

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

UNIVERSIDAD DE LA REPÚBLICA

FACULTAD DE INGENIERÍA

TESIS PARA OPTAR AL TÍTULO DE INGENIERO AGRIMENSOR

ESTUDIO COMPARATIVO DE SOFTWARES DE RESTITUCIÓN FOTOGRAMÉTRICA EN VUELO REALIZADO CON UAV

AUTOR: Bruno Silveira. TUTOR: MSc. Ing. Agrim. Rosario Casanova. Montevideo, Uruguay, 2017.

1. AGRADECIMIENTOS:

Quisiera agradecer a MSc. Ing. Agrim. Rosario Casanova, tutora de este proyecto, quien siempre me incentivó, orientó y tuvo una paciencia infinita con quien suscribe.

A la Ing. Agrim. Veronica Pampinella y a la Ing. Agrim. Melissa Pérez, quienes me invitaron a participar en su proyecto de grado, el cual sirvió como base para este proyecto que aquí presento.

Gracias al Ing. Agrim. Patricio Birriel y al Ing. Raúl González de la empresa UAV-Agrimensura, quienes proporcionaron el drone y realizaron el vuelo fotogramétrico que se utiliza como principal insumo de esta investigación.

También agradecer a Karina Tejera, Gisselle Maine, y Gloria Rodríguez, quienes contribuyeron en la extensa jornada de relevamiento de campo y al Ing. Agrim. Hebenor Bermúdez, por su ayuda en el esclarecimiento de muchas dudas que surgieron durante el proceso.

Quisiera además agradecer a mis amigos, jefes, y en especial a mis padres, Mabel y José, quienes me apoyaron en todo este proceso.

ÍNDICE:

1. AGRADECIMIENTOS	2
2. RESUMEN	5
3. INTRODUCCIÓN	6
4. JUSTIFICACIÓN	6
5. OBJETIVO	8
6. PROPUESTA METODOLÓGICA:	8
7. MARCO TEÓRICO	11
7.1. ESTÁNDAR NSSDA	12
8. INSUMOS	24
9. SELECCIÓN DEL LUGAR DE VUELO	25
9.1. ZONAS TENTATIVAS PARA EL VUELO	25
10. RELEVAMIENTO Y REPLANTEO TOPOGRÁFICO	
10.1. RELEVAMIENTO TOPOGRÁFICO	
11. VUELO FOTOGRAMÉTRICO	50
11.1. CARACTERÍSTICAS DEL VUELO A 100 METROS	51
11.2 PLAN DE VUELO ORIGINAL	53
11.3. FOTOÍNDICE	56
12. PROCESAMIENTO DE LOS DATOS RELEVADOS TOPOGRÁFICAMENTE	57
12.1. PROCESAMIENTO DE LOS DATOS PLANIMÉTRICOS	57
12.2. PROCESAMIENTO DE LOS DATOS ALTIMÉTRICOS	65
12.3. PRECISIONES OBTENIDAS EN EL RELEVAMIENTO TOPOGRÁFICO	
12.4. COORDENADAS TOPOGRÁFICAS DEFINITIVAS	
13. RESTITUCIÓN FOTOGRAMÉTRICA EN EL E-FOTO	79
13.1. CREACIÓN DEL PROYECTO FOTOGRAMÉTRICO	80
13.2. PROCESO DE ORIENTACIÓN INTERIOR.	
13.3. PROCESO DE ORIENTACIÓN EXTERIOR	
14. RESTITUCIÓN FOTOGRAMÉTRICA EN EL LPS	136
14.1. ROTACIÓN DE LAS IMÁGENES	137
14.2. SUSTITUCIÓN DE ALGUNOS PUNTOS DE CONTROL	138

15. CONCLUSIONES Y ANÁLISIS DE LOS RESULTADOS 1	83
16. ANEXOS 1	91
16.1. MICRODRONE MD4-1000	92
16.2. CÁMARA SONY NEX-7 1	96
16.3. CALIBRACIÓN DE LA CÁMARA	200
16.4. CERTIFICADO DE CALIBRACIÓN DE LA CÁMARA 2	217
16.5. RESTITUCIÓN FOTOGRAMÉTRICA	218
16.6. TUTORIAL E-FOTO	25
16.7. PLAN DE VUELO	254
16.8. GPS	266
17. BIBLIOGRAFIA	68
18. ÍNDICE DE TABLAS	269
19. ÍNDICE DE IMÁGENES	274

2. RESUMEN:

El presente trabajo corresponde al Proyecto de Grado realizado entre el año 2014 y 2017 por quien suscribe. Este proyecto es un requisito para la obtención del título de Ingeniero Agrimensor, en el marco de la asignatura Proyecto.

El estudio de este Proyecto consiste en la comparación de dos restituciones a ejecutar en dos Estaciones Fotogramétricas Digitales (EFD), para un vuelo realizado con UAV (vehículo aéreo no tripulado) también conocido como drone, y cuyas imágenes fueron obtenidas con una cámara no fotogramétrica, transportada por dicho vehículo aéreo.

Por un lado, dado el creciente uso de los drones en nuestro medio en estos últimos años y que los mismos están siendo utilizados en diferentes ámbitos con diferentes usos y por otro lado el hecho de poder utilizar dos restituidores fotogramétricos diferentes, es que surge el interés en realizar esta investigación.

Las EFD utilizadas para la comparación son las siguientes: **e-foto** y **LPS**. La primera (EFD) es un software libre y de carácter educativo, de la Universidad Estadual de Río de Janeiro (UERJ) La segunda es el LPS (Leica Photogrammetry Suite), un programa comercial de la empresa Leica, que es un complemento del ERDAS IMAGE y es, además, un software consolidado en el mercado y de excelente reputación entre las EFD.

La propuesta del proyecto es realizar la restitución fotogramétrica con ambos softwares, utilizando las mismas variables que los definen, para luego estudiar la calidad posicional obtenida en ambas restituciones. Mediante la comparación de las coordenadas de los puntos utilizados para ese fin, fotoidentificables y relevados en campo, obtenidas en cada restitución con las coordenadas relevadas en campo. La medida o resultado de esa calidad posicional, se obtiene aplicando el estándar del NSSDA (National Spatial Standard for Data Accuracy -ver sección 7.1-). Para poder aplicar dicho estándar, será necesario relevar las coordenadas de los puntos de testeo con la mayor exactitud posible. Dichos puntos de testeo fueron replanteados con GPS Trimble R8 y relevados con Estación Total Leica 407 para relevamiento planimétrico y un nivel automático Pentax (modelo AL-M4C) para la determinación de la cota de los mismos.

El vuelo se hizo con un cuadricóptero microdrone md4-1000, propiedad de la empresa local UAV- Agrimensura Birriel y González El mismo cuenta con una cámara Sony NEX-7, utilizada para el relevamiento fotográfico objeto del proyecto.

3. INTRODUCCIÓN:

El presente trabajo es una investigación realizada para la asignatura Proyecto, de la carrera de Ingeniero Agrimensor, de la Facultad de Ingeniería, de la Universidad de la República Oriental del Uruguay.

En esta etapa final de la carrera ya se cuenta con los conocimientos y herramientas para el desarrollo de una investigación de este porte. Igualmente, es sabido de antemano que al embarcarse en un proyecto de este tipo se deberá profundizar aún más en determinados conocimientos, así como también aprender a utilizar equipamientos y recursos informáticos nuevos.

Esta investigación la hago bajo la tutoría de la Ing. Agrim Msc. Rosario Casanova, entre los años 2014 a 2017.

4. JUSTIFICACIÓN:

Este proyecto surgió debido a dos situaciones : El primero fue el hecho de haber formado parte, en la instancia inicial, de un equipo que comenzó con el estudio de calidad posicional de un vuelo fotogramétrico con UAV utilizando el software LPS, el cual fue adquirido por el Instituto de Agrimensura y se encuentra disponible para realizar investigaciones.

El segundo factor fue el hecho de haber tomado contacto con el software e-foto luego de haber ingresado como asistente Grado 1 al departamento de Geomática, del Instituto de Agrimensura de la Facultad de Ingeniería, como docente del curso práctico de Fotogrametría.

En ese curso, el objetivo fue realizar una restitución fotogramétrica utilizando el software libre e-foto. Dicha restitución se realizó con las imágenes ¹ y puntos de control que están disponibles para descargar en el propio sitio web del e-foto.

Por un lado, al haber trabajado en el curso con este software libre y de carácter educativo y disponer de una evaluación positiva de los usuarios (estudiantes) así como también haber descubierto algunas fallas del mismo me permitió familiarizarme con él. Por otro lado, por contar con todos los datos relevados para la realización del vuelo fotogramétrico realizado (lo cual quiere decir que se tienen los puntos de control y de testeo, el certificado de calibración de cámara, y las fotografías tomadas con una cámara no fotogramétrica) y también tener la

¹ Dichas imágenes fueron tomadas con una cámara fotogramétrica analógica montada sobre un avión y luego escaneadas. La altura del vuelo fue de unos 1300 metros y la escala de las imágenes 1:8000

disponibilidad de la estación fotogramétrica digital LPS (Leica Photogrametrry Suite) en el Instituto de Agrimensura, surgió la inquietud de comparar ambos software, ¿Cuán bueno es el e-foto en relación al LPS, en el momento de realizar una restitución de un mismo vuelo realizado con UAV y utilizando una cámara no fotogramétrica?. Esta es la pregunta que ha motivado el presente trabajo, por lo que se entendió que la mejor forma para realizar dicha comparación era elaborar haciendo necesario la realización de un estudio comparativo en lo que refiere a la calidad posicional de los productos obtenidos en cada restitución.

5. OBJETIVO:

Comparar las restituciones fotogramétricas obtenidas de dos estaciones fotogramétricas digitales diferentes, e-foto con LPS. Para ello, se realiza con cada una de ellas la restitución fotogramétrica para el mismo vuelo hecho con un UAV, y luego se estudia la calidad posicional obtenida aplicando el estándar de la NSSDA.

6. PROPUESTA METODOLÓGICA:

El objetivo de este proyecto es comparar la calidad posicional de dos restituciones realizadas con dos Estaciones Fotogramétricas Digitales (EFD) y el procedimiento llevado a cabo para compararlas será el siguiente:

Utilizando 4 fotografías aéreas que fueron tomadas en un único vuelo realizado con UAV; utilizando el mismo certificado de calibración de cámara², y el mismo relevamiento de campo (o sea, los mismos puntos de control y de testeo), se realizarán dos restituciones fotogramétricas diferentes. Una en el LPS otra en el e-foto.

Una vez que se finalicen ambas restituciones fotogramétricas, ¿cómo comparo el resultado de las mismas?

Habiendo procesado la restitución en cada una de las EFD, se tomarán, mediante el uso de estereoscopia, que está disponible en ambos softwares, y lentes específicos para poder ver en 3 dimensiones, las coordenadas de los mismos 20 puntos de testeo en ambas, y se aplicará una metodología de testeo de la calidad posicional obtenida. Este testeo consiste en la comparación entre los valores de las coordenadas de puntos medidas en el software con las coordenadas de esos mismos puntos medidas en el terreno y que fueron obtenidas mediante procedimientos de alta precisión.

Finalmente, a las diferencias entre coordenadas software –terreno, se aplica un cálculo para la obtención de la Exactitud posicional, siguiendo la metodología del NSSDA (The National Standard for Spatial Data Accuracy -ver sección 7.1-). Dicha exactitud es dada en las unidades de las medidas del espacio objeto.

Los puntos de testeo fueron distribuidos siguiendo las recomendaciones del estándar (ver sección 7.1) y relevados con métodos topográficos de alta precisión (ver sección 10.1), siendo

² El mismo certificado de calibración de cámara se refiere al obtenido con el software Camera Calibration, de la compañía TOPCON, para la cámara Sony Nex7, previo a la realización del vuelo que trata este proyecto. (ver sección 16.4).

éstos la radiación con estación total, nivelación geométrica y también relevamiento con GPS diferencial.

A continuación, se hace un breve punteo de las fases del proyecto que determinan el orden de trabajo que se pretendió seguir:

- > Fase 1: Recopilación de estudios anteriores al vuelo.
- Fase 2: Realización del vuelo, replanteo de puntos y relevamiento topográfico en el campo.
- Fase 3: Procesamiento de Datos.
- Fase 4: Restitución fotogramétrica con el e-foto y procesamiento de los resultados obtenidos.
- Fase 5: Restitución fotogramétrica con el LPS y procesamiento de los resultados relevados.
- > Fase 6: Análisis de los resultados y elaboración de conclusiones.

7. MARCO TEÓRICO

Recuérdese que el objetivo de este proyecto es la comparación de los productos obtenidos entre dos estaciones fotogramétricas digitales, el e-foto con el LPS, para lo cual se realizará, con cada una de ellas, la restitución fotogramétrica del mismo vuelo para luego estudiar la calidad posicional obtenida aplicando el estándar de la NSSDA.

Igualmente, antes de empezar este proyecto, surgió la siguiente duda: ¿Es posible realizar la restitución fotogramétrica de imágenes tomadas con una cámara no fotogramétrica transportada en un UAV con los las EFDs utilizadas?

En el caso del LPS la respuesta es afirmativa. Un ejemplo es el trabajo del cual formé parte en su instancia inicial: "Control Posicional de un Relevamiento Fotogramétrico con UAV", de Pampinella y Pérez, año 2014.

También se pueden encontrar en internet trabajos de ese tipo realizado con el LPS. Como ejemplo se cita el siguiente: "Producción de Productos Cartográficos. MDT y ortofoto a partir de Imágenes Capturadas por un vehículo UAV"³, de Rocío Mora Fernández de Córdoba. Master en Geotecnologías Cartográficas en Ingeniería y Arquitectura Curso 2009-2010 de la Universidad de Salamanca.

Ya para el e-foto, la situación es diferente. No se pudo encontrar ningún ejemplo de restitución fotogramétrica para vuelos realizados con UAV. Investigando en el foro⁴, disponible en la página web de dicho software, se encuentran algunas preguntas de usuarios respecto a la posibilidad de realizar restituciones con este tipo de imágenes, pero no se encontraron respuestas al respecto.

Si bien, hay ausencia de información sobre la viabilidad de realizar la restitución con e-foto, se decidió igualmente llevarlo adelante, ya que no existían estudios previos que avalaran o descartaran el uso de este software para vuelos con UAV, por lo que resultó ser una investigación interesante de ser abordada.

Dado que el Estándar NSSDA es determinante a la hora de abordar la presente investigación, se dedicará un desarrollo especial en el presente capitulo. Ya que a partir del mismo se determinan la cantidad y distribución de puntos de testo, así como también las precisiones requeridas para los relevamientos topográficos a realizar, por lo que el texto de normativas del estándar de la NSSDA marca, en cierta medida, el camino a seguir en este estudio.

³https://gredos.usal.es/jspui/bitstream/10366/119810/1/TFM_MoraFernandezdeCordobaR_Generacion.pdf

⁴ http://www.efoto.eng.uerj.br/forum

7.1. ESTÁNDAR NSSDA

El NSSDA, *National Standard for Spatial Data Accuracy*, fue creado en el año 1998 por el "Centro de planificación e información de uso del suelo" del estado de Minnesota, en los Estados Unidos (Minnesota Planning Land Management Information Center) y publicado en 1999, en un manual lanzado por el Minnesota Planning, bajo el título de: *Positional Accuracy Handbook*, *Using the National Standard for Spatial Data Accuracy to measure and report geographic data quality.*

> CARACTERÍSTICAS DEL NSSDA.

- ✓ Identifica un estadístico bien definido, utilizado como resultado en testeos de precisión.
- ✓ Describe una metodología para el estudio de la calidad posicional de datos espaciales.
- Provee un lenguaje sencillo para el reporte de precisión posicional, lo cual hace más fácil evaluar la aptitud para el uso de una base de datos.

El estadístico NSSDA se determina multiplicando el RMSE por un valor que represente la desviación estándar de la media para un nivel de confianza del 95 %: este será 1.7038 para la precisión horizontal y 1.9600 para la vertical.

> EL ESTÁNDAR NSSDA SE DEBE APLICAR SIGUIENDO LOS SIGUIENTES 7 PASOS:

- 1- Determinar si el testeo incluye la precisión horizontal (X,Y), precisión vertical (Z) o ambas (componentes (X,Y,Z)).
- 2- Seleccionar un conjunto de puntos de testeo a ser evaluados.
- **3-** Seleccionar un conjunto de datos de mayor precisión y que se corresponda con el conjunto a ser testeado.
- 4- Tomar mediciones de los mismos puntos de ambas fuentes.
- **5-** Calcular el estadístico de precisión utilizando la tabla para la componente horizontal o la vertical.
- **6-** El resultado de la precisión posicional deberá ser presentado siguiendo un formato de reporte estandarizado.
- 7- Dicho reporte deberá ser de fácil comprensión e incluido en los metadatos.

A continuación se explicará detalladamente cada uno de estos puntos:

DETERMINAR QUE TEST UTILIZAR.

Se evalúan por separado la calidad posicional planimétrica, para las componentes horizontales (X,Y) y la altimétrica, para la componente vertical (Z).

SELECCIONANDO PUNTOS DE TESTEO.

La exactitud de un conjunto de datos es testeada por la comparación entre las coordenadas de algunos puntos con sus coordenadas tomadas de forma independiente y con mayor precisión a la del método a testear.

Los puntos utilizados para estas comparaciones deben ser bien definidos, fáciles de ubicar y de medir, tanto en el conjunto a testear como en el independiente. En nuestro caso, los puntos a testear son los obtenidos de la restitución fotogramétrica y los independientes son los relevados en campo (preseñalizados).

Se requieren 20 o más puntos para realizar una evaluación estadística significativa de la calidad posicional más allá del tamaño total de la muestra o de la superficie de que se trate. Con 20 puntos se asocia un cálculo de calidad con un nivel de confianza del 95%.

Seleccionar un Conjunto de Datos de Mayor Precisión y que se corresponda con el Conjunto a ser Testeado.

El conjunto de datos independientes debe ser relevado por separado del conjunto a ser testeado y deberá serlo (el independiente) con la mayor precisión posible. Se recomienda que los datos independientes tengan una precisión al menos 3 veces mayor que aquella esperada para los datos a testear. Pero esto no siempre es posible, y cuando suceda (que no se logre esa precisión 3x) se hará el relevamiento de los datos independientes con la mayor precisión que nos sea posible.

El relevamiento topográfico se dividió en planimétrico y altimétrico. En el primero no se lograró las precisión requerida por el estándar del NSSDA, ya en el segundo si lo fue. Igualmente se aceptaron los resultados obtenidos. Estos resultados se detallan en el capítulo 12, sección (12.3).

OBSERVACIONES:

- > La precisión de los datos independientes deberá estar incluida en los metadatos.
- La superficie donde se relevan los datos independientes deberá ser aproximadamente la misma a la que se encuentran los datos a testear.

- Cuando la zona de datos a testear cubre una zona rectangular y uniforme, la distribución de los puntos de testeo debe cumplir con lo siguiente:
 - ✓ Al menos 20 % de los puntos debe estar en cada cuadrante.
 - ✓ Los puntos deben estar separados entre sí una distancia mayor a 1/10 de la distancia diagonal del rectángulo donde se encuentran.

Imagen 1- Distribución ideal de los puntos de control (izquierda). Separación ideal de los puntos de control (derecha).⁵

- Cuando el conjunto de datos independientes cubre solo una porción del conjunto de datos de testeo, éstos se pueden utilizar, pero solamente en la zona de solapamiento.
- El objetivo al elegir un conjunto de datos independientes es alcanzar un balance entre uno de mayor precisión que el conjunto a testear con uno que cubra la misma región.

TOMAR MEDICIONES DE LOS MISMOS PUNTOS DE AMBAS FUENTES.

Obviamente se deben medir las coordenadas de los mismos puntos en el conjunto de testeo y en el independiente. Es importante guardarlos con una numeración similar, que para luego facilite la comparación de coordenadas.

⁵ Fuente: Positional Accuracy Handbook. Using the national standard for spatial data accuracy to measure and report geographic data quality.

Calcular el Estadístico de Precisión Utilizando la Tabla para la Componente Horizontal y la Vertical.

Para el cálculo del estadístico de las componentes planimétricas (X,Y) se utiliza la siguiente tabla:

N° Pto.	Descripción del punto	Coord. X (indep)	Coord. X (test)	ΔΧ	ΔX ²	Coord Y (indep)	Coord Y (test)	ΔΥ	ΔY ²	$\Delta X^2 + \Delta Y^2$
Tabla	a 1 - Cálculo de e	estadístico	de la NSSI	D <mark>A para</mark> l	a planim	etría. ⁶		Suma		
								Prom	edio	
								RMSE		
								NSSD	A	

- **Coord. X (indep):** Componente X de la coordenada del punto de testeo relevado en campo.
- Coord. X (test): Componente X de la coordenada del punto de testeo a controlar, relevada en la EFD en este caso.
- \blacktriangleright **\Delta x** = Coord. X_(indep) Coord. X_(test)
- **Coord. Y (indep):** Componente Y de la coordenada del punto de testeo relevado en campo.
- Coord. Y (test): Componente Y de la coordenada del punto de testeo a controlar, relevada en la EFD en este caso.
- \blacktriangleright **\Delta Y = Coord. Y_{(indep)} Coord. Y_{(test)}**
- > Suma = $\sum (\Delta X^2 + \Delta Y^2)$
- > **Promedio** = $\sum (\Delta X^2 + \Delta Y^2)/n$ n = número de puntos.
- **RMSE** = $\sqrt{Promedio}$

⁶ Fuente: Positional Accuracy Handbook. Using the national standard for spatial data accuracy to measure and report geographic data quality.

Y así se calcula el estadístico para un 95% de confianza para las componentes (X,Y):

Y para el cálculo del estadístico de la componente altimétrica (Z) se utiliza la siguiente tabla:

N° Pto	Descripción del punto	Coord. Z (indep)	Coord. Z (test)	ΔΖ	ΔZ ²
Tabla 2-	Cálculo de estad	ístico de la NSSE	DA para Z. ⁷	Suma	
				Promedio	
				RMSE	
				NSSDA	

- **Coord. Z (indep):** Componente Z de la coordenada del punto de testeo relevado en campo.
- Coord. Z (test): Componente Z de la coordenada del punto de testeo a controlar, relevada en la EFD en este caso.
- \blacktriangleright **\Delta Z = Coord.** Z_(indep) Coord. Z_(test)
- \succ Suma = $\sum \Delta \mathbf{Z}^2$
- > **Promedio** = $\sum (\Delta Z^2)/n$ n = número de puntos
- > RMSE = $\sqrt{Promedio}$

Y así se calcula el estadístico para un 95% de confianza para la componente Z:

NSSDA = 1.9600 * RMSE

⁷ Fuente: Positional Accuracy Handbook. Using the national standard for spatial data accuracy to measure and report geographic data quality.

EL RESULTADO DE LA PRECISIÓN POSICIONAL DEBERÁ SER PRESENTADO SIGUIENDO UN FORMATO DE REPORTE ESTANDARIZADO.

Una vez calculada la precisión posicional de los datos de testeo es importante presentar dicho valor en un modo sencillo y significativo.

Por ejemplo, se pueden utilizar las siguientes frases:

- Precisión posicional testeada: _____ metros (horizontal, vertical) de precisión para un nivel de confianza de 95 %.
- Precisión posicional objetivo (o mínima): _____ metros (horizontal, vertical) de precisión para un nivel de confianza de 95 %.

DICHO REPORTE DEBERÁ SER DE FÁCIL COMPRENSIÓN Y DEBERÁ ESTAR INCLUIDO EN LOS METADATOS.

El estándar del NSSDA sugiere la generación de un reporte de cómo se calculó la calidad posicional, que describa las condiciones de trabajo, historial y otras características importantes respecto de los datos utilizados para dicho cálculo. Y dicho reporte se podrá incluir como metadatos en el resultado final del trabajo de restitución fotogramétrica, por ejemplo

7.1.8. Aleatoriedad y Normalidad.

Recuérdese que una de las condiciones implícitas en el estándar del NSSDA es que las diferencias entre las componentes de las coordenadas independientes y de testeo (ΔX , ΔY , ΔZ) son aleatorias y obedecen a una distribución normal.

Para demostrar dichos supuestos se aplicarán dos tests. El *Test de Rachas* para la aleatoriedad y la prueba de *Shapiro Wilk* para la normalidad de la muestra.

TEST DE RACHAS.

El test de Rachas se lo emplea para comprobar la hipótesis nula de que la muestra es aleatoria, o sea que verifica si las sucesivas observaciones son independientes una de otra.

Este test está basado en el número de rachas que tiene la muestra. Una racha se define como una secuencia de valores muestrales con una característica común precedida y seguida por valores que no presentan esa característica. Así, se considera una racha la secuencia de k valores consecutivos superiores o iguales a la media muestral (o a la mediana o a la moda, o a cualquier otro valor de corte) siempre que estén precedidos y seguidos por valores inferiores a ese valor de corte.

La cantidad total de rachas en una muestra nos da un indicio de si hay o no aleatoriedad en la muestra. Un número reducido de rachas (el caso extremo es 2) es indicio de que la muestra no es aleatoria, los elementos de la primera racha proceden de una población con una determinada característica (valores mayores o menores al punto de corte) mientras que los de la segunda proceden de otra población. De forma idéntica un número excesivo de rachas puede ser también indicio de no aleatoriedad de la muestra.

Si la muestra es suficientemente grande y la hipótesis de aleatoriedad es cierta, la distribución del número de rachas, R, puede aproximarse mediante una distribución normal de parámetros μ_R y σ_R .

Los mismos se calculan con las siguientes fórmulas:

$$\sigma_{\rm R} = \sqrt{\frac{2n_1n_2.(2n_1n_2-n)}{n^2(n-1)}} \qquad \qquad \mu_{\rm R} = \frac{2n_1n_2}{n} + 1$$

Siendo n_1 el número de elementos de una clase, n_2 el número de elementos de la otra clase y n el número total de observaciones.

Luego se determina
$$Z_R = \frac{R - \mu}{\sigma}$$

Y finalmente se obtiene de la tabla de distribución normal, para un determinado nivel crítico de confianza, el valor crítico $Z_{1-\alpha/2}$.

Entonces, si: $|Z_R| < |Z|_{1-\alpha/2} \rightarrow La$ muestra es aleatoria.

El test de Rachas deberá aplicarse por separado para cada diferencia de coordenadas: ΔX , ΔY y ΔZ .

En el anexo (sección 16.5) se exhibe un ejemplo de Test de Rachas

TEST DE NORMALIDAD - PRUEBA DE SHAPIRO - WILK.

Cuando la muestra tiene un tamaño menor o igual a 50 observaciones se puede contrastar la normalidad con la prueba de Shapiro-Wilk, que fue la elegida para ser utilizada en este trabajo. Dicho test fue seleccionado ya que se considera uno de los test más potentes para el contraste de normalidad, sobre todo para muestras pequeñas (n<50), según la pesquisa realizada⁹.

> Pasos:

Hipótesis Planteada:

 $H_0: \ {\rm La \ variable \ aleatoria \ no \ tiene \ una \ distribución \ normal$

 H_1 : La variable aleatoria tiene una distribución normal

Estadístico de prueba:
$$W = \frac{b^2}{\sum_{0}^{n} (X_t - \bar{X})^2}$$

El término $b = \sum_{i=1}^{k} a_i [X_{n-i+1} - \overline{X}_i]$, siendo a_i el valor de un coeficiente que se encuentra tabulado para cada tamaño de muestra e *i* la posición de cada observación (ver tabla 5, página 23).

El término $[X_{n-i+1} - X_i]$ es igual a las diferencias sucesivas que se obtienen al restar el primer valor al último valor, el segundo al penúltimo, el tercero al antepenúltimo y así hasta llegar a restar el último al primer valor. Por ejemplo, si se tienen siete valores la secuencia de diferencias es la siguiente:

⁹ Fuente: www.ub.edu/aplica_infor/spss/cap5-6.htm

Observación i	Valores X _i ordenados en forma ascendente	X _{n-i+1} - X _i
1	X ₁	$X_7 - X_1$
2	X ₂	$X_6 - X_2$
3	X3	$X_{5} - X_{3}$
4	X4	$X_4 - X_4$
5	X5	$X_3 - X_5$
6	X ₆	$X_2 - X_6$
7	X ₇	$X_1 - X_7$

Tabla 3- Cálculo de las diferencias para el estadístico Wc.¹⁰

¹⁰ Fuente: Samuel Segnini Fundamentos de Bioestadística Anexo A: Prueba de normalidad de Shapiro-Wilk. http://webdelprofesor.ula.ve/ciencias/segninis/Docencia/ANEXO_A_Sahapiro-Wilks.pdf

	n -	2	3	4	5	6	7	8	9	10	11	12	13	14
a1		0.7071	0.7071	0.6872	0.6646	0.6431	0.6233	0.6052	0.5888	0.5739	0.5601	0.5475	0.5359	0.5251
a2				0.1677	0.2413	0.2806	0.3031	0.3164	0.3244	0.3291	0.3315	0.3325	0.3325	0.3318
аЗ						0.0875	0.1401	0.1743	0.1976	0.2141	0.2260	0.2347	0.2412	0.2460
а4								0.0561	0.0947	0.1224	0.1429	0.1586	0.1707	0.1802
a5	_									0.0399	0.0695	0.0922	0.1099	0.1240
a6												0.0503	0.0539	0.0727
a7	1													0.0240
	n =	15	16	5 1	7	18	19	20	21	22	23	24	25	26
a1		0.5150	0.5056	5 0.496	3 0.48	36 0.4	808 0.4	4734 0	0.4643	0.4590	0.4542	0.4493	0.4450	0.4407
aZ		0.3306	0.329	0.327	3 0.32	53 0.3	232 0.3	3211 0	0.3185	0.3156	0.3126	0.3098	0.3069	0.3043
a3		0.2495	0.252	1 0.254	0.25	53 0.2	561 0.3	2565 (0.2578	0.2571	0.2563	0.2554	0.2543	0.2533
a4		0.1878	0.1939	0.198	3 0.20	27 0.2	059 0.3	2085 0	0.2119	0.2131	0.2139	0.2145	0.2148	0.2151
a5		0.1353	0.144	7 0.152	1 0.15	37 0.1	641 0.	1686 (0.1736	0.1764	0.1787	0.1807	0.1822	0.1836
a6		0.0880	0.100	5 0.110	9 0.11	97 0.1	271 0.	1334 (0.1399	0.1443	0.1480	0.1512	0.1539	0.1563
a7		0.0433	0.059	3 0.072	5 0.08	37 0.0	932 0.	1013 0	0.1092	0.1150	0.1201	0.1245	0.1283	0.1316
a8			0.019	5 0.035	0.04	96 0.0	612 0.0	0711 0	0.0804	0.0878	0.0941	0.0997	0.1046	0.1089
a9					0.01	53 0.0	303 0.0	0422 0	0.0530	0.0618	0.0696	0.0764	0.0823	0.0876
a 10							0.0	0140 0	0.0263	0.0368	0.0459	0.0539	0.0610	0.0672
a 11									1 3	0.0122	0.0228	0.0321	0.0403	0.0476
a 12											0.0000	0.0107	0.0200	0.0284
a 13													0.0000	0.0094
	n =	15	16	5 1	7	18	19	20	21	22	23	24	25	26
a1		0.5150	0.5056	0.496	0.48	36 0.4	808 0.4	4734 0	0.4643	0.4590	0.4542	0.4493	0.4450	0.4407
a 2		0.3306	0.3290	0.327	0.32	53 0.3	232 0.3	3211 0	0.3185	0.3156	0.3126	0.3098	0.3069	0.3043
a3		0.2495	0.252	0.254	0.25	53 0.2	561 0.3	2565 0	0.2578	0.2571	0.2563	0.2554	0.2543	0.2533
a4		0.1878	0.1935	0.198	3 0.20	27 0.2	059 0.3	2085 0	0.2119	0.2131	0.2139	0.2145	0.2148	0.2151
a5		0.1353	0.1447	0.152	0.15	37 0.1	641 0.	1686 0	0.1736	0.1764	0.1787	0.1807	0.1822	0.1836
a 6		0.0880	0.1005	5 0.110	0.11	97 0.1	271 0.	1334 0	0.1399	0.1443	0.1480	0.1512	0.1539	0.1563
a7		0.0433	0.0593	3 0.072	0.08	37 0.0	932 0.:	1013 0	0.1092	0.1150	0.1201	0.1245	0.1283	0.1316
a8			0.0196	5 0.035	0.04	96 0.0	612 0.0	0711 0	0.0804	0.0878	0.0941	0.0997	0.1046	0.1089
а9					0.01	53 0.0	303 0.0	0422 0	0.0530	0.0618	0.0696	0.0764	0.0823	0.0876
a 10							0.0	0140 0	0.0263	0.0368	0.0459	0.0539	0.0610	0.0672
a 11										0.0122	0.0228	0.0321	0.0403	0.0476
a 12											0.0000	0.0107	0.0200	0.0284
a 13													0.0000	0.0094

Tabla 4- Tabla de los coeficientes *a*_i para el test de normalidad de Shapiro-Wilk.¹¹

¹¹ Fuente: http://www.real-statistics.com/statistics-tables/shapiro-wilk-table/

Zona de aceptación para H₀:

La zona de aceptación para H_0 está formada por todos los valores del estadístico de prueba W_c menores al valor esperado o tabulado $W_{(1-\alpha;n)}$ (ver tabla 6).

$ZA \{ W / W_{calculado} \le W_{(1-\alpha;n)} \}$

Al igual que el test de rachas, la prueba de Shapiro-Wilk deberá aplicarse por separado para cada diferencia de coordenadas, ΔX , ΔY y ΔZ .

Una vez que se hayan probado la aleatoriedad y la normalidad de dichas muestras, se procederá a utilizar el estándar de la NSSDA para la evaluación de calidad posicional.

n\ ^p		0.01	0.02	0.05	0.1	0.5	0.9	0.95	0.98	0.99
	3	0.753	0.756	0.767	0.789	0.959	0.998	0.999	1.000	1.000
	4	0.687	0.707	0.748	0.792	0.935	0.987	0.992	0.996	0.997
81.0	5	0.686	0.715	0.762	0.806	0.927	0.979	0.986	0.991	0.993
	6	0.713	0.743	0.788	0.826	0.927	0.974	0.981	0.986	0.989
	7	0.730	0.760	0.803	0.838	0.928	0.972	0.979	0.985	0.988
	8	0.749	0.778	0.818	0.851	0.932	0.972	0.978	0.984	0.987
	9	0.764	0.791	0.829	0.859	0.935	0.972	0.978	0.984	0.986
	10	0.781	0.806	0.842	0.869	0.938	0.972	0.978	0.983	0.986
	11	0.792	0.817	0.850	0.876	0.940	0.973	0.979	0.984	0.986
	12	0.805	0.828	0.859	0.883	0.943	0.973	0.979	0.984	0.986
	13	0.814	0.837	0.866	0.889	0.945	0.974	0.979	0.984	0.986
	14	0.825	0.846	0.874	0.895	0.947	0.975	0.980	0.984	0.986
	15	0.835	0.855	0.881	0.901	0.950	0.975	0.980	0.984	0.987
	16	0.844	0.863	0.887	0.906	0.952	0.976	0.981	0.985	0.987
	17	0.851	0.869	0.892	0.910	0.954	0.977	0.981	0.985	0.987
	18	0.858	0.874	0.897	0.914	0.956	0.978	0.982	0.986	0.988
	19	0.863	0.879	0.901	0.917	0.957	0.978	0.982	0.986	0.988
	20	0.868	0.884	0.905	0.920	0.959	0.979	0.983	0.986	0.988
	21	0.873	0.888	0.908	0.923	0.960	0.980	0.983	0.987	0.989
8.0	22	0.878	0.892	0.911	0.926	0.961	0.980	0.984	0.987	0.989
	23	0.881	0.895	0.914	0.928	0.962	0.981	0.984	0.987	0.989
	24	0.884	0.898	0.916	0.930	0.963	0.981	0.984	0.987	0.989
	25	0.888	0.901	0.918	0.931	0.964	0.981	0.985	0.988	0.989
	26	0.891	0.904	0.920	0.933	0.965	0.982	0.985	0.988	0.989
18 1	27	0.894	0.906	0.923	0.935	0.965	0.982	0.985	0.988	0.990
	28	0.896	0.908	0.924	0.936	0.966	0.982	0.985	0.988	0.990
	29	0.898	0.910	0.926	0.937	0.966	0.982	0.985	0.988	0.990
	30	0.900	0.912	0.927	0.939	0.967	0.983	0.985	0.988	0.990
	31	0.902	0.914	0.929	0.940	0.967	0.983	0.986	0.988	0.990
10.5	32	0.904	0.915	0.930	0.941	0.968	0.983	0.986	0.988	0.990
	33	0.906	0.917	0.931	0.942	0.968	0.983	0.986	0.989	0.990
	34	0.908	0.919	0.933	0.943	0.969	0.983	0.986	0.989	0.990
	35	0.910	0.920	0.934	0.944	0.969	0.984	0.986	0.989	0.990

Tabla 5- Valores del estadístico W_c, para el test de Shapiro-Wilk.¹²

¹² Fuente: http://www.real-statistics.com/statistics-tables/shapiro-wilk-table/

Por lo tanto, una vez que se calculen las diferencias de las componentes de las coordenadas de los puntos de testeo, medidos en cada EFD (después de realizada cada restitución fotogramétrica) y los mismos medidos en en campo, se obtendrán los ΔX , $\Delta Y y \Delta Z$, y a estos últimos se deberá verificar primero la independencia con el test de Rachas y luego la aleatoriedad con el test de Shapiro-Wilk. Luego, si esas condiciones se cumplen para cada conjunto, se podrá aplicar el estándar del NSSDA para el cálculo de la calidad posicional.

