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Abstract

Fasciolosis caused by Fasciola hepatica severely affects the efficiency of livestock
production systems worldwide. In addition to the economic impact inflicted on
livestock farmers, fasciolosis is an emergent zoonosis. This review emphasizes
different aspects of the disease in South America. Available data on epidemi-
ology in bovines and ovines in different countries, as well as a growing body
of information on other domestic and wildlife definitive hosts, are summarized.
The issue of drug resistance that compromises the long-term sustainability of
current pharmacological strategies is examined from a regional perspective.
Finally, efforts to develop a single-antigen recombinant vaccine in ruminants
are reviewed, focusing on the cases of leucine aminopeptidase or thioredoxin
glutathione reductase.

Fasciolosis as a zoonotic disease in South America
Fasciolosis is the parasitic infection caused by the two

related but different liver-fluke species Fasciola hepatica
and Fasciola gigantica. Both are responsible for massive
economic losses affecting cattle and sheep farmers, esti-
mated globally to be US$3.2 billion (Spithill et al., 1999).
This negative impact is related to impaired energy conver-
sion and anaemia in chronically infected animals, leading
to a reduction in meat, milk and wool output, as well as
fertility. Infected ruminants also suffer from impaired
‘draft power’ that impacts on production of crops, particu-
larly rice (Kaplan, 2001; Charlier et al., 2014b).

Of the two species involved, F. hepatica, is widely dis-
tributed in all continents, while F. gigantica is found in
tropical climates, with a more focal distribution in
Africa, the Middle East, and South and East Asia. It has
been calculated that there are more than 700 million ani-
mals at risk of infection (Spithill et al., 1999). Moreover,
fasciolosis caused by F. hepatica is currently recognized

by WHO as an emerging zoonosis in 51 countries, with
2.4 million estimated human cases and 180 million per-
sons at risk of infection, mostly in South America and
Africa. In South America the disease is endemic in
Bolivia, Peru and Ecuador; sporadic cases are reported
in the remaining countries (Mas-Coma et al., 2005;
World Health Organization, 2007). A high prevalence
(15–66%) of human liver-fluke infection has been de-
scribed in Bolivia and Peru (Mas-Coma et al., 1999), with
highest levels of human fasciolosis hepatica found
amongst the indigenous Aymaran people in the Lake
Titicaca Basin, particularly in children (Parkinson et al.,
2007).
In the present review we examine different aspects of

the epidemiology and control of fasciolosis in South
American livestock. Advances in the diagnosis of F. hepat-
ica infection in ruminants have not been included, since
excellent reviews covering this issue have been published
recently (Alvarez Rojas et al., 2014; Charlier et al., 2014a).
In the region, serological and coprological approaches
are being applied in human cases, but most of the data
on prevalence in livestock rely on traditional egg-count
methods and/or liver condemnation. Very recently,*E-mail: jtort@fmed.edu.uy
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polymerase chain reaction (PCR) detection of liver-fluke
DNA in faeces has been tested successfully (Carnevale
et al., 2015), while novel ‘field friendly’ loop-mediated iso-
thermal amplification (LAMP) approaches (Martínez-
Valladares & Rojo-Vázquez, 2016) have not yet been
tested in the region.

Fasciolosis is endemic in areas dedicated to breeding
cattle and sheep in most of the South American countries.
Prevalence studies either using coprology or data from
slaughterhouses have focused mainly on bovines. In nor-
thern Argentina an age-related analysis found preva-
lences ranging from 4.8% in animals aged from 12 to 18
months up to 77.0% in animals older than 5 years
(Moriena et al., 2004). Very high prevalences in cattle
were registered in the northern Bolivian altiplano around
La Paz, an area characterized by the highest levels of
human infection ever recorded (Mas-Coma et al., 1999).
A retrospective study of liver condemnation at Chilean
abattoirs between 1989 and 1995Q2 found that 30.1% of bo-
vine and 2.1% of sheep livers were positive for F. hepatica
(Morales et al., 2000), and human cases are emerging (Gil
et al., 2014). A similar study in 2005 showed that almost
25% of cattle livers were condemned due to liver fluke
in Peruvian abattoirs, with values up to 80% in certain re-
gions.Q3 High endemic foci of human fasciolosis are also
found in the Andean valleys, particularly in Cajamarca,
an area characterized by over 60% incidence in dairy cattle
(Espinoza et al., 2010; Ticona et al., 2010). Uruguay, an
agriculturally based country, has a population of 11.4 mil-
lion cattle (the highest number of cattle per habitant) and
8.2 million sheep. In addition, meat and sheep farming oc-
cupy 60% of the land. Not surprisingly, fasciolosis is one
of the most relevant parasitic infections in livestock,
present in most of the territory. A recent serological
study in the Salto Department showed 67% of positive
animals, with the highest percentages in Angus cattle
and those younger than 2 years (Sanchís et al., 2011).
Georeferenced prevalence data of F. hepatica in bovines
were collected and mapped for the Brazilian territory dur-
ing the period 2002–2011. The highest prevalence of fas-
ciolosis was observed in the southern states, with
disease clusters along the coast of Paraná and Santa
Catarina and in Rio Grande do Sul (Bennema et al., 2014).

