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Informática.

Director de tesis:

D.Sc. Prof. Pablo Ezzatti

Codirector:

D.Sc. Prof. Enrique Quintana-Ort́ı

Director académico:

D.Sc. Prof. Pablo Ezzatti

Montevideo – Uruguay

Agosto de 2019





Dufrechou, Ernesto

Accelerating advanced preconditioning methods on hybrid

architectures / Ernesto Dufrechou. - Montevideo: Universidad de

la República, PEDECIBA, 2019.

XVIII, 149 p. 29, 7cm.

Director de tesis:

Pablo Ezzatti

Codirector:

Enrique Quintana-Ort́ı

Director académico:

Pablo Ezzatti

Tesis de Doctorado – Universidad de la República, Programa de

Doctorado en Informática, 2019.
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RESUMEN

Un gran número de problemas, en diversas áreas de la ciencia y la ingenieŕıa, involucran

la solución de sistemas dispersos de ecuaciones lineales de gran escala. En muchos de estos

escenarios, son además un cuello de botella desde el punto de vista computacional, y por esa

razón, su implementación eficiente ha motivado una cantidad enorme de trabajos cient́ıficos.

Por muchos años, los métodos directos basados en el proceso de la Eliminación Gaussiana

han sido la herramienta de referencia para resolver dichos sistemas, pero la dimensión de los

problemas abordados actualmente impone serios desaf́ıos a la mayoŕıa de estos algoritmos,

considerando sus requerimientos de memoria, su tiempo de cómputo y la complejidad de su

implementación.

Propulsados por los avances en las técnicas de precondicionado, los métodos iterativos se

han vuelto más confiables, y por lo tanto emergen como alternativas a los métodos directos,

ofreciendo soluciones de alta calidad a un menor costo computacional. Sin embargo, estos

avances muchas veces son relativos a un problema espećıfico, o dotan a los precondicionadores

de una complejidad tal, que su aplicación en diversos problemas se vuelve poco práctica en

términos de tiempo de ejecución y consumo de memoria.

Como respuesta a esta situación, es común la utilización de estrategias de Computación

de Alto Desempeño, ya que el desarrollo sostenido de las plataformas de hardware permite la

ejecución simultánea de cada vez más operaciones. Un claro ejemplo de esta evolución son las

plataformas compuestas por procesadores multi-núcleo y aceleradoras de hardware como las

Unidades de Procesamiento Gráfico (GPU). Particularmente, las GPU se han convertido en

poderosos procesadores paralelos, capaces de integrar miles de núcleos a precios y consumo

energético razonables. Por estas razones, las GPU son ahora una plataforma de hardware de

gran importancia para la ciencia y la ingenieŕıa, y su uso eficiente es crucial para alcanzar

un buen desempeño en la mayoŕıa de las aplicaciones.

Esta tesis se centra en el uso de GPUs para acelerar la solución de sistemas dispersos

de ecuaciones lineales usando métodos iterativos precondicionados con técnicas modernas.

En particular, se trabaja sobre ILUPACK, que ofrece implementaciones de los métodos

iterativos más importantes, y presenta un interesante y moderno precondicionador de tipo

ILU multinivel.

En este trabajo, se desarrollan versiones del precondicionador y de los métodos incluidos

en el paquete, capaces de explotar el paralelismo de datos mediante el uso de GPUs sin

afectar las propiedades numéricas del precondicionador. Además, se habilita y analiza el

uso de las GPU en versiones paralelas existentes, basadas en paralelismo de tareas para

plataformas de memoria compartida y distribuida. Los resultados obtenidos muestran una

sensible mejora en el tiempo de ejecución de los métodos abordados, aśı como la posibilidad
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de resolver problemas de gran escala de forma eficiente.

Palabras claves:

Sistemas lineales dispersos, Precondicionadores, Unidades de Procesamiento Gráfico

(GPU), Paralelismo de datos, ILUPACK.
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ABSTRACT

Many problems, in diverse areas of science and engineering, involve the solution of large-

scale sparse systems of linear equations. In most of these scenarios, they are also a com-

putational bottleneck, and therefore their efficient solution on parallel architectures has

motivated a tremendous volume of research.

For many years, direct methods based on the well-known Gaussian Elimination procedure

have been the default choice to address these problems, but the dimension of the problems

being solved nowadays poses serious difficulties for most of these algorithms, regarding

memory requirements, time to solution and complexity of implementation.

Driven by fairly recent advances in preconditioning techniques, iterative methods have

become more reliable, and therefore have emerged as an appealing alternative, producing

high quality solutions in many cases, and demanding a much smaller computational effort

than their direct counterparts. These techniques, however, are often problem-dependent, or

involve preconditioners of such complexity that their application in many problems becomes

impractical from the point of view of execution time or memory consumption.

A means to alleviate this situation is the use of High Performance Computing (HPC)

techniques. Scientific and domestic computing platforms have steadily evolved to enable the

parallel execution of more and more operations. A clear example of this evolution is the

widespread adoption of hybrid hardware platforms equipped with one or several multicore

processors and compute accelerators such as Graphics Processing Units (GPUs). This type

of platforms have become extremely powerful parallel architectures that integrate thousands

of cores at a reasonable price and energy consumption. For these reasons, GPUs are now

a hardware platform of paramount importance to science and engineering, and making an

efficient use of them is crucial to achieve high performance in most applications.

This dissertation targets the use of GPUs to enhance the performance of the solution of

sparse linear systems using iterative methods complemented with state-of-the-art precondi-

tioned techniques. In particular, we study ILUPACK, a package for the solution of sparse

linear systems via Krylov subspace methods that relies on a modern inverse-based multilevel

ILU (incomplete LU) preconditioning technique.

We present new data-parallel versions of the preconditioner and the most important

solvers contained in the package that significantly improve its performance without affect-

ing its accuracy. Additionally we enhance existing task-parallel versions of ILUPACK for

shared- and distributed-memory systems with the inclusion of GPU acceleration. The results

obtained show a sensible reduction in the runtime of the methods, as well as the posibility
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of addressing large-scale problems efficiently.

Keywords:

Sparse linear systems, Preconditioners, Grpahics Processing Units (GPU), Data-

parallelism, ILUPACK.
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CHAPTER 1

Introduction

Partial Differential Equations (PDEs) are, without doubt, one of the most important tools for

modeling and understanding several aspects of our universe. There are countless examples

of natural phenomena and human activities that can be analyzed as processes governed by

PDEs, in areas that range from quantum mechanics to economics [25, 34].

Addressing this type of equations with an analytical approach is not possible in the

general case. Thus, in order to solve such equations numerically, a typical strategy is to

reduce the equations, which involve continuous quantities, to a set of equations with a

finite number of unknowns. This sort of procedure is known as discretization. A natural

consequence of the application of discretization techniques is the appearance of systems of

linear equations in the methods used to solve PDEs. In most cases, since the entries in

the coefficient matrix involved in such systems express local relations between discretized

fragments of the domain, these matrices tend to be large and sparse, that is, they have very

few nonzero entries.

The above elaboration should be enough to convince the reader that solving large and

sparse linear systems efficiently is of great importance to science and engineering, but there

are many other applications, such as circuit simulation or optimal control, that are not

necessarily governed by PDEs but also rely on the solution of sparse linear systems.

The discussion would end up here if solving this sort of systems was a trivial task, but it

is not. A number of current real-world applications (as for example three-dimensional PDEs)

involve linear systems with millions of equations and unknowns. Direct solvers such as those

based on Gaussian Elimination [57], which apply a sequence of matrix transformations to

reach an equivalent but easier-to-solve system, once were the default choice to tackle this

sort of problems due to their robustness. Unfortunately, today most of these algorithms fall

short when solving large-scale problems because of their excessive memory requirements,

impractical time to solution and complexity of implementation.

In these cases, iterative methods pose an appealing alternative. Although direct methods
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are also iterative (for example they generally iterate over the rows and columns of the

coefficient matrix), this type of algorithms earn their name because they work by iteratively

improving an initial guess of the solution. Furthermore, they normally present smaller

computational requirements than the direct counterparts.

Although the derivation of each method can be analyzed from different angles, most

iterative methods can be interpreted as searching for the solution of the linear system inside

a predefined subspace, by taking one step in a given search direction at each iteration of the

solver. A large number of methods exist that differ from each other in how this subspace is

defined, and the criteria under which this search direction and step size are chosen.

Many times, there are optimal choices for the above criteria, which can be derived an-

alytically. In these cases, we say that the iterative method is optimal, and reaches the

solution of the linear system (provided exact arithmetic is used) in at most as many steps

as the dimension of the column-span of the matrix. Nevertheless, taking that many steps to

arrive to the solution is often as costly as solving the linear system using a direct method.

In general, it is desired that the iterative method rapidly improves the initial guess, with

the purpose of finding an acceptable solution to the system in a small number of steps.

The process of converging rapidly to an acceptable solution is often impaired in practice

by unavoidable rounding errors due to the use of finite-precision arithmetic. In many cases

these errors can even prevent the method from reaching a solution at all. How floating point

rounding errors affect the iterative method usually depends on the numerical properties of

the problem being solved.

To remedy these shortcomings, preconditioning techniques are applied. In a broad sense,

these techniques aim to transform the original linear system into an equivalent one that

presents better numerical properties, so that an iterative method can be applied and converge

faster to a solution. As an example, given A ∈ Rn×n and b ∈ Rn, consider the linear system

Ax = b.

A (left-)preconditioner for this system can be represented as a matrix M that is close to

A−1 in some sense. This way, pre-multiplying the system on both sides to obtain

Âx = b̂ ≡MAx = Mb

will hopefully be closer to the solution of the system, facilitating the convergence of an

iterative solver.

The development of effective preconditioners is an active field of research in applied

mathematics. There are many preconditioning techniques but, unfortunately, none of these

are effective in all cases. One outstanding class of preconditioners, however, is based on

Incomplete LU (ILU) factorizations.

ILU-type preconditioners are based on computing a LU factorization of the matrix where

some entries are dropped during the process to maintain the sparsity in the factors, which

will determine the memory footprint of the preconditioner, as well as the computational

effort required to apply it in the context of an iterative method.

This family of preconditioners are known to achieve good results for important classes
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of problems, such as those that arise from the discretization of elliptic PDEs. This property

has motivated their massive use, and their inclusion in software packages. However, in order

to make this technique applicable in a wider spectrum of problems, an active line of research

is devoted to make ILUs more efficient and reliable.

Among the most recent advances in this field, ILUPACK (http://ilupack.tu-bs.de)

stands out as a package for the solution of sparse linear systems via Krylov subspace methods

that relies on an inverse-based multilevel ILU (incomplete LU) preconditioning technique for

general as well as Hermitian positive definite/indefinite linear systems [31]. An outstanding

characteristic of ILUPACK is its unique control of the growth in the magnitude of the inverse

of the triangular factors during the approximate factorization process.

Unfortunately, the favorable numerical properties of ILUPACK’s preconditioner in the

context of an iterative solvers come at cost of expensive construction and application pro-

cedures, especially for large-scale sparse linear systems. This high computational cost moti-

vated the development of variants of ILUPACK that can efficiently exploit High-Performance

Computing (HPC) platforms. Previous efforts include parallel variants of ILUPACK’s CG

method [88], for symmetric positive definite (SPD) systems, on shared-memory and message-

passing platforms [3, 4, 8]. These implementations showed remarkable results regarding

their performance and scalability in many large-scale problems, but have the potential dis-

advantage of slightly modifying the original ILUPACK preconditioner to expose task-level

parallelism, yielding distinct convergence rates (though not necessarily slower for the par-

allel versions). Additionally, the task-parallel variants usually require more floating-point

arithmetic operations (flops) than the original ILUPACK, with the overhead cost rapidly

growing with the degree of task-parallelism that is exposed [3]. This may imply a higher

cost of the preconditioner in terms of storage and energy consumption.

For more than two decades now, scientific and domestic computing platforms have

evolved to include multiple cores to enable the parallel execution of different operations,

mitigating this way the physical limitations (mainly related with heat dissipation and errors

in signal transmissions) that impair the increase in clock frequency and transistor integration

dictated by Moore’s law [94]. In this sense, hybrid hardware platforms equipped with one

or several multi-core processors and compute accelerators have experienced an important

evolution. In particular, Graphics Processing Units (GPUs) have developed into extremely

powerful parallel architectures that integrate thousands of cores at a reasonable price and

energy consumption. For these reasons, GPUs have become a tool of paramount importance

in science and engineering, especially after the explosive advances in the field of machine

learning and deep neural networks in recent years.

GPUs are now ubiquitous, making their efficient use crucial in order to obtain good

performance on the most recent hardware for scientific computing. Even in sparse linear

algebra where the computational intensity of the operations is generally low and does not

allow to take full advantage of the computational power GPUs provide, the high memory

bandwidth of these devices offers significant acceleration opportunities.

Previous to this dissertation, no parallel versions of ILUPACK existed aside the above-

mentioned task-parallel implementations. It is therefore interesting to analyze the data-level

parallelism in ILUPACK to develop new efficient parallel versions that do not suffer from

3
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the limitations of the previous variants on the one hand, and to enhance the performance of

these variants on the other. In this line, the use of hardware accelerators, and in particular

of GPUs, is a valuable tool, and a clear path to explore.

1.1 Graphics Processing Units

The term GPU (Graphics Processing Unit) was popularized by Nvidia in 1999, which

advertised the GeForce 256 as “the world’s first GPU” [77]. At that time, these devices

were dedicated to efficiently process polygons, lighting and textures in order to display 3D

images on the screen. As the processing of the geometry and the production of complex

lighting and shading effects are the computationally most expensive stages of this graphics

pipeline, the first GPU-architectures [83] included specialized hardware to compute them.

The operations available at these stages were configurable but not programmable. For

instance, in the fixed-function pipeline, the programmer was able to control the position and

color of the vertices and the point source of light, but not the lighting model that determined

their interaction. For this reason, the first attempts to solving general-purpose problems with

the GPUs implied a mapping of the solutions to the operations of the fixed graphics pipeline.

Furthermore, this architecture presents a serious problem, since working with scenes that

present complex geometries generates an overload on the vertex shader while under-utilizing

the hardware of the pixel shader, while simple geometries with heavy lighting and texture

effects overload the pixel shader and under-utilize the vertex shader. To overcome this issue,

around 2007 NVIDIA proposed a new architecture of GPUs that replaced the vertex and

pixel shaders by a generic stream processing unit capable of executing every step of the

graphic pipeline. In conjunction with the hardware, NVIDIA introduced a programming

framework for these devices, which allowed to use this new kind of multiprocessor to solve

problems that were not related to rendering graphics in a more straightforward way, which

was coined as General Purpose Computing on GPU (GPGPU). The conjunction of the

hardware architecture with general purpose processors, the driver, a runtime, and C language

extensions to program the GPU were released under the name of CUDA, which stands for

Compute Unified Device Architecture.

More recently, the OpenCL standard (defined by the Khronos Group) has become broadly

supported, although the CUDA community presents a more advanced adoption. Nowadays,

the CUDA platform is designed to work with programming languages such as C, C++ and

Fortran, including a great number of high performance libraries, application programming

interfaces (APIs) and tools, which makes it easier for specialists in parallel programming to

use GPU resources. Moreover, CUDA allows a remarkable portability, as most CUDA codes

are backward compatible with most previous GPU architectures, and the same code can be

executed in a large variety of devices, which range from mobile devices to HPC platforms,

with very few or any adjustments.

A more detailed description of the particularities of the different NVIDIA GPU archi-

tectures employed in this work can be found in Appendix C.
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1.2 Objectives

Motivated by the need of robust and efficient preconditioners to enhance the convergence of

iterative linear system solvers in science and engineering applications, the main goal of this

thesis is to advance the state-of-the-art in the efficient parallel implementations of modern

preconditioning techniques. In particular, we are interested in the use of hardware accel-

erators to leverage the data-parallelism of iterative solvers working together with advanced

incomplete-factorization methods.

As exposed in the opening paragraphs of this dissertation, ILUPACK is a prominent

example of such solvers, but its remarkable numerical results come at the expense of a high

complexity, which implies costly construction and application procedures. Previous efforts

have provided task-parallel implementations of ILUPACK for shared-memory and message-

passing platforms [8, 3, 4] but, despite showing good performance and scalability results,

some shortcomings of these parallel variants exist.

In the first place, these variants of ILUPACK are limited to the solution of symmetric

and positive-definite (SPD) linear systems, which means that there are no parallel versions

of ILUPACK for non-symmetric or indefinite systems previous to this dissertation. Second,

they slightly modify the preconditioner to exploit task-parallelism. This means that these

modifications can impact the numerical properties and convergence of the preconditioner.

Therefore, to achieve our principal goal we have set the following specific objectives:

• Enable the use of the GPU to accelerate ILUPACK’s multilevel-

preconditioner.

We introduce GPU computations to harness data-parallelism in the operations that

compose the application of ILUPACK’s preconditioner for different matrix types.

Specifically, we provide implementations of the CG method for SPD systems, GM-

RES and BiCG for non-symmetric systems, and SQMR for symmetric indefinite sys-

tems [89]. Our new solvers preserve the number of floating-point operations and, in

general, present the same accuracy and convergence rate of the original routines, within

variations due to the use of finite precision.

• Evaluation and improvement of the new GPU-aware solvers.

We evaluate the new data-parallel variants and identify the principal factors that

limit their performance. We then deal with these bottlenecks through the design

and implementation of enhanced variants. In the case of GMRES we develop an

accelerated GPU-version of the modified-Gram Schmidt Re-Orthogonalization proce-

dure (MGSRO) that amortizes the cost of host-device communication. In the case of

BiCG, we leverage the task-parallelism intrinsic to the method to perform operations

involving matrix A, such as SpMVs or the application of the preconditioner, with

similar operations involving AT . We develop versions of ILUPACK’s BiCG for servers

equipped with at least two GPUs, and extend these ideas to efficiently exploit single

GPU systems.

• Extend ILUPACK by adding new accelerated solvers.

We augment the family of Krylov subspace iterative methods for sparse general linear

systems accelerated with an ILUPACK preconditioner with a data-parallel version of

5
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the Bi-Conjugate Gradient Stabilized Method (BiCGStab). To accomplish this, we

first develop a CPU version of the solver to then produce a variant that runs entirely

on the graphics accelerator. For this reason, in the new solver we depart from the

reverse-communication scheme followed by our existing ILUPACK implementations of

GMRES and BiCG.

• Enhance the task-parallel versions of ILUPACK by enabling the exploita-

tion of data-parallelism.

We use the GPU to accelerate operations corresponding to the application of ILUPACK

preconditioner within the task-parallel shared-memory and distributed-memory vari-

ants of this software package. We design a strategy that overcomes the reduction of

data-parallelism caused by the partitioning of the workload into several tasks.

1.3 Structure of the document

The remainder of the document is organized in four chapters and three appendices. Chap-

ter 2 provides the theoretical background and previous concepts that supports the rest of

the dissertation. Specifically, it reviews some of the most important methods to solve sparse

systems of linear equations, making special emphasis on iterative Krylov subspace methods.

It then presents several widely-used preconditioning techniques, with particular attention

to incomplete factorization methods, to later elaborate on the latest advances in this field.

This is followed by an overview of ILUPACK, highlighting the implementation of its pre-

conditioner, and the description of its task-parallel versions. The chapter is closed with a

revision of related work, including some of the best known parallel software packages to

solve sparse linear systems.

Chapter 3 presents our efforts to exploit the data-parallelism of ILUPACK using GPUs.

The parallel variants presented in this chapter aim to accelerate ILUPACK without compro-

mising its mathematical properties. The chapter starts with an analysis of the operations

that compose the application process of the preconditioner and the elaboration of a gen-

eral parallelization strategy. This strategy is employed to produce GPU-aware data-parallel

versions of the preconditioner and solvers in ILUPACK for SPD, general (non-symmetric)

and symmetric indefinite linear systems. This is followed by a numerical assessment of these

baseline versions. The chapter also describes the extensions and enhancements that result

from the previous evaluation. The first of these improvements focuses on leveraging the

coarse-grain parallelism implicit in the Bi-Conjugate Gradient (BiCG) solver to take ad-

vantage of platforms with two hardware accelerators. This strategy is extended to provide

an efficient version of the BiCG solver for single-GPU platforms. The second one aims to

improve the performance of the Generalized Minimal Residual (GMRES) solver by offload-

ing the expensive Grahm-Schmidt re-orthogonalization to the GPU. Finally, the family of

solvers in ILUPACK is enlarged by adding an implementation of the Bi-Conjugate Gradient

Stabilized (BiCGStab) solver. The chapter is closed with the experimental evaluation of the

advanced variants.

Chapter 4 studies how to leverage the GPU to enhance the performance of the previous

task-parallel variants of ILUPACK. Particularly, it commences by analyzing the combination

6
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of task and data parallelism in shared-memory platforms equipped with several GPUs, to

later leverage the computational power of GPUs distributed across several nodes of a cluster.

The main part of the dissertation concludes with Chapter 5, which offers some final

remarks and the discussion of future directions in which this work can be extended.

Appendix A details about a line of research that we developed in parallel with the thesis,

devoted to the study of a new approach for the solution of triangular linear systems in GPUs,

and the construction of new routines to perform this operation following this strategy. Some

of the resulting routines were used in the single-GPU version of BiCG of Chapter 3.

Another secondary line of research is related to study the energy efficiency of hardware

and software. Some work on this line involving the energy aspects of ILUPACK are covered

in Appendix B.

Finally, Appendix C gives details on the software and hardware platforms used in the

experiments included in the dissertation.
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CHAPTER 2

Systems of Linear Equations

This chapter is devoted to provide a shallow theoretical background that enables the reader

to continue comfortably through the rest of the manuscript. It is not our purpose to go

deep into mathematical details when they are not essential to the understanding of this

thesis, and we will refer to the corresponding books and articles in those cases. The chapter

starts by revisiting the solution of linear systems by Gaussian Elimination, making a special

emphasis on the sparse case and direct methods such as the sparse LU decomposition. It

will later switch to the solution of these problems via iterative methods, presenting the most

common techniques. A section about preconditioners will follow, in which, after presenting

some general concepts, we will focus on the ILU-based class, presenting the most important

developments in this subject until arriving to the state-of-the-art “inverse based” multilevel

ILU preconditioner which gives birth to ILUPACK, the software package on which the work

of this thesis develops. The chapter finishes by a review of related work.

2.1 Direct methods

In this section, we revisit different approaches to compute the solution of a linear system

Ax = b with A ∈ Rn×n by means of the so-called direct methods. This family of algorithms,

which compute the exact solution of the problem (neglecting unavoidable floating-point

rounding errors), are based on transforming the original problem so that is easier or even

trivial to solve. For this reason, these methods usually involve some sort of matrix factor-

ization. Specifically, many of these algorithms are derived from the well-known Gaussian

Elimination procedure, which can be interpreted as the factorization of the matrix A into

the product of a unit lower-triangular matrix L multiplied by an upper-triangular matrix

U , which is known as the LU decomposition [57].

From the computational point of view, direct methods for dense matrices are charac-

terized by having their memory requirements and operation counts completely determined
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beforehand. Furthermore these methods and are, in general, robust from the numerical

perspective, often with the help of pivoting techniques. Specifically, they generally present

a computational cost of O(n3) flops (floating-point operations), and techniques to improve

their cache efficiency as well as as their numerical stability are well-known since long ago.

For the sparse case, the performance of these methods is usually determined by the

appearance of new nonzero elements during the transformation procedure, known as fill-in,

which increases its cost and makes difficult the task of calculating it a priori. Therefore,

the design of direct methods for sparse matrices is usually guided by the mitigation of this

phenomenon, which is attempted by applying techniques such as re-orderings of the rows

and columns of the sparse matrix, altering the order in which unknowns are eliminated,

and the partitioning of the system, to identify dense submatrices that can be dealt with

computationally efficient dense algebra kernels. However, it is not always possible to reduce

the fill-in to satisfactory levels, especially in the non-SPDcases, where pivoting is required,

which can lead to difficulties when solving reasonably large systems of equations.

Although this thesis is mostly concerned with the solution of large and sparse linear

systems, which is precisely where direct methods fall short, some introduction about these

algorithms is mandatory since, apart from their role in solving linear systems, they provide

the framework for the development of several types of preconditioners.

2.1.1 Gaussian Elimination

In [98], Stewart referred to Gaussian Elimination (GE) as the most versatile of all matrix

computations, as well as the algorithm that should be saved in case of a catastrophe menacing

to destroy all numerical linear algebra methods. A proof of this versatility is that the method

can be analyzed from various perspectives. The first approach that is usually taught in

schools is that of GE as an algorithm to eliminate variables in a system of linear equations.

This elimination process is then seen as the successive application of row operations to the

coefficient matrix of the system. This, in turn, leads to the interpretation of the method as

transforming a matrix into triangular form by multiplying it by a series of elementary lower

triangular matrices. Finally, one arrives to regarding GE as the algorithm that performs

the factorization of a matrix into a unit-lower triangular matrix L and an upper triangular

matrix U , that is, the LUdecomposition. Furthermore, when sparse matrices are considered,

it is often useful to view GE as an algorithm over the adjacency graph of the matrix 1 .

Regarding its usefulness, the factorization A = LU allows to solve the linear system

Ax = LUx = b by solving the triangular linear systems Ly = b followed by Ux = y, which

can be performed using simple forward and backward substitution. In turn, the linear system

ATx = b can be solved by solving UT y = b followed by LTx = y. As the computational

effort required to factorize the matrix is much larger than that required to solve the two

triangular linear systems, this decomposition is especially convenient when several systems

involving the same coefficient matrix must be solved. In this case, the factors L and U can

be reused while the matrix decomposition needs to be computed only once.

1This approach is specially useful for the development of matrix ordering techniques to reduce the fill-in
of the matrix during the factorization. The theory behind these algorithms is often expressed in terms of
the adjacency graph determined by the sparse matrix.
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Apart from this good properties, variants of GE lead to other important algorithms,

as the QR factorization if the elementary transformations to reach the triangular form are

replaced by Householder reflections. It can also easily be adapted to exploit matrices of

special structure, like in the Thomas algorithm for tridiagonal matrices [101], or in the

factorization of band and Hessenberg matrices. Moreover, in the sparse case, GE also gives

place to an entire family of preconditioners for the iterative solution of linear systems.

GE applies successive elementary transformations to cancel the elements below the diag-

onal of each column, one column at a time. Concretely, starting from matrix A0 = A, and

letting Ak−1 ∈ Rn×n be the result of applying k − 1 of these elementary transformations,

the result of the k-th transformation can be expressed as follows

Ak = L−1k Ak−1, (2.1)

with

L−1k = I − 1

a
(k−1)
kk

(
0

a
(k−1)
∗k

)
eTk (2.2)

where eTk is the k-th canonical vector and where

a
(k−1)
∗k =

(
a
(k−1)
k+1,k, . . . , a

(k−1)
n,k

)T
(2.3)

is the Rn−k vector formed by the sub-diagonal elements in the k-th column of Ak−1.

It should be noted that, with L−1k defined as in (2.2), the new entry a
(k)
ik (with i > k)

will be calculated as
a
(k)
ik = l−1ik a

(k−1)
kk + a

(k−1)
ik

= −a
(k−1)
ik

a
(k−1)
kk

a
(k−1)
kk + a

(k−1)
ik

= 0

(2.4)

and that

U = L−1n−1 × · · · × L
−1
1 × L

−1
0 A (2.5)

is upper triangular. Moreover,

Lk = I +
1

a
(k−1)
kk

(
0

a
(k−1)
∗k

)
eTk , (2.6)

therefore, L = L0×· · ·×Ln− 1 is unit lower triangular, yielding the desired decomposition

A = LU. (2.7)

The expressions (2.2) and (2.3) allow to formulate an algorithm for GE known as the

right-looking LU factorization, or KIJ variant, which is outlined in Algorithm 1. In this

variant of GE, one column of L and one row of U are computed in each iteration, and the

trailing (n− k)× (n− k) submatrix is modified using a rank-1 update.

It is evident that Algorithm 1 breaks down if a
(k−1)
kk is zero or numerical difficulties arise

in case it becomes very small. Hence, the LU factorization requires of a row pivoting strategy

11
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Algorithm 1 Right-looking or KIJ variant of Gaussian Elimination.

Input: A ∈ Rn×n

Output: L,U ∈ Rn×n triangular such as A = LU

1: for k = 0 to n− 1 do
2: for i = k + 1 to n− 1 do
3: lik := aik/akk
4: end for
5: for j = k + 1 to n− 1 do
6: ukj := akj
7: end for
8: for i = k + 1 to n− 1 do
9: for j = k + 1 to n− 1 do

10: aij := aij − likukj
11: end for
12: end for
13: end for

to ensure numerical stability [57]. In this case, the decomposition takes the form PA = LU ,

where P ∈ Rn×n is a permutation matrix. In most implementations, the L and U factors are

stored in the memory space of A (i.e. in-place strategy) to reduce the memory requirements,

the main diagonal of L does not need to be stored since L is unit lower triangular, and P is

implicitly stored as a permutation vector. We do not include pivoting in the outline of the

algorithms for clarity sake.

2.1.2 The Sparse LU and the problem of fill-in

Assume that Algorithm 1 is applied to a sparse matrix. In this case, at each iteration k of

the outer loop, the procedure will encounter the “difficulty” of having to update the lower

n− k rows of the matrix.

To explain why this is especially inconvenient, let us introduce the concept of fill-in. By

looking at line 10 of Algorithm 1, one should note that, in the case A is sparse, most entries

aij will be zero before this step and, if lik and ukj are nonzero, a new nonzero will appear

in aij after it. In this case, we can call aik and akj the “generating” entries of this nonzero.

This is quite a problem, as it implies that the storage and flop costs of the sparse LU

factorization is not determined beforehand, and the harmful effects of this phenomenon will

depend greatly on how the non-zeros are distributed among the sparse matrix, that is, its

sparsity or nonzero pattern.

Now it is clear that updating the elements that lie in the lower (n− k)× (n− k) square

of the matrix will imply writing fill-in elements in the vector that holds the (n−k) last rows

of the sparse matrix. A more adequate variant of the procedure is obtained by permuting

the order of the loops in Algorithm 1, which leads to Algorithm 2, known as the IKJ or

row-wise factorization.

The inner loop of the IKJ variant produces, at step i of the outer loop, the i-th row of L

and the i-th row of U simultaneously. At step i, the previous i−1 rows are accessed but not

modified, while the n − i lower rows are not accessed nor modified. This allows to handle
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Algorithm 2 Row-wise or IKJ variant of Gaussian Elimination.

Input: A
Output: L,U triangular such as A = LU

1: for i = k + 1 to n− 1 do
2: for k = 0 to n− 1 do
3: lik := aik/akk
4: for j = k + 1 to n− 1 do
5: aij := aij − likukj
6: end for
7: end for
8: ui,i:n := ai,i:n
9: end for

the fill-in in a simpler data structure dedicated to hold only the current row.

Regarding the utilized data structures, the early codes for the LU factorization relied

heavily on linked lists, which allow inserting new nonzero elements easily. Linked lists

have been abandoned in more modern implementations, as static data structures are often

preferred. In particular, a widely used technique consists of allocating an extra space so

that these new non-zeros can be inserted, adjusting the structure accordingly as more fill-in

is introduced.

In summary, a typical sparse direct solver will present four phases. First, as the effect

of fill in will depend on the nonzero pattern, a pre-ordering of the rows and columns of

the sparse matrix is applied aiming to obtain a matrix with a more convenient structure.

Although the problem of finding the permutation that minimizes fill-in is NP-hard, there

are many effective heuristics for this purpose. Second, a symbolic factorization is performed,

which produces the factorization without caring for the numerical values. Third, the actual

factors L and U are constructed in the numerical factorization phase. Finally, the forward

and backward triangular systems are solved by substitution.

Some important references in this field are [53, 39].

2.2 Iterative methods

Gaussian Elimination can only take partial advantage of sparsity in the coefficient matrix.

Although there are some exceptions regarding specific classes of matrices like banded or

tridiagonal, the problem of fill-in makes it necessary to abandon this technique to solve the

general sparse case for large-scale scenarios.

An iterative method for the solution of linear systems is one that, starting from an initial

guess x0 to the solution vector x, is capable of iteratively refining it until (under certain

conditions) an approximation xk that is acceptably close to x is reached, i.e. ‖Axk − b‖
is relatively small for some vector norm. In order to avoid the difficulties that make GE

impractical, such approximation must be performed such that the sparsity of the matrix is

preserved throughout the process. This is achieved by exploiting a matrix primitive that

greatly benefits from sparsity, concretely, the matrix-vector product.

The intuitive concept behind these methods is that one should be able to improve an
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approximate solution xk by finding an appropriate linear combination of b, xk and Axk. If

one is to use all the information available in the expression Ax = b, it is reasonable to set

the initial guess x0 to some multiple of b, which implies that

x0 ∈ span{b}. (2.8)

Then, following the previous idea, we should replace the current solution x0 with a linear

combination of itself with Ax0. In this case the current solution x1 belongs to the subspace

span{b, Ab}. After k iterations, it is clear that the current iterate will belong to

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}. (2.9)

This is called the Krylov subspace of dimension k for A and b.

The challenge of this sort of procedure lies on how to construct these linear combinations

such that an acceptable approximation is reached in just a few iterations, and this is what

gives place to a myriad of different methods. In fact, although there are optimal methods that

are able to find the actual solution of the linear system in exact arithmetic, the convergence

of the iterations will be determined by the spectral properties of the matrix, and the use of

finite precision arithmetic can complicate things even further.

Fortunately, when the properties of the matrix A are not perfect, one can still multiply

the coefficient matrix by a certain matrix M−1 and solve

M−1Ax = M−1b (2.10)

instead of Ax = b. Now the approximate solution xk will belong to the subspace

Kk(M−1A, x0). Matrix M is known as a preconditioner as its purpose is to improve the

“condition number” of the iteration matrix, a number closely related with the way a ma-

trix amplifies the numerical errors due to finite precision when, for instance, performing a

matrix-vector product. Broadly speaking, M−1 is chosen so that it resembles A−1 in some

way, but this choice is nothing but trivial and is the subject of active research. Moreover, if

inverting M or solving a linear system with M is required, such inversion or system should

be easier to solve than the original one, or the whole exercise would be pointless.

In the remainder of the chapter we will go over the derivation of some of the most widely

used iterative methods. Once again, it is not the purpose of this document to go deep into

the mathematical analysis of the methods but to offer a shallow introduction, since this is

enough to understand the rest of the thesis and the interested reader can refer to the vast

material on the subject by Greenbaum [59], Saad [89], Meurant [46] or Stewart [98] to name

a few only. Later, we will focus on preconditioners and present some advances in a particular

class, called incomplete factorizations, which motivate this work.

2.2.1 Fixed-point iterations

The simplest form of iterative method to solve a linear system Ax = b are the fixed-point

iterations, also known as relaxation or splitting methods. Given an approximate solution xk,
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these methods aim to improve it by modifying a single or a few components of the current

solution at each iteration such that one or more components of the residual rk+1 = b−Axk+1

approach zero.

Consider, for example, the Jacobi iteration. Zeroing out a component i of the residual

imposes

(b−Ax)(i) = 0, (2.11)

where y(i) denotes the i-th component of vector y. Expanding the matrix-vector product

yields

b(i) =

n∑
j=0,j 6=i

aijx
(j) + aiix

(i), (2.12)

which motivates the following iteration,

x
(i)
k+1 =

1

aii
(b(i) −

n∑
j=0,j 6=i

aijx
(j)
k ). (2.13)

Here each component is updated independently, using information from the previous step,

and therefore the updates can be performed in parallel. If expressed in matrix form, Equa-

tion (2.13) becomes

xk+1 = D−1(b− (L+ U)xk), (2.14)

where D is a diagonal matrix whose diagonal is equal to that of A, and L and U are the strict

lower and upper triangles of A. Adding and subtracting xk from the previous expression

obtains
xk+1 = D−1(b− (L+ U)xk) + xk − xk

= xk +D−1(b− (L+ U +D)xk)

= xk +D−1(b−Axk).

(2.15)

Similar derivations can be done for the Gauss-Seidel and SOR methods. The main

difference between the Jacobi and Gauss-Seidel methods is that, while in the former the

updates the components of the current iterate xk are performed independently, in the latter

they are performed in ascending or descending numerical order, using the updated values

to calculate the following ones. This is equivalent to solving a triangular system in each

iteration. The SOR method is in turn similar to Gauss-Seidel but incorporates a relaxation

parameter ω to the diagonal.

In general, if xk is an approximate solution to the linear system, we can express all the

previous methods as an iteration of the form

xk+1 = xk +M−1(b−Axk). (2.16)

Equation (2.16) is sometimes referred as “simple iteration” [59], and can be interpreted as

correcting the current iterate by adding a transformation of the current residual. It is easy

to see that, if M is taken to be the diagonal of A, the method is the Jacobi iteration. If,

instead, M is equal to the lower triangle of the matrix A, the iteration is named as the

Gauss-Seidel method. Finally, for M = ω−1D − L, where D is the diagonal of A, L is
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the strict lower triangle, and ω is a relaxation parameter, the iteration is the Successive

Over-Relaxation (SOR).

Rearranging Equation (2.16) as

xk+1 = M−1b+ (I −M−1A)xk = c+ B̂xk. (2.17)

and taking x0 = 0, it follows that

xk+1 ∈ x0 + span{c, B̂c, B̂2c, . . . , B̂k−1c} = Kk, (2.18)

which is the Krylov subspace spanned by c and B̂.

It is relatively easy to prove that a necessary and sufficient condition for the convergence

of iteration (2.16) to the solution x = A−1b of the linear system (assuming exact arithmetic)

is that the spectral radius ρ(B̂) is smaller than 1. In practise, the convergence of these simple

iterative methods can be very slow (or never attained) due to floating point rounding errors,

especially for ill-conditioned problems. In consequence, it is rare to utilize these methods to

solve large scale linear systems. Nevertheless, these simple iterations are computationally

cheap and they can be combined with more advanced methods and result quite useful in

some contexts.