8. INSUMOS

- ✓ Microdrone md4-1000 y cámara
- ✓ Certificado de calibración de la cámara Sony NEX-7.
- ✓ Softwares: e-foto y LPS.
- Puntos de control y de testeo (sus coordenadas 3D relevadas con Estación Total, nivel automático y GPS).

9. SELECCIÓN DEL LUGAR DE VUELO:

Luego de haber elegido el Estándar NSSDA para la comparación de los softwares y tener claro algunos lineamientos a seguir, según se detalla en el capítulo anterior, surge la siguiente pregunta: ¿Dónde se realizará el vuelo?

Al momento de elegir la zona de vuelo es importante tener en cuenta los siguientes aspectos:

- ✓ Accesibilidad: lugar fácil de llegar.
- ✓ Visibilidad desde el aire: Zona que permita que los puntos relevados sean fotoidentificables, el lugar no debe ser ni muy arbolado ni tampoco debe haber mucha superficie techada.
- ✓ Superficie: Preferentemente que sea una zona parcialmente pavimentada para lograr mejor precisión en el relevamiento topográfico y en la marca de los puntos de control y testeo.
- Área: Es necesario que el área permita la generación de modelos (de pares estereoscópicos), ya que si no se cubre toda la zona con al menos dos imágenes de todos los puntos, no se generarían.
- ✓ Visibilidad terrestre: para que el relevamiento topográfico no requiera muchos cambios de estación para que el mismo sea de alta precisión.

9.1. ZONAS TENTATIVAS PARA EL VUELO.

Se evaluaron tres posibles zonas de vuelo:

✓ Canteras del Parque Rodó.

✓ Estacionamiento del Estadio Centenario y canchas al lado del ISEF (Instituto Superior de Educación Física)

✓ Depósito sobre Ruta N° 101.

CANTERAS DEL PARQUE RODÓ (ZONA AL SUR DEL TEATRO DE VERANO).

Imagen 2- Canteras del Parque Rodó, Montevideo.¹³

> VENTAJAS:

- Proximidad a la Facultad de Ingeniería, lo cual podría facilitar aspectos de logística del trabajo.
- ✓ Es un espacio de uso público, por lo cual el acceso es libre.

¹³ Fuente: Google Earth.

Desventajas:

- Vías de tránsito rápidas en 2 sentidos, lo cual implica peligro, dificultad para marcar puntos sobre el pavimento y la posibilidad que algún vehículo se encuentre sobre una de las marcas pintadas en el momento de toma de las fotografías.
- ✓ Hay muchos árboles, lo cual puede dificultar la visibilidad.
- Presenta zonas de pendientes pronunciadas, lo que puede disminuir la precisión del relevamiento topográfico, lo cual no es indicado para este proyecto.

ESTACIONAMIENTO DEL ESTADIO CENTENARIO Y CANCHAS AL LADO DEL ISEF.

Imagen 3- Estacionamiento del Estadio Centenario.¹⁴

¹⁴ Fuente: Google Earth.

> VENTAJAS:

- ✓ La zona es plana y despejada, prácticamente sin árboles.
- ✓ El estacionamiento es pavimentado, lo cual facilita el marcado de puntos.

Desventajas:

- ✓ El área es municipal por lo cual se debe solicitar permiso especial para poder realizar el trabajo.
- ✓ De lunes a viernes, se toman las pruebas de conducción de vehículos en ese estacionamiento, en el horario de 7:30 a 16 y luego hasta horas de la noche, varias academias de choferes copan el lugar para realizar las prácticas, así como también los fines de semana.
- ✓ hay partidos de fútbol casi todos los fines de semana en el Estadio Centenario

Por lo mencionado anteriormente, hizo que se descartara también esta opción.

DEPÓSITO SOBRE RUTA Nº 101.

- ✓ Estacionamiento y acceso vehicular de hormigón
- ✓ Parte del suelo de balasto, destinada a la circulación vehicular.
- ✓ Pasto natural.

Imagen 4 -Zona de vuelo. Empresa Doniral S.A.¹⁵

> VENTAJAS:

- ✓ Libre acceso concedido para el fin de semana cuando no se trabaja en la empresa.
- ✓ Gran superficie pavimentada.
- ✓ Casi no hay árboles que impidan visualizar puntos.
- ✓ Desniveles no muy significativos.

Desventajas:

- ✓ El predio está lejos del centro de la ciudad de Montevideo.
- ✓ Se localiza sobre la ruta, lo cual puede tener ciertos riesgos debido al tránsito.

¹⁵ Fuente: Google Earth.

LUGAR SELECCIONADO PARA EL VUELO.

Dadas las tres opciones anteriores de donde realizar el vuelo, se opta por la tercera. Se accedió a realizar el relevamiento en el predio donde se ubica el depósito de la Empresa Doniral S.A, el cual está ubicado en el kilómetro 26 de la Ruta N° 101, en el depto. de Canelones.

El vuelo cubrirá una zona dentro del predio y otra zona en las afueras, sobre la Ruta 101 como se muestra en la imagen anterior (imagen 4).

10. RELEVAMIENTO Y REPLANTEO TOPOGRÁFICO.

Antes de realizar los relevamientos, se replantearon y pre señalizaron en campo los puntos de control y de testeo, de forma tal que los mismos cumplieran tanto con los requerimientos de la <u>aerotriangulación (sección 16.6.3.3.)</u>, así como los del estándar de la NSSDA.

Se llevaron a cabo tres tipos de relevamientos:

- Radiación con estación total.
- Nivelación geométrica con nivel automático.
- Vuelo fotogramétrico.

10.1. RELEVAMIENTO TOPOGRÁFICO

Se debe recordar que uno de los motivos por el cual surgió este proyecto es el hecho de haber formado parte, en la instancia inicial, de un equipo que comenzó con el estudio de calidad posicional de un vuelo fotogramétrico con UAV y que dicho estudio, en su primera fase, fue pensado para dos vuelos, uno a 40 metros de altura y otro a 100 metros. Las imágenes de ambos vuelos cubrían la misma zona, por lo cual algunos puntos de control y de testeo eran comunes a ambos trabajos, y por tal motivo el relevamiento topográfico de las coordenadas de todos los puntos pre señalizados fue planificado para el testeo de calidad posicional más riguroso, que era para el vuelo más bajo.

Luego, al cumplirse con las precisiones requeridas para el vuelo a 40 metros, estarían cubiertas también las precisiones (planimétricas y altimétricas) requeridas para el vuelo a 100 metros de altura, ya que, para este último, los requerimientos (de precisión) son menores, como se ve en la tabla 7.

Para controlar la calidad posicional de los datos geográficos, se necesita tener datos independientes de mayor precisión, según el NSSDA. De hecho, se recomienda que el relevamiento tenga una precisión 3 veces mayor de lo que se va testear, o en su defecto, que se llegue a la mejor precisión posible.

Dado que la información brindada por la empresa UAV-Agrimensura Birriel y González, asegura los siguientes resultados para las restituciones de vuelos realizados con el md-4000:

Altura de vuelo	GPS ¹⁶	σ _z		
40 m	1.25 cm	2.2cm		
100 m	2.25cm	5.5cm		

Tabla 6- Relación entre altura de vuelo y precisión dada por la empresa.

Entonces, para testear la precisión que el proveedor aseguraba, se buscó realizar un relevamiento topográfico de las coordenadas de los puntos pre señalizados, que cumpliera con los requisitos que exige el estándar, para evaluar la calidad posicional de la restitución.

10.1.1. PRECISIÓN DEL RELEVAMIENTO TOPOGRÁFICO:

Por lo tanto, en el relevamiento topográfico independiente debemos lograr:

- > Precisión en planimetría: $\sigma_{XY \text{ topo}}$: 0.4 cm.
- > Precisión en altimetría: $\sigma_{Z \text{ topo}}$: 0.7 cm.

10.1.2. Número Total de Puntos de Testeo

Como establece el estándar NSSDA, el número mínimo de puntos de testeo para el cálculo de calidad posicional es de 20.

Además de ese número mínimo de puntos de testeo, hay dos condiciones implícitas en el estándar de la NSSDA:

- > Asume que las diferencias entre las componentes de las coordenadas independientes y de testeo entre los puntos de testeo (ΔX , ΔY , ΔZ) son aleatorias y obedecen a una distribución normal.
- Las coordenadas de los puntos de testeo deben haber sido chequeadas, o sea, que deben estar libre de errores sistemáticos o aleatorios.

¹⁶ GPS: Ground Pixel Size (tamaño del píxel en el terreno).

10.1.3. DISTRIBUCIÓN DE LOS PUNTOS DE TESTEO.

En la siguiente figura se muestra la distribución que se utiliza para los puntos de control y de testeo en este trabajo:

Imagen 5- Distribución de los puntos de control (rojos y verdes) y de testeo (azules). (rojos: para el vuelo a 100 m, azules: vuelo a 40 m).

En la siguiente tabla se muestra la ubicación (por cada imagen) de los puntos planificados como de testeo, y si fueron utilizados, descartados o su uso cambiado a punto de control:

N° Pto	Imagen 1	Imagen 2	Imagen 3	Imagen 4	Observaciones
1					No visible en Par Estereoscópico
2					No visible en Par Estereoscópico
3	Х	X			
4					Muy Mala visualización
5	X	Х			
6					Muy Mala visualización
7	Х	Х			
8	X	Х			Se lo utiliza como punto de control
9	х	X			Se lo utiliza como punto de control
10	X	X			•
11	Х	X			
12	X	X			
13	х	X			
14	X	X	x		
15					No visible en Par Estereoscópico
16		X	x		
17					Muy Mala visualización
18		X	x		
19		X	Х		
20		X	x		
21		X	X		
22		X	X	x	
23		X	X	X	
24					Muy Mala visualización
25		X	x	X	
26		X	X	X	
27					Muy Mala visualización
28		x	x	x	······································
29		X	X	X	
30		X	X	X	
31		X	X	X	
32					No visible en Par Estereoscópico
33		X	x	X	
34			X	X	
35					Muy Mala visualización
36		X	X	X	
37			x	x	
38			x	x	
39			X	X	
40			X	X	Se lo utiliza como punto de control
41			x	x	
42			x	x	
43			Y	Y	
43			X X	X X	
45			Y	Y	Se lo utiliza como nunto de control
46				Λ	No visible en Par Estereoscónico
υT	1	1	I	1	ino visibio ciri di Estereoscopico

Tabla 7-Depuración de los puntos de testeo (negros: mantenidos como de testeo, rojos: eliminados o cambiados a puntos de control)

La numeración planificada y la identificación de los puntos siguen el siguiente criterio:

NUMERACION COLOR		TIPO	PARA VUELO A (ALTITUD)		
1-46	Azul	Testeo	40-100		
100-105	Rojo	Control	100		
400-405	Verde	Control	40		

Tabla 8- Numeración de los puntos de control y de testeo.

OBSERVACIONES:

Fueron marcados 46 puntos de testeo, ya que se realizaron dos vuelos en el mismo día: uno a 100 metros de altura, que es el de este trabajo, y otro a 40 metros de altura. Algunos de esos 46 puntos fueron planificados para ser utilizados en ambos.

Los puntos numerados del 400 al 405, son los puntos de control para el vuelo a 40 metros. Igualmente, se los exhibe en el gráfico porque alguno fue utilizado para este trabajo, debido a la necesidad de realizar cambios por mala visualización (ver tabla siguiente).

Se materializó un punto nuevo llamado punto 401b, cerca del punto 400 debido a que este último se hallaba debajo de un alero, y podría quedar cubierto en la fotografía aérea

Después de haber analizado y depurado los puntos a utilizar, según su visualización en las imágenes y también su ubicación, se utilizarán para este trabajo un total de 7 puntos de control y 31 puntos de testeo. En la siguiente tabla se enumeran dichos puntos .y se indica en qué imagen están presentes:

N° Pto	Imagen 1	Imagen 2	Imagen 3	Imagen 4	Se lo utiliza como punto de:
3	X	X			testeo
5	Х	Х			testeo
7	Х	X			testeo
8	X	X			control
9	X	X			control
10	X	Х			testeo
11	Х	Х			testeo
12	Х	Х			testeo
13	Х	Х			testeo
14	X	Х	Х		testeo
16		Х	Х		testeo
18		Х	Х		testeo
19		X	X		testeo
20		Х	Х		testeo
21		Х	Х		testeo
22		Х	Х	Х	testeo
23		X	Х	X	testeo
25		X	Х	Х	testeo
26		Х	Х	Х	testeo
28		X	X	Х	testeo
29		X	X	Х	testeo
30		X	X	Х	testeo
31		X	Х	Х	testeo
33		X	X	X	testeo
34			Х	Х	testeo
36		X	X	Х	testeo
37			Х	X	testeo
38			X	Х	testeo
39			Х	X	testeo
40			X	X	control
41			Х	X	testeo
42			X	X	testeo
43			X	X	testeo
44			Х	Х	testeo
45			X	X	control
103	X	X			control
104		X	X	X	control
401b		X	X		control

Tabla 9-Numeración y distribución por imagen de los puntos de control (rojos) y testeo (negros) utilizados

El número de puntos de control por cuadrante es el siguiente:

Puntos	Cuadrante	Porcentaje
11	1	35%
7	2	23%
7	3	23%
6	4	19%
Total: 31		100 %

Tabla 10- Distribución cuantitativa de los puntos de testeo por cuadrantes.

Nótese que en el cuadrante número 4 no se llega al 20 % del total, que es el requerimiento del estándar NSSDA. Por ello no se utilizarán los puntos de dicho cuadrante para el cálculo de la calidad posicional, ya que al descartarlos se siguen teniendo más de 20 puntos para el estudio.

¹⁷. Fuente: Fuente: Proyecto de Grado: Control Posicional de un Relevamiento Fotogramétrico con UAV. Pampinella, Pérez (2014).

El plan de vuelo ejecutado no fue el mismo que el planificado, ya que el operador del drone decidió cambiar el plan instantes previos a la realización del vuelo y por eso la distribución de los puntos de testeo no cumplió estrictamente con los requisitos del NSSDA.

Esto se debe a que los Ingenieros de la empresa UAV-Agrimensura Birriel & González entendieron oportuno rediseñar el plan de vuelo en el lugar.

Si bien las marcas ya habían sido realizadas en el terreno, no fue posible redistribuir los puntos, dado que el equipo de trabajo no tuvo acceso al nuevo plan de vuelo.

10.1.4. RESUMEN DE PUNTOS A RELEVAR.

Se separan en dos tipos de puntos:

- > Puntos de control para la aerotriangulación 18 .
- > Puntos de testeo para aplicar el estándar de la NSSDA.

Cantidad de Puntos:

- ➤ Total: 59.
- Puntos de control vuelo a 40m: 6.
- Puntos de control vuelo a 100m: 6.
- > Puntos de testeo para cada vuelo: 30 (algunos se repiten para ambos vuelos).

DEFINICIÓN DE PUNTO DE CONTROL:

Tanto en fotogrametría analítica como analógica, en la fase de orientación absoluta son necesarias las coordenadas de puntos en el sistema terreno. Estos puntos han de ser identificables en la fotografía o modelo y nos servirán para determinar los parámetros de orientación exterior de los fotogramas aislados o de un modelo estereoscópico. La determinación de las coordenadas planimétricas y altimétricas de estos puntos se conoce con el nombre de control o también como puntos de apoyo en campo.

¹⁸ Fuente: Integración de Técnicas GPS en Aerotriangulación.Cátedra Fotogrametría. Prof. Ing Carlos Lizana. Dpto.:Ingeniería en Agrimensura U N S J. Año 2008

10.1.5. Ткавајо De Самро

El trabajo en el campo se realizó en dos jornadas, los días 30 de mayo y 1 de junio del año 2014. El primer día fueron replanteados y materializados los puntos de control y de control. El segundo día se realizaron los vuelos fotogramétricos y se realizó el relevamiento de las coordenadas de los puntos con: Estación Total, GPS y nivel automático.

10.1.6. PRESEÑALIZACIÓN DE LOS PUNTOS

Señalizar, en fotogrametría, es la acción de realizar marcas en el terreno con el objetivo de generar puntos fotoidentificables en las imágenes aéreas o satelitales¹⁹.

Para obtener mayor precisión a la hora identificar los puntos que intervienen en el proceso de restitución se decide que todos los puntos, tanto los de control como los de testeo, sean preseñalizados.

10.1.6.1 FORMA Y TAMAÑO

En cuanto a la forma para representar en el campo las marcas, se pueden adoptar diferentes figuras geométricas que identifican un punto dado, véase a modo de ejemplo la ilustración siguiente.

Imagen 7- Tipos de marcas usadas para la preseñalización.²⁰

¹⁹ Fuente: Fotogrametría . Otero; A. Ezquerra; R. Rodríguez-Solano; L. Martín; I. Bachiller. http://ocw.upm.es/ingenieria-cartografica-geodesica-y-fotogrametria/topografia-cartografia-y-geodesia/.pdf

²⁰ Fuente: Proyecto de Grado: Control Posicional de un Relevamiento Fotogramétrico con UAV. Pampinella, Pérez (2014).

Para este estudio, se opta por las marcas en forma de cruz, buscando la coincidencia con el cursor de los software que se utilizará en la restitución. Así pues, haciendo coincidir el cursor, con forma de cruz, con la marca preseñalizada en el terreno se maximiza la precisión con la que se determina cada punto de interés.

Por su parte, el tamaño de la marca siempre está dado por la escala de la fotografía y por la resolución geométrica de la cámara. O lo que es equivalente, es función de la altura de vuelo y del tamaño de pixel de cámara utilizada. Recuérdese que el tamaño de píxel en el terreno queda determinado por la altura de vuelo, relación directa, y la resolución geométrica de la cámara, relación inversa.

Específicamente el ancho de la marca está limitado por:

- Ancho mínimo: El tamaño de un píxel en el terreno. Para anchos menores es posible que la marca no sea visible en la fotografía.
- Ancho máximo: Tres píxeles en el terreno. Para anchos mayores, puede volverse complejo identificar el eje de la marca en el software.

En cuanto al largo de la marca, es recomendable utilizar las siguientes dimensiones para las diferentes escalas²¹:

- Escala ≈ 1 : 18000	75 x 75 cm
- Escala ≈ 1 : 7500	30 x 30 cm
- Escala ≈ 1 : 3000	15 x 15 cm

Lo cual es equivalente para una cámara Sony NEX-7 de 16mm de distancia focal a:

- Altura de vuelo ≈1000 m	75 x 75 cm
- Altura de vuelo \approx 450 m	30 x 30 cm
- Altura de vuelo \approx 200 m	15 x 15 cm

Si bien en la bibliografía citada no se indica el tamaño de la marca recomendado para vuelos a 40 y 100 m de altura, solo alcanza con asumir una dependencia lineal²² entre estas variables para estimar el valor buscado:

- Altura de vuelo \approx 40 m	3 x 3 cm
- Altura de vuelo \approx 100 m	8 x 8 cm

²¹ Fuente: Ariza, J. & James, A., 2006, p.25

$$^{22} L^{cm}_{marca} = \frac{6}{80} H^{m}_{vuelo}$$

Por otra parte, se revisaron imágenes aéreas tomadas con la cámara Sony NEX-7 a alturas de e vuelo de 40 y 100 m con marcas preseñalizadas. Se observó que en éstas las marcas eran fácilmente localizables, si bien su longitud era mayor a la recomendada por los autores citados anteriormente.

10.1.6.2 DECISIÓN TOMADA

Recuérdese que fueron planificados dos vuelos a diferentes alturas, y por eso es necesario analizar la marca para ambas alturas:

$$H_{v} = 40m \quad GPS = 1cm \longrightarrow \begin{cases} A_{m} \in (1.0cm, 3.0cm) \\ L_{m} = 3cm \end{cases}$$

$$H_{v} = 100m \quad GPS = 2.5cm \longrightarrow \begin{cases} A_{m} \in (2.5cm, 7.5cm) \\ L_{m} = 8cm \end{cases}$$

Siendo:

H_v: Altura de vuelo.
GPS: Ground Pixel Size (Tamaño del pixel en el terreno).
A_m: Ancho de la marca a señalizar.
L_m: Largo mínimo de la marca a señalizar.

Nótese que si bien los intervalos óptimos para ambos vuelos se intersectan en el intervalo (2.5 cm ,3.0 cm), no sería recomendable realizar la marca de tal tamaño, ya que se estaría muy próximo al ancho mínimo recomendado para el vuelo a 100m.

La solución encontrada para anular esta dificultad fue optar por una marca combinada, en la que se integran dos cruces concéntricas, de tamaños diferentes, véase la ilustración que sigue.

Imagen 8- Modelo de marca a utilizar.²³

Esta marca será realizada en cada punto con aerosol de color blanco utilizando una plantilla de cartón sueco.

De todas formas, previo al vuelo, el patrón de marca fue testeado en fotos terrestres tomadas a 40 y 100 m del punto de testeo, con una cámara con los mismos parámetros que la que se utilizaría posteriormente.

Realizando el análisis de las fotos tomadas, se decide alargar las marcas para facilitar su ubicación en la fotografía. Se determina la marca combinada con las siguientes dimensiones:

Imagen 9- Marca pre señalizada acotada.²³

²³.Fuente: Proyecto de Grado: Control Posicional de un Relevamiento Fotogramétrico con UAV. Pampinella, Pérez (2014).

10.1.6.3. REPLANTEO DE LOS PUNTOS

Antes de materializar los puntos en el terreno se utilizó el programa Google Earth para georreferenciar las coordenadas del trabajo y después los mismos fueron replanteados con un equipo GNSS R8 de Trimble en modo diferencial (sección 16.9.2).

Las coordenadas de los puntos se toman en el sistema de referencia WGS 84/ proyección UTM 21 S.

Se replantearon un total de 59 puntos pre señalizado:

- ✓ 13 Puntos de control.
- ✓ 46 Puntos de Testeo (control).

Y se utilizó el siguiente sistema de numeración:

- ✓ Puntos de testeo: 1 al 46.
- ✓ Puntos de control en vuelo a 40 metros: 400 al 405.
- ✓ Puntos de control en vuelo a 100 metros: 100 al 105.

En el campo, se colocaron números al lado de los puntos, de modo tal de hacer fácil su identificación. En aquellos puntos que se encuentran sobre el pasto o la tosca, se clavaron al lado de las marcas, cartones con los números de punto impresos en los mismos. En los puntos sobre hormigón se escribió el número al lado del mismo con un marcador, tal como se indica en las siguientes imágenes:

Imagen 10-Señalización de un punto de testeo en el hormigón.

Imagen 11 - Señalización de un punto de control en el hormigón.

Imagen 12-Señalización de un punto de control en el campo.

OBSERVACIONES:

- > Fue posible materializar los 59 puntos que habían sido planificados.
- Se materializó un punto nuevo llamado punto 401b, cerca del punto 400 debido a que este último se hallaba debajo de un alero, y podría quedar cubierto en la fotografía aérea.

RESUMIENDO:

- > Los puntos replantados coincidieron con la planificación hecha.
- > Fueron materializados 59 puntos sobre 3 superficies diferentes:
 - ✓ 20 sobre hormigón.
 - ✓ 6 sobre tosca.
 - ✓ 33 sobre pasto.

10.1.7. Relevamientos Realizados

10.1.7.1 Relevamiento Planimétrico:

Se consideró realizar el relevamiento planimétrico por el método de radiación con una Estación Total Leica 407, para lo cual fue necesario analizar si con esa propuesta metodológica se alcanzarían las precisiones requeridas.

El error máximo admisible (ideal) en planimetría seria σ = 0.4 cm.

10.1.7.1.1.. PRE-ANÁLISIS:

Utilizando el método de pre análisis de errores, se obtienen las desviaciones para el cálculo de la precisión de la estación total usada.

Las fuentes de error que se consideran:

- ✓ Error instrumental.
- ✓ Error de no verticalidad del bastón.
- ✓ Error de puntería.
- ✓ Error al estacionar.

Se puede decir que: $\sigma_x^2 = \sigma_i^2 + \sigma_v^2 + \sigma_{pupt}^2 + \sigma_{est}^2$

Y de forma análoga: $\sigma_y^2 = \sigma_i^2 + \sigma_v^2 + \sigma_{punt}^2 + \sigma_{est}^2$

Como los puntos van a ser relevados con el prisma a 0.10 m de altura, el error de verticalidad y de puntería puede ser despreciado.

El error del instrumental es conocido y depende del equipo utilizado. Para la Estación Leica 407, el error en distancia es de 2 mm + 7 ppm. En lo angular es de 7".

Por lo anterior, el error admisible al estacionar es de 0.3 cm.

 $\sigma_{est x} + \sigma_{est y} = 0.3$ cm

10.1.7.1.2. METODOLOGÍA DEL RELEVAMIENTO PLANIMÉTRICO:

Se comienza estacionando el equipo con la mayor precaución posible y nivelándolo con atención. Una vez terminado, se coloca un clavo en el punto que será la primera estación en el terreno.

La orientación se hace asignando acimut cero a una dirección cualquiera.

Se considera que:

- 1- Los puntos relevados desde esa primera estación están libres de error de estacionamiento.
- 2- De esta primera estación se relevarán: 8 puntos distribuidos perimetralmente en la zona que conformaran una red.
- 3- Todos los puntos de control y de testeo que sean visibles.

Estaciones Restantes:

- Estacionarse sobre un punto arbitrario, que no haya sido pre señalizado, y hacer estación libre, utilizando al menos 4 puntos de la red.
- Si el error da menos de lo establecido (< 0.3cm), se está dentro de la tolerancia y se sigue relevando los puntos que sean visibles desde esa nueva estación.

Precauciones Tomadas:

- Los puntos fueron relevados aplicando giro y tránsito. En caso de las coordenadas difieran en más de 5mm, se relevará el punto una tercera vez.
- Se utilizó el mini prisma a 0.10 m de altura y se apuntó a la parte baja del bastón.
- El operador fue siempre el mismo. La estación total estuvo bajo sombra, durante todo el relevamiento.

10.1.7.2. Relevamiento Altimétrico:

Como ya se dijo anteriormente, la desviación máxima admisible ideal en altura es σ_{z} = 0.7 cm.

Dada la cantidad de puntos a relevar y las características del lugar, (la existencia de un cerco, rampas y la presencia de una ruta de entre algunos puntos marcados) la nivelación se hace por circuitos cerrados, teniendo alrededor de 6 puntos cada uno de ellos.

10.1.7.2.1. PREANÁLISIS:

Para calcular el error máximo admisible de la nivelación de un circuito cerrado (σ_{cc}), partimos del error máximo admisible σ_z = 0.7 cm.

En nuestro caso, tenemos 9 circuitos (n=9).

 σ_Z = Vn . $\sigma_{cc} \rightarrow \sigma_{cc}$ = 0.3 cm.

Y el error de cada circuito cerrado de nivelación resulta de la propagación de errores de lecturas (atrás y adelante) de cada diferencia de nivel entre dos puntos.

 $\sigma_{cc} = (\sqrt{m^2 2})^*$. $\sigma_{lec} \rightarrow \sigma_{lec} = 0.1$ cm. siendo m=6, el número máximo de puntos por circuito.

Por último calculamos el error de cada Δh .

 $\sigma_{\Delta h} = v2.\sigma_{lec} \rightarrow \sigma_{\Delta h} = 0.2 \text{ cm}$

10.1.7.2.2. METODOLOGÍA DEL RELEVAMIENTO ALTIMÉTRICO:

- Como se muestra en la imagen siguiente, se dividió la nivelación en 9 circuitos cerrados que están vinculados entre sí por "puntos de paso".
- ✓ Se realiza nivelación geométrica doble entre dos puntos y se estaciona el nivel aproximadamente en la mediatriz del segmento que une a dos puntos consecutivos.
- Se chequea que la diferencia de desniveles entre un mismo par de puntos no sea mayor a 0.2 cm. De lo contrario, se realiza nuevamente el procedimiento de cálculo de Δh.

Imagen 13-Circuitos de nivelación y puntos de paso.²⁴

Una vez concluidos los relevamientos de campo, ya sea en planimetría como en altimetría, se procesan los datos obtenidos y así se obtienen las coordenadas definitivas de los puntos de control y de testeo.

²⁴ Fuente: Google Earth.

11. VUELO FOTOGRAMÉTRICO

El vuelo fue realizado el día domingo 1º de Junio del año 2014 alrededor de las 11:30 con el UAV md4-1000 de microdrone portando una cámara SONY NEX-7.

Condiciones climáticas:

- ✓ Vientos: de 10 km/h a 15 km/h.
- ✓ Humedad : 2%.
- ✓ Temperatura: 15° C.

El mismo se realizó de forma autónoma y siguiendo un plan de vuelo que fue modificado in situ.

Este vuelo a 100 metros de altura no obedece al plan de vuelo original que fue planteado en gabinete, sino a una modificación que fue decidida el día del relevamiento por los Ingenieros de UAV-Agrimensura Birriel & González. Cambios que fueron conocidos luego de contar con las imágenes, no en el momento de las tomas. Igualmente, los puntos de control y de control planificados se mantuvieron, salvo algunas sustituciones realizadas (ver tabla 11).

A continuación, se destacan los principales cambios entre el plan de vuelo original y el que fue llevado a cabo.

Altura de Vuelo (m)	Dirección de l	a línea de vuelo	Cantidad de puntos de toma de imágenes		
	Plan de vuelo inicial	Plan de vuelo Plan de vuelo nicial Efectivo		Plan de vuelo efectivo	
100	Este-Oeste	Sur-Norte	3	12	

Tabla 11- Cambios realizados entre el plan de vuelo programado y el llevado a cabo.

En la siguiente imagen se muestra el recorrido realizado por el drone y los puntos de toma de las imágenes del vuelo a 100 metros de altura. Nótese que fueron dos líneas de vuelo y se tomaron 12 fotografías. Igualmente, en este trabajo se utilizaron solamente 4 imágenes, correspondientes a las tomadas en los puntos 2, 3 4 y 5.

Imagen 14- Recorrido efectuado por el drone y puntos de toma de las imágenes.²⁵

11.1. CARACTERÍSTICAS DEL VUELO A 100 METROS:

- Altura promedio de Vuelo: 106.64m.
- Altura máxima de Vuelo: 111.30m.
- Altura mínima de vuelo: 105.51m.
- Líneas de Vuelo: 2
- Número de fotografías: 12
- Tiempo de vuelo: 4 minutos.
- Peso de cada imagen: 10MB.

²⁵ Fuente: Google Earth.

En la siguiente imagen se muestra la ubicación de los puntos de control que fue hecha en base al plan de vuelo Original, a 100 metros de altura, y las huellas esperadas de las tres fotografías:

Imagen 15- Ubicación de los puntos de control referidos a las huellas planificadas inicialmente para el vuelo a 100 m de altura.²⁶

Ya en la siguiente imagen se muestran las huellas en el terreno de las 4 imágenes que fueron tomadas y la ubicación relativa de los puntos de control que definitivamente se utilizaron para la aerotriangulación.

²⁶ Fuente Google Earth.

Imagen 16- Distribución de los puntos de control en relación a las huellas delas imágenes tomadas.²⁷

²⁷ Fuentee: Google Earth.

11.2 PLAN DE VUELO ORIGINAL

Como ya se mencionó anteriormente, el plan de vuelo original, hecho en escritorio, días antes del vuelo, se modificó in situ. De todas formas, se lo presenta a modo informativo. Dicho plan se realiza utilizando el software *mdCockpit*, por parte de los dueños de la empresa UAV - *Agrimensura Birriel & González*.

El software mdCockpit fue desarrollado especialmente por la empresa *Microdrones* para maximizar el potencial de los UAVs y asistirlos en varias funciones. Sus funciones o herramientas principales son:

- > Waypoint Editor para realizar el plan de vuelo.
- > Downlink Decoder para la recepción de los datos telemétricos durante el vuelo.
- > Módulo para el análisis de los datos grabados durante el vuelo.

El mdCockpit es un software muy fácil de utilizar. El mismo tiene una interfaz amigable donde se puede configurar el plan de vuelo. Una vez terminada la configuración de dicho plan, el mismo se exhibe en Google Earth gracias a la interacción existente entre ambos programas. En este último se visualizan las líneas de vuelo, los puntos de toma de cada imagen y las huellas en el terreno de cada una de las fotografías que se van a tomar, como se muestra en la siguiente imagen (17).

Los parámetros que se configuran en el software, para el vuelo a 100m de altura, son los siguientes:

- > Cámara: Sony NEX-7.
- Distancia Focal: 16 mm.
- > Tamaño de la fotografía: 23.50 mm x 15.60 mm.
- > Velocidad de vuelo: Horizontal: 10 m/s, Vertical: 2 m/s.

Imagen 17- Diseño del plan vuelo original a 100m visualizado en el Google Earth.²⁸

²⁸ Fuente: Google Earth.

11.3. FOTOÍNDICE

El fotoíndice se realiza antes de la restitución fotogramétrica. Con el mismo se ordenan las fotos según como fueron tomadas y también se reconstruye el traslape de las mismas.

Recuérdese que fueron tomadas un mínimo de 3 fotografías en cada punto de toma. Las imágenes utilizadas fueron seleccionadas por el operador del drone.

Imagen 18- Fotoíndice.

Imágenes	Solape transversal
1-2	44%
2-3	66%
3-4	66%
4-5	32%

Tabla 12- Solape transversal entre imágenes.

12. PROCESAMIENTO DE LOS DATOS RELEVADOS TOPOGRÁFICAMENTE.

El objetivo de esta etapa es la obtención de las coordenadas definitivas de los puntos de testeo y de control relevados.

OBSERVACIÓN:

El día del relevamiento de campo, el terreno se encontraba húmedo debido a lluvias ocurridas días anteriores y además el día estaba ventoso. Estas condiciones climáticas hicieron que las precisiones requeridas para el relevamiento fueran menores.

12.1. PROCESAMIENTO DE LOS DATOS PLANIMÉTRICOS:

La coordenada definitiva de cada punto relevado en el terreno se determina calculando la media aritmética de las observaciones tomadas de la misma.