A similar approach, using geographical information
systems in Antioquia, Colombia, and prevalence data
for the region (21%), was used to generate a national-scale
climate-based risk model to forecast major transmission
periods, with considerable annual differences (Valencia-
López et al., 2012). Clearly, these approaches could pro-
vide farmers and governmental agencies with valuable
epidemiological information, with the aim of improving
control strategies (Aleixo et al., 2015). Altogether these
data reflect the greatQ4 economic importance of ruminant
fasciolosis in South America.

South American natural reservoirs and the
expansion of host range

It is generally assumed that the parasite arrived in the
Americas with the European conquest, within the sheep,
goats and/or cattle brought by the first colonizers, in the
early 16th century (Mas-Coma et al., 2009). Liver-fluke

disease is now widespread in livestock in the continent,
and can be mapped across the whole of Latin America.
While it is clear that the parasite could have travelled

within the definitive host, its successful dispersion in the
new lands would have depended on finding and adapting
to novel snails in order to complete its life cycle Q5
(Mas-Coma et al., 2005)[. Several members of the
Lymnaeidae have been described as hosts, including
Lymnaea viatrix (Nari et al., 1986), L. columella (Pereira De
Souza & Magalhães, 2000), L. (Fossaria) cubensis (Vignoles
et al., 2014), Galba truncatula (Iturbe & Muñiz, 2012) and
L. neotropica (Mera y Sierra et al., 2009). A recent molecular
phylogeny of the Lymnaeidae showed the existence of
three clades, representing their geographical origins from
America, Eurasia and the Indo-Pacific region.
Interestingly, while species involved in F. gigantica trans-
mission are more restricted to African and Australasian
species (following the general trend of trematodes for
marked specificity for their intermediate host), F. hepatica
has been reported to infect species of the three main clades
(Correa et al., 2010). This is a relevant difference that might
underlie the success of F. hepatica dissemination, and
should be taken into account in epidemiological control
programmes, which should cover a broad spectrum of pos-
sible hosts rather than focusing on a single snail species.
Besides infecting cattle, sheep and goats, in the 500

years since its introduction the parasite has been con-
fronted by different native species, and has been particu-
larly efficient in gaining new hosts among native species.
The South American camelids – llamas, alpacas and gua-
nacos – the natural livestock of the Andean region, might
have represented the first to be conquered, since these spe-
cies would have been grazing with the introduced species.
Domestic camelids are highly susceptible to liver-fluke in-
fection, with reports of almost 60% prevalence in Bolivian
alpacas (Ueno et al., 1975), close to 50% in llamas and
more than 70% in alpacas in the Peruvian Jauja region
(Flores et al., 2014), and even reaching 80% in llamas in
the north of Argentina (Cafrune et al., 1996). Reports of in-
fection in wild camelids (Issia et al., 2009; Larroza &
Olaechea, 2010; Fugassa, 2015), despite being much
lower than in farmed animals, indicate that they might
be considered as reservoirs.
While camelids host liver flukes in the Andean and