2.2.2 Krylov subspace solvers

Considering the previous discussion, it is reasonable to ask if there is a better way of choosing

the iterates xk from the Krylov subspace generated by c and B̂.

Let Kk be the subspace for the k-th iterate, where k − 1 is its dimension. In order

to find an approximate solution, one starts from an initial guess which, of course, belongs

to K0. Then, successive attempts to improve this initial solution should be able to expand

this subspace in dimension, and some constraints should be imposed on them so that they

result in good approximations to the solution of the system. One way of describing these

constraints is as orthogonality conditions. In other words, a typical means of finding good

approximations is forcing the residual vector b−Ax to be orthogonal to k linearly indepen-

dent vectors. This set of vectors form a basis to another subspace L, of dimension k, which

is called the subspace of constraints or left subspace [89]. This general idea, known as the

Petrov-Galerkin conditions, is common to all the solvers that will be presented next.

Considering again the iteration (2.16), one can say that it is static in the sense that the

information that will be employed to compute an approximate solution xk+1 is the same

regardless of the iteration. An attempt to improve this algorithm would be to introduce a

dynamically calculated parameter αk in order to optimize how far away from the current

solution the next one should be.

Without loosing generality, assume that the system Ax = b denotes now the precondi-

tioned linear system of (2.10). Then, introducing this new parameter yields

xk+1 = xk + αk(b−Axk). (2.19)
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In order to determine the value of αk, it should be noted that the residual follows the

relation

rk+1 = rk − αkArk. (2.20)

Thus, it is natural to choose αk so that rk+1 is minimized. Then, it is easy to prove that

this happens when the vectors rk − αkArk and αkArk are orthogonal, which yields

αk =
〈rk, rk〉
〈Ark, rk〉

. (2.21)

With this choice of αk, the expression in (2.20) can be seen as subtracting from rk its

orthogonal projection onto the direction Ark.

When the matrix A is Hermitian and positive definite, the above choice of αk combined

with formula (2.19) gives place to the so called method of steepest descent. This method

belongs to the family of gradient descent methods, and earns its name from looking at the

linear system Ax = b as the optimization problem of finding the solution x that minimizes

f(x) = xTAx− 2xT b, (2.22)

which is a quadratic form that determines a paraboloid with x = A−1b as its minimum. For

a given point xk, the vector −∇xf(xk) = b−Axk points in the direction where f decreases

more quickly, i.e. its direction of steepest descent. Hence, the method can be viewed as

iteratively taking a step of size αk in the direction of steepest descent so that the next

residual is minimized. In general, one could write the previous method as

xk+1 = xk + αkpk, (2.23)

where pk = rk and αk = 〈rk,rk〉
〈Ark,rk〉 , and devise different iterations by replacing the direction

pk and the step size αk by other expressions.

Method of the Conjugate Gradients (CG)

Although the steepest descent algorithm chooses rk+1 so that it is orthogonal to rk, it is not

necessarily orthogonal to the other k−1 residuals or, equivalently, the error ek+1 = xx+1−x
is not A-orthogonal (orthogonal with respect to the inner product 〈u, v〉A = 〈u,Av〉 ) to pk−1.

This causes the method to often take steps in previously explored directions. This form of

approaching x is, of course, not optimal.

To improve this strategy, one approach is to look for n linearly independent search

directions {p0, . . . , pn}, and take one step in each one so that, in step n, the exact solution x

is reached. A convenient choice is to require the search directions pk to be A-orthogonal with

each other. This way if, like in steepest descent, one also requires ek+1 to be A-orthogonal

to pk, the following expression for the step αk can be derived

αk =
〈pk, rk〉
〈pk, Apk〉

. (2.24)

This is referred in the seminal article by Hestenes and Stiefel [63] as the method of conjugate
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directions.

The description of the method of conjugate directions is not complete in the sense that

it does not define how the set of conjugate (or A-orthogonal) vectors {p0, . . . , pn} should be

computed. There is, in fact, more than one way of finding such vectors, and some of these

strategies characterize particular methods themselves.

As the Gram-Schmidt procedure can be utilized to form an orthonormal basis of a given

subspace, a variation of this algorithm, called conjugate Gram-Schmidt, is one straight-

forward approach to form the set of conjugate directions. Starting from an initial set of

linearly independent vectors {u0, . . . , un}, and setting p0 = u0, the rest of the A-orthogonal

directions pk are calculated as follows

pk = uk −
k−1∑
j=0

〈uk, Apj〉
〈pj , Apj〉

. (2.25)

This simply means taking a vector uk and subtracting each component of such vector that

is not A-orthogonal to the k − 1 conjugate directions previously computed.

The main disadvantages of this procedure are that, in order to compute the direction

pk, the other k − 1 directions have to be kept in memory, and it takes O(n3) operations to

compute the whole set. In fact, when the vectors {u0, . . . , un} are taken to be the columns

of the identity matrix of size n× n, this process is equivalent to Gaussian Elimination.

The method of conjugate gradients [63] (CG) is a variant of the method of conjugate

directions that elegantly eliminates the problems of the conjugate Gram-Schmidt procedure

by taking the vectors {u0, . . . , un} that are A-orthogonal to the residuals {r0, . . . , rn}. Using

that the residual rk is orthogonal to all other k− 1 previous residuals, and that they follow

the recurrence

ri+1 = rk + αkApk, (2.26)

it can be derived from (2.25) that the recurrence that determines the search directions is

given by

pi+1 = rk +
〈rk, rk〉

〈rk−1, rk−1〉
pk. (2.27)

As it is a variant of the conjugate directions method, the CG method finds the exact

solution of the linear system in, at most, n iterations. Moreover, it can be shown that, in

a given step k, the method minimizes the A-norm of the error ek over the affine subspace

spanned by the search directions e0 + {p0, . . . , pk}. In other words, the error is as small as

possible (under the A-norm) given the search direction visited so far. A proof of this result

can be found in [59].

Putting it all together, one possible formulation of the Conjugate Gradient method is

that on Algorithm 3. This formulation includes the application of left-preconditioning with

the matrix M . Of course, the matrix-vector product zk+1 := M−1rk+1 can be replaced by

the solution of a linear system.
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Algorithm 3 Preconditioned Conjugate Gradient

Input: A ∈ Rn×n,M ∈ Rn×n, b ∈ Rn

Output: x ∈ Rn

1: x0 := 0
2: r0 := b−Ax0
3: z0 := M−1r0
4: p0 := z0
5: ρ0 := rT0 z0
6: τ0 :=‖ r0 ‖2
7: k := 0
8: while (τk > τmax) do
9: wk := Apk

10: αk := ρk/p
T
kwk

11: xk+1 := xk + αkpk
12: rk+1 := rk − αkwk

13: zk+1 := M−1rk+1

14: ρk+1 := rTk+1zk+1

15: βk := ρk+1/ρk
16: pk+1 := zk+1 + βkpk
17: τk+1 := ‖rk+1‖
18: k := k + 1
19: end while

The Bi-Conjugate Gradients method (BiCG)

When the matrix A is indefinite or non-symmetric, Algorithm 3 will fail in case it finds

a direction pk for which the denominator 〈pk, Apk〉 = 0. In this sense, the Bi-conjugate

Gradient (BiCG) algorithm can be considered as a generalization of the CG method designed

to avoid this breakdown situation.

The method was first derived by Lanczos [69] in 1952 as a variation of the two-sided

Lanczos algorithm to compute the eigenvalues of a non-symmetric matrix A. In a broad

sense, it is based on maintaining two parallel recurrences, one for matrix A and the other

for AT , and imposing bi-conjugacy and bi-orthogonality conditions between the vectors of

each recurrence. As a result, apart from solving the system Ax = b, the algorithm is also

able to solve the dual linear system ATx∗ = b. For simplicity, the formulation of the method

given in Algorithm 4 leaves out the solution of this the solution of this dual system.

Without going into excessive detail, given two initial vectors r0 and r̂0, and letting

p0 = r0 and p̂0 = r̂0, the recurrences of the method for step k are given by

rk+1 = rk − αkApk, (2.28)

r̂k+1 = r̂k − αkA
T p̂k, (2.29)

with

αk =
〈r̂k, rk〉
〈p̂k, Apk〉

, (2.30)
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and

pk+1 = rk − βkpk, (2.31)

p̂k+1 = r̂k − βkp̂k, (2.32)

where

βk =
〈r̂k+1, rk+1〉
〈r̂k, rk〉

. (2.33)

The choice of the scalar αk forces the bi-orthogonality conditions

〈r̂k+1, rk〉 = 〈rk+1, r̂k+1〉 = 0, (2.34)

while βk is chosen so that

〈p̂k+1, Apk〉 = 〈pk+1, Ap̂k〉 = 0. (2.35)

As in the case of the CG, a nice property of the algorithm is that the above bi-

orthogonality and bi-conjugacy conditions hold for any pairs of vectors (p̂i, pj) and (r̂i, rj)

such that i 6= j, without explicitly enforcing them. In turn, as the vectors pk+1 are noth-

ing more than linear combinations of the vectors rk+1 to r0, the previous orthogonality

conditions also imply that

〈p̂i, rj〉 = 〈pi, r̂j〉 = 0. (2.36)

A more detailed derivation of the algorithm, as well as proofs of the aforementioned prop-

erties can be found in [48].

Algorithm 4 Algorithmic formulation of the preconditioned BiCG method.

Input: A ∈ Rn×n,M ∈ Rn×n, b ∈ Rn

Output: x ∈ Rn

1: Initialize x0, r0, q0, p0, s0, ρ0, τ0; k := 0
2: while (τk > τmax) do
3: αk := ρk/(q

T
k Apk)

4: xk := xk + αkpk
5: rk := rk − αkApk
6: tk := M−1rk
7: zk := M−TAT qk
8: sk+1 := sk − αkzk
9: ρk+1 := (sTk+1rk)/ρk

10: pk+1 := tk + ρk+1pk
11: qk+1 := sk+1 − ρk+1qk
12: τk+1 :=‖ rk ‖2
13: k := k + 1
14: end while

Generalized Minimal Residual method (GMRES)

The Generalized Minimum Residual Method (GMRES) is a projection method for non-

symmetric and indefinite matrices that first constructs an orthogonal basis for the subspace
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K(A, r0), and then extracts the approximate solution from this subspace so that the norm

of the residual is minimized.

In its most common formulation, this orthogonal basis is formed by the modified Gram-

Schmidt process that is outlined in Algorithm 5, which is usually referred to as Arnoldi

iteration [20].

Algorithm 5 Arnoldi’s iteration

Input: A ∈ Rn×n, q0 ∈ Rn

Output: {q0, . . . , qk} orthonormal vectors

1: for j = 0 to k do
2: q̃j+1 := Aqj
3: for i = 0 to j do
4: hij := 〈q̃j+1, qi〉
5: q̃j+1 := q̃j+1 − hijqi
6: end for
7: hj+1,j := ‖q̃j+1‖
8: qj+1 := q̃j+1/hj+1,j

9: end for

If Qk is the matrix with columns that correspond to the k orthogonal Arnoldi vectors

qi, the algorithm can be expressed in matrix form as

AQk = Qk+1Hk+1,k, (2.37)

where Hk+1,k is a Hessenberg matrix (a matrix with all the elements below the first sub-

diagonal set to zero) that contains the hij coefficients of Algorithm 5.

Once this set of vectors is constructed, GMRES will compute the approximate solution

xk such that is has the form

xk = x0 +Qkyk, (2.38)

for some vector yk. In other words, the iterate xk will be computed as the initial guess plus

some linear combination of the {q0, . . . , qk−1} Arnoldi vectors.

To obtain the approximation of the form 2.38 that minimizes the 2-norm of the residual

‖r0 −AQkyk‖, GMRES solves the following least squares problem

yk = argminy ‖r0 −AQk+1y‖
= argminy ‖r0 −AQkHk+1,ky‖
= argminy ‖Qk+1(βe1 −Hk+1,ky)‖
= argminy ‖βe1 −Hk+1,ky‖ ,

(2.39)

where β = ‖r0‖ and e1 is the first column of the identity matrix of size k + 1. The second

step of the previous equality takes into account that Qk+1e1, the first column of matrix

Qk+1, is equal to r0/ ‖r0‖.
The solution to the above least-squares problem can be obtained inexpensively by com-

puting the QR factorization of Hk+1,k into a unitary matrix Fk and an upper-triangular

matrix Rk. Once this factorization is obtained, the solution y for (2.39) is given by the
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linear system

R̃y = β(Fke1), (2.40)

where R̃ denotes the k × k top-left submatrix of Rk, and Fke1 are the top k entries of the

first column of F . This factorization is inexpensive, as it can be obtained by applying plane

rotations in order to annihilate the first sub-diagonal of Hk+1,k. Furthermore, provided that

the QR factorization of Hk+1,k is available, it is possible to compute the factorization of

Hk+2,k+1 with little overhead. Hence, the above process can be performed in a progressive

manner, and this allows to obtain the residual norm inexpensively, at each step of GMRES,

in order to check for convergence. For details we refer to [59, 89].

The GMRES algorithm becomes impractical when k is large, given that it is necessary

to store and operate with the whole set of qi vectors. One commonly-used strategy consists

of simply restarting GMRES after m iterations, where m is a user-defined parameter, and

use the current iterate as the initial guess for the restart. This is referred to as GMRES(m),

which is outlined in Algorithm 6.

Without going into details about the convergence properties of full and restarted GM-

RES, it is safe to say that small values of m will cause a slow convergence, and that large val-

ues of m can lead to considerable runtimes and memory requirements, so a trade-off between

these factors must be considered. Moreover, the restarted GMRES algorithm can stagnate,

i.e. cease to improve the approximation, when the matrix is not positive definite. This

drawback can be, in part, overcome by preconditioning techniques. The references [59, 89]

contain convergence analysis of these methods, so the interested reader should consult them

for further details.

Algorithm 6 Algorithmic formulation of the preconditioned GMRES (m) method. The
threshold τmax is an upper bound on the relative residual for the computed approximation
to the solution.
Input: A ∈ Rn×n,M ∈ Rn×n, b ∈ Rn,m (integer)
Output: x ∈ Rn

1: Initialize x0, r0, q0, p0, . . .
2: k := 0, β := ‖r0‖ , ξ1 := (1, 0, . . . , 0)T

3: while (k < m) do
4: zk+1 := M−1(Aqk)
5: [H(:, k + 1), qk+1] := MGSO(Qk, zk+1)
6: k := k + 1
7: end while
8: yk := arg miny ‖βξ1 −Hky‖
9: xk := x0 +Qkyk

10: τk := ‖b−Axk‖
11: if τk > τmax then
12: x0 := xk
13: restart GMRES
14: end if
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Algorithm 7 Algorithmic formulation of MGSO. The method performs a re-
orthogonalization if the cosine between the two vectors is greater than τ , which is set to
0.99 in our case.
Input: Qk ∈ Rn×n, zk ∈ Rn

Output: qk+1 ∈ Rn, H:,k+1 ∈ Rn

1: Initialize ω := ‖zk‖2 , τ := 0.99, i := 1
2: while (i <= k) do
3: H(i, k + 1) := qTi zk
4: zk := zk −H(i, k + 1)qi
5: if (|H(i, k + 1)|2 > ωτ) then
6: β := qTi zk
7: H(i, k + 1) := H(i, k + 1) + β
8: zk := zk − βqi
9: end if

10: ω := ω − |H(i, k + 1)|2
11: if (ω < 0) then
12: ω := 0
13: end if
14: i := i+ 1
15: end while
16: qk+1 := zk/ ‖zk‖
17: Hk,k+1 := ‖zk‖

Simplified symmetric Quasi-Minimal Residual method (SQMR)

Just as GMRES takes the matrix A into a Hessenberg matrix by means of an Arnoldi

iteration, QMR applies a double-sided or non-symmetric Lanczos process on the original

matrix that transforms it into a tridiagonal (also Hessenberg) matrix. This transformation

can be described in matrix form by the following recurrence

AVk = Vk+1Tk+1,k, (2.41)

where Vk are the k Lanczos basis vectors and Tk+1 are the coefficients of the three-term

recurrence of the Lanczos iteration. Once this basis Vk is obtained, the same strategy is

applied, and the iterate xk is taken to be of the form

xk = x0 + Vky. (2.42)

The main difference with GMRES is that the Lanczos process does not generate an

orthonormal basis. By taking v0 = r0/ ‖r0‖ and performing the same derivation as in

GMRES to get y such that the residual r0 −AVk+1y is minimal, one obtains

yk = argminy ‖r0 −AVk+1y‖
= argminy ‖r0 −AVkTk+1,ky‖
= argminy ‖Vk+1(βe1 − Tk+1,ky)‖

,

(2.43)
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where β = ‖r0‖ and e1 is the first column of the identity matrix. Unlike in GMRES, it is

not possible to eliminate Vk+1 from (2.43) so that the above least-squares problem can be

solved easily. However, it is reasonable to consider that if y minimizes ‖βe1 − Tk+1,ky‖, this

will be good enough to converge properly to the solution of the system. Hence, the method

earns its qualification of “quasi-minimal” instead of minimal, and ‖βe1 − Tk+1,ky‖ is called

the “quasi-residual” norm.

Now, a result due to Freund and Zha [49] states that the Lanczos process can be simplified

when one can find a matrix P such that

ATP = PA. (2.44)

In this case, the following relation can be established between the right Lanczos vectors wk

and the left Lanczos vectors vk

wk =
Pvk
‖vk‖

. (2.45)

If the matrix-vector product Pvk is easy to compute, as in the case when P is sparse, this

relation allows to obtain the Lanczos basis with almost half the storage and computing

effort.

Consider next a linear system with a symmetric indefinite matrix A ∈ Rn×n and a

preconditioner M such that

M = MLMR = MT
RM

T
L = MT , (2.46)

so that the preconditioned system is given by

Âx̂ = b̂ (2.47)

where

Â = M−1L AM−1R , b̂ = M−1L , andf x̂ = MRx (2.48)

Here it is not necessary that ML and MR are each others transpose, and left or right-

preconditioned variants can be obtained by simply setting MR = I or ML = I, respectively.

Choosing P = MT
LM

−1
R one gets

ÂTP = M−TR AM−TL (MT
LM

−1
R )

= (M−1L MT
R )−1(M−1L MT

R )M−TR AM−1R

= M−TR MLM
−1
L AM−1R

= MT
LM

−1
R M−1L AM−1R

= PÂ,

(2.49)

so the simplified symmetric QMR is obtained by applying QMR on the preconditioned

system (2.48). The matrix P does not need to be computed explicitly, as matrices ML and

MR appear in the algorithm only when solving the two linear systems corresponding to the

application of the preconditioner M .

One formulation of the method is offered in Algorithm 8. As in the case of GMRES, the
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least squares problem is solved by applying plane rotations and solving the linear system,

which can be done progressively as the Lanczos vectors and coefficients become available.

In the algorithm, the coefficients νk and ck are related with the Givens rotations applied to

the last column of Tk+1,k. The formulation presented is based on that derived in [50], which

exploits the close relation between BiCG and SQMR iterates and residuals. In fact, here rk

denotes the residual of BiCG and not the residual obtained by computing b−Axk with the

current iterate. Moreover, zk = M−1R M−1L rk = M−1rk is the preconditioned BiCG residual.

Algorithm 8 Simplified Quasi-Minimal Residual (SQMR).

Input: A ∈ Rn×n,M = MLMR ∈ Rn×n, b ∈ Rn

Output: x ∈ Rn

1: Initialize x0, r0 = b−Ax0, t = M−1L r0, γ0 = ‖t‖ , . . .
2: v0 = M−1R t, ν0 = 0, ρ0 = 〈r0, v0〉
3: for k = 0 to n− 1 do
4: t = (Avk)
5: σk = 〈vk, t〉
6: if σk = 0 then
7: stop
8: end if
9: αk = ρk/σk

10: rk+1 = rk − αkt
11: t = M−1L rk+1

12: νk+1 = ‖t‖/γk
13: ck+1 = 1/

√
1 + ν2k

14: γk+1 = γkνk+1ck+1

15: dk+1 = c2k+1ν
2
kdk

16: xk+1 = xk + dk
17: if xk has converged then
18: stop
19: end if
20: zk+1 = M−1R t
21: ρk+1 = 〈rk+1, zk+1〉
22: βk+1 = ρk+1/ρk
23: vk+1 = zk+1 + βk+1vk
24: end for

The Bi-Conjugate Gradient Stabilized (BiCGStab)

When A is not symmetric, the simplification of the Lanczos process can not be made, and

thus the BiCG and the QMR methods imply recursions with both A and AT . To avoid using

the transpose and to improve the convergence of BiCG at comparable computational cost,

Sonneveld introduced the Conjugate Gradient Squared (CGS) algorithm [97]. The method

is based in noting that the residual vector at step k can be expressed as

rk = φk(A)r0, (2.50)
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where φk is a certain polynomial of degree k satisfying the constraint φk(0) = 1. Similarly,

the conjugate-direction polynomial πk(t) is given by

pk = πk(A)r0, (2.51)

in which πj is a polynomial of degree j. The directions sk and qk of Algorithm 4 are defined

through the same recurrences as rk and pk in which A is replaced by AT and, as a result,

sk = φj(A
T )s0, qk = πj(A

T )q0. (2.52)

Similarly, it can be shown that the scalar αk is given by

αk =

〈
φk(A)r0, φk(AT )s0

〉
〈Aπk(A)r0, πk(AT )s0〉

=

〈
φ2k(A)r0, s0

〉
〈Aπ2

k(A)r0, s0〉
, (2.53)

which indicates that, if it is possible to get a recursion for the vectors φ2k(A)r0 and π2
k(A)r0,

then computing αk and, similarly, βk causes no problem. Hence, the idea of seeking an

algorithm which would give a sequence of iterates whose residual norms r′k satisfy

r′k = φ2k(A)r0. (2.54)

As CGS is based on squaring the residual polynomial, it is susceptible to the accumulation

of rounding errors, which is a disadvantage in comparison to BiCG.

A variant of the CGS algorithm that aims to solve these problems is the Bi-conjugate

Gradient Stabilized (BiCGStab) algorithm. The main difference to CGS is that, instead of

obtaining a residual vector of the form r′k defined in (2.54), BiCGStab produces residual

vectors of the form

r′k = ψk(A)φk(A)r0, (2.55)

where ψk(t) is a polynomial that aims to “stabilize” the convergence behavior of the original

algorithm. Specifically, ψk(t) is defined by

ψk+1(t) = (1− ωkt)ψk(t), (2.56)

in which the scalar ωk can be selected such that it achieves a steepest descent step in

the residual direction obtained before multiplying the residual vector by (I − ωkA). In

other words, ωk is chosen to minimize the 2-norm of the vector (I − ωkA)ψk(A)φk+1(A)r0.

Algorithm 9 outlines one of the possible formulations of the procedure. A complete derivation

of the algorithm can be found in [59, 89, 104].

2.3 Preconditioners

In general, iterative solvers exhibit a lack of robustness that severely limits its applicability in

industrial contexts [89]. Preconditioners were introduced in Section 2.2 as a transformation

of the original system into an alternative one that has the same solution, performed with
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Algorithm 9 Algorithmic formulation of the preconditioned BiCGStab method.

Input: A ∈ Rn×n,M ∈ Rn×n, b ∈ Rn

Output: x ∈ Rn

1: Initialize x0, r0, q0, p0, . . .
2: k := 0, β := ‖r0‖ , ξ1 := (1, 0, . . . , 0)T

3: while (τk > τmax) do
4: ρk+1 = (r̂0, rk)
5: β = (ρk+1/ρk)(α/ωk)
6: pk+1 = rk + β(pk − ωkvk)
7: vk+1 = M−1Apk+1

8: α = ρk+1/(r̂0, vk+1)
9: s = rk − αvk+1

10: t = M−1As
11: ωk+1 = (t, s)/(t, t)
12: xk+1 = xk + αpk − ωk+1s
13: rk+1 = s− ωk+1t
14: τk+1 :=‖ rk+1 ‖2
15: k := k + 1
16: end while

the purpose of improving its condition number, which is the rate between the largest and

smallest eigenvalue of the coefficient matrix of the system. Roughly speaking, when this

number is large, the unavoidable rounding errors due to the use finite precision can prevent

iterative methods from converging to an acceptable solution of the system. This modification

can be defined in a number of ways, and it is usually represented by a matrix M which, in

general, should meet some minimal requirements.

In the basic form of an iterative method introduced in Equation (2.16), one possibility is

to apply the transformation to the system before starting the solver. In many cases, this is

not convenient since M−1A is much less sparse than A and M , which increments the storage

and computation cost of the solver. The alternative is to either perform a matrix-vector

product

zk = M−1rk (2.57)

or to solve the linear system

Mzk = rk (2.58)

in each iteration k, where rk is the residual computed in the previous step. Therefore, the

first requirement any preconditioner M should meet is that the linear system (2.58) is easy

to solve or, at least, easy compared to the effort of solving Ax = b with a direct method. Of

course, M should also be non-singular so that (2.58) has a unique solution.

The second requirement is more complex and it is related with the quality of the precon-

ditioner. It is evident that any of the aforementioned preconditioned iterations converge in

one iteration if the preconditioner M is set to be the matrix A itself. It is also evident that

this is not practical since the effort would be equivalent to that of computing A−1. However,

this leads to the intuitive idea that iterative methods can converge faster if the precondi-

tioner M resembles A in some sense. The exact sense in which M should approximate A
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depends on the iterative method to be used and it is not always clear. For example, when we

described the fixed-point iterations, it was mentioned that their convergence is related with

the largest eigenvalue of I −M−1A, so a preconditioner M such that ρ(I −M−1A)� 1 is

desirable in this case. For other Krylov subspace methods, there are results that characterize

the effectiveness of the preconditioner in terms of its eigenvalue distribution or that of the

preconditioned matrix, but this is much better understood for Hermitian matrices than it

is for non-Hermitian or indefinite ones [59].

There are three ways of applying a preconditioner. Left-preconditioning was already

presented in Equation (2.10). Similarly, right-preconditioning leads to the following system

AM−1u = b, x = M−1u. (2.59)

Here, a change of variables u = Mx is made, and the system is solved for the unknown u, so

finding the solution x of the original system will imply solving Mx = u at the end. Often,

the preconditioner can be expressed in factorized form M = MLMR, where typically ML

and MR are triangular matrices. In this case, the preconditioner can be applied as follows

M−1L AM−1R u = M−1L b, x = M−1R u. (2.60)

Splitting the preconditioner in such a way is convenient in order to preserve symmetry when

the original matrix shows this property.

Strictly speaking, a preconditioner is any form of internal solver that aims to accelerate

the convergence of an iterative method. In some cases, preconditioners can be derived from

the intrinsic properties of the original physical phenomena that the linear system or PDE is

looking to solve. Most times however, preconditioners are constructed departing from the

original coefficient matrix, as useful physical properties are rarely available in general. In

this sense, preconditioner techniques can range from simply scaling all rows of the linear

system to make the diagonal elements equal to one, to a preconditioner M that reflects a

complicated mapping involving FFT transforms, integral calculations, and additional linear

system solutions [89].

One of the most popular ways of constructing a preconditioner is by means of a factor-

ization of the original matrix A, as the Cholesky or LU factorization. When A is sparse,

the triangular factors L an U are, in general, much more dense than the original matrix.

This leads to the so-called incomplete factorizations, which are decompositions of the form

A = L̃Ũ − R, where L̃ and Ũ are similar to L and U but present a much sparser nonzero

structure, and R is the residual or error of the factorization. Their importance and wide

range of applications motivates that we dedicate the rest of this section to present some

of their most popular variants, as well as the latest advances in order to enhance their

robustness.
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2.3.1 Incomplete LU-based preconditioners

Let A = LU be the LU factorization of matrix A. Now consider the left-preconditioned

system

M−1Ax = M−1b (2.61)

where M = LU . If an iterative method is applied to solve the system using M as precon-

ditioner, each iteration of the solver will imply the solution of two triangular linear systems

(one with L and the other with U as coefficient matrices) in order to obtain the precondi-

tioned residual. It should be easy to see that the above is equivalent to solve the system

directly using the LU factorization, since any solver would converge immediately after the

first residual is evaluated.

In the sparse case, the main drawback of the LU factorization is, as argued earlier, the

fill-in generated in the L and U factors during Gaussian Elimination. When the dimension

of the matrices is large, the necessary amount of memory required to store the factorization,

and the number of floating point operations implied by the triangular system solution, turn

this strategy highly impractical. However, it is reasonable to think that not all the fill-in

entries are equally important, and that by dropping some of the fill-in values during the

factorization process, one can find a factorization L̃Ũ ≈ A, where L̃ and Ũ are much sparser

than L and U , that still serves as a good preconditioner for the iterative method.

Unfortunately, it is not trivial to determine which fill-in entries are important and should

be kept in the L and U factors in order to attain a good preconditioner, and which of

them are disposable and will not affect considerably the quality of the approximation. As

a consequence, there are many flavours of ILU factorization, which differ mainly in their

“dropping policy”.

The “dropping policy” is the criteria that is applied during the update of an entry during

Gaussian Elimination, to decide if it should be kept in the L or U factors or if it should

be replaced by a 0. To make this decision, there are two factors that can be taken into

consideration: the position of the nonzero entry and its numerical value.

Positional ILUs discard a nonzero entry generated in a given stage of GE if its position in

the sparse matrix lies inside a target zero pattern. This is sometimes referred to as ILUP .

In the simplest case, the target zero pattern P is chosen prior to the factorization, and

any fill-in entry that falls inside that pattern is discarded. It is also possible to adapt this

pattern as the factorization proceeds using some criteria. In this case, the resulting factors

will depend on the order in which the computations are made in the factorization.

ILU0

A paramount example of the positional type of ILU is the ILU factorization with no fill-in,

frequently denoted as ILU(0) or ILU0. In this widely-applied incomplete factorization, the

L̃ and Ũ factors present the same sparsity pattern as the lower and upper parts of the matrix

A respectively.

The ILU0 factorization algorithm can be directly derived from the ILUP algorithm by

simply choosing P to be the zero pattern of A. However, the usefulness of this preconditioner

can be better appreciated by analyzing the particular case of systems derived from the
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Figure 2.1: Regular 2D grid and sparsity structure of the stiffness matrix. Extracted from [89]

discretization of elliptic PDEs on regular grids. Considering (for simplicity) the case of

regular 2D grids, it can be noticed that in these type of problems the stiffness matrix

presents a structure that consists of the main diagonal, two adjacent diagonals and two

other diagonals that are at a distance from the main one that is equal to the width of the

mesh. This is illustrated in Figure 2.1.

In general, the product of any lower and upper triangular matrices L̃ and Ũ such that

these two matrices present the same sparsity pattern, respectively, of the lower and upper

parts of A, will not have the same sparsity pattern than that of A. Specifically, two diagonals

of nonzero entries will appear in the product at the positions nx− 1 and −nx + 1. However,

if this fill-in diagonals are ignored, it is possible to find matrices L̃ and Ũ such that

L̃Ũij = Aij where Aij 6= 0. (2.62)

The product of those factors would produce a matrix Ã that differs from A only in these two

extra fill-in diagonals, so it can be expected that Ã reasonably resembles A, and therefore

turns to be a good preconditioner [89]. By analyzing the algorithm derived from ILUP ,

where we replace P by the zero pattern of A, it can be observed that the above property

holds. Therefore, the ILU factorizations with no fill-in, or ILU0, can be defined broadly as

those factorizations such that the L̃ and Ũ factors have the same sparsity pattern as the

lower and upper parts of A, respectively, and such that Equation (2.62) holds. However, it

should be noted that this factorization is not unique, since, for example, it does not impose

restrictions on the magnitude of the fill-in elements generated by the product.

From the above discussion, it is natural to think that this type of preconditioners are

especially well suited to solve elliptic PDEs. In fact, there are cases where, if the stiffness

matrix is written as

A = LA +DA + UA, (2.63)

where LA, and UA are, respectively, the strict-lower and upper part of A, and DA is the
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main diagonal, it is possible to find an ILU0 preconditioner M such that

M = (LA +D)D−1(D + UA). (2.64)

Here, D is a diagonal matrix that is derived from the terms LA and UA by imposing that M

meets the ILU criteria of Equation (2.62). The convenience of this approach is evident in the

case of a 5- (or 7)-point stencil, as then it is only necessary to store a single extra diagonal in

order to compute the preconditioner, and the entries of this diagonal can be calculated from

a simple recurrence. During the iterative solver, the application of the preconditioner to the

residual r consists in solving the systems (LA + D)y = r, D−1z = y and (D + UA)x = z,

which can also be expressed in terms of simple relations between the coefficients of A and

D.

ILU(l)

When moving away from elliptic PDEs and considering unstructured matrices, the ILU0

approach presents higher instability and often does not lead to acceptable preconditioners.

An obvious strategy of coping with this limitation is by allowing certain degrees of fill-in in

the L̃ and Ũ factors, looking for a trade-off between the accuracy of the preconditioner and

the storage requirements to hold the factors, versus the floating point operations required

to solve the resulting triangular linear systems.

This alternative leads to a version of ILUP where the target pattern is either updated

during the GE process, or is determined prior to the numerical factorization by a symbolic

factorization phase. In this variant, a “level of fill” is assigned to each position of the sparse

matrix so that, an element is dropped if its level of fill is greater than a predefined threshold

l.

The following definition and explanation of the level of fill will take into account the

row-wise version of Gaussian Elimination. Nevertheless, all the concepts can be adapted to

the remaining variants of GE.

Recall Section 2.1.2 where the problem of fill-in was introduced. There we characterized

a fill-in entry aij , created during the inner loop of the row-wise or IKJ variant of GE,

as being generated by other two “generating entries” aik and akj . Most of the times, it

is reasonable to expect that these new non-zeros will be smaller in magnitude than their

generating entries.

To justify this assumption, a simple model is frequently used in literature [89], in which

a size δk < 1 is assigned to any element whose level of fill is k. The update of the size of an

element during GE can be derived directly from line 5 of Algorithm 2, and follows

size(aij) = δlevij − δlevik × δlevkj = δlevij − δlevik+levkj . (2.65)

The updated size of the entry will then depend on the relation between the exponents levij

and levik + levkj but, as δ < 1, the model assumes that this size will be close to either δlevij
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or δlevik+levkj , so it defines the updated level of fill as

levij = min(levij , levik + levkj). (2.66)

Now, if initial levels of fill are assigned to each matrix position such that

levij =

1 if aij 6= 0

∞ if aij = 0
(2.67)

there are two considerations that should be made. The first one is that, if an entry aij is

initially a nonzero, it will remain assigned to level 1 during the entire GE process. The

second one is that, if a nonzero entry is generated during GE by generating entries aik

and akj , it will be assigned to level levik + levkj and, the higher the level of the generating

entries, the smaller the size of the new nonzero, so the level of fill could give an idea of the

importance of each fill in entry generated during GE.

In order to be consistent with the definition of ILU0, the initial level assigned to each

entry is shifted by −1, and the update of the level of fill becomes

levij = min(levij , levik + levkj + 1). (2.68)

This is just a notation issue and does not change any of the aforementioned concepts.

Using the ILU(l) factorization as preconditioner can be very effective in accelerating

the convergence of iterative methods for many problems. However, it has some important

drawbacks. For example, one major problem is that, in general, it is impossible to predict

the storage required to hold an ILU(l) factorization. In this sense, the codes that obtain

this type of ILU are often composed of an initial symbolic factorization phase, in which the

storage requirements are calculated, an a numerical factorization phase, which computes the

actual ILU. In relation to this, allowing only a few levels of fill in during the factorization

often results in factors very close to L and U . In this sense, there is a “maximum level

of fill”, which is defined as the lowest level of fill l for which the sparsity pattern of the

incomplete factors is equal to that of L and U .

An additional important issue is that the level of fill-in may not always be a good

indicator of the size of the elements that are being dropped. This can cause the dropping

of large elements which may severely harm the accuracy factorization, probably leading to

an ineffective preconditioner.

MILU

It has been observed that when ILU techniques are applied to solve elliptic PDEs, the

asymptotic convergence rate of iterative solvers, as the mesh size becomes smaller, is only

marginally better than an approach with no preconditioner [42]. In order to improve this

situation, the Modified-ILU (MILU) aims to compensate the effect of the discarded entries

by adding a term to the update of the diagonal entry of the Ũ factor during a given step of

the factorization. This term can be problem dependent. For example, in problems derived
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from second order PDEs, it is recommended to hold a term ch2, where c 6= 0 is a constant

and h is the mesh size. In general, a popular strategy is to add all the elements that have

been dropped during the update of a given row to the diagonal entry (of U) corresponding

to that row.

MILU has proven to be very effective in problems such as elliptic PDEs but, unfortu-

nately, standard ILUs often outperform their MILU counterparts. According to Van der

Vorst [103] this is related to a higher sensitivity of MILU to round-off errors. This has

motivated intermediate versions by introducing relaxation parameters.

ILUT

When dropping an entry, positional ILU strategies make assumptions on the importance

of the elements being dropped based on their position on the matrix. It turns out that in

many cases these assumptions are inaccurate, and lead to difficulties when addressing real

problems. To remedy this situation, it sounds reasonable to take a look at the magnitude

of a fill-in entry before taking the decision of dropping it. This gives place to the so called

threshold-based ILUs, or ILUT.

This type of ILUs is based on the same variants of GE as ILU(l). The difference is that

now “dropping rules” are introduced at some point of the algorithm, which set an entry

to zero if it meets certain criteria. For example, a simple strategy would be to drop all

entries smaller than certain threshold τ . Instead, one could be more clever and drop the

entry if its magnitude is smaller that a given fraction of the norm of the row it belongs to.

Other rules can be devised and, in fact, more than one rule can be applied. What is usually

known as ILU(p,τ) in the literature applies two dropping rules. The first one drops any

entry of row i whose magnitude is less than τi, which is equal to τ multiplied by the norm

of row i in the original matrix A. The second rule sets a limit to the number of non-zeros

that can be kept in one row, dropping an element if it is not among the p largest values

(in magnitude) of the row. While the first rule aims to save computing effort during the

triangular solves in the preconditioner application by discarding entries that would (a priori)

not contribute significantly to the result, the second rule keeps the storage space needed to

hold the preconditioner within bounds.