PASOS:

- 1- Se calcula la media: $\bar{X} = \frac{1}{n} \sum X_i$ Siendo X_1, X_2, \dots, X_n las n observaciones de la coordenada X.
- 2- Se determinó $I_n = [X 0.005; X + 0.005]$ donde $3\sigma = 0.005m$
- 3- Se descartan las observaciones que caigan fuera del intervalo.
- 4- Si es necesario se recalcula la media.
- 5- Se repite el procedimiento hasta que ninguna de las observaciones quede fuera del intervalo.
- ✓ De forma análoga se realiza el mismo procedimiento para el cálculo de la coordenada Y.

OBSERVACIÓN:

Dada las condiciones del terreno el día del relevamiento, se toma 3o mayor al del pre-análisis

12.1.1. CONCLUSIONES DEL RELEVAMIENTO PLANIMÉTRICO.

En total fueron relevados 144 puntos, 136 quedaron bajo tolerancia, mientras 8 fueron descartados.

El RMS_{xy}= 2.3 cm.

12.1.2. TABLA DE DATOS OBTENIDOS EN EL RELEVAMIENTO PLANIMÉTRICO.

A continuación, se exhiben las coordenadas X e Y de los puntos relevados, siguiendo la metodología planteada.

Ρυντο	D	Х	Υ	X DEF.	Y DEF.	OBSERVACIONES
N°	ESTACIÓN	ESTACIÓN	ESTACIÓN			
102	1	57.449	108.308	57.449	108.307	
	2	57.448	108.307			
1	3	54.376	103.371	54.376	103.373	
	4	54.376	103.374			
2	5	71.412	103.273	71.412	103.274	
	6	71.413	103.274			
	R1	97.324	79.389			RELEVAMIENTO INICIAL DE LA RED
	R2	108.604	133.336			RELEVAMIENTO INICIAL DE LA RED
	R4	114.720	184.439			RELEVAMIENTO INICIAL DE LA RED
	R3	138.443	166.296			RELEVAMIENTO INICIAL DE LA RED
	R6	175.544	205.599			RELEVAMIENTO INICIAL DE LA RED
	R5	118.006	218.516			RELEVAMIENTO INICIAL DE LA RED
	R7	77.121	228.828			RELEVAMIENTO INICIAL DE LA RED
	R8	53.765	106.941			RELEVAMIENTO INICIAL DE LA RED
100	7	72.737	232.646	72.737	232.647	
	8	72.740	232.647			
46	9	73.890	237.180	73.887	237.180	
	10	73.884	237.180			
42	11	107.880	227.933	107.881	227.933	
	12	107.882	227.933			
	13	126.435	225.625	10(101	005 (04	
43	14	126.428	225.625	126.434	225.624	
	15	126.429	225.626			
7	17	96.152	116.842	96.151	116.842	
	18	96.150	116.842			
3	19	105.401	105.862	105.401	105.862	
	20	105.401	105.862			

Ρυντο	lD	Х	Υ	X DEF.	Y DEF.	OBSERVACIONES
N٥	ESTACIÓN	ESTACIÓN	ESTACIÓN			
6	21	119.924	121.980	119.923	121.980	
	22	119.922	121.979			
	23	131.541	96.614			
4	24	131.541	96.621	131.542	96.615	DESCARTADO
	25	131.543	96.615			
103	26	139.225	96.149	139.225	96.148	
	27	139.225	96.147			
	28	97.322	79.389			VERIFICACIÓN R1
405	29	113.372	119.126	113.372	119.126	
	30	113.371	119.126			
12	31	105.403	126.743	105.403	126.743	
	32	105.402	126.743			
13	33	112.159	138.982	112.159	138.982	
	34	112.159	138.982			
	35	119.255	155.952			
19	36	119.251	155.956	119.253	155.954	
	37	119.253	155.955			
18	38	106.037	151.971	106.037	151.971	
	39	106.036	151.971			
25	40	103.092	171.128	103.091	171.128	
	41	103.090	171.128			
404	42	109.863	162.702	109.862	162.702	
	43	109.861	162.702			

Tabla 13/2- Datos del relevamiento planimétrico con estación total.

Ρυντο	lD	Х	Y	X DEF.	Y DEF.	OBSERVACIONES
N٥	ESTACIÓN	ESTACIÓN	ESTACIÓN			
27	47	123.472	174.671	123.472	174.671	
	48	123.471	174.671			
	10	101 (50	100.000	101 (51	100.000	
28	49	121.650	182.228	121.651	182.228	
	50	121.652	182.228			
	F1	120.0/0	1/1 2/5			
104	51	129.860	101.305	100 050	161 266	
104	52	129.000	101.300	129.000	101.300	
	55	129.000	101.305			
20	54	130 1//	153 501	130 1/3	153 502	
20	55	139.144	153.571	137.143	100.072	
		137.142	133.373			
36	56	153 804	193 861	153 803	193 862	
	57	153.802	193.863	1001000	1701002	
35	58	134.920	191.246	134.919	191.246	
	59	134.918	191.246			
37	60	119.055	200.825	119.054	200.825	
	61	119.053	200.824			
	62	120.162	203.953			
403	63	120.165	203.955	120.165	203.953	
	64	120.169	203.953			
	65	120.164	203.952			
34	66	110.154	191.156			
	67	118.015	218.514			VERIFICACION R5
	68	118.016	218.516			VERIFICACION R6
40	(0)	10/ 417	225 (12	10/ 417	225 (12	
43	69	120.417	225.612	120.417	225.012	
	70	120.417	220.013			
ΛΛ	71	1/5 070	228 251	1/5 070	228 251	
	72	145.079	220.251	14J.077	220.231	
	12	170.077	220.201			
105	73	155.705	222,999	155.705	222,999	
	74	155.705	222.999			
	, 1					
	75	156.168	213.330			
45	76	156.167	213.335	156.168	213.333	
	77	156.168	213.333			

Tabla 13/3- Datos del relevamiento planimétrico con estación total.

Ρυντο	lD	Х	Y	X DEF.	Y DEF.	OBSERVACIONES
N°	ESTACIÓN	ESTACIÓN	ESTACIÓN			
	78	87.408	219.298			
41	79	87.393	219.302	87.407	219.297	DESCARTADO
	80	87.406	219.297			
5	81	140.862	116.177	140.861	116.175	
	82	140.861	116.173			
400	200	56.429	131.909	56.429	131.910	
	201	56.428	131.910			
9	202	62.468	125.551	62.468	125.550	
	203	62.468	125.549			
8	204	81.444	120.953	81.445	120.952	
	205	81.446	120.951			
10	206	79.773	134.200	79.773	134.200	
	207	79.772	134.200			
14	208	70.185	143.092	70.185	143.094	
	209	70.184	143.096			
11	210	93.698	133.945	93.698	133.945	
	211	93.699	133.945			
17	212	92.366	153.138	00.050	150 111	
	213	92.353	153.141	92.353	153.141	
	214	92.354	153.140			
	045	00.070	454 (0)	00.070	454 (07	
16	215	80.078	151.696	80.078	151.697	
	216	80.078	151.698			
45	017	(2.240	150 410	(2.240	150 410	
15	217	63.348	152.418	63.348	152.418	
	218	63.347	152.418			
1		70.020	140 70/	70.001	140 707	
21	219	70.820	160.730	70.821	100.737	
	220	70.822	100.738			
1016	221	00.020	145.004	00.040	145.004	
4010	221	00.039	165.024	õU.õ4U	105.024	
	222	80.841	165.025			

 Tabla 13/4- Datos del relevamiento planimétrico con estación total

Ρυντο	lD	Х	Y	X DEF.	Y DEF.	OBSERVACIONES
N٥	ESTACIÓN	ESTACIÓN	ESTACIÓN			
	225	68.825	166.540			
401	226	68.825	166.540	68.825	166.540	
	227	68.824	166.539			
101	230	83.317	159.037	83.318	159.037	
	231	83.318	159.037			
	232	90.427	166.688			
24	233	90.428	166.689	90.427	166.689	
	232	90.428	166.689			
	235	108.604	133.338			VERIFICACIÓN R2
29	236	98.138	184.453	98.138	184.453	
	237	98.136	184.453			
30	238	85.376	188.420	85.375	188.419	
	239	85.374	188.419			
31	240	70.160	190.303	70.158	190.302	
	241	70.158	190.302			
38	242	100.882	204.911	100.881	204.911	
	243	100.880	204.911			
39	244	89.263	207.146	89.262	207.146	
	245	89.262	207.146			
	246	778.20	214.071			DESCARTADO
40	247	77.815	214.071			
	248	77.816	214.070	77.816	214.071	
	249	79.317	199.492			
33	250	79.312	199.488	79.317	199.491	
	251	79.321	199.494			
	253	67.328	207.882			
	254	67.323	207.880			
32	255	67.327	207.875	67.327	207.879	
	256	67.331	207.878			

 Tabla 13/5- Datos del relevamiento planimétrico con estación total.

Ρυντο	ld	Х	Y			
N٥	ESTACIÓN	ESTACIÓN	ESTACIÓN	X DEF.	Y DEF.	OBSERVACIONES
	257	66.429	202.940			DESCARTADO
	258	66.430	202.952			DESCARTADO
	259	66.420	202.985			
402	260	66.416	202.983	66.419	202.985	
	261	66.415	202.975			DESCARTADO
	262	66.406	202.980			DESCARTADO
	263	66.408	202.975			DESCARTADO
	264	66.422	202.985			
	265	66.415	202.983			
23	228	80.673	175.942	80.672	175.942	
	229	80.671	175.941			
	266	66.422	202.986			
	267	177.544	205.599			VERIFICACIÓN R6
22	223	68.477	174.975	68.477	174.973	
	224	68.476	174.971			
	44	115.923	170.202			
26	45	115.918	170.203	115.921	170.202	
	46	115.923	170.202			
	EST4	114.720	184.439			ESTACION
	EST2	53.765	106.941			ESTACION
	EST1	100.000	100.000			ESTACION
	EST3	122.181	211.863			ESTACION

Tabla 13%- Datos del relevamiento planimétrico con estación total

12.2. PROCESAMIENTO DE LOS DATOS ALTIMÉTRICOS:

Como ya se mencionó, las lecturas fueron tomadas 2 veces por tramo, ya que se realizó una nivelación geométrica doble.

Primeramente, se calcula el promedio de lecturas atrás y lecturas adelante:

$$L_{atras promedio AB} = \frac{L_{at_1AB} + L_{at_2AB}}{2}$$
$$L_{adelante promedio AB} = \frac{L_{ad_1AB} + L_{ad_2AB}}{2}$$

Latras promedio AB: Promedio de las lecturas atrás del tramo AB.

Ladelante promedio AB: Promedio de las lecturas adelante del tramo AB.

Después de calculados estos promedios, se siguió operando, únicamente, con ellos como lectura atrás y lectura adelante.

Sabemos que, al hacer nivelación en circuitos cerrados, partiendo y volviendo al mismo punto, el Δh debe ser cero. Sabemos también que el error de cierre de cada circuito cerrado se puede calcular con la siguiente expresión:

 $\varepsilon_{\text{circuito}} = \sum L_{ac_{AA}} - \sum L_{ad_{AA}}$

Cuando $\mathcal{E}_{circulto} \neq 0$, se aplica la siguiente corrección a las lecturas atrás:

 $c = \varepsilon_{circuito}/n$ $\overline{L_{at}} = L_{at promodio} + c$

Siendo *c* la corrección y *n* el número de tramos por circuito y $\overline{L_{at}}$ la lectura atrás corregida.

Se le asigna la cota a un punto cualquiera del circuito y a partir de ello se calculan las cotas de los todos los puntos relevados.

Una vez que se establece la cota al punto A (Z_A), se le asigna la cota a otros puntos utilizando las siguientes fórmulas:

Punto	Lat	L _{ad}	Zpc	Zp unto
Α			$Z_{pc} = Z_A + L_{atA}$	Z_A
В		L _{adB}		$Z_B = Z_{pc} - L_{adB}$
	Table 44	E é annual a suite a é l	leaders also a dese	

Tabla 14- Fórmulas de cálculos de cotas.

Siendo:

- Z_{pc}: Cota del plano colimador AB.

- Z_X: Cota del punto X.

En la siguiente tabla se exhiben los errores de cierre de cada circuito cerrado de nivelación:

Circuito N°	Error de cierre & (mm)
1	0
2	1
3	2
4	3
5	8
6	-2
7	2
8	12
9	-18

Tabla 15- Errores de cierre de los circuitos de nivelación.

Obsérvese que los circuitos 8 y 9 tienen un error de cierre muy superior a los restantes. Eso fue debido a la humedad que tenía esa parte del terreno en el momento del relevamiento lo cual hacía que la mira se hundiera en la tierra. Se decidió tomar esos datos, ya que volver a medir otro día, que el terreno estuviera más seco, implicaría realizar otro vuelo, y eso no era posible.

El Error Cuadrático Medio del relevamiento altimétrico (*RMS_z*) se calcula como:

$$RMS_z = \frac{\sqrt{\Sigma \varepsilon_i}}{n}$$

 $RMS_z = 0.3$ cm

Recuérdese que se dividió la nivelación en 9 circuitos cerrados que están vinculados entre sí por "puntos de paso" y que se realizó una nivelación geométrica doble entre dos puntos y se

estacionó el nivel aproximadamente en la mediatriz del segmento que une a dos puntos consecutivos.

12.2.1. DATOS CRUDOS DEL RELEVAMIENTO ALTIMÉTRICO:

En las siguientes tablas se exhiben las lecturas de nivelación tomadas en cada circuito cerrado de nivelación.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
400	2.548		2.565	
10	1.258	1.028	1.302	1.046
8	1.169	0.724	1.331	0.766
2	1.204	0.446	1.177	0.607
1	1.612	1.638	1.572	1.612
102	1.055	1.932	0.998	1.893
9	1.849	2.429	1.816	2.371
400		2.495		2.469

Tabla 16- Lecturas de nivelación del circuito 1.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
7	1.392		1.417	
11	1.993	2.113	2.008	2.140
12	2.786	1.736	2.789	1.753
6	0.640	0.860	0.746	0.864
405	1.865	1.293	1.879	1.398
3	0.968	1.641	1.091	1.655
7		1.999		2.122

 Tabla 17- Lecturas de nivelación del circuito 2.

	PRIMERA LE	CTURA	SEGUNDA L	ECTURA
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
14	1.763		1.743	
15	1.505	1.524	1.535	1.505
21	1.634	1.577	1.623	1.605
401b	1.618	1.626	1.608	1.615
22	1.587	1.602	1.576	1.593
23	1.616	1.583	1.634	1.572
24	1.259	1.260	1.194	1.279
101	1.635	1.602	1.614	1.537
17	0.928	0.948	0.956	0.928
16	1.606	1.636	1.656	1.664
14	1.821	1.790	1.814	1.840
401		1.631		1.625

Tabla 18- Lecturas de nivelación del circuito 3.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
31	1.620		1.592	
30	1.634	1.611	1.606	1.583
29	1.635	0.828	1.588	0.802
38	0.920	1.376	0.901	1.331
39	0.637	2.069	0.746	2.052
40	0.490	0.842	0.537	0.952
32	2.421	2.376	2.491	2.421
402	2.233	2.451	2.153	2.521
33	2.559	1.054	2.591	0.972
31		1.532		1.564

 Tabla 19- Lecturas de nivelación del circuito 4.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
42	1.256		1.198	
41	1.220	2.186	1.324	2.219
100	2.409	1.847	1.993	1.953
46	2.271	1.967	2.290	1.910
42		0.793		0.811

 Tabla 20- Lecturas de nivelación del circuito 5.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
403	1.809		1.833	
35	1.882	1.602	1.946	1.626
36	1.524	1.188	1.568	1.250
45	1.463	2.035	1.463	2.079
105	1.508	1.579	1.555	1.580
44	1.627	1.743	1.638	1.718
403		1.722		1.731

 Tabla 21- Lecturas de nivelación del circuito 6.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
37	1.677		1.718	
34	2.472	2.531	2.450	2.572
25	2.706	2.413	2.643	2.389
26	1.699	1.760	1.599	1.698
27	1.376	1.677	1.467	1.579
28	1.652	1.498	1.638	1.588
37		1.692		1.676

 Tabla 22- Lecturas de nivelación del circuito 7.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
104	1.695		1.722	
20	1.169	1.324	1.213	1.349
13	2.217	2.172	2.206	2.217
18	2.782	2.717	2.748	2.706
404	2.743	2.884	2.771	2.849
19	1.961	1.933	1.572	1.961
104		1.537		1.326

 Tabla 23- Lecturas de nivelación del circuito 8.

	PRIMERA LECTURA		SEGUNDA L	ECTURA
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
5	2.556		2.489	
4	2.066	2.128	2.087	2.059
103	1.629	1.602	1.635	1.623
5		2.520		2.526

 Tabla 24- Lecturas de nivelación del circuito 9.

En las siguientes tablas se exhiben las lecturas de nivelación tomadas en campo de los puntos de enlace que conectan los diferentes circuitos de nivelación:

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
10	2.174		2.203	
11		1.006		1.035

 Tabla 25- Lecturas de enlace entre circuitos 1 y 2.

	PRIMERA LE	CTURA	SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
400	2.409		2.477	
14		1.204		1.271

Tabla 26- Lecturas de enlace entre circuitos 1 y 3.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m) L_adelante(m)		L_atrás(m)	L_adelante(m)
23	1.583		1.622	
30		1.560		1.599

Tabla 27- Lecturas de enlace entre circuitos 3 y 4.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
5	2.609		2.564	
6		2.270		2.223

 Tabla 28- Lecturas de enlace entre circuitos 2 y 9.

	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
41	2.371		2.477	
40		3.604		1.271

Tabla 29- Lecturas de enlace entre circuitos 4 y 5.

10	PRIMERA LECTURA		SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
25	2.808		2.833	
404		2.814		2.839

 Tabla 30- Lecturas de enlace entre circuitos 7 y 8.

	PRIMERA LE	CTURA	SEGUNDA LECTURA	
PUNTO	L_atrás(m) L_adelante(m)		L_atrás(m)	L_adelante(m)
28	1.718		1.708	
35		1.524		2.839

Tabla 31- Lecturas de enlace entre circuitos 6 y 7.

	PRIMERA LE	CTURA	SEGUNDA LECTURA	
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)
6	714		724	
13		2.051		2.062

Tabla 32- Lecturas de enlace entre circuitos 2 y 6.

12.2.2. Resultados Finales de los datos Altimétricos:

En las siguientes tablas se exhiben las lecturas promedio calculadas a partir de las dos las lecturas de nivelación, las lecturas corregidas (en el caso que haya error de cierre), los errores de cierre de cada circuito y también las cotas finales de todos los puntos.

CIRCUITO 1	LECTURA PR	Romedio		
PUNTO	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
400	2.557		12.557	10.000
10	1.280	1.037	12.800	11.520
8	1.250	0.745	13.305	12.055
2	1.191	0.527	13.969	12.778
1	1.592	1.625	13.936	12.344
102	1.027	1.913	13.050	12.023
9	1.833	2.400	12.482	10.650
400		2.482		10.000
Suma:	10.728	10.728		
Error de cierre		0.000		

Al punto 400 se le asignó cota arbitraria de 10.00 m.

Tabla 33-Cálculo de cotas del circuito 1.

	LECTURA PR	ROMEDIO		
PUNTO	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
10	2.189		13.708	11.520
11		1.021		12.688

 Tabla 34- Cálculo de cotas del enlace entre circuitos 1 y 2.

CIRCUITO 2	LECTURA	PROMEDIO		
			Cota Plano	
PUNTO	L_atrás(m)	L_adelante(m)	Colimador	COTA
7	1.405		14.815	13.410
11	2.001	2.127	14.688	12.688
12	2.788	1.745	15.731	12.944
6	0.693	0.862	15.562	14.869
405	1.872	1.346	16.089	14.217
3	1.030	1.648	15.470	14.441
7	1.405	2.061	14.815	13.410
Suma	9.787	9.787		
Error de cierre		0.000		

Tabla 35- Cálculo de cotas del circuito 2.
	LECTURA PR	Romedio		
PUNTO	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
400	2.443		12.443	10.000
14		1.238		11.206

Tabla 36- Cálculo de cotas del enlace entre circuitos 1 y 3.

CIRCUITO 3	LECTURA P	ROMEDIO	LECTURA	CORREGIDA		
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
14	1.753		1.753		12.959	11.206
15	1.520	1.515	1.520	1.515	12.964	11.444
21	1.629	1.591	1.628	1.591	13.001	11.373
401b	1.613	1.621	1.613	1.621	12.993	11.380
22	1.582	1.598	1.581	1.598	12.997	11.416
23	1.625	1.578	1.625	1.578	13.024	11.400
24	1.227	1.270	1.226	1.270	12.981	11.755
101	1.625	1.570	1.624	1.570	13.035	11.412
17	0.942	0.938	0.942	0.938	13.039	12.098
16	1.631	1.650	1.631	1.650	13.020	11.390
14	1.818	1.815	1.817	1.815	13.022	11.206
14		1.628		1.628		11.395
Suma	15.145	15.143				

Error de cierre

Tabla 37 Cálculo de cotas del circuito 3.

0.002

	LECTURA P	ROMEDIO		
PUNTO	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
41	2.380		14.740	12.360
40		3.613		11.126

 Tabla 38- Cálculo de cotas del enlace entre circuitos 3 y 4.

CIRCUITO 4	LECTURAS P	ROMEDIO	LECTURA	CORREGIDA		
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
42	1.256		1.255		14.546	13.290
41	1.220	2.186	1.219	2.186	13.579	12.360
100	2.049	1.847	2.048	1.847	13.780	11.732
46	2.271	1.967	2.270	1.967	14.083	1.813
42		0.793		0.793	13.290	13.290
Suma	6.796	6.793				
Error de cierre	;	0.003]			

Tabla 39- Cálculo de cotas del circuito 4.

	LECTURA PR	Romedio		
PUNTO	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
23	1.603		13.003	11.400
30		1.580		11.423

Tabla 40- Cálculo de cotas del enlace entre circuitos 3 y 5.

CIRCUITO 5	LECTURA PRO	OMEDIO	LECTURA	CORREGIDA		
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
31	1.606		1.605		13.019	11.414
30	1.620	1.597	1.619	1.597	13.042	11.422
29	1.612	0.815	1.611	0.815	13.837	12.227
38	0.911	1.354	0.910	1.354	13.393	12.484
39	0.692	2.061	0.691	2.061	12.023	11.333
40	0.514	0.897	0.513	0.897	11.639	11.126
32	2.456	2.399	2.455	2.399	11.695	9.24
402	2.193	2.486	2.192	2.486	11.401	9.209
33	2.575	1.013	2.574	1.013	12.962	10.388
31		1.548		1.548		11.414
Suma	14.177	14.169				

Error de cierre

Tabla 41- Cálculo de cotas del circuito 5.

	LECTURA PR	Romedio		
PUNTO	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
6	0.719		15.588	14.869
13		2.057		13.532

Tabla 42- Cálculo de cotas del enlace entre circuitos 2 y 6.

-0.008

CIRCUITO 6	LECTURA PROM	EDIO	LECTURA	CORREGIDA		
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
104	1.709		1.708		15.872	14.164
20	1.191	1.337	1.191	1.337	15.726	14.535
13	2.212	2.195	2.211	2.195	15.743	13.532
18	2.765	2.712	2.765	2.712	15.796	13.031
404	2.757	2.867	2.757	2.867	15.686	12.929
19	1.857	1.947	1.856	1.947	15.595	13.739
104		1.432		1.432		14.164
Suma	12.490	12.488				
Error de cierro	9	-0.002]			

Tabla 43- Cálculo de cotas del circuito 6.

	LECTURA PR	Romedio		
PUNTO	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
5	2.587		17.112	14.529
6		2.247		14.869
		A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		

Tabla 44- Cálculo de cotas del enlace entre circuitos 2 y 7.

CIRCUITO 7	LECTURA PRO	OMEDIO	LECTURA	CORREGIDA		
	L atrás(m)	L adolanto(m)	L atrác(m)	L adolanto(m)	Cota Plano Colimador	COTA
TUNIO			L_attas(iii)		Commador	COTA
5	2.523		2.522		17.051	14.529
4	2.077	2.094	2.076	2.094	15.726	14.957
103	1.632	1.613	1.631	1.613	15.743	15.421
5		2.523		2.523	15.796	14.529
Suma	6.231	6.229				
Error de cierre	e	-0.002				

-0.002 Tabla 45- Cálculo de cotas del circuito 7.

	LECTURA PR	ROMEDIO				
PUNTO	L_atrás(m)	L_adelante(m)	Cota Plano Colimador		COTA	
25	2.821			15.756		12.935
404		2.827				12.929

Tabla 46- Cálculo de cotas del enlace entre circuitos 6 y 8.

CIRCUITO 8	LECTURA PR	ROMEDIO	LECTURA		CORREGIDA			
						Cota Plano		
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)		L_adelante(m)	Colimador	COTA	
37	1.698		1	1.696		15.429	1	13.733
34	2.461	2.552	2	2.459	2.552	15.336	1	12.877
25	2.675	2.401	2	2.673	2.401	15.608	1	12.935
26	1.649	1.729	1	1.647	1.729	15.526	1	13.879
27	1.422	1.628	1	1.420	1.628	15.317	1	13.898
28	1.645	1.543	1	1.643	1.543	15.417	1	13.774
37		1.684			1.684		1	13.733
Suma	11.549	11.537						
Error de cierre	3	-0.012						

-0.012 Tabla 47- Cálculo de cotas del circuito 8.

	LECTURA PR	Romedio				
PUNTO	L_atrás(m)	L_adelante(m)	Cota Plano Colimador		COTA	
28	1.713			13.233		11.520
35		2.182				11.713

Tabla 48- Cálculo de cotas del enlace entre circuitos 8 y 9.

CIRCUITO 9	LECTURA PR	Romedio	LECTURA	CORREGIDA		
PUNTO	L_atrás(m)	L_adelante(m)	L_atrás(m)	L_adelante(m)	Cota Plano Colimador	COTA
403	1.821		1.818		13.327	11.508
35	1.914	1.614	1.911	1.614	13.264	11.713
36	1.546	1.219	1.543	1.219	13.948	12.405
45	1.463	2.057	1.460	2.507	13.351	11.891
105	1.532	1.580	1.565	1.580	13.336	11.771
44	1.633	1.731	1.630	1.731	13.235	11.605
403		1.727		1.727		11.508
Suma	9.908	9.927				

Error de cierre -0.018

Tabla 49- Cálculo de cotas del circuito 9.

12.3. PRECISIONES OBTENIDAS EN EL RELEVAMIENTO TOPOGRÁFICO:

En la siguiente tabla se presentan el error cuadrático medio obtenido en el relevamiento en campo y el recomendado por el estándar NSSDA aplicado a este proyecto.

	<i>RMS</i> del relevamiento topográfico (cm)	<i>RMS</i> según el estándar NSSDA (cm)	
Planimétrico	2.3	0.8	
Altimétrico	0.3	1.8	

Tabla 50- RMS del relevamiento y del NSSDA.

12.4. COORDENADAS TOPOGRÁFICAS DEFINITIVAS:

En la siguiente tabla se exhiben las coordenadas definitivas, de los puntos de control y de testeo, que son utilizados en las restituciones fotogramétricas y en el cálculo de calidad posicional.

	Х	Y	Z
Ρ υΝΤΟ Ν⁰	DEFINITIVO	DEFINITIVO	DEFINITIVO
1	54.376	103.373	12.344
2	71.412	103.274	12.778
3	105.401	105.862	14.441
4	131.542	96.615	14.957
5	140.861	116.175	14.529
6	119.923	121.980	14.869
7	96.151	116.842	13.410
8	81.445	120.952	12.055
9	62.468	125.550	10.650
10	79.773	134.200	11.520
11	93.698	133.945	12.688
12	105.403	126.743	12.944
13	112.159	138.982	13.532
14	70.185	143.094	11.206
15	63.348	152.418	11.444
16	80.078	151.697	11.390
17	92.353	153.141	12.098
18	106.037	151.971	13.031
19	119.253	155.954	13.739
20	139.143	153.592	14.535
21	70.821	160.737	11.373
22	68.477	174.973	11.396
23	80.672	175.942	11.400
24	90.427	166.689	11.755
25	103.091	171.128	12.935
26	115.921	170.202	13.879
27	123.472	174.671	13.898
28	121.651	182.228	13.774
29	98.138	184.453	12.227
30	85.375	188.419	11.423
31	70.158	190.302	11.414
32	67.327	207.879	9.240
33	79.317	199.491	10.388
34	114.084	204.835	12.877
35	134.919	191.246	11.713
36	153.803	193.862	12.405

Punto N°	X	Y	Z
	DEFINITIVO	DEFINITIVO	DEFINITIVO
37	119.054	200.825	13.733
38	100.881	204.911	12.484
39	89.262	207.146	11.333
40	77.816	214.071	11.126
41	87.407	219.297	12.363
42	107.881	227.933	13.293
43	126.417	225.612	
44	145.079	228.251	11.605
45	156.168	213.333	11.891
46	73.887	237.180	11.816
100	72.737	232.647	11.735
101	83.318	159.037	11.412
102	57.449	108.307	12.023
103	139.225	96.148	15.421
104	129.858	161.366	14.164
105	155.705	222.999	11.771
400	56.429	131.910	10.000
401	68.825	166.540	11.395
402	66.419	202.985	9.209
403	120.165	203.953	11.508
404	109.862	162.702	12.929
405	113.372	119.126	14.217
401b	80.840	165.024	11.380

Tabla 51- Coordenadas definitivas de los puntos de control y de testeo.

13. RESTITUCIÓN FOTOGRAMÉTRICA EN EL E-FOTO

Recuérdese que el objetivo de este trabajo es comparar la calidad posicional, aplicando el estándar de la NSSDA²⁹, de dos restituciones fotogramétricas hechas con dos softwares diferentes, e-foto y LPS, para el mismo vuelo fotogramétrico realizado con un UAV replicando el mismo método en ambos procesos.

En este capítulo se detalla el procedimiento de restitución fotogramétrica realizado en el e-foto. Observación: Todas las imágenes de este capítulo son capturas de pantalla del proceso realizado en el e-foto.

²⁹ National Standard for Spatial Data Accuracy

FASES DE LA RESTITUCIÓN FOTOGRAMÉTRICA

Se debe recordar que en el tutorial del e- foto (**sección** 16.7), están explicadas detalladamente las fases que se llevan a cabo en el proceso de restitución fotogramétrica.

Dichas fases son las siguientes:

- 1- Creación del Proyecto.
- 2- Proceso de Orientación Interior.
- 3- Proceso de Orientación Exterior por aerotriangulación.
- 4- Ejecución del Stereoplotter.

13.1. CREACIÓN DEL PROYECTO FOTOGRAMÉTRICO.

Se deben cargar los datos y/o archivos en las siguientes ventanas:

- **1** PROJECT HEADER.
- **2** TERRAIN.
- **3** SENSOR.
- 4 FLIGHT.
- 5 IMAGES.
- 6 POINTS.

13.1.1. PROJECT HEADER.

Se crea un nuevo proyecto llamado "Vuelo 100m".

➢ Name: Vuelo 100m.

> Description: Restitución fotogramétrica de vuelo a 100m de altura con UAV md4-1000 sobre acceso a galpón y ruta 101 en la zona del aeropuerto de Carrasco.

- Owner: Bruno Silveira.
- ➢ Goals: Comparar Softwares.
- Context: Mi proyecto final de carrera.

		Project Header	
Name	vuelo	100m	
Description	restiti con d 101 e	ucion fotogrametrica de vuelo a 100m de altura rone md4-1000 sobre acceso a galpon y ruta en la zoa del aeropuerto de carrasco	
Owner	Bruno	Silveira	
Goals	comp	arar softwares	
Context	mi pr	oyecto final de carrera	
		Metadata	
File path		G:/mi proyecto	
File name		vuelo100m.epp	
Creation date		06/10/2015 4:02:05 PM	
Creation	date	Modification data 07/11/2016 11/27/11 DM	

Imagen 19- Ventana Project Header. Encabezado del proyecto fotogramétrico.

13.1.2. TERRAIN.

Esta es la segunda ventana que debemos completar; los datos relativos a la elevación del terreno que se sobrevuela. Acá los datos no deben ser precisos, pero si aproximados a los reales, para minimizar el número de iteraciones. Ya que son datos que definen las zonas de búsqueda. Esta información la obtenemos de Google Earth.

- Max Altitude (Altitud máxima): 90.00 m.
- Min Altitude (Altitud mínima): 0.00 m.
- Mean Altitude (Altitud promedio): 45.00m.
- GRS (Geodetic Reference System. el geoide): WGS84.
- > CPS (proyección): UTM.
- ➢ UTM Fuse: 21.³⁰
- Latittude (latitud aproximada del centro del área de proyecto): 34°47′0″. Hemisferio Sur.

Longitude (longitud aproximada del centro del área de proyecto): 56°0′ 0″. Oeste de Greenwich.

	Ter	rain		
Max Altitude	90.000 m	GRS	WGS84	-
Min Altitude	0.000 m	CPS	UTM	*
Mean Altitude	45.000 m	UTM Fuse	21	\$
-Latitude -				

Imagen 20-Ventana Terrain relativa al terreno sobrevolado.

³⁰ Aunque las coordenadas de los puntos de control y testeo están en un sistema local, el e-foto no posee dicha opción, por lo cual se utilizó proyección UTM, uso 21.

13.1.4. SENSOR.

En la ventana Sensor se carga toda la información de la cámara fotográfica, incluye algunos parámetros de la misma y los datos del certificado de calibración.

SENSOR ID: SONY NEX-7 16.0.

► TYPE:

- ✓ Detector: CCD.
- ✓ Geometry: Frame.
- ✓ Energy Source: Natural.
- ✓ Calculation Mode: With Fiducial Marks.
- ✓ Plataform: Aerial.

CAMARA CALIBRATION CERTIFICATE:

- ✓ Number: 1111.
- ✓ Dispatch: 01 / 04 / 2014.
- ✓ Expiration: 01 / 04 / 2016.

SENSOR PARAMETERS:

- ✓ Distancia Focal Calibrada: 15.882mm.
- ✓ Coordenadas del Punto Principal
- \checkmark

$X_o = 0.181$	σ_{Xo} = not available
$Y_{o} = 0.144$	σ_{Y_0} = not available

DISTORCION COEFICIENTS:

✓ Coeficientes de Distorsión Radial:

K ₀ =0	σ_{k0} =
K ₁ =-1.813 x10 ⁻⁰⁹	σ_{k1} = 1.217 x10 ⁻⁰⁸
K ₂ =-5.877x10 ⁻¹⁴	σ_{k2} = 1.092 x10 ⁻¹²
K ₃ =-5.909х10 ⁻¹⁸	$\sigma_{k3} = 3.009 \text{x10}^{-17}$

✓ Coeficientes de Distorsión Descentrada:

$P_1 = -6.278 \times 10^{-07}$	$\sigma_{P1} = 1.254 \text{ x10}^{-07}$
$P_2 = -7.172 \times 10^{-07}$	$\sigma_{P2} = 1.459 \text{ x10}^{-07}$

► FIDUCIAL MARKS:

 $X_1 = 11.699.$ $Y_1 = -7.799.$ $X_2 = -11.699.$ $Y_2 = -7.799.$ $X_3 = -11.699.$ $Y_3 = 7.799.$ $X_4 = 11.699.$ $Y_4 = 7.799.$

Pla rgy S	atform Source	aerial	•
Pla rgy S	atform Source	aerial	-
Pla rgy S	atform Source	aerial	
Pla rgy S	atform Source	aerial	
rgy S	Source	natural	
• E			
• E			
• E			
	xpiratio	on 01/05/20	19
andar	d Deviatio	on Not Availab	ole -
wailal	ble		
realid	une .		
lard D	eviations	Not Available	v
tDev	Not Avai	lablo	
tDev	Not Ava	lable	=
			_
rd De	viations	Not Available	-
wailal	ble		
waila	ble		5
waila	ble		
wailal	ble		
StDe	v Not Av	ailable	T
StDe	Not Av	ailable	
	Noncomposition of the		_
		4	
ndard	Deviation	Not Availab	le 🔻
ev N	ot Availal	ole	
ev N	ot Availat	ole	
ev N	ot Availat	ole	
ev N	ot Availal	ole	
ev N	ot Availal	ole	
-	ot Availal	ole	
ev			
ev N	ot Availat	ole	
	andar waila addr C tDev tDev tDev twaila waila stDe stDe stDe stDe vaila waila waila waila waila	andard Deviations itDev Not Avail itDev Not Avail itDev Not Avail itDev Not Avail itDev Not Available iv	andard Deviation Not Available lard Deviations Not Available tDev Not Available tDev Not Available tDev Not Available wailable wailable stDev Not Available stDev Not Available stDev Not Available ev Not Available lev Not Available

Imagen 21-Ventana Sensor del Proyecto en el e-foto.