Patagonian regions, other wild ungulates that usually
graze together with livestock, such as deer, can act as
hosts to F. hepatica in the grasslands. There are reports of
infection of the European deer (Cervus elaphus) in southern
Argentina (Larroza & Olaechea, 2010) and the wild Pampas
deer (Ozotoceros bezoarticus) in Uruguay (Hernandez &
Gonzalez, 2011), Q6but the extent and relevance of these spe-
cies as reservoirs is still unknown. The small Pudu deer
(Pudu puda) was also found occasionally to be infected in
Chile (Bravo Antilef, 2015).
The host range has also extended to rodents, with re-

ports of infection of capybaras (Hydrochoerus hydrochaeris)
in Venezuela, Argentina, Brazil and Uruguay (Freyre
et al., 1979; Santarem et al., 2006; El-Kouba et al., 2008;
Alvarez et al., 2009; Cañizales & Guerrero, 2013;
Fugassa, 2015), but the status of this species is still largely
unknown. A more consistent role as reservoir could be as-
signed to the coypu (Myocastor coypus) (Silva-Santos et al.,
1992; Ménard et al., 2001; Issia et al., 2009; Gayo et al., 2011;
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Fugassa, 2015). This species has been introduced into
Europe and it has been reported that almost 40% of the
animals from an area where F. hepatica exists in livestock
are infected and produce infective eggs (Ménard et al.,
2001). While the initial reports from Brazil showed
lower incidences (Silva-Santos et al., 1992), a more recent
study in a Natural Reserve of Argentina showed that all
specimens were infected (Issia et al., 2009). The semi-
aquatic habits of these herbivorous species, shared with
those of the intermediate hosts, increase the probability
of released liver-fluke eggs encountering suitable snails
to complete the cycle.

The guinea pig (Cavia porcellus) is another rodent that
might play a relevant role in dissemination of fasciolosis.
In Peru ‘cuyes’ are traditionally valued for their meat, and
are usually bred in homesQ7 and small family businesses. A
report from the National Institute of Agriculture of Peru
established F. hepatica as one of the parasitic infections
found in this species, with a reported prevalence of 5%
in farmed animals (INIA-CIID, 1991), and a similar
value of 4.2% prevalence was found in wild animals
(Dittmar, 2002). Vizcachas (Lagidium viscaciaQ8 ) are also
known to harbour F. hepatica infection (Led et al., 1979).

Other farm species brought to the continent by the
Europeans, such as horses, pigs and mules, could have
contributed to the dispersion, or acted as secondary
hosts, as well as other introduced species, such as rabbits
and hares (Mas-Coma et al., 1997; Cuervo et al., 2015).

The variety of mammals that can be hosts to F. hepatica
highlights the enormous adaptability of the parasite. A
notable extension to this was the first report of liver flukes
in Aves, with the description of two cases in Australian
farmed emus (Dromaius novaehollandiae) (Vaughan et al.,
1997). However, in that study only one small adult was
found, and abnormal eggs were recovered, suggestive of
an incomplete adaptation to birds as hosts. Two more re-
cent reports of the liver fluke in farmed and wild popula-
tions of ñandues (Rhea americana) provide evidence that a
notable host-range extension to Aves has indeed occurred
in South America (Soares et al., 2007; Martinez-Diaz et al.,
2013). The first of these studies describes the finding of
normal adult worms and eggs in condemned livers of
farmed ñandues from an endemic area of cattle and
sheep fasciolosis in southern Brazilian. Furthermore,
eggs were found in 4 out of 17 wild ñandues that grazed
together with cattle and sheep. These eggs matured and
produced swimming miracidia but their infectivity to
snails was not tested (Soares et al., 2007). A coprological
study of ñandues across Argentina found F. hepatica-like
eggs in the common ñandu (R. americana) from two
farms and one wild bird, and also in Darwin’s rheas (R.
pennata) from one Patagonian farm. The latter came
from a farm where two adult birds died before the sam-
pling and, according to the owner, presented liver lesions,
but unfortunately were not kept for further analysis
(Martinez-Diaz et al., 2013). The common ñandu usually
grazes together with cattle, sheep and horses (and occa-
sionally deer) in southern Brazil, Uruguay and the
Argentinian pampas, while the lesser ñandu (R. pennata)
is adapted to the Patagonia and altiplano regions, usually
coinciding with sheep and guanacos.