The discarding criteria based on relative tolerance are, in general, more reliable than the

criteria based exclusively on the absolute tolerance, and they usually yield a good solution.

A common disadvantage for these criteria is the selection of a satisfactory value for τ . For

this selection, it is common to start from a representative subset of the linear systems to

be solved in the context of a specific application and, through experimentation, find a good

value for the systems which arise from the same application. In most cases, selecting values

of τ in the interval [10−4, 10−2] yields good results, though the optimum value depends on

the concrete problem [87].

Crout’s algorithm and ILUC

The ILU variants that have been described so far are mostly based on the so-called IKJ

variant of Gaussian Elimination. This variant is attractive from a computational point of
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view because it proceeds row-wise, and it is therefore especially well-suited for row-oriented

sparse storage formats as the widespread CSR2. Nevertheless, as it is done with IKJ-based

ILUs, one can derive ILU factorization algorithms from any other variant. Although in exact

arithmetic all variants would produce the same factorizations, each variant relies on different

kernels and the computation patterns may lead to specialized techniques and storage formats

for certain computer architectures. In this sense, these variants present considerable practical

differences.

The Crout variant, which can be seen as a combination of the IKJ variant to compute

L̃ and a transposed version to compute Ũ , aims to solve one of the main drawbacks of the

IKJ-based ILU. During the update stage, in order to update or introduce a fill-in entry, the

structure that contains the factorization has to be accessed in increasing column order. This

implies a search through the vector that holds the current row, which is being dynamically

modified by the fill-in process. There are some strategies to perform this search efficiently,

as line searches or using data structures such as binary trees. However, this issue remains

an important problem when high accuracy is required in the factorization and considerable

fill-in has to be allowed.

Another important advantage of this version of the ILU factorization, which will be

analyzed in the following section, is that it is well suited to the implementation of inverse-

based dropping strategies [27], which are an interesting breakthrough from the theoretical

perspective, and have shown to be effective in many scenarios.

Algorithm 10 Crout’s variant of the LU factorization.

Input: A
Output: L,U

1: for k = 1 to n do
2: for i = 1 to k − 1 and if aki 6= 0 do
3: ak,k:n = ak,k:n − aki × ai,k:n
4: end for
5: for i = 1 to k − 1 and if aki 6= 0 do
6: ak+1:n,k = ak+1:n,k − aik × ak+1:n,i

7: end for
8: ak+1:n,k = ak+1:n,k/akk
9: end for

2.3.2 Inverse-based ILUs

One of the major problems of the approaches described previously is that there is not a

direct relationship between the magnitude of an entry and the impact that dropping it will

have on the preconditioned system. In order to understand such impact, one has to inspect

how preconditioners are used. Suppose A as been factored as A = LDU where L ∈ Rn×n is

unit lower triangular, U ∈ Rn×n is unit upper triangular and D ∈ Rn×n is a diagonal matrix.

This factorization is closely related to those presented previously, but is more adequate to

expose some important properties. In fact, if the LU factorization A = L̂Û exists, then

2From Compressed Sparse Row format [39]
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        Factored

        Read

        Updated

Figure 2.2: Computation pattern of Crout’s LU factorization for a given step k.

L = L̂ and DU = Û , so D = diag(Û).

To construct this factorization, an option consists in considering the following partition[
β d

c E

]
∈ Rn×n, (2.69)

where β ∈ R, which determines the dimension of the remaining blocks in 2.69. To factorize

this matrix, at step k one has to exploit the following relation[
β d

c E

]
=

[
1 0

l I

][
δ 0

0 S

][
1 u

0 I

]
, (2.70)

where S = E− lδu ∈ Rn−k,n−k is called the Schur complement. The process is completed by

recursively applying the same factorization to S, obtaining the exact A = LDU factorization

at step n.

In the context of preconditioners, it is not necessary to compute the exact factorization

so, as explained previously with other versions of ILU, the common strategy consists in

dropping elements of vectors l and u, and using the sparsified versions of these vectors to

compute an approximate Schur complement. The approach suggested by Bollhöfer in [27],

is to construct this block as

S = E − l̃d− (c− l̃β)ũ, (2.71)

where l̃ and ũ are the sparsified versions of l and u, respectively. The procedure to obtain

an incomplete factorization using this strategy is described in Algorithm 11. Pivoting is not

included for simplicity.

The justification for this choice lies in that this expression for S can be obtained from

the lower-right block of L̃−1AŨ−1, which can be useful in the following sense. When we

apply LDU as a preconditioner in a Krylov subspace or some other iterative method, the

matrix for the preconditioned system will be L−1AU−1D−1. This means that, when we
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Algorithm 11 ILDU.

Input: A
Output: L,D,U

1: Set L = U = D = I, S = A.
2: for i = 1 to n− 1 do
3: dii = sii
4: c = Si+1:n,i

5: d = Si,i+1:n

6: p = c/dii
7: q = d/dii
8: Apply dropping rule to p and q
9: Li+1:n,i = p

10: Ui,i+1:n = q

11: Ŝ = Si+1:n,i+1:n

12: Ŝ = Ŝ − pd− (c− pβ)q
13: end for
14: dnn = snn

drop an entry from the L or U factors, even if it is small, we do not know the impact of that

dropping on the preconditioned system as the inverse factors L−1 and U−1 are, generally,

not available. It is therefore interesting to devise a way in which the inverse factors can

be monitored during the process, so the choice of the expression for the Schur complement

sounds reasonable.

The computation of L−1 and U−1 during the factorization is, of course, out of the

question. Instead, one alternative is to obtain information about the approximate inverses

of the factors. Incorporating this information in the dropping rules of the ILU could, in

principle, be expected to yield good results. In this sense, important developments about the

relation between ILU factorizations and approximate inverses were introduced by Bollhöfer

and Saad at the beginning of this century [30].

Approximate Inverse factorizations (AINV) are based on constructing the incomplete

factors of A−1 explicitly. If no dropping is applied, the idea is finding unit upper triangular

matrices W ∈ Rn×n and Z ∈ Rn×n, and a diagonal matrix D ∈ Rn×n, so that WTAZ = D

or, equivalently, A−1 = ZD−1WT . Such a factorization can be obtained, for example, by

means of a bi-orthogonalization process in which WTA and ZTAT are transformed into

triangular matrices one row/column at a time. In a similar way as it is done with ILUs,

dropping can be applied to W and Z during the factorization, obtaining an incomplete

factorization A−1 ≈ ZD−1WT . This process is described in Algorithm 12.

Although Algorithm 12 presents some difficulties to encode an efficient implementation

for sparse matrices, like the use of rank-1 updates, it shows that it should be possible to

obtain an ILDU factorization such that L−1 ≈ WT and U−1 ≈ Z by including information

about the approximate inverse factors. In this sense, consider a modification of the ILDU

algorithm, supplementing it with a progressive inversion process, in which the inverses of

the L and U factors are calculated on the fly. At iteration i− 1, the factor Ũi−1 should take
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Algorithm 12 Right-looking variant of AINV.

Input: A
Output: W,D,Z

1: p = c = (0, . . . , 0) ∈ Rn, Z = W = In.
2: for i = 1 to n do
3: pi = eTi AZe

T
i

4: qi = eTi W
TAeTi

5: for j = i+ 1 to n do
6: pj = eTj AZei/pi
7: qj = eTi W

TAej/qi
8: W1:i,j = W1:i,j −W1:i,ipj
9: Z1:i,j = Z1:i,j − Z1:i,iqj

10: end for
11: for all k ≤ i, l > i: drop wkl if |wkl| ≤ τ and drop zkl if |zkl| ≤ τ
12: dii = pi
13: end for

the form U11 U12 U13

O 1 O

O O I

 =

A b C

O v wT

O O Z

 .
The i-th step is responsible for calculating the entries of vector wT and adding them to Ui−1

to obtain Ui. If q̃ = (0, . . . , 0, q̃i+1, . . . , q̃n) is the row vector updated in the i-th iteration of

Algorithm 11, then

Ũi = Ũi−1 + eiq̃. (2.72)

Given the structure of both Ũi and q̃, the following relation between Ũi and Ũi−1 holds

Ũi = (I + eiq̃)Ũi−1. (2.73)

Note that q̃ = ei(Ũi−1 − I) and eiq̃ = eiq̃Ũi−1, so that Equation (2.73) simply implies that

the new matrix Ũi is obtained by replacing the entries from i+1 to n with the corresponding

entries of q̃. Inverting (2.73) and operating accordingly we obtain the following expression

for the partial inverse factor U−1i

Ũ−1i = Ũ−1i−1(I + eiq̃)
−1 = Ũ−1i−1(I − eiq̃). (2.74)

A similar derivation can be done for L̃.

Equation (2.74) and its counterpart for L̃ specify how to compute the (approximate)

inverse factors as the factorization advances. In [30] the authors demonstrated that, if the

above inverse factors are computed during the ILU and the Schur complement is constructed

adequately, this ILU preconditioner is essentially equivalent to the AINV algorithm, so the

computed inverse factors are equivalent to W and Z. Moreover, they state that, if the

dropping criteria is modified such that an entry lji is dropped only when |lji| ·max(1∪|wki| :
k = 1, . . . , i − 1) ≤ τ , an entry wkl is dropped if |wkl| ≤ τ , and the (modified) Schur
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complement is set to be the lower (n− i)× (n− i) block of WTA, then for any k > l

|(I −WLT )lk| ≤ 2τ(k − l). (2.75)

This result is important because it introduces a dropping rule for the factor L that is

based on the entries of the approximate inverse W , and sets a bound for the error obtained

in the incomplete factorization based on the approximate inverse. An analogous result can

be stated for the U and Z factors.

It can be expected that dropping small entries in the approximate inverse factors W and

Z has a much lower impact on the preconditioned system WTAZ than dropping small entries

of L and U . In fact, there are numerical results [29], which demonstrate that approximate

inverse preconditioners behave better than ILUs in highly ill-conditioned scenarios. The

problem with this result is that it is not practical to compute the approximate inverse

factors together with the ILU factorization, so in order to apply the previous dropping rule,

some compromise should be made.

As the rule depends on the maximum entry in magnitude of the i-th column of W , which

is equivalent to the i-th row of L−1, one option is to devise an estimate for
∥∥eTi L−1∥∥∞

(and
∥∥U−1ei∥∥∞) that can be computed inexpensively and avoids the computation of the

i-th column of W and Z. Such estimates can be derived from a condition estimator for

upper triangular matrices [36, 63]. This estimate is based on exploiting that
∥∥eTi L−1b∥∥∞ ≤∥∥eiL−1∥∥∞ ‖b‖∞ to find a vector b such that ‖b‖∞ = 1 and that, for each step i = 1, . . . , n,

∥∥eTi L−1b∥∥∞ ≈ ∥∥eiL−1∥∥∞ . (2.76)

The approach described by [28] consists in solving the linear system Lx = b and taking

|xi| ≈ eTi L
−1b as an estimate, choosing the i-th entry of vector b dynamically in each step,

so that it (hopefully) maximizes |xi|. A common choice is to set the entries of the vector to

±1 as the solution via forward substitution advances, depending on which value maximizes

|xi|. The procedure described in Algorithm 13 also seeks to prevent, at step i, the growth

of the xk entries such that k > i.

2.3.3 Multilevel inverse-based ILUs

In the previous sections we presented several strategies that have been developed with the

aim of improving the stability or the robustness of ILU factorizations. Such strategies mostly

rely on different criteria to decide which fill-in elements can be safely discarded during the

factorization procedure. However, for simplicity, pivoting, which is the main strategy to

enhance the stability of factorizations in full matrix algebra, has not been discussed yet for

the sparse incomplete factorization case.

In principle, pivoting can be incorporated to any of the ILU techniques mentioned in

this chapter with the aim of improving its numerical stability. A typical example of this

strategy is the ILU variant known as ILUTP, which essentially consists in applying partial

column pivoting to ILUT [89]. Unfortunately, although this strategy can indeed improve

ILUT preconditioners, it is prone to failures as a result of zero rows appearing during the
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Algorithm 13 Condition estimator for L−1.

Input: L, b ∈ (±1, . . . ,±1)T

Output: x such that |xi| ≈ eTi L−1b

1: v = x = (0, . . . , 0)T ∈ Rn.
2: for i = 1 to n do
3: µ+ = 1− vi
4: µ− = −1− vi
5: v+ = vi+1:n + Li+1:n,iµ

+

6: v− = vi+1:n + Li+1:n,iµ
−

7: if |µ+|+ ‖v+‖∞ > |µ−|+ ‖v−‖∞ then
8: xi = µ+

9: vi+1:n = v+

10: else
11: xi = µ−

12: vi+1:n = v−

13: end if
14: end for

factorization due to the combination of permutations and dropping. If significant fill-in is

allowed, ILUTP can produce accurate preconditioners, but at a high computational cost.

In [44], pivoting is avoided during the factorization by reordering the rows of the matrix

previously in order to improve its diagonal dominance. The ordering strategy aims to bring

large pivots as close to the diagonal as possible, and is combined with a static post-ordering

to reduce fill-in. This type of reordering, combined with ILU preconditioners, have yield

good results in several scenarios [23, 95].

A different strategy to improve the stability of ILUs consists in applying a reordering

to partition the rows/columns of the matrix into two sets. When solving or factorizing a

linear system with such a partition, the first set of unknowns or rows can be dealt with

immediately, while the solution or factorization of the second set will use the result of the

first one. These sets are often classified “coarse” and “fine” because of the resemblance of

this strategy with Algebraic Multigrid methods.

As an example, one can split a linear system like

Ax = b→

[
B F

E C

][
u

y

]
x =

[
f

g

]
(2.77)

seeking that the block B is easy to invert, as in the case of a diagonal matrix, or that it is

diagonally dominant so it can be factorized safely without pivoting. In the first case, the

unknown u is easy to express in terms of y as B can be inverted trivially, so the system can be

expressed in terms of the Schur complement SC = C−EB−1F . In the second case, a partial

factorization of A can be computed by first factorizing B = LU and then completing the

procedure by factorizing the Schur complement SC = C −EU−1L−1F . Moreover, a similar

procedure can be recursively applied to factorize SC in what is often called a multilevel

procedure.
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The factorization of a given level l will be of the form

PlAlQ
T
l =

[
Bl Fl

El Cl

]
≈

[
Ll 0

ElU
−1
l I

][
Ul L−1l Fl

0 SC

]
. (2.78)

Each level requires the construction of the Ll and Ul factors as well as the blocks ElU
−1
l and

L−1l Fl, which can be done with any of the previously presented ILUT techniques, and the

construction of the Schur complement SC . In this process, the Schur complement can suffer

substantial fill-in, which should be dealt with by applying some technique to drop small

elements of Ll, Ul, ElU
−1
l , L−1l Fl and SC itself. Once the previous blocks are obtained, the

process is repeated with Al+1 = SC until the Schur complement of that level is small or

dense enough to be handled by a direct solver or a maximum number of levels is reached.

It is worth noticing that, since the matrices EU−1 and L−1F are only used to calculate the

Schur complement corresponding to the matrix that will be factorized in the next level, they

can be discarded once such Schur complement is available. All operations involving these

two matrices or their approximate versions can be computed using Ll, Ul, El, Fl.

The effectiveness of this approach naturally lies on the quality of the permutation chosen

to obtain the fine and coarse sets. In [90], Saad proposes several strategies to obtain a blockB

that is as diagonally dominant as possible. They differ from the aforementioned strategies

in that Saad’s approach is dynamic rather than based on static orderings. Moreover, in

[31] Bollhöfer and Saad proposed another dynamic ordering scheme based on controlling the

growth of the inverse L−1l and U−1l . This consists in using the condition estimator presented

in Algorithm 13 to detect rows or columns that would push the norm of the inverse factors

above a certain threshold, defined as a parameter of the algorithm. If such row or column is

detected, a diagonal pivoting is performed such that the current row and column is pushed to

the bottom-right corner of the matrix. This can be combined with previous static ordering

to generate an initial splitting like the above, where B is likely to have good properties. In

summary, one has a possibly non-symmetric permutation P̂ and Q̂ such that

P̂TAQ̂ = P̃T (PTAQ)Q̃ = P̃T

[
B F

E C

]
Q̃ =

 B11 B12 F1

B21 B22 F2

E1 E2 C

 =

[
B11 F̂

Ê C

]
. (2.79)

The factorization is later performed on the smaller B11 leading block.

Many static orderings can be chosen to obtain an initial matrix with reasonably good

properties. Techniques such as reverse Cuthill-McKee (RCM) [38], Approximate Minimum

Degree (AMD) [16] or Nested Dissection (ND) [51] can be used to reduce the fill-in in the

subsequent factorization. More modern algorithms, like MC64 [44], aim to improve diagonal

dominance.

Although any form of the Gaussian Elimination procedure could be adapted to yield a

partial ILU factorization like the above, the Crout algorithm seems well suited to obtain an

efficient implementation, since in this variant it is possible to compute the k-th column of L

and k-th row of U at step k. This makes it easy to incorporate the aforementioned diagonal

pivoting strategy. A graphical description of this process is offered in Figure 2.3

40



2.4. ILUPACK

Figure 2.3: A step of the Crout variant of the multilevel ILU factorization. Extracted from [8].

2.4 ILUPACK

Consider the linear system Ax = b, where the n×n coefficient matrix A is large and sparse,

and both the right-hand side vector b and the sought-after solution x contain n elements.

ILUPACK [26] provides software routines to calculate an inverse-based multilevel ILU pre-

conditioner M , of dimension n × n, which can be applied to accelerate the convergence of

Krylov subspace iterative solvers. The package includes numerical methods for different

matrix types, precision, and arithmetic, covering Hermitian positive definite/indefinite and

general real and complex matrices. When using an iterative solver enhanced with an ILU-

PACK preconditioner, the most demanding task from the computational point of view is the

application of the preconditioner, which occurs (at least once) per iteration of the solver.

The implementation of all solvers in ILUPACK follows a reverse communication ap-

proach, in which the backbone of the method is performed by a serial routine that is repeat-

edly called. This routine is re-entered at different points, and sets flags before exiting so that

operations such as SpMV, the application of the preconditioner, and convergence checks can

be then performed by external routines implemented by the user. This is aligned with the

decision adopted by ILUPACK to employ SPARSKIT3 as the backbone of the solvers.

2.4.1 ILUPACK non-symmetric preconditioner

Let us focus on the real case, where A,M ∈ Rn×n and x, b ∈ Rn. The computation of

ILUPACK’s preconditioner proceeds following three steps:

1. Initially, a pre-processing stage scales A by a diagonal matrix D̃ ∈ Rn×n and reorders

the result by a permutation P̃ ∈ Rn×n: Â = P̃T D̃AD̃P̃ .

2. An incomplete factorization next computes Â ≈ LDU , where L,UT ∈ Rn×n are unit

lower triangular factors and D ∈ Rn×n is (block) diagonal. In some detail, Â is

3Available at http://www-users.cs.umn.edu/~saad/software/SPARSKIT/.
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processed in this stage to obtain the partial ILU factorization:

P̂T ÂP̂ ≡

(
B F

G C

)
= LDU + E

=

(
LB 0

LG I

)(
DB 0

0 Sc

)(
UB UF

0 I

)
+ E.

(2.80)

Here, P̂ ∈ Rn×n is a permutation matrix, ‖L−1‖, ‖U−1‖ / κ, with κ a user-predefined

threshold, E contains the elements “dropped” during the ILU factorization, and SC

represents the approximate Schur complement assembled from the “rejected” rows and

columns.

3. The process is then restarted with A = Sc, (until Sc is void or “dense enough” to be

handled by a dense solver,) yielding a multilevel approach.

At level l, the multilevel preconditioner can be recursively expressed as

Ml ≈ D̃−1P̃ P̂

(
LB 0

LG I

)(
DB 0

0 Ml+1

)(
UB UF

0 I

)
P̂T P̃T D̃−1, (2.81)

where LB , DB and UB are blocks of the factors of the multilevel LDU preconditioner (with

LB , UT
B unit lower triangular and DB diagonal); and Ml+1 stands for the preconditioner

computed at level l + 1.

For the review of this operation, we consider its application at level l, for example, to

compute z := M−1l r. This requires solving the system of linear equations:(
LB 0

LG I

)(
DB 0

0 Ml+1

)(
UB UF

0 I

)
P̂T P̃T D̃−1z = P̂T P̃T D̃r. (2.82)

Breaking down (2.82), we first recognize two transformations to the residual vector,

r̂ := P̂T P̃T (D̃r), before the following block system is defined:(
LB 0

LG I

)(
DB 0

0 Ml+1

)(
UB UF

0 I

)
w = r̂. (2.83)

This is then solved for w(= P̂T P̃T D̃−1z) in three steps,(
LB 0

LG I

)
y = r̂,

(
DB 0

0 Ml+1

)
x = y,

(
UB UF

0 I

)
w = x, (2.84)

where the recursion is defined in the second one. In turn, the expressions in (2.84) also need

to be solved in two steps. Assuming y and r̂ are split conformally with the factors, for the

expression on the left of (2.84) we have(
LB 0

LG I

)(
yB

yC

)
=

(
r̂B

r̂C

)
⇒ LByB = r̂B , yC := r̂C − LGyB . (2.85)

Partitioning the vectors as earlier, the expression in the middle of (2.84) involves the
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diagonal-matrix multiplication and the effective recursion:(
DB 0

0 Ml+1

)(
xB

xC

)
=

(
yB

yC

)
⇒ xB := D−1B yB , xC := M−1l+1yC . (2.86)

In the recursion base step, Ml+1 is void and only xB has to be computed. Finally, after an

analogous partitioning, the expression on the right of (2.84) can be reformulated as(
UB UF

0 I

)(
wB

wC

)
=

(
xB

xC

)
⇒ wC := xC , UBwB = xB − UFwC , (2.87)

where z is simply obtained from z := D̃(P̃ (P̂w)).

To save memory, ILUPACK discards the off-diagonal blocks LG and UF once the level of

the preconditioner is calculated, keeping only the rectangular matrices G and F of (2.77),

which are often much sparser. Thus, (2.85) is changed as:

LG = GU−1B D−1B ⇒ yC := r̂C −GU−1B D−1B yB = r̂C −GU−1B D−1B L−1B r̂B , (2.88)

while the expressions related to (2.87) are modified as

UF = D−1B L−1B F ⇒ UBwB = D−1B yB −D−1B L−1B FwC . (2.89)

Operating with care, the final expressions are thus obtained,

LBDBUBsB = r̂B , LBDBUB ŝB = FwC ⇒ yC := r̂C −GsB , wB := sB − ŝB . (2.90)

To summarize the previous description of the method, the application of the precondi-

tioner requires, at each level, two sparse matrix-vector products (SpMV), solving two linear

systems with coefficient matrix of the form LDU , and a few vector kernels.

In case the matrix A is SPD, ILUPACK is capable of obtaining a SPD preconditioner

by means of the Crout variant of the incomplete Cholesky (IC) factorization. This yields

the approximation A ≈ LΣLT , with L ∈ Rn×n sparse lower triangular and Σ ∈ Rn×n

diagonal. As in the non-symmetric case, a scaling and a reordering (defined respectively by

P,D ∈ Rn×n) are applied to A in order to improve the numerical properties as well as reduce

the fill-in in L. The IC factorization operates on Â = PTDADP and it is then performed

obtaining

P̂T ÂP̂ ≡

[
B FT

F C

]
=

[
LB 0

LF I

][
DB 0

0 Sc

][
LT
B LT

F

0 I

]
+ E. (2.91)

Here, ‖L−1B ‖ / κ and E contains the elements dropped during the IC factorization. Restart-

ing the process with A = Sc, we obtain a multilevel approach.

Then, the application of the preconditioner in the PCG algorithm, for a given level l, is

43



Chapter 2. Systems of Linear Equations

derived from (2.91) as

Ml = D−1PP̂

[
LB 0

LF I

][
DB 0

0 Ml+1

][
LT
B LT

F

0 I

]
P̂TPTD−1, (2.92)

where M0 = M .

Operating properly on the vectors,

P̂TPTD−1z = ẑ =

[
ẑB

ẑC

]
, P̂TPTDr = r̂ =

[
r̂B

r̂C

]
, (2.93)

and applying LF = FL−TB D−1B –derived from (2.91)–, we can expose the following compu-

tations to be performed at each level of the preconditioner:

r̂ := P̂TPTDr, Solve LBDBL
T
BsB = r̂B for sB ,

tB := FsB , yC := r̂B − tB ,
Recursive step: Solve Ml+1ẑC = yC for ẑC ,

t̂B := FT ẑC , Solve LBDBL
T
B ŝB = t̂B for ŝB ,

ẑB := sB − ŝB , z := DPP̂ ẑ.

(2.94)

2.4.2 Task-parallel ILUPACK

In this section, we summarize the main ideas underlying the task-parallel version of ILU-

PACK. A more detailed explanation can be found in [3].

Computation of the preconditioner.

The task-parallel version of this procedure employs Nested Dissection (ND) [89] to extract

parallelism. To illustrate this, consider a partitioning, defined by a permutation P̄ ∈ Rn×n,

such that

P̄TAP̄ =

 A00 0 A02

0 A11 A12

A20 A21 A22

 . (2.95)

Computing a partial IC factorizations of the two leading blocks, A00 and A11, yields the

following partial approximation of P̄TAP̄
L00 0 0

0 L11 0

L20L21 I



D00 0 0

0 D11 0

0 0 S22



LT
00 0 LT

20

0 LT
11 L

T
21

0 0 I

+E01,

where

S22 = A22 − (L20D00L
T
20)− (L21D11L

T
21) + E2, (2.96)

is the approximate Schur complement. By recursively proceeding in the same manner with

S22, the IC factorization of P̄TAP̄ is eventually completed.

The block structure in (2.95) allows the permuted matrix to be decoupled into two
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T0 T1 T2 T3

T5T4

T6

Figure 2.4: Dependency tree of the diagonal blocks. Task Tj is associated with block Ajj . The
leaf tasks are associated with the sub-graphs of the leading block of the ND, while inner tasks are
associated to separators.

submatrices, so that the IC factorizations of the leading block of both submatrices can be

processed concurrently, with

A22 = A0
22 +A1

22 ,



[
A00 A02

A20 A0
22

]
=

[
L00 0

L20 I

][
D00 0

0 S0
22

][
LT
00 LT

20

0 I

]
+ E0

[
A11 A12

A21 A1
22

]
=

[
L11 0

L21 I

][
D11 0

0 S1
22

][
LT
11 LT

21

0 I

]
+ E1,

(2.97)

and

S0
22 = A0

22 −
(
L20D00L

T
20

)
+ E0

2 ; S1
22 = A1

22 −
(
L21D11L

T
21

)
+ E1

2 .

Once the two systems are computed, S22 can be constructed given that

E2 ≈ E0
2 + E1

2 → S22 ≈ S0
22 + S1

22. (2.98)

To further increase the amount of task-parallelism, one could find a permutation analogous

to P̄ for the two leading blocks following the ND scheme. For example, a block structure

similar to (2.95) would yield the following decoupled matrices:

A00 0 0 0 A04 0 A06

0 A11 0 0 A14 0 A16

0 0 A22 0 0 A25 A26

0 0 0 A33 0 A35 A36

A40A41 0 0 A44 0 A46

0 0 A52A53 0 A55 A56

A60A61A62A63 A64A65 A66


→

Ā00 =

A00 A04 A06

A40

A60

A0
44 A0

46

A0
64 A0

66

Ā11 =

A11 A14 A16

A41

A61

A1
44 A1

46

A1
64 A1

66



Ā22 =

A22 A25 A26

A52

A62

A2
55 A2

56

A2
65 A2

66

Ā33 =

A33 A35 A36

A53

A63

A3
55 A3

56

A3
65 A3

66


(2.99)

Figure 2.4 illustrates the dependency tree for the factorization of the diagonal blocks

in (2.99). The edges of the preconditioner directed acyclic graph (DAG) define the depen-

dencies between the diagonal blocks (tasks), which dictate the order in which these blocks

of the matrix have to be processed.

In summary, the task-parallel version of ILUPACK partitions the original matrix into a

number of decoupled blocks, and then delivers a partial IC factorization during the com-

putation of (2.97), with some differences with respect to the sequential procedure. The

main change is that the computation is restricted to the leading block, and therefore the

rejected pivots are moved to the bottom-right corner of the leading block; see Figure 2.5.
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Figure 2.5: A step of the Crout variant of the parallel preconditioner computations. Extracted
from [8].

Although the recursive definition of the preconditioner, shown in (2.92), is still valid in the

task-parallel case, some recursion steps are now related to the edges of the corresponding

preconditioner DAG. Therefore different DAGs involve distinct recursion steps yielding dis-

tinct preconditioners, which nonetheless exhibit close numerical properties to that obtained

with the sequential ILUPACK [3].

Application of the preconditioner.

As the definition of the recursion is maintained, the operations to apply the preconditioner,

in (2.94), remain valid. However, to complete the recursion step in the task parallel case, the

DAG has to be crossed two times per solve zk+1 := M−1rk+1 at each iteration of the PCG:

once from bottom to top and a second time from top to bottom (with dependencies/arrows

reversed in the DAG).

2.5 Related work

Many research works have reported important benefits for the solution of sparse linear

algebra problems on many-core platforms. Unfortunately, many of these efforts address

only non-preconditioned versions of the methods, where the sparse matrix-vector product

(SpMV) is the main bottleneck.

A few early works proposed GPU implementations of well-known iterative solvers before

CUDA even existed. Among these pioneers, we can highlight the efforts by Rumpf and

Strzodka [86] on the CG iteration for linear systems arising in finite element methods; Bolz
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et al’s [32] acceleration of multigrid problems leveraging the graphics pipeline; and the

studies of the CG method by Goodnight et al. [58], as well as Krüger et al. [68].

With the start of the CUDA era, Buatois et al. [33] implemented the CG method in

conjunction with a Jacobi preconditioner, using the block compressed sparse row (BCSR)

format. Later, Bell and Garland [21] addressed SpMV, including several sparse storage

formats, that became the basis for the development of the CUSP library [22].

A parallel CG solver with preconditioning for the Poisson equation optimized for multi-

GPU architectures was presented by Ament et al. [15]. Sudan et al. [99] introduced GPU

kernels for SpMV and the block-ILU preconditioned GMRES in flow simulations, showing

promising speed-ups. In parallel, Gupta completed a master thesis [60] implementing a

deflated preconditioned CG for Bubbly Flow.

Naumov [75] produced a solver for triangular sparse linear systems in a GPU, one of

the major kernels for preconditioned variants of iterative methods such as CG or GMRES.

Later, the same author extended the proposal to compute incomplete LU and Cholesky

factorizations with no fill-in (ILU0) in a GPU [74]. The performance of the aforementioned

algorithms strongly depends on the sparsity pattern of the coefficient matrix.

Li and Saad [70] studied the GPU implementation of SpMV with different sparse for-

mats to develop data-parallel versions of CG and GMRES. Taking into account that the

performance of the triangular solve for CG and GMRES, preconditioned with IC (Incom-

plete Cholesky) and ILU respectively, was rather low on the GPU, a hybrid approach was

proposed in which the CPU is leveraged to solve the triangular systems.

Recently, He et. al. [61] presented a hybrid CPU-GPU implementation of the GMRES

method preconditioned with an ILU-threshold preconditioner to control the fill-in of the

factors. In the same work, the authors also propose a new algorithm to compute SpMV in

the GPU.

Some of these ideas are currently implemented in libraries and frameworks such as CUS-

PARSE, CUSP, CULA, PARALUTION and MAGMA-sparse. To our best knowledge, no

GPU implementations of multi-level preconditioners such as that underlying ILUPACK have

been developed, with the exception of our previous efforts, and in some aspects the proposal

by Li and Saad.

2.5.1 Other software packages

The considerable research dedicated to the solution of linear systems by means of iterative

methods has given birth to a number of software tools, most of them designed to exploit

massively-parallel HPC infrastructures. Next, we present an overview of the most relevant

examples.

ILU++

ILU++ is a software package, written entirely in C++ that comprises a set of iterative linear

systems solvers complemented with modern ILU preconditioners for the solution of sparse

linear systems via iterative methods. The package includes different permutation and scaling

techniques, pivoting strategies and dropping rules. In particular ILU++ bundles the inverse-
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based multilevel preconditioners provided by ILUPACK, together with dual-threshold ILUs

developed by Saad [87] and weighted dropping strategies for ILUTP studied by Mayer in [73].

It is currently available on GitHub4

ViennaCL

The Vienna Computing Library (ViennaCL) is a scientific computing library written in C++

that provides a set of routines for the solution of large sparse systems of equations by means

of iterative methods. It uses either a host based computing back-end, an OpenCL comput-

ing back-end, or CUDA to enable the execution on parallel architectures such as multi-core

CPUs, GPUs and MIC platforms (as Xeon Phi processors). The package includes imple-

mentations of the Conjugate Gradient (CG), Stabilized BiConjugate Gradient (BiCGStab),

and Generalized Minimum Residual (GMRES) methods.

As for preconditioners, ViennaCL offers implementations of classical ILU0/IC0 and

ILUT/ICT, as well as a variant of ILU0/IC0 recently proposed by Chow and Patel [35] that

is more suitable for the execution on massively parallel devices than the standard approach.

It also offers Block-ILU preconditioners, simple Jacobi and Row-Scaling preconditioners,

and Algebraic Multi-Grid preconditioners.

The library strongly focuses on providing compatibility with the widest range of com-

puting platforms, as opposed to being specifically tailored to the hardware solutions of a

particular vendor.

pARMs

pARMS is a library of parallel solvers for distributed sparse linear systems of equations that

extends the sequential library ARMS. It provides Krylov subspace solvers, preconditioned

using a domain decomposition strategy based on a Recursive Multi-level ILU factorization.

The library includes many of the standard domain-decomposition type iterative solvers in

a single framework. For example, the standard Schwartz procedures, as well as a num-

ber of Schur complement techniques are included. ILUPACK implements its inverse-based

multilevel preconditioner using ARMS framework.

PETSc

PETSc, which stands for Portable Extensible Toolkit for Scientific Computation, is a highly

complete suite of data structures and routines for the solution of scientific applications

related to partial differential equations. It supports MPI, and GPUs through CUDA or

OpenCL, as well as hybrid MPI-GPU parallelism. Among its features, PETSc includes

a number of Krylov space solvers for linear systems (CG, GMRES, BiCGStab, CGS, and

others), as well as standard ILU, Jacobi, and AMG preconditioners.

Hypre

Developed at Lawrence Livermore National Laboratory, HYPRE is a library that offers a

comprehensive suite of scalable solvers for large-scale scientific simulation, including parallel

4https://github.com/CognitionGuidedSurgery/ILUpp
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multigrid methods for both structured and unstructured grid problems. The HYPRE library

is highly portable and supports a number of languages.

Hypre contains several families of preconditioner algorithms focused on the scalable solu-

tion of very large sparse linear systems. For instance, it includes “grey-box” algorithms, such

as structured multigrid, that use additional information to solve certain classes of problems

more efficiently than general-purpose libraries.

It also offers a suite of common iterative methods, as the most commonly used Krylov-

based iterative methods complemented with scalable preconditioners, such as ILU, AMG

and AINV.

HiPS

HIPS (Hierarchical Iterative Parallel Solver) is a parallel solver for sparse linear systems

developed by Jérémie Gaidamour and Pascal Hénon in the INRIA team-project “Scalap-

plix”, in collaboration with Yousef Saad from the University of Minnesota. It uses a domain

decomposition approach based on a Hierarchical Interface Decomposition (HID), based on

building a decomposition of the adjacency graph of the system into a set of small subdo-

mains with overlap [64]. This is similar to the application of nested dissection orderings

used by ILUPACK to expose parallelism and generate a task tree. Using this partition of

the problem, HIPS provides a solver that combines direct and iterative strategies to solve

different parts. Specifically, it uses a direct factorization to solve the leading block, while

using ILU-preconditioned iterative solvers for the Schur complement.

Trilinos

The Trilinos Project is an effort of the Sandia National Laboratory (USA), to provide a suite

of algorithms for the solution of large-scale, complex multi-physics engineering and scientific

problems.

Trilinos includes a wide range of iterative and direct solvers, preconditioners, high-level

interfaces, and eigen-solvers, bundled in different software packages:

• AztecOO: Preconditioners and Krylov subspace methods

Object oriented suite of standard Krylov iterative methods and preconditioners such

as SOR, ILU, polynomial, and domain decomposition methods.

• ShyLU: Hybrid iterative/direct Schur complement solver

ShyLU is an MPI and threaded framework designed to solve medium-size problems

and to be used as a subdomain solver or smoother for very large problems within an

iterative scheme. It can also be used as a black-box solver. Like HIPS, it uses a hybrid

direct/iterative approach based on Schur complements.

• Teko: Block preconditioning framework

A package for development and implementation of block preconditioners that includes

support for manipulation and setup of block operators. It also features a small number

of generic block preconditioners, including block Jacobi, and block Gauss-Seidel. For

the Navier-Stokes equation, Teko has implementations of SIMPLE, PCD and LSC.
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• ML: smoothed aggregation algebraic multigrid

This package contains several parallel multigrid schemes for preconditioning or solving

large sparse linear systems of equations arising from elliptic PDE discretizations.

Watson Sparse Matrix Package (WSMP)

WSMP is a software package, developed by the IBM T.J. Watson Research Center, targeted

at the solution of large-scale sparse linear systems. It contains common Krylov subspace

solvers as CG, GMRES, TFQMR, and BiCGStab. Accompanying these solvers, the package

currently supports preconditioners as Jacobi, Gauss-Seidel, and Incomplete Cholesky/LDLT

preconditioners for SPD matrices. It supports Jacobi, Gauss-Seidel, and Incomplete LU fac-

torization based preconditioners for general matrices. For the incomplete Cholesky precon-

ditioner, the package allows the user to set the drop tolerance and fill factor. An automatic

tuning mechanism is also provided.

MAGMA Sparse

MAGMA is an open-source project developed by Innovative Computing Laboratory (ICL),

University of Tennessee, Knoxville, USA,

that includes a collection of state-of-the-art GPU accelerated routines for linear algebra,

desinged to exploit heterogeneous CPU-GPU architectures, providing an interface similar

to that of standar libraries like LAPACK and BLAS.