13.1.4. VUELO.

En la ventana Flight (vuelo) se carga toda la información relativa al vuelo fotogramétrico:

- ► FLIGHT INFORMATION:
 - ✓ Producer's name: Birriel.
 - ✓ Description: Vuelo con Drone md4-1000 sobre galpón en Ruta 101 a 100m de altura para proyecto de grado.
 - ✓ Date of flight execution: 18 / 06 / 2014.
- ► FLIGHT PARAMETERS:
 - ✓ Nominal flight altitude above sea level: 145.00 M.³¹
 - ✓ Nominal Scale: 1:6320. (*)
 - ✓ Longitudinal overlap: 60%.
 - ✓ Transversal overlap: 30%.³²

	Flig	jht
Flight Information		
Flight Id	md4-1000	
Producer's Name	birriel	
Description	Vuelo con Ruta 101 a grado	Drone md4-1000 sobre galpon en 100m de altura para proyecto de
Date of Flight Execution	18/06/2014	4
Flight Parameters		
Nominal Flight Altitude A	bove Sea Le	evel (m) 145.00
Nominal Scale		1:6320
Longitudinal Overlap (%))	60.00

Imagen 22- Ventana Flight del Proyecto en el e-foto.

(*): $E = \frac{c}{H}$. siendo c = 15.882 mm y H= 100.00 m

³¹ Altura promedio de la zona tomada de Googlearth + 100 m: 145m.

³² Aunque solamente hay una línea de vuelo, se debe colocar un valor en el campo de traslape transversal.

13.1.5. Imágenes.

Esta es la quinta ventana del Proyecto en la cual cargan las imágenes del Vuelo (Images):

			Image	es	
Image Id	IO	EO		File	
DSC02749	×	×	./DSC02749.JPG		
DSC02752	×	×	/DSC02752.JPG		
DSC02755	X	×	./DSC02755.JPG		
DSC02758	X	×	./DSC02758.JPG		
					Import Images

Imagen 23- Ventana Imágenes de un proyecto en el e-foto.

Cliqueando en Import Images se cargan las 4 imágenes. Las mismas están en formato jpg:

Imagen 24- Las 4 fotografías utilizadas en el proyecto.

13.1.6 PUNTOS.

Points						
Point Id	Туре	E	N	н		
P8	control	81.445	120.952	12.055		
P40	control	77.816	214.071	11.126		
P45	control	156.168	213.333	11.891		
P103	control	139.225	96.148	15.241		
P104	control	129.858	161.366	14.164		
P401b	control	68.825	166.540	11.380		

En la sexta ventana se cargan las coordenadas de los puntos de control :

Imagen 25- Ventana de los puntos de control (Points) en el e-foto.

Observación: El punto 401 se cambió por el punto 401b porque el 401 corría el riesgo de no ser visible en las imágenes, ya que quedaba debajo de un alero del galpón.

13.2. PROCESO DE ORIENTACIÓN INTERIOR.

El software e-foto dispone únicamente del modo manual para medir las marcas fiduciales en las imágenes y luego devuelve los parámetros de transformación (del sistema píxeles al sistema métrico de la cámara) y la correspondiente desviación estándar del proceso de O.I para cada una de las imágenes.

Una vez cargados los datos del certificado de calibración en la fase de creación del proyecto fotogramétrico, y cargadas las cuatro imágenes del vuelo, iniciamos este proceso comenzando por la primera imagen.

En el certificado de calibración de la cámara (ver sección 16.4) están las coordenadas (x,y), en milímetros, de las cuatro marcas fiduciales. También está dado, en el certificado de calibración, el tamaño del sensor en píxeles y en milímetros (6000 x 4000 píxeles y 23.399999999 x 15.6mm), por lo cual se puede deducir que las marcas fiduciales son los vértices de las imágenes, o sea, los píxeles de los vértices del sensor de la cámara.

La siguiente tabla muestra las coordenadas en unidades métricas de las 4 marcas fiduciales del certificado de calibración de la cámara y sus correspondientes coordenadas "ideales" en píxeles (columna. fila), que en este caso son los vértices del sensor.

Marca	Columna	Fila	Х	Y
1	6000	4000	11.6999	-7.7999
2	0	4000	-11.699	-7.7999
3	0	0	-11.699	7.7999
4	6000	0	11.699	7.7999

Tabla 52- Coordenadas de las marcas fiduciales, píxeles (teóricas) y métricas.

En la pantalla de visualización de las fotografías del e-foto, en la parte inferior izquierda, se muestra la posición (columna, fila) donde está el cursor sobre la imagen a cada instante.

Acá se presenta la siguiente opción: Ubicar cada marca fiducial en los píxeles exactos ya que se sabe de antemano las coordenadas (columna, fila) de cada uno de ellos. Si se logra esto con las cuatro esquinas, se tendrá un error (σ) igual a 0 para la Orientación Interior. Igualmente debemos ubicar cada marca fiducial, de modo visual, dentro de cada píxel correspondiente a los cuatro vértices de las imágenes y cumpliendo con esto, se intenta llevarla lo más cerca posible a los valores de las coordenadas exactas en píxeles.

En este proceso también serán determinantes de la precisión, el zoom máximo que se pueda hacer en la imagen, la sensibilidad del mouse, el pulso y la vista del operador.

Por lo tanto, al momento de fijar las marcas fiduciales tenemos la siguiente ventaja: se puede buscar el punto con las coordenadas conocidas de antemano.

Igualmente no es una operación fácil colocar el cursor sobre el píxel deseado al momento de posicionar la marca fiducial. De hecho no fue posible lograr las coordenadas exactas (columna, fila) para las cuatro marcas. Pero sí se obtuvieron valores bajos de las desviaciones estándares bajas.

En la siguiente imagen se pueden ver las coordenadas (columna, fila) sobre un punto cualquiera de la imagen (círculo rojo).

Imagen 26- Posicionando una marca fiducial en el proceso de la Orientación Interior.

Imagen 27- Detalle de una marca fiducial posicionada en la fotografía.

En la imagen de abajo se muestra el sistema de coordenadas píxeles (columna. fila) del sensor:

Imagen28-Sistema de coordenadas pixel (columna, fila) para las fotografías en el e-foto.

Y en la siguiente imagen se muestra el sistema de coordenadas métrico (en milímetros):

Imagen29-Sistema de coordenadas métrico (milímetros) para las fotografías en el e-foto.

Las siguientes tablas muestran los valores obtenidos de columna y fila al ubicar las marcas fiduciales en el e-foto para cada una de las 4 fotografías:

Marca	v	v	Columna	Fila
iviai ca	^	У	Columna	i lia
1	11.6999	-7.7999	5999.879463425730	4000
2	-11.699	-7.7999	0.08301267541875745	4000
3	-11.699	7.7999	0.00316885468549799	0.1074015391581042
4	11.699	7.7999	6000	0.02065414214586525

Tabla 53- Coordenadas obtenidas de las marcas fiduciales en la O. I de la fotografía 1

FOTOGRAFIA 2:

Marca	Х	У	Columna	Fila
1	11.6999	-7.7999	5999.91946442202	3999.995393452077
2	-11.699	-7.7999	0.02747283838823478	4000
3	-11.699	7.7999	0.05006227024448817	0
4	11.699	7.7999	6000	0

Tabla 54- Coordenadas obtenidas de las marcas fiduciales en la O. I de la fotografía 2.

FOTOGRAFIA 3:

Marca	x	у	Columna	Fila
1	11.6999	-7.7999	6000	4000
2	-11.699	-7.7999	0.05754866455410479	4000
3	-11.699	7.7999	0.09615041946389624	0
4	11.699	7.7999	5999.963105477591	0.06569714803072202

 Tabla 55- Coordenadas obtenidas de las marcas fiduciales en la O. I de la fotografía 3.

FOTOGRAFIA 4:

Marca	х	У	Columna	Fila
1	11.6999	-7.7999	6000	4000
2	-11.6999	-7.7999	0.01759949794063687	4000
3	-11.6999	7.7999	0.02043863113189559	0.0001613322674245410
4	11.6999	7.7999	5999.94471480307	0.06762109551840467

Tabla 56 - Coordenadas obtenidas de las marcas fiduciales en la O. I de la fotografía 4.

- Al realizar la O.I el e-foto nos devuelve los siguientes resultados para cada imagen:
 - ✓ Vector Xa.
 - ✓ Vector La.
 - ✓ Vector V.

✓ **Vector Xa**: Parámetros de transformación ajustados (*a0, a1, a2, b0, b1, b2*) y la matriz de covarianza (MVC) para Xa:

Xa					MVC(Xa)		
	1		1	2	3	4	5	6
A0	-11.69894	1	0.00	-0.0	-0.0	0.00	0.00	0.00
A1	0.00390	2	-0.0	0.00	-0.0	0.00	0.00	0.00
A2	-0.00000	3	-0.0	-0.0	0.00	0.00	0.00	<mark>0.00</mark>
BO	7.79893	4	0.00	0.00	0.00	0.00	-0.0	-0.0
B1	0.00000	5	0.00	0.00	0.00	-0.0	0.00	-0.0
B2	-0.00390	6	0.00	0.00	0.00	-0.0	-0.0	0.00

Imagen 30-Vector Xa para imagen 1 y la MVC(Xa).

Recuérdese las ecuaciones que transforman del sistema pixeles al sistema métrico:

 $y = a_0 + a_1(columna) + a_2(fila)$

 $x = b_0 + b_1(columna) + b_2(fila)$

 Vector La: Coordenadas de las marcas fiduciales ajustadas y la matriz de covarianza (MVC) para el vector La.

							- x			
La						MVC(La)			
	1		1	2	3	4	5	6	7	8
1	11.69921	1	0.00	0.00	0.00	0.00	-0.0	0.00	0.00	0.00
2	-7.79907	2	0.00	0.00	0.00	0.00	0.00	-0.0	0.00	0.00
3	-11.69921	3	0.00	0.00	0.00	0.00	0.00	0.00	-0.0	0.00
4	-7.79893	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.0
5	-11.69879	5	-0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	7.79893	6	0.00	-0.0	0.00	0.00	0.00	0.00	0.00	0.00
7	11.69879	7	0.00	0.00	- <mark>0.0</mark>	0.00	0.00	0.00	0.00	0.00
8	7.79907	8	0.00	0.00	0.00	-0.0	0.00	0.00	0.00	0.00

Imagen 31- Vector La para imagen 1 y la MVC(La).

✓ Vector V: Vector de residuos y cálculo de la desviación (σ_0).

Este valor es calculado en milímetros, pero nos interesa tenerlo en píxeles. Para ello debemos transformar el resultado, sabiendo que 6000 píxeles equivalen a 23.3999 milímetros.

	V(mm)	
	1	
1	0.00021	
2	-0.00007	$\sigma_0^2 = V' PV/(n-m) = 0.000000 mm$
3	-0.00021	
4	0.00007	
5	0.00021	
6	-0.00007	σ₀=0.000309 mm
7	-0.00021	
8	0.00007	

Imagen 32- Matriz V de los residuales y el σ_0 .

A continuación, se exhiben los valores de los parámetros de transformación y las desviaciones estándar correspondientes, calculadas por el e-foto, para cada imagen en la O.I:

 σ_0 (*mm*)

0.000309

FOTOGRAFIA 1:

a ₀	-11.69894	
a ₁	0.00390	
a ₂	-0.00000	
b ₀	7.79893	
b ₁	0.00000	
b ₂	-0.00390	

Tabla 57- Resultados de la O.I (parámetros de transformación y σ₀) para la fotografía 1.

FOTOGRAFIA 2:

a ₀	-11.69925		
a ₁	0.00390		
a ₂	-0.00000		
b ₀	7.79907		
b ₁	0.00000	σ_0 (<i>mm</i>)	σ ₀ (píxeles)
b ₂	-0.00390	0.0008	0.0205

Tabla 58- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía 2.

FOTOGRAFIA 3:

a ₀	-116.99300			
a 1	0.00390			
a ₂	0.00000			
b ₀	7.79906			
b ₁	0.00000	σ ₀ (<i>mm</i>)	σ_0 (píxeles)	
b ₂	-0.00390	0.000138		0.03538

Tabla 59- Resultados de la O. I (parámetros de transformación y σ_0) para la fotografía 3.

FOTOGRAFIA 4:

a ₀	-116.99020			
a ₁	0.00390			
a ₂	-0.00000			
bo	7.79907			
b ₁	0.00000	σ ₀ (mm)	σ ₀ (píxeles)	
b ₂	-0.00390	0.000123		0.00315

Tabla 60- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía 4.

 σ_0 (píxeles)

0.077179

> CONCLUSIONES DE LA ORIENTACIÓN INTERIOR:

Se observa que los valores de σ_0 obtenidos en la Orientación Interior de cada una de las imágenes son muy pequeños y están muy por debajo del 0.3 píxel que se establece como un buen valor empírico.

13.3. PROCESO DE ORIENTACIÓN EXTERIOR.

Luego de haber realizado la O.I de las 4 imágenes, se procede a ejecutar la Orientación Exterior (O.E.).

El e-foto cuenta con dos maneras de realizar la O.E:

Resección Espacial

> Aerotriangulación

En este proyecto, se ejecutará la O.E por aerotriangulación.

La aerotriangulación calcula de forma simultánea los parámetros de O.E para todas las imágenes del proyecto fotogramétrico.

- PASOS:
 - 1 -Se identifican los puntos de control y se los marca en la pantalla del e-foto.
 - 2 -Indicamos la dirección de vuelo (90º en este caso, de abajo hacia arriba en la pantalla).
 - **3** -Se ejecuta la aerotriangulación.

• DISTRIBUCIÓN DE LOS PUNTOS DE CONTROL UTILIZADOS:

Imagen 33-Distribución de los puntos de control en las imágenes.

13.3.1. RESULTADOS DE LA **A**EROTRIANGULACIÓN:

Se debe mencionar que no fue posible obtener un resultado aceptable al ejecutar la aerotriangulación en el e-foto. ¿Por qué son malos estos resultados? Porque las coordenadas X, Y del centro óptico de la cámara, deberían ser parecidas a las del centro de la huellas de cada imagen en el terreno, y la coordenada Z, debería ser cercana a 100 (que es la altura del vuelo). Y esos resultados son totalmente diferentes y de magnitudes miles de veces mayores a los esperados. Y además el RMSE obtenido es gigantesco.

Se hicieron numerosos intentos y cambios en algunos parámetros para poder lograr un resultado aceptable en la aerotriangulación, pero no se logró. Esto quiere decir que no se pudo completar la orientación Exterior del bloque, y por ende no fue posible realizar la restitución fotogramétrica con el e-foto. También se intentó realizar la Orientación Exterior por Resección Espacial y los resultados también fueron negativos. Esto generó cierta duda en la continuidad del proyecto pero luego consideró que el estudio comparativo y el análisis se había realizado y que este hecho ya era una conclusión en sí misma.

Inicialmente, se exhiben los resultados de cada aerotriangulación en forma esquemática y luego se detallan los diferentes cambios que fueron realizados, sobre todo en el sistema de coordenadas de los puntos de control y en el sentido del vuelo, para luego realizar la aerotriangulación.

En síntesis, se corrió 9 veces la aerotriangulación realizando cambios que se creyeron oportunos (se detallan el cuadro siguiente), pero no se logró orientar el bloque.

A continuación, a modo de resumen, se tabulan los resultados del RMSE (error cuadrático medio), el número de Iteraciones y si el procedimiento converge o no para cada aerotriangulación y, además, el cambio que fue planteado en dicha aerotriangulación ya que la anterior no fue exitosa.

AEROTRIANGULACIÓN 1	
RMSE	1.42346 x 10 ²² m
N° de Iteraciones	16
Converge	Si
Obs:	Coordenadas de los puntos de control en sistema local.
Coordenadas obtenidas de los centros de perspectiva y ángulos de Euler.	Sin sentido

Tabla 61- Resumen de la primera aerotriangulación.

AEROTRIANGULACIÓN 2	
RMSE	1.98765 x 10 ²² m
N° de Iteraciones	11
Converge	Si
Cambio Realizado	Se repite a la AT1, agregando 11 puntos fotogramétricos donde parecía conveniente.
Coordenadas obtenidas de los centros de perspectiva y los ángulos de Euler.	Sin sentido

Tabla 62- Resumen de la segunda aerotriangulación.

AEROTRIANGULACIÓN 3	
RMSE	1.08358 x 10 ²⁴ m
N° de Iteraciones	11
Converge	Si
Cambio Realizado	Las coordenadas de los puntos de control llevadas a UTM.
Coordenadas obtenidas de los centros de perspectiva y los ángulos de Euler.	Sin sentido

Tabla 63- Resumen de la tercera aerotriangulación.

AEROTRIANGULACIÓN 4	
RMSE	2.33547 x 10 ²³ m
N° de Iteraciones	10
Converge	Si
Cambio Realizado	Se repite a la AT3, agregando 11 puntos fotogramétricos.
Coordenadas obtenidas de los centros de perspectiva y los ángulos de Euler.	Sin sentido

Tabla 64- Resumen de la cuarta aerotriangulación.

AEROTRIANGULACIÓN 5	
RMSE	2.41208 x 10 ²⁴ m
N° de Iteraciones	12
Converge	Si
Cambio Realizado	Se rotaron los puntos de control 90º en sentido horario con centro de rotación en el origen de coordenadas (0,0) para que el sistema de coordenadas coincida con el sentido de vuelo en pantalla.
Coordenadas obtenidas de los centros de perspectiva y ángulos	Sin sentido
de Euler.	

Tabla 65- Resumen de la quinta aerotriangulación.

AEROTRIANGULACIÓN 6	
RMSE	6.99303 x 10 ²² m
N° de Iteraciones	9
Converge	Si
Cambio Realizado	Se llevaron a UTM las coordenadas de los puntos de control que habían sido rotados 90º en sentido horario y con centro de rotación en el origen de coordenadas (0,0) para la AT 5.
Coordenadas obtenidas de los centros de perspectiva y los ángulos de Euler	Sin sentido

Tabla 66- Resumen de la sexta aerotriangulación.

AEROTRIANGULACIÓN 7	
RMSE	2.85892 x 10 ²⁰ m
N° de Iteraciones	12
Converge	Si
Cambio Realizado	Se rotaron las imágenes 90° en sentido horario (con centro de rotación en el píxel central de cada la imagen) para que la línea de vuelo coincidiera con la horizontal y el sentido del vuelo fuera de izquierda a derecha en la pantalla del e-foto, o sea, para que el ángulo de vuelo sea igual a 0°. Obs: Se deben rotar también el sistema de referencia de las marcas fiduciales.
Coordenadas obtenidas de los centros de perspectiva y los ángulos de Euler	Sin sentido

Tabla 67- Resumen de la séptima aerotriangulación.

AEROTRIANGULACIÓN 8	
RMSE	2.85892 x 10 ²⁰ m
N° de Iteraciones	12
Converge	Si
Cambio Realizado	Se repite la AT 7 cambiando un punto de control, el 401b por el punto 42.
Coordenadas obtenidas de los centros de perspectiva y los ángulos de Euler	Sin sentido

Tabla 68- Resumen de la octava aerotriangulación.

AEROTRIANGULACIÓN 9	
RMSE	2.214578 x 10 ¹⁹ m
N° de Iteraciones	10
Converge	Si
Cambio Realizado	Se repite la AT 8 agregando 11 pintos fotogramétricos.
Coordenadas obtenidas de los centros de perspectiva y los ángulos de Euler	Sin sentido

Tabla 69- Resumen de la novena aerotriangulación.

ORIENTACIÓN EXTERIOR POR RESECCIÓN ESPACIAL	
RMSE	•
N° de Iteraciones	12
Converge	Si
Cambio Realizado	Se Realiza la Orientación Exterior para una de las imágenes por Resección Espacial.
Coordenadas obtenidas de los centros de perspectiva y los ángulos de Euler	Sin sentido

Tabla 70- Resultado de la resección espacial.

13.3.2. Descripción Detallada Del Proceso De Aerotriangulación Realizado en el E-Foto.

13.3.2.1. PRIMERA AEROTRIANGULACIÓN.

La primera aerotriangulación se corrió con los siguientes parámetros:

- ✓ Sistema de Coordenadas de los puntos de Control: Local.
- \checkmark Ángulo de vuelo: 90° (de abajo hacia arriba en la pantalla).

Procedimiento: Se marcan, en cada una de las imágenes cargadas, todos los puntos de control presentes en las mismas, luego se determina la dirección de vuelo y por último se ejecuta la aerotriangulación.

Antes de la ejecución, se determina el número máximo de iteraciones, la convergencia métrica y la convergencia angular admitidas. En caso de que no converja, se aumenta el número de iteraciones permitidas.

RMSE	1.42346 x 10 ²²
Número de Iteraciones	16
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	6
Dirección de Vuelo	90°
Resultados	Sin sentido
Resultatos	

RESULTADOS DE LA AT1:

Tabla 71- Resultados de la primera aerotriangulación.

La siguiente tabla muestra las coordenadas de los puntos de control que fueron utilizadas en la primera aerotriangulación (AT1) en el e-foto:

Punto	x	Y	Z
P8	81.445	120.952	12.055
P40	77.816	214.071	11.126
P45	156.168	213.333	11.891
P103	139.225	96.148	15.241
P104	129.858	161.366	14.164
P401b	68.825	166.54	11.380

Tabla 72- Coordenadas de los puntos de control, en sistema local, usadas en la AT1

Y los resultados exhibidos en la tabla 72 son los parámetros de la O.E obtenidos después de correr la primera aerotriangulación AT1:

Foto	ω	φ	к	Xo	Y ₀	Zo
2749	-36425926.517	153754247.13	- 84932021.910	1310068809501790 961664.000	350566966481323 9762944.0000	- 8591724841421690 63424.0000
2752	-13661242.705	28453486.656	- 9102593.0369	1162075125997280 95232.000	656799008079370 4660992.0000	- 1964851738328102 01088.0000
2755	-928780.733	259216.2006	3889617.7373	3489403612256474 23488.000	594450524609452 310528.0000	1561555713890471 903232.0000
2758	-1911056.700	-3871156.0901	- 6051634.5864	6300322087102846 074880.000	294215693124535 7924352.0000	- 7592665031624078 1312.0000

Tabla 73 - Parámetros calculados en la primera aerotriangulación. (Coordenadas de los centros de perspectiva y los ángulos de Euler. Ángulo de vuelo: 90°).

4	ω	2		-	Iteratio	EO Para
DSC02758JPG	DSC02752.JPG	DSC02755JPG	DSC02749JPG	Image Id	ns: 16	imeters
-19110567001	-13661242.7056	-928780,7337	-36425926.5171	ε		
-3871156.0901	28453486.6561	259216,2006	153754247.1365	÷G	Converged: yes	
-6051634.5864	-9102593.0369	3889617.7373	-84932021.9103	ĸ		
6300322087102846074880.0000	116207512599728095232.0000	348940361225647423488.0000	1310068809501790961664.0000	X0	RMSE: 1.42	
) 2942156931245357924352.0000	6567990080793704660992.0000	594450524609452310528.0000	3505669664813239762944.0000	YO	346e+22 m	
-75926650316240781312.0000	-196485173832810201088.0000	1561555713890471903232.0000	-859172484142169063424.0000	20		X

Imagen 34-Captura de pantalla de los Resultados de la primera aerotriangulación en el e-foto.

13.3.2.2. SEGUNDA AEROTRIANGULACIÓN (AGREGANDO PUNTOS FOTOGRAMÉTRICOS).

A la primera aerotriangulación, se agregan once puntos fotogramétricos. Se la ejecutó y los resultados no fueron buenos:

- ✓ Sistema de Coordenadas de los puntos de control: Local
- ✓ Ángulo de vuelo: **90º** (de abajo hacia arriba en la pantalla).

RESULTADOS DE LA AT2:

RMSE	1.98765 x 10 ²²
Número de Iteraciones	11
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos de fotogramétricos	11
Dirección de Vuelo	90°
Resultados	Sin sentido

Tabla 74- Resultados de la segunda aerotriangulación.

Observación: No se exhiben detalles de los resultados de esta aerotriangulación (AT2).

¿CUÁLES PUEDEN SER LAS CAUSAS DE LOS RESULTADOS DE LA AEROTRIANGULACIÓN?:

A continuación, se escriben los motivos que, en un primer momento, se piensa que pueden ser la causa de dichos resultados de la Orientación Exterior:

1- En lo que se refiere al sistema de coordenadas, el e-foto no cuenta con la opción de seleccionar un sistema local de coordenadas. En la ventana Terreno, el proyecto ofrece la posibilidad de elegir el geoide y la proyección utilizada. Las opciones para el Geoide (GRS)³³ son: WGS84, SIRGAS 2000 y SAD69 y para la proyección (CPS)³⁴ únicamente esta la opción UTM.

Recuérdese que en este trabajo, las coordenadas de los puntos de control y de testeo, que fueron relevados en campo, están en un sistema de coordenadas arbitrario local, donde las abscisas, ordenadas y cotas son valores entre 0 y 300 m; y que las coordenadas planimétricas en la proyección UTM 21, en la zona del vuelo, están en el entorno de los 590.000 Este y 6.150.400 Norte.

2- El sentido del vuelo en la pantalla del e-foto es de "abajo hacia arriba" lo cual no debería representar problemas ya que es posible seleccionar la dirección del vuelo antes de correr la aerotriangulación, pero sabemos que el e-foto presenta algunas fallas y esta función podría no estar operando correctamente.

13.3.3. SOLUCIONES PLANTEADAS:

13.3.3.1. LLEVAR LAS COORDENADAS DE LOS PUNTOS DE CONTROL A UTM.

En Google Earth ubicamos un punto cualquiera en la parte central de la zona del vuelo, y levantamos sus coordenadas, en sistema de proyección UTM, del Google Earth. Esas coordenadas las usamos para marcar un punto en autocad. Luego trasladamos todos los puntos de control y testeo, que habían sido "picados en autocad" con sus coordenadas en su sistema original local, eligiendo como punto base de traslado a un punto central del total de puntos y se lo lleva hasta ese "punto UTM" que fue picado en Autocad.

El punto seleccionado para trasladar los puntos de control y de testeo, está en el borde de la explanada de Hormigón sobrevolada, frente al galpón de la empresa. El mismo tiene coordenadas en UTM 21S: 591510.43 E. 6150439.48 S.

³³ GRS: Godetic Reference System. Hace referencia la Geoide.

³⁴ CPS: Cartographic Projection System. Sistema de Proyección utilizado.

Imagen 35-Ubicación aproximada del punto de traslado a coordenadas UTM.³⁵

Luego, se obtienen en "Autocad" las coordenadas de los puntos de control, que estarán en este "*UTM aproximado*", y las ingresamos en la lista de puntos en el nuevo proyecto del e-foto y volvemos a correr la aerotriangulación.

¿A qué le llamo UTM aproximado? Al marcar solamente un punto en la región de relevamiento, con coordenadas en UTM 21, y luego trasladar todos los demás puntos, que estaban en un sistema arbitrario local de coordenadas, no se los está llevando exactamente a UTM 21. En primer lugar porque que UTM es una proyección de coordenadas geodésicas a planas y en segundo lugar, la determinación del punto de traslado carece de precisión. Igualmente este posible error no es tema de un primer análisis ya que los que nos interesa saber es si la causa de los malos resultados es debido a que las coordenadas de los puntos deberían estar dentro del rango UTM.

La coordenada Z la mantenemos, ya que en la proyección UTM, esos valores son similares.

³⁵ Fuente: Google Earth.

Punto	Х	Y	Z	
P8b	591493.74	6150375.98	12.055	
P40b	591490.11	6150469.1	11.126	
P45b	591568.46	6150468.36	11.891	
P103b	591551.52	6150351.18	15.241	
P104b	591542.15	6150416.39	14.164	
P401bb	591481.12	6150421.57	11.380	

COORDENADAS DE LOS PUNTOS DE CONTROL EN UTM:

Tabla 75- Coordenadas de los Puntos de Control llevados a UTM.

13.3.3.2. TERCERA AEROTRIANGULACIÓN.

Luego de correr la tercera aerotriangulación, con los puntos llevados a UTM como se explicó anteriormente, nuevamente los resultados fueron pésimos y el RMSE fue desmesurado.

- ✓ Sistema de Coordenadas de los puntos de Control: UTM.
- \checkmark Ángulo de vuelo: 90° (de abajo hacia arriba en la pantalla).
RESULTADOS DE LA AT3:

RMSE	1.08358 x 10 ²⁴
Número de Iteraciones	11
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	6
Dirección de Vuelo	90°
Resultados	Sin sentido

 Tabla 76- Resultados de la tercera aerotriangulación.

Y los resultados exhibidos en la tabla 76 son los parámetros de la O.E obtenidos después de ejecutar la tercera aerotriangulación AT3:

Foto	ω	φ	К	Xo	Y ₀	Z ₀
2749	156139.8983	135207.1379	4375476.4100	- 42606614242849797963 776.0000	6799063437 7260103106 56.0000	13506264691286 879502336.0000
2752	2624479.8599	-6215616.0252	- 4870041.6467	- 55471133330453768.00 00	1222287535 00683008.0 000	11079988077689 400.0000
2755	-10556894.2419	2344543.0650	7546742.4931	12629317794189530890 24.0000	- 1080445755 5489229635 584.0000	- 61445112668689 677680640.0000
2758	5633108.1032	1867429.5459	9617488.4604	98823747100870810009 60.0000	1603223207 2047110389 76.0000	- 19917195596671 37904640.0000

Tabla 77- Parámetros calculados en la tercera aerotriangulación. (coordenadas de los centros de
perspectiva y los ángulos de Euler. Ángulo de vuelo: 90°).

EO Pa	arameters						
Itera	ations: 11		Converged: yes		RMSE: 1.08	358e+24 m	
	Image Id	ω	ф	к	X0	04	Z0
н	DSC02749JPG	156139.8983	135207.1379	4375476.4100	-4260661424284979796377	6799063437726010310656	1350626469128687950233
2	DSC02755.JPG	-10556894,2419	2344543.0650	7546742.4931	1262931779418953089024	-1080445755548922963558	-6144511266868967768064
ω	DSC02752.JPG	2624479.8599	-6215616.0252	-4870041.6467	-55471133330453768.0000	122228753500683008.0000	11079988077689400.0000
4	DSC02758JPG	5633108.1032	1867429.5459	9617488.4604	9882374710087081000960	1603223207204711038976	-1991719559667137904640

Imagen 36-Captura de pantalla de los Resultados de la tercera aerotriangulación.

13.3.3.3. CUARTA AEROTRIANGULACIÓN (AGREGANDO PUNTOS FOTOGRAMÉTRICOS)

A la aerotriangulación anterior (AT3), le agregamos once puntos fotogramétricos. Se la ejecutó y los resultados fueron malos.

- ✓ Sistema de Coordenadas de los puntos de Control: UTM.
- \checkmark Ángulo de vuelo: 90° (de abajo hacia arriba en la pantalla).

RESULTADOS DE LA AT4:

RMSE	2.33547 x 10 ²³
Número de Iteraciones	10
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos fotogramétricos	11
Dirección de Vuelo	90°
Resultados	Sin sentido

Tabla 78- Resultados de la cuarta aerotriangulación.

Observación: No se exhiben detalles de los resultados de esta aerotriangulación (AT4).

13.3.3.4. Hacer Que el Sentido del Sistema de Coordenadas De Los Puntos de Control Sea Solidario Con el Sentido de Vuelo en la Pantalla del E-Foto.

Al iniciar el proceso de aerotriangulación en el e-foto, observamos que el sentido de vuelo en la pantalla es de "abajo hacia arriba" como ya se mencionó anteriormente. Y es por este motivo que marcamos el sentido de vuelo 90 ° ya que el sentido de vuelo 0° es de izquierda a derecha en el monitor.

Como sabemos que el e-foto presenta algunos problemas, como por ejemplo en el momento de calcular la desviación estándar de la O.E (sección 16.6.2.3.4), se podría pensar que la funcionalidad que determina el sentido de vuelo no se ejecuta correctamente. Por lo cual se piensan en dos posibles cambios:

- ✓ Rotar los puntos de control y de testeo 90° en sentido horario.
- ✓ Rotar las imágenes 90° en sentido horario.

ROTAR LOS PUNTOS DE CONTROL Y DE CONTROL 90° EN SENTIDO HORARIO:

Para que el eje *x* coincida con el sentido de vuelo en la pantalla del e-foto, todos los puntos son rotados (en autocad) 90° en sentido anti horario y con centro de rotación en el origen de coordenadas (0,0). La coordenada z se mantendrá invariable. En dicha rotación los puntos se transforman de la siguiente manera T(x,y,z) = (y, -x, z).

Como las coordenadas de los puntos en el sistema local son positivas, la componente y de las coordenadas rotadas serán negativas debido a la transformación causada por la rotación. Con esto último surge otro problema. Por alguna razón desconocida, el e-foto no acepta coordenadas negativas al cargar los puntos de control, por lo cual se optó por trasladar los puntos rotados anteriormente de modo que tengan componentes (x, y) positivas, además de la coordenada *z* que permanece invariable y es positiva en todos los puntos.

Por lo anterior la transformación final que se aplicará a las coordenadas originales, será la siguiente:

$$T(x,y,z) = (y,-x+600, z)$$

COORDENADAS DE LOS PUNTOS DE CONTROL ROTADOS 90° EN SENTIDO HORARIO Y TRASLADADOS:

Punto	х	Y	Z	
P8c	120.952	479.048	12.055	
P40c	214.071	385.929	11.126	
P45c	213.333	386.667	11.891	
P103c	96.148	503.852	15.421	
P104c	161.366	438.634	14.271	
P401bc	166.540	433.460	11.38	

 Tabla 79- Coordenadas de los puntos de control rotados 90° y trasladados.

13.3.3.5. QUINTA AEROTRIANGULACIÓN

Se corre la quinta aerotriangulación y nuevamente los resultados son sin sentido.

- ✓ Sistema de Coordenadas de los puntos de Control: Local.
- \checkmark Ángulo de vuelo: 90° (de abajo hacia arriba en la pantalla).

RESULTADOS DE LA AT5:

RMSE	2.41208 x 10 ²⁴
Número de Iteraciones	12
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	6
Dirección de Vuelo	90°
Resultados	sin sentido

Tabla 80- Resultados de la quinta aerotriangulación.

Los resultados exhibidos en la tabla 80 son los parámetros de la O.E obtenidos después de correr la quinta aerotriangulación AT5:

Foto	ω	φ	к	Xo	Y ₀	Z ₀
2749	69568482.0739	3322365.5260	- 106368772.24 92	94109159362704585523 2.0000	- 5025313036 1748261437 440.0000	14697874720319 009193984.0000
2752	-13844274.0093	-6345162.3917	- 25049704.810 9	- 16429272078330209553 6128.0000	- 3563955754 2818281947 136.0000	- 13180050446604 7603048448.0000
2755	56425.5882	17312.7467	12639.5091	- 22111223096896441548 800.0000	4391756829 2553249259 52.0000	- 49086861057362 747195392.0000
2758	-194508.7290	-1175527.2482	1229198.9884	12304761497.0428	- 3009238015 .1582	- 2042824648.2012

Tabla 81- Parámetros calculados en la quinta aerotriangulación. (Coordenadas de los centros de perspectiva y los ángulos de Euler. Ángulo de vuelo: 90°).

EO) Para	ameters						×
Ħ	teratio	ons: 12		Converged: yes		RMSE: 2.4	1208e+24 m	
_		Image Id	ω	φ	×	X0	YO	Z0
	<u>н</u>	DSC02749.JPG	69568482.0739	3322365.5260	-106368772.2492	941091593627045855	-50253130361748261	146978747203190091
	2	DSC02755.JPG	56425.5882	17312.7467	12639.5091	-22111223096896441	439175682925532492	-49086861057362747
	w	DSC02752.JPG	-13844274,0093	-6345162.3917	-25049704.8109	-16429272078330209	-35639557542818281	-13180050446604760
	4	DSC02758.JPG	-194508.7290	-1175527,2482	1229198.9884	12304761497.0428	-3009238015.1582	-2042824648.2012
								1.2

Imagen 37- Resultados de la quinta aerotriangulación.

13.3.3.6. LLEVAR A UTM LOS PUNTOS QUE HABÍAN SIDO ROTADOS 90° EN LA AT5.

En este nuevo intento se prueba llevar a UTM (aproximado), las coordenadas de los puntos de control que habían sido rotados 90° en sentido horario y trasladados en la AT5.

Punto	x	Y	Z	
Р8сс	591527.122	6150502.981	12.055	
P40cc	591530.751	6150409.862	11.126	
P45cc	591452.399	6150410.600	11.891	
P103cc	591469.342	6150527.785	15.421	
P104cc	591478.709	6150462.567	14.271	
P401bcc	591539.742	6150457.393	11.38	

COORDENADAS DE LOS PUNTOS DE CONTROL ROTADOS 180 GRADOS Y LLEVADOS A UTM:

Tabla 82- Coordenadas de los puntos de control rotados 90º en sentido anti horario y llevados a UTM.

13.3.3.7. SEXTA AEROTRIANGULACIÓN

Se corre la sexta aerotriangulación y nuevamente los resultados son sin sentido.

- ✓ Sistema de Coordenadas de los puntos de Control: UTM.
- ✓ Ángulo de vuelo: 90° (de abajo hacia arriba en la pantalla).

RESULTADOS DE LA AT6:

RMSE	6.99303 x 10 ²² m
Número de Iteraciones	9
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	6
Dirección de Vuelo	90°
Resultados	Negativos

Tabla 83- Resultados de la sexta aerotriangulación.

Los resultados exhibidos en la tabla 83 son los parámetros de la O.E obtenidos después de ejecutar la sexta aerotriangulación AT6:

Foto	ω	φ	к	X ₀	Y ₀	Z ₀
2749	-1682170.5571	-1060631.4213	-711971.0761	12189675118949079973 888.0000	- 5413600821 7504461619 20.0000	- 15793810453034 319216640.0000
2752	- 516559690.518 7	-63452843.6764	640222626.95 66	1777148719373071872. 0000	1313813193 447389952. 0000	- 49334605773967 4624.0000
2755	2360382.3371	150192.7044	- 4635597.0200	25947762488669529702 4.0000	- 3156926634 2998088089 6.0000	- 23973699625712 6907904.0000
2758	-7380554.2366	- 174381.3407	- 10681554.076	5436149060753857536. 0000	- 7278563305 264521216. 0000	10388879678043 62063872.0000

Tabla 84- Parámetros calculados en la sexta aerotriangulación. (coordenadas de los centros de perspectiva y los ángulos de Euler. ángulo de vuelo: 90°).

4	ω	2	- 14 .		Iter	EO F
DSC02758JPG	DSC02752.JPG	DSC02755.JPG	DSC02749JPG	Image Id	ations: 9	arameters
-7380554,2366	-516559690,5187	2360382.3371	-1682170.5571	ε		
174381.3407	-63452843.6764	150192.7044	-1060631.4213	¢	Converged: yes	
-10681554.0768	640222626.9566	-4635597.0200	-711971.0761	*		
5436149060753857536.0000	1777148719373071872.0000	259477624886695297024.0	1218967511894907997388	X0	RMSE: 6.99	
-7278563305264521216.00	1313813193447389952.0000	-315692663429980880896	-541360082175044616192	YO	1303e+22 m	
1038887967804362063872	-493346057739674624.0000	-239736996257126907904	-157938104530343192166	20		X

Imagen 38-Resultados de la sexta aerotriangulación.

13.3.3.8. Rotar Las Imágenes De Modo Que La Dirección Del Vuelo Sea Horizontal En La Pantalla Del E-Foto.

En una primera instancia se había decidido no rotar las imágenes ya que el e-foto nos ofrece la posibilidad de indicar la dirección de vuelo de 0 a 360 grados.

Dado los resultados negativos obtenidos hasta este punto en la aerotriangulación y el hecho de saber que el e-foto presenta algunas fallas, se pensó que tal vez la función que determina el sentido del vuelo no estuviera ejecutando correctamente en el software. Por lo tanto, se rotaron las imágenes 90° en sentido horario, con centro de rotación en el píxel central de la imagen, para que la línea de vuelo coincidiera con la horizontal y el sentido del vuelo de fuera de izquierda a derecha en la pantalla, o sea, el eje x convencional.

Recuérdese que este proyecto, utiliza también el software LPS, el cual es una aplicación del software ERDAS IMAGINE, y que en este caso utiliza la versión 2013. En el ERDAS se pudo rotar las imágenes con la herramienta "Transform & Ortho". Las mismas fueron rotadas 90° en sentido horario con origen en el píxel central de cada una de las imágenes. Después de rotadas, las imágenes adoptaron el formato img.

Esto trajo un problema. El e-foto solamente reconoce 4 formatos de imágenes: bmp. jpg. tiff y png, por lo cual, las imágenes rotadas en el ERDAS, no se podían visualizar.

Se buscó entonces poder cambiar el formato de las imágenes rotadas a uno de los 4 formatos compatibles con el e-foto. El único formato compatible que se lo puede hacer en el software ERDAS es el TIFF. Una vez hecho esto, se cargan las imágenes rotadas en el nuevo proyecto fotogramétrico creado en el e-foto.

Al abrir las imágenes en el e-foto, luego de comenzar un nuevo proyecto de restitución, las mismas se ven en blanco y negro y con una banda pixelada a la derecha y esto distorsiona parte de la imagen. En ERDAS, estas imágenes se ven a color y sin distorsión alguna.

En la siguiente imagen (izquierda) se muestra la banda pixelada que aparece en el e-foto al visualizar la imagen rotada previamente en el ERDAS y guardada en formato TIFF, y además, la imagen pasa a verse en blanco y negro.

A la derecha se ve la imagen rotada en ERDAS.

Imagen 39- A la izquierda: Vista en el e-foto de la fotografía rotada en ERDAS. A la derecha: misma fotografía visualizada en ERDAS. Ambas en formato tiff.

Dado que necesitábamos rotar las fotos y guardarlas en un archivo de imagen cuyo formato sea aceptado por el e-foto, intentamos rotar las imágenes en otro programa diferente al ERDAS.

Elegimos rotarlas, los 90° en sentido horario, en el software Paint y guardarlas en formato JPG. El e-foto las abrió sin problemas. Las cuatro imágenes rotadas 90° en sentido horario:

13.3.4. SE COMIENZA ENTONCES OTRO PROYECTO FOTOGRAMÉTRICO EN E-FOTO CON LAS IMÁGENES ROTADAS:

Este nuevo proyecto es muy similar al proyecto anterior. Las diferencias sustanciales son las siguientes:

- 1 Fotografías rotadas 90° en sentido horario y con centro de rotación en el pixel central de las mismas.
- 2 Se aplica la misma rotación a las coordenadas de las marcas fiduciales y al Punto Principal.
- 3 Dirección de vuelo: 0°.

Al haber rotado las imágenes, deberá ejecutarse la Orientación Interior para cada una de ellas. Se debe tener en cuenta que las coordenadas de las marcas fiduciales y las del Punto Principal son modificadas por dicha rotación, obedeciendo a una determinada transformación.

Dado el sistema de coordenadas, establecido de acuerdo a las coordenadas de las marcas fiduciales (o vértices del sensor), La rotación de 90° en sentido horario tendría su origen en el centro de las mismas, que es el origen del sistema de coordenadas, o sea el punto (0,0). Por lo cual esta rotación sería una transformación T / $T(x_i, y_i) = (y_i, -x_i)$.

En la siguiente imagen se muestra un esquema gráfico de la rotación de las imágenes:

Imagen 41- Transformación del sistema de coordenadas original (deducido del certificado de calibración de la cámara), luego de rotar las imágenes 90° en sentido horario.

Aplicando esa transformación a las coordenadas de las marcas fiduciales, tomadas del certificado de calibración, obtenemos los siguientes valores de x e y, o de abscisas y ordenadas, para cada uno de los cuatro vértices de las imágenes rotadas:

MARCA	X(mm)	Y(mm)
1	-7.79999999999999998	-11.69999999999999999
2	-7.79999999999999998	11.6999999999999999
3	7.7999999999999998	11.6999999999999999
4	7.7999999999999998	-11.6999999999999999

Tabla 85- Coordenadas de las marcas fiduciales luego de la rotación de las imágenes

También se debe aplicar la misma transformación a las coordenadas del Punto Principal de la cámara. Por lo cual T (0.181, 1.144) = (1.144, -0.181)

Luego se ejecuta la Orientación Interior de las 4 imágenes.

13.3.4.1. RESULTADOS DE LA ORIENTACIÓN INTERIOR:

FUTUGRAFIA RUTADI	A I:		
a ₀	-7.79937		
a ₁	0.00391		
a ₂	0.00000		
b ₀	11.69925		
b ₁	0.00000	σ ₀ (<i>mm</i>)	σ_0 (píxeles)
b ₂	-0.00392	0.000186	0.035179

FOTOCDAFIA DOTADA 1.

Tabla 86- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía rotada 1.

FOTOGRAFIA ROTADA 2:

a ₀	-7.79456		
a ₁	0.003891		
a ₂	0.00000		
b ₀	11.7003		
b ₁	0.00000	σ₀ (<i>mm</i>)	σ_0 (píxeles)
b ₂	-0.00373	0.000196	0.036189

Tabla 87- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía rotada 2.

FOTOGRAFIA ROTADA 3:

a ₀	-7.79543		
a ₁	0.00390		
a ₂	0.00000		
b ₀	11.6980		
b ₁	0.00000	σ₀ (<i>mm</i>)	σ_0 (píxeles)
b ₂	-0.00362	0.000187	0.036180

Tabla 88- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía rotada 3

FOTOGRAFIA ROTADA 4:

a ₀	-7.79666		
a 1	0.00392		
a ₂	0.00000		
b ₀	11.6992		
b ₁	0.00000	σ ₀ (<i>mm</i>)	σ_0 (píxeles)
b ₂	-0.00372	0.000197	0.036190

Tabla 89- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía rotada 4.

> CONCLUSIONES DE LA ORIENTACIÓN INTERIOR:

Se puede observar que los valores de σ_0 obtenidos en la Orientación Interior de cada una de las imágenes son muy pequeños y están muy por debajo del 0.3 píxel que se establece como un buen valor empírico.

13.3.4.2. Séptima Aerotriangulación

Finalmente se ejecuta la séptima aerotriangulación y una vez más los resultados no fueron los deseados.

- ✓ Sistema de Coordenadas de los puntos de Control: Local
- ✓ Ángulo de vuelo: 0° (de izquierda a derecha en la pantalla).

RMSE	2.85892 x 10 ²⁰ m
Número de Iteraciones	12
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	0
Dirección de Vuelo	00
Resultados	Sin sentido

RESULTADOS DE LA AT7:

Tabla 90- Resultados de la séptima aerotriangulación.

Los resultados exhibidos en la tabla 90 son los parámetros de la O.E obtenidos después de ejecutar la séptima aerotriangulación AT7:

Foto	ω	φ	К	Xo	Y ₀	Zo
2749 r	2261877.1324	-4372430.2712	8928871.9481	77675657615818981 367	- 57310957904103 030784	- 34999276382391 201792
2752 r	17066806.6109	- 43271264.243 3	19008272.413 0	- 14688387314950179 84	67354585997412 35200.0	- 57610323389185 4208.0
2755 r	3565302.0018	12768964.795 2	- 58247535.274 4	- 35952400009418675 2.0000	- 10063468627637 15968	31143082825824 8832.00
2758 r	-4639688.0431	- 16525.5013	4142171.1863	- 43723128377576538 112	82953576180572 815360	19595262690147 241164

Tabla 91- Parámetros calculados en la séptima aerotriangulación. (coordenadas de los centros de perspectiva y los ángulos de Euler. Ángulo de vuelo: 0°).

Image Id Image Id	EOI	Parameters		Conversed. Nec		RMSE: 2 80	W UCT ⁰ C08	
1 DSC02749L/PG 2261877.1324 -4372430.2712 8928871.9481 77675657615818981376 -57310957904103030784 -3499927638239120179 2 DSC02755Ljpg 17066806.6109 -43271264.2433 19008272.4130 -1468838731495017984 6735458599741235200.0 -576103233891854208.0 3 DSC02755Ljpg 3565302.0018 127668964.7952 -58247535.2744 -35952400094186752.0000 -1006346862763715968 311430828258248832.0 4 DSC02755Ljpg -4639688.0431 -16525.5013 4142171.1863 -43723128377576538112 82953576180572815360 -1959526269014724116		Image Id	ε	ф Convergen: Yes	*	X0	A0	02
2 DSC02755rjpg 17066806.6109 -43271264.2433 19008272.4130 -1468838731495017984 6735458599741235200.0 -5761032338918542080 3 DSC02752rjpg 3565302.0018 127668964.7952 -58247535.2744 -35952400094186752.0000 -1006346862763715968 311430828258248832.0 4 DSC02758rjpg -4639688.0431 -16525.5013 4142171.1863 -43723128377576538112 82953576180572815360 -1959526269014724116	1	DSC02749r,JPG	2261877.1324	-4372430.2712	8928871.9481	77675657615818981376	-57310957904103030784	-34999276382391201792
3 DSC02752 <i>t</i> jpg 3565302.0018 127668964.7952 -58247535.2744 -35952400094186752.0000 -1006346862763715968 311430828258248832.0 4 DSC02758 <i>t</i> jpg -4639688.0431 -16525.5013 4142171.1863 -43723128377576538112 829535761805728153601959526269014724116	2	DSC02755rjpg	17066806.6109	-43271264.2433	19008272.4130	-1468838731495017984	6735458599741235200.0	-576103233891854208.0
4 DSC02758rjpg -4639688.0431 -16525.5013 4142171.1863 -43723128377576538112 82953576180572815360 -1959526269014724116	ω	DSC02752rjpg	3565302.0018	127668964.7952	-58247535.2744	-35952400094186752.0000	-1006346862763715968	311430828258248832.00
	4	DSC02758rjpg	-4639688.0431	-16525,5013	4142171.1863	-43723128377576538112	82953576180572815360	-19595262690147241164

Imagen 42- Resultados de la séptima aerotriangulación.

13.3.4.3. Octava Aerotriangulación

Se repite exactamente el mismo procedimiento de la aerotriangulación 7, pero cambiando el punto de control 401 por el 42. Este punto fue elegido ya que se en la restitución en el LPS, el punto 42 fue utilizado en lugar del 401b, en sus coordenadas en el sistema local.

- ✓ Sistema de Coordenadas de los puntos de Control: Local.
- ✓ Ángulo de vuelo: 0° (de izquierda a derecha en la pantalla).

Punto	Х	Y	Z
P8dd	81.445	120.952	12.055
P40dd	77.816	214.071	11.126
P45dd	156.168	213.333	11.891
P103dd	139.225	96.148	15.241
P104dd	129.858	161.366	14.164
P42dd	107.881	227.933	13.293

Tabla 92- Coordenadas de los puntos de control, en sistema local, usados en la AT8.

Se ejecuta la octava aerotriangulación y una vez más los resultados fueron sin sentido.

RESULTADOS DE LA AT8:

RMSE	2.85892 x 10 ²⁰ m
Número de Iteraciones	12
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	0
Dirección de Vuelo	0°
Resultados	Sin sentido

Tabla 93 - Resultados de la octava aerotriangulación.

Ite	Parameters rations: 12		Converged: yes		RMSE: 2	.85892e+20 m	
	Image Id	e	÷G	×	X0	ŶŎ	20
ц	DSC02749rJPG	2261877.1324	-4372430.2712	8928871.9481	77675657615818	-57310957904103	-34999276382391
N	DSC02755rjpg	17066806.6109	-43271264.2433	19008272.4130	-14688387314950	67354585997412	-57610323389185
ω	DSC02752rjpg	3565302.0018	127668964.7952	-58247535.2744	-35952400094186	-10063468627637	31143082825824
4	DSC02758r.jpg	-4639688.0431	-16525.5013	4142171.1863	-43723128377576	82953576180572	-19595262690147

Imagen 43- Resultados de la octava aerotriangulación.

13.3.4.4. NOVENA AEROTRIANGULACIÓN

Se repite la aerotriangulación anterior (AT8), en que las imágenes habían sido rotadas y se cambió un punto de control (el 401 por el 42) y le agregamos once puntos fotogramétricos.

Se la ejecutó y los resultados fueron sin sentido:

- ✓ Sistema de Coordenadas de los puntos de Control: Local.
- ✓ Ángulo de vuelo: 0° .

RESULTADOS DE LA AT9:

RMSE	2.214578 x 10 ¹⁹ m
Número de Iteraciones	10
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos fotogramétricos	11
Dirección de Vuelo	0°
Resultados	Sin sentido

Tabla 94- Resultados de la novena aerotriangulación.

13.3.5. Conclusiones de la **A**erotriangulación en el **E-F**oto:

Después de haber ejecutado nueve aerotriangulaciones diferentes, cambiando en cada una de ellas ya sea las coordenadas de los puntos de control, ya sea rotándolas o llevándolas a UTM; rotando las imágenes; o combinando ambas acciones, o agregando puntos fotogramétricos, no fue posible concretar la Orientación Exterior.

Se podría decir que no es posible realizar la restitución fotogramétrica de este tipo de imágenes, tomadas con una cámara no métrica, en el e-foto.

Otra opción que ofrece el software e-foto, es realizar la Orientación Exterior de forma individual a cada imagen, lo que se conoce como Resección Espacial. El proceso consiste en marcar los puntos de control en cada una de las imágenes, que ya pasaron por el proceso de Orientación Interior, y luego se ejecuta la Resección Especial, que da como resultado los parámetros de la O.E para cada imagen o sea las coordenadas X, Y, Z del centro óptico y los ángulos de Euler.

Los resultados de la Resección Espacial también fueron negativos.

13.3.6. SE REALIZA LA ORIENTACIÓN EXTERIOR DE UNA DE LAS IMÁGENES POR RESECCIÓN ESPACIAL.

Se realizó la Orientación Exterior por Resección Espacial³⁶ de una de las imágenes rotadas 90° en sentido horario con las coordenadas de los puntos de control también rotadas 90° en sentido horario.

Los resultados tampoco cumplieron con lo deseado.

Número de Iteraciones	13
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	4
Dirección de Vuelo	0°
Resultados	Sin sentido

Tabla 95- Resultados de la O.E por Resección Espacial.

³⁶ La Resección Espacial es un método disponible en el e foto para ejecutar la O. E en cada imagen, de manera individual, marcando al menos 3 puntos de control por fotografía.

auons: 13							(Converged:		
Ха			MVC(Xa)							
	1		1	2	3	4	5	6		
хо	59780051610446627602432.00000	1	2834215	-308488	-421544	-665911	1664931	-359413		
YO	-17894056385799639793664.00000	2	-299144	-606184	-241477	-242841	-186974	5550524		
Z0	-60582936945921632501760.00000	3	-916405	-199145	3140248	8030238	-300272	7670620		
φ	-43048.89135	4	-886755	-196499	<mark>9436653</mark>	5420342	<mark>4322819</mark>	-300678		
ω	93519.58729	5	2677661	- <mark>2</mark> 81929	-337163	2334114	5200417	-504637		
ĸ	176436.37840	6	-343220	5437352	-652583	-333138	-331529	7633875		

Imagen 44- Resultados de la Resección Espacial de la segunda imagen.

14. RESTITUCIÓN FOTOGRAMÉTRICA EN EL LPS

Recuérdese que el objetivo de este trabajo es comparar la calidad posicional, aplicando el estándar de la NSSDA, de dos restituciones fotogramétricas hechas con dos softwares diferentes, el e-foto y el LPS, para el mismo vuelo fotogramétrico realizado con un UAV y dentro de lo posible tratando de replicar el mismo método en ambos procesos.

En este capítulo se detalla el procedimiento de restitución fotogramétrica realizado en el LPS.

SOBRE EL LPS:

Leica Photogrammetry Suite, de nombre oficial y legalmente cambiado para LPS, es una EFD, y es una aplicación del software IMAGINE de ERDAS, que se utiliza en la realización de operaciones fotogramétricas sobre imágenes y también en la extracción de información de las mismas. LPS es la aplicación fotogramétrica líder a nivel comercial y es utilizada por varias agencias y autoridades regionales de mapeo, oficinas gubernamentales de transporte, así como también por empresas dedicadas a la confección de mapas Además de los usos comerciales y gubernamentales, el LPS es ampliamente utilizado en el ambiente académico, en investigaciones que van desde el monitoreo de deslizamiento de tierras, movimientos de suelos, patrimonio histórico y muchos otros.

LPS generalmente es utilizado para la creación de productos de información geoespacial a partir el procesamiento de imágenes crudas. Dichos productos pueden ser: modelos digitales de terreno, herramientas 3D, y ortofotos digitales.

CONSIDERACIONES PREVIAS:

14.1. ROTACIÓN DE LAS IMÁGENES:

Antes de cargar las imágenes, las mismas debieron ser rotadas para que el sentido de la secuencia de las fotografías, coincidiera con el sentido de vuelo del drone en pantalla, o sea, siguiendo el tradicional eje de las *x*, horizontal, de izquierda a derecha.

La rotación de las imágenes se hizo utilizando la herramienta "Transform & Ortho" del ERDAS IMAGINE 2013 (Camino: Raster/ Multiespectral/ Transform&Ortho/ Perfforme Affine Resample/Rotation angle=90°). Así se rotaron 90 grados en sentido horario con origen en el pixel central de cada imagen.

14.2. SUSTITUCIÓN DE ALGUNOS PUNTOS DE CONTROL:

De la misma forma que se hizo en el e-foto, se cambiaron algunos puntos de control, previamente planificados, por dificultades de visualización. Recuérdese que fueron pre señalizados en el terreno más puntos de los que eran necesarios según el estándar.

PUNTOS SUBSTITUIDOS:

Punto Planificado	Punto alternativo
100	40
101	401b
102	8
105	45

Tabla 96- Puntos de control planificados y los que fueron substituidos.

En la siguiente imagen se muestran en rojo los puntos de control que fueron utilizados, y en verde los que fueron cambiados:

Imagen 45- Puntos de control planificados (en verde) y sustituidos (en rojo) para la aerotriangulación.³⁷

³⁷ Fuente: Google Earth.

14.3 PROCEDIMIENTO DE RESTITUCIÓN.

El LPS se encuentra en el menú Herramientas (Tools), en el software ERDAS IMAGE. En este caso utilizamos la versión 2013 que dispone el departamento de Geomática del Instituto de Agrimensura.

14.3.1. PASO 1: CREACIÓN DEL PROYECTO FOTOGRAMÉTRICO.

Se crea un nuevo Proyecto (File/New) y se configuran los siguientes parámetros:

✓ **TIPO DE CÁMARA:** Métrica (Frame Camera). Aunque la cámara utilizada no es una cámara fotogramétrica, se configura el proyecto con una cámara métrica ya que se tiene un certificado de calibración. La ventana, para seleccionar el tipo de cámara, se abre automáticamente cuando se crea un nuevo proyecto en el LPS (imagen 46).

✓ **INFORMACIÓN GENERAL DE LA CÁMARA:** Nombre de la cámara, distancia focal, coordenadas del punto principal (imagen 47).

✓ CANTIDAD Y COORDENADAS DE LAS MARCAS FIDUCIALES: En este caso, al tener una imagen digital de una cámara no métrica, las marcas fiduciales se consideran los 4 vértices de sensor (imagen 48). Las coordenadas las obtenemos del certificado de calibración.

✓ **CONFIGURACIÓN EXTENDIDA DE PARÁMETROS DE LA CÁMARA:** Automáticamente aparecen el nombre, la distancia focal y las coordenadas del punto principal, que ya habían sido cargados. Se agregan acá los coeficientes de la distorsión tangencial (k_1 , k_2 y k_3) y de la distorsión descentrada, o tangencial, (p_1 y p_2). En el tipo de parámetros: Australis. (imagen 49).

✓ **SISTEMA DE REFERENCIA/ PROYECCIÓN DE LOS PUNTOS DE CONTROL**: Nuestro sistema de referencia es arbitrario y local. Para eso se setea en "Projection" la opción Unknown (desconocida) y la Unidad meters (metros), tanto en vertical como en horizontal. Y obviamente, será en ese sistema de coordenadas que estará el modelo luego de la restitución (imagen 50).

✓ PROPIEDADES DEL BLOQUE DE IMÁGENES: Aquí se configuran qué ángulos de rotación para el sensor se utiliza: Omega, Phi y Kappa. Son los ángulos de Euler (o de actitud) del Sensor. Se define la altura promedio de vuelo: 100.00 metros, las unidades de los ángulos (grados) y la dirección del eje z.

En esta misma ventana, clicando en New Camara se pueden ingresar los datos del certificado de calibración de la misma. (Imagen 51).

Geometric Model Category	
Camera	
Geometric Model:	Cancel
Frame Camera Digital Camera Video Camera (Videography Non-Metric Camera	Help

Imagen 46- Configuración del tipo de cámara en proyecto del LPS

	Sistemen	ОК
Camera Name: SONY NE	×-7	
Description:		Save
		Load
Focal Length (mm):	15.8225	
Principal Point xo (mm):	0.1815	Cancel
Principal Point yo (mm):	0.1445	Help
✓ Use Extended Camera Mo	del Edit Extended Parameters	

Imagen 47- Ventana de configuración general de la cámara en el proyecto.

heral Fidu	cials Radial Lens	Distortion		
Number of F	iducials: 4	* *		OK
Row #	Film X (mm)	Film Y (mm)		Save
1	11.699	-7.799		Load
2	-11.699	-7.799		
3	-11.699	7.799	-	
4	11.699	7.799	-	Cance
				Help
			<u></u>	
1	III		•	

Imagen 48- Ventana donde se cargan las coordenadas de las marcas fiduciales.

Parameter Type: Austra	alis P	arameters	•			Impo	irt	
ustralis Camera Parameters								
Calibrated Focal Length (mm)	c:	15.8225	*					
Principal Point (mm)	x0:	0.1815						
Principal Point (mm)		0.1445						
Radial Distortion	k1:	-1.67526e-05		k2:	9.45084e-08	k3:	1.29568e-11	-
Decentering Distortion	p1:	-4.19358e-06		p2:	2.86650e-08			
Affinitu and Nonorthogonalitu	ы1.	0.00000e+00			0.0000000			
	U1.			Б2:	0.000008+00			
	UI.			<u>ь</u> 2:				

eference Coordinate System	
Horizontal	[ОК
Projection: Unknown/Cartesian	Previous
Datum:	Next
Horizontal Units: Meters -	Cancel
/ertical	
Vertical Spheroid: Unknown	Help
Vertical Datum:	
Vertical Units: meters 🕶	
Import Set LSR (Unknown) Projection	

Imagen 50- Ventana de configuración del sistema de referencia/ proyección.

	Set Frame-Specific Information:	
Rotation System:	Omega, Phi, Kappa 🔹	ОК
Angle Units:	Degrees	Previous
Photo Direction:	Z-axis for normal images 🔹	Next
Average Flying Heig	ht (meters): 100.000	
Sensor Name: [Default Wild 🔹 Edit Camera New Camera	
Imp	ort Exterior Orientation Parameters	

Imagen 51- Ventana de configuración de unidades del bloque.

14.3.2. Paso 2: Se Cargan Las Imágenes.

En la siguiente imagen se muestra cómo se cargan las imágenes en el proyecto fotogramétrico (Images/Add).

Imagen 52- Cargando las imágenes en el proyecto del LPS

Una vez cargadas las imágenes, siguiendo el orden del fotoíndice (ver sección 11.3) se procede a crear las capas de piramidación de las mismas, creando así un nuevo archivo con extensión rrd para cada imagen. Estas capas se crean con el objetivo de mejorar la visualización y el manejo de las mismas, como el zoom, o las iteraciones en las búsquedas de puntos homólogos. Se selecciona la opción de todas las imágenes que aún no tienen piramidación (imagen 53).

Imagen 53- Ventana de selección de creación de pirámides

En la siguiente imagen se ve la información de las cuatro imágenes ya cargadas, y en la columna debajo de PyR, los rectángulos en verde indican que se realizó el proceso de piramidación para cada una de ellas.

Row #	Image ID	Description	>	Image Name	Active	Pyr.	Int.	Ext.	DTM	Ortho	Online
1	1		۲	nieria/desktop/bruno/imagenesrotadasenvisualizadorwindows/ds	~						
2	2			nieria/desktop/bruno/imagenesrotadasenvisualizadorwindows/ds	~						
3	3			nieria/desktop/bruno/imagenesrotadasenvisualizadorwindows/ds	~						
4	4			nieria/desktop/bruno/imagenesrotadasenvisualizadorwindows/ds	¥						

Imagen 54-Indicador del Status de trabajo de cada imagen.

14.3.3. PASO 3: SE EJECUTA LA ORIENTACIÓN INTERIOR.

1. Pasos: Edit/Frame Editor y seleccionar la pestaña Interior Orientation.

En la pestaña Sensor ya aparece la cámara SonyNX7 que se ingresó anteriormente. Presionando Edit Camara se pueden ver los datos de la misma.

ensor Interior Orientation Ex	erior Information	
Image File Name:	1r.img Attach View Image Edit All Images	OK Previous
Block Model Type:	Frame Camera	Next
Sensor Name:	sonyNX7 Edit Camera New Camera	Cancel Help

Imagen 55-Pestaña Sensor. Donde configurar la cámara y editar imágenes.

En la pestaña Interior Orientation se miden en la pantalla, los vértices de las imágenes, que son lo equivalente a las "marcas fiduciales" y que son también los vértices del sensor. Sus coordenadas métricas, ya fueron ingresadas en el proyecto.

ensor Interior Urientation Exterior In	nformation						
	Viewer Fiducial L	ocator:	50 ‡ 0	0 100	Unsolved		ОК
Edit All Images	Open/Close vie	wer for image fidu	cial measurem	ent eset	Solve		Previou Next
Point # > Color Image X	Image Y	Film×	Film Y	Residual X	Residual Y	<u>^</u>	Cance
1 🕨 🔤		11.699	-7.799	0.000	0.000		
2	17	-11.699	-7.799	0.000	0.000	E .	Help
3	1	-11.699	7.799	0.000	0.000		
4		11.699	7.799	0.000	0.000		
						•	

Imagen 56-Pestaña "Interior Orientation".

Presionando el botón "Open/Close viewer for fiducial measurement" se abre la primera imagen y se marcan las cuatro marcas fiduciales utilizando las tres ventanas de visualización, según nuestra conveniencia.

Imagen 58- Marcando marca fiducial número 1 en una de las imágenes.

Imagen 57- Detalle. Luego de realizar la medida de la marca fiducial Nº 1.

El software además permite seleccionar la orientación de los ejes del sistema imagen, dando las cuatro opciones que se muestran en la siguiente imagen (59). Seleccionamos la primera que es la cual el eje x coincide con la dirección del vuelo en la pantalla.

Imagen 59- Opciones de los ejes del sistema de coordenadas para la O.I.

Una vez que se marcan las 4 marcas fiduciales, se cliquea en el botón solve, y el resultado del error cuadrático medio (RMSE) es calculado. El resultado es devuelto en píxeles y también en micrones.

En el certificado de calibración de la cámara SONY NEX-7 están las coordenadas x,y en *mm*, de las 4 marcas fiduciales. En la pantalla de LPS, al marcar cada uno de los 4 vértices para una imagen, aparecerán sus coordenadas píxel (líneas y columnas en los campos Image X e Image Y respectivamente).

	iterior Orient	ation Exterior Inform	mation				-		
Fid	lucial Orienta	ation: \	/iewer Fiducial Loc	ator:	50 0	0- 100	BMSE 0 19niv		OK
vt .	X X						0.77 ·		UK
× x	↓ ↓	ty in the second			50 0	100	or U.77microns	1	Previous
E dit Al	II Images		Auto Locat	e	Apply	Reset	Solve		Nevt
							[_	
Point #	> Color	Image X	Image Y	Film×	FilmY	Residual X	Residual Y	- n	Cancel
1	•	-0.496	6000.497	-7.799	-11.699	0.156	-0.121		
2		-0.076	0.922	-7.799	11.699	-0.156	0.121	E	Help
		3998.985	0.952	7.799	11.699	0.156	-0.121		
3		3999.191	6000.045	7.799	-11.699	-0.156	0.121		
3 4								-	
3 4								and the second se	

Imagen 60- Orientación Interior calculada para la primera imagen (1r).

En la siguiente tabla se muestran los resultados (RMSE) de la Orientación Interior de cada una de las 4 imágenes. Se consideran que todas fueron aceptables ya que son menores a 1/3 de píxel:

Imagen	RMSE (píxeles)	RMSE (micrones)
1r	0.19	0.77
2r	0.18	0.72
3r	0.01	0.06
4r	0.03	0.14

Tabla 97- Resultado del RMSE de la Orientación Interior.

Los coeficientes de transformación para la O.I de cada imagen $(a_0, a_1, a_2, b_0, b_1, b_2)$, se obtienen recién al final del proceso de O.E, en el reporte de aerotriangulación. De forma adelanta a ese procedimiento, se los exhibe a continuación:

FOTOGRAFIA 1r:

a ₀	-7.7981
a 1	0.003900
a ₂	0.00000
b ₀	11.7031
b ₁	0.00000
b ₂	-0.003900

Tabla 98- Resultados de la O.I para la fotografía 1r.

FOTOGRAFIA 2r:

a ₀	-7.7983
a 1	0.003900
a ₂	0.00000
b ₀	11.7026
b ₁	0.00000
b ₂	-0.003900

Tabla 99- Resultados de la O.I para la fotografía 2r.

FOTOGRAFIA 3r:

a ₀	-7.7971
a 1	0.003900
a ₂	0.00000
b ₀	11.7011
b ₁	0.00000
b ₂	-0.003900

Tabla 100- Resultados de la O.I para la fotografía 3r.

FOTOGRAFIA 4r:

a 0	-7.7972
a 1	0.003900
a ₂	0.00000
b ₀	11.7011
b ₁	0.00000
b ₂	-0.003900

Tabla 101- Resultados de la O.I para la fotografía 4r.

14.3.4. PASO 4: SE EJECUTA LA ORIENTACIÓN EXTERIOR

En la pestaña "Exterior Information" es posible ingresar los parámetros de Orientación Externa de la cámara, si se cuenta con dicha información. En este trabajo, esos parámetros (las coordenadas del centro de perspectiva en cada toma y los respectivos ángulos de Euler) no los tenemos, y son, entre otros, lo que se busca calcular en la restitución fotogramétrica. En este caso se empleó el status desconocido (unknown) y se indicó $(X_0,Y_0,Z_0) = (0,0,0)$ y también los ángulos de Euler = 0 para todas las imágenes. Es posible aplicar esta configuración para todas las imágenes marcando en: "Apply status to all active frames".

Frame Ca	amera Frame Editor	(1r.img)					
Sensor Ir	Pers	pective Center		R	otation Angles		ОК
	Xo	(meters) Yo	Zo	Omega	(aegrees) Phi	Карра	Previous
Value	0.000	0.000	0.000	0.00000	0.00000	0.00000	
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	Help
Status	Unknown 🔹	Unknown 🔹	Unknown 🔻	Unknown 🔹	Unknown 🔹	Unknown 💌	
	── Set Status: ✓ Apply status to a	Initial 💌	For All Parameters	Exterior Initia	ization	Edit All Images	

Imagen 61- Pestaña "Exterior Information".

Pero luego, también es posible estimar ciertos parámetros en la ventana de Estimación Inicial de la Orientación Exterior (Imagen 62).

Se completan los campos con los datos de: la distancia focal calibrada, la altura de vuelo, el número de líneas de vuelo y el número de fotos. También el traslape longitudinal (60%) y el sentido de vuelo (este a oeste). Cliqueando en el botón Calculate EO, aparecerá en la lista las 4 imágenes que ya fueron cargadas y el valor de Z_0 se autocompleta con el valor 100, en Scale Parameters, que es la altura del vuelo y se había completado anteriormente.

Observación: En la ventana "Initial Exterior Orientation Estimation", es posible determinar la dirección de vuelo. Por falta de experiencia en el uso del LPS, se rotaron las imágenes pensando que esta opción no estaba disponible.

M Initial Exterior Orientation Es	timation								X
Scale Parameters					Ground Coverage				
Focal Length (mm):	15.8225			*	Film Size (inches):	0			
Flying Height (meters):	100				Cound Country (color)	0			
Photography Scale 1:	6666				anduna coverage (meters).	ļ			
Flight Line Parameters									
Number of Flight Lines:	1								
Number of images per Flight Line:	4				Set	Set	Images per Fl	ight Line	
Overlap Parameters									
Fwd Overlap (%): 60				*	Fwd Overlap (m):	0.00			1
Side Overlap (%):				A T	Side Overlap (m):	0.00			
Set FlightLine Direction									
O Horizontal	HFlight l	Line No.:	[1		•	West to	East	•	
© Vertical	VFlight L	ine No.:			*	North to	South	•	
Calculate ED				Xo, Yo,	Zo Units: Meters	An	gle Units: Deg	grees	
Row # Flight NO. Image NO.	Image ID			Image N	ame	Xo	Yo	Zo 📩	
1 1 1	1 :	/users/inge	enieria/desktop	o/fotos vue	lo 100m/imagenes rotadas/1r.im	ç 0 0	0	100	_
3 1 3	3 :	:/users/inge :/users/inge	enieria/desktop enieria/desktop	o/fotos vue o/fotos vue	io 100m/imagenes rotadas/2r.im Io 100m/imagenes rotadas/3r.im	ç U ç O	0	100	
4 1 4	4 :	/users/inge	enieria/desktor	o/fotos vue	lo 100m/imagenes rotadas/4r.im	ç 0	0	100 =	
								Ţ	
	A1			2					
	Apply			Cano	e	Help			

Imagen 62 - Ventana de estimación inicial de la Orientación Exterior.

14.3.4.1. MEDICIÓN Y GENERACIÓN DE PUNTOS.

Para realizar la Orientación Exterior es necesario medir los puntos de control y, a veces, crear puntos fotogramétricos sobre las imágenes.

Para eso el LPS dispone de la herramienta de medición de puntos "Point Measurement Tool". En la misma se despliegan 2 imágenes en simultáneo, con 3 ventanas de visualización para cada una de ellas con sus diferentes zooms y que permite realizar varias acciones fundamentales, tales como marcar los puntos de control, modificarlos, crear puntos fotogramétricos de forma manual y también de forma automática.

También, en esta pantalla, se puede configurar y correr la aerotriangulación así como cargar las coordenadas de los puntos medidos en terreno.

La herramienta Point Measurement Tool brinda dos modos de visualización: clásica y estéreo. Se utilizó la visualización clásica.

Imagen 63 selección del tipo de visualización en la herramienta Point Measurement Tool.

🖲 Import 🛛 🔘 Export	ОК
elect point source:	Cancel
ASCII File (*.txt)	Help
🖱 LPS Block File (*.blk)	
 Reference Points (3D) Reference Points (2D) Image Brinkt Only 	

PUNTOS DE CONTROL (CONTROL POINTS):

Para cargar las coordenadas de los puntos de control, se importa un archivo ASCII con las coordenadas de los puntos de control (botón I, en la ventana de Point Measurement Tool).

Imagen 64- Ventana donde se importa el archivo con las coordenadas de los puntos de control.

Una vez cargado dicho archivo, se configuran determinadas opciones, dependiendo del formato del archivo de coordenadas que dispongamos, para que las mismas sean correctamente cargadas en el LPS.

Import Options File to Import From: c:/	users/in	jenieria/desktop/bruno/coordena	das_puntos/coorder	nadasfinales_txt.txt
Field Definition Input Previ	iew			
Field Type: 💿 Delimited	l by Sep	arator 🛛 🔘 Fixed Width		
Separator Chara	acter:	Comma		•
Row Terminator Character:		NewLine (Unix)		•
Comment Character: Number of Rows To Skip:		0		
Column Mapping				
Output Column Name	Input	ield Number		<u>^</u>
Ref_ID X Y Z		1 2 3 4		E
ОК		View	Cancel	Help

Imagen 65- Ventana para configurar las opciones del archivo a importar con las coordenadas de los puntos de control.

Una vez que han sido cargados los puntos, es posible visualizar las coordenadas (X,Y,Z) de los mismos, debajo de las imágenes en la ventana Point Measurement Tool (Imagen 66).

> MARCANDO LOS PUNTOS DE CONTROL.

La pantalla de Medición de Puntos del LPS ofrece la posibilidad de visualizar dos imágenes en simultáneo. En la misma hay 3 modos de visualización con diferentes zooms, para facilitar este proceso. En simultáneo se abren dos fotografías para la aerotriangulación, las cuales se pueden cambiar y así completar el procedimiento de marcado de puntos de control para todas las imágenes.

Se debe tener seleccionado el punto que se va a marcar en pantalla, lo cual se hace marcando la fila que ocupa el mismo en la lista de puntos, donde aparece el número de punto y sus coordenadas. Luego se lo ubica en cada una de las imágenes donde el mismo se encuentra, colocando la marca (cursor) sobre dicho punto.

Una vez ubicado el punto correspondiente en el terreno, se le indica al software que corresponde a un punto de control (control), seleccionando Control en la columna Usage. (Las opciones en Usage son : *Control, Tie, o Checking,* o sea, Control, Fotogramétrico o Testeo).

Imagen 65- Ventana de medición de puntos. Midiendo punto de control 104 en este caso.

> MARCANDO PUNTOS DE FOTOGRAMÉTRICOS:

El LPS ofrece dos alternativas para marcar puntos homólogos o fotogramétricos. Estas son: manual o la automática:

✓ Marcado manual de puntos fotogramétricos:

Clicando en "Add" se adiciona un nuevo punto, el cual no tiene coordenadas. Luego se lo selecciona en la fila de puntos y se lo ubica en las imágenes donde lo identificamos.

Debe definirse el punto como "Tie" en la columna Usage.

✓ Marcado automático de puntos fotogramétricos:

Se debe cliquear en "Automatic tie properties".

Luego se abre una ventana con tres pestañas a configurar:

Pestaña General (imagen 67):

✓ <u>Images Used</u>: Qué imágenes se van a utilizar. En este caso todas las activas (Active Images Only).

- ✓ <u>Initial Type</u>: Exterior/Header/GCP (GCP, "Ground Control Point", porque se inicia con puntos de control)
- ✓ <u>Image Layer Used for Computation</u>: En este caso las imágenes tienen solamente una capa, que es la imagen en sí, por lo que se coloca 1.
- ✓ <u>"Existing Point Transfer"</u>: No Transfer, New Points Only.

General	Strategy	Distribution	OK
Images Used: 🛛 🔘 All Available 💿 Active Images Only			Run
Initial Type: Exterior/Header/GCP Tie Points 		Save A:	
		19 Martin 19	
12	12 23		Load
lma	ge Layer U	sed for Computation:	Cancel

Imagen 67- Pestaña General en la ventana Propiedades de Generación de los Puntos Fotogramétricos.

Pestaña Strategy (imagen 68): Acá se configuran los parámetros de la búsqueda de los puntos fotogramétricos y el mejor aprovechamiento de las capacidades de procesamiento.

✓ <u>Search Size</u>: Píxeles de la ventana de búsqueda de puntos homólogos. Se configuró 21 x21 píxeles el tamaño del cuadrado de búsqueda.

✓ <u>Correlation Size</u>: Píxeles de la ventana para la correlación cruzada. Se configuró 7 x7 píxeles.

✓ <u>Least Square Size</u>: Píxeles de la ventana en que se calcula el ajuste de mínimos cuadrados para la correspondencia de puntos homólogos. Se configuró: 21 x21 píxeles.

✓ <u>Feature Pt Density</u>: Muestra el porcentaje de densidad de puntos que recoge el programa respecto al número que generalmente acumula:100%

✓ <u>Coefficient Limit</u>: Calcula el límite del coeficiente de correlación que determina si dos puntos son o no homólogos. Cuando el LPS encuentra dos puntos homólogos calcula el coeficiente de correlación. Si ese coeficiente es menor a este límite establecido, ese punto no se toma como homólogo. Se lo configura en 0.8, el cual está por defecto.

 \checkmark <u>Initial Accuracy</u>: Se configura en 10%. Es la precisión relativa inicial de los valores de correlación.

 ✓ <u>Avoid Shadow:</u> Si la zona que se voló tenía mucha sombra se debe marcar esta opción. No fue nuestro caso, por lo tanto, no se marca.

Automatic Tie Point Generation Properti	es	×
General Strategy Distribution		ОК
Search Size: 21 🚔	Feature Pt Density: 100% 🚔	Run
Correlation Size: 7	Coefficient Limit: 0.80 📮	Save As
Least Service Size 21	Initial Accuracy 10%	Load
Least squale size.		Cancel
Avoid Shadow: 🔲 Image Scanned:	l Positive 🕐 Negative	Help

Imagen 68- Pestaña General en la ventana Propiedades de Generación de los Puntos Fotogramétricos.

<u>Pestaña Distribution</u> (imagen 69): Acá se configura como se ubicarán los puntos fotogramétricos creados de forma automática.

✓ <u>Find Point</u>: Se elige la distribución que está configurada por defecto en el LPS marcando en Default Distribution._

✓ <u>Intended Number of points/Image</u>: Es el número de puntos fotogramétricos que se buscará por cada imagen. Se configuró en 25.

General Strategy Distribution	OK
Find Points With: 💿 Default Distribution 🛛 🔘 Defined Pattern	Run
	Save As
Intended Number of Points/Image: 40	
Intended Number of Points/Image: 25 🚽 🗖 Keep All Points	Load
Intended Number of Points/Image: 43 Transfer Keep All Points Starting Column: 400 Starting Line: 600	Load

Imagen 69- Pestaña Distribution en la ventana Propiedades de Generación de los Puntos Fotogramétricos.

14.3.4.2. CONFIGURANDO LA AEROTRIANGULACIÓN:

Antes de correr la aerotriangulación se deben configurar los parámetros de la misma. Para eso cliqueamos en el botón Aerotriangulation Properties en la ventana Point Measurement Tool.

Pestaña General:

- ✓ <u>Maximum Iterations</u>: Número máximo de iteraciones. Se configura en 10.
- ✓ <u>Convergence Value</u>: Valor de Convergencia Se configura en 0.001m.

✓ <u>Image Coordinates Units for Report:</u> Unidades de las coordenadas imagen para el reporte: milímetros.

ieneral	Point	Interior	Exterior	Advanced Options	— ок
Maxim	ium Itera	tions:		ho	Run
Conve	ergence '	Value (me	ters):	0.00100	Update
🕅 Ci	ompute A	Accuracy I	or Unkno	vns	Accept
Image	Coordin	ate Units I	for Report	Millimeters 🔹	Report
					Cancel
					Help

Imagen 70- Pestaña General en la ventana de aerotriangulación.

Pestaña Point (imagen 71):

Acá es posible configurar las desviaciones estándar, tanto de los puntos medidos en las imágenes como en el terreno.

 \checkmark Image Point Standard Deviation (pixels): Desviación Estándar de las coordenadas (*x*,*y*) de las imágenes. Se dejan los valores de 0.33, que viene por defecto, para ambas componentes.

✓ <u>GCP Type and Standard Deviations (X,Y: meters,Z: meters)</u>: Acá se configuran los pesos de las coordenadas de los puntos de control. A todos les damos el mismo peso = 1. Type: Fixed Values.

General Point	Interior Exterior Advanced Options	— ОК
Image Point	Standard Deviations (pixels) :	Run
	к 0.33	Update
-	ý 0.33 💌	Accept
GCP Type and	Standard Deviations (X,Y: meters, Z: meters):	Report
	Type: Fixed values	Cancel
	×: 1.000000 💌 Z: 1.000000 💌	Help
	Y: 1.000000	<u></u>

Imagen 71- Pestaña Point en la ventana de Aerotriangulación.

<u>Pestaña Interior</u>: Acá se configuran las desviaciones estándar de los parámetros de Orientación Interior.

<u>Type</u>: Fijo para todas las imágenes. No están las desviaciones en el certificado de calibración.

eneral Poir	nt intenor Ex	terior Advanced Uptions	ОК
Туре	: Fixed for all i	mages 💌	Run
Stan	dard Deviations (mm):	Update
Foca	l Length:	0.000	Accept
Princ	ipal Point xo:	0.000	Report.
Princ	ipal Point yo:	0.000	Cancel
			Help

Imagen 72- Pestaña Interior en la ventana de Aerotriangulación.

Pestaña Exterior:

Acá se configuran las desviaciones estándar de los parámetros de Orientación Exterior.

General	Point	Interior	Exterior	Advanced	dOptions		 ОК
	Туре:	No weig	ht		•		Run
	Standa (Xo,Yo	ard Deviatio 5: meters, Z	ins: lo: meters,	Angles: de	grees)		Update
	Xo: []	0.000000	A T	Omega:	0.00000	A V	Accept
	Yo:	0.000000	A	Phi:	0.00000	A	Report
	Zo:	0.000000	A	Kappa:	0.00000	A	Cancel
							Help

<u>Type</u>: No weight. No le asignamos desviación estándar a estos parámetros.

Imagen 73- Pestaña Exterior en la ventana aerotriangulación.

Pestaña Advanced Options (imagen 74):

Acá se configuran ciertas opciones avanzadas para la aerotriangulación.

✓ <u>Additional Parameter Model</u>: Seleccionamos No Additional Parameters ya que no se adiciona ningún modelo para la aerotriangulación.

✓ <u>Use Additional Parameters As Weighted Variables</u>: Se debe seleccionar para utilizar los parámetros adicionales como observaciones pseudo ponderadas, asignándose así un pequeño peso estadístico a cada uno de ellos. No se la marca en este proyecto.

✓ <u>Blunder Checking Model</u>: Aquí se puede seleccionar el método de detección de errores groseros tanto en los puntos imagen como los puntos de control. La opción elegida es "No automatic blunder cheking" indica que no se busquen errores groseros.

✓ <u>Use Image Observation of Check Points in Triangulation</u>: Esta opción debe ser marcada cuando se desea que se utilicen los puntos de testeo para la triangulación. En este caso la misma no fue cliqueada.

General Point Interior E	xterior Advanced Options	— ОК
Additional Parameter Model:	No additional parameters	Bun
Use Additional Parameters	As Weighted Variables	Update
Blunder Checking Model:	No automatic blunder checking	Accept
Use Image Observations o	f Check Points in Triangulation	Report.
Consider Earth Curvature i	n Calculation	Cancel
Define Topocenter (Degre	es):	Help
Longitude: 0.000000	Latitude: 0.000000	

Imagen 74- Pestaña "Advanced Options" en la ventana de aerotriangulación.

14.3.4.3. PRIMERA AEROTRIANGULACIÓN

La primera aerotriangulación, se la ejecutó utilizando únicamente los puntos de control marcados sobre el terreno., tal como se indica en la imagen 75 con los puntos en rojo.En el proceso de restitución fotogramétrica en el LPS es necesario que haya un mínimo de 3 puntos de control por cada modelo, por lo cual se debió agregar un punto a la imagen número 1. Este punto fue el número 9, el cual fue marcado inicialmente como un punto de testeo y que se encuentra sobre la explanada de acceso de hormigón y es perfectamente identificable. El mismo está en las fotografías 1 y 2.

Punto	X	Ŷ	Z
P8	81.445	120.952	12.055
р9	62.468	125.550	10,650
P40	77.816	214.071	11.126
P45	156.168	213.333	11.891
P103	139.225	96.148	15.241
P104	129.858	161.366	14.164
P401b	68.825	166.54	11.380

 Tabla 102- Coordenadas de los puntos de control, agregando el punto 9.

Punto	Imagen 1	lmagen 2	Imagen 3	Imagen 4
8	Х	Х		
9	Х	Х		
40			Х	х
45			Х	х
103	Х	Х		
104		Х	Х	х
401 b		X	х	

Tabla 103- Distribución de los puntos de control en las imágenes.

Imagen 75- Puntos de control utilizados en la aerotriangulación (en rojo) con el punto 9 agregado.³⁸

RESULTADOS DE LA AT1:

Se corre la aerotriangulación con los 7 puntos de control marcados. Se obtuvo el siguiente resultado: **RMSE de 0,6244 m**

RMSE	0,6244 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	7
Dirección de Vuelo	0°
Resultado	Aceptable

Tabla 104- Resultados de la primera aerotriangulación en el LPS.

³⁸ Fuente: Google Earth.

Observación: El punto 401b pasó a llamarse 406 porque el software no acepta la b en número de punto.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: (Yes).6244	Close
Control F	oint RMSE:	Check P	oint RMSE:	Update
Ground X:	0.0000 (7)	Ground X:	0.0000 (0)	Accept
Ground Y:	0.0000 (7)	Ground Y:	0.0000 (0)	Report.
Ground Z:	0.0000 (7)	Ground Z:	0.0000 (0)	Review.
Image X:	0.2888 (15)	Image X:	0.0000 (0)	Help
Image Y:	0.2884 (15)	Image Y:	0.0000 (0)	

Imagen 76- Resumen de la primera aerotriangulación.

Revisando el resultado de los errores para cada uno de los puntos de control, vemos que los peores resultados son para el punto 103 en primer lugar y para el 406 (401b) en segundo.

Review 1	Triangulation	n Results					100	Sec.	2 73 A		100
Ground Points Image Points											
Row #	Point ID	Туре	Usage	Active	X	Y	z	RX	RY	RZ	Total RMSE
1	8	Full	Control	•	80.092	120.729	10.647	-1.353211	-0.223450	-1.407734	2.34383
2	9	Full	Control	~	62.923	124.665	16.201	0.454672	-0.884537	5.550917	0.78751
3	40	Full	Control	¥ .	79.821	216.556	14.761	2.005444	2.485301	3.634669	3.47353
4	45	Full	Control	¥	153.603	213.758	20.264	-2.564951	0.424724	8.372750	4.44262
5	103	Full	Control	¥	146.819	92.298	-7.222	7.594315	-3.850023	-22.643047	13.15374
6	104	Full	Control	¥ .	129.459	164.023	18.417	-0.399447	2.657483	4.253333	0.69186
7	406	Full	Control	4	74.421	164.590	15.492	5.596182	-1.950105	4.111620	9.69287

Imagen 77- Resultados y errores de los puntos de control de la primera aerotriangulación.

14.3.4.4. SEGUNDA AEROTRIANGULACIÓN:

Tratando de obtener un RMSE menor, se pueden eliminar los puntos con mayor error en la AT. El punto 103 tiene el mayor RMSE, como se puede ver en la tabla de la imagen 77, pero no es posible eliminarlo de la aerotriangulación, ya que son necesarios un mínimo de 3 puntos por imagen, entonces se elimina el punto 406 (401b) que es el segundo con mayor RMSE.

Se corre nuevamente la aerotriangulación y se obtiene un resultado muy bueno: RMSE de 0,0192m.

RMSE	0,0192 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	6
Dirección de Vuelo	0°
Resultado	Muy bueno

RESULTADOS DE LA AT2:

Tabla 105- Resultados de la segunda aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: 0	Yes).0192	Close
Control F	oint RMSE:	Check P	oint RMSE:	Update
Ground X:	0.0000 (6)	Ground X:	0.0000 (0)	Accept
Ground Y:	0.0000 (6)	Ground Y:	0.0000 (0)	Report.
Ground Z:	0.0000 (6)	Ground Z:	0.0000 (0)	Review.
Image X:	0.0643 (13)	Image X:	0.0000 (0)	Help
Image Y:	0.0781 (13)	Image Y:	0.0000 (0)	

Imagen 78- Resumen de la segunda Aerotriangulación (AT2).

Y se revisa el resultado del RMSE para cada uno de los puntos de control, pero ya no cabe la posibilidad de eliminar alguno, debido a la exigencia de un mínimo de 3 puntos por modelo.

Review Triangulation Results											
Row #	Point ID	Туре	Usage	Active	X	Y	Z	RX	RY	RZ	Total RMSE
1	8	Full	Control	~	81.903	121.784	14.604	0.457736	0.832091	2.548872	0.792823
2	9	Full	Control	¥	63.556	126.479	14.354	1.087675	0.928840	3.703934	1.883908
3	40	Full	Control	~	77.645	214.232	10.243	-0.170898	0.161256	-0.883050	0.296004
4	45	Full	Control	¥	156.760	213.430	11.463	0.591737	0.097164	-0.427824	1.024919
5	103	Full	Control	~	140.203	95.237	13.948	0.977515	-0.911144	-1.473338	1.693106
6	104	Full	Control	¥	129.968	161.411	14.228	0.110266	0.044909	0.064264	0.190986

Imagen 79- Resultados y errores de los puntos de control de la segunda aerotriangulación (AT2).

14.3.4.5. TERCERA AEROTRIANGULACIÓN:

Aunque el resultado anterior fue bueno, igualmente se agregaron 11 puntos fotogramétricos ubicados de forma manual, buscando un resultado aún mejor, ya que es posible utilizar el recurso de agregar dichos puntos. Se corre la aerotriangulación, pero se obtuvo un RMSE mayor que lo logrado anteriormente: RSME de 0,0282m.

RESULTADOS DE LA AT3:

RMSE	0,0282 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos fotogramétricos	11
Dirección de Vuelo	0°
Resultado	Muy bueno

Tabla 106- Resultados de la tercera aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: 0	Yes).0282	Close
Control P	oint RMSE:	Check P	oint RMSE:	Update
Ground X:	0.0000 (6)	Ground X:	0.0000 (0)	Accept
Ground Y:	0.0000 (6)	Ground Y:	0.0000 (0)	Report
Ground Z:	0.0000 (6)	Ground Z:	0.0000 (0)	Review.
Image X:	0.0232 (13)	Image X:	0.0000 (0)	Help
Image Y:	0.0245 (13)	Image Y:	0.0000 (0)	

Imagen 80- Resumen de la tercera aerotriangulación.

14.3.4.6. CUARTA AEROTRIANGULACIÓN

Buscando utilizar la potencialidad del LPS, se marcarán ahora puntos fotogramétricos de manera automática.

Recuérdese que la configuración del marcado automático de los puntos fotogramétricos está detallada anteriormente en la sección 14.3.4.2.

Se generan ahora los puntos fotogramétricos automáticos presionando en el botón "Perform Automatic Tie Generation" en la ventana de la Medición de Puntos de Control.

Al hacerlo, se abre la ventana de resumen de los puntos fotogramétricos que se generaron automáticamente:

Row #	Image ID	Image Name	Number of Intended Points	Number of Found Points	Number of Patterns	Point Success Rate %	Pattern Success Rate %	<u>^</u>	Repor
1	1	1r	25	26	25	100.00	32.00		
2	2	2r	25	50	25	100.00	88.00		Close
3	3	3r	25	41	25	100.00	76.00		
4	4	4r	25	29	25	100.00	52.00		
									Help
	- 11							E C	Help
								E	Help

Imagen 81- Resumen de la generación automática de puntos fotogramétricos.

Se generaron 57 puntos fotogramétricos de forma automática. Se enumeraron del 407 al 463. Se corre la aerotriangulación nuevamente, con los puntos fotogramétricos agregados manualmente, y los generados automáticamente pero el RMSE no es mejor al primero, logrado solo con los puntos de control. Se obtiene un RMSE =0,1056 m.

RESULTADOS DE LA AT4:

RMSE	0,1056 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos fotogramétricos (agregados manualmente)	11
Dirección de Vuelo	0°
Resultado	Bueno
Table 107. Desultados de la suerte corotrior	

 Tabla 107- Resultados de la cuarta aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM:	rgence: SE: (Yes).1056	Close
Control F	oint RMSE:	Check P	oint RMSE:	Update
Ground X:	0.0000 (6)	Ground X:	0.0000 (0)	Accept
Ground Y:	0.0000 (6)	Ground Y:	0.0000 (0)	Report
Ground Z:	0.0000 (6)	Ground Z:	0.0000 (0)	Review
Image X:	0.0844 (13)	Image X:	0.0000 (0)	Help
Image Y:	0.1791 (13)	Image Y:	0.0000 (0)	

Imagen 82- Resumen de la cuarta aerotriangulación.

Se chequea el resultado de la aerotriangulación en el "Review triangulation Results". Vemos que los puntos 40 y 45 tienen un RMSE Total significativamente mayores a los demás puntos, por lo cual los sacamos, o deseleccionamos, del cálculo de la siguiente aerotriangulación.

ound Poi	nts Image F	Points											OK
Row #	Point ID	Туре	Usage	Active	X	Y	Z	RX	RY	RZ	Total RMSE		
1	8	Full	Control	~	81.576	121.067	12.217	0.131069	0.115390	0.162497	0.227018		Re-Run Triangulati
2	9	Full	Control	¥	62.405	125.467	10.954	-0.062938	-0.082697	0.304112	0.109011	_	Cancel
3	40	Full	Control		219.800	163.492	428.849	141.984009	-50.578850	417.722565	245.923517		
4	45	Full	Control	•	-29.868	159.664	488.638	-186.035843	-53.668587	476.746643	322.223532		Help
5	103	Full	Control	v	139.237	96.595	15.962	0.012047	0.446953	0.541216	0.020865		
6	104	Full	Control	¥	129.788	161.597	12.081	-0.070246	0.231111	-2.083456	0.121669		
7	47	None	Tie	V	71.569	142.595	11.711	0.000000	0.000000	0.000000	0.000000		
8	48	None	Tie	V	133.645	132.757	16.443	0.000000	0.000000	0.000000	0.000000		
9	49	None	Tie	v	182.754	132.309	16.446	0.000000	0.000000	0.000000	0.000000		
10	407	None	Tie	¥	65.406	143.575	11.559	0.000000	0.000000	0.000000	0.000000		
11	408	None	Tie	V	66.360	143.379	11.486	0.000000	0.000000	0.000000	0.000000	*	

Imagen 83-Resultados y RMSE de los puntos de control de la cuarta aerotriangulación.

14.3.4.7. QUINTA AEROTRIANGULACIÓN.

Se desmarcan los puntos de control 40 y 45 y se corre nuevamente la aerotriangulación, obteniendo un **RMSE de 0.0148m**, que es el mejor obtenido hasta ahora. El punto 406 ya había sido desmarcado.

RESULTADOS DE LA AT5:

RMSE	0.0148 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	4
Cantidad de puntos fotogramétricos (agregados automáticamente)	57
Dirección de Vuelo	0°
Resultado	Bueno

Tabla 108- Resultados de la quinta aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	ergence: ISE: (Yes).0148	Close
Control F	oint RMSE:	Check P	oint RMSE:	Update
Ground X:	0.0000 (4)	Ground X:	0.0000 (0)	Accep
Ground Y:	0.0000 (4)	Ground Y:	0.0000 (0)	Report.
Ground Z:	0.0000 (4)	Ground Z:	0.0000 (0)	Review
Image X:	0.0138 (9)	Image X:	0.0000 (0)	Help
Image Y:	0.0192 (9)	Image Y:	0.0000 (0)	25

Imagen 66- Resumen de la quinta aerotriangulación.

Igualmente se considera que al quitar tres de los siete puntos de control (40, 45 y 406) no es algo conveniente para el ajuste del bloque, por lo cual se ejecutará una nueva aerotriangulación.

14.3.4.8. SEXTA AEROTRIANGULACIÓN

En esta aerotriangulación se utilizan los 7 puntos de control, 11 puntos fotogramétricos agregados manualmente (del 47 al 57), y 47 generados automáticamente, del 407 al 454. Se corre la aerotriangulación y se obtiene un RMSE de 0,2213 m:

RESULTADOS DE LA AT6:

RMSE	0,2213 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	7
Cantidad de puntos fotogramétricos (agregados manual y automáticamente)	58= 11+47
Dirección de Vuelo	0°
Resultado	Bueno
Converge Converge Cantidad de puntos de control Cantidad de puntos fotogramétricos (agregados manual y automáticamente) Dirección de Vuelo Resultado	0.001 SI 7 58= 11+47 0° Bueno

 Tabla 109- Resultados de la sexta aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: (Yes).2213	Close
Control F	oint RMSE:	Check P	oint RMSE:	Updat
Ground X:	0.0000 (7)	Ground X:	0.0000 (0)	Accep
Ground Y:	0.0000 (7)	Ground Y:	0.0000 (0)	Report
Ground Z:	0.0000 (7)	Ground Z:	0.0000 (0)	Review
Image X:	0.2232 (15)	Image X:	0.0000 (0)	Help
Image Y:	0.6217 (15)	Image Y:	0.0000 (0)	

Imagen 67- Resumen de la sexta aerotriangulación.

Row #	Point ID	Туре	Usage	Active	X	Y	Z	RX	RY	RZ	Total RMSE
1	8	Full	Control	•	79.180	121.360	12.303	-2.264693	0.407501	0.247938	3.922563
2	9	Full	Control	¥	60.908	125.222	8.783	-1.559560	-0.327536	-1.867047	2.701237
3	40	Full	Control	¥	74.488	215.076	6.722	-3.327811	1.005162	-4.403693	5.763939
4	45	Full	Control	•	150.672	214.486	22.006	-5.495995	1.152899	10.115061	9.519342
5	103	Full	Control	¥	135.747	98.290	22.683	-3.478062	2.141609	7.261877	6.024180
6	104	Full	Control	¥	125.288	162.371	19.245	-4.569843	1.005193	5.081405	7.915200
7	406	Full	Control	¥	76.386	164.882	6.609	7.561233	-1.657646	-4.771269	13.096440

Se chequea el resultado de la aerotriangulación y el error más grande lo tiene el punto 406 (anterior 401b).

Imagen 68- Resultados y errores de los puntos de control de la sexta aerotriangulación.

14.3.4.9. Séptima Aerotriangulación.

Se desmarca el punto 406 y se corre nuevamente la aerotriangulación, manteniendo los mismos puntos fotogramétricos de la AT6. Se obtiene un RMSE de 0,0177 m.

ESTE SERÁ EL RESULTADO DEFINITIVO QUE SE ADOPTARA EN LA AEROTRIANGULACIÓN.

RESULTADOS DE LA AT7:

RMSE	0,0177 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos fotogramétricos (agregados manual y automáticamente)	58= 11+47
Dirección de Vuelo	0°
Resultado	Bueno

Tabla 110- Resultados de la séptima aerotriangulación en el LPS.

Una vez que se ha aceptado el resultado de la aerotriangulación, además del resumen de la misma (imagen 87), es posible visualizar los parámetros calculados para cada una de las imágenes, o sea, las coordenadas en el espacio objeto del centro de perspectiva (X_0 , Y_0 , Z_0) así como los ángulos de Euler.(ω , ϕ , κ) para la toma de cada una de las imágenes. Estos resultados están en la ventana del Frame Camara Frame Editor, en la pestaña Exterior Information. También es posible obtener un reporte de los residuales de los puntos de control en cada imagen, en un archivo de formato txt (imagen 92).

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: (Yes).0177	Close
Control F	oint RMSE:	Check P	oint RMSE:	Upda
Ground X:	0.0000 (6)	Ground X:	0.0000 (0)	Accer
Ground Y:	0.0000 (6)	Ground Y:	0.0000 (0)	Repor
Ground Z:	0.0000 (6)	Ground Z:	0.0000 (0)	Review
Image X:	0.0224 (13)	Image X:	0.0000 (0)	Help
Image Y:	0.0260 (13)	Image Y:	0.0000 (0)	

Imagen 69- Resumen de la séptima aerotriangulación.

También en la ventana inicial del LPS, una vez finalizada la O.E, se puede seleccionar el *Display Mode*. Entre el Map Space (espacio mapa) y el Image Space (espacio Imagen).

En el Map Space se pueden ver las huellas de las imágenes en la superficie y la ubicación de los puntos de control y los puntos fotogramétricos en las huellas. Si se selecciona Image Space, se visualiza el perímetro de las imágenes, una a una, y la ubicación de los puntos de control y fotogramétricos, pudiendo encenderse la identificación de los mismos.

Imagen	Xo(m)	Yo(m)	Zo(m)	Omega(°)	Phi(°)	Kappa(°)
1	101.999	97.264	122.297	-1.90287	-3.29522	86.35255
2	109.665	159.810	119.263	-5.539562	-12.57448	85.56671
3	112.678	193.883	119.641	-5.86853	-10.20057	85.54277
4	115.501	225.913	118.455	-6.68549	-12.79787	84.56243

Tabla 111- Resultados de la Orientación Exterior para cada imagen.

Se verifica la distancia de las bases (distancia entre la toma de dos imágenes consecutivas), que debería cumplir la condición de $B \le S/2$ (sección16.8.2.2). Siendo S la longitud aproximada de una imagen en el terreno.

par	B (<i>m</i>)	S/2 (<i>m</i>)
1-2	63	
2-3	34	50
3-4	32	

Tabla 112- Longitud de las bases.

Véase que la primera base (distancia entre las tomas de las imágenes 1 y 2 es mayor a lo indicado).

ensor Ir	nterior Orientation	Exterior Information					
	Per	spective Center		R	lotation Angles		ОК
		(meters)			(degrees)		Previou
	Xo	Yo	Zo	Omega	Phi	Карра	Next
Value	101.999 🚖	97.264 🚖	122.297 🚔	-1.90287 🚔	-3.29522	86.35255 🚖	Cancel
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	Halp
Status	Initial 👻	Initial 🔹	Initial 👻	Initial 👻	Initial 🔻	Initial 🔻	lineip
	🕅 Set Status:	Initial 👻	For All Parameters				
	🔲 Apply status to	all active frames		Exterior Initia	lization	Edit All Images	

Imagen 88- Resultado de la Orientación Exterior de la Imagen 1r.

ensor	Interior Orientation	Exterior Information					
	F	erspective Center		F	Rotation Angles		ОК
		(meters)			(degrees)		Previou:
	Xo	Yo	Zo	Omega	Phi	Карра	Next
Value	109.665	\$ 159.810	119.963 🚖	-5.39562	-12.57448 🚖	85.56571 🚖	Cancel
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	Help
Status	Initial	▼ Initial ▼	Initial 👻	Initial 🔹	Initial 👻) Initial 🔹	(nop
	🔲 Set Status:	Initial 👻	For All Parameters	Cutation Initia		E PLAN	
	🔲 Apply status	to all active frames		Extenor mida	alization	Edit All Images	

Imagen 89- Resultado de la Orientación Exterior de la Imagen 2r.

ensor Ir	nterior Orientation	Exterior Information					
	Pe	rspective Center		R	otation Angles		OK
		(meters)			(degrees)		Previou
	Xo	Yo	Zo	Omega	Phi	Карра	Next
Value	112.678	193.883	119.641 🚖	-5.86853 🚔	-10.20057 🚖	85.54277 🚔	Cancel
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	Help
Status	Initial 🔹	lnitial 👻	Initial 🔹	Initial 💌	Initial 🔹	Initial 🔹	nop
	🔲 Set Status:	Initial 👻	For All Parameters	E E L L L L L L	· · · · · · · · · · · · · · · · · · ·		
	🔲 Apply status to	o all active frames		Exterior Initial	ization	Edit All Images	

Imagen 70- Resultado de la Orientación Exterior de la Imagen 3r.

Sensor	Interior Orientation	Exterior Information					
	P	erspective Center		R	lotation Angles		OK
		(meters)			(degrees)		Previou
	Xo	Yo	Zo	Omega	Phi	Карра	Next
Value	115.501	225.913	118.455 🚔	-6.68549 🚔	-12.79787 🚔	84.56243 🚔	Cance
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	
Status	Initial	▼ Initial ▼	Initial 💌	Initial 👻	Initial 👻] Initial 👻	
	Set Status:	Initial 👻	For All Parameters	Exterior Initia	lization	Edit All Images	

En el siguiente cuadro se muestran los residuales V_x y V_y de los puntos de control en cada imagen.

The image residuals of the control points The image ID = 1 Point ID _∧x VV 8 -0.0016 -0.0054 9 0.0157 0.0053 103 -0.0066 0.0088 RMSE of 3 points: mx=0.0099, my=0.0067 The image ID = 20.0212 Point ID ٧x -0.0115 8 9 0.0276 -0.0542 103 0.0140 -0.0263 104 -0.0184-0.0346 RMSE of 4 points: mx=0.0219, my=0.0346 The image ID = 3 0.0124 Point ID _ VX 0.0381 40 45 -0.0295 0.0388 104 0.0048 -0.0265 RMSE of 3 points: mx=0.0279, my=0.0280 The image ID = 4vy 0.0165 Point ID ٧x 0.0010 40 45 0.0308 0.0284 104 -0.0322 -0.0216 RMSE of 3 points: mx=0.0258, my=0.0227 Total number of all control image points = 13 Total rmsex = 0.0224, rmsey = 0.0260

Imagen 72- Reporte de los residuales de los puntos de control.

En la siguiente imagen se muestra el "Map Space" del LPS. En el mismo se visualizan las huellas de las imágenes en el terreno, así como también la ubicación de los puntos de control y fotogramétricos en las mismas.

Imagen 73- Huellas de las imágenes en el terreno, puntos de control (triángulos) y fotogramétricos (cuadrados).
Se ejecuta la octava aerotriangulación y una vez más los resultados fueron sin sentido.

RESULTADOS DE LA AT8:

RMSE	2.85892 x 10 ²⁰ m
Número de Iteraciones	12
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	0
Dirección de Vuelo	0°
Resultados	Sin sentido

Tabla 93 - Resultados de la octava aerotriangulación.

Ite	Parameters rations: 12		Converged: yes		RMSE: 2	.85892e+20 m	
	Image Id	e	-6	×	X0	ŶŎ	20
ц	DSC02749rJPG	2261877.1324	-4372430.2712	8928871.9481	77675657615818	-57310957904103	-34999276382391
N	DSC02755rjpg	17066806.6109	-43271264.2433	19008272.4130	-14688387314950	67354585997412	-57610323389185
ω	DSC02752rjpg	3565302.0018	127668964.7952	-58247535.2744	-35952400094186	-10063468627637	31143082825824
4	DSC02758r.jpg	-4639688.0431	-16525.5013	4142171.1863	-43723128377576	82953576180572	-19595262690147

Imagen 43- Resultados de la octava aerotriangulación.

13.3.4.4. NOVENA AEROTRIANGULACIÓN

Se repite la aerotriangulación anterior (AT8), en que las imágenes habían sido rotadas y se cambió un punto de control (el 401 por el 42) y le agregamos once puntos fotogramétricos.

Se la ejecutó y los resultados fueron sin sentido:

- ✓ Sistema de Coordenadas de los puntos de Control: Local.
- ✓ Ángulo de vuelo: 0° .

RESULTADOS DE LA AT9:

RMSE	2.214578 x 10 ¹⁹ m
Número de Iteraciones	10
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos fotogramétricos	11
Dirección de Vuelo	0°
Resultados	Sin sentido

Tabla 94- Resultados de la novena aerotriangulación.

13.3.5. Conclusiones de la **A**erotriangulación en el **E**-Foto:

Después de haber ejecutado nueve aerotriangulaciones diferentes, cambiando en cada una de ellas ya sea las coordenadas de los puntos de control, ya sea rotándolas o llevándolas a UTM; rotando las imágenes; o combinando ambas acciones, o agregando puntos fotogramétricos, no fue posible concretar la Orientación Exterior.

Se podría decir que no es posible realizar la restitución fotogramétrica de este tipo de imágenes, tomadas con una cámara no métrica, en el e-foto.

Otra opción que ofrece el software e-foto, es realizar la Orientación Exterior de forma individual a cada imagen, lo que se conoce como Resección Espacial. El proceso consiste en marcar los puntos de control en cada una de las imágenes, que ya pasaron por el proceso de Orientación Interior, y luego se ejecuta la Resección Especial, que da como resultado los parámetros de la O.E para cada imagen o sea las coordenadas X, Y, Z del centro óptico y los ángulos de Euler.

Los resultados de la Resección Espacial también fueron negativos.

13.3.6. SE REALIZA LA ORIENTACIÓN EXTERIOR DE UNA DE LAS IMÁGENES POR RESECCIÓN ESPACIAL.

Se realizó la Orientación Exterior por Resección Espacial³⁶ de una de las imágenes rotadas 90° en sentido horario con las coordenadas de los puntos de control también rotadas 90° en sentido horario.

Los resultados tampoco cumplieron con lo deseado.

Número de Iteraciones	13
Convergencia métrica	0.001
Convergencia angular	0.001
Converge	SI
Cantidad de puntos de control	4
Dirección de Vuelo	0°
Resultados	Sin sentido

Tabla 95- Resultados de la O.E por Resección Espacial.

³⁶ La Resección Espacial es un método disponible en el e foto para ejecutar la O. E en cada imagen, de manera individual, marcando al menos 3 puntos de control por fotografía.

(a V							,	Converged:		
	Xa		MVC(Xa)							
	1		1	2	3	4	5	6		
xo	59780051610446627602432.00000	1	2834215	-308488	-42154 <mark>4</mark>	-665911	1664931	-359413		
YO	-17894056385799639793664.00000	2	-299144	-606184	-241477	-242841	-186974	5550524		
Z0	-60582936945921632501760.00000	3	-916405	-199145	3140248	8030238	-300272	7670620		
φ	-43048.89135	4	-886755	-196499	<mark>9436653</mark>	5420342	<mark>4322819</mark>	-300678		
ω	93519.58729	5	2677661	- <mark>2</mark> 81929	-337163	2334114	5200417	-504637		
к	176436.37840	6	-343220	5437352	-652583	-333138	-331529	7633875		

Imagen 44- Resultados de la Resección Espacial de la segunda imagen.

14. RESTITUCIÓN FOTOGRAMÉTRICA EN EL LPS

Recuérdese que el objetivo de este trabajo es comparar la calidad posicional, aplicando el estándar de la NSSDA, de dos restituciones fotogramétricas hechas con dos softwares diferentes, el e-foto y el LPS, para el mismo vuelo fotogramétrico realizado con un UAV y dentro de lo posible tratando de replicar el mismo método en ambos procesos.

En este capítulo se detalla el procedimiento de restitución fotogramétrica realizado en el LPS.

SOBRE EL LPS:

Leica Photogrammetry Suite, de nombre oficial y legalmente cambiado para LPS, es una EFD, y es una aplicación del software IMAGINE de ERDAS, que se utiliza en la realización de operaciones fotogramétricas sobre imágenes y también en la extracción de información de las mismas. LPS es la aplicación fotogramétrica líder a nivel comercial y es utilizada por varias agencias y autoridades regionales de mapeo, oficinas gubernamentales de transporte, así como también por empresas dedicadas a la confección de mapas Además de los usos comerciales y gubernamentales, el LPS es ampliamente utilizado en el ambiente académico, en investigaciones que van desde el monitoreo de deslizamiento de tierras, movimientos de suelos, patrimonio histórico y muchos otros.

LPS generalmente es utilizado para la creación de productos de información geoespacial a partir el procesamiento de imágenes crudas. Dichos productos pueden ser: modelos digitales de terreno, herramientas 3D, y ortofotos digitales.

CONSIDERACIONES PREVIAS:

14.1. ROTACIÓN DE LAS IMÁGENES:

Antes de cargar las imágenes, las mismas debieron ser rotadas para que el sentido de la secuencia de las fotografías, coincidiera con el sentido de vuelo del drone en pantalla, o sea, siguiendo el tradicional eje de las *x*, horizontal, de izquierda a derecha.

La rotación de las imágenes se hizo utilizando la herramienta "Transform & Ortho" del ERDAS IMAGINE 2013 (Camino: Raster/ Multiespectral/ Transform&Ortho/ Perfforme Affine Resample/Rotation angle=90°). Así se rotaron 90 grados en sentido horario con origen en el pixel central de cada imagen.

14.2. SUSTITUCIÓN DE ALGUNOS PUNTOS DE CONTROL:

De la misma forma que se hizo en el e-foto, se cambiaron algunos puntos de control, previamente planificados, por dificultades de visualización. Recuérdese que fueron pre señalizados en el terreno más puntos de los que eran necesarios según el estándar.

PUNTOS SUBSTITUIDOS:

Punto Planificado	Punto alternativo
100	40
101	401b
102	8
105	45

Tabla 96- Puntos de control planificados y los que fueron substituidos.

En la siguiente imagen se muestran en rojo los puntos de control que fueron utilizados, y en verde los que fueron cambiados:

Imagen 45- Puntos de control planificados (en verde) y sustituidos (en rojo) para la aerotriangulación.³⁷

³⁷ Fuente: Google Earth.

14.3 PROCEDIMIENTO DE RESTITUCIÓN.

El LPS se encuentra en el menú Herramientas (Tools), en el software ERDAS IMAGE. En este caso utilizamos la versión 2013 que dispone el departamento de Geomática del Instituto de Agrimensura.

14.3.1. PASO 1: CREACIÓN DEL PROYECTO FOTOGRAMÉTRICO.

Se crea un nuevo Proyecto (File/New) y se configuran los siguientes parámetros:

✓ **TIPO DE CÁMARA:** Métrica (Frame Camera). Aunque la cámara utilizada no es una cámara fotogramétrica, se configura el proyecto con una cámara métrica ya que se tiene un certificado de calibración. La ventana, para seleccionar el tipo de cámara, se abre automáticamente cuando se crea un nuevo proyecto en el LPS (imagen 46).

✓ **INFORMACIÓN GENERAL DE LA CÁMARA:** Nombre de la cámara, distancia focal, coordenadas del punto principal (imagen 47).

✓ CANTIDAD Y COORDENADAS DE LAS MARCAS FIDUCIALES: En este caso, al tener una imagen digital de una cámara no métrica, las marcas fiduciales se consideran los 4 vértices de sensor (imagen 48). Las coordenadas las obtenemos del certificado de calibración.

✓ **CONFIGURACIÓN EXTENDIDA DE PARÁMETROS DE LA CÁMARA:** Automáticamente aparecen el nombre, la distancia focal y las coordenadas del punto principal, que ya habían sido cargados. Se agregan acá los coeficientes de la distorsión tangencial (k_1 , k_2 y k_3) y de la distorsión descentrada, o tangencial, (p_1 y p_2). En el tipo de parámetros: Australis. (imagen 49).

✓ **SISTEMA DE REFERENCIA/ PROYECCIÓN DE LOS PUNTOS DE CONTROL**: Nuestro sistema de referencia es arbitrario y local. Para eso se setea en "Projection" la opción Unknown (desconocida) y la Unidad meters (metros), tanto en vertical como en horizontal. Y obviamente, será en ese sistema de coordenadas que estará el modelo luego de la restitución (imagen 50).

✓ PROPIEDADES DEL BLOQUE DE IMÁGENES: Aquí se configuran qué ángulos de rotación para el sensor se utiliza: Omega, Phi y Kappa. Son los ángulos de Euler (o de actitud) del Sensor. Se define la altura promedio de vuelo: 100.00 metros, las unidades de los ángulos (grados) y la dirección del eje z.

En esta misma ventana, clicando en New Camara se pueden ingresar los datos del certificado de calibración de la misma. (Imagen 51).

Geometric Model Category	
Camera	
Geometric Model:	Cancel
Frame Camera Digital Camera Video Camera (Videography) Non-Metric Camera	Help

Imagen 46- Configuración del tipo de cámara en proyecto del LPS

	Sistemen	ОК
Camera Name: SONY NE	×-7	
Description:		Save
		Load
Focal Length (mm):	15.8225	
Principal Point xo (mm):	0.1815	Cancel
Principal Point yo (mm):	0.1445	Help
▼ Use Extended Camera Mo	del Edit Extended Parameters	

Imagen 47- Ventana de configuración general de la cámara en el proyecto.

heral Fidu	cials Radial Lens	Distortion		
Number of F	iducials: 4	* *		OK
Row #	Film X (mm)	Film Y (mm)		Save
1	11.699	-7.799		Load
2	-11.699	-7.799		
3	-11.699	7.799	-	
4	11.699	7.799	-	Cance
				Help
			<u></u>	
1	III		•	

Imagen 48- Ventana donde se cargan las coordenadas de las marcas fiduciales.

Parameter Type: Austra	alis P	arameters	•			Impo	irt	
ustralis Camera Parameters								
Calibrated Focal Length (mm)	c:	15.8225	*					
Principal Point (mm)	x0:	0.1815						
Principal Point (mm)		0.1445	*					
Radial Distortion	k1:	-1.67526e-05		k2:	9.45084e-08	k3:	1.29568e-11	-
Decentering Distortion	p1:	-4.19358e-06		p2:	2.86650e-08			
Affinity and Nonorthogonality	ы.	0.00000e+00		10	0.00000-00			
	D1.			DZ:	0.000008400			
	01.			D2:				

eference Coordinate System	
Horizontal	[ОК
Projection: Unknown/Cartesian	Previous
Datum:	Next
Horizontal Units: Meters 💌	Cancel
/ertical	
Vertical Spheroid: Unknown	Help
Vertical Datum:	
Vertical Units: meters 🕶	
Import Set LSR (Unknown) Projection	

Imagen 50- Ventana de configuración del sistema de referencia/ proyección.

	Set Frame-Specific Information:	
Rotation System:	Omega, Phi, Kappa 🔹	ОК
Angle Units:	Degrees	Previous
Photo Direction:	Z-axis for normal images 🔹	Next
Average Flying Heig	ht (meters): 100.000	
Sensor Name: [Default Wild 🔹 Edit Camera New Camera	
Imp	ort Exterior Orientation Parameters	

Imagen 51- Ventana de configuración de unidades del bloque.

14.3.2. Paso 2: Se Cargan Las Imágenes.

En la siguiente imagen se muestra cómo se cargan las imágenes en el proyecto fotogramétrico (Images/Add).

Imagen 52- Cargando las imágenes en el proyecto del LPS

Una vez cargadas las imágenes, siguiendo el orden del fotoíndice (ver sección 11.3) se procede a crear las capas de piramidación de las mismas, creando así un nuevo archivo con extensión rrd para cada imagen. Estas capas se crean con el objetivo de mejorar la visualización y el manejo de las mismas, como el zoom, o las iteraciones en las búsquedas de puntos homólogos. Se selecciona la opción de todas las imágenes que aún no tienen piramidación (imagen 53).

Imagen 53- Ventana de selección de creación de pirámides

En la siguiente imagen se ve la información de las cuatro imágenes ya cargadas, y en la columna debajo de PyR, los rectángulos en verde indican que se realizó el proceso de piramidación para cada una de ellas.

Row #	Image ID	Description	>	Image Name	Active	Pyr.	Int.	Ext.	DTM	Ortho	Online
1	1		۲	nieria/desktop/bruno/imagenesrotadasenvisualizadorwindows/ds	~						
2	2			nieria/desktop/bruno/imagenesrotadasenvisualizadorwindows/ds	~						
3	3			nieria/desktop/bruno/imagenesrotadasenvisualizadorwindows/ds	~						
4	4			nieria/desktop/bruno/imagenesrotadasenvisualizadorwindows/ds	¥						

Imagen 54-Indicador del Status de trabajo de cada imagen.

14.3.3. PASO 3: SE EJECUTA LA ORIENTACIÓN INTERIOR.

1. Pasos: Edit/Frame Editor y seleccionar la pestaña Interior Orientation.

En la pestaña Sensor ya aparece la cámara SonyNX7 que se ingresó anteriormente. Presionando Edit Camara se pueden ver los datos de la misma.

ensor Interior Orientation Ex	erior Information	
Image File Name:	1r.img Attach View Image Edit All Images	OK Previous
Block Model Type:	Frame Camera	Next
Sensor Name:	sonyNX7 Edit Camera New Camera	Cancel Help

Imagen 55-Pestaña Sensor. Donde configurar la cámara y editar imágenes.

En la pestaña Interior Orientation se miden en la pantalla, los vértices de las imágenes, que son lo equivalente a las "marcas fiduciales" y que son también los vértices del sensor. Sus coordenadas métricas, ya fueron ingresadas en el proyecto.

ensor Interior Urientation Exterior In	nformation						
	Viewer Fiducial L	ocator:	50 ‡ 0	0 100	Unsolved		ОК
Edit All Images	Open/Close vie	wer for image fidu	cial measurem	ent eset	Solve		Previou Next
Point # > Color Image X	Image Y	Film×	Film Y	Residual X	Residual Y	<u>^</u>	Cance
1 🕨 🔤		11.699	-7.799	0.000	0.000		
2	17	-11.699	-7.799	0.000	0.000	E .	Help
3	1	-11.699	7.799	0.000	0.000		
4		11.699	7.799	0.000	0.000		
						•	

Imagen 56-Pestaña "Interior Orientation".

Presionando el botón "Open/Close viewer for fiducial measurement" se abre la primera imagen y se marcan las cuatro marcas fiduciales utilizando las tres ventanas de visualización, según nuestra conveniencia.

Imagen 58- Marcando marca fiducial número 1 en una de las imágenes.

Imagen 57- Detalle. Luego de realizar la medida de la marca fiducial Nº 1.

El software además permite seleccionar la orientación de los ejes del sistema imagen, dando las cuatro opciones que se muestran en la siguiente imagen (59). Seleccionamos la primera que es la cual el eje x coincide con la dirección del vuelo en la pantalla.

Imagen 59- Opciones de los ejes del sistema de coordenadas para la O.I.

Una vez que se marcan las 4 marcas fiduciales, se cliquea en el botón solve, y el resultado del error cuadrático medio (RMSE) es calculado. El resultado es devuelto en píxeles y también en micrones.

En el certificado de calibración de la cámara SONY NEX-7 están las coordenadas x,y en *mm*, de las 4 marcas fiduciales. En la pantalla de LPS, al marcar cada uno de los 4 vértices para una imagen, aparecerán sus coordenadas píxel (líneas y columnas en los campos Image X e Image Y respectivamente).

	iterior Orient	ation Exterior Inform	mation				-		
Fid	lucial Orienta	ation: \	/iewer Fiducial Loc	ator:	50 .	100	BMSE 0 19niv		OK
vt .	X X						0.77 ·		UK
× x	↓ ↓	ty in the second			50 0	100	or U.77microns	1	Previous
E dit Al	II Images		Auto Locat	e	Apply	Reset	Solve		Nevt
							[_	
Point #	> Color	Image X	Image Y	Film×	FilmY	Residual X	Residual Y	- n	Cancel
1	•	-0.496	6000.497	-7.799	-11.699	0.156	-0.121		
2		-0.076	0.922	-7.799	11.699	-0.156	0.121	E	Help
		3998.985	0.952	7.799	11.699	0.156	-0.121		
3		3999.191	6000.045	7.799	-11.699	-0.156	0.121		
3 4								-	
3 4								and the second se	

Imagen 60- Orientación Interior calculada para la primera imagen (1r).

En la siguiente tabla se muestran los resultados (RMSE) de la Orientación Interior de cada una de las 4 imágenes. Se consideran que todas fueron aceptables ya que son menores a 1/3 de píxel:

Imagen	RMSE (píxeles)	RMSE (micrones)
1r	0.19	0.77
2r	0.18	0.72
3r	0.01	0.06
4r	0.03	0.14

Tabla 97- Resultado del RMSE de la Orientación Interior.

Los coeficientes de transformación para la O.I de cada imagen $(a_0, a_1, a_2, b_0, b_1, b_2)$, se obtienen recién al final del proceso de O.E, en el reporte de aerotriangulación. De forma adelanta a ese procedimiento, se los exhibe a continuación:

FOTOGRAFIA 1r:

a ₀	-7.7981
a 1	0.003900
a ₂	0.00000
b ₀	11.7031
b ₁	0.00000
b ₂	-0.003900

Tabla 98- Resultados de la O.I para la fotografía 1r.

FOTOGRAFIA 2r:

a ₀	-7.7983
a 1	0.003900
a ₂	0.00000
b ₀	11.7026
b ₁	0.00000
b ₂	-0.003900

Tabla 99- Resultados de la O.I para la fotografía 2r.

FOTOGRAFIA 3r:

a ₀	-7.7971
a 1	0.003900
a ₂	0.00000
b ₀	11.7011
b ₁	0.00000
b ₂	-0.003900

Tabla 100- Resultados de la O.I para la fotografía 3r.

FOTOGRAFIA 4r:

a 0	-7.7972
a 1	0.003900
a ₂	0.00000
b ₀	11.7011
b ₁	0.00000
b ₂	-0.003900

Tabla 101- Resultados de la O.I para la fotografía 4r.

14.3.4. PASO 4: SE EJECUTA LA ORIENTACIÓN EXTERIOR

En la pestaña "Exterior Information" es posible ingresar los parámetros de Orientación Externa de la cámara, si se cuenta con dicha información. En este trabajo, esos parámetros (las coordenadas del centro de perspectiva en cada toma y los respectivos ángulos de Euler) no los tenemos, y son, entre otros, lo que se busca calcular en la restitución fotogramétrica. En este caso se empleó el status desconocido (unknown) y se indicó $(X_0,Y_0,Z_0) = (0,0,0)$ y también los ángulos de Euler = 0 para todas las imágenes. Es posible aplicar esta configuración para todas las imágenes marcando en: "Apply status to all active frames".

Frame Ca	amera Frame Editor	(1r.img)					
Sensor In	Pers	pective Center		R	otation Angles		ОК
	Xo	(meters) Yo	Zo	Omega	(aegrees) Phi	Карра	Previous
Value	0.000	0.000	0.000	0.00000	0.00000	0.00000	
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	Help
Status	Unknown 🔹	Unknown 🔹	Unknown 🔻	Unknown 🔹	Unknown 🔹	Unknown 💌	
	── Set Status: ✓ Apply status to a	Initial 💌	For All Parameters	Exterior Initia	ization	Edit All Images	

Imagen 61- Pestaña "Exterior Information".

Pero luego, también es posible estimar ciertos parámetros en la ventana de Estimación Inicial de la Orientación Exterior (Imagen 62).

Se completan los campos con los datos de: la distancia focal calibrada, la altura de vuelo, el número de líneas de vuelo y el número de fotos. También el traslape longitudinal (60%) y el sentido de vuelo (este a oeste). Cliqueando en el botón Calculate EO, aparecerá en la lista las 4 imágenes que ya fueron cargadas y el valor de Z_0 se autocompleta con el valor 100, en Scale Parameters, que es la altura del vuelo y se había completado anteriormente.

Observación: En la ventana "Initial Exterior Orientation Estimation", es posible determinar la dirección de vuelo. Por falta de experiencia en el uso del LPS, se rotaron las imágenes pensando que esta opción no estaba disponible.

M Initial Exterior Orientation Es	timation								X
Scale Parameters					Ground Coverage				
Focal Length (mm):	15.8225			*	Film Size (inches):	0			
Flying Height (meters):	100				Cound Country (color)	0			
Photography Scale 1:	6666				anduna coverage (meters).	ļ			
Flight Line Parameters									
Number of Flight Lines:	1								
Number of images per Flight Line:	4				Set	Set	lmages per Fl	ight Line	
Overlap Parameters									
Fwd Overlap (%): 60				*	Fwd Overlap (m):	0.00			1
Side Overlap (%):				A T	Side Overlap (m):	0.00			
Set FlightLine Direction									
O Horizontal	HFlight l	Line No.:	[1		•	West to	East	•	
© Vertical	VFlight L	ine No.:			*	North to	South	•	
Calculate ED				Xo, Yo,	Zo Units: Meters	An	gle Units: Deg	grees	
Row # Flight NO. Image NO.	Image ID			Image N	ame	Xo	Yo	Zo 📩	
1 1 1	1 :	/users/inge	enieria/desktop	o/fotos vue	lo 100m/imagenes rotadas/1r.im	ç 0 0	0	100	_
3 1 3	3 :	:/users/inge :/users/inge	enieria/desktop enieria/desktop	o/fotos vue o/fotos vue	io 100m/imagenes rotadas/2r.im Io 100m/imagenes rotadas/3r.im	ç U ç O	0	100	
4 1 4	4 :	/users/inge	enieria/desktor	o/fotos vue	lo 100m/imagenes rotadas/4r.im	ç 0	0	100 =	
								Ţ	
	A1			2					
	Apply			Cano	e	Help			

Imagen 62 - Ventana de estimación inicial de la Orientación Exterior.

14.3.4.1. MEDICIÓN Y GENERACIÓN DE PUNTOS.

Para realizar la Orientación Exterior es necesario medir los puntos de control y, a veces, crear puntos fotogramétricos sobre las imágenes.

Para eso el LPS dispone de la herramienta de medición de puntos "Point Measurement Tool". En la misma se despliegan 2 imágenes en simultáneo, con 3 ventanas de visualización para cada una de ellas con sus diferentes zooms y que permite realizar varias acciones fundamentales, tales como marcar los puntos de control, modificarlos, crear puntos fotogramétricos de forma manual y también de forma automática.

También, en esta pantalla, se puede configurar y correr la aerotriangulación así como cargar las coordenadas de los puntos medidos en terreno.

La herramienta Point Measurement Tool brinda dos modos de visualización: clásica y estéreo. Se utilizó la visualización clásica.

Imagen 63 selección del tipo de visualización en la herramienta Point Measurement Tool.

🖲 Import 🛛 🔘 Export	ОК
elect point source:	Cancel
ASCII File (*.txt)	Help
🖱 LPS Block File (*.blk)	
 Reference Points (3D) Reference Points (2D) Image Brinkt Only 	

PUNTOS DE CONTROL (CONTROL POINTS):

Para cargar las coordenadas de los puntos de control, se importa un archivo ASCII con las coordenadas de los puntos de control (botón I, en la ventana de Point Measurement Tool).

Imagen 64- Ventana donde se importa el archivo con las coordenadas de los puntos de control.

Una vez cargado dicho archivo, se configuran determinadas opciones, dependiendo del formato del archivo de coordenadas que dispongamos, para que las mismas sean correctamente cargadas en el LPS.

Import Options File to Import From: c:/	users/in	jenieria/desktop/bruno/coordena	das_puntos/coorder	nadasfinales_txt.txt
Field Definition Input Previ	iew			
Field Type: 💿 Delimited	l by Sep	arator 🛛 🔘 Fixed Width		
Separator Chara	acter:	Comma		•
Row Terminator Character:		NewLine (Unix)		•
Comment Character: Number of Rows To Skip:		0		
Column Mapping				
Output Column Name	Input	ield Number		<u>^</u>
Ref_ID X Y Z		1 2 3 4		E
ОК		View	Cancel	Help

Imagen 65- Ventana para configurar las opciones del archivo a importar con las coordenadas de los puntos de control.

Una vez que han sido cargados los puntos, es posible visualizar las coordenadas (X,Y,Z) de los mismos, debajo de las imágenes en la ventana Point Measurement Tool (Imagen 66).

> MARCANDO LOS PUNTOS DE CONTROL.

La pantalla de Medición de Puntos del LPS ofrece la posibilidad de visualizar dos imágenes en simultáneo. En la misma hay 3 modos de visualización con diferentes zooms, para facilitar este proceso. En simultáneo se abren dos fotografías para la aerotriangulación, las cuales se pueden cambiar y así completar el procedimiento de marcado de puntos de control para todas las imágenes.

Se debe tener seleccionado el punto que se va a marcar en pantalla, lo cual se hace marcando la fila que ocupa el mismo en la lista de puntos, donde aparece el número de punto y sus coordenadas. Luego se lo ubica en cada una de las imágenes donde el mismo se encuentra, colocando la marca (cursor) sobre dicho punto.

Una vez ubicado el punto correspondiente en el terreno, se le indica al software que corresponde a un punto de control (control), seleccionando Control en la columna Usage. (Las opciones en Usage son : *Control, Tie, o Checking,* o sea, Control, Fotogramétrico o Testeo).

Imagen 65- Ventana de medición de puntos. Midiendo punto de control 104 en este caso.

> MARCANDO PUNTOS DE FOTOGRAMÉTRICOS:

El LPS ofrece dos alternativas para marcar puntos homólogos o fotogramétricos. Estas son: manual o la automática:

✓ Marcado manual de puntos fotogramétricos:

Clicando en "Add" se adiciona un nuevo punto, el cual no tiene coordenadas. Luego se lo selecciona en la fila de puntos y se lo ubica en las imágenes donde lo identificamos.

Debe definirse el punto como "Tie" en la columna Usage.

✓ Marcado automático de puntos fotogramétricos:

Se debe cliquear en "Automatic tie properties".

Luego se abre una ventana con tres pestañas a configurar:

Pestaña General (imagen 67):

✓ <u>Images Used</u>: Qué imágenes se van a utilizar. En este caso todas las activas (Active Images Only).

- ✓ <u>Initial Type</u>: Exterior/Header/GCP (GCP, "Ground Control Point", porque se inicia con puntos de control)
- ✓ <u>Image Layer Used for Computation</u>: En este caso las imágenes tienen solamente una capa, que es la imagen en sí, por lo que se coloca 1.
- ✓ <u>"Existing Point Transfer"</u>: No Transfer, New Points Only.

General	Strategy	Distribution	OK
Images Used: 🛛 🔘 All Available 💿 Active Images Only			Run
Initial Type: Exterior/Header/GCP Tie Points 		Save A:	
		19 Martin 19	
12	12 23		Load
lma	ge Layer U	sed for Computation:	Cancel

Imagen 67- Pestaña General en la ventana Propiedades de Generación de los Puntos Fotogramétricos.

Pestaña Strategy (imagen 68): Acá se configuran los parámetros de la búsqueda de los puntos fotogramétricos y el mejor aprovechamiento de las capacidades de procesamiento.

✓ <u>Search Size</u>: Píxeles de la ventana de búsqueda de puntos homólogos. Se configuró 21 x21 píxeles el tamaño del cuadrado de búsqueda.

✓ <u>Correlation Size</u>: Píxeles de la ventana para la correlación cruzada. Se configuró 7 x7 píxeles.

✓ <u>Least Square Size</u>: Píxeles de la ventana en que se calcula el ajuste de mínimos cuadrados para la correspondencia de puntos homólogos. Se configuró: 21 x21 píxeles.

✓ <u>Feature Pt Density</u>: Muestra el porcentaje de densidad de puntos que recoge el programa respecto al número que generalmente acumula:100%

✓ <u>Coefficient Limit</u>: Calcula el límite del coeficiente de correlación que determina si dos puntos son o no homólogos. Cuando el LPS encuentra dos puntos homólogos calcula el coeficiente de correlación. Si ese coeficiente es menor a este límite establecido, ese punto no se toma como homólogo. Se lo configura en 0.8, el cual está por defecto.

 \checkmark <u>Initial Accuracy</u>: Se configura en 10%. Es la precisión relativa inicial de los valores de correlación.

 ✓ <u>Avoid Shadow:</u> Si la zona que se voló tenía mucha sombra se debe marcar esta opción. No fue nuestro caso, por lo tanto, no se marca.

Automatic Tie Point Generation Properti	es	×
General Strategy Distribution		ОК
Search Size: 21 🚔	Feature Pt Density: 100% 🚔	Run
Correlation Size: 7	Coefficient Limit: 0.80 📮	Save As
Least Service Size 21	Initial Accuracy 10%	Load
Least squale size.		Cancel
Avoid Shadow: 🔲 Image Scanned:	l Positive 🔘 Negative	Help

Imagen 68- Pestaña General en la ventana Propiedades de Generación de los Puntos Fotogramétricos.

<u>Pestaña Distribution</u> (imagen 69): Acá se configura como se ubicarán los puntos fotogramétricos creados de forma automática.

✓ <u>Find Point</u>: Se elige la distribución que está configurada por defecto en el LPS marcando en Default Distribution._

✓ <u>Intended Number of points/Image</u>: Es el número de puntos fotogramétricos que se buscará por cada imagen. Se configuró en 25.

General Strategy Distribution	OK
Find Points With: 💿 Default Distribution 🛛 🔘 Defined Pattern	Run
	Save As
Intended Number of Points/Image: 40	
Intended Number of Points/Image: 25 🚽 🗖 Keep All Points	Load
Intended Number of Points/Image: 43 Transfer Keep All Points Starting Column: 400 Starting Line: 600	Load

Imagen 69- Pestaña Distribution en la ventana Propiedades de Generación de los Puntos Fotogramétricos.

14.3.4.2. CONFIGURANDO LA AEROTRIANGULACIÓN:

Antes de correr la aerotriangulación se deben configurar los parámetros de la misma. Para eso cliqueamos en el botón Aerotriangulation Properties en la ventana Point Measurement Tool.

Pestaña General:

- ✓ <u>Maximum Iterations</u>: Número máximo de iteraciones. Se configura en 10.
- ✓ <u>Convergence Value</u>: Valor de Convergencia Se configura en 0.001m.

✓ <u>Image Coordinates Units for Report:</u> Unidades de las coordenadas imagen para el reporte: milímetros.

ieneral	Point	Interior	Exterior	Advanced Options	— ок
Maxim	ium Itera	tions:		ho	Run
Conve	ergence '	Value (me	ters):	0.00100	Update
🕅 Ci	ompute A	Accuracy I	or Unkno	vns	Accept
Image	Coordin	ate Units I	for Report	Millimeters 🔹	Report
					Cancel
					Help

Imagen 70- Pestaña General en la ventana de aerotriangulación.

Pestaña Point (imagen 71):

Acá es posible configurar las desviaciones estándar, tanto de los puntos medidos en las imágenes como en el terreno.

 \checkmark Image Point Standard Deviation (pixels): Desviación Estándar de las coordenadas (*x*,*y*) de las imágenes. Se dejan los valores de 0.33, que viene por defecto, para ambas componentes.

✓ <u>GCP Type and Standard Deviations (X,Y: meters,Z: meters)</u>: Acá se configuran los pesos de las coordenadas de los puntos de control. A todos les damos el mismo peso = 1. Type: Fixed Values.

General Point	Interior Exterior Advanced Options	— ОК
Image Point	Standard Deviations (pixels) :	Run
	к 0.33	Update
-	ý 0.33 💌	Accept
GCP Type and	Standard Deviations (X,Y: meters, Z: meters):	Report
	Type: Fixed values	Cancel
	×: 1.000000 💌 Z: 1.000000 💌	Help
	Y: 1.000000	<u></u>

Imagen 71- Pestaña Point en la ventana de Aerotriangulación.

<u>Pestaña Interior</u>: Acá se configuran las desviaciones estándar de los parámetros de Orientación Interior.

<u>Type</u>: Fijo para todas las imágenes. No están las desviaciones en el certificado de calibración.

eneral Poir	nt intenor Ex	terior Advanced Uptions	ОК
Туре	: Fixed for all i	mages 💌	Run
Stan	dard Deviations (mm):	Update
Foca	l Length:	0.000	Accept
Princ	ipal Point xo:	0.000	Report.
Princ	ipal Point yo:	0.000	Cancel
			Help

Imagen 72- Pestaña Interior en la ventana de Aerotriangulación.

Pestaña Exterior:

Acá se configuran las desviaciones estándar de los parámetros de Orientación Exterior.

General	Point	Interior	Exterior	Advanced	dOptions		 ОК
	Туре:	No weig	ht		•		Run
	Standa (Xo,Yo	ard Deviatio 5: meters, Z	ins: lo: meters,	Angles: de	grees)		Update
	Xo: []	0.000000	A T	Omega:	0.00000	A V	Accept
	Yo:	0.000000	A	Phi:	0.00000	A	Report
	Zo:	0.000000	A	Kappa:	0.00000	A	Cancel
							Help

<u>Type</u>: No weight. No le asignamos desviación estándar a estos parámetros.

Imagen 73- Pestaña Exterior en la ventana aerotriangulación.

Pestaña Advanced Options (imagen 74):

Acá se configuran ciertas opciones avanzadas para la aerotriangulación.

✓ <u>Additional Parameter Model</u>: Seleccionamos No Additional Parameters ya que no se adiciona ningún modelo para la aerotriangulación.

✓ <u>Use Additional Parameters As Weighted Variables</u>: Se debe seleccionar para utilizar los parámetros adicionales como observaciones pseudo ponderadas, asignándose así un pequeño peso estadístico a cada uno de ellos. No se la marca en este proyecto.

✓ <u>Blunder Checking Model</u>: Aquí se puede seleccionar el método de detección de errores groseros tanto en los puntos imagen como los puntos de control. La opción elegida es "No automatic blunder cheking" indica que no se busquen errores groseros.

✓ <u>Use Image Observation of Check Points in Triangulation</u>: Esta opción debe ser marcada cuando se desea que se utilicen los puntos de testeo para la triangulación. En este caso la misma no fue cliqueada.

General Point Interior E	xterior Advanced Options	— ОК
Additional Parameter Model:	No additional parameters	Bun
Use Additional Parameters	As Weighted Variables	Update
Blunder Checking Model:	No automatic blunder checking	Accept
Use Image Observations o	f Check Points in Triangulation	Report.
Consider Earth Curvature i	n Calculation	Cancel
Define Topocenter (Degre	es):	Help
Longitude: 0.000000	Latitude: 0.000000	

Imagen 74- Pestaña "Advanced Options" en la ventana de aerotriangulación.

14.3.4.3. PRIMERA AEROTRIANGULACIÓN

La primera aerotriangulación, se la ejecutó utilizando únicamente los puntos de control marcados sobre el terreno., tal como se indica en la imagen 75 con los puntos en rojo.En el proceso de restitución fotogramétrica en el LPS es necesario que haya un mínimo de 3 puntos de control por cada modelo, por lo cual se debió agregar un punto a la imagen número 1. Este punto fue el número 9, el cual fue marcado inicialmente como un punto de testeo y que se encuentra sobre la explanada de acceso de hormigón y es perfectamente identificable. El mismo está en las fotografías 1 y 2.

Punto	X	Ŷ	Z
P8	81.445	120.952	12.055
р9	62.468	125.550	10,650
P40	77.816	214.071	11.126
P45	156.168	213.333	11.891
P103	139.225	96.148	15.241
P104	129.858	161.366	14.164
P401b	68.825	166.54	11.380

 Tabla 102- Coordenadas de los puntos de control, agregando el punto 9.

Punto	Imagen 1	lmagen 2	Imagen 3	Imagen 4
8	Х	Х		
9	Х	Х		
40			Х	х
45			х	х
103	Х	Х		
104		Х	Х	х
401 b		X	х	

Tabla 103- Distribución de los puntos de control en las imágenes.

Imagen 75- Puntos de control utilizados en la aerotriangulación (en rojo) con el punto 9 agregado.³⁸

RESULTADOS DE LA AT1:

Se corre la aerotriangulación con los 7 puntos de control marcados. Se obtuvo el siguiente resultado: **RMSE de 0,6244 m**

RMSE	0,6244 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	7
Dirección de Vuelo	0°
Resultado	Aceptable

Tabla 104- Resultados de la primera aerotriangulación en el LPS.

³⁸ Fuente: Google Earth.

Observación: El punto 401b pasó a llamarse 406 porque el software no acepta la b en número de punto.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: (Yes).6244	Close
Control F	oint RMSE:	Check P	Update	
Ground X:	0.0000 (7)	Ground X:	0.0000 (0)	Accept
Ground Y:	0.0000 (7)	Ground Y:	0.0000 (0)	Report.
Ground Z:	0.0000 (7)	Ground Z:	0.0000 (0)	Review.
Image X:	0.2888 (15)	Image X:	0.0000 (0)	Help
Image Y:	0.2884 (15)	Image Y:	0.0000 (0)	

Imagen 76- Resumen de la primera aerotriangulación.

Revisando el resultado de los errores para cada uno de los puntos de control, vemos que los peores resultados son para el punto 103 en primer lugar y para el 406 (401b) en segundo.

Review Triangulation Results											
Ground Po	Ground Points Image Points										
Row #	Point ID	Туре	Usage	Active	X	Y	z	RX	RY	RZ	Total RMSE
1	8	Full	Control	v .	80.092	120.729	10.647	-1.353211	-0.223450	-1.407734	2.34383
2	9	Full	Control	~	62.923	124.665	16.201	0.454672	-0.884537	5.550917	0.78751
3	40	Full	Control	¥ .	79.821	216.556	14.761	2.005444	2.485301	3.634669	3.47353
4	45	Full	Control	¥	153.603	213.758	20.264	-2.564951	0.424724	8.372750	4.44262
5	103	Full	Control	¥ .	146.819	92.298	-7.222	7.594315	-3.850023	-22.643047	13.15374
6	104	Full	Control	¥ .	129.459	164.023	18.417	-0.399447	2.657483	4.253333	0.69186
7	406	Full	Control	4	74.421	164.590	15.492	5.596182	-1.950105	4.111620	9.69287

Imagen 77- Resultados y errores de los puntos de control de la primera aerotriangulación.

14.3.4.4. SEGUNDA AEROTRIANGULACIÓN:

Tratando de obtener un RMSE menor, se pueden eliminar los puntos con mayor error en la AT. El punto 103 tiene el mayor RMSE, como se puede ver en la tabla de la imagen 77, pero no es posible eliminarlo de la aerotriangulación, ya que son necesarios un mínimo de 3 puntos por imagen, entonces se elimina el punto 406 (401b) que es el segundo con mayor RMSE.

Se corre nuevamente la aerotriangulación y se obtiene un resultado muy bueno: RMSE de 0,0192m.

RMSE	0,0192 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	6
Dirección de Vuelo	0°
Resultado	Muy bueno

RESULTADOS DE LA AT2:

Tabla 105- Resultados de la segunda aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM:	rgence: SE: 0	Yes).0192	Close
Control F	oint RMSE:	Check P	Update	
Ground X:	0.0000 (6)	Ground X:	0.0000 (0)	Accept
Ground Y:	0.0000 (6)	Ground Y:	0.0000 (0)	Report.
Ground Z:	0.0000 (6)	Ground Z:	0.0000 (0)	Review.
Image X:	0.0643 (13)	Image X:	0.0000 (0)	Help
Image Y:	0.0781 (13)	Image Y:	0.0000 (0)	

Imagen 78- Resumen de la segunda Aerotriangulación (AT2).

Y se revisa el resultado del RMSE para cada uno de los puntos de control, pero ya no cabe la posibilidad de eliminar alguno, debido a la exigencia de un mínimo de 3 puntos por modelo.

Review Triangulation Results Ground Points Image Points											
Row #	Point ID	Туре	Usage	Active	X	Y	Z	RX	RY	RZ	Total RMSE
1	8	Full	Control	~	81.903	121.784	14.604	0.457736	0.832091	2.548872	0.792823
2	9	Full	Control	¥	63.556	126.479	14.354	1.087675	0.928840	3.703934	1.883908
3	40	Full	Control	~	77.645	214.232	10.243	-0.170898	0.161256	-0.883050	0.296004
4	45	Full	Control	¥	156.760	213.430	11.463	0.591737	0.097164	-0.427824	1.024919
5	103	Full	Control	~	140.203	95.237	13.948	0.977515	-0.911144	-1.473338	1.693106
6	104	Full	Control	¥	129.968	161.411	14.228	0.110266	0.044909	0.064264	0.190986

Imagen 79- Resultados y errores de los puntos de control de la segunda aerotriangulación (AT2).
14.3.4.5. TERCERA AEROTRIANGULACIÓN:

Aunque el resultado anterior fue bueno, igualmente se agregaron 11 puntos fotogramétricos ubicados de forma manual, buscando un resultado aún mejor, ya que es posible utilizar el recurso de agregar dichos puntos. Se corre la aerotriangulación, pero se obtuvo un RMSE mayor que lo logrado anteriormente: RSME de 0,0282m.

RESULTADOS DE LA AT3:

RMSE	0,0282 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos fotogramétricos	11
Dirección de Vuelo	0°
Resultado	Muy bueno

Tabla 106- Resultados de la tercera aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: 0	Yes).0282	Close
Control P	oint RMSE:	Check P	oint RMSE:	Update
Ground X:	0.0000 (6)	Ground X:	0.0000 (0)	Accept
Ground Y:	0.0000 (6)	Ground Y:	0.0000 (0)	Report
Ground Z:	0.0000 (6)	Ground Z:	0.0000 (0)	Review.
Image X:	0.0232 (13)	Image X:	0.0000 (0)	Help
Image Y:	0.0245 (13)	Image Y:	0.0000 (0)	

Imagen 80- Resumen de la tercera aerotriangulación.

14.3.4.6. CUARTA AEROTRIANGULACIÓN

Buscando utilizar la potencialidad del LPS, se marcarán ahora puntos fotogramétricos de manera automática.

Recuérdese que la configuración del marcado automático de los puntos fotogramétricos está detallada anteriormente en la sección 14.3.4.2.

Se generan ahora los puntos fotogramétricos automáticos presionando en el botón "Perform Automatic Tie Generation" en la ventana de la Medición de Puntos de Control.

Al hacerlo, se abre la ventana de resumen de los puntos fotogramétricos que se generaron automáticamente:

Row #	Image ID	Image Name	Number of Intended Points	Number of Found Points	Number of Patterns	Point Success Rate %	Pattern Success Rate %	_	Repor
1	1	1r	25	26	25	100.00	32.00		
2	2	2r	25	50	25	100.00	88.00		Close
3	3	3r	25	41	25	100.00	76.00		
4	4	4r	25	29	25	100.00	52.00		
									Help
	- 11							E C	Help
								E	Help

Imagen 81- Resumen de la generación automática de puntos fotogramétricos.

Se generaron 57 puntos fotogramétricos de forma automática. Se enumeraron del 407 al 463. Se corre la aerotriangulación nuevamente, con los puntos fotogramétricos agregados manualmente, y los generados automáticamente pero el RMSE no es mejor al primero, logrado solo con los puntos de control. Se obtiene un RMSE =0,1056 m.

RESULTADOS DE LA AT4:

RMSE	0,1056 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos fotogramétricos (agregados manualmente)	11
Dirección de Vuelo	0°
Resultado	Bueno
Table 107. Desultados de la suerte corotrior	

 Tabla 107- Resultados de la cuarta aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM:	rgence: SE: (Yes).1056	Close
Control F	oint RMSE:	Check P	oint RMSE:	Update
Ground X:	0.0000 (6)	Ground X:	0.0000 (0)	Accept
Ground Y:	0.0000 (6)	Ground Y:	0.0000 (0)	Report
Ground Z:	0.0000 (6)	Ground Z:	0.0000 (0)	Review
Image X:	0.0844 (13)	Image X:	0.0000 (0)	Help
Image Y:	0.1791 (13)	Image Y:	0.0000 (0)	

Imagen 82- Resumen de la cuarta aerotriangulación.

Se chequea el resultado de la aerotriangulación en el "Review triangulation Results". Vemos que los puntos 40 y 45 tienen un RMSE Total significativamente mayores a los demás puntos, por lo cual los sacamos, o deseleccionamos, del cálculo de la siguiente aerotriangulación.

ound Poi	nts Image F	Points									Line of L		OK
Row #	Point ID	Туре	Usage	Active	X	Y	Z	RX	RY	RZ	Total RMSE		
1	8	Full	Control	~	81.576	121.067	12.217	0.131069	0.115390	0.162497	0.227018		Re-Run Triangulati
2	9	Full	Control	¥	62.405	125.467	10.954	-0.062938	-0.082697	0.304112	0.109011	_	Cancel
3	40	Full	Control		219.800	163.492	428.849	141.984009	-50.578850	417.722565	245.923517		
4	45	Full	Control	•	-29.868	159.664	488.638	-186.035843	-53.668587	476.746643	322.223532		Help
5	103	Full	Control	v	139.237	96.595	15.962	0.012047	0.446953	0.541216	0.020865		
6	104	Full	Control	¥	129.788	161.597	12.081	-0.070246	0.231111	-2.083456	0.121669		
7	47	None	Tie	V	71.569	142.595	11.711	0.000000	0.000000	0.000000	0.000000		
8	48	None	Tie	V	133.645	132.757	16.443	0.000000	0.000000	0.000000	0.000000		
9	49	None	Tie	¥	182.754	132.309	16.446	0.000000	0.000000	0.000000	0.000000		
10	407	None	Tie	¥	65.406	143.575	11.559	0.000000	0.000000	0.000000	0.000000		
11	408	None	Tie	V	66.360	143.379	11.486	0.000000	0.000000	0.000000	0.000000	*	

Imagen 83-Resultados y RMSE de los puntos de control de la cuarta aerotriangulación.

14.3.4.7. QUINTA AEROTRIANGULACIÓN.

Se desmarcan los puntos de control 40 y 45 y se corre nuevamente la aerotriangulación, obteniendo un **RMSE de 0.0148m**, que es el mejor obtenido hasta ahora. El punto 406 ya había sido desmarcado.

RESULTADOS DE LA AT5:

RMSE	0.0148 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	4
Cantidad de puntos fotogramétricos (agregados automáticamente)	57
Dirección de Vuelo	0°
Resultado	Bueno

Tabla 108- Resultados de la quinta aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	ergence: ISE: (Yes).0148	Close
Control F	oint RMSE:	Check P	oint RMSE:	Update
Ground X:	0.0000 (4)	Ground X:	0.0000 (0)	Accep
Ground Y:	0.0000 (4)	Ground Y:	0.0000 (0)	Report.
Ground Z:	0.0000 (4)	Ground Z:	0.0000 (0)	Review
Image X:	0.0138 (9)	Image X:	0.0000 (0)	Help
Image Y:	0.0192 (9)	Image Y:	0.0000 (0)	25

Imagen 66- Resumen de la quinta aerotriangulación.

Igualmente se considera que al quitar tres de los siete puntos de control (40, 45 y 406) no es algo conveniente para el ajuste del bloque, por lo cual se ejecutará una nueva aerotriangulación.

14.3.4.8. SEXTA AEROTRIANGULACIÓN

En esta aerotriangulación se utilizan los 7 puntos de control, 11 puntos fotogramétricos agregados manualmente (del 47 al 57), y 47 generados automáticamente, del 407 al 454. Se corre la aerotriangulación y se obtiene un RMSE de 0,2213 m:

RESULTADOS DE LA AT6:

RMSE	0,2213 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	7
Cantidad de puntos fotogramétricos (agregados manual y automáticamente)	58= 11+47
Dirección de Vuelo	0°
Resultado	Bueno
Converge Converge Cantidad de puntos de control Cantidad de puntos fotogramétricos (agregados manual y automáticamente) Dirección de Vuelo Resultado	0.001 SI 7 58= 11+47 0° Bueno

 Tabla 109- Resultados de la sexta aerotriangulación en el LPS.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: (Yes).2213	Close
Control F	oint RMSE:	Check P	oint RMSE:	Updat
Ground X:	0.0000 (7)	Ground X:	0.0000 (0)	Accep
Ground Y:	0.0000 (7)	Ground Y:	0.0000 (0)	Report
Ground Z:	0.0000 (7)	Ground Z:	0.0000 (0)	Review
Image X:	0.2232 (15)	Image X:	0.0000 (0)	Help
Image Y:	0.6217 (15)	Image Y:	0.0000 (0)	

Imagen 67- Resumen de la sexta aerotriangulación.

Row #	Point ID	Туре	Usage	Active	X	Y	Z	RX	RY	RZ	Total RMSE
1	8	Full	Control	•	79.180	121.360	12.303	-2.264693	0.407501	0.247938	3.922563
2	9	Full	Control	¥	60.908	125.222	8.783	-1.559560	-0.327536	-1.867047	2.701237
3	40	Full	Control	¥	74.488	215.076	6.722	-3.327811	1.005162	-4.403693	5.763939
4	45	Full	Control	¥	150.672	214.486	22.006	-5.495995	1.152899	10.115061	9.519342
5	103	Full	Control	¥	135.747	98.290	22.683	-3.478062	2.141609	7.261877	6.024180
6	104	Full	Control	¥	125.288	162.371	19.245	-4.569843	1.005193	5.081405	7.915200
7	406	Full	Control	¥	76.386	164.882	6.609	7.561233	-1.657646	-4.771269	13.096440

Se chequea el resultado de la aerotriangulación y el error más grande lo tiene el punto 406 (anterior 401b).

Imagen 68- Resultados y errores de los puntos de control de la sexta aerotriangulación.

14.3.4.9. Séptima Aerotriangulación.

Se desmarca el punto 406 y se corre nuevamente la aerotriangulación, manteniendo los mismos puntos fotogramétricos de la AT6. Se obtiene un RMSE de 0,0177 m.

ESTE SERÁ EL RESULTADO DEFINITIVO QUE SE ADOPTARA EN LA AEROTRIANGULACIÓN.

RESULTADOS DE LA AT7:

RMSE	0,0177 m
Número máximo de Iteraciones	10
Convergencia métrica	0.001
Converge	SI
Cantidad de puntos de control	6
Cantidad de puntos fotogramétricos (agregados manual y automáticamente)	58= 11+47
Dirección de Vuelo	0°
Resultado	Bueno

Tabla 110- Resultados de la séptima aerotriangulación en el LPS.

Una vez que se ha aceptado el resultado de la aerotriangulación, además del resumen de la misma (imagen 87), es posible visualizar los parámetros calculados para cada una de las imágenes, o sea, las coordenadas en el espacio objeto del centro de perspectiva (X_0 , Y_0 , Z_0) así como los ángulos de Euler.(ω , ϕ , κ) para la toma de cada una de las imágenes. Estos resultados están en la ventana del Frame Camara Frame Editor, en la pestaña Exterior Information. También es posible obtener un reporte de los residuales de los puntos de control en cada imagen, en un archivo de formato txt (imagen 92).

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: (Yes).0177	Close
Control F	oint RMSE:	Check P	oint RMSE:	Upda
Ground X:	0.0000 (6)	Ground X:	0.0000 (0)	Accer
Ground Y:	0.0000 (6)	Ground Y:	0.0000 (0)	Repor
Ground Z:	0.0000 (6)	Ground Z:	0.0000 (0)	Review
Image X:	0.0224 (13)	Image X:	0.0000 (0)	Help
Image Y:	0.0260 (13)	Image Y:	0.0000 (0)	

Imagen 69- Resumen de la séptima aerotriangulación.

También en la ventana inicial del LPS, una vez finalizada la O.E, se puede seleccionar el *Display Mode*. Entre el Map Space (espacio mapa) y el Image Space (espacio Imagen).

En el Map Space se pueden ver las huellas de las imágenes en la superficie y la ubicación de los puntos de control y los puntos fotogramétricos en las huellas. Si se selecciona Image Space, se visualiza el perímetro de las imágenes, una a una, y la ubicación de los puntos de control y fotogramétricos, pudiendo encenderse la identificación de los mismos.

Imagen	Xo(m)	Yo(m)	Zo(m)	Omega(°)	Phi(°)	Kappa(°)
1	101.999	97.264	122.297	-1.90287	-3.29522	86.35255
2	109.665	159.810	119.263	-5.539562	-12.57448	85.56671
3	112.678	193.883	119.641	-5.86853	-10.20057	85.54277
4	115.501	225.913	118.455	-6.68549	-12.79787	84.56243

Tabla 111- Resultados de la Orientación Exterior para cada imagen.

Se verifica la distancia de las bases (distancia entre la toma de dos imágenes consecutivas), que debería cumplir la condición de $B \le S/2$ (sección16.8.2.2). Siendo S la longitud aproximada de una imagen en el terreno.

par	B (<i>m</i>)	S/2 (<i>m</i>)
1-2	63	
2-3	34	50
3-4	32	

Tabla 112- Longitud de las bases.

Véase que la primera base (distancia entre las tomas de las imágenes 1 y 2 es mayor a lo indicado).

ensor Ir	nterior Orientation	Exterior Information					
	Per	spective Center		R	lotation Angles		ОК
		(meters)			(degrees)		Previou
	Xo	Yo	Zo	Omega	Phi	Карра	Next
Value	101.999 🚖	97.264 🚖	122.297 🚔	-1.90287 🚔	-3.29522	86.35255 🚖	Cancel
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	Halp
Status	Initial 👻	Initial 🔹	Initial 👻	Initial 👻	Initial 🔻	Initial 🔻	lineip
	🕅 Set Status:	Initial 👻	For All Parameters				
	🔲 Apply status to	all active frames		Exterior Initia	lization	Edit All Images	

Imagen 88- Resultado de la Orientación Exterior de la Imagen 1r.

ensor	Interior Orientation	Exterior Information					
	F	erspective Center		F	Rotation Angles		ОК
		(meters)			(degrees)		Previou:
Xo Yo			Zo	Zo Omega Phi			Next
Value	109.665	\$ 159.810	119.963 🚖	-5.39562	-12.57448 🚖	85.56571 🚖	Cancel
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	Help
Status	Initial	▼ Initial ▼	Initial 👻	Initial 🔹	Initial 👻) Initial 🔹	(nop
	🔲 Set Status:	Initial 👻	For All Parameters	Cutation Initia		E PLAN	
	🔲 Apply status	to all active frames		Extenor mida	alization	Edit All Images	

Imagen 89- Resultado de la Orientación Exterior de la Imagen 2r.

ensor Ir	nterior Orientation	Exterior Information					
	Pe	rspective Center		R	otation Angles		OK
		(meters)			(degrees)		Previou
	Xo	Yo	Zo	Omega	Phi	Карра	Next
Value	112.678	193.883	119.641 🚖	-5.86853 🚔	-10.20057 🚖	85.54277 🚖	Cancel
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	
Status	Initial 🔹	lnitial 👻	Initial 🔹	Initial 💌	Initial 🔹	Initial 🔹	nop
	🔲 Set Status:	Initial 👻	For All Parameters	E E L L L L L L	· · · · · · · · · · · · · · · · · · ·		
	🔲 Apply status to	o all active frames		Exterior Initial	ization	Edit All Images	

Imagen 70- Resultado de la Orientación Exterior de la Imagen 3r.

Sensor	Interior Orientation	Exterior Information						
	P	erspective Center		R	lotation Angles		OK	
(meters)				(degrees) Previou:				
Xo Yo			Zo	Zo Omega Phi		Карра	Next	
Value	115.501	225.913	118.455 🚔	-6.68549 🚔	-12.79787 🚔	84.56243 🚔	Cance	
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000		
Status	Initial	▼ Initial ▼	Initial 💌	Initial 👻	Initial 👻] Initial 👻		
	Set Status:	Initial 👻	For All Parameters	Exterior Initia	lization	Edit All Images		

En el siguiente cuadro se muestran los residuales V_x y V_y de los puntos de control en cada imagen.

The image residuals of the control points The image ID = 1 Point ID _∧x VV 8 -0.0016 -0.0054 9 0.0157 0.0053 103 -0.0066 0.0088 RMSE of 3 points: mx=0.0099, my=0.0067 The image ID = 20.0212 Point ID ٧x -0.0115 8 9 0.0276 -0.0542 103 0.0140 -0.0263 104 -0.0184-0.0346 RMSE of 4 points: mx=0.0219, my=0.0346 The image ID = 3 0.0124 Point ID _ VX 0.0381 40 45 -0.0295 0.0388 104 0.0048 -0.0265 RMSE of 3 points: mx=0.0279, my=0.0280 The image ID = 4vy 0.0165 Point ID ٧x 0.0010 40 45 0.0308 0.0284 104 -0.0322 -0.0216 RMSE of 3 points: mx=0.0258, my=0.0227 Total number of all control image points = 13 Total rmsex = 0.0224, rmsey = 0.0260

Imagen 72- Reporte de los residuales de los puntos de control.

En la siguiente imagen se muestra el "Map Space" del LPS. En el mismo se visualizan las huellas de las imágenes en el terreno, así como también la ubicación de los puntos de control y fotogramétricos en las mismas.

Imagen 73- Huellas de las imágenes en el terreno, puntos de control (triángulos) y fotogramétricos (cuadrados).

ensor	Interior Orientation	Exterior Information					_
	Pe	erspective Center		R	lotation Angles		OK
		(meters)			(degrees)		Previou
	Xo	Yo	Zo	Omega	Phi	Карра	Next
Value	112.678	193.883 🜩	119.641 🚖	-5.86853 🚔	-10.20057 🚖	85.54277 🚖	Cancel
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	Help
Status	[Initial •	r Initial 👻	Initial 💌	Initial 👻	Initial 👻	Initial 👻	(nop
	🔲 Set Status:	Initial 👻	For All Parameters				
	🔲 Apply status t	o all active frames		Exterior Initia	lization	Edit All Images	

Imagen 70- Resultado de la Orientación Exterior de la Imagen 3r.

ensor	Interior Orientation	Exterior Information					
	P	erspective Center		F	Rotation Angles		OK
		(meters)			(degrees)		Previou
	Xo	Yo	Zo	Omega	Phi	Карра	Next
Value	115.501	225.913	118.455 🚖	-6.68549 🚔	-12.79787	84.56243 🚔	Cancel
Std.	0.000	0.000	0.000	0.00000	0.00000	0.00000	
Status	Initial	• Initial •] [Initial 👻	Initial 🔹	Initial 🔹	Initial 🔹	
	🔲 Set Status:	[Initial +]	For All Parameters	- Forester to bis			
	🔲 Apply status I	o all active frames		Exterior Initia	alization	Edit All Images	

Imagen 71- Resultado de la Orientación Exterior de la Imagen 4r.

En el siguiente cuadro se muestran los residuales V_x y V_y de los puntos de control en cada imagen.

The image residuals of the control points The image ID = 1 Point ID Vy -0.0054 ٧x -0.0016 8 0.0157 0.0053 9 103 RMSE of 3 points: mx=0.0099, my=0.0067 The image ID = 2 Vx -0.0115 vy 0.0212 Point ID 8 9 0.0276 -0.0542 0.0140 -0.0263 103 104 -0.0184 -0.0346 RMSE of 4 points: mx=0.0219, my=0.0346 The image ID = 3 Point ID Vx 0.0381 vy 0.0124 40 45 -0.0295 0.0388 104 0.0048 -0.0265 RMSE of 3 points: mx=0.0279, my=0.0280 The image ID = 4 VX 0.0010 Point ID Vy 0.0165 40 45 0.0308 0.0284 104 -0.0322 -0.0216 RMSE of 3 points: mx=0.0258, my=0.0227 Total number of all control image points = 13 Total rmsex = 0.0224, rmsey = 0.0260

Imagen 72- Reporte de los residuales de los puntos de control.

En la siguiente imagen se muestra el "Map Space" del LPS. En el mismo se visualizan las huellas de las imágenes en el terreno, así como también la ubicación de los puntos de control y fotogramétricos en las mismas.

Imagen 73- Huellas de las imágenes en el terreno, puntos de control (triángulos) y fotogramétricos (cuadrados).

En las imágenes siguientes se muestran los "Image Space" de cada fotografía. Esto es la ubicación relativa de los puntos de control y fotogramétricos en la imagen:

Imagen 74- Ubicación relativa de los puntos de control y fotogramétricos en la Imagen 1r, en el Image Space.

Imagen 75- Ubicación relativa de los puntos de control y fotogramétricos en la Imagen 2r, en el Image Space.

Imagen 76- Ubicación relativa de los puntos de control y fotogramétricos en la Imagen 3r, en el Image Space.

15. CONCLUSIONES Y ANÁLISIS DE LOS RESULTADOS.

En líneas generales se debe decir que los resultados no fueron los esperados, ya que no se pudo cumplir con el objetivo del proyecto, que era realizar la comparación entre las restituciones fotogramétricas realizadas con ambos softwares, o mejor dicho de la calidad posicional de cada restitución, debido a que no se pudo lograr la restitución fotogramétrica en el e-foto.

Se hicieron diez intentos de Orientación Exterior en el e-foto, nueve por aerotriangulación y uno por resección espacial, realizando diferentes cambios que se creyeron podían revertir los resultados negativos, y a pesar de ello, no fue posible logar concluir con este proceso, que es necesario para lograr la restitución.

Respecto al LPS, si se logró realizar a la restitución fotogramétrica, obteniendo un RMSE de 0,0177 m (sección 14.3.4.9).

Luego se decidió no realizar el cálculo de la calidad posicional de la restitución hecha en el LPS.

¿Por qué se tomó esta decisión? Son dos los motivos: El primero, como ya se mencionó, es el hecho de que no fue posible realizar la restitución del vuelo en el e-foto y eso imposibilitó cumplir con el objetivo del trabajo.

El segundo fue el hecho de que al momento de haber terminado la restitución fotogramétrica en el LPS, el equipamiento no contaba con la posibilidad de ejecutar el módulo de estereoplotter y por ende no fue posible obtener las coordenadas de los puntos de testeo.

Entonces, a modo informativo, se muestra en este trabajo (página 183) el resultado de la calidad posicional obtenida en el trabajo de Pampinella y Pérez³⁹. Esto parece pertinente ya que el resultado de la restitución fotogramétrica hecha en el LPS en dicho trabajo, no difiere mucho del obtenido en este proyecto. El resultado de ambas aerotriangulaciones, el RMSE obtenido, el número de puntos de control y también en el número de puntos fotogramétricos, son muy parecidos en ambas restituciones.

En la siguiente tabla (113) se exhiben los principales parámetros de ambas restituciones, siendo la Restitución 1 la de este proyecto y Restitución 2 la del Proyecto de Pampinella y Pérez ³⁵.

³⁹ Fuente: Proyecto de Grado: Control Posicional de un Relevamiento Fotogramétrico con UAV. Pampinella, Pérez (2014).

	Restitución 1	Restitución 2
RMSE	0,0177 m	0.013 m
Número máximo de Iteraciones	10	10
Convergencia métrica	0.001	0.001
Converge	SI	SI
Cantidad de puntos de control	6	5
Cantidad de puntos fotogramétricos (agregados manual y automáticamente)	58= 11+47	65= 12+53
Dirección de Vuelo	0 ⁰	0 °
Resultado	Bueno	Bueno

 Tabla 113- Datos y parámetros de las Restituciones 1 y 2

A continuación, en tabla 114, se exhiben los resultados de ambas restituciones hechas en el LPS (las coordenadas de los centros de perspectiva y los ángulos de actitud). En color negro, los resultados de la Restitución 1, y en rojo los resultados de la Restitución 2.

Imagen	X₀(m)	Y₀(m)	Z ₀ (m)	Omega(°)	Phi(°)	Kappa(°)
1r	101.999	97.264	122.297	-1.90287	-3.29522	86.35255
	103.955	98.785	122.848	-2.74815	-2.30338	86.50006
2r	109.665	159.810	119.263	-5.539562	-12.57448	85.56671
	111.932	161.319	119.583	-6.16240	-11.63241	85.69925
3r	112.678	193.883	119.641	-5.86853	-10.20057	85.54277
	115.083	195.150	118.816	-6.52055	-8.91227	85.73612
4r	115.501	225.913	118.455	-6.68549	-12.79787	84.56243
	118.177	227.701	117.147	-7.57491	-11.34840	84.78308

Tabla 114- Resultados de las Restituciones 1 (en negro) y 2 (en rojo).⁴⁰

Y finalmente se exhibe el cálculo del estándar NSSDA realizado en el proyecto de Pampinella y Pérez, para la restitución fotogramétrica realizada en el LPS:

Punto	dX	dY	dZ	dX²	dY²	$dX^2 + dY^2$	dZ ²
3	0.093	-0.016	-0.011	0.009	0.000	0.009	0.000
5	0.104	-0.074	-0.338	0.011	0.005	0.016	0.114
7	0.033	0.029	0.164	0.001	0.001	0.002	0.027
9	-0.318	-0.149	0.629	0.101	0.022	0.123	0.396
10	-0.054	-0.017	0.076	0.003	0.000	0.000	0.006
12	0.017	-0.009	0.132	0.000	0.000	0.000	0.017

⁴⁰ Restitución 1 corresponde a la de este proyecto. Restitución 2 corresponde a la del Proyecto de Pampinella y Péreze

13	0.002	-0.042	-0.162	0.000	0.002	0.002	0.026
14	-0.113	-0.054	0.489	0.013	0.003	0.016	0.239
16	0.037	0.057	0.337	0.001	0.003	0.005	0.114
18	-0.084	0.079	0.151	0.007	0.006	0.013	0.023
19	-0.132.	0.122	0.233	0.017	0.015	0.032	0.054
20	-0.089-	0.074	-0.108	0.008	0.005	0.005	0.114
21	0.006	0.072	0.542	0.000	0.005	0.013	0.023
22	0.007	0.112	1.275	0.000	0.013	0.013	0.054
23	-0.017	0.024	0.173	0.000	0.001	0.001	0.030
25	-0.066	0.039	-0.300	0.004	0.002	0.006	0.013
26	-0.085	0.065	-0.397	0.007	0.004	0.011	0.158
28	-0.112	0.062	-0.510	0.013	0.004	0.011	0.158
29	-0.093	0.003	-0.448	0.009	0.000	0.009	0.201
30	-0.064	0.020	-0.218	0.004	0.000	0.004	0.048
31	-0.060	0.186	0.926	0.004	0.000	0.004	0.048
33	0.002	0.092	0.383	0.000	0.008	0.008	0.147
36	0.027	-0.067	0.737	0.001	0.004	0.005	0.543
38	-0.156	0.029	-0.588	0.024	0.001	0.025	0.346
39	-0.125	-0.026	-0.657	0.016	0.001	0.016	0.346
41	-0.117	-0.032	-0.810	0.014	0.001	0.015	0.656
42	-0.234	0.006	-1.456	0.055	0.000	0.055	2.210
43	-0.187	0.049	0.000	0.035	0.002	0.037	-
44	0.007	0.037	-0.183	0.000	0.001	0.001	0.033
Tabla 115- (Cálculo del es	tándar del N	Suma	0.502	8.867		
					Promedio	0.018	0.328

RMS

NSSDA

0.134

0.232

0.574

1.123

Resultado: Precisión posicional testeada: 0.232 m en horizontal y 1.123 m en vertical, para un Nivel de confianza de 95%.

⁴¹ Fuente: Proyecto de Grado: Control Posicional de un Relevamiento Fotogramétrico con UAV. Pampinella, Pérez (2014).

ALGUNAS REFLEXIONES

Respecto a la pregunta a responder:

La pregunta a contestar era: ¿Cuán bueno es el e-foto en relación al LPS, en el momento de realizar una restitución de un vuelo realizado con UAV y utilizando una cámara no fotogramétrica?

Dados todos los intentos de aerotriangulaciones (no exitosas) que se realizaron en el e-foto, y por otro, el hecho de que en el foro de la página web de dicho programa hay algunos cuestionamientos de usuarios que no han logrado realizