student’s t-test was used and P� 0.05 was

considered as significant, when comparing the effects in the presence and absence of inhibitor.

Analysis of EgKUs in parasite secretions

Fresh hydatid fluid was recovered under aseptic conditions from individual fertile cysts of the

G1 genotype (E. granulosus sensu stricto), present in the lungs of naturally infected bovines in

Uruguay, and kept at -70˚C. Cysts were collected during the routine work of local abattoirs in

Montevideo. Cyst fluid was analyzed by MALDI-TOF MS using a Voyager DE-PRO spectrom-

eter (Applied Biosystems). The sample was concentrated by vacuum drying, desalted using

C18 reverse phase micro-columns (OMIX Pipette tips, Varian) and eluted with matrix solution

(α-cyano-4-hydroxycinnamic acid in 0.2% trifluoroacetic acid in 50% v/v acetonitrile-H2O)

directly on the MALDI sample plate.

An aliquot of adult worm in vitro secretions was kindly provided by MSc Noelia Morel; the

culture was carried out in our department in the context of a project to develop a copro-ELISA

kit for canine echinococcosis [72]. Worm secretions were prepared essentially as described by
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Casaravilla and coworkers [73]. In brief, adult worms were recovered from the intestine of

dogs experimentally infected with E. granulosus (euthanized 30 days post-infection), washed

with sterile phosphate-buffered saline (PBS) and cultured in RPMI containing 105 UI/L peni-

cillin, 100 mg/L streptomycin and 250 μg/L amphotericin B, at 37˚C in 5% CO2.The superna-

tant was collected every 8 h for two days and kept at -70˚C. An aliquot was clarified by

centrifugation at 10,000 g and analyzed as described for cyst fluid.

EgKU-3 and EgKU-8 were affinity purified from hydatid fluid and worm secretions using

chymotrypsin A agarose (Sigma-Aldrich, USA) and analyzed by MALDI-TOF MS (4800

MALDI TOF/TOF analyzer, ABi Sciex) to confirm their presence in the parasite secretions.

The resin containing agarose-bound bovine chymotrypsin A (1.5 mg) was rehydrated and

equilibrated with 10 mM Tris-HCl buffer pH 7.5. Cyst fluid (1 ml) was incubated in batch with

the resin during 10 min at 20˚C; the resin was then washed 3 times with 10 mM Tris-HCl pH

7.5, and the EgKUs were eluted by incubation during 10 min with 25 μl of 0.2% trifluoroacetic

acid. After centrifugation, 1 μl of the eluate was applied directly on the MALDI sample plate

with 1 μl of the matrix solution (α-cyano-4-hydroxycinnamic acid in 0.1% trifluoroacetic acid

in 60% v/v acetonitrile-H2O). Mass spectra were acquired in positive ion linear mode and

externally calibrated using protein standards (Applied Biosystems). The EgKUs were purified

from adult worm secretions with the same protocol, using 3 ml of the sample previously con-

centrated by vacuum drying.

EgKU-3 and EgKU-8 purified from cyst fluid were characterized by peptide mass finger-

printing; the eluate was reduced and alkylated with iodoacetamide prior to treatment with

trypsin (Sequencing-grade, Promega). The sequence of selected peptides was confirmed by

collision-induced dissociation MS/MS experiments, as previously described [3].

Structural modeling

The full-length mature sequences of EgKU-1, EgKU-3, EgKU-4 and EgKU-8 were used to com-

pute structural models using the i-Tasser server [74]. The C-scores for all models were higher

than 0 (EgKU-1 = 0.93; EgKU-3 = 1.23; EgKU-4 = 0.05; EgKU-8 = 1.13). Typical C-scores

range from [–2, 5], with higher scores meaning more reliable models. α-DTX did not stand

amongst the top 10 threading templates used by i-Tasser, which allowed direct comparisons

with no circularities in the analyses. Electrostatic properties were calculated at pH 7.4 with the

Adaptive Poisson Boltzmann Solver [75] for the best i-Tasser models as well as for the crystal

structure of α-DTX (PDB access code 1DTX). Next, per-residue solvent-accessibility was com-

puted with the “areaimol” program from the CCP4 suite [76]. Basic, acidic and aromatic resi-

dues with solvent accessibilities above 40 Å2 were displayed in van der Waals representation

onto a cartoon backbone of the model, using VMD [77]. Electrostatic molecular surface repre-

sentations were produced and rendered with PyMol (http://pymol.sourceforge.net).

Phylogenetic analysis

The Kunitz domains from EgKU-1-EgKU-8 as well as from eight additional monodomain

Kunitz proteins identified in the E. granulosus genome sequences (encoded by EgrG_001136500,

EgrG_001136600, EgrG_001136800, EgrG_001137000, EgrG_001137200, EgrG_1137300 and

EgrG_1137400 from the genome produced at the Wellcome Trust Sanger Centre [5]; and the

protein EGR_07242, from the genome produced at the Chinese National Human Genome Cen-

ter [35]) were multiply aligned with Mafft [78] (L-insi option). Eleven close paralogs (some of

which are putative orthologs) of the E. granulosus monodomain Kunitz proteins identified within

genomic and transcriptomic data from the T. solium genome project [5] (encoded by genes

TsM_000321400, TsM_000410200, TsM_000513000, TsM_000576900, TsM_000647700,
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TsM_000724900, TsM_001022000, TsM_001027800, TsM_001085400, TsM_001162600

retrieved from GeneDB—http://www.genedb.org/Homepage/Tsolium; and the EST EL746785

retrieved as TSE0004567 from PartiGeneDB—http://www.compsysbio.org/partigene/) were

added to this set. A group of five functionally annotated sequences from other Lophotrochozoa

was also included: FhKTM (UniProt Q9TXD3; [42]) and FhKT1 [43], from F. hepatica; SjKI-1

(Sjp_0020270) from S. japonicum [37]; SmKI-1 (Smp_147730) from S. mansoni [38] and Conku-

nitzin-S1 (UniProt P0C1X2) from the mollusk Conus striatus [14]. The alignment of these 32

proteins was used as input for MrBayes [79] for a Bayesian phylogenetic reconstruction using the

Poisson substitution model in a run of 1,000,000 generations, discarding the first 100,000 for

summarizing results (mcmc ngen = 1000000; sump burnin = 100000; sumt burnin = 100000).

The short sequence length of the Kunitz domain prevents robust and reliable identification of

many branching events. Furthermore, saturation events are guaranteed to occur and may be dif-

ficult to pinpoint. The tree is one of the best we can get with current methods. In fact, maximum

likelihood reconstruction with 1000 bootstraps provided poorer support for branching events.

The final dendrogram was visualized and rendered in FigTree (http://tree.bio.ed.ac.uk/software/

figtree). It should be noted that the proteins encoded by EgrG_001136500, EgrG_001136600,

EgrG_001137000, EgrG_001137200, and EgrG_001137400 [5] correspond to EGR_08721,

EGR_08720, EGR_08716, EGR_9006, and EGR_9007 [35], respectively.

Supporting information

S1 Dataset. Peptide mass fingerprinting of chymotrypsin affinity purified proteins from

hydatid cyst fluid. (A) MALDI-TOF mass spectrum of peptides generated by tryptic digestion

of cyst fluid proteins recovered after an affinity purification step using chymotrypsin A. The

signals that can be assigned to peptides derived from EgKU-8 or EgKU-3 are indicated (refer

to Fig 10C). The signal of m/z 1074.54 corresponds to EgKU-8 sequence LPLDPGFcR (theo-

retical MH+ 1074.53); the signal of m/z 1164.52 to EgKU-3 sequence EQcELLcGR (theoretical

MH+ 1164.51); and the signal of m/z 1491.63 to EgKU-8 sequence WGFHQESGEcVR (theo-

retical MH+ 1491.64); c indicates carbamidomethyl Cys. (B) MS/MS analysis of tryptic pep-

tides from EgKU-3 and EgKU-8. The list of theoretical m/z values of fragment ions is shown

for each sequence, and the ions detected in the MS/MS spectra are highlighted in bold. a and b

ions correspond to N-terminal fragments, and y ions to C-terminal fragments, according to

the accepted nomenclature [80,81].

(PDF)

S1 Fig. Studies with EgKU-1 and EgKU-4 on isolated Na+ currents from DRG neurons.

Representative traces showing that the sustained (25 s) perfusion of 100 nM recombinant

EgKU-1 (A) or EgKU-4 (C) does not block voltage-activated sodium channels (Nav). (B) and

(D) are the current-voltage relationships of the peak Na+ current from the traces in (A) and

(C), respectively. The black traces correspond to control conditions and the gray ones after

EgKU perfusion.

(TIF)

S2 Fig. MALDI-TOF MS analysis of recombinant EgKUs: results for EgKU-3. Mass spec-

trometry analyses of free thiols and disulphide bonds were carried out as described in Calvete

[64]. Three samples were examined for each purified recombinant EgKU: i) untreated (A); ii)

denatured with guanidinium hydrochloride and treated with iodoacetamide (IA), to assess the

presence of free thiols (B); iii) denatured with guanidinium hydrochloride, reduced with DTT

and treated with IA to confirm the presence of 6 Cys residues (C). Predicted MH+ values for

EgKU-3 are as follows: untreated EgKU-3 (3 Cys-Cys) = 9819 Da; reduced and alkylated
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EgKU-3 = 10167 Da.

(TIF)

S1 Table. cDNA and gene sequence data from EgKU-1-EgKU-8.

(PDF)
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