In addition to the extensive collection of dense linear algebra kernels, MAGMA includes

a package to handle sparse computations. The package supports the most common sparse

matrix formats, as CSR, ELL, and also supports the MAGMA-specific format SELL-P, and

implements a comprehensive set of iterative linear solvers, eigensolvers, and preconditioners.

Some examples are the CG, BiCG, GMRES, BiCGStab, with ILU0, ILUT, and Incomplete

Sparse Approximate Inverse preconditioners.
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CHAPTER 3

Enabling GPU computing in sequential ILUPACK

The preconditioner on which ILUPACK is based effectively reduces the number of iterations

of common Krylov subspace solvers. Its convergence properties have been studied both with

theoretical and empirical approaches, where it has proven to be superior to other types of

ILU preconditioners in many moderate to large-scale scenarios. Unfortunately, these appeal-

ing properties come at the price of a highly complex construction process, and a multilevel

structure that implies a computationally demanding application. The considerable incre-

ment in the cost of most solvers when using ILUPACK instead of simpler preconditioners

severely limits the applicability and usefulness of the package. In other words, it is often

preferable to perform many lightweight iterations with a simple ILU preconditioner than

only a few ones with ILUPACK. Of course there are some cases in which simpler precondi-

tioners do not allow the convergence of the solvers or achieve convergence in an impractical

number of iterations, but this range of application is narrower than desired.

One alternative is then to boost the performance ILUPACK by means of HPC and

parallel computing techniques. In this sense, there are two main strategies that can be

followed, which are the exploitation of task-parallelism on the one hand, and data-parallelism

on the other. The first strategy consists in dividing the work into several tasks such that two

or more tasks can be executed concurrently in different computational units on the same

or different sets of data. The second applies when the same function or operation can be

applied to multiple data elements in parallel.

Previous efforts on the parallelization of ILUPACK have focused on the exploitation of

task-parallelism. The intrinsic sequential structure of most Krylov subspace solvers and the

multilevel preconditioner itself, however, severely constrains the execution schedule of the

different tasks involved. To overcome this limitation, the task-parallel ILUPACK versions

proposed in [3] and [4], respectively designed for shared-memory systems and for distributed-

memory platforms, leverage the parallelism extracted by a Nested Dissection ordering of the

coefficient matrix to divide both the construction and the application of the preconditioner
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into tasks that can be executed concurrently on different processors. This strategy will be

explained in more detail in the next chapter of this thesis, but at this point it is impor-

tant to mention the two main drawbacks of this approach. First, the strategy makes some

mathematical simplifications, and increases the amount of floating point operations neces-

sary to construct and apply the preconditioner in order to expose additional concurrency.

This results in a different preconditioner than that calculated by the sequential ILUPACK,

which could mean that some of its beneficial numerical properties no longer apply. The sec-

ond drawback is that the formulation of the task-parallel ILUPACK relies on the coefficient

matrix being symmetric and positive-definite (SPD), and an extension of this strategy to

general matrices is not trivial to derive.

This chapter investigates the exploitation of data-parallelism to accelerate the execution

of ILUPACK by utilizing massively parallel processors, such as GPUs. Unlike the previous

parallel versions, instead of trading floating-point operations (flops) for increased levels

of task-parallelism, the rationale is to exploit the data-parallelism intrinsic to the major

numerical operations in ILUPACK, off-loading them to the hardware accelerator, where they

are performed via highly-tuned data-parallel kernels. This allows to accelerate ILUPACK

without compromising its mathematical properties.

The chapter begins by describing the general strategy, which is presented in the context

of accelerating the execution of SPD systems. The same strategy is applied later to deliver

a baseline data-parallel version of ILUPACK’s solvers for general (non-symmetric) and sym-

metric indefinite linear systems on GPUs. This is immediately followed by an experimental

evaluation of these baseline versions.

Later, the chapter describes the extensions and enhancements to our baseline devel-

opments, which tackle three important problems of the baseline data-parallel versions of

ILUPACK for sparse general linear systems. This is again accompanied by an experimental

evaluation.

The major contributions of this chapter are the following:

• We introduce data-parallel GPU versions of the ILUPACK preconditioner and four

of the most relevant sparse solvers bundled in the package: CG for SPD systems,

GMRES and BiCG for general systems, and SQMR for symmetric indefinite systems.

Our new solvers maintain the number of floating-point operations and, although minor

differences appear in some cases1, they also preserve the accuracy and convergence rate

of the original routines.

• Our experimental analysis compares the performance advantages of the different meth-

ods using a number of real problems, in particular, from the SuiteSparse collection

(formerly known as University of Florida Matrix Collection or UFMC [40]).

• The results show that the baseline versions of GPU-enabled solvers can efficiently ex-

ploit the hardware resources of state-of-the-art GPU platforms, especially for moderate

and large problems, with speed-up values of up to 3×.

• In the case of the GMRES solver, we identify that, for many sparse linear systems,

a key constraint to attain higher speed-ups with respect to the sequential ILUPACK

1Related with the use of floating-point arithmetic.
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is the computation of the (modified) Gram-Schmidt re-orthogonalization (MGSO) on

the CPU. In order to deal with this bottleneck, we design and integrate into GMRES

an accelerated GPU-version of MGSO that amortizes the cost of host-device commu-

nication.

• The BiCG solver operates on two simultaneous recurrences, one involving A and the

second one Ā = AT , requiring a sparse matrix-vector (SpMV) product per iteration

on each matrix. While these SpMV operations can be computed in the GPU, via the

appropriate invocations to Nvidia’s cuSparse library for sparse linear algebra [100],

in our experiments we noticed that the SpMV operating on the transpose matrix

was considerably slower. To deal with this, we take advantage of the independence

between the recurrences involving A and AT , to execute the operations of each one in a

different GPU, synchronizing when necessary. In particular, we leverage the duplicate

memory capacity of the dual-GPU system to store a transposed copy of Ā (and the

preconditioner) in one of the accelerators, so that we can rely on the faster version of

SpMV in cuSparse that involves a non-transposed operand for both recurrences.

• Extending the work summarized in the previous point, we study the application of

several techniques in order to further exploit the task and data-parallelism of the BiCG

in hardware platforms equipped with a single GPU. In this sense, we explore the use

of GPU streams and concurrent CPU and GPU computations, on the premise that,

in single-GPU contexts, the use of the multi-core CPU could partially compensate

the absence of a second GPU. We also evaluate the use of a recent synchronization-

free strategy for the solution of sparse triangular linear systems, proposed in [45] and

summarized in Appendix A of this document. Although this technique does not always

improve the runtime attained by cuSparse for the solution of triangular systems

involved in ILUPACK, it can favour the overlapping of operations between CPU and

GPU.

• We augment the family of Krylov subspace iterative methods for sparse general linear

systems accelerated with an ILUPACK preconditioner with a data-parallel version of

the Bi-Conjugate Gradient Stabilized Method (BiCGStab). To accomplish this, we

first develop a CPU version of the solver to then produce a variant that runs entirely

on the graphics accelerator.

3.1 Platforms and test cases

The experiments conducted to test the performance of the developments presented in this

chapter were performed on different hardware platforms using several test cases. Since some

of the contributions to be presented in the following sections were motivated by experimental

results extracted from the baseline versions, the evaluation of the baseline is presented before

the enhancements motivated by these results. In order to facilitate the reading, in this section

we compile all the platforms and test cases that will appear later in the remaining of the

chapter.
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3.1.1 Hardware and software platforms

Next we describe the hardware platforms and software used in this chapter.

Bach

Bach is a server equipped with an Intel i7-2600 CPU (4 cores at 3.4 GHz), 8 MB of L3 cache

and 8 GB of RAM. The GPU in this platform is an Nvidia S2070, of the Fermi generation,

with 448 cores at 1.15 GHz and 5 GB of GDDR5 RAM. The CUDA Toolkit, which includes

the compiler and accelerated libraries such as cuBlas and cuSparse, is version 4.1. The

C and Fortran compiler employed for the CPU codes was gcc v4.4.6, and the operating

system on the server is CentOS Rel. 6.2.

Mozart

This platform features a low-end Intel i3-3220 CPU (2 cores at 3.3 GHz), with 3 MB

of L3 cache and 16 GB of RAM. Although the CPU in Bach is clearly more advanced,

the performance of both CPUs in single-thread codes is comparable. The server includes a

Nvidia K20 GPU of the Kepler architecture. It contains 2,496 cores at 0.71 and 6 GB of

GDDR5 RAM. The version of the CUDA Toolkit in this case is 5.0. C and Fortran compiler

is gcc v4.4.7. The operative system is CentOS Rel. 6.4.

Beethoven

Beethoven presents an Intel i7-4770 processor (4 cores at 3.40 GHz) and 16 GB of DDR3

RAM (26 GB/s of bandwidth), connected to an NVIDIA Tesla K40 GPU, with 2,880 cuda

cores at 0.75 GHz, and 12 GB of DDR5 RAM (288 GB/s bw). NVIDIA CUBLAS/CUS-

PARSE 6.5 was employed in the experimentation. For the CPU codes we used gcc v4.9.2

with -O4 as an optimization flag.

Brahms

This platform has an Intel(R) Xeon(R) CPU E5-2620 v2 (6 cores at 2.10GHz), and 128 GB

of DDR3 RAM memory. The platform also contains two NVIDIA “Kepler” K40m GPUs,

each with 2,880 CUDA cores and 12 GB of GDDR5 RAM. The CPU codes were compiled

with the Intel(R) Parallel Studio 2016 (update 3) with the -O3 flag set. The GPU compiler

and the CUSPARSE library were those in version 6.5 of the CUDA Toolkit.

3.1.2 Test cases

SuiteSparse test cases

We selected a set of matrices from the SuiteSparse matrix collection that comprises three

medium to large-scale SPD matrices, five large-scale non-symmetric matrices with dimension

n > 1, 000, 000, and six symmetric indefinite ones with n > 100, 000. The dimension, number

of non-zeros and sparsity ratio of these matrices is displayed in Table 3.1.
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Matrix n nnz nnz/n

SPD
ldoor 952,203 23,737,339 24,93

thermal2 1,228,045 4,904,179 3,99
G3 circuit 1,585,478 4,623,152 2,92

Symmetric
Indefinite

darcy003 389,874 2,097,566 5.38
F1 343,791 26,837,113 78.06

mario002 389,874 2,097,566 5.38
cbig 345,241 2,340,859 6.78

nlpkkt120 3,542,400 95,117,792 26.85
nlpkkt160 8,345,600 225,422,112 27.01

Non-symmetric

cage14 1,505,785 27,130,349 18.02
memchip 2,707,524 13,343,948 4.93

Freescale1 3,428,755 17,052,626 4.97
rajat31 4,690,002 20,316,253 4.33
cage15 5,154,859 99,199,551 19.24

Table 3.1: Matrices from the SuiteSparse collection used in the experiments.

SPD and Symmetric Indefinite PDE

We considered the Laplacian equation ∆u = f in a 3D unit cube Ω = [0, 1]3 with Dirichlet

boundary conditions u = g on δΩ. The discretization consists in a uniform mesh of size

h = 1
N+1 obtained from a seven-point stencil. The resulting SPD linear system Au = b

has a sparse SPD coefficient matrix with seven nonzero elements per row, and n = N3

unknowns. The problem is set to generate five benchmark SPD linear systems of order

n ≈ 1M, 1.9M, 3.3M, 8M and 16M. In the experiments related with the SQMR solver, a

random set of eigenvalues of these matrices were modified by changing their sign, so that the

resulting problem becomes indefinite. We display the dimension and number of non-zeros

of each problem instance in Table 3.2.

Matrix Dimension n Non-zeros nnz nnz/n
A50 125,000 492,500 3.98
A159 4,019,679 16,002,873 3.98
A171 5,000,211 19,913,121 3.98
A200 8,000,000 31,880,000 3.99
A252 16,003,008 63,821,520 3.99
A318 32,157,432 128,326,356 3.99
A400 64,000,000 255,520,000 3.99

G3 Circuit 1,585,478 7,660,826 4.83

Table 3.2: Matrices employed in the experimental evaluation.

Non-symmetric Convection-Diffusion Problems (CDP)

We considered the PDE ε∆u+ b ∗ u = f in Ω, where Ω = [0, 1]3. For this example, we use

homogeneous Dirichlet boundary conditions, i.e. u = 0 on ∂Ω. The diffusion coefficient ε is
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set to 1, and the convective functions b(x, y, z) are given by:

conv. in x-direction: [1, 0, 0],

diagonal convection: 1√
3
[1, 1, 1],

circular convection: [ 12 − z, x−
1
2 ,

1
2 − y].

The domain is discretized with a uniform mesh of size h = 1
N+1 resulting in a linear

system of size N3. For the experiments we set N = 200. For the diffusion part −ε∆u we

use a seven-point-stencil. The convective part b ∗ u is discretized using up-wind differences.

We display the circular convective function in 2D/3D for illustration.
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3.2 Baseline Data-Parallel variants of ILUPACK

In this section we describe our general strategy to obtain GPU-accelerated versions of the

Krylov space solvers bundled in ILUPACK. We focus our efforts mainly on the application

of the multilevel preconditioner, since it is the main computational bottleneck in most cases.

ILUPACK supports several matrix types, and provides a wide range of solvers and pre-

conditioners to cover their specificities. For example, for SPD matrices ILUPACK includes

an implementation of the CG method (see Section 2.2.2), and a preconditioner based on

an LDLT , where the L matrix is unit-lower triangular and D is diagonal. In the case of

symmetric indefinite matrices, the solver provided by ILUPACK is the Symmetric Quasi-

Minimal Residual –SQMR– method, and the preconditioner is again of the form LDLT , but

with D being block diagonal due to the application of the Bunch-Kaufman pivoting strat-

egy [65]. For the non-symmetric case, the package presents implementations of the BiCG

and GMRES algorithms, while the preconditioner is of the form LDU , with L unit-lower

triangular, U unit-upper triangular, and D diagonal.

Each of these preconditioners is computed by an specific routine and is stored in a

slightly different sparse matrix representation. Nevertheless, the construction of the different

variants of the ILUPACK preconditioner, and thus the application of each variant, follow a

procedure similar to that described in Section 2.4.

ILUPACK’s multilevel preconditioner is stored as a linked list of structures that contain

the information computed at each level. Concretely, a level contains pointers to the subma-

trices that form the ILU factorization: the B submatrix that comprises the LDU factored

upper left block and the G, F rectangular matrices, along with the diagonal scaling and per-
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mutation vectors that correspond to D̃, P̃ , and P̂ ; see Section 2.4. The case of symmetric

matrices is analogous, and the differences reside in that only the lower triangular factor L

and the (block-)diagonal D of the LDLT factorization are stored explicitly, and that G is

not stored because it is equal to FT .

The computational cost required to apply the preconditioner is dominated by the sparse

triangular system solves (SpTrSV) and SpMVs. Nvidia cuSparse [100] library provides

efficient GPU implementations of these two kernels that support several common sparse

matrix formats. Therefore, it is convenient to rely on this library. The rest of the operations

are mainly vector scalings and re-orderings, which gain certain importance only for highly

sparse matrices of large dimension, and are accelerated in our codes via ad-hoc CUDA

kernels.

In the following we provide some details about the work performed in order to enable

the use of the GPU in each of the main types of operations: LDU systems, matrix-vector

products and vector operations.

3.2.1 Solution of LDLT and LDU linear systems

Given the modified-CSR (MCSR) storage layout adopted by ILUPACK for the LDLT and

LDU factors, and the native format handled by the cuSparse library (CSR), a layout

reorganization is necessary before the corresponding kernel can be invoked. In the cur-

rent implementation, this process is performed by the CPU, during the calculation of the

preconditioner.

In the case of SPD systems, after the transformation, the LDLT factors are transferred

and stored in the GPU as a matrix L̂ = LD1/2 in (plain) CSR format. Since cuSparse pro-

vides a triangular system solver for matrices in this format, a system of the form LDLTx = b

is tackled by first solving L̂y = b for y, and then L̂Tx = y for x. This is performed via two

consecutive calls to routine cusparseDcsrsv solve, with the appropriate arguments to op-

erate with the triangular coefficient matrix L̂ or its transpose L̂T . The analysis phase

required by the CUSPARSE solver, which gathers information about the data dependencies

and aggregates the rows of the triangular matrix into levels, is executed only once for each

level of the preconditioner, and it runs asynchronously with respect to the host CPU.

In the symmetric-indefinite case, ILUPACK’s MCSR representation stores the inverse

of the symmetric block-diagonal matrix D, using 2nB floating point numbers (with nB

denoting the size of the leading block), while the rest of the structure contains L̂ ∈ RnB×nB ,

that is, the strictly lower triangle of L, in CSR format. ILUPACK then solves a system of

the form (L̂D−1 +InB)D(L̂D−1 +InB)T . Those columns that correspond to 2×2 pivots are

stored interleaved, since in L̂D−1 they have the same nonzero pattern and this is exploited

by the serial CPU solver.

To solve these systems using cuSparse, we split their structure into a symmetric tridi-

agonal matrix D−1, which we store as two vectors of size nB, and then form matrix

L̃ = (L̂D−1 + InB) explicitly. After this transform, at each level, we solve linear sys-

tems with coefficient matrix of the form L̃D−1L̃T . Here, as the inverse of D is available,

this involves a tridiagonal matrix-vector product, which is performed in the GPU by means
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of a simple ad-hoc CUDA kernel.

In the case of ILUPACK’s non-symmetric preconditioner, the leading block B is stored in

MCSR format with the L and U factors kept in an interlaced manner. Concretely, the vector

containing the diagonal entries in the MCSR structure holds the inverses of the diagonal

elements of U , while the CSR part of the structure holds each column of the strict-lower

triangle of L (as it is unit-diagonal) followed by the corresponding row of U . The integer

vectors of the CSR part are adapted accordingly.

In order to use cuSparse, we thus need to split each B submatrix into separate L and

U factors, stored by rows in the conventional CSR format. As in the previous cases, this

transform is done only once, during the calculation of each level of the preconditioner, and

occurs entirely in the CPU. After that, the L and U factors, in CSR format, are transferred

to the GPU, where the triangular systems involved in the preconditioner application are

solved via two consecutive calls to cusparseDcsrsv solve.

3.2.2 Matrix-vector products

In order to compute the SpMV operations involved in the application of the preconditioner

on the GPU, G and F are also transferred to the device during the construction phase. As

these matrices are stored by ILUPACK in CSR format, no reorganization is needed prior to

the invocation of the cuSparse kernel for SpMV.

However, in the SPD case, the products that need to be computed during the application

of the preconditioner, at each level, are of the form x := Fv and x := FT v. As both the

matrix and its transpose are involved in the calculations, two different strategies can be

applied. In particular, the cuSparse kernel for this operation, cusparseDcsrmv, includes an

argument (switch) that allows to multiply the vector with the transpose of the matrix passed

to the function. This makes it possible to store only F in the GPU, but compute both forms

of the product by setting the appropriate value for the transpose switch. Unfortunately,

the implementation of SpMV in cuSparse delivers considerable low performance when

operating with the transposed matrix.

For these reasons we allocated both F and FT in the GPU, using a cuSparse routine

to transpose the matrix, which was done only once for each level of the preconditioner.

The memory overhead incurred for storing the transpose explicitly is unavoidable in the

non-symmetric case, but we find this performance-storage trade-off acceptable.

A similar situation occurs in the case of BiCG solver, as the application of the precon-

ditioner involves G and F as well as their respective transposes. In this case, storing both

transposes can exceed significantly the memory requirements of the non-symmetric versions

of ILUPACK, as two additional matrices need to be stored, unlike in the symmetric case,

where only one extra matrix is needed. For this reason, our approach in this case only keeps

G and F in the accelerator, and operates with the transposed/non-transposed matrices by

setting the appropriate value for the transpose switch.
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3.2.3 Vector operations

As mentioned earlier, the solution of the triangular systems and the matrix-vector multiplica-

tions that appear at each level of the preconditioner application are the most time-consuming

operations in most problems. On the other hand, although the remaining vector operations

involved in the application of the preconditioner are not computationally-intensive, if they

are performed on the CPU, it is necessary to transfer their results to the GPU when they

are needed as well as to retrieve the results of the triangular system solves and SpMV to the

CPU. Furthermore, as the “recursive” application the preconditioner consists of a strictly

ordered sequence of steps (where concurrency is extracted from the operations that compose

each one of these steps), no overlapping between data transfers and calculations is possible.

For this reason, we off-load the entire preconditioner application to the GPU. This implies

that the residual rk+1 is transferred to the GPU before the operations commences, and then

all levels of the preconditioner are processed in the accelerator to obtain zk+1 := M−1rk+1.

After the operation is completed, the preconditioned residual zk+1 is retrieved back to the

CPU. To make this possible, we implemented three additional GPU kernels:

• The diagonal scaling kernel multiplies each entry of an input vector by the correspond-

ing entry of a scaling vector. This is equivalent to multiplying a diagonal matrix –as

scaling vector– by the input vector.

• The ordering kernel reorganizes an input vector vin by applying a vector permutation

p, and produces an output vector vout, with entries vout[i] := vin[p(i)].

• The third kernel simply implements the subtraction c := a − b where a, b and c are

vectors.

By performing these operations in the GPU we can avoid some data transfers and reduce

the runtime significantly, especially for those cases where the size of the vectors is rather

large compared with the number of non-zeros of the triangular factors.

These three kernels appear in every variant of the preconditioner application routine.

3.2.4 Parallelization of SpMV and other kernels

In addition to the parallelization of the preconditioner, we further enhanced the solvers in

ILUPACK by off-loading the SpMV required by the solver to the GPU. For this purpose, it

is necessary to store A in the GPU. In our implementation this matrix is transferred to the

GPU memory before the iterative solve commences, and resides there until completion. The

matrix is stored in CSR format and the SpMV is performed via the implementation of this

kernel in cuSparse. The transposed SpMV of the BiCG is performed using the transposed

variant of cuSparsecsrMv routine.

In general, the level-1 Blas operations of the solvers contribute little to the overall

computational cost, which is dominated completely by the application of the preconditioner.

Therefore, these operations are performed in the CPU in our baseline versions.
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3.2.5 Experimental evaluation of baseline parallel versions

Next we present the experimental evaluation of our baseline GPU-aware ILUPACK solvers.

We start by analyzing the results for the SPD case, to then evaluate the solvers for indefinite

and non-symmetric systems.

As more modern GPUs became available during the development of these variants, the

evaluation uses a variety of platforms. The evaluation of the SPD variant was performed

in platforms Bach and Mozart, while the rest of the solvers were tested in platform

Beethoven (see Section 3.1).

All the results in this section were obtained using ieee double-precision arithmetic. In

all cases, the total runtime includes the cost of transferring the matrix to the GPU.

Evaluation of CG

Table 3.3 compares the original CPU-based implementation of ILUPACK against our GPU-

aware version Base PCG, using the SPD cases of the benchmark collection in Bach and

Mozart hardware platforms. In particular, in the results we detail the number of iterations

needed for convergence (label “#iter”); the execution times spent during the preconditioner

application in the solution of triangular systems with coefficient matrix of the form LDLT ,

the SpMV operations, the CPU-GPU data transfers and the total preconditioner application

time (labels “LDLT time”, “SpMV time”, “Transfer time” and “Preconditioner time”,

respectively); the total solver time (label “Total PCG time”); and the relative residual

R(x∗) :=
||b−Ax∗||2
||x∗||2

, (3.1)

where x∗ stands for the computed solution.

The results in the table show that our GPU-based version and the original CPU version

required the same number of iterations to converge in all experiments. Additionally, the

differences between the attained residual errors are very small, of a magnitude that can be

easily explained by the unavoidable floating-point errors. These results confirm that both

data-parallel GPU-based versions preserve the numerical properties of the original ILUPACK

solver.

From the performance point of view, the new GPU-based version exhibits an important

reduction of the preconditioner application time with respect to the original ILUPACK

solver for all test cases and both hardware platforms. The results in Table 3.3 report that

Base PCG outperforms the CPU implementation of ILUPACK, in factors varying from

1.25× to 5.84×, depending on the case/platform, and that these speed-ups tend to increase

with the size of the problem. This responds to the fact that, for small problems, it is

difficult to fully exploit the cores of the GPU and hide the important latency of memory

operations. In this sense, the platform equipped with a “Fermi” GPU offers lower execution

times than the “Kepler”-based server only for the ldoor case (smallest matrix). This is due

to the “Fermi” architecture (448 CUDA cores at 1.15 GHz) being more appropriate when

the problem features a low degree of concurrency. In all other cases, though, the “Kepler”

processor delivers higher performance.
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Table 3.3: Experimental results for the baseline GPU-enabled implementation of ILUPACK’s CG
method (Base PCG) in Mozart and Bach. Times are in milliseconds.

Platform Matrix Device #iter
Time R(x∗)

LDLT SpMV Transfer Preconditioner Total PCG

Mozart

ldoor
CPU 200 101,713 8,646 - 114,548 136,040 4.845E-07
GPU 200 74,805 1,191 1,074 77,291 96,880 4.963E-07

thermal2
CPU 186 18,149 5,871 - 30,097 40,060 2.397E-08
GPU 186 7,525 687 1,263 9,792 19,850 2.392E-08

G3 Circuit
CPU 75 8,364 3,120 - 14,844 18,290 2.674E-06
GPU 75 3,603 385 645 4,787 8,200 2.674E-06

A126
CPU 44 15,122 3,442 - 21,056 23,660 5.143E-09
GPU 44 10,359 444 469 11,381 14,010 5.143E-09

A159
CPU 52 37,097 8,616 - 51,973 58,220 2.751E-09
GPU 52 17,351 1,063 1,094 19,751 26,080 2.751E-09

A200
CPU 76 70,275 30,370 - 124,123 142,880 5.618E-09
GPU 76 20,688 3,532 3,172 28,276 47,020 5.618E-09

A252
CPU 338 383,617 98,296 - 652,209 815,950 5.721E-08
GPU 338 72,262 5,763 28,240 111,754 279,780 5.721E-08

Bach

ldoor
CPU 200 90,199 7,637 - 101,381 119,800 4.845E-07
GPU 200 74,147 1,373 552 76,337 88,240 4.842E-07

thermal2
CPU 186 16,021 5,126 - 26,617 34,730 2.397E-08
GPU 186 10,948 987 658 13,024 21,450 2.302E-08

G3 Circuit
CPU 75 7,138 2,725 - 12,762 15,340 2.674E-06
GPU 75 4,610 546 339 5,704 8,380 2.675E-06

A126
CPU 44 13,509 2,972 - 18,688 20,680 5.143E-09
GPU 44 10,720 541 247 11,673 13,760 5.143E-09

A159
CPU 52 32,648 7,424 - 45,671 50,410 2.751E-09
GPU 52 19,814 1,234 575 22,022 26,010 2.751E-09

A200
CPU 76 60,513 25,626 - 106,540 120,830 5.618E-09
GPU 76 32,245 4,263 1,674 39,536 54,670 5.618E-09

A252
CPU 338 264,697 74,812 - 476,384 602,160 5.721E-08
GPU 338 106,944 6,527 14,795 136,918 266,690 5.721E-08

Evaluation of SQMR

The results of the evaluation of the GPU-aware symmetric-indefinite variant of ILUPACK

(Base SQMR) are summarized in Table 3.4. The first part contains the experiments with

the modified symmetric PDE of scalable size presented in Section 3.1, and illustrates a

performance advantage of the GPU solvers that grows with the size of the instances. For

this set of matrices, the acceleration of the SpMV is about 3×, and the preconditioning

stage is improved by around 4× for the larger test cases, but the unaccelerated stages of the

solver represent more than 10% of the total runtime and keep the global speedups below 3×.

In most of the test cases extracted from the SuiteSparse collection, shown in the second part

of the table, the preconditioner is not able to converge for τ > 0.01. Decreasing the value

of τ introduces a large amount of fill-in in the preconditioner, reducing the degree of data-

parallelism. Figure 3.1 shows the sparsity pattern of the L factor that corresponds to each

level of the preconditioner for the problem c-big. The plots illustrate that the fill-in in the L

factor increases dramatically from the first to the second level of the factorization. This has

two main effects. On the one hand, the new non-zero elements are likely to generate data

dependencies between the rows of the L factor during the solution of the triangular linear

systems, which severely harms the performance of cuSparse’s level-based solver. On the

other hand, as the dimension of the systems grow, the important memory requirements turn

increasingly difficult to store the necessary matrices in the GPU, and thus the symmetric

instances presented in the middle section of the table are all of intermediate size. The little

improvement obtained for this set of matrices is mostly due to the speedup of the SpMV.
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Figure 3.1: L factor of each level of the LDL multilevel factorization of matrix c-big. Levels
increase from left to right and from top to bottom.

The largest symmetric indefinite instance we were able to test was a non-linear pro-

gramming problem from the SuiteSparse collection, also studied in [96]. The results for this

benchmark are closer to those obtained in the symmetric indefinite PDE. There are four in-

stances of this problem, which vary in size. When τ = 0.01, the fill-in of the preconditioner

allows only the three smaller instances to be executed in the GPU.

To close this discussion, we note that, contrary to the results obtained in the previous

experiments, there are discrepancies in the number of iterations as well as residual errors

for some of the tested instances. These could be caused by floating point errors and the use

of Buch-Kaufman pivoting, but further tests are required.

Evaluation of GMRES and BiCG

For the evaluation of our GPU implementations for non-symmetric matrices, we first applied

the BiCG and GMRES methods to the SPD matrices associated with the Laplacian PDE,

treating them as if they were non-symmetric. The test instances in this benchmark can

be scaled up arbitrarily while preserving certain pattern in the non-zeros structure of the

factorization. The results in Table 3.5 show an important improvement in the performance

of the two GPU-accelerated solvers, though this is more notorious for BiCG. The reason is

that the only stages of the solver that are off-loaded to the accelerator are the application

of the preconditioner and SpMV. The first one occurs twice per iteration for BiCG (as the

transposed preconditioner also has to be applied), but only once for GMRES. If we consider

the stages that involve the preconditioner, the acceleration factor reaches up to 6× for the

transposed preconditioner in the largest test case. This is not surprising, given the memory-

bound nature of the problem and that the GPU has a memory bandwidth only 11× higher

than the CPU. The matrices of this set are SPD and well-conditioned, allowing us to use

a drop tolerance factor τ = 0.1 and still converge in a few iterations. This arguably high

value of τ produces a sparser preconditioner, exposing a larger volume of data-parallelism

that is exploited by the GPU kernels.

To expose the performance of the non-symmetric solvers, we repeated the evaluation with

a set of large non-symmetric problems from the SuiteSparse collection. Table 3.5 reports
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Table 3.4: Experimental results for the baseline GPU-enabled implementation of ILUPACK’s
SQMR method (Base SQMR) in platform Beethoven. Times are in seconds.

Matrix Device #Iters. Time R(x∗) Speed-up
SpMV M−1 Rem. Total Total

A050
CPU 40 0.04 0.29 0.03 0.37 7.90E-09
GPU 40 0.02 0.28 0.04 0.34 7.90E-09 1.09

A100
CPU 72 0.79 5.00 0.71 6.51 3.00E-08
GPU 72 0.26 1.72 0.77 2.76 3.00E-08 2.35

A159
CPU 114 5.03 34.78 4.65 44.49 4.10E-08
GPU 114 1.67 9.32 4.88 15.89 4.10E-08 2.79

A200
CPU 137 12.27 85.07 11.19 108.56 3.00E-08
GPU 137 4.07 21.30 12.16 37.56 3.00E-08 2.89

A252
CPU 170 31.37 201.91 27.33 260.66 6.60E-08
GPU 170 9.81 51.89 28.59 90.35 4.50E-08 2.88

darcy003
CPU 88 0.68 2.73 0.26 3.68 4.00E-08
GPU 88 0.12 2.02 0.33 2.48 3.60E-08 1.48

F1
CPU 477 23.03 33.90 1.35 58.29 1.30E-07
GPU 477 1.74 38.72 1.55 42.01 1.40E-07 1.39

c-big
CPU 22 0.11 0.87 0.06 1.06 1.10E-09
GPU 22 0.12 0.72 0.09 0.93 1.10E-09 1.13

mario002
CPU 88 0.63 2.58 0.26 3.48 4.00E-08
GPU 88 0.13 2.03 0.34 2.51 3.90E-08 1.38

nlpkkt120
CPU 187 24.35 73.02 6.34 103.73 1.40E-06
GPU 176 3.67 24.24 6.86 34.78 4.40E-06 2.98

nlpkkt160
CPU 252 82.92 252.22 21.77 356.95 4.40E-06
GPU 252 12.34 73.26 22.51 108.14 4.50E-06 3.30

fair acceleration factors for the GPU versions of the solvers. In some detail, the speed-up

values for the application of the preconditioner are quite similar to those attained for the

Laplace matrices set, but the improvement experienced by the SpMV kernel is larger in all

cases.

Next, we tested our solver on the non-symmetric CDP cases (see Section 3.1). In these

experiments, the parallel versions outperform the serial CPU solvers, with speed-ups in the

order of 2×, while the acceleration of the preconditioner is almost 3×.

Comparing both solvers, the acceleration attained by GMRES is always lower than

that observed for BiCG. This can be easily explained by noting that, in BiCG, the GPU-

accelerated stages (preconditioner application and SpMV) take most of the execution time.

For GMRES, the time of the unaccelerated stages is more important, to the extent that, in

some cases, the unaccelerated steps of the GPU versions consume a higher fraction of the

time than the accelerated ones. A detailed analysis revealed that, in these cases, the bottle-

neck of the GMRES method is the modified Gram-Schmidt re-orthogonalization. Regarding

the quality of the computed solution x∗, the GPU-enabled solvers converge in the same

number of iterations and present the same final relative residual error (calculated according

to 3.1) as the original version of ILUPACK.

3.3 Enhanced data-parallel variants

The experimental evaluation of our baseline data-parallel solvers reveals opportunities for

further improvement. The most clear case is that of GMRES, where after accelerating the

application of the preconditioner, the rest of the operations of the solver become the most
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Table 3.5: Experimental results for the baseline GPU-enabled implementation of ILUPACK’s
BiCG and GMRES methods (Base GMRES and Base BICG) in platform Beethoven. Times
are in seconds.

Solver Matrix Device #Iters. Time R(x∗)
Speed-up

SpMV M−1 M−T Rem. Total M−1 M−T Total

BiCG

A050
CPU 16 0.010 0.016 0.017 0.008 0.05 1.80E-09 - - -
GPU 16 0.009 0.012 0.010 0.008 0.04 1.80E-09 1.35 1.62 1.31

A100
CPU 14 0.07 0.18 0.21 0.08 0.54 5.80E-09 - - -
GPU 14 0.06 0.05 0.05 0.08 0.24 5.80E-09 3.25 4.60 2.25

A159
CPU 14 0.29 0.67 0.63 0.31 1.90 4.90E-09 - - -
GPU 14 0.24 0.20 0.18 0.32 0.93 4.90E-09 3.43 3.79 2.04

A200
CPU 14 0.60 1.35 1.25 0.62 3.82 5.30E-09 - - -
GPU 14 0.47 0.39 0.35 0.63 1.84 5.30E-09 3.45 3.78 2.08

A252
CPU 14 1.15 3.40 4.13 1.23 9.92 5.70E-09 - - -
GPU 14 0.93 0.77 0.69 1.22 3.62 5.80E-09 4.39 6.27 2.74

cage14
CPU 12 0.60 0.72 0.75 0.13 2.20 2.70E-09 - - -
GPU 12 0.21 0.19 0.16 0.10 0.68 2.70E-09 3.78 4.69 3.24

Freescale1
CPU 292 15.24 29.52 45.98 5.71 96.44 1.00E-03 - - -
GPU 292 6.92 5.04 10.17 4.82 26.96 1.00E-03 5.86 4.52 3.58

rajat31
CPU 8 0.48 0.93 0.86 0.29 2.55 1.40E-06 - - -
GPU 8 0.16 0.19 0.29 0.22 0.88 1.40E-06 4.89 2.97 2.90

cage15
CPU 12 2.25 2.83 3.28 0.43 8.78 5.50E-09 - - -
GPU 12 0.86 0.60 0.51 0.35 2.33 5.50E-09 4.72 6.43 3.77

CDP/circ
CPU 286 18.61 82.22 107.58 11.27 219.68 1.20E-07 - - -
GPU 286 14.18 18.86 42.58 11.35 86.97 1.20E-07 4.36 2.53 2.53

CDP/diag
CPU 298 19.37 78.44 81.87 11.59 191.27 2.00E-07 - - -
GPU 298 14.48 19.47 44.24 11.58 89.77 2.00E-07 4.03 1.85 2.13

CDP/u-vec
CPU 316 20.50 83.05 86.71 12.29 202.55 4.10E-08 - - -
GPU 316 15.46 20.59 46.85 12.42 95.33 4.10E-08 4.03 1.85 2.12

GMRES

A050
CPU 9 0.006 0.019 - 0.018 0.043 9.20E-10 - - -
GPU 9 0.005 0.013 - 0.017 0.035 9.20E-10 1.43 - 1.23

A100
CPU 8 0.04 0.22 - 0.15 0.42 4.60E-09 - - -
GPU 8 0.03 0.06 - 0.15 0.24 4.60E-09 3.60 - 1.75

A159
CPU 8 0.16 0.97 - 0.66 1.79 4.10E-09 - - -
GPU 8 0.10 0.23 - 0.66 0.99 4.10E-09 4.22 - 1.81

A200
CPU 8 0.33 1.90 - 1.34 3.57 4.00E-09 - - -
GPU 8 0.20 0.45 - 1.34 1.99 4.00E-09 4.22 - 1.79

A252
CPU 8 0.63 3.13 - 2.58 6.34 3.90E-09 - - -
GPU 8 0.41 0.89 - 2.59 3.88 3.90E-09 3.52 - 1.63

cage14
CPU 7 0.36 0.84 - 0.26 1.46 2.40E-09 - - -
GPU 7 0.05 0.22 - 0.21 0.49 2.40E-09 3.82 - 2.98

Freescale1
CPU 46 2.70 9.32 - 6.19 18.21 6.30E-03 - - -
GPU 46 0.54 1.60 - 5.18 7.33 6.30E-03 5.83 - 2.89

rajat31
CPU 4 0.27 0.93 - 0.53 1.74 3.60E-07 - -
GPU 4 0.06 0.19 - 0.41 0.67 3.60E-07 4.89 - 2.60

cage15
CPU 7 1.31 3.30 - 0.91 5.52 4.80E-09 - - -
GPU 7 0.18 0.70 - 0.71 1.61 4.80E-09 4.65 - 3.43

CDP/circ
CPU 203 12.84 116.44 - 63.32 192.61 1.40E-06 - - -
GPU 203 5.65 26.75 - 62.97 95.37 1.40E-06 2.27 - 2.02

CDP/diag
CPU 241 15.25 127.66 - 75.89 218.81 1.60E-06 - - -
GPU 241 6.73 31.59 - 76.21 114.52 1.60E-06 2.27 - 1.91

CDP/u-vec
CPU 251 15.69 131.47 - 79.67 226.85 1.40E-06 - - -
GPU 251 7.00 32.70 - 79.91 119.61 1.40E-06 2.24 - 1.90
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Operation kernel Computed in. . .