This information supports the idea that when intro-
duced to South America F. hepatica was able to adapt to

a diversity of autochthonous grazing mammals that
share ecological niches with sheep and cattle. In this
sense, camelids are now probably one of the most relevant
hosts to consider in the Andean region, while the role of
rodents, such as guinea pigs and coypus, as reservoirs is
strongly suggested. Despite the fractionary Q9and anecdotal
nature of several reports of liver flukes in South American
wildlife, is evident that diverse species can host the para-
site, and eventually act as reservoirs. The presence of egg-
producing parasites in ñandues, raises the question
whether other bird species, for example herbivorous
waterfowl (chajas (screamers), swans, geese, ducks), liv-
ing in endemic areas are also eventual hosts to liver flukes.
Considering the migratory nature of some of these spe-
cies, they might eventually contribute to the spread of
the parasite. Systematic studies in this direction are clearly
needed.

Control approaches
Current methods to control fasciolosis include the

eradication of snails with molluscicides, grazing manage-
ment, improving drainage systems to limit the habitat of
the intermediate host and, most commonly, the use of an-
thelminthic drugs. Nevertheless, the emergence of drug
resistance, the increasing concern by consumers for xeno-
biotic residues in the food chain and environment, and
trade barriers have stimulated the search for novel control
methods (Statham, 2015; Kelley et al., 2016).

Emergence of drug resistance

While several drugs can be effective against adult
flukes, triclabendazole (TCBZ) is also effective against im-
mature flukes, and for that reason it is the drug of choice
for the control of fasciolosis (Fairweather & Boray, 1999;
Brennan et al., 2007). The drug was introduced in the
1980s and the first report of resistance emerged in 1995
in Australia (Overend & Bowen, 1995), followed by re-
ports in Europe (reviewed in Kelley et al., 2016).
The first report of possible drug resistance in the

Americas appeared in a sheep and goat farm in Parana
State, Brazil. A liver-fluke outbreak causing animal deaths
was treated with abamectin plus TCBZ, with reduced ef-
ficiency (66% in sheep and 57% in goats). The authors
mention the abusive use of anthelmintics as a possible se-
lecting force; however, TCBZ had not been administered
in the past in the farm (Oliveira et al., 2008).
Albendazole (ABZ) resistance was demonstrated ex-

perimentally in two flocks from La Paz, Bolivia, con-
firmed by sheep necropsy after treatment. While TCBZ
was effective in one of the flocks, the other showed a re-
duced efficacy of TCBZ, with 36.6% reduction in worm
burden (Mamani & Condori, 2009). A similar pattern of
complete resistance to ABZ and reduced efficacy of
TCBZ (with a fecal egg count reduction of close to 35%
after 4 weeks) was observed in dairy cattle from the
Junín region in Peru, an endemic area with a prevalence
of 41% (Chávez et al., 2012).
Reports of resistance to TCBZ on a cattle farm in

Neuquén, Argentina were confirmed experimentally in a
controlled trial (Olaechea et al., 2011). A second case of
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resistance was reported on a cattle and sheep farm from
Entre Rios province, Argentina, where 4–5 annual treat-
ments with different drugs were performed (mainly direc-
ted at gastrointestinal nematodes and not specifically for
liver fluke). A clinical efficacy experiment in sheep
showed that this isolate was resistant to ABZ but sensitiveQ10
to TCBZ (Sanabria et al., 2013). A sheep isolate from near-
by Salto, Uruguay, maintained at DILAVEQ11 , was also re-
sistant to ABZ and sensitive to TCBZ (Canevari et al.,
2014Q33 ).

A more relevant focus of drug resistance has emerged
in the Cajamarca region in Peru, an endemic area for cattle
fasciolosis with reported prevalence up to 75% and, con-
sequently, high drug selection pressureQ12 (Espinoza et al.,
2010). Confirmation of TCBZ resistance in three dairy
farms by fecal egg count reduction (FECRT) following
treatment was published locally (Rojas, 2012). Snails
were infected with the resistant isolate, and the metacer-
cariae obtained were used in an in vivo efficacy test in
sheep, corroborating the resistant status (Ortiz et al., 2013).

An egg-hatch assay was used to test the resistant status
of several of these isolates, confirming the ABZ resistance
status in the Entre Rios and the Uruguayan isolates, and
indicating that the TCBZ-R Cajamarca (Peru) isolate is
also resistant to ABZs, while the TCBZ-R INTA isolate
from Neuquén is sensitive to ABZ (Canevari et al., 2014Q33 ).

Unfortunately, drug resistance has not been limited to
farmed animals, but it has extended to humans, with
the report of four cases in Chile (Gil et al., 2014) and
seven cases in the Cuzco region of Peru that did not
respond to treatment with TCBZ (Cabada et al., 2016).
The implications of this spread are of serious concern,
and this clearly emphasizes the zoonotic nature of the
disease.

Genetic variation and omics approaches

Drug selection pressure might be the driving force to
generate resistant parasite populations, but the molecular
targets affected in each population might not be the same.
A thorough isolation and characterization of the resistant
strains found in the continent is warranted (Fairweather,
2011), and efforts in this direction have already started.
Despite serval studies, the mechanism of action of TCBZ
is still not clear (Brennan et al., 2007; Kotze et al., 2014).
Studies of morphological and metabolic differences be-
tween susceptible and resistant strains has been reported,
based on comparison of the first available well-
characterized isolates of European origin (Mottier et al.,
2006; Solana et al., 2009; Ceballos et al., 2010; Hanna
et al., 2010; Scarcella et al., 2011, 2012; reviewed in Kelley
et al., 2016). The search for mutations in putative target
(tubulin) or effector (P-glycoprotein (PGP), glutathione
S-transferase (GST)) genes has been based on European
isolates (Ryan et al., 2008; Wilkinson et al., 2012;
Fernández et al., 2015), but confirmation in other isolates
is needed. In fact, the PGP point mutation proposed as
being associated with resistant isolates was not found to
be associated with Australian isolates (Elliott & Spithill,
2014), and studies under way on some of the South
American isolates have not found the variant to be asso-
ciated with resistance (Solana and Tort, unpublished).

Studies of genetic diversity in the liver fluke have
started to emerge, and are relevant in following the dis-
persal of the species and identifying and characterizing
the emergence of variants with particular properties,
such as drug resistance (reviewed in Ai et al., 2011;
Teofanova et al., 2012). The genetic characterization of de-
fined TCBZ-R populations of European and Australian
origin based on mitochondrial markers (nad-1 and cox-1)
showed that these populations are genetically diverse,
suggesting that no ‘bottleneck’ occurred due to selective
pressure (Walker et al., 2007; Elliott et al., 2014). A single,
very recently published report characterizing liver flukes
from Peru seems to be opposed Q13to this view
(Ichikawa-Seki et al., 2016). No significant differences by
host were found in the haplotypes of the mitochondrial
nad-1 gene from cattle, sheep and pigs form the
Cajamarca region, and, in general, the genetic diversity
of the Peruvian flukes was low. In any case, this study
highlights the need to characterize the liver-fluke variants
circulating in South America.
The advent of new sequencing technologies facilitated

knowledge of the genomes and transcriptomes of trema-
todes; in particular, the initial efforts in liver flukes con-
centrated on the transcriptomics and proteomics of the
juvenile and adult stages (Robinson et al., 2009; Cancela
et al., 2010; Young et al., 2010). The first assembly of the
F. hepatica genome, recently published, was surprisingly
big (one-third of the human genome and almost four
times bigger than that of Schistosoma) (Cwiklinski et al.,
2015a). This assembly (based mainly on UK samples)
and a second one (generated mainly from US liver flukes)
are now publically available in a trematode-specific data-
base (www.trematode.net) (Martin et al., 2015) and a more
general worm parasite database (parasite.wormbase.org Q14).
These resources provide an essential framework for the
disclosure of genes and regulatory pathways associated
with drug resistance. In this sense, a genome-wide ap-
proach to map TCBZ resistance based on identifying sin-
gle nucleotide polymorphisms (SNPs) in the progeny of
genetic crosses between TCBZ-S and TCBZ-R strains is
under way (Hodgkinson et al., 2013).
The detailed analysis of the resources now available can

detect distinct metabolic steps that might differ between
host and parasite, and/or novel chokepoints that conse-
quently result as relevant targets for anti-parasitic drug
design and vaccines. However, as in other helminth gen-
omes, most of the putative proteins predicted in the F. hep-
atica genome encode for proteins of unknown function.
For this reason the development of experimental tools
that can unravel the function of liver-fluke genes is neces-
sary to evaluate and validate the relevance of the putative
drug or vaccine candidates that emerge from the in silico
analysis. So far, five studies from two groups demonstrate
the viability and utility of RNA interference (RNAi) Q15as a
tool that might provide some answers Q16(McGonigle et al.,
2008; Rinaldi et al., 2008; Dell’Oca et al., 2014; McVeigh
et al., 2014; McCammick et al., 2016). Our group has re-
ported the efficiency of this silencing methodology, and
advanced it by optimizing several experimental para-
meters, using the vaccine candidate leucine aminopepti-
dase as one of the targets (Rinaldi et al., 2008; Dell’Oca
et al., 2014). Adult cysteine proteases involved as vaccine
targets have also been tested by RNAi (McGonigle et al.,
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2008) and the evaluation of novel vaccine candidates, such
as juvenile cathepsin CL3 (Corvo et al., 2009), is under
way.

Vaccine development

Immune control through the development of vaccines
has emerged as a promising alternative control strategy,
as it has been shown that ruminants can acquire resistance
against metacercarial challenge after vaccination with ir-
radiated metacercariae (Nansen, 1975), parasite extracts
(Guasconi et al., 2012) or individual antigens (Spithill
et al., 2012). However, vaccines have to reach an appropri-
ate level of efficacy to make this control technology com-
mercially viable within the framework of lack of adequate
funding of this ‘neglected’ parasitic disease.

During the past 25 years single molecules have been
used in experimental trials against F. hepatica, either as na-
tive or recombinant proteins: cathepsin L and cathepsin B
peptidases, fatty acid binding proteins (FABP), paramyo-
sin, leucine aminopeptidase, and the anti-oxidant en-
zymes peroxiredoxin and thioredoxin glutathione
reductase (reviewed in Spithill et al., 2012). Native FABP
gave from 22 to 55% protection in natural hosts, while
the recombinant forms were less effective; similarly, na-
tive haemoglobin gave 43% protection in cattle but the re-
combinant failed. Native paramyosin was also effective in
cattle but it failed in sheep, while GSTQ17 showed variable re-
sults in both hosts, and similar failure was observed when
peroxiredoxin was tested in F. gigantica (reviewed in Toet
et al., 2014). Native adult cathepsins showed protection
values ranging from 33 to 69% in cattle and sheep, and
the recombinant forms worked in cattle but failed in
goats (reviewed in Toet et al., 2014). More recently, juven-
ile cathepsins B and L were tested in rodent models, re-
sulting in a narrower protection range of between 43
and 66% (reviewed in Meemon & Sobhon, 2015).

Our laboratories have focused mostly on the develop-
ment of vaccines against fasciolosis based on peptidases
and anti-oxidant enzymes. According to their perform-
ance in preliminary trials, we have selected for further
testing the exopeptidase leucine aminopeptidase (LAP)
and, from the second group, thioredoxin-glutathione re-
ductase (TGR). The first is the most promising candidate
so far, while the second highlights the difficulties in trans-
ferring results from different host models.

Vaccine development based on leucine aminopeptidase
Leucine aminopeptidase (FhLAP) was initially charac-

terized, isolated and purified from a detergent-soluble ex-
tract of adult liver flukes in the context of a screening
effort to detect exopeptidase activities in parasite extracts,
using amino acids coupled to 7-amido-4-methylcoumarin
as fluorogenic substrates. Histochemistry and immuno-
electron microscopy localized this enzyme to the gastro-
dermal cells lining the alimentary tract of the adult
worm, being particularly abundant at the microvilli.
FhLAP showed broad amidolytic activity against fluoro-
genic substrates at pH 8.0, and its activity was increased
by the divalent metal cations Zn2+, Mn2+ and Mg2+

(Acosta et al., 1998).

When native FhLAP (100 μg) was used as a vaccine
(mixed with Freund’s adjuvant) in Corriedale sheep it in-
duced high levels of protection, alone or in combination
with cathepsin Ls – FhCatL1 and FhCatL2 – two major
cysteine proteinases derived from excretory/secretory
products of adult worms. Vaccinated animals in the
FhLAP group had an 89% decrease in worm burden com-
pared to the control group. The sheep that received a tri-
valent mixture of FhLAP, FhCatL1 and FhCatL2 also
showed a significant protection level (79%), which was
higher than the non-significant protection observed with
the divalent FhCatL1/FhCatL2 mixture (60%) (Piacenza
et al., 1999). In the FhLAP vaccine group, 4 out of 6
sheep harboured no flukes in their livers, which is un-
usual for liver-fluke vaccine trials and highlights the strik-
ing efficacy of LAP in sheep. Although the anti-FhLAP
IgG antibodies elicited in sheep inhibited enzymatic activ-
ity, we found no statistically significant inverse correlation
between antibody titres against FhLAP and worm bur-
dens in any of the vaccinated groups.
Moreover, analysis of serum aspartate aminotransferase

(AST) and c-glutamyl transferase (GGT) levels revealed
that AST levels were elevated in the FhLAP group (i.e. evi-
dence of damage to liver cells), but GGT levels were nor-
mal (i.e. no evidence to suggest damage to the bile ducts
in this group). These results strongly suggested that
immune-mediated killing of migrating flukes occurred
in the liver parenchyma Q18before the immature flukes
reached the bile ducts. This makes sense as fully devel-
oped mature flukes live inside the immune-privileged
site of the bile ducts.
The enzyme was cloned and functionally expressed as a

thioredoxin fusion protein in bacteria, with similar bio-
chemical properties as the native enzyme and confirmed
by MALDI-TOF mass spectrometry Q19(Acosta et al., 2008).
FhLAP is a homohexameric enzyme of the M17 metallo-
protease family conserved in bacteria, plants, unicellular
eukaryotes and all multicellular animals (MEROPS pep-
tidase database; merops.sanger.ac.uk). Q20The M17 phylo-
genetic analysis demonstrates that all metazoan M17
LAPs fall into three well-defined clusters. Interestingly,
FhLAP and all flatworm orthologous enzymes lie in just
one of the clusters devoid of enzymes from their verte-
brate hosts, while the mammalian paralogues are found
in the other two clusters. This differential organization be-
tween parasite and host enzymes strengthens the poten-
tial Q21of these enzymes as candidates for specific drug
design or their use as vaccines. Consistently, in the first
trial with the recombinant enzyme, subcutaneous vaccin-
ation of New Zealand rabbits with rFhLAP in Freund’s
adjuvant induced a high (78%) protective immune re-
sponse (Acosta et al., 2008).
More recently in a large vaccination trial in Corriedale

sheep, rFhLAP was formulated with five different adju-
vants. Immunization with rFhLAP induced a significant
49–87% reduction of fluke burdens in all vaccinated groups
compared to adjuvant control groups. Interestingly, all
vaccine preparations elicited specific mixed IgG1/IgG2 re-
sponses independently of the adjuvant used. Additionally,
morphometric analysis of recovered liver flukes showed no
significant size modifications in the different vaccinated
groups, suggesting that the flukes that survived the pro-
tective immune response developed at a normal rate in
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the host (Maggioli et al., 2011a). It will be of interest to de-
termine why a small proportion of flukes (10–20%) can es-
cape the highly protective immune response induced by
the LAP vaccine.

In mammalian cells LAP is believed to play a significant
role in the post-proteasomal degradation of cell proteins.
Hence, participation in the last stages of host protein di-
gestion was proposed for FhLAP. The protective mechan-
ism induced by FhLAP vaccine is difficult to explain,
due to the intracellular localization of the enzyme. In
agreement with the hidden antigen status, very low
anti-FhLAP titres are detected in naturally infected ani-
mals and only traces of LAP activity are found in excre-
tory/secretory (ES) products of adult F. hepatica. In
contrast, FhLAP was strongly recognized by a group of
sera from confirmed human patients in a two-dimensional
electrophoresis analysis of ES products (Marcilla et al.,
2008). More recently, FhLAP has been detected promin-
ently in extracellular vesicles, called exosomes, derived
from cultured adult worms, particularly in those excreted
by the digestive tract of the parasite (Cwiklinski et al.,
2015b). Altogether, these data suggest that at least part
of the LAP detected in E/S could be released from gut
exosomes. On the other hand, no other aminopeptidases
have been detected in the secretome of adult worms
and, since no universal dipeptide transporters were
found in the genome of the liver fluke, digestion of host
proteins, such as haemoglobin or albumin, must proceed
until single amino acids are released, before being intro-
ducedQ22 through amino-acid transporters into gastrodermal
cells.

Vaccine based on TGR
In flatworm parasites (trematodes and cestodes), but

not in free-living platyhelminths, the seleno-protein TGR
appears to be the only enzyme responsible for recycling
both thioredoxin and glutathione (GSH),Q23 due to the lack
of glutathione reductase and thioredoxin reductase (TR)Q24
in these parasites. Moreover, phylogenetic analysis
showed that flatworm TGRs represents a clade with no
known orthologues on mammalian TRs or TGR (Salinas
et al., 2004). The crucial function of TGR in parasite
redox homeostasis was confirmed when potent TGR in-
hibitory compounds induced the in vitro killing of
Schistosoma mansoni schistosomules (Kuntz et al., 2007;
Simeonov et al., 2008), Echinococcus granulosus protosco-
leces and F. hepatica NEJsQ25 (Ross et al., 2012). Indeed,
TGR is now a lead targetQ26 for development of novel anti-
schistosomal drugs. In this context, thioredoxin reductase
activity from a detergent-soluble extract of F. hepatica was
initially isolated and characterized. Due to its glutaredox-
in activity it was suggested that the purified protein could
in fact be a TGR showing glutathione and thioredoxin
specificities. More recently, a TGR of F. hepatica was
cloned and functionally expressed in Escherichia coli, and
found to be identical to the enzyme originally labelled
as thioredoxin reductase (Maggioli et al., 2011b). The en-
zyme was initially immunolocalized in testes and tegu-
ment of the adult fluke (Maggioli et al., 2004), and, more
recently, a proteomic analysis found TGR in the secreted
proteome (Wilson et al., 2011). In a preliminary trial 50 μg
rFhTGR inoculated with Freund’s adjuvant in rabbits

induced 96% protection compared to the adjuvant control
group. Based in this encouraging outcome, two consecu-
tive trials were conducted in Hereford calves. In the first
trial rFhTGR was administered in combination with
Freund’s incomplete adjuvant (FIA) in a three-inoculation
scheme on weeks 0, 4 and 8, and in the second trial
rFhTGR was given mixed with Adyuvac 50 or alum as ad-
juvants on weeks 0 and 4. In both cases calves were chal-
lenged with metacercariae 2 weeks after the last
inoculation. Our results demonstrated that two or three
doses of the vaccine induced a non-significant reduction
in worm counts of 8.2% (FIA), 10.4% (Adyuvac 50) and
23.0% (alum) compared to adjuvant controls, indicating
that rFhTGR failed to induce protective immunity in chal-
lenged calves. All vaccine formulations induced a modest
mixed IgG1/IgG2 response but no booster was observed
after challenge. No correlations were found between anti-
body titres and worm burdens (Maggioli et al., 2016). This
failure highlights the poor predictive value of vaccination
trials against ruminant parasites following the use of Q27
small mammals as models.

Conclusions
While Q28it is generally accepted that fasciolosis is wide-

spread in livestock in South America, it has failed to at-
tract the attention of policy makers in most of the
countries in the region, particularly those in charge of de-
signing and implementing control programmes in the
agricultural sector of the economy. The insidious nature
of the infection conspires against the recognition of the
problem by the public sector, despite the well-established
academic knowledge of losses due to reduction in feed
conversion, fertility, milk output and anaemia, and
drug-related costs.
In addition, when compared to the situation of gastro-

intestinal nematodes, where drug resistance is a familiar
problem faced by livestock farmers, the emerging phe-
nomenon of drug resistance in fasciolosis is too novel
and focal to be recognized as relevant. In this context, abu-
sive use of drugs, errors in dosing or livestock manage-
ment might have helped the emergence of resistance to
different drugs in several parts of the continent.
The isolation and characterization of the drug-resistant

variants that are emerging in South America are needed,
and the genetic characterization of these is warranted.
Fortunately, novel genomic information is available, and
genetic and genomic approaches are being developed
that might provide clues in this search.
Novel forecasting tools are emerging, using available

regional or nationwide indicator data, such as liver con-
demnation in abattoirs, associated with geographical
and climate data, and they might allow the elaboration
of better long-term control measures. A point of concern
that needs to be addressed is the dispersion of the disease
in feral species that might act as reservoirs.
The identification of key enzymes that differ from those

present in their hosts has provided a novel framework in
which to search for vaccination strategies, with promising
results. The integration of these efforts, and the generation
of research networks focused on these issues, might start

C. Carmona and J.F. Tort6

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378



to provide answers about a disease that has conquered the
continent.
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