A→M Compute preconditioner
Initialize x0, r0, q0, p0, s0, ρ0, τ0; k := 0
while (τk > τmax)

αk := ρk/(q
T
k Apk) SpMV + dot product

GPU A
xk := xk + αkpk axpy
rk := rk − αkApk axpy
tk := M−1rk Apply preconditioner

zk := M−TAT qk SpMV + apply prec. GPU B
synchronization
sk+1 := sk − αkzk axpy

CPU

ρk+1 := (sTk+1rk)/ρk dot product

pk+1 := tk + ρk+1pk axpy
qk+1 := sk+1 − ρk+1qk axpy
τk+1 :=‖ rk ‖2 dot product
k := k + 1

end while

Figure 3.2: Algorithmic formulation of the preconditioned BiCG method. The steps have been
re-arranged so that the two sequences that compose the method can be isolated and executed in
different devices.

time-consuming stage. In the case of BiCG, the application of the transposed preconditioner

is often much slower than that of the non-transposed variant. This is related to the use of

cuSparse transposed operations, and especially the transposed version of the matrix-vector

product which, in general, is much slower than the non-transposed variant.

In this section we analyze the principal bottlenecks that arise after accelerating the

preconditioner application of sequential ILUPACK. Then we propose new versions of the

corresponding solvers in order to overcome these new limitations. Finally we perform an

experimental assessment of the advanced parallel variants.

3.3.1 Coarse-grain parallel version of BiCG for dual-GPU systems

Our initial data-parallel version of the BiCG method off-loaded the SpMV (with A and

AT ) as well as the application of the preconditioner (and its transpose) to the GPU [6]. An

important issue that severely constrained the performance of this GPU-version of BiCG was

the need to operate with AT , FT , GT in one of the recurrences of the iterative solver. As

highlighted previously, our implementation stored only A, F and G in the GPU memory

and relied on a parameter of the csrMv routine from cuSparse to perform the transposed

SpMV. Unfortunately, the implementation of this kernel in cuSparse offers much lower

performance when invoked with a transposed matrix operand.

The left-hand side column of Figure 3.2 offers an algorithmic description of BiCG, and

Table 3.6 reviews the execution time of the main operations performed inside BiCG, using

the baseline accelerated data-parallel version from Section 3.2. This evaluation shows that

the calls to SpMV that operate with AT are, on average, 2–3× slower than those working

with the non-transposed matrix, with one special case for which it becomes almost 7×
slower. In addition, the application of the transposed preconditioner sometimes takes more

than twice the time of its non-transposed counterpart.

A possibility to deal with the slower SpMV kernel implemented in cuSparse is to
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Table 3.6: Evaluation of BiCG for selected cases in platform Brahms. The SpMV and the
application of the preconditioner both proceed in a single GPU while other minor operations are
performed by the CPU. Times are in seconds.

SpMV Appl. Remaining Total
Matrix #Iter. with A with AT M−1 M−T operations time

A200 10 0.28 0.57 0.37 0.45 0.74 2.26
A252 10 0.54 1.22 0.71 0.88 1.47 4.50

Freescale1 292 3.14 10.66 5.38 11.64 5.78 36.52
cage15 12 0.27 1.84 0.63 0.71 0.83 3.88

diagonal 298 8.91 24.43 21.24 48.77 15.63 118.75
unit-vector 316 8.04 24.47 21.74 50.22 15.21 119.43

maintain explicit copies of the transposed operands in the GPU memory and operate directly

with them. However, this solution is not satisfactory as, for some large-scale problems, the

amount of memory in the accelerator may be insufficient.

Contrary to most Krylov-based iterative linear solvers, in which there exist strict data

dependencies that serialize the sequence of kernels appearing in the iteration, BiCG is com-

posed of two quasi-independent recurrences, one with A and a second with AT ; see the

left-hand side column of Figure 3.2. Moreover, in the preconditioned version of the method,

there is no data dependence between the application of the transposed and non-transposed

preconditioner inside the iteration, exposing coarse-grain parallelism at the recurrence-level.

To improve the performance of BiCG, we rearranged the operations in the BiCG method

so that these two sequences are isolated and executed in a server equipped with two dis-

crete graphics accelerators. This enables the exploitation of coarse-grain task-parallelism in

conjunction with the data-parallelism that is leveraged inside each accelerator.

The specific operations off-loaded to each device in our dual-GPU implementation of the

BiCG method are outlined in Figure 3.2. This partitioning of the workload executes a single

SpMV and the application of one of the preconditioners in each GPU. As these are the

most computationally-demanding steps of the solver, this distribution of the workload can

be expected to be fairly well-balanced, despite the fact that one of the devices also computes

a dot product and two axpy operations.

In a system equipped with two discrete accelerators, each GPU (A and B) has its own

separate memory. Thus, to avoid wasting memory, and simultaneously exploit the faster

version of cuSparseSpMV, we maintain the non-transposed operands in GPU A and the

transposed ones in GPU B. With this approach we do not use additional memory, but

exploit the best storage format in each device. However, it is now necessary to transfer the

transposed data to the second GPU, which adds some overhead.

In the previous implementation, the preconditioner was copied to the GPU asyn-

chronously, as it was calculated by the incomplete factorization routine, overlapping the

transferences with the calculation of the subsequent levels of the preconditioner. As the

BiCG method is the only one that makes use of the transposed matrix and preconditioner,

it makes no sense to perform the transfer of the these transposed operands by default. For

that reason we report this communication cost as an overhead of BiCG. Nevertheless, a sig-

nificant part of this cost can be hidden if the transference is performed asynchronously and
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overlapped with the calculation of the preconditioner, as it is the case of the non-transposed

data.

Regarding the concurrent execution in both devices, we leverage asynchronous memory

copies between the CPU and the GPU so that the accelerated section of the solver proceeds

asynchronously with respect to the host. To accomplish this, we previously register the

memory area used by the solver as non-pageable so that the operations corresponding to

different devices overlap even though they are launched serially.

In summary, by using both devices, we can exploit the increased computational power

provided by the second GPU in addition to the much faster execution of the SpMV when

invoked with non-transposed operands.

3.3.2 Concurrent BiCG for single GPU platforms

The results for the baseline GPU variant of BiCG indicate that, when there is only one

GPU available, using cuSparse to accelerate the most data-parallel stages of BiCG is, in

general, convenient. As mentioned in previous sections, at least two approaches can be

derived. On the one hand, storing AT explicitly in the accelerator enables the use of the

“fast” version of the cuSparse SpMV routine, which can be more than 7× faster than its

transposed counterpart. On the other hand, the memory overhead implied by storing AT can

be excessively high. Furthermore, the transposition of the matrix and the memory allocation

that is required takes considerable time. Therefore, the selection of the best strategy should

consider the memory limitations of the target platform, the size of the coefficient matrix,

the number of iterations performed by the subsequent iterative solver, and the impact of the

SpMV with AT on the overall performance. In this context we are interested in leveraging

the task-parallelism present in BiCG to improve performance when storing AT is not an

option. Therefore, to perform AT v on the GPU, we will use the transposed variant of the

SpMV routine in cuSparse.

Departing again from Base BICG version of Section 3.2, but trying to keep the advan-

tages offered by the task-parallel version, perhaps the most straightforward strategy consists

in exploiting the concurrent GPU execution offered by streams. The first of the accelerated

versions we propose performs the operations that corresponded to GPU A in Figure 3.2 in

the first stream, while the operations corresponding to GPU B are performed in the second

stream. No operations are left to the default stream, and we use the cuBlas device pointer

mode [81] to avoid unnecessary synchronizations due to scalar parameters being transferred

to and from the GPU.

As the resources of the GPU must be shared between all streams, the overlapping of

kernels in different streams can be modest in those cases where one of the kernels fully

utilizes the accelerator. In such scenario, the performance of the solver will be almost iden-

tical to the variant that uses only one stream. Given the important difference between the

performance of the transposed and non-transposed SpMV routines, one possible alternative

is to leverage the multi-core CPU to perform the transposed operations (those correspond-

ing to GPU B in Figure 3.2), while using cuSparse and GPU A for the non-transposed

part. However, as the results in Table 3.5 indicate that we can still obtain an important
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acceleration for the transposed preconditioner on the GPU, we will only evaluate the use

of the CPU for the transposed SpMV, using cuSparse to compute the application of the

transposed preconditioner. This should allow the overlapping of an important part of the

non-transposed SpMV and the application of the non-transposed preconditioner, with the

transposed SpMV, while the eventual overlapping with the transposed preconditioner will

be due to the use of streams.

Enhancing task-parallelism

One of the main bottlenecks of the application of ILUPACK multilevel ILU preconditioner

is the solution of four triangular linear systems in each level, which can be derived from

Equation (2.90). The solution of these operations involves routine cusparseDcsrsv solve

in cuSparse, whose implementation is based on the so-called level-set strategy [17], and

appears described in [76]. In a broad sense, it consists in performing an analysis of the

triangular sparse matrix to determine sets of independent rows called levels. The triangular

solver will then launch a GPU kernel to process each one of these levels, processing the rows

that belong to each level in parallel. The number of levels that derive from the analysis can

vary greatly according to the sparsity pattern of each triangular matrix, so that for matrices

of considerable size it is usually in the order of hundreds or even a few thousands. In such

cases, the overhead due to launching the kernels that correspond to each level can become

significant [47]. In the context of a CPU-GPU concurrent execution, wasting one core on

launching kernels instead of doing useful computations can have a more significant impact

on the overall performance.

Recent research has aimed to reduce the synchronization overhead, as well as replacing

the costly analysis phase by a less computationally-demanding process, based on a self-

scheduled strategy that effectively avoids the synchronization with the CPU [71]. In [45]

we followed these ideas to develop a synchronization-free GPU routine to solve triangular

linear systems for matrices in CSR format. The cost of launching the kernels involved

in this routine is completely negligible, so that solving the triangular linear systems that

correspond to the application of the non-transposed with this strategy should enable a better

overlapping with the transposed SpMV in the GPU. We next provide a brief description of

our routine.

CSR synchronization-free sparse triangular solver

Our self-scheduled procedure to compute the solution of a (lower) triangular sparse linear

system proceeds row-wise, assigning a warp to each unknown. To manage the dependencies

between unknowns, each warp must busy-wait until the entries in the solution vector that

are necessary to process that row have their final values. To keep track of this, a ready

vector of booleans, with an entry for each required unknown, indicates if the corresponding

row has been processed or not.

Before a warp can start processing its assigned row, it iteratively polls the corresponding

entries of the ready vector until all of them have been set to one by the corresponding warps.

The values in the local variable of each thread of the warp are then reduced by a warp-voting
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primitive that returns one if the polled value is nonzero for all the active threads in the warp,

or zero otherwise.

This process will likely cause a deadlock if the warps that produce the values needed

by the current warp are not executed on the multiprocessor because all active warps are

caught executing a busy-waiting. We rely on the fact that accessing the ready vector on

global memory causes a warp stall and, therefore, the warp scheduler of the Streaming

Multiprocessor (SM) activates another warp, so eventually all the dependencies of the warp

get fulfilled.

Once this occurs, each thread of the warp multiplies a nonzero value of the current row

by the appropriate entry of the solution vector, accumulating the result in a register. If

there are more than 32 nonzero elements in the row, the warp moves back to busy-waiting

for the solution of the unknowns that correspond to the next 32 nonzero elements of the

row. The cycle is repeated until all nonzero entries in the row have been processed.

Finally, the registers that accumulate the products performed by each thread of the warp

are reduced using warp shuffle operations, and the first thread of the warp is responsible for

updating the solution and ready vector accordingly.

A more detailed explanation of this process, accompanied by experimental results, can

be found in Appendix A.

3.3.3 GMRES with Accelerated Data-Parallel MGSO

In past work, we accelerated the implementations of BiCG and GMRES in ILUPACK by

off-loading the application of the preconditioner and the SpMV, appearing at each iteration,

to the graphics co-processor. These were, in principle, the most computationally-expensive

operations in both methods. However, for GMRES, once we accelerated these two tasks, the

cost of other operations of the solver became important, especially for some problems of large

dimension showing slow convergence rate. A quick analysis identified that, for these cases,

most of the execution time was spent on the orthogonalization required by the restarted

GMRES (see Algorithm 6). In particular, the cost of this step is proportional to the matrix

dimension, and grows with each iteration until a restart occurs.

Table 3.7 reports the cost of the main operations comprised by the solver, when execut-

ing the sequential implementation in ILUPACK on the CPU and the baseline data-parallel

version introduced in Section 3.2. The cases in the table correspond to a few examples fea-

turing an expensive re-orthogonalization stage. For the CPU version, the application of the

preconditioner is the most time-consuming operation of the sequential solver implemented

in ILUPACK, taking more than 50% of the execution time for all problem instances in the

table. Once we off-load the SpMV as well as the application of the preconditioner to the

accelerator, the remaining stages of the solver gain importance though. Specifically, the

MGSO applied as part of each iteration of the GMRES then represents between 24% and

62% of the total execution time.
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Table 3.7: Evaluation of GMRES for selected cases in platform Brahms. We display the execution
time (in seconds) of each stage of the GMRES solver and their cost (in %) relative to the total time.
In the GPU variant, the SpMV and the application of the preconditioner (identified with the label
“Appl. M−1”) both proceed in the GPU, while MGSO and other minor operations are performed
by the CPU.

SpMV Appl. M−1 MGSO Total
Matrix Device #Iter. Time % Time % Time % time

A200
CPU 6 0.67 15.58 2.18 51.08 0.57 13.45 4.27
GPU 6 0.47 17.24 0.58 21.50 0.73 26.93 2.70

A252
CPU 6 1.30 15.78 4.42 53.53 1.13 13.68 8.25
GPU 6 0.54 13.69 0.97 24.32 1.13 28.38 3.97

Freescale1
CPU 46 2.82 13.14 11.83 55.22 6.03 28.15 21.43
GPU 46 0.99 10.82 1.97 21.56 5.69 62.16 9.15

cage15
CPU 7 1.32 23.75 3.32 59.90 0.48 8.57 5.54
GPU 7 0.28 14.17 0.78 39.61 0.47 24.06 1.97

circular
CPU 203 30.05 9.47 210.92 66.51 72.15 22.75 317.12
GPU 203 10.19 9.02 31.09 27.52 68.38 60.54 112.95

unit-vector
CPU 251 37.14 9.42 260.51 66.11 91.43 23.20 394.08
GPU 251 12.60 8.92 38.07 26.95 86.64 61.34 141.23

Accelerated data-parallel version of MGSO

The implementation of MGSO integrated into ILUPACK’s routine for GMRES is described

in Algorithm 7. For our enhanced data-parallel implementation of this procedure, we de-

signed a hybrid version that leverages the best type of architecture for each operation while,

at the same time, limiting the data transferences.

In particular, we rely on the CUBLAS library to perform the dot products (O1 and O3)

and vector updates (O2, O4 and O5) on the GPU. Since we already off-loaded the SpMV

appearing in GMRES to the accelerator, the basis vectors of MGSO reside in the GPU.

The output of the process is the current basis vector, orthogonalized with respect to the

remaining vectors, and the coefficients of the current row of the Hessenberg matrix. This

matrix is small, and the following application of rotations and triangular solve expose little

parallelism, so it is natural to keep it in the CPU memory. The coefficients of the matrix are

calculated serially via vector products with the basis vectors, so the GPU computes n flops

for each coefficient that is transferred back to the CPU. A similar approach was studied

in [61].

3.3.4 BiCGStab

The BiCGStab method (see Section 2.2.2) is one of the most widespread iterative solvers

for general linear systems [89] for which, unfortunately, there is no support in the current

distribution of ILUPACK.

As stated in Section 2.4, the solvers in ILUPACK are implemented following a reverse

communication strategy. However, as BiCGStab can be efficiently implemented in the GPU

via calls to cuBlas, cuSparse and our data-parallel version of ILUPACK’s preconditioner,

it is natural to encapsulate the method in one monolithic function that receives as inputs,
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Table 3.8: Experimental results for the enhanced coarse-grain data-parallel version of BiCG for
dual-GPU servers (Adv BICG 2GPU) in platform Brahms.

Device/ SpMV A,AT Copies Remaining Total Speed-up Adv BICG 2GPU
Matrix routine M−1,M−T AT ,M−T operations Time with respect to. . .

A200
CPU 7.01 – 0.75 7.77 1.92

Base BICG 1.61 – 0.74 2.21 0.54
Adv BICG 2GPU 0.45 2.93 0.48 4.04 –

A252
CPU 11.06 – 1.21 12.29 1.50

Base BICG 3.31 – 1.44 4.48 0.55
Adv BICG 2GPU 0.88 5.98 0.89 8.14 –

cage14
CPU 2.42 – 0.15 2.59 1.40

Base BICG 0.99 – 0.24 1.13 0.61
Adv BICG 2GPU 0.31 1.34 0.10 1.85 –

Freescale1
CPU 90.94 – 5.82 96.78 7.41

Base BICG 30.84 – 5.79 36.56 2.80
Adv BICG 2GPU 7.20 1.33 4.42 13.05 –

rajat31
CPU 2.56 – 0.29 2.87 1.28

Base BICG 1.15 – 0.38 1.45 0.64
Adv BICG 2GPU 0.26 1.61 0.23 2.23 –

cage15
CPU 9.29 – 0.46 9.77 2.52

Base BICG 3.43 – 0.83 3.87 0.60
Adv BICG 2GPU 1.04 4.64 0.33 6.36 –

circular
CPU 306.95 – 13.59 320.55 8.35

Base BICG 93.33 – 13.30 106.40 2.77
Adv BICG 2GPU 23.71 4.04 10.35 38.38 –

diagonal
CPU 390.99 – 17.71 408.72 10.25

Base BICG 98.77 – 14.37 112.90 2.83
Adv BICG 2GPU 24.65 4.01 10.94 39.85 –

unit-vector
CPU 415.08 – 18.95 434.04 10.37

Base BICG 105.42 – 15.18 120.37 2.88
Adv BICG 2GPU 25.99 4.01 11.73 41.84 –

among other parameters, the right-hand side vector and the initial guess, and produces the

approximate solution to the system in response.

Our CPU implementation of BiCGStab relies on a subset of the BLAS routines dis-

tributed with ILUPACK, though a different implementation of BLAS can be used without

any major modification. On the other hand, our implementation of BiCGStab follows the

ideas in [74] to off-load the entire solver (i.e., all kernels) to the GPU.

3.3.5 Experimental evaluation of advanced variants

Next we present the performance analysis of our advanced parallel variants. The platforms

and test cases used for the experiments are the same as those used in the evaluation of the

baseline versions.

Experimental evaluation of the dual-GPU version of BiCG

Table 3.8 reports the execution time of the coarse-grain data-parallel version of BiCG for

dual-GPU servers (Adv BICG 2GPU). In this table, we separate the operations of each

iteration of BiCG into three groups/stages, and assess the relative cost corresponding to

each of them as well as the total time. The first stage aggregates the operations that

were accelerated by the two GPU versions of the solver: SpMV and application of the

preconditioner. The second stage measures the overhead of the initialization due to the copy

of the transposed matrix and preconditioner to the second GPU; therefore, it is only visible

for the new dual-GPU variant. The third stage comprises the remaining operations, mostly
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dot products and vector updates, which are performed in the CPU in all our implementations

of BiCG.

The results show that the modifications produce a sensible reduction of the execution

time for the cases that take a higher number of iterations to converge. This is necessary

to compensate the additional cost of copying and transferring the preconditioner and the

coefficient matrix to the second GPU. If we consider only the first stage, the acceleration

achieved by the dual-GPU variant with respect to the CPU version is of up to 16×. Nev-

ertheless, the cost of initialization and the unaccelerated parts of the solver significantly

affect the performance. Overall, despite this costly initialization, for some of the problem

instances the execution time of the iterative solve is reduced by a factor in the range 7–10×
with respect to the sequential version.

On the other hand, it is especially remarkable that with our strategy the speed-up

associated to doubling the many-core devices overcomes the linear evolution for the largest

cases. Note that the dual-GPU version of BiCG outperforms the original GPU variant by a

factor of up to 2.88× for the whole method yielding a super-linear speed-up.

Evaluation of the single-GPU variants of BiCG

We next perform the analysis of the experimental results obtained from the execution of

the single-GPU variants discussed in Section 3.3.2. We use the same set of matrices and

hardware platform employed for the evaluation of the dual-GPU proposal.

We include four variants in the evaluation:

• Cpu BICG mkl performs all the computations on the multi-core processor. The two

SpMVs of the BiCG are performed using the multi-threaded of the MKL library

(version 2017, update 3), while the triangular solvers are computed with an optimized

sequential code. This variant does not exploit task-parallelism.

• Adv BICG 2str computes the operations corresponding to the GPU A and GPU B

blocks in Figure 3.2) in one device, assigning one GPU stream to each block. The GPU

computation of the SpMVs and sparse triangular linear systems are performed using

cuSparse library, the vector operations of BiCG are computed using cuBlas, and the

less important vector operations inside the preconditioner application are implemented

using ad-hoc GPU kernels.

• Adv BICG Hyb Cusp employs the multi-core CPU to perform the transposed SpMV

of BiCG using the MKL library. The rest of the computations are performed in the

GPU using cuSparse and cuBlas libraries, as in Adv BICG 2str.

• Adv BICG Hyb SF replaces the triangular solver of the routine that applies the non-

transposed preconditioner by our new synchronization-free routine. It employs the

MKL library to perform the transposed SpMV of BiCG, and cuSparse to compute

the main operations of the transposed preconditioner.

The results obtained for the four variants described are displayed in Table 3.9. We

only present the data corresponding to the accelerated part of BiCG because it is on these

computations that the four variants differ from each other. The runtimes of the remaining

stages are similar to those in Table 3.8. A discrepancy in the number of iterations performed

72



3.3. Enhanced data-parallel variants

by each variant is obtained for the diagonal problem, which can be attributed to the effect

of floating-point rounding errors.

It can be observed that the proposed task-parallel variants are able to significantly ac-

celerate the involved section of BiCG iteration, with speed-ups that reach 12× relative to

the data-parallel multi-core version. In most of the cases, the improvement is mainly due

to the GPU acceleration of the application of the preconditioner, which can be deduced

from the speed-ups corresponding to version Adv BICG 2str. The usage of GPU streams,

however, has little effect on the overall performance, as almost no overlapping of operations

is observed in the timelines extracted with Nvidia Visual Profiler. This can be observed for

the A200 and cage15 sparse matrices in Figures 3.3 and 3.4 respectively.

Regarding the hybrid GPU-CPU variants, the results show that off-loading the trans-

posed SpMV to the multi-core can yield important benefits. In our experiments, the im-

provements with respect to the Adv BICG 2str variant ranges from 8% to almost 65%.

A number of factors influence the relation between the performance of the Adv BICG -

2str and Adv BICG Hyb Cusp variants. For example, as can be observed in Figure 3.4

for matrix cage15, a great fraction of the performance improvement is due to the reduction

of the time taken by the transposed SpMV. In Adv BICG 2str, this takes more than half

of the execution time of the iteration, and the multi-core implementation in Adv BICG -

Hyb Cusp is able to both reduce this time in half and overlap of part of the application of

the preconditioner. A different situation is observed for matrix A200, where the cuSparse

routine for the transposed SpMV outperforms the MKL counterpart. In this case though,

the difference between the runtime of both routines is less critical, and a performance im-

provement is obtained regardless, due to the almost perfect overlapping of the application

of the preconditioner with the transposed SpMV.

The results also show that the use of our synchronization-free routine contributes with

an additional performance improvement by enabling a higher degree of overlapping between

operations. This will depend mostly on the number of level-sets of the incomplete factors,

as additional levels imply having to launch more kernels, and augment the corresponding

overhead. For instance, the analysis of the triangular factors generated for matrix A200

yields only 40 levels, whereas for cage15 it generates 616. Thus, it is not surprising that

the difference between the runtimes of Adv BICG Hyb Cusp and Adv BICG Hyb SF

for matrix A200 is minimal, while for cage15 the performance gain is relevant.

73



Chapter 3. Enabling GPU computing in sequential ILUPACK

Table 3.9: Aggregated runtime (in seconds) and acceleration of the parallelized part of BiCG in
platform Brahms.

Matrix Routine # It.
SpMV Speedup

App. Prec. vs. Cpu BICG mkl

A200

Cpu BICG mkl 12 9.05
Adv BICG 2str 12 1.20 7.51
Adv BICG Hyb Cusp 12 1.04 8.67
Adv BICG Hyb SF 12 1.04 8.74

A252

Cpu BICG mkl 12 12.52
Adv BICG 2str 12 2.49 5.02
Adv BICG Hyb Cusp 12 2.05 6.09
Adv BICG Hyb SF 12 2.04 6.14

cage14

Cpu BICG mkl 14 2.15
Adv BICG 2str 14 0.78 2.77
Adv BICG Hyb Cusp 14 0.27 7.88
Adv BICG Hyb SF 14 0.22 9.85

Freescale1

Cpu BICG mkl 442 145.09
Adv BICG 2str 442 37.75 3.84
Adv BICG Hyb Cusp 442 32.02 4.53
Adv BICG Hyb SF 442 28.41 5.11

rajat31

Cpu BICG mkl 12 3.49
Adv BICG 2str 12 1.27 2.75
Adv BICG Hyb Cusp 12 0.85 4.10
Adv BICG Hyb SF 12 0.83 4.21

cage15

Cpu BICG mkl 16 10.16
Adv BICG 2str 16 3.09 3.29
Adv BICG Hyb Cusp 16 1.17 8.67
Adv BICG Hyb SF 16 0.85 12.02

diagonal

Cpu BICG mkl 170 296.24
Adv BICG 2str 190 107.91 2.75
Adv BICG Hyb Cusp 192 97.45 3.04
Adv BICG Hyb SF 176 79.97 3.70

circular

Cpu BICG mkl 158 262.67
Adv BICG 2str 158 86.56 3.03
Adv BICG Hyb Cusp 158 78.89 3.33
Adv BICG Hyb SF 158 72.23 3.64

unit-vector

Cpu BICG mkl 170 303.07
Adv BICG 2str 170 97.91 3.10
Adv BICG Hyb Cusp 170 89.65 3.38
Adv BICG Hyb SF 170 80.27 3.78
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3.3. Enhanced data-parallel variants

Table 3.10: Experimental results for the enhanced data-parallel version of MGSO and the GMRES
method (Adv GRMES) in platform Brahms. Times are in seconds.

Time CPU Time GPU Speed-up GPU
Matrix #Iter. MGSO Total MGSO Total MGSO Total

A200 6 0.57 4.27 0.17 1.61 3.45 2.65
A252 6 1.13 8.25 0.33 3.60 3.41 2.29

cage14 7 0.14 1.54 0.04 0.50 3.73 3.10
Freescale1 46 6.03 21.43 0.97 4.42 6.24 4.85
rajat31 4 0.22 2.23 0.05 0.76 4.14 2.93
cage15 7 0.48 5.54 0.13 1.63 3.77 3.39

circular 203 72.15 317.12 10.14 54.66 7.12 5.80
diagonal 241 86.63 377.17 13.15 68.56 6.59 5.50
unit-vector 252 91.43 394.08 13.20 68.68 6.93 5.74

Experimental evaluation GMRES with accelerated data-parallel MGSO

Table 3.10 compares the execution time of the GPU-accelerated MGSO routine against its

CPU counterpart, showing the effect on the execution time of the entire solver. The results

demonstrate that the accelerated version of the routine achieves a notable reduction of its

execution time, reaching speed-ups between 3× and 7× over the CPU version. Moreover,

combining this with the previous enhancements, we obtain speed-ups of up to 5.8× for the

entire solver.

An additional observation from the data in Table 3.10 is that the factor which most affects

the acceleration is the number of iterations of the solver. This is due to the transference of

the basis vectors from the device to the host that is necessary in order to perform the last

step of the GMRES on the CPU. The two factors that determine the cost of MGSO at a

given iteration k of GMRES are the number of vectors involved in the orthogonalization and

their dimension, which is equivalent to k modulo the restart parameter of GMRES. Since

one of these transfers occur every time MGSO is invoked, the ratio between the volume of

transfers and the amount of computation in MGSO improves with each iteration until the

restart. As a consequence, the impact of the transference overhead is greater in those cases

that converge in a small number of steps and do not reach the restart point of GMRES,

which we set in our experiments to 30 iterations. This communication can be avoided if the

last step of GMRES is performed on the accelerator.

Evaluation of GPU-based BiCGStab

Table 3.11 compares our CPU and GPU variants of BiCGStab. In addition to the total

execution time of the solver, we present the average time (and speed-up) per iteration, as

in some cases we obtain slightly different values between the GPU and CPU versions. The

discrepancies are small and occur for those cases with higher condition number, which are

more prone to floating-point rounding errors.

The execution times observed for BiCGStab highlight the benefits of including this

method in the suite of CPU solvers supported by ILUPACK, as in general it attains better

convergence rates and delivers lower execution times than the CPU versions of GMRES and
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Table 3.11: Experimental results for the new data-parallel version of BiCGStab. Times are in
seconds.

Avg. speed-up
Total Avg. time per iter. with Relative

Matrix Device #Iter. time per iter. respect to. . . residual

A200
CPU 3 4.27 1.423 8.21 1.40E-11
GPU 3 0.52 0.173 – 1.40E-11

A252
CPU 3 7.16 2.386 7.02 1.30E-11
GPU 3 1.02 0.340 – 1.30E-11

cage14
CPU 3 1.93 0.643 5.36 3.40E-10
GPU 3 0.36 0.120 – 3.40E-10

Freescale1
CPU 92 54.21 0.589 9.07 2.30E-03
GPU 87 5.65 0.064 – 2.20E-03

rajat31
CPU 2 1.62 0.810 5.40 7.80E-09
GPU 2 0.30 0.150 – 7.80E-09

cage15
CPU 3 7.28 2.426 6.07 5.40E-10
GPU 3 1.20 0.400 – 5.40E-10

circular
CPU 115 239.84 2.085 8.07 6.90E-08
GPU 100 25.84 0.258 – 3.90E-08

diagonal
CPU 111 281.80 2.538 10.09 6.60E-08
GPU 114 28.68 0.251 – 5.20E-08

unit-vector
CPU 115 240.07 2.087 8.22 4.70E-08
GPU 108 27.42 0.253 – 4.00E-08

BiCG.

Regarding the use of the GPU, the acceleration factor for the solver iteration varies

between 4× and 10×, with the exact speed-up depending on characteristics of the problem

such as the dimension of the problem, the sparsity pattern of the coefficient matrix, and the

sparsity of the incomplete factors produced by the multilevel ILU factorization underlying

ILUPACK.
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CHAPTER 4

Design of a Task-Parallel version of ILUPACK for Graphics

Processors

The data-parallel variants presented in Chapter 3 are confined to execute in one compute

node, equipped with a multi-core CPU and one or two GPUs. This limitation operates

in two senses. First, compute nodes or servers equipped with more than two GPUs are

increasingly more common, in part driven by the computational requirements of machine-

learning. Second, being restricted to the memory subsystem of one node, including the

memory of the GPUs present in that node, constrains the size of the problems that can be

tackled with our current strategy.

A third drawback of our previous developments, is that their potential to exploit the cores

of modern CPUs is fairly limited as well. This is mainly a consecuence of the characteristics

of the problem at hand. Except for the BiCG method, the rest of the studied iterative

solvers are based on a sequence of basic matrix and vector computations that allow little

overlapping between them. Moreover, although data-parallelism can be exploited in these

operations, the performance gain will be strongly limited by the memory throughput of the

CPU. It is thus safe to assume that no radical performance boost can be extracted from the

exploitation of the multi-core CPU without significant effort.

In the final sections of Chapter 2 one such effort is described, based on a modification of

both the preconditioner and the PCG method of ILUPACK, which is capable of exposing

task-level parallelism. We call this software Task-Parallel ILUPACK, and the underlying

ideas are detailed in [3] and [4], where two different implementations, one for shared-memory

and the other for distributed-memory platforms, are presented and analyzed.

Although as mentioned before, the Task-Parallel ILUPACK is restricted to the SPD

case, and might have some numerical disadvantages with respect to the sequential and data-

parallel versions, these factors are compensated by its excellent performance and scalability,

which makes this variant useful in large-scale SPD scenarios.



Chapter 4. Design of a Task-Parallel version of ILUPACK for Graphics Processors

Encouraged by the results presented in Chapter 3, which suggest that sensible perfor-

mance improvements can be attained by the use of GPUs, and that this only exerts a mild

effect on the accuracy attained by the preconditioner, we are now iteresting in studying how

this data-parallelism can be harnessed in the Task-Parallel ILUPACK.

We start by evaluating the combination of task-parallelism and co-processor data-

parallelism in shared-memory platforms equipped with GPUs. Specifically, we leverage

the computational power of one GPU (via the exploitation of data-level parallelism) to ac-

celerate the operations that compose the application of the multilevel preconditioner of each

individual task in the shared-memory (task-parallel) variant of ILUPACK. Later, we ad-

dress the distributed-memory variant of ILUPACK, and leverage the computational power

of GPUs distributed across several nodes of a cluster, to accelerate the computations of

the tasks that reside in these nodes. We show how this strategy allows the addressing of

large-scale problems.

The major contributions of this chapter are the following:

• We extend the task-parallel version of ILUPACK for shared-memory machines ex-

ploiting the data-parallelism of the operations that compose the application of the

multilevel preconditioner. We do this by offloading the SpMV and the solution of

triangular linear systems appearing in the leaf tasks, along with some minor vector

operations, to the hardware accelerator.

• We introduce a new strategy to reduce the effect of data-parallelism loss inside the

individual tasks that is implied by the matrix partitioning. This technique is based on

a threshold which determines if a given algebraic level of the preconditioner presents

enough granularity to take advantage of the GPU.

• The experimental evaluation shows that the threshold-based strategy is able to execute

each operation in the most convenient device while mantaining a moderate communi-

cation cost, outperforming the original multicore version for all the tested instances.

• We enable the use of multiple GPUs to accelerate the execution of the leaf tasks in

the distributed-memory variant of ILUPACK.

• To handle the mentioned loss of parallelism due to the partitioning of the problem,

we propose an enhancement to our threshold strategy, which takes advantage of the

devices even in the smaller algebraic levels of the preconditioner. This is achieved

by performing the highly serial triangular linear system solves on the CPU while off-

loading the parallel SpMV and vector operations to the device.

• The results obtained on 4 nodes equipped with 2 GPUs each show that the execution

time of the all-CPU variant can be improved by a factor of up to 2× by assigning the

tasks to the GPUs.

• The chapter shows scaling properties that suggest that it is possible to address large-

scale problems efficiently.
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4.1 GPU acceleration of the shared-memory variant of

ILUPACK

In this section we present our strategy to introduce GPU acceleration in the multi-core ver-

sion of ILUPACK [7]. This implementation of the Task-parallel ILUPACK uses OpenMP

parallel regions to delimit the different tasks, while the handling of the dependendencies and

scheduling of the tasks is performed by a middleware layer added to ILUPACK. The imple-

mentation is compatible with version 2 of the OpenMP standard, and the task-managing

features introduced in version 3.0 and later extended in version 4 are not exploited.

We analyze two different approaches to introduce GPU computations in this version of

ILUPACK. The first one entirely off–loads the leaf tasks of the preconditioner application

phase to the GPU, while the second one uses a threshold to exploit the GPU only when

there is enough work to take advantage of the accelerator.

Our solution is designed for multi-core platforms equipped with one GPU, using different

streams to enqueue work that belongs to different tasks, but the idea is easily extensible to

a shared-memory hardware connected to multi-GPU contexts.

4.1.1 All leafs in GPU, ShMem GPU All

The task-parallel version of ILUPACK is based on a Nested Dissection (ND) ordering, result-

ing in a task tree where only leaf tasks perform an important amount of work. In particular,

the inner tasks correspond to the separator sub-graphs in the ND process, and hence have

much less work than their leaf counterparts. For this reason we only consider leaf tasks from

here on.

The leaf tasks are independent from each other and can be executed concurrently pro-

vided sufficient threads are available. Therefore, we associate each of these tasks with a

different GPU stream. Also, each task has its own data structures, both in CPU and GPU

memory, containing the part of the multilevel preconditioner relevant to it, together with

private CPU and GPU buffers. At the beginning of the application, these buffers are allo-

cated, and our GPU-enabled versions make this memory non-pageable in order to perform

asynchronous memory transferences between the CPU and the GPU.

For the ShMem GPU All version of the preconditioner application, the computation

on each node of the DAG is based on the data-parallel version presented in [5]. It proceeds as

described in Section 2.4.1, with the difference that, in this case, the forward and backward

substitution are separated and distributed among the levels of the task-tree. Therefore,

entering or leaving the recursive step in Equation (2.92) sometimes implies moving to a

different level in the task tree hierarchy. In these cases, the residual rk+1 has to be transferred

to the GPU at the beginning of the forward substitution phase, and the intermediate result

has to be retrieved back into the CPU buffers before entering the recursive step. Once

the inner tasks compute the recursive steps, the backward substitution proceeds from top to

bottom until finally reaching the leaf tasks again, where the zk+1 vector has to be transferred

to the GPU. There the last steps of the calculation of the preconditioned residual zk+1 :=

M−1rk+1 are performed. Upon completion, the preconditioned residual zk+1 is retrieved
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back into the CPU.

As in the GPU-aware solvers presented in Chapter 3, we rely on the cuSparse library

to execute the most computationally-demanding kernels, while the low cost operations (di-

agonal scalings, vector permutations, and vector updates) are performed by ad-hoc kernels.

This version aims to accelerate the computations involved by the leaf tasks while incur-

ring a low communication cost, relying on the results obtained for the GPU acceleration of

the serial version, and the streaming capabilities offered by the new GPU architectures. Un-

fortunately, this version has serious drawbacks. The division of the work in various leaf tasks

reduces the size of each independent linear system, and the multilevel ILU-factorization of

the preconditioner produces levels of even smaller dimension. This can have a strong neg-

ative impact on the performance of massively parallel codes [67], and specifically on the

cuSparse library kernels. It should be noted that the amount of data-parallelism available

in the sparse triangular linear systems is severely reduced, leading to a poor performance

of the whole solver. Additionally, the work assigned to the CPU in this variant is minor,

impeding the concurrent use of both devices.

4.1.2 Threshold based version, ShMem Thres

In order to deal with the disadvantages of the previous version, we propose a threshold-

based strategy that computes the algebraic levels in the GPU until certain granularity, and

executes the remaining levels in the CPU. This aims to produce two effects. On one hand,

allowing the smaller and highly data-dependent levels to be computed on the CPU while

the initial levels, of larger dimension and higher data-parallelism, run on the GPU, implies

that each operation is performed in the most convenient device. On the other hand, this

strategy also improves the concurrent execution in both devices, increasing the overlap of

the CPU and GPU sections of the code.

Regarding data transfer, in this approach the working buffer has to be brought to the

CPU memory at some point of the forward substitution phase, and it has to be transferred

back to the GPU before the backward substitution of the upper triangular system ends.

Moreover, these transfers are synchronous with respect to the current task or GPU stream,

since the application of one algebraic level of the multilevel preconditioner cannot commence

until the results from the previous level are available.

In this variant we determine the threshold value experimentally. Our on-going work

aims to identify the best algorithmic threshold from a model capturing the algorithm’s

performance.

4.2 Overcoming memory capacity constraints

The work presented in the previous sections exploits the data-parallelism present in the

operations performed by each leaf task in order to accelerate the execution of the task-

parallel multi-core version of ILUPACK (DistMem CPU). Unfortunately, the number of

accelerators that can be integrated into one compute node is relatively small. For this

reason, using the GPUs attached to only one node strongly constrains the memory and
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compute thrust available to solve the systems, and thus the size of the problems that can

be tackled. In this section we present the key features of our new GPU-enabled variant

of the distributed-memory ILUPACK, which makes use of massively-parallel architectures

residing in the nodes of a cluster. As before, we focus on the stage that corresponds to the

application of the preconditioner during the iteration of the PCG method.

This parallelization of ILUPACK builds upon the task-parallel version presented in [4],

following the main aspects described in Section 2.4.2. To execute in distributed-memory

environments, this version of ILUPACK maps each leaf task of the DAG to a different MPI

rank. This correspondence between tasks and ranks is statically defined by the root node

during the initialization steps, and is maintained for all subsequent operations. Then, the

root node distributes the data required for the parallel construction of the preconditioner

to the corresponding tasks. In our case, the initialization steps also include the creation

of a CUDA Stream for each leaf task. If there are many devices available in the compute

node, the streams, and consequently the tasks resident in that node, are mapped to different

devices in a round-robin fashion, based on their task id.

As in the case of the task-parallel multi-core variant in the previous section, the appli-

cation of the preconditioner consists of forward and backward substitution processes that

are now divided across the levels of the task-tree. Once the tree is traversed from bottom

to top, the backward substitution proceeds from top to bottom, until finally reaching the

leaf tasks again. Since the information of the preconditioner is spread across the task-tree,

traversing this structure requires a communication operation, and sometimes presents data

dependencies with the next or previous levels in the task-tree hierarchy. From the point of

view of the execution on a GPU, besides storing the residual rk+1 in GPU memory at the

beginning of the forward substitution phase, now it is necessary to transfer the intermediate

results of each task back to the CPU buffers before entering the recursive step.

As earlier, the partitioning strategy implies that only the tasks lying on the bottom

level of the tree perform a significant amount of work. Moreover, the multilevel structure

of ILUPACK’s preconditioner partitions the workload further, severely limiting the amount

of data-parallelism. These are the main motivations underlying the threshold introduced

for the multi-core variant. However, not all the operations involved in the application of

the preconditioner inside a leaf task are equally affected by these constraints to parallelism.

For example, the sparse triangular system solves that appear in the application of the pre-

conditioner tend to present considerably more data dependencies between their equations,

while the sparse matrix-vector products and vector operations present a degree of paral-

lelism similar to the non-partitioned case. In response to this, we propose a variation of the

threshold strategy where, instead of migrating the computation of the smaller levels entirely

to the CPU, we do this only for the triangular solves corresponding to such levels. This way

we can take a certain advantage of the data-parallelism present in the sparse matrix-vector

products and the vector operations, even in the smaller levels of each leaf. We call this

variant DistMem Thres.

Both approaches imply that some sections of the working buffer have to be transferred

between the CPU and GPU memories during the forward and backward substitution oper-

ations. Moreover, these transfers are synchronous with respect to the current task or GPU
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stream, since the application of one algebraic level of the multilevel preconditioner cannot

commence until the results from the previous level are available. In our first approach, once

the first level is processed during the forward substitution, the data to be read by all the

operations of the following levels is sent to the CPU memory. In the backward substitution

phase, the data to be read by the first level needs to be transferred to the GPU. In our

second approach, only the data needed by the triangular solves of the smaller algebraic lev-

els is transferred. Although this scatters the communications into many small transfers, an

scenario which is not desirable in the GPU context for bandwidth and latency reasons, the

amount of data to be passed is almost the same, and the number of data movements does

not increase significantly.

4.3 Numerical evaluation

In this section we summarize the experiments carried out to evaluate the performance of

our GPU-aware implementations of the task-parallel version of ILUPACK for shared and

distributed memory systems. With this purpose, we first compare the two GPU-accelerated

variants of ILUPACK designed for shared-memory platforms with the original multi-core

version.

Next, we assess the benefits of utilizing multiple GPUs in a distributed-memory setting

using the new GPU-enabled version of ILUPACK’s MPI implementation for clusters. With

this aim, we first compare our proposal with the original distributed version and conduct

both performance and scalability analyses. All experiments reported in this section were

obtained using IEEE double-precision arithmetic.

4.3.1 Platforms and test cases

Multi-core GPU server (Brahms)

The multi-core GPU server utilized for the experiments is Brahms, presented in Section

3.1.

The CPU code was compiled with the Intel(R) Parallel Studio 2016 (update 3), which

partially supports version 4.5 of the OpenMP specification (only for C++). However, none

of the new features of versions 3 and 4 is used in our code, and the compiler is fully compliant

with OpenMP v2.×.

Distributed memory platform (Falla)

The performance evaluation of the distributed-memory variant was carried out using 4 nodes

of a cluster installed in the CETA-CIEMAT1 center (Trujillo, Spain). Each node is equipped

with a 12-core Intel(R) Xeon(R) E5-2680 v3 processor (2.50GHz), 64 GB of DDR3 RAM

memory, and 2 Tesla K40 GPU with 2,880 CUDA Cores and 12 GB of GDDR5 RAM each.

We used the OpenMPI v10.3.1 implementation of the MPI standard and gcc 4.8.5 with

the -O3 flag to compile the CPU code. The GPU compiler and the CUSPARSE library

1 Centro Extremeño de Tecnoloǵıas Avanzadas
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correspond to version 7.5 of the CUDA Toolkit.

Test cases

The benchmark utilized for the experimental evaluation is the SPD case of scalable size

presented in Section 3.1.2.

Additionally, we tested our distributed-memory proposal on a circuit simulation problem

from the SuiteSparse2 collection (G3 Circuit), also described in Section 3.1.2 in order to

evaluate our strategy on a matrix with a different sparsity pattern than those offered by the

Laplace benchmark.

4.3.2 Evaluation of the shared-memory variant

Each test instance was executed using 2 and 4 CPU threads with f = 2 and f = 4 respec-

tively. The parameter f is related with the construction of the task tree. The algorithm

that forms this tree relies on an heuristic estimation of the computational cost of each leaf

task and divides a leaf into two whenever its correspondent sub-graph has more edges than

the number of edges of the whole graph divided by f . The parameter f is chosen so that, in

general, there are more leaf tasks than processors. In [4, 7] the authors recommend choosing

a value between p and 2p, where p is the number of processors.

Table 4.1: Number of leaf tasks and average structure of each algebraic level of the preconditioner
using f = 2 and f = 4. To represent the structure of the levels, the average dimension, the number
of non-zeros and the rate of non-zeros per row is presented, together with the respective standard
deviations.

Matrix # th. / f # leaves level avg. n σ(n) avg. nnz σ(nnz) nnz
n σ(nnz

n )

A159

2 3
0 1,006,831 345,798 6,193,794 2,183,862 6.1 0.1
1 317,362 113,151 9,682,114 3,486,401 30.5 0.2
2 2,875 736 10,099 2,014 3.6 0.6

4 6
0 502,108 159,044 3,116,629 1,005,408 6.2 0.1
1 156,048 50,647 4,685,500 1,537,905 30.0 0.2
2 1,251 437 4,095 1,754 3.2 0.4

A171

2 2
0 1,881,030 16,604 11,421,390 123,868 6.1 0.1
1 598,152 1,384 18,490,583 154,695 30.9 0.2
2 6,304 984 23,444 7,247 3.7 0.6

4 4
0 937,998 6,011 5,764,461 71,397 6.1 0.1
1 294,702 1,310 8,967,985 72,180 30.4 0.2
2 2,845 506 10,885 3,768 3.7 0.7

A200

2 3
0 2,003,212 795,192 12,207,556 4,592,834 6.1 0.1
1 636,895 253,696 19,665,756 8,089,987 30.8 0.4
2 6,466 3,316 23,189 12,912 3.5 0.2

4 7
0 856,365 186,595 5,283,746 1,141,907 6.2 0.1
1 268,523 595,53 8,155,375 1,842,559 30.3 0.2
2 2,449 525 8,552 2,032 3.5 0.4

A252

2 3
0 4,004,955 1,694,044 24,271,087 9,856,575 6.1 0.1
1 1,283,180 543,882 39,965,828 17,408,294 31.0 0.3
2 14,762 7,162 57,168 28,744 3.8 0.1

4 6
0 1,998,470 494,294 12,196,071 3,070,313 6.1 0.1
1 635,612 159,942 19,603,140 4,936,718 30.8 0.1
2 6,523 1,429 23,807 5,758 3.6 0.3

Table 4.1 summarizes the structure of the multilevel preconditioner and the linear systems

2http://faculty.cse.tamu.edu/davis/suitesparse.html
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Figure 4.1: Execution time (in seconds) of preconditioner application for the three task parallel
variants, using two (left) and four (right) CPU threads. CPU version is the blue line with crosses.
ShMem GPU All version is the red line with circles. ShMem Thres is the black line with stars.

corresponding to leaf tasks that were generated using the aforementioned parameters. For

each tested matrix, the table presents the number of leaf tasks that resulted from the task

tree construction for f = 2 and f = 4, and next to it shows the average dimension of the

algebraic levels of the corresponding multilevel preconditioner, the average number of non-

zeros, and the average row density of the levels, with their respective standard deviations.

It can be easily observed that a higher value of f results in more leaf tasks of smaller

dimension. Regarding the algebraic levels of the factorization, the table shows how the

average dimension of the sub-matrices decreases from one level to the next. It is important

to notice how, in the second algebraic level, the submatrices already become about one

third smaller in dimension, and contains five times more nonzero elements per row. In other

words, the sub-problems become dramatically smaller and less sparse with each level of the

factorization, causing that, in this case, only the first algebraic level is attractive for GPU

acceleration.

Table 4.2 shows the results obtained for the original shared-memory version and the two

GPU-enabled ones for the matrices of the Laplace problem. The table reports the total

runtime of PCG, as well as the time spent on the preconditioner application stage and the

SpMV are presented. The table also shows the number of iterations taken to converge to the

desired residual tolerance, and the final relative residual error attained, which is calculated

as in (3.1)

First, it should be noted that from the perspective of accuracy, there are no significant

differences between the task-parallel CPU variant and the GPU-enabled ones. Specifically,

the three versions reach the same number of iterations and final relative residual error for

each case.

From the perspective of performance it can be observed that, on the one hand, ShMem -

GPU All only outperforms ShMem CPU for the largest matrix (A252) and in the context

of 2 CPU threads. This result was expected, as the GPU requires large volumes of compu-

tations to truly leverage the device and hide the overhead due to memory transfer. On the

other hand, ShMem Thres is able to accelerate the multi-core counterpart for all covered

86



4.3. Numerical evaluation

Table 4.2: Runtime (in seconds) of the three task-parallel shared-memory variants in platform
Brahms.

# threads Matrix Version Iters. tot. Spmv tot. Prec tot. PCG R(x∗)

2

A159
ShMem CPU

88 2.30
29.55 32.86

1.39E-008ShMem GPU All 44.33 47.46
ShMem Thres 20.46 23.83

A171
ShMem CPU

97 3.07
39.43 43.87

1.52E-008ShMem GPU All 48.02 52.36
ShMem Thres 30.62 35.19

A200
ShMem CPU

107 5.83
71.58 79.98

2.45E-008ShMem GPU All 84.37 92.61
ShMem Thres 47.73 56.26

A252
ShMem CPU

131 13.86
175.66 195.67

3.23E-008ShMem GPU All 153.48 173.62
ShMem Thres 120.19 140.50

4

A159
ShMem CPU

88 1.30
22.72 24.55

9.96E-009ShMem GPU All 44.82 46.40
ShMem Thres 15.21 17.15

A171
ShMem CPU

95 1.58
22.43 24.76

2.20E-008ShMem GPU All 57.84 59.78
ShMem Thres 17.50 19.87

A200
ShMem CPU

108 3.13
40.34 45.03

1.06E-008ShMem GPU All 108.37 112.41
ShMem Thres 33.80 38.60

A252
ShMem CPU

130 8.25
104.21 116.37

2.16E-008ShMem GPU All 193.19 204.74
ShMem Thres 90.05 104.60

cases; see Figure 4.1. This result reveals the potential benefit that arises from overlapping

computations on both devices. Hence, even in cases where the matrices present modest

dimensions, this version outperforms the highly tuned multi-core version. Additionally, the

benefits related with the use of the GPU are similar for all matrices of each configuration,

though the percentage of improvement is a bit higher for the smaller cases. This behavior is

not typical for GPU-based solvers and one possible explanation is that the smaller cases are

near the optimal point (from the threshold perspective) while the largest cases are almost

able to compute 2 levels in GPU. This can be confirmed in Table 4.3, were we add a variant

that computes the first 2 levels on the accelerator. As the multilevel factorization generates

only 3 levels, with the third one very small with respect to the other two, it is not surprising

that the runtimes of this version are almost equivalent to those of ShMem GPU All. The

table shows how the penalty of computing the second level in the GPU decreases as the

problem dimension grows.

Finally, ShMem Thres also offers higher performance improvements for the 2-threads

case than for its 4-threads counterpart.

4.3.3 Evaluation of the distributed-memory variant

Our proposal aims to exploit the data-parallelism present inside the operations comprised

by each task of the tree. It is reasonable to think that the initial reorganization of the pre-

conditioner into a tree of smaller multilevel matrices reduces the degree of data-parallelism,

severely constraining it. In order to obtain a reference of the maximum speed-up that we
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Table 4.3: Runtime (in seconds) of ShMem Thres, adjusting the threshold to compute 1 and 2
levels in the GPU, in platform Brahms.

# threads Matrix ShMem Thres (1 lev) ShMem Thres (2 lev) ShMem GPU All

2

A159 23.83 43.79 44.33
A171 35.19 47.52 48.02
A200 56.26 84.16 84.37
A252 140.50 153.79 153.48

4

A159 17.15 44.54 44.82
A171 19.87 57.21 57.84
A200 38.60 108.70 108.37
A252 104.60 185.72 193.19

Table 4.4: Runtime (in seconds) of the serial CPU version of ILUPACK’s PCG and its corre-
sponding GPU-accelerated version. The speed-up in the table can serve as an upper bound of the
maximum possible improvement when leveraging the GPUs in the distributed memory variant in
platform Falla.

Matrix Iterations CPU GPU Speedup R(x∗)
A50 37 0.54 1.09 0.50 7.45E-10
A159 89 50.46 20.32 2.48 8.33E-09
A171 94 66.61 24.80 2.69 8.99E-09
A200 110 125.91 41.22 3.05 1.33E-08
A252 135 311.30 94.73 3.29 1.73E-08

G3 circuit 149 20.90 9.12 2.28 3.15E-06

can expect by including the GPU in the distributed-memory version, Table 4.4 reports the

speed-up experienced when comparing the execution of the serial CPU version and the cor-

responding GPU-accelerated version in the target platform. In the table, we report the total

runtime of PCG and the residual error achieved in each case, which is calculated according

to Equation (3.1).

Table 4.5 shows the results obtained for the original distributed-memory version and the

GPU-enabled code (single node) for the different evaluated test instances. The experiments

were run with 2, 4 and 8 tasks that are distributed among the four nodes in a round-robin

fashion. For the instances consisting of 2 and 4 tasks, each task resides in a different node

and uses a different GPU. For the instance with 8 tasks there are two tasks per compute

node, but each task runs on a distinct GPU.

The number of iterations and residual errors obtained for the CPU and GPU versions

differ slightly, especially in the case with 8 tasks. These discrepancies are due to the distinct

numerical properties of the task-parallel preconditioners and do not represent a significant

variation in the accuracy. The results for the A400 benchmark case with 2 tasks were not

added because the per-task memory requirements of this test case are greater than the 64GB

of RAM that are available in each compute node. This illustrates one of the main benefits

of our novel approach. Our previous efforts addressed the inclusion of GPUs in the shared-

memory version of the task-parallel ILUPACK. Obviously, using only one compute node

strongly limited the number of devices, as well as the amount of GPU memory available

and, therefore, the size of the problems that could be tackled with our previous parallel

version of ILUPACK.
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Table 4.5: Runtime (in seconds) of version DistMem Thres in platform Falla. The experiments
were performed setting ILUPACK to use 2, 4, and 8 tasks. In the executions with 2 and 4 tasks,
each one resides in a different node with one GPU. In the case of the execution with 8 tasks, there
are 2 tasks per compute node, but each one uses a different GPU.

#Tasks Matrix Version #It. PCG R(x∗) Accel.

2

A159
CPU 84 36.03 4.2e-7

1.70
GPU 84 21.23 4.2e-7

A171
CPU 93 50.20 5.5e-7

1.73
GPU 93 29.02 5.5e-7

A200
CPU 107 94.31 7.2e-7

1.84
GPU 107 51.33 7.2e-7

A252
CPU 125 228.60 8.2e-7

1.85
GPU 125 123.44 8.2e-7

A318
CPU 153 817.84 1.3e-6

2.15
GPU 153 381.14 1.3e-6

A400
CPU - - - -
GPU - - - -

G3 Circuit
CPU 116 13.39 2.1e-05

1.78
GPU 116 7.49 2.1e-05

4

A159
CPU 83 18.49 4.3e-7

1.33
GPU 83 13.92 3.5e-7

A171
CPU 86 26.24 4.4e-7

1.52
GPU 85 17.24 3.6e-7

A200
CPU 97 43.32 5.8e-7

1.44
GPU 97 29.99 5.8e-7

A252
CPU 125 113.56 8.1e-7

1.72
GPU 123 66.03 9.3e-7

A318
CPU 155 389.55 1.1e-6

1.94
GPU 155 200.72 9.9e-7

A400
CPU 192 983.49 1.4e-6

2.00
GPU 192 491.70 1.6e-6

G3 Circuit
CPU 139 7.45 2.7e-05

1.26
GPU 139 5.87 2.7e-05

8

A159
CPU 68 8.33 2.9e-7

0.84
GPU 67 9.96 3.3e-7

A171
CPU 74 11.12 3.0e-7

0.89
GPU 70 12.44 2.7e-7

A200
CPU 83 19.97 5.3e-7

1.05
GPU 77 18.99 4.3e-7

A252
CPU 101 49.23 7.6e-7

1.41
GPU 98 34.85 8.3e-7

A318
CPU 131 130.44 9.5e-7

1.63
GPU 122 80.14 1.0e-6

A400
CPU 158 341.94 1.4e-6

1.83
GPU 149 186.70 1.4e-6

G3 Circuit
CPU 136 3.82 2.4e-05

0.87
GPU 136 4.36 2.4e-05
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Table 4.6: An estimation of the memory overhead due to the partitioning for two of the benchmark
cases. Sum represents the sum of the dimension of the leaves, Overhead is the difference between
Sum and the original dimension of the coefficient matrix, while Ratio is the ration between Overhead
and the original dimension of the coefficient matrix.

Matrix
Number of leaves

2 4 8 16 32

A050
Sum 127,518 134,821 152,201 191,130 274,540

Overhead 2,518 9,821 27,201 66,130 149,540
Ratio 2.01 7.86 21.76 52.90 119.63

A159
Sum 4,047,709 4,121,004 4,298,050 4,715,372 5,591,299

Overhead 28,030 101,325 278,371 695,693 1,571,620
Ratio 0.70 2.52 6.93 17.31 39.10

At this point we note that there is a certain memory overhead caused by the initial

partitioning of the matrix, as some blocks have to be shared across several processes. This

can be appreciated in the expression in (2.99). In order to assess the importance of this

overhead, we evaluated the difference between the sum of the dimensions of the sub-matrices

corresponding to the leaves of the task tree and the original dimension of the coefficient

matrix. This distance was computed for two of the benchmark matrices, one small and the

other of moderate size, generating partitions of 2, 4, 8, 16 and 32 leaf tasks. Table 4.6 shows

that this overhead increases with the granularity of the partition, and the ratio between this

overhead and the original dimension of the matrix is much smaller for the larger matrix.

This means that, in order to improve the memory efficiency, one should partition the matrix

only when there is not enough memory in one node to perform the factorization and solution.

Moreover, this scheme is suitable to address large problems, where the relative memory cost

of the partitioning is less important.

Regarding the execution times, the GPU-enabled variant outperforms the CPU version

with an equal number of processes, except for the smaller cases of the benchmark when

using 8 tasks. Utilizing the GPU offers a 2× speed-up for the largest case. Moreover, the

advantage of using the GPUs tends to increase with the dimension of the problem.

The low performance of the smaller test cases can be easily explained, as smaller work-

loads make it more difficult to fully occupy the GPU resources and strongly increase the

relative cost associated to CPU-GPU communications. Additionally, partitioning the work

into many tasks constrains the data-parallelism and undermines the performance of some

GPU kernels.

Considering the previous discussion, it is obvious that our solution cannot attain strong

scalability [62] (i.e., a linear growth of the speed-up when augmenting the number of compute

resources for a problem of fixed size). However, as it can be appreciated in Figure 4.2, the

results show that we are close to attaining weak scalability (i.e., maintaining the speed-up

when augmenting the compute resources in the same proportion as the problem size). For

example, if we take the number of nonzero values of the matrices as a rough estimation

of the problem size, the execution of the A159 problem in 2 processors/GPUs, A252 in 4

processors/GPUs, and A400 in 8 processors/GPUs all present similar acceleration factors.

Furthermore, when analyzing the speed-ups in Table 4.5, it should be taken into account
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Figure 4.2: Execution time (in seconds) of DistMem Thres for each of the executed test cases
(left) and acceleration obtained by the inclusion of the GPU over DistMem CPU (right) in platform
Falla.

that only (part of) the application of preconditioner in the leaf tasks is accelerated using

GPUs, while the rest of the PCG operations, though being potentially parallelizable, at this

moment belong to the unaccelerated part of the program.
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CHAPTER 5

Conclusions

This chapter closes the thesis by offering some final comments about the work described

previously. It also presents an outline of the publications related to this dissertation, and is

closed with a discussion of several potential lines of future work.

5.1 Closing remarks

The undeniable relevance of sparse linear systems in many areas of science and engineering,

as well as the rapid scaling in the size of the problems we are witnessing nowadays, motivate

the research for robust and efficient iterative solvers and preconditioners, and significant

advances in this subject have led to the development of several software packages. For

these packages to be successful, the correct utilization of modern computational platforms

is mandatory to obtain acceptable performance, and failing to do so can become an impor-

tant disadvantage against simpler but more established techniques. In this sense, hardware

accelerators such as GPUs have become an ubiquitous and powerful parallel architecture,

and making an efficient use of these devices is of utmost importance.

In this thesis we have made a comprehensive study of ILUPACK, a package that bundles

several of the most widely used Krylov subspace solvers with a sophisticated multilevel

“inverse-based” ILU preconditioner, in order to enable its efficient execution in platforms

equipped with hardware accelerators. This study involves the development of several GPU-

aware implementations of its preconditioner and most important solvers.

Prior to this dissertation, there were no variants of ILUPACK capable of exploiting data-

parallelism. Previous task-parallel implementations of ILUPACK [3, 4, 8] have shown good

performance and scalability in many scenarios, and remain a valuable tool to this day, but

also face some limitations.

In the first place, the task-parallel variants of ILUPACK are constrained to the solution

of SPD linear systems, and the generalization of this approach to the general case is a
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daunting endeavour from a mathematical perspective. In this sense, we have developed

the only existing parallel implementations of ILUPACK for non-symmetric and indefinite

systems.

Second, the previous versions rely on a slight modification of the preconditioner, neces-

sary to extract task-parallelism, that can impact the convergence properties of the precon-

ditioner. Our new data-parallel implementations are able to improve the performance of the

original preconditioner without significantly affecting its numerical properties.

In addition to our data-parallel variants of the sequential version of ILUPACK, we studied

the exploitation of GPU-enabled platforms for the two task-parallel implementations avail-

able at the moment. Specifically, we enabled GPU computations for the shared-memory

and distributed-memory implementations of ILUPACK.

Next, we highlight the most relevant details about each of these main contributions.

5.1.1 Development of GPU-aware variants of ILUPACK

We have provided a fully functional data-parallel version of ILUPACK, accelerated by means

of GPUs, that preserves the numerical properties of the sequential solver. For this purpose,

we developed data-parallel implementations of ILUPACK’s preconditioner for all its sup-

ported matrix types, covering four solvers: CG for SPD systems, GMRES and BiCG for

general systems, and SQMR for symmetric indefinite ones. All our data-parallel solvers off-

load the most computationally-demanding operations to the graphics accelerators, where

they are carried out via ad-hoc GPU kernels.

Our results, using Nvidia GPUs from Fermi and Kepler generations and a collection of

examples from the Suite Sparse matrix collection, a convection-diffusion problem, and the

Laplace equation, show speed-ups with respect to the original CPU version that are around

2× in many cases, reaching an improvement of 5.8× for one of the SPD cases and 3.7× for

one non-symmetric problem instance.

These are the first implementations of this software package capable of leveraging data-

parallelism. In the case of the non-symmetric and indefinite solvers, they are the only

parallel versions of ILUPACK available, so these speed-ups correspond to fair acceleration

factors. Furthermore, these values are mostly determined by the scarce parallel efficiency of

the triangular solvers in cuSparse, and are similar to the results found in the literature for

this type of operation.

The contributions summarized in this section are reflected in the following publications:

• Aliaga, J. I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., and Quintana-Ort́ı, E. S. (2014).

Leveraging data-parallelism in ILUPACK using graphics processors. In IEEE 13th

International Symposium on Parallel and Distributed Computing, ISPDC 2014, Mar-

seille, France, June 24-27, 2014 , pages 119–126

• Aliaga, J. I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., and Quintana-Ort́ı, E. S.

(2016a). A data-parallel ILUPACK for sparse general and symmetric indefinite linear

systems. In Euro-Par 2016: Parallel Processing Workshops - Euro-Par 2016 Inter-

national Workshops, Grenoble, France, August 24-26, 2016, Revised Selected Papers,

pages 121–133
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5.1.2 Enhanced parallel variant of GMRES

The analysis of our baseline implementation of the GMRES method revealed that, after

the acceleration effort using GPUs, the performance bottleneck in the GMRES is shifted so

that the (modified) Gram-Schmidt re-orthogonalization (MGSO) becomes the critical task

to achieve further gains in many cases.

In this context, we designed and developed a new approach for the massively parallel

version of GMRES method that integrates a GPU-based version of the MGSO method. Our

results report considerable speed-ups with respect to the sequential solvers integrated in

ILUPACK, with speed-up values between 2.3 and 5.8× considering the execution time of

the complete procedure.

The contributions in this section are summarized in:

• Aliaga, J. I., Dufrechou, E., Ezzatti, P., and Quintana-Ort́ı, E. S. Accelerating a

preconditioned GMRES method in massively parallel processors Proceedings of the

18th International Conference on Computational and Mathematical Methods in Science

and Engineering, CMMSE 2018 July 9-14, 2018.

• Aliaga, J. I., Dufrechou, E., Ezzatti, P., and Quintana-Ort́ı, E. S. An efficient GPU

version of the preconditioned GMRES method Accepted for publication at the Journal

of Supercomputing, 2018.

5.1.3 Task-data-parallel variants of BiCG

We have revisited and extended our first GPU-aware version of BiCG to offer a variant of this

solver capable of efficiently exploiting the parallel processing power of dual-GPU platforms.

Taking advantage of the inherent task-parallelism of the BiCG method, we perform the most

computationally demanding part of the iteration using both devices in parallel. Furthermore,

the extended memory capacity allows us to use the most adequate data representation in

each device, avoiding the use of slow transposed cuSparse routines.

The experiments reveal that our dual-GPU variant of the application of the precondi-

tioner achieves speedups of up to 10× with respect to the original CPU version. These values

are much higher if only the accelerated part of the solver is taken into account. Regard-

ing the comparison with the previous GPU version, our dual-GPU variant of BiCG delivers

super-linear speed-ups for the computation of the whole method, in the sense that we obtain

more than two times the speedup by duplicating the computational resources.

In addition, we have extended the work analyzing the benefits offered by the exploitation

of task-parallelism, when only a single GPU is available. In this context, we evaluated the

use of GPU streams in order to increase the concurrency, and the use of the multi-core

CPU to allow further overlapping of independent operations. Finally, we took advantage

of a recently proposed synchronization-free solver for sparse triangular linear systems to

enhance the use of the multi-core CPU and unleash higher levels of concurrency, since this

type of methods eliminates the CPU overhead due to the launching of kernels that cuSparse

routines imply. The experimental evaluation, performed over the same hardware platform

and with the same test cases, shows that we can reach fair runtime reductions in single-GPU

platforms, despite of the processing and memory limitations.
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The contributions in this section led to the following publications:

• Aliaga, J. I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., and Quintana-Ort́ı, E. S. (2018).

Extending ILUPACK with a task-parallel version of BiCG for dual-GPU servers. In

Proceedings of the 9th International Workshop on Programming Models and Applica-

tions for Multicores and Manycores, PMAM@PPoPP 2018, February 25, 2018, Vi-

enna, Austria, pages 71–78

• Aliaga J. I., Dufrechou E., Ezzatti P., Quintana-Ort́ı E. S. Accelerating the task/data-

parallel version of ILUPACK’s BiCG in multi-CPU/GPU configurations. Under peer-

review at the Journal of Parallel Computing.

5.1.4 GPU variant of BiCGStab

We have proposed and evaluated a data-parallel implementation of BiCGStab method, a

well-known iterative method, enhanced with the inverse-based multilevel preconditioner of

ILUPACK. Our results report considerable speed-ups with respect to our baseline massively

parallel solvers.

These contributions are reflected in the following publication:

• Aliaga J. I., Bollhöfer M., Dufrechou E., Ezzatti P., Quintana-Ort́ı E. S. (2018) Extend-

ing ILUPACK with a GPU version of the BiCGStab method, XLIV Latin American

Computing Conference CLEI 2018, Sao Paulo, Brazil.

5.1.5 GPU version of ILUPACK for shared-memory platforms

We have extended the task-parallel version of ILUPACK designed for shared-memory plat-

forms so that leaf tasks can exploit the data-parallelism of the operations that compose the

application of the multilevel preconditioner, which are the SpMV and the solution of trian-

gular linear systems, along with some minor vector operations. We presented two different

GPU versions, one that computes the entire leafs in the accelerator (ShMem GPU All)

and an alternative that employs a threshold to determine if a given algebraic level of the

preconditioner presents coarse enough granularity to take advantage of the GPU (ShMem -

Thres). Both variants are executed on a single GPU, assigning a GPU stream to each

independent leaf task.

The experimental evaluation shows that the division of the workload into smaller tasks

difficults the extraction of enough data-parallelism to fully occupy the hardware accelera-

tor, and this results in poor performance for ShMem GPU All. However, ShMem Thres

is able to execute each operation in the most convenient device while maintaining a mod-

erate communication cost, outperforming the original multi-core version for all the tested

instances.

These contributions are reflected in the following publication:

• Aliaga, J. I., Dufrechou, E., Ezzatti, P., and Quintana-Ort́ı, E. S. (2016b). Design

of a task-parallel version of ILUPACK for graphics processors. In High Performance

Computing - Third Latin American Conference, CARLA 2016, Mexico City, Mexico,

August 29 - September 2, 2016, Revised Selected Papers, pages 91–103
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5.1.6 GPU version of ILUPACK for distributed-memory platforms

The distributed-memory version of ILUPACK allows to tackle very large sparse systems of

linear equations efficiently. We have extended this tool to leverage the GPUs present in the

compute nodes of a cluster, exploiting the data-parallelism relative to the operations per-

formed during the application of the multilevel preconditioner. Our GPU-enabled variant

seeks to take advantage of the devices, even in the smaller algebraic levels of the precondi-

tioner, by off-loading the highly parallel SpMV and vector operations to the device while

performing the more serial triangular linear system solves on the CPU.

The experiments were obtained using 4 nodes equipped with 2 GPUs each, assigning

one core and one GPU to each independent task. The results of this evaluation show that

the execution time of the all-CPU variant can be improved by a factor of up to 2× by

assigning the tasks to the GPUs. They also demonstrate that partitioning the work in many

tasks constrains the data-parallelism of each task, so that the smaller test cases encounter

difficulties to exploit the full capabilities of the accelerator. Nevertheless, the advantage of

using the GPU tends to increase with the size of the test case. Although it is clear that

we cannot attain strong scalability, the results suggests that we reach weak scaling, making

possible to address larger problems via linearly increasing the amount of hardware resources.

These contributions are reflected in the following publication:

• Aliaga, J. I., Dufrechou, E., Ezzatti, P., and Quintana-Ort́ı, E. S. (2017b). Over-

coming memory-capacity constraints in the use of ILUPACK on graphics processors.

In 29th International Symposium on Computer Architecture and High Performance

Computing, SBAC-PAD 2017, Campinas, Brazil, October 17-20, 2017 , pages 41–48

Jetson

Also in the line of energy efficiency, we adapted and evaluated the performance of our

data-parallel version of ILUPACK for SPD systems in a low power Jetson TX1 platform,

equipped with a Tegra GPU and low power ARM processors. Although the use of these

devices implies an important performance compromise, the results suggest that they can

be convenient in cases where the size of the problem does not allow to fully exploit regular

GPUs, considering their low power consumption.

The contributions relative to this topic are summarized in the following articles:

• Aliaga, J. I., Dufrechou, E., Ezzatti, P., and Quintana-Ort́ı, E. S. (2017a). Evaluating

the NVIDIA tegra processor as a low-power alternative for sparse GPU computations.

In High Performance Computing - 4th Latin American Conference, CARLA 2017,

Buenos Aires, Argentina, and Colonia del Sacramento, Uruguay, September 20-22,

2017, Revised Selected Papers, pages 111–122

5.2 Open lines of research

In this thesis we have focused in enhancing ILUPACK with the capacity of executing effi-

ciently in platforms equipped with massively parallel processors such as GPUs. We have
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explored several lines of work that led to efficient implementations of the most important

solvers in ILUPACK, but during the process we have detected some directions in which this

work can be extended.

Next we provide some details about these aspects:

• The computation of ILUPACK preconditioner is a complex and time consuming pro-

cess and its parallel execution has not been studied for non-SPD problems. The main

reasons for this are that the computation of the preconditioner is performed only once

for each matrix, and it is therefore more interesting to accelerate its application, which

is likely to be performed even hundreds of times for each matrix. However, there are

use cases in which the computation time of the preconditioner completely overshad-

ows the reduction in the iteration count of the solvers. The study of this computation

process and its parallelization is an interesting line of future work.

• The solution of sparse triangular linear systems is one of the most time consum-

ing stages in the application of the ILUPACK preconditioner. We currently rely

on the cuSparse library for the execution of this operation, but this implementa-

tion is generic, and targeted to standard CSR matrices. Our recent advances on a

synchronization-free approach to solve sparse triangular linear systems on the GPU,

in combination with the preliminary results obtained for the inclusion of these solvers

into ILUPACK, motivate the future development of GPU synchronization-free LDU -

system solvers specially designed for ILUPACK data types and characteristic sparsity

patterns.

• In the context of our acceleration of the task-parallel variants of the ILUPACK pre-

conditioner we encountered that it is sometimes convenient to offload part of the

computations to the CPU, since some small operations in the higher numbered levels

on the multilevel structure cannot fully exploit the execution parallelism offered by

the GPU. Currently, we defined an empirical threshold to offload such operations, but

the development of an automatic mechanism to determine the most convenient device

is an interesting line of future research.

• The preliminary results obtained for the execution of ILUPACK in low power plat-

forms, such as the Jetson TX1, opens some lines that could be followed in the future.

First, this kind of devices continue to develop, and new generations introduce im-

portant improvements regarding memory bandwidth, computing power, the unified

memory system, and the energy performance aspects. It is therefore interesting to

test our data-parallel solvers on these new architectures to assess how these advances

can benefit their performance. Second, recent initiatives have aimed to construct

small clusters prototypes of these devices, showing promising energy and performance

results. This motivates us to consider the execution and analysis of the GPU-aware

distributed variant of ILUPACK in such contexts.

• Driven by the outstanding development of machine learning in the last years, GPUs

have adapted to this reality by introducing several architectural novelties and radical

changes in the programming and execution models. It is therefore interesting to study

the exploitation of these new features, like the Tensor Cores or the group synchroniza-
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tion mechanisms introduced in CUDA 9.0. These developments are too recent to be

covered in this thesis, so they will be addressed as part of future work.

99



Chapter 5. Conclusions

100



Appendices





APPENDIX A

Solution of sparse triangular linear systems

Many Numerical Linear Algebra methods, as the direct solution of sparse linear systems, the

application of preconditioners based on incomplete factorizations, and least squares prob-

lems, require the solution of sparse triangular linear systems as one of their most important

building blocks [57]. This is one of the reasons that explain the special attention devoted to

this kernel over the years, and the efforts towards developing efficient implementations for

almost all competitive hardware platforms.

This operation poses serious challenges regarding its parallel execution as, in general, the

elimination of one unknown depends on the previous elimination of others. Additionally,

the triangular structure of the matrices is prone to create load imbalance issues. Although

in the case of dense systems, these limitations can be partially overcome by rearranging the

operations of the solver into a sequence of smaller triangular systems and dense matrix-

vector multiplications [24], in the sparse case this solution does not offer any benefit in most

cases. However, the sparsity of the matrices often allows different unknowns to be eliminated

in parallel (e.g. consider the extreme case of a diagonal matrix).

The parallel algorithms for the solution of this operation can be classified in two main

contrasting categories. On the one hand we can find two-stage methods, which rely on a

preprocessing stage that analyzes the data dependencies to determine a scheduling for the

elimination of the unknowns that reveals as much parallelism as possible. On the other

hand, one-stage methods, based on a self-scheduled pool of tasks, on which some of the tasks

have to wait until the data necessary to perform their computations is made available by

other tasks1. Both paradigms are a good option for some instances and not so good for

others, hence making impossible to offer a general result that determines which is the best

method. This decision problem is one of our lines of ongoing work and some preliminary

concepts are presented in [47].

1 Diagonal inverse-based methods [13, 12, 84, 14], and iterative approaches [19, 105, 102], are two alter-
native categories can be considered. These are interesting strategies but face important difficulties or are
not general enough to be widely applicable.
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Graphics Processors have evolved to become the top parallel device architecture, so the

development of algorithms that are able to exploit their benefits is of the utmost importance.

To this day, the most widespread GPU implementation of sparse triangular solvers is the one

distributed with the Nvidia cuSparse library2, which belongs to the first class of methods.

Although the implementation is highly efficient, and has been improved and adapted to

new Nvidia architectures over the years, it has two main disadvantages. First, the analysis

phase, which determines the execution schedule, is very expensive. Second, this strategy

often pays the cost of constant synchronizations with the CPU [47].

As an alternative, a synchronization-free method, was recently proposed by W. Liu et

al. [71]. The method is based on a dynamically-scheduled strategy and involves only a

light-weight analysis of the matrix before the solution phase. However, it has the potential

disadvantage of making an extensive use of GPU atomic operations. Additionally, it targets

sparse triangular matrices stored in the CSC format, which is not as ubiquitous as CSR,

since the latter offers a much higher performance in other common operations like the Sparse

Matrix-Vector product [57].

This appendix offers details about a new GPU algorithm, presented in [45], for the

solution of sparse triangular linear systems in which the coefficient matrix is stored in the

CSR format. The algorithm belongs to the second class of methods, i.e. it does not involve

a pre-processing stage, and it is also synchronization-free.

We also present a similar strategy to compute the depth of each node of graph represented

by the sparse matrix. This information can be later used to calculate the same level sets

than those computed by cuSparse. Moreover, we design a routine that, if provided with the

sparse matrix coefficients and a right hand side vector, is able to combine the computation

of the level sets and the solution of a linear system implying little extra work. In contrast

with the routines offered by cuSparse, both our analyzer and our solver do not need to

synchronize with the CPU until the end of the computations.

A.1 Solution of sparse triangular linear systems

The usual approach to solve a linear system of the form

Lx = b (A.1)

where L ∈ Rn×n is a (lower) sparse triangular matrix, b ∈ Rn is the right hand side

vector, and x ∈ Rn is the sought-after solution, is called forward-substitution. It consists

on substituting the value of the solved unknowns on the next equations, i.e. multiplying

the coefficients of these rows by their corresponding unknowns and subtracting the obtained

values to the right hand side, before dividing by the diagonal element in order to solve the

new unknowns. This clearly implies some serialization, since an equation cannot be solved

before all the unknowns on which it depends have been substituted by their actual values.

Figures A.1 and A.2 present serial versions of the algorithm for solving a sparse lower

triangular linear system Lx = b where the matrix L is stored in CSR and CSC sparse storage

2Available at https://developer.nvidia.com/cuda-downloads, as part of the CUDA Toolkit.
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formats respectively. The procedure differs in order to ensure data locality in the access to

the sparse matrix.

Input: row ptr, col idx, val, b
Output: x
x = b
for i = 0 to n− 1 do

for j = row ptr[i] to row ptr[i+ 1]− 2 do
x[i] = x[i]− val[j]× x[col idx[j]]

end for
x[i] = x[i]/val[row ptr[i+ 1]− 1]

end for

Figure A.1: Serial solution of sparse lower triangular systems for matrices stored in the CSR
format. The vector val stores the nonzero values of L by row, while row ptr stores the indices that
correspond to the beginning of each row in vector val, and col idx stores the column index of each
element in the original matrix.

Input: col ptr, row idx, val, b
Output: x
x = b
for i = 0 to n− 1 do
x[i] = x[i]/val[col ptr[i]]
for j = col ptr[i] + 1 to col ptr[i+ 1]− 1 do
x[row idx[j]] = x[row idx[j]]− val[j] ∗ x[i]

end for
end for

Figure A.2: Serial solution of sparse lower triangular systems for matrices stored in the CSC
format. The vector val stores the nonzero values of L by column, while col ptr stores the indices
that correspond to the beginning of each column in vector val, and row idx stores the row index of
each element in the original matrix.

A.1.1 The level-set strategy

Although forward-substitution might seem strictly sequential at first glance, when most of

the coefficients of the matrix are zeros, each equation depends only on a small set of the

previous unknowns, which correspond to the nonzero entries of the related row. Therefore,

there is a good chance that many rows do not depend of each other and can be solved in

parallel once all their other dependencies have been fulfilled.

The idea of level-set scheduling was introduced by Anderson and Saad [18] with the

aim of finding an execution schedule for the SpTrSV that exposes as much parallelism as

possible. The strategy consists in viewing the sparse matrix as a Directed Acyclic Graph

(DAG) that represents the dependencies of each unknown. A nonzero element in lij means

that unknown i depends on the value of unknown j, so there is an edge in the DAG from

node j to node i. By means of renumbering the nodes of this DAG, they can be organized

into an ordered list of levels, in which the nodes in one level depend only on the nodes of

the previous levels; see Figure A.3. This means that all nodes (equations) in one level can

be solved in parallel given that the previous levels have already been computed.
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Figure A.3: Nonzero pattern of lower triangular sparse matrix (top), its DAG (center), and its
level-set reordering (bottom).

A commonly used algorithm to compute the level sets in a DAG finds a topological

ordering of the graph using a variation of Kahn’s algorithm [66]. It consists on successively

finding all the nodes that have no incoming edges (root nodes), adding them to the ordered

list, and removing their outgoing edges from the graph. In a given iteration, the root nodes

are the nodes that can be processed in parallel, given that they have no dependencies, and

hence form the current level. Removing their outgoing edges ensures that the root nodes of

one iteration are the nodes that depended only on the root nodes of the previous iteration.

After all nodes have been processed, this procedure retrieves an ordered list of nodes iorder,

where those that belong to the same level are grouped together, and a list of pointers ilevels

that indicates the starting position of each level in iorder.

In [76] Naumov presented a GPU implementation of this approach. The implementation

is based on three GPU kernels that are executed iteratively until all the nodes of the graph
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have been processed. The find roots kernel loads a buffer with the list of root nodes in the

current graph. Later, the analyze kernel processes the list of root nodes and the current

graph, removing the dependencies of the current root nodes. To optimize the process, it

also produces a list of candidates to be root nodes in the next iteration, so that the find -

roots kernel only needs to process this list. Naumov utilizes two buffers for storing root

nodes. One of them stores the root nodes that need to be processed in the current iteration,

while the other is used to write the root nodes of the next iteration. To avoid copying data

between these two arrays, Naumov simply flips the pointers to the arrays at the end of each

iteration. To the best of our knowledge, the implementation distributed with the cuSparse

library follows these ideas.

Another approach that could be used to perform the analysis phase of the parallel Sp-

TrSV is based on computing the depth of each node. In [106], Wing and Huang define

the depth of a node vi as the maximum distance from an initial node to vi. In the case of

DAGs that represent task dependencies, the depth of a node i represents the minimum step

at which task i will have its dependencies fulfilled. With this definition, a level of the DAG

can be seen as a group of nodes that share the same depth. As stated by Anderson and Saad

in [18], the depth of each node can be calculated in one sweep through the adjacency matrix

L following

depth(i) =1 if lij = 0 ∀j < i

maxj<i{1 + depth(j) : lij 6= 0} otherwise

Once the depth of each node is calculated, the iorder vector can be computed in O(n)

time, where n is the dimension of the matrix. One possible way of calculating such an

ordering could be the following:

• Given an array idepth of length n containing the depth of each node, obtain the max-

imum, which is equal to the total number of levels.

• Allocate the vector ilevels and initialize it such that ilevels(i) contains the number of

nodes in level i.

• Performing a scan operation on this vector will yield the starting position of each level

in the final iorder array, which is the final content of ilevels.

• Maintaining an offset variable for each level, assign each node j to the iorder array the

following way

iorder(ilevels(idepth(j)) + offset(idepth(j))) = j

incrementing the offset by 1 afterwards.

A.2 Related work

In this section we offer a revision of the state of the art in the parallel solution of sparse

triangular linear systems. Specifically, we describe several efforts grouped around the two
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main paradigms that have prevailed overtime and present well known GPU implementations,

namely, level-set and synchronization-free approaches.

A.2.1 Level-set based methods

The foundation for this kind of algorithms was established by the work of O. Wing [106]. In

this study, the author focuses on using the DAG representation to perform the analysis of the

data dependencies between operations that compose the resolution of the sparse triangular

systems resulting from matrix factorizations.

Later, seeking to improve the computational performance of methods corresponding to

the family of the preconditioned conjugate gradients on different parallel platforms, Saad and

Schultz [91] studied the solution of sparse triangular linear systems that arise in Incomplete

LU (ILU) preconditioners. The main contributions of the work are the analysis of the

wavefront parallelism pattern and the benefits of applying a red-black re-ordering of the

unknowns prior to the incomplete factorization. The idea behind the wavefront consists

on that the unknowns corresponding to the wavefront can be solved in parallel, and the

advance of the wavefront implies that all previous unknowns have been processed and the

data generated is accessible.

The parallelization of ILU preconditioners is also addressed by Saltz in [93]. This time,

the author focuses on problems derived from 2D grids, directly mapping the wavefront

parallelism pattern to the grid. He also uses the DAG, but in this case each node represents

one row/column of the corresponding matrix. Later, Anderson and Saad [17] presented a

study of different strategies to solve triangular linear systems. One of the proposed methods

is a reordering scheme for the sparse matrix which they call level scheduling after the way

nodes are organized in the adjacency graph.

Regarding the use of GPUs to perform the SpTrSV, Naumov [76] presented a GPU

implementation following the approach described in Section A.1.1. The routine is highly

optimized and distributed as part of the cuSparse library. According to the author, ILU

preconditioned iterative solvers using this implementation of the SpTrSV, obtain an average

speedup values of 2× over multi-threaded MKL counterparts. However, the results obtained

are too fluctuating and strongly depend on the sparse-pattern of the matrix.

A.2.2 Dynamically scheduled algorithms

The article by George et al. [52] was one of the first works that proposed a self-scheduled

approach to solve triangular sparse linear systems on shared memory processors. The pro-

cedure is based on a pool of tasks that wait until their data dependencies have been resolved

to commence their execution. Later, Saltz [92] extended the analysis of asynchronous algo-

rithms in order to consider runtimes. Finally, Rothberg [85] improved this new paradigm by

making a better use of cache levels, working with an incomplete Cholesky preconditioned

iterative method.

In the general purpose massively parallel computing context, Liu et al. [71] recently

presented an asynchronous method able to take advantage of the computational power of-

fered by GPUs. There are practically no significant research efforts applying this strategy
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on hardware accelerators other than this work.

The authors propose the novel GPU procedure as a means to overcome two main draw-

backs of the level-set based cuSparse implementation. On the one hand, they seek to lower

the pre-processing cost associated with this approach, presenting a very lightweight pre-

processing stage and, on the other hand, they intend to avoid the excessive synchronization

with the CPU, which harms the performance of cuSparse routine in many cases, by using

a synchronization-free strategy.

The analysis phase consists in calculating the number of dependencies that each row

has. This value is equivalent to the number of non zeros (nnz) in the row minus one. As

the implementation targets matrices in CSC format, this data is collected in the GPU by a

parallel histogram-like procedure, and stored in an auxiliary vector.

Once the analysis has completed, the solution phase proceeds by assigning a warp to

each column of the sparse matrix. The computations performed by each thread can be

divided in three sub-stages: lock-wait, critical section and lock-update. At the first stage,

the threads of a warp busy-wait until all their dependencies are resolved. This information is

obtained through the use of a global vector of dependencies. Columns with no dependencies

can advance to the critical section stage. This stage involves two main tasks. First, the

solution element associated with that column is calculated, and second, the values of the

column are multiplied by the solution element and subtracted from the solution vector using

atomic operations, which was previously initialized with the right hand side. In the final

stage, lock-update, atomic operations are used again to update the corresponding positions

in the dependencies vector. The implementation is able to leverage the shared memory of

the multiprocessors, by maintaining the data of the unknowns corresponding to warps of

the same thread block in the fast memory.

A.3 Sync-free GPU triangular solver for CSR matrices

The algorithm that we shall present in the following lines falls under the Synchronization-Free

category that we have discussed earlier. It is based on scheduling warps to solve unknowns

as soon as their dependencies have been fulfilled. Although the main idea is similar to the

one underlying the work by Liu et al. [71], our proposal is targeted for the CSR matrix

storage format.

In our proposal, the procedure advances row-wise, assigning a warp for each unknown.

The warp must busy wait until the rows on which it depends have been processed. In other

words, the entries in the vector of unknowns that correspond to the column index of the

nonzero elements of its row must have their final values. In order to keep track of this, we

store an integer ready vector, which has an entry for each unknown, that is set to one if it

has been solved, and is equal to zero otherwise.

The busy-waiting procedure that each warp must undergo before processing its assigned

row consists on iteratively polling the corresponding entries of the ready vector until they all

have been set to one by other warps. In each iteration, every thread of the warp fetches the

value of the ready vector in the position equal to the column index of one of the non-zeros

of its assigned row into a register, unless it has already obtained a value of one in a previous
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iteration. The values are then reduced by a warp-voting primitive that returns one if the

value in the corresponding register is nonzero for all the active threads in the warp, and

returns zero otherwise. We keep two versions of the ready vector, one in global memory and

the other distributed across the shared memory of the different thread blocks. Each time

a warp updates its corresponding ready value, it must do it in the global memory and in

the shared memory of its block. This allows that when a warp depends on a value that is

to be updated by another warp of the same thread block, the thread polling for that value

can do so in the much faster shared memory. This situation is common in matrices that

concentrate most nonzero entries close to the diagonal. We also use a similar mechanism to

update and fetch the value of the unknowns that are solved by a warp in the same thread

block.

For this process to be successful, it is necessary that the warp scheduler of the SM

activates the warps that will fulfill the dependencies of the current warp between one iteration

and the other. We rely on the fact that accessing the ready vector will cause the warp to halt

waiting for the value to be fetched from memory. Furthermore, although the ready vector

is initially stored in global memory, there will be only a moderate number of entries being

polled at a given moment, so they will hopefully be read from the cache most of the times.

The CUDA execution model specifies that there is only a number of resident blocks in

each Streaming Multiprocessor (SM). The warps that belong to this blocks have all their

resources allocated in the SM and can issue an instruction as soon as its operands are ready.

Non-resident blocks, however, have to wait until resident blocks finish their execution, so

no resident warp should wait for data that is to be produced by a non-resident one, since it

would cause a deadlock. The triangular structure of the matrix ensures that each unknown

depends on others of lower numbering. If each warp processes the row corresponding to

its warp identifier, no deadlock should occur as long as the warp identifiers of the active

(or resident) warps are always lower than those of the non-resident warps. Unfortunately,

although the evidence suggests that this property holds for most GPU architectures (if not

all), the order in which blocks are issued to the SMs is not specified by the manufacturer.

For this reason, we use a global variable in the GPU memory that the first thread of each

block must read and increment before commencing its computations. The value read from

this variable is used instead of the block identifier to form the warp identifier. This has a

cost of one atomicAdd per block, which is negligible in practice.

Once all the dependencies have been met, the algorithm can move on to the multiplying

stage, in which each thread of the warp multiplies a nonzero value of the current row by the

appropriate entry of the vector of unknowns, accumulating the result in a register.

If there are more than 32 nonzero elements in the row, the warp moves back to busy-

waiting for the solution of the unknowns that correspond to the next 32 nonzero elements.

The cycle is repeated until every nonzero in the row has been processed.

After the multiplying stage, the registers that accumulate the products performed by

each thread of the warp are reduced using warp shuffle operations, and the result is then

stored in the vector of unknowns, divided by the diagonal pivot, by the first thread of the

warp.

Finally, the first thread of the warp is responsible of marking the unknown as solved in
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the ready vector.

A simplified version of the source code of our GPU kernel (we omit the shared memory

part and the selective fetching of the ready vector for clarity) is presented in Figure A.4. The

input parameters are the three vectors representing the sparse matrix stored in CSR format,

the right hand side, the dimension of the system, and a pointer to the memory reserved for

the ready vector. As an output parameter, the function receives a pointer to the vector of

unknowns. VALUE TYPE stands for the floating point precision utilized.

Note that this algorithm requires no pre-processing stage other than setting to zero the

ready vector. Moreover, working by rows makes possible to avoid the use of slow atomic

operations.

A.4 A massively parallel level set analysis

As mentioned in Section A.1.1, the depth of a node, which is equivalent to the level that

equation belongs to, can be computed by adding one to the maximum of the depths of the

nodes it depends on. If the node has no dependencies its depth is simply one. Hence, the

depth of a node can be computed entirely only after the depths of the nodes corresponding

to its incoming edges are computed. As our parallel GPU algorithm assumes the graph

is stored as a sparse adjacency matrix in CSR storage format, nodes map to rows of the

matrix, and the incoming edges of each node map to the nonzero elements of each row.

As in the case of the Synchronization-Free solver routine, we launch a warp for each

row of the sparse matrix. In order to compute the depth of the corresponding node, the

warp must first busy wait until the rows on which it depends have been processed. In other

words, the entries in the vector of depths that correspond to the column index of the nonzero

elements of its row must have their final values. In order to keep track of this, we store an

integer ready vector, which has an entry for each node, that is set to one if it has been

processed, and is equal to zero otherwise. It should be noted that only one thread writes to

each entry of these two vectors.

The outline of the algorithm is similar to that of the solver routine. The main differences

lies in the multiplying, reduction, and update stages. Instead of multiplying the coefficient

of the matrix by the value of the solution vector, accumulating the result in a local variable

for each thread of the warp, the corresponding stage in the analysis routine has to fetch the

value from the vector of depths in the corresponding position and store the maximum in

each local variable. After this, the reduction stage computes the maximum by an intra-warp

reduction. Finally, the update stage stores the reduced value plus one in the entry of the

depths vector corresponding to the node processed by the warp.

A simplified version of the source code of our kernel is presented in Figure A.5. The

input parameters are the two vectors representing the sparse adjacency matrix stored in

CSR format, the dimension of the system, and a pointer to the memory reserved for the

ready vector. As an output parameter, the function receives a pointer to the vector of depths.

In order to leverage some data locality, we maintain a copy of the entries of the depths

and ready vectors that correspond with the nodes that will be processed by the thread block

in the shared memory. When threads depend on nodes that are to be processed by warps
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of the same thread block, we can fetch and update the corresponding values in the shared

memory instead of using the much slower global memory. We do not include this feature in

the outline of Figure A.5 for the sake of simplicity.

A.5 Combining the analysis and solution stages

It is clear that our analyzer follows the self-scheduled strategy to compute the level of each

row instead of the solution of the linear system, and that both algorithms bare a remarkable

resemblance. This situation motivates the combination of both analysis and solution phase

of the SpTrSV in only one pass of our synchronization-free method. As the maximum

depth of the nodes in the matrix, which is equivalent to the number levels, is a relevant

factor on the final performance of the level-based strategy, it can be used to decide which of

the two approaches is the most convenient for a given matrix.

Taking this into account,

we can extend the algorithm for the analysis so that it receives an initial vector of

unknowns (set to zero), the right hand side vector and the values of the triangular matrix,

computing the solution of the linear system in the same pass used to compute the depths

of the nodes. This is useful in a scenario where it is necessary to solve a small number of

linear systems with the same coefficient matrix, as it is often the case in ILU preconditioned

iterative methods. Here, the solution of the first of the linear systems also produces the level

information that can be used to solve the following triangular systems with the two-stage

approach, if the performance estimation determines that this is the best strategy.

A.6 Experimental evaluation

This section summarizes the experiments conducted to evaluate the novel synchronization-

free routines to perform the solution and level-set analysis of sparse triangular systems.

The results for the solution routine are contrasted with the ones obtained by the cuSparse

library, which we will refer to as level-based, since it is the most widely used implementation

of this kernel, and with the proposal by Liu et al. [71], from here on called CSC Sync. Free,

as it is, to our best knowledge, the only publicly available Synchronization-Free proposal for

GPUs.

In turn, the results for the new analysis routine are contrasted with the ones obtained by

the cuSparse library, since it is also the most widely used implementation of this operation.

We are not aware of any other widespread and publicly available library that performs a

level based solution of sparse triangular systems using a different approach.

All results were obtained using IEEE single- and double-precision floating point arith-

metic.

A.6.1 Test cases

The benchmark utilized for the experiments is a set of moderate and large sparse matrices

from the SuiteSparse Matrix Collection. In Table A.1 we display, for each matrix, its di-
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Table A.1: Some features of the employed matrices. Levels is the number of levels in the DAG
computed by the analysis phase.

Matrix n nnz Levels

cant 62,451 2,034,917 2,397
chipcool0 20,082 150,616 534
crankseg 1 52,804 5,370,437 2,218
hollywood-2009 1,139,905 57,515,616 82,735
nlpkkt160 8,345,600 118,931,856 2
road central 14,081,816 31,015,229 59
road usa 23,947,347 52,801,659 77
ship 003 121,728 4,103,881 4,367
webbase-1M 1,000,005 2,348,442 512
wiki-Talk 2,394,385 3,072,221 515
cit-HepTh 27,770 4,244,363 183
dc2 116,835 666,173 14
epb3 84,617 3,313,794 879
g7jac140sc 41,490 10,102,488 291
lung2 109,460 273,646 479
rajat18 94,294 280,494 42
rajat25 87,190 1,458,168 137
soc-sign-epinions 131,828 271,947 444
TSOPF RS b162 c4 20,374 1,565,005 114
wordnet3 82,670 165,459 8

mension, number of non-zeros and the amount of levels produced by the analysis routine of

cuSparse. As the exploitation of parallelism in the level-based approach consists in pro-

cessing the rows that belong to a given level in parallel, dividing the number of rows by the

number of levels can give a rough estimation of the parallelism available for that matrix.

The selection of test cases is the same than that of [72] in order to make sure that the

results obtained for the CSC Sync. Free implementation are comparable. For the evaluation

of the solver routine we used the first set of 10 matrices, while for the analysis routine we

used the whole 20. For the evaluation of the combined solver we used only the first set,

performing a similar study than the one conducted in [47].

A.6.2 Hardware platforms

The performance evaluation of our proposals was carried out using four different platforms.

The first one is platform Beethoven, presented in Section 3.1, while the remaining are

presented next.

Ravel

Equipped with an Intel(R) Core(TM) i7-6700 CPU processor (8 cores at 3.40 GHz) and 64

GB of DDR3 RAM. The platform also features a GTX1060 (Pascal) GPU with 1,152 CUDA

Cores and 3 GB of GDDR5 RAM. The compiler for this platform is gcc 14.0.0 and for GPU

codes we use the CUDA/CUSPARSE 8.0 libraries.

Sibelius

Equipped with an Intel(R) Core(TM) i7-6700 CPU processor (8 cores at 3.40 GHz) and 64

GB of DDR3 RAM. The platform also features a NVIDIA GTX 1080 Ti (Pascal) GPU with
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3,584 CUDA Cores and 11 GB of GDDR5X RAM. The compiler for this platform is gcc

14.0.0 use the CUDA/CUSPARSE 8.0 for the GPU codes and libraries.

A.6.3 Evaluation of the solver routine

Tables A.2 and A.3 summarize the runtimes obtained for the execution in Beethoven and

Ravel respectively. Both tables display the execution time of the level-based and CSC Sync.

Free, which is separated in the analysis and solve phases, and the execution time for our

CSR Synchronization-Free solver, in single and double precision. Additionally, we show the

speedups obtained when comparing our solution to the two previous approaches.

The acceleration factors relative to the level-based implementation are heterogeneous,

ranging from 3× in favour of the level-based approach to the 10× in favour of our solver that

were obtained in Beethoven using single precision. If the time devoted to the analysis

phase is considered, the level-based implementation is outperformed by our solver for all

the tested instances, with some speedups reaching values up to 25×. Although it is true

that in some scenarios, as for example ILU-preconditioned iterative solvers, the analysis is

performed only once for each matrix while the level information can be used to solve multiple

linear systems, the benefits of the level-based strategy start to appear after a considerable

amount of iterations. As an example, the results on Ravel, using single precision, show that

the solving phase of the level-based strategy is almost 2× faster than our synchronization-

free variant for the webbase-1M problem. However, the level-based approach starts being

convenient only after solving 13 linear systems with the same analysis information.

A more detailed analysis of the results shows that our solver is outperformed by the

solving phase of cuSparse implementation for four of the matrices (nlpkkt160, road central,

and webbase-1M) and is on the same order of performance for the wiki-Talk matrix. This

suggests that the level-based approach is superior in two situations. The nlpkkt160 matrix is

large, has an enormous amount of parallelism, and the cost of synchronization is negligible

relative to the cost of the computations. In this case, the pre-processing allows to schedule

the parallel solution of as many rows as possible, fully utilizing the computational units, while

our busy-waiting strategy adds unnecessary overhead and may cause that rows that have

no dependencies but are located in the bottom of the triangular matrix are delayed in their

processing, as they belong to initially inactive blocks. The other three instances correspond

to matrices that have fairly regular sparsity patterns in which the nonzero elements are

clustered in small blocks. This can generate a great deal of dependencies between nearby

rows, so the cuSparse solver can benefit from the global information obtained in the analysis

phase in order to produce a better scheduling of the execution, while our strategy proceeds

almost blindly, based on rather local information. Moreover, it should be remarked that in

the cases where the cuSparse solver obtains the best performance, the cost of the analysis

phase is higher in proportion. This can be observed by comparing the ratio between the

speedup of our proposal against the solution phase of cuSparse and the speedup against

both phases added together.

Compared to the CSC Sync. Free implementation, and without considering the double

precision results in Beethoven, where our proposal is clearly better, our solver presents
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A.6. Experimental evaluation

interesting performance gains in four instances (hollywood-2009, ship-003, cantilever, and

crankseg 1), while performing similarly for the others. In this case, it is more difficult to

derive the reasons for our superior performance, since both strategies are based on the same

principles.

We have observed that, for the cases in which we obtain performance peaks, the amount

of inactive cycles that a warp has to wait before processing its data is significantly lower

for our solver. A key difference between the two approaches that could explain this results

is that, in the CSC Sync. Free algorithm, the operations that need to be performed before

a warp can exit the busy-waiting phase are necessarily serial (atomic additions to an entry

in the in degree vector), while in our case they could be performed in parallel by different

warps. For this to be a real advantage, it is required that the unknowns for which a warp is

waiting have no dependencies between them, which is completely dependent of the sparsity

pattern of the matrix.

A.6.4 Evaluation of the analysis routine

The performance evaluation of the analysis routine was carried out in platforms Raveland

Sibelius. These two platforms are actually one server equipped with two Nvidia graphic

cards. Although both GPUs belong to the Pascal generation, they present different charac-

teristics, as one of them is a low-end gaming GPU (the GTX 1060) and the other is one of

the most powerful gaming graphic cards available (the GTX 1080 Ti).

Experimental Results

Table A.4 summarizes the runtimes obtained for the execution of level-based and our variant

to perform the analysis phase of the SpTrSV in both the employed hardware platforms.

The acceleration factor, computed as level−based Time
Proposal T ime , is also provided.

The differences between the execution times obtained in the two graphic cards vary ac-

cording to the test instance. In general, the benchmark executed faster in the SibeliusGPU,

as it was expected, with differences that range from marginal to more than 2×. There are,

however, a few counter intuitive results but, as in both algorithms the execution schedule

can be greatly affected by the sparsity pattern of the matrix, a much deeper and complex

analysis is required in order to explain them adequately.

The runtimes obtained in the experiments show a clear advantage of our approach. Our

routine to compute the depth of the nodes in the DAG presents acceleration factors of up

to 44× with respect to level-based analysis routine for the evaluated instances. The most

significant acceleration is obtained in the Sibelius GPU for the nlpkkt160 case, that is the

largest instance in terms of memory usage.

It should be noted that the cuSparse analysis of the nlpkkt160 and road usa matrices

failed in the Ravel device, as the 3GB of DRAM in the accelerator were not sufficient to

host the additional data structures generated by the routine. This reveals another advantage

of our method, as we only need to allocate space for the auxiliary is solved vector, while the

cuSparse routine needs an amount of additional memory proportional to the number of
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Appendix A. Solution of sparse triangular linear systems

Table A.4: Runtime (in milliseconds) of the analysis phase of CUSPARSE and our analysis routine
in platforms Ravel and Sibelius.

Matrix
cuSparse Proposal

Speedup
time time

Ravel

cant 32.00 2.18 14.68
chipcool0 8.27 0.46 17.98
crankseg 1 61.43 5.94 10.34
hollywood-2009 1,179.61 76.48 15.42
nlpkkt160 - 25.61 -
road central 465.00 57.59 8.07
road usa - 128.20 -
ship 003 61.00 4.30 14.19
webbase-1M 37.49 4.67 8.03
wiki-Talk 63.87 5.85 10.92
cit-HepTh 5.70 0.29 19.66
dc2 13.75 0.83 16.57
epb3 12.61 11.65 1.08
g7jac140sc 7.04 0.43 16.37
lung2 9.58 1.34 7.15
rajat18 7.64 0.71 10.76
rajat25 8.66 0.94 9.21
soc-sign-epinions 13.39 0.72 18.60
TSOPF RS b162 c4 7.29 0.69 10.57
wordnet3 5.61 0.14 5.61

Sibelius

cant 29.73 3.14 9.47
chipcool0 8.31 0.53 15.68
crankseg 1 54.37 4.33 12.56
hollywood-2009 1,113.87 114.75 9.71
nlpkkt160 424.75 9.66 43.97
road central 271.23 20.77 13.06
road usa 464.23 46.19 10.05
ship 003 54.27 2.71 20.03
webbase-1M 30.27 2.15 14.08
wiki-Talk 48.80 2.87 17.00
cit-HepTh 5.67 0.31 18.29
dc2 13.59 0.38 35.76
epb3 13.02 5.65 2.30
g7jac140sc 7.46 0.30 24.87
lung2 10.39 0.91 11.42
rajat18 8.47 0.42 20.17
rajat25 9.30 0.58 16.03
soc-sign-epinions 13.46 0.58 23.21
TSOPF RS b162 c4 6.07 0.55 11.04
wordnet3 5.59 0.33 16.94
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A.6. Experimental evaluation

Table A.5: Runtime (in ms) of our combined analysis and solution routine in platform Ravel. The
column overhead represents the additional cost of solving one triangular system during the analysis.
The values in the last column are calculated as the added time of performing our analysis phase
followed by cuSparse’s solution phase. divided by the execution time of the combined analysis and
solution routine.

Matrix
cuSparse Proposal cuSparse sol. Combined Overhead Accel.
solution analysis + prop. analysis routine % factor

single precision

cant 11.01 2.18 13.19 2.75 20.73 4.80
chipcool0 1.79 0.46 2.25 0.52 11.54 4.33
crankseg 1 15.87 5.94 21.81 7.70 22.86 2.83
hollywood-2009 516.87 76.48 593.35 97.17 21.29 6.11
nlpkkt160 - 25.61 - 34.02 24.72 -
road central 19.46 57.59 77.05 71.26 19.18 1.08
road usa - 128.20 - 146.70 12.38
ship 003 17.02 4.30 21.32 5.49 21.68 3.88
webbase-1M 2.56 4.67 7.23 5.82 19.76 1.24
wiki-Talk 7.07 5.85 12.92 7.70 24.03 1.68

double precision

cant 11.04 2.13 13.17 3.23 34.06 4.08
chipcool0 1.87 0.36 2.23 0.51 29.41 4.37
crankseg 1 18.38 6.00 24.38 8.94 32.89 2.73
hollywood-2009 584.40 76.63 661.03 112.00 31.58 5.90
nlpkkt160 - 25.61 - 61.89 58.46 -
road central 29.60 58.66 88.26 110.77 47.04 0.80
road usa - 128.20 - 205.99 37.76 -
ship 003 18.92 4.29 23.21 6.53 34.30 3.55
webbase-1M 3.61 4.71 8.32 8.91 47.14 0.93
wiki-Talk 9.83 5.86 15.69 17.35 66.22 0.90

non-zeros of the sparse matrix3.

A.6.5 Evaluation of the combined routine

As our routine is capable of solving a triangular linear system on the same pass that computes

the level analysis, we compare the combined analysis and solution against performing our

analysis (as it is clearly the best option for our benchmark) and then performing the solution

of the linear system using the cuSparse solver. Here, we are assuming that we should be able

to develop a sparse triangular solver that uses our analysis information with a performance

similar to that of cuSparse solver. We also record the overhead implied by the solution of

the system relative to the cost of the analysis, which we calculate as

Tcombined − Tanalysis
Tcombined

× 100

Tables A.5 and A.6 show the results obtained for our first set of matrices in platforms

Ravel and the Sibelius, respectively, considering the solution of the system using single

and double precision arithmetic. The results obtained in the two platforms coincide in that

the simultaneous solution of the triangular system has a relatively small impact on the

performance of the analysis when using single precision, while it can imply a much larger

overhead when using double. This is expected and it is related to the large performance gap

between single and double precision in this type of graphic cards.

3 See for example, cuSparse Library user’s guide DU-06709-001 v8.0, January 2017.
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Appendix A. Solution of sparse triangular linear systems

Table A.6: Runtime (in milliseconds) of our combined analysis and solution routine in platform
Sibelius. The column overhead represents the additional cost of solving one triangular system
during the analysis. The values in the last column are calculated as the added time of performing
our analysis phase followed by cuSparse’s solution phase, divided by the execution time of the
combined analysis and solution routine.

Matrix
cuSparse Proposal cuSparse sol. Combined Overhead Accel.
solution analysis + prop. analysis routine % factor

single precision

cant 10,98 3,14 14,12 3,59 12,53 3,93
chipcool0 1,60 0,53 2,13 0,74 28,38 2,88
crankseg 1 16,40 4,33 20,73 5,54 21,84 3,74
hollywood-2009 524,30 114,75 639,05 131,86 12,98 4,85
nlpkkt160 5,56 9,66 15,22 13,17 26,65 1,16
road central 9,26 20,77 30,03 26,03 20,21 1,15
road usa 14,30 46,19 60,49 56,53 18,29 1,07
ship 003 17,45 2,71 20,16 3,48 22,13 5,79
webbase-1M 2,02 2,15 4,17 2,59 16,99 1,61
wiki-Talk 6,10 2,87 8,97 3,66 21,58 2,45

double precision

cant 11,61 3,35 14,96 4,01 16,46 3,73
chipcool0 1,86 0,54 2,40 0,69 21,74 3,48
crankseg 1 18,91 4,34 23,25 6,31 31,22 3,68
hollywood-2009 597,72 115,77 713,49 141,15 17,98 5,05
nlpkkt160 8,04 9,70 17,74 21,21 54,27 0,84
road central 12,53 20,82 33,35 37,97 45,17 0,88
road usa 19,24 46,38 65,62 72,94 36,41 0,90
ship 003 19,67 2,76 22,43 4,07 32,19 5,51
webbase-1M 2,47 2,18 4,65 3,56 38,76 1,31
wiki-Talk 7,23 2,88 10,11 6,94 58,50 1,46

Regarding the convenience of the combined solution, the results suggest that this strat-

egy could yield important performance benefits in cases where only a few triangular linear

systems need to be solved. Moreover, for some of the tested instances, the runtime of our

combined routine is even smaller than that of cuSparse solve phase. This means that it is

better to solve the future triangular linear systems using our strategy (without performing

the analysis) instead of using cuSparse.
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A.6. Experimental evaluation

g l o b a l
void s p t r s v k e r n e l (

const int∗ r e s t r i c t row ptr ,
const int∗ r e s t r i c t c o l i d x ,
const VALUE TYPE∗ r e s t r i c t val ,
const VALUE TYPE∗ r e s t r i c t b ,
VALUE TYPE∗ x ,
int ∗ i s s o l v e d , int n) {

s h a r e d int bl Idx ;

// row ctr i s a g l o b a l counter i n i t i a l i z e d in 0

i f ( threadIdx . x==0) b l Idx = atomicAdd(&row ctr , 1 ) ;

//Globa l thread warp i d e n t i f i e r
int wrp = threadIdx . x + bl Idx ∗ blockDim . x ;
wrp /= WARP SIZE;

i f (wrp >= n) return ;

// I d e n t i f i e s the thread r e l a t i v e to the warp
int l n e = threadIdx . x & 0 x1f ;

int row = row ptr [ wrp ] ;
int nxt row = row ptr [ wrp +1] ;

VALUE TYPE le f t sum = 0 ;
VALUE TYPE piv = 1 / va l [ nxt row −1] ;

int ready ;
int l o ck = 0 ;

i f ( lne==0)
l e f t sum = b [ wrp ] ;

int o f f = row+lne ;

// Wait and mu l t i p l y
while ( o f f < nxt row − 1)
{

ready = i s s o l v e d [ c o l i d x [ o f f ] ] ;
l o ck = a l l ( ready ) ;

i f ( l o ck )
{

l e f t sum −= val [ o f f ] ∗ x [ c o l i d x [ o f f ] ] ;
o f f+=WARP SIZE;

}
}

// Reduction
for ( int i =16; i>=1; i /=2)

l e f t sum += s h f l x o r ( l e f t sum , i , 3 2 ) ;

i f ( lne ==0){
//Write the r e s u l t
x [ wrp ] = l e f t sum ∗ piv ;

t h r e a d f e n c e ( ) ;

//Mark the equat ion as so l v ed
i s s o l v e d [ wrp ] = 1 ;

}
}

Figure A.4: Simplified CUDA source code of our solution kernel.
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Appendix A. Solution of sparse triangular linear systems

g l o b a l
void s p t r s v k e r n e l (

const int∗ row ptr ,
const int∗ c o l i d x ,
int ∗ depths ,
int ∗ i s s o l v e d , int n) {

s h a r e d int bl Idx ;

// row ctr i s a g l o b a l counter i n i t i a l i z e d in 0

i f ( threadIdx . x==0) b l Idx = atomicAdd(&row ctr , 1 ) ;

//Globa l thread warp i d e n t i f i e r
int wrp = threadIdx . x + bl Idx ∗ blockDim . x ;
wrp /= WARP SIZE;

i f (wrp >= n) return ;

// I d e n t i f i e s the thread r e l a t i v e to the warp
int l n e = threadIdx . x & 0 x1f ;

int row = row ptr [ wrp ] ;
int nxt row = row ptr [ wrp +1] ;

int depht = 0 ;
int ready = 0 ;
int o f f = row+lne ;
int c o l i d x = c o l i d x [ o f f ] ;

while ( o f f < nxt row − 1)
{

// Wait and update l o c a l depth
i f ( ! ready )
{

ready = i s s o l v e d [ c o l i d x ] ;
i f ( ready ){

depth = max( depth , depths [ c o l i d x ] ) ;
}

}

i f ( a l l ( ready ) ){
o f f+=WARP SIZE;
c o l i d x = c o l i d x [ o f f ] ;
ready =0;

}

}

// Reduction
for ( int i =16; i>=1; i /=2)

depth = max( depth , sh f l down ( depth , i ) ) ;

i f ( lne ==0){
//Write the r e s u l t
depths [ wrp ] = 1+depth ;

t h r e a d f e n c e ( ) ;

//Mark the equat ion as so l v ed
i s s o l v e d [ wrp ] = 1 ;

}
}

Figure A.5: Simplified CUDA source code of our analysis kernel.
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APPENDIX B

Balancing energy and efficiency in ILUPACK

For over two decades, the LINPACK benchmark [43] has been employed to compile per-

formance and throughput-per-power unit rankings of most of the world’s fastest supercom-

puters twice per year [1]. Unfortunately, this test boils down to the LU factorization [56],

a compute-bound operation that may not be representative of the performance and power

dissipation experienced by many of the complex applications running in current high per-

formance computing (HPC) sites.

The alternative High Performance Conjugate Gradients (HPCG) benchmark [2, 41] has

been recently introduced with the specific purpose of exercising computational units and

producing data access patterns that mimic those present in an ample set of important

HPC applications. This attempt to change the reference benchmark is crucial because such

metrics may guide computer architecture designers, e.g. from AMD, ARM, IBM, Intel and

NVIDIA, to invest in future hardware features and components with a real impact on the

performance and energy efficiency of these applications.

The HPCG benchmark consists of basic numerical kernels such as the sparse matrix-

vector multiplication (SpMV) and sparse triangular solve; basic vector operations as e.g.

vector updates and dot products; and a simple smoother combined with a multigrid pre-

conditioner. The reference implementation is written in C++, with parallelism extracted

via MPI and OpenMP [2]. However, in an era where general-purpose processors (CPUs) as

well as the Intel Xeon Phi accelerator contain dozens of cores, the concurrency level that is

targeted by this legacy implementation may be too fine-grain for these architectures. Fur-

thermore, the reference implementation is certainly not portable to heterogeneous platforms

equipped with graphics processing units (GPUs) comprising thousands of simple arithmetic

processing units (e.g., NVIDIA’s CUDA cores).

This appendix describes our study of the performance and energy efficiency of state-of-

the-art multicore CPUs and many-core accelerators, using the task and data-parallel versions

of ILUPACK described in this thesis. Compared with the HPCG benchmark, these multi-
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A→M O0. Preconditioner computation
Initialize x0, r0, z0, d0, β0, τ0; k := 0
while (τk > τmax) Loop for iterative PCG solver

wk := Apk O1. SpMV
αk := ρk/p

T
k wk O2. dot product

xk+1 := xk + αkpk O3. axpy
rk+1 := rk − αkwk O4. axpy
zk+1 := M−1rk+1 O5. Apply preconditioner
ρk+1 := rTk+1zk+1 O6. dot product

pk+1 := zk+1 + (ρk+1/ρk)pk O7. axpy-like
τk+1 :=‖ rk+1 ‖2 O8. vector 2-norm
k := k + 1

endwhile

Figure B.1: Algorithmic formulation of the preconditioned CG method. Here, τmax is an upper
bound on the relative residual for the computed approximation to the solution.

threaded implementations of ILUPACK are composed of the same sort of numerical kernels

and, therefore, exhibit analogous data access patterns and arithmetic-to-memory operations

ratios. On the other hand, our task-parallel version of ILUPACK is likely better suited to

exploit the hardware parallelism of both general-purpose processors and the Intel Xeon Phi,

while our data-parallel implementation targets the large volume of CUDA cores in Nvidia

architectures.

Additionally, we analyze a data-parallel variant of ILUPACK adapted to low-power hard-

ware platforms such as the Nvidia Jestson TX1.

B.1 Characterizing the efficiency of hardware platforms

using ILUPACK

In analogy with the HPCG benchmark, here we only consider linear systems with symmetric

positive definite (SPD) coefficient matrix A, on which the preconditioned CG (PCG) solver

underlying ILUPACK is applied.

Figure B.1 describes the PCG method algorithmically. The first step of the solver (O0)

corresponds to the computation of the preconditioner M , while the subsequent iteration

involves a SpMV (O1), the application of the preconditioner (O5), and several vector op-

erations (dot products, axpy-like updates, vector norm; in O2–O4 and O6–O8). We

emphasize that this same PCG iteration is the basis of the HPCG benchmark.

Exploiting task-parallelism in ILUPACK’s PCG

Our task-parallel version of ILUPACK employs the task-based programming model embed-

ded in the OmpSs1 framework to decompose the solver into tasks (routines annotated by the

user via OpenMP-like directives) as well as to detect data dependencies between tasks at

execution time (with the help of directive clauses that specify the directionality and size of

the task operands). With this information, OmpSs implicitly generates a task graph during

the execution, which is utilized by the CPU threads in order to exploit the task parallelism

implicit to the operation via a dynamic out-of-order but dependency-aware schedule.

1https://pm.bsc.es/ompss
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Let us consider the PCG iteration. The variables that appear in these operations define

a partial order which enforces an almost strict serial execution. Specifically, at the (k+1)-th

iteration,

. . .→ O7→
(k + 1)-th iteration

O1→ O2→ O4→ O5→ O6→ O7→ O1→ . . .

must be computed in that order, but O3 and O8 can be computed any time once O2 and

O4 are respectively available. Further concurrency is exposed by dividing the application of

the preconditioner into subtasks of finer granularity, in a form analogous to that described

in Section 2.4.2.

The data-parallel version used for the energy evaluation is the baseline GPU-aware vari-

ant of the CG method described in Section 3.2.

B.1.1 Hardware and software configurations

Here we present the hardware and software setup used for the energy evaluation. This is

necessary to understand the ideas behind the optimization of the OmpSs implementation in

the next section.

The evaluation involves Intel processors from two different generations, as well as plat-

forms equipped with GPU and XeonPhi accelerators.

All the experiments employed ieee 754 real double-precision (DP) arithmetic on the

following four platforms:

• sandy: A server equipped with two hexacore Intel Xeon E5-2620 (“Sandy Bridge”)

processors (total of 12 cores) running at 2.0 GHz with 32 Gbytes of DDR3 RAM. The

compiler is gcc 4.4.7.

• haswell: A system with two hexacore Intel Xeon E5-2603v3 (“Haswell”) processors

(total of 12 cores) at 1.6 GHz with 32 Gbytes of DDR4 RAM. The compiler is gcc

4.4.7.

• xeon phi: A board with an Intel Xeon Phi 5110P co-processor. (The tests on this

board were ran in native mode and, therefore, the specifications of the server are

irrelevant.) The accelerator comprises 60 x86 cores running at 1,053 MHz and 8

Gbytes of GDDR5 RAM. The Intel compiler is icc 13.1.3.

• kepler: An NVIDIA K40 board (“Kepler” GK110B GPU with 2,880 cores) with

12 Gbytes of GDDR5 RAM, connected via a PCI-e Gen3 slot to a server equipped with

an Intel i7-4770 processor (4 cores at 3.40 GHz) and 16 Gbytes of DDR3 RAM. The

compiler for this platform is gcc 4.9.2, and the codes are linked to CUDA/cuSPARSE

6.5. This platform is the same as Beethoven, but is renamed in this section for

clarity purposes.

Other software included ILUPACK (2.4), the Mercurium C/C++ compiler/Nanox (releases

1.99.7/0.9a for sandy, haswell and xeon phi) with support for OmpSs, and METIS

(5.0.2) for the graph reorderings.

Power/energy was measured via RAPL in sandy and haswell, reporting the aggregated

dissipation from the packages (sockets) and the DRAM chips. For xeon phi we leveraged
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routine mic get inst power readings from the libmicmgmt library to obtain the power of

the accelerator. In kepler, we use RAPL to measure the consumption from the server’s

package and DRAM, and NVML library to obtain the dissipation from the GPU.

Table B.1: Laplace matrices employed in the evaluation.

Matrix Size #Nonzeros Row density
(n) (nz) (nz/n)

A171 5,000,211 19,913,121 3.98
A252 16,003,008 63,821,520 3.98
A318 32,157,432 128,326,356 3.98

For the analysis, we employed the SPD linear system arising from the finite difference

discretization of a 3D Laplace problem in Section 3.1, with three instances of different size;

see Table B.1. In the experiments, all entries of the right-hand side vector b were initialized

to 1, and the PCG was started with the initial guess x0 ≡ 0. For the tests, the parameters

that control the fill-in and convergence of the iterative process in ILUPACK were set as

droptool = 1.0E-2, condest = 5, elbow = 10, and restol = 1.0E-6.

We use GFLOPS and GFLOPS/W to assess, respectively, the performance and energy

consumption of the parallel codes/platforms. ILUPACK is in part a memory-bound compu-

tation. Therefore, an alternative performance metric could have been based on the attained

memory transfer rate (Gbytes/s). Nevertheless, given that the data matrices are all off-chip,

and ILUPACK performs a number of flops that is proportional to the volume of memory

accesses, we prefer to stand with the GFLOPS metric. This measure has the advantage of

being more traditional among the HPC community.

B.1.2 Optimizing energy and performance

The task-parallel version of ILUPACK based on OmpSs applies two architecture-aware op-

timization strategies:

• For multisocket servers, (e.g. sandy and haswell,) we accommodate a NUMA-

aware execution via the NANOS2 environment variable NX ARGS with the argument

--schedule=socket combined with a careful modification of the ILUPACK code.

Concretely, our code records in which socket each task was executed during the initial

calculation of the preconditioner. This information is subsequently leveraged, during

all iterations of the PCG solve, to enforce that tasks which operate on the same data

that was generated/accessed during the preconditioner calculation are mapped to the

same socket where they were originally executed.

• A critical aspect in the Intel Xeon Phi is how to bind the OmpSs threads to the

hardware threads/cores in order to distribute the workload. In our executions, this

mapping is controlled using the NANOS runtime environment variable NX ARGS, pass-

ing the appropriate values via arguments --binding stride, --binding start and

2http://pm.bsc.es/nanox
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--smp workers. In our experiments we evaluate several configurations of these pa-

rameters to balance the workload distribution and achieve an optimal saturation of

the hardware cores.

Saving energy in the OmpSs version

The OmpSs runtime allows the user to trade off performance for power (and, hopefully, en-

ergy) consumption by controlling the behaviour of idle OmpSs threads, setting it to a range

of modes that vary between pure blocking (idle-wait) and polling (busy-wait). To execute

our application in blocking mode, we set the arguments --enable-block and --spins=1 in

the NX ARGS NANOS environment variable. The first parameter enables the blocking mode

while the second one indicates the number of spins before an idle thread is blocked. For the

polling mode, we simply do not include the option --enable-block; we set --enable-yield,

which forces threads to yield on an idle loop and a conditional wait loop; and we set

--yields=1000000 to specify the number of yields before blocking an idle thread.

Saving energy in the data-parallel version

On heterogeneous platforms, consisting of a CPU and a GPU, our data-parallel version off-

loads a significant part of the computations to the graphics accelerator rendering the CPU

idle for a significant fraction of the execution. In this scenario, a potential source of energy

savings is to operate in the CUDA blocking synchronization mode, which allows that the

operating system puts the CPU to sleep (i.e., to promote it to a deep C-state) when idle.

B.1.3 Experimental Evaluation

In order to characterize the energy-efficiency of the studied computing platforms, it is first

necessary to count with parallel implementations that are correctly tuned to leverage the

features of each device. There exists a considerable variety of factors that affect the efficiency

of a parallel application on a target hardware. Among these, we next analyze the following

configuration parameters:

• Degree of software concurrency, i.e., the number of threads that execute the applica-

tion.

• Operation “behaviour” of idle threads (CPU power states or C-states). A thread with-

out work can remain in an active state, polling for a new job to execute. Alternatively,

it can be suspended (blocked) and awakened when a new job is assigned to it. The

polling mode favors performance at the expense of higher power consumption in some

platforms. The blocking mode, on the other hand, can produce lower power con-

sumption, by allowing the operating system to promote the suspended core into a

power-saving C-state, but may negatively impact the execution time because of the

time it takes to reset the core into the active C0 state. The effect of these two modes

on energy efficiency is uncertain, as energy is the product of time and power.

• Operation frequency of active threads (CPU performance states or P-states). Active

threads can operate on a range of frequency/voltage pairs (P-states) that, for the Intel
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platforms evaluated in this work, can only be set on a per socket basis (i.e., for all cores

of the same socket). These modes are controlled by the operating system, though the

user can provide some general guidelines via the Linux governor modes. In general,

the P-states provide a means to trade off performance for power dissipation for active

cores/sockets.

• Binding of threads to hardware cores. The degree of software concurrency translates

into the exploitation of a certain level of hardware parallelism depending on the map-

ping of the software threads to the hardware (physical) cores. For the execution of

numerical codes on general-purpose x86 CPUs, the standard approach maps one thread

per core. For specialized hardware such as the Intel Xeon Phi (as well as the IBM

Power A2), better results may be obtained by using 2 or 4 software threads per core.
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Figure B.2: GFLOPS (left) and GFLOPS/W (right) obtained with the task-parallel version of
ILUPACK on sandy and haswell, using the blocking and polling modes for benchmark A318.

The initial experiments in the remainder of this subsection aim to tune the previous

configuration parameters for the execution of the task-parallel version of ILUPACK on

sandy, haswell and xeon phi. For this purpose, we select the largest dataset that fits

into the memory of each platform (A318 for both sandy and haswell, and A171 on xeon

phi), and evaluate the GFLOPS and GFLOPS/W metrics as the number of threads grows. A

direct comparison between the xeon phi and the two general-purpose x86 platforms cannot

be done at this point. For the task-parallel version of ILUPACK, the degree of software

concurrency determines the number of tasks that should be present in the bottom level of

the dependency tree (see Section B.1), and the actual number of flops that is required for

the solution of each problem case.

Figure B.2 reports the performance and energy efficiency attained with the task-parallel

version of ILUPACK, on sandy and haswell, when OmpSs is instructed to operate in

either the polling and blocking modes (see subsection B.1.2). This first experiment reveals

that the impact of these modes on both metrics is minor when up to 8 threads are employed.

However, for 12 threads, we can observe quite a different behaviour depending on the target

platform. Concretely, for sandy, it is more convenient to rely on the blocking mode, espe-

cially from the point of view of GFLOPS/W while, for haswell, the polling mode yields

superior performance and energy efficiency over its blocking counterpart. According to these

results, in the following experiments we select the blocking and polling modes for sandy

and haswell, respectively.
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Figure B.3: GFLOPS (left) and GFLOPS/W (right) obtained with the task-parallel version of
ILUPACK on sandy (top) and haswell (bottom), using different Linux governors for benchmark
A318.

Figure B.3 evaluates the impact of three Linux governors available in sandy and

haswell: performance, ondemand and userspace, with the latter set so that the sockets

operate in either the maximum or minimum frequencies (fmax and fmin, respectively) of the

corresponding platforms (fmax=2.0 GHz and fmin=1.2 GHz for sandy; and fmax=1.6 GHz

and fmin=1.2 GHz for haswell). The four plots in the figure reveal the small impact of

this configuration parameter on the performance and energy efficiency of the task-parallel

version of ILUPACK on both servers, which is only visible when 12 threads/cores are em-

ployed in the execution. Given these results, we select the userspace governor, with the P0

state (i.e., maximum frequency), in the remaining experiments with these two platforms.
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Figure B.4: GFLOPS (left) and GFLOPS/W (right) obtained with the task-parallel version of
ILUPACK on xeon phi, using different binding options for benchmark A171.

The last experiment with the configuration parameters, in Figure B.4, exposes the

effect of populating each hardware core of xeon phi with 1, 2, 4 (software) threads
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(Binding=4,2,1, respectively). The best choice is clearly the first option which, given a

fixed number of threads, maximizes the number of hardware cores employed in the ex-

periment. This will be the configuration adopted for the following experiments with this

platform.

Characterization of the platforms

Table B.2: Characterization of the four platforms obtained with the task-parallel and data-parallel
versions of ILUPACK.

Platform Matrix Time (s) GFLOPS Energy (J) GFLOPS/W

sandy A171 21.12 2.95 2,827.89 0.0221
A252 101.42 2.74 13,843.17 0.0201
A318 322.06 2.21 42,827.13 0.0166

haswell A171 31.89 1.95 3,277.67 0.0193
A252 154.04 1.80 15,933.05 0.0174
A318 421.13 1.69 43,419.49 0.0164

xeon phi A171 58.69 1.24 8,032.32 0.0090
kepler A171 23.09 2.49 2,909.34 0.0198

A252 83.82 3.16 11,449.81 0.0231

Table B.2 evaluates the task-parallel version of ILUPACK running on sandy, haswell

or xeon phi, compared with the data-parallel version of the solver executed on kepler,

using four efficiency metrics: execution time, GFLOPS, (total) energy-to-solution, and

GFLOPS/W. For the Intel-based platforms, we use 12 threads in both sandy and haswell,

and 64 for xeon phi.

A direct comparison of the platforms, using the same problem case is difficult: First,

due to the small memory of the xeon phi, the largest problem that could be solved in this

platform (A171) seems too small to exploit the large amount of hardware parallelism of this

accelerator. In addition, increasing the problem dimension shows different trends depending

on the platform, with a decline in the GFLOPS and GFLOPS/W rates for sandy and

haswell, but a raise for kepler. Finally, even if the problem case is the same, the solvers

do not necessarily perform the same amount of operations to converge as the exact number

of flops depends, e.g., of the level of task-parallelism tackled by each solver/platform (12

tasks in the bottom level of the DAG for sandy and haswell, 64 for xeon phi, and a single

task for kepler) as well as variations due to rounding errors, which affect the convergence

rate.

As an alternative, let us perform a comparison based on the largest problem case that

can be tackled on each platform: A318 for sandy and haswell, A171 for xeon phi and

A252 for kepler. Consider first the two platforms equipped with general-purpose CPUs.

As the two system comprise 12 cores, in principle we could expect better performance from

haswell because the floating-point units (FPUs) available in this recent architecture can

produce up to 16 DP flops/cycle compared with the 8 DP flops/cycle of sandy. However, the

irregular data access patterns present in ILUPACK turns the exploitation of the wide vector

units (SIMD) into a difficult task which, combined with the higher maximum frequency of
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sandy, explains why this platform outperforms haswell. Interestingly, the gap between the

GFLOPS rates of these two platforms, a factor of about 2.21/1.66=1.30, is captured to high

accuracy by the difference between their maximum frequencies, 2.0/1.6=1.25. This variation

is not reflected in the energy and GFLOPS/W metrics, where haswell is only slightly

behind sandy. These particular trends make us believe that haswell could match sandy’s

performance and outperform its energy efficiency if both platform were operated with the

same maximum frequency. Let us include kepler and benchmark A252 in the comparison

now. As the problems being solved are different, we will perform the comparison in terms

of GFLOPS and GFLOPS/W, and obviate time and energy. In spite of the large number

of FPUs in kepler, we see that the difference in favor of this data-parallel architecture

is moderate, with a factor of 1.43 and 1.86 over sandy and haswell, respectively, in the

GFLOPS rate; and roughly 1.40 over any of the two systems in the GFLOPS/W metric.

Finally, we note that xeon phi lags behind any of the other three platforms in both GFLOPS

and GFLOPS/W.

B.2 Adaptation of ILUPACK to low power devices

In this section we describe the particular strategies that were adopted in order to execute

ILUPACK on low power devices as the Jetson TX1.

The development of this low power variant is based on the SPD data parallel implemen-

tation of ILUPACK, as we consider this can be the first step towards a distributed version

of ILUPACK capable of executing on clusters of low power devices.

As in the previously presented parallel variants, it was necessary to transform ILUPACK

data structures in order to use cuSparse. This transformation is done only once, during the

construction of each level of the preconditioner, and occurs entirely in the CPU. In devices

equipped with physical Unified Memory3, like the Jetson TX1, no transference is needed

once this transformation has been done.

Regarding the computation of the SpMV in the GPU, it is important to remark that in

this case each level of the preconditioner involves a matrix-vector multiplication with F and

FT . As in the baseline SPD version described in Section 3.2, we store both F and FT in

the GPU memory, accepting some storage overhead in order to avoid using the transposed

routine offered by cuSparse. Future implementations could consider the development of

custom kernels and the use of adequate sparse storage formats that allow a more balanced

performance ratio between the regular and transposed SpMV.

For the rest of the work we will consider two different implementations:

• JTX1 GPU: computes the entire preconditioner application on the GPU while the

rest of the computations are carried out in the ARM processor.

• JTX1 ARM: makes all the computations in the ARM processor. This variant does

not leverage any data parallelism.

3See: JETSON TX1 DATASHEET DS-07224-010 v1.1
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Jetson TX1

The NVIDIA Jetson TX1 it is a low-power GPU enabled system that includes a 256-core

Maxwell GPU and a 64-bit quad-core ARM A57 processor, which was configured in maxi-

mum performance. The platform is also equipped with 4GB of unified LPDDR4 RAM that

has a theoretical bandwidth of 25.6 GB/s (see [80]).

Experimental evaluation on low-power platforms

Motivated by the rapid development of low-power computing platforms, we adapted ILU-

PACK in order to execute it in the Nvidia Jetson TX1.

The code was slightly modified to be able to take advantage of the unified physical

memory and cross-compiled using the compiler gcc 4.8.5 for aarch64 with the -O3 flag

enabled, and the corresponding variant of CUDA Toolkit 8.0 for the Jetson, employing the

appropriate libraries.

The primary purpose of this evaluation is to determine if this kind of devices are able

to solve sparse linear systems of moderate dimensions efficiently using ILUPACK. Since

the support of double-precision arithmetic of the Jetson GPU is more than limited, all the

experiments reported in this section were computed using IEEE single-precision floating

point numbers.

The benchmark utilized for the test is the SPD case of scalable size presented in Sec-

tion 3.1.2.

Table B.3: Runtime (in seconds) of the data-parallel variant of ILUPACK in Jetson TX1. Prec.
time corresponds to the time spent applying the preconditioner during the entire solver.

variant Case iters
Prec. Total

error
Prec. Total

time time speedup speedup

JTX1 ARM
A126

156 60.33 84,57 2.31E-07 - -
JTX1 GPU 156 44.36 70.30 2.45E-07 1.36 1.20
JTX1 ARM

A159
206 161.90 228.26 3.07E-07 - -

JTX1 GPU 206 123.93 187.93 3.15E-07 1.31 1.21
JTX1 ARM

A171
222 218.53 306,78 3.02E-07 -

JTX1 GPU 222 146.09 229.45 3.10E-07 1.50 1.34

Table B.3 shows the comparison between the performance of the sequential and data-

parallel versions of ILUPACK executed on the Jetson module. It can be observed that

the JTX1 GPU version implies lower runtimes than the JTX1 ARM variant, but these

improvements are decreasing with the dimension of the addressed problem. This result is

consistent with other experiments, and relates to the fact that GPUs requires large volumes

of data to effectively exploit their computational power.

If we take the performance of JTX1 GPU in other kind of hardware platform into

consideration, the benefits offered by the Jetson device are easy to see. To illustrate this

aspect we compared our previous results for the GPU-based ILUPACK from [5], run on an

NVIDIA K20 GPU, to compare the runtimes. Table B.4 summarizes these results, focusing

only in the preconditioner application runtime, and contrasting it with the one obtained in

the Jetson TX1 platform.
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Table B.4: Runtime (in seconds) of GPU-based ILUPACK in a K20 (from [5], using double-
precision arithmetic) and the JTX1 GPUvariant of ILUPACK in Jetson TX1 (in single-precision).

Case
K20 Jetson

iters Prec. time T ime by iter iters Prec. time T ime by iter

A126 44 11.38 .26 156 44.36 .28
A159 52 19.75 .38 206 123.93 .60
A171 - - - 222 146.09 .66
A200 76 28.28 .37 - - -

It should be recalled that ILUPACK, as a typical iterative linear system solver, is a

memory-bounded algorithm. Hence, when comparing the performance allowed by the Jetson

with other GPU-based general hardware platforms, it is necessary to analyze the differences

between their memory bandwidth. As an example, the NVIDIA K20 GPU offers a peak

memory bandwidth of 208 GB/s ([78]), while the NVIDIA Jetson only allows to reach 25.6

GB/s, i.e. a difference above 8×.

Before analyzing the results, it is important to remark that the computations in both

works are not exactly the same. Because of the reduced memory capacity of the Jetson, the

preconditioners for this device where generated using a higher drop tolerance, which allows

less fill-in in the triangular factors. For this reason the number of iterations performed by

the solvers in the two platforms are different. However, the runtime per iteration is an

acceptable estimator for the performance of each version.

The results summarized in Table B.4 show that the time per iteration for the smallest

case is similar in the two platforms. Considering that the experiments in the K20 GPU were

performed using double precision, it is reasonable to expect this runtimes to be reduced in

half4 if single precision is used. This means that the difference in performance is of about 2×
in favour of the K20. Nevertheless, this gap is considerably smaller than the difference in the

bandwidth of both devices, which is of approximately 8×. However, it can also be observed

that the benefits offered by the Jetson hardware start to diminish when the dimension of the

test cases grow (note that in the case A159 is near to 3× if we estimate the single precision

performance of the K20 as before).

This result shows that when the dimension of the addressed test case is enough to

leverage the computational power of high end GPUs this kind of lightweight devices are

not competitive. On the other hand, in contexts where the problem characteristics do not

allow exploiting commodity GPUs efficiently, this kind of devices (e.g. the Jetson TX1) are

a really good option. Additionally, the important difference in power consumption between

the two devices (the K20 has a peak power consumption of 225W5, while the Jetson only

15W6) should also be taken into account.

With the obtained results, our next step is to develop a distributed variant of ILUPACK

specially designed to run on a cluster of low power devices, as the NVIDIA Jetson TX1, and

evaluate the energy consumption aspects. It should be noted that this kind of clusters are

4Assuming a memory-bound procedure.
5TESLA K20 GPU ACCELERATOR - Board Specifications - BD-06455-001 v05
6JETSON TX1 DATASHEET DS-07224-010 v1.1
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not yet widespread, but some examples are the one built in the context of the Mont-Blanc

project, leaded by the Barcelona Super Computing (BSC) Spain [37], and the one con-

structed by the ICARUS project of the Institute for Applied Mathematics, TU Dortmund,

Germany [55, 54].
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APPENDIX C

Description of the GPU architectures used in this work

This section includes the description of the most remarkable characteristics of the three

NVIDIA GPU architectures employed in this thesis, namely the Fermi, Kepler and Maxwell

architectures.

C.0.1 Fermi architecture

Fermi architecture, illustrated in Figure C.1, presents up to 512 CUDA cores organized in

16 Streaming Multiprocessors (SM) of 32 cores each. The number of CUDA cores and SMs

varies according to the GPU model. The architecture supports up to 6 GB of GDDR5 RAM

memory with an interface bandwidth of 384 bits.

Each CUDA core contains an Arithmetic-Logic Unit (ALU) and a Floating Point Unit

(FPU). Unlike its preceding architecture (Tesla), Fermi GPUs completely support the IEEE

754-2008 floating-point standard, providing the fused multiply-add (FMA) operation, which

performs a multiplication and an addition in the same rounding step, avoiding the loss of

precision in the addition [82].

A diagram of the Fermi multiprocessor can be observed in the right part of Figure C.1.

C.0.2 Kepler architecture

The GK110 microarchitecture (code-name Kepler) was developed by NVIDIA [78] in 2012,

introducing several changes to the earlier Fermi architecture, most of them with focus on

improving the device energy efficiency, usually measured as the performance-per-watt ratio.

A diagram of this architecture is presented in Figure C.2. The use of a unified GPU clock

(abandoning the shader clock) simplified the static scheduling of instructions. This factor

and the more powerfriendly nature of the cores included in Kepler, generated a notable

reduction in power consumption. However, to archive the same level of performance than

the previous microarchitecture, it was necessary to increase the number of cores. According
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Figure C.1: Block diagram of Fermi GF100 architecture (left) and its SM (right). Extracted from
NVIDIA Fermi GF100 Architecture Whitepaper. Available online.

to NVIDIA reports, two Kepler cores perform similar than one Fermi core but consuming

less than 50% of the energy.

From a hardware architecture point of view, Kepler employs a new generation of Stream-

ing Multiprocessor called SMX (see Figure C.3). Each SMX contains 192 single-precision

CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store

units (LD/ST). To increase the double precision performance offered by the previous gen-

eration, the SMX of Kepler has 8× more SFUs than the SM in Fermi. As before, the SMX

schedules threads in groups of 32, implicitly synchronized, parallel threads called warps.

Each Kepler SMX contains 4 Warp Schedulers, each with dual Instruction Dispatch Units,

allowing the concurrent execution of up to four warps. Additionally, it allows simple and

double precision instructions to be paired with other instructions.

The new design of the SMX also introduced a new high performance operation, and

significantly improved another one. On the one hand, the warp shuffle operations (SHFL)

appeared, which allow the threads within a warp to exchange data resident in registers

without using slower memory spaces like the the shared or global memory. This kind of op-

erations has four variants (indexed anytoany, shift right/left to nth neighbour and butterfly

(XOR) exchange) and are extremely useful in the implementation of many high performance

kernels. On the other hand, the atomic instructions got a 10× performance gain through

the inclusion of more atomic processors and a shorter processing pipeline. Kepler supports

five atomic operations: atomicMin, atomicMax, atomicAnd, atomicOr and atomicXor.

Regarding memories, each SMX has 64 KB of on-chip memory that can be configured as

48 KB of Shared memory with 16 KB of L1 cache, 16 KB of shared memory with 48 KB of
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Figure C.2: Block diagram of Kepler GK110 architecture. Extracted from NVIDIA Kepler GK110
Architecture Whitepaper. Available online.

L1 cache, or 32 KB of Shared memory with 32 KB of L1 cache, which was not available in

Fermi. In addition to the L1 cache, Kepler introduces a 48KB cache for data that is read-

only. The cache is directly accessible to the SMX for general load operations, the Read-Only

Data Cache’s higher tag bandwidth supports full speed unaligned memory access patterns.

The Kepler features a 1536KB L2 cache memory, doubling the amount of L2 as well as the

L2 bandwidth per clock available in Fermi.

Unlike in previous architectures, kernels executing on Kepler have the capacity to launch

other kernels, which is called Dynamic Parallelism, and can also create the necessary streams,

events and manage the dependencies required to process additional work without the need

of the CPU interaction. This allows to avoid the need to return to the CPU to lunch new

kernels, and the cost associated with it. The Fermi architecture supports 16-way concurrent

kernel launches, but finally all arrive to the same hardware work queue. Kepler improves

this with the new Hyper-Q feature, which contains 32 simultaneous work queues. Each

CUDA stream is managed within its own work queue, so an operation in one stream will no

longer block others streams.

C.0.3 Maxwell architecture

Maxwell is the microarchitecture developed by NVIDIA [79] as the successor of Kepler.

Maxwell introduces an improved Streaming Multiprocessor (SM), also designed to increase

the power efficiency ratio, delivering 2× the performance per watt of Kepler devices. The
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Figure C.3: Block diagram of the SMX presented by Kepler. Extracted from NVIDIA Kepler
GK110 Architecture Whitepaper. Available online.
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C.1. Summary of computing platforms

Maxwell architecture is composed of an array of Graphics Processing Clusters (GPCs) with,

16 Maxwell Streaming Multiprocessors (SMM), and four memory controllers each.

The new SMM design contains four warp schedulers, and each warp scheduler is capable

of dispatching two instructions per warp every clock. The Maxwell SMM is partitioned into

four distinct 32-CUDA core processing blocks (128 CUDA cores total per SM), each with

its own dedicated resources for scheduling and instruction buffering. Each Maxwell CUDA

core is able to deliver roughly 1.4× more performance per core compared to a Kepler CUDA

core.

Maxwell offers a 256-bit memory interface with 7 Gbps GDDR5 memory, and also fea-

tures a unified 2048 KB L2 cache that is shared across the GPU.

C.1 Summary of computing platforms

The tables in this section describe the main features of the computational platforms used

in this document. The information is split in three tables. Table C.1 enumarates the main

characteristics of the CPU of each platform, Table C.2 details the most relevant properties

of the accelerators, and Table C.3 enumerates the versions of the software employed.

Table C.1: CPU and main memory features of each of the utilized platforms.

Model Cores Freq. (GHz) Cache (MB) RAM (GB) Max. bw. (GB/s)

Bach Intel Core i7-2600 4 3.40 8 8 21.0
Mozart Intel Core i3-3220 2 3.30 3 16 25.6
Beethoven Intel Core i7-4770 4 3.40 8 16 25.6
Brahms Intel Xeon E5-2620 v2 12 2.10 15 128 51.2
Falla Intel Xeon E5-2680 v3 12 2.50 30 64 68.0
Jetson TX1 ARM A57 4 1.73 2 4 (unified) 25.6
Ravel Intel Core i7-6700 4 3.40 8 64 34.1
Sibelius Intel Core i7-6700 4 3.40 8 64 34.1
sandy Intel Xeon E5-2620 12 2.00 15 32 51.2
haswell Intel Xeon E5-2603 v3 12 1.60 15 32 51.0

Table C.2: Main features of the accelerators in each of the utilized platforms.

Model Arch. Cores Freq. (GHz) RAM (GB) Max. bw. (GB/s)

Bach Tesla C2070 Fermi 448 1.50 5 144
Mozart Tesla K20 Kepler 2496 0.70 6 250
Beethoven Tesla K40c Kepler 2880 0.75 11 288
Brahms 2 × Tesla K40m Kepler 2880 0.75 11 288
Falla 4 × 2 × Tesla K40m Kepler 2880 0.75 11 288
Jetson TX1 Tegra X1 Maxwell 256 0.99 4 (unified) 25.6
Ravel GTX 1060 Pascal 1152 1.50 3 192
Sibelius GTX 1080 Ti Pascal 3584 1.58 11 484
xeon phi Intel Xeon Phi 5110P Intel-MIC 60 1.05 8 320
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Table C.3: Versions of the C and Fortran compilers and the CUDA Toolkit for each of the utilized
platforms.

C and Fortran Compiler CUDA Toolkit Other software

Bach gcc 4.4.6 4.1
Mozart gcc 4.4.7 5.0
Beethoven gcc 4.9.2 6.5
Brahms Intel Parallel Studio 2016 6.5
Falla gcc 4.8.5 7.5 OpenMPI 10.3.1
Jetson TX1 gcc 4.8.5 8.0
Ravel gcc 14.0.0 8.0
Sibelius gcc 14.0.0 8.0
xeon phi icc 13.1.3 - Mercurium C/C++ compiler/Nanox 1.99.7/0.9a
sandy gcc 4.4.7 - Mercurium C/C++ compiler/Nanox 1.99.7/0.9a
haswell gcc 4.4.7 - Mercurium C/C++ compiler/Nanox 1.99.7/0.9a

140



Bibliography

[1] (2013). The top500 list. Available at http://www.top500.org.

[2] (2015). HPCG - high performance Conjugate Gradients. https://software.sandia.

gov/hpcg.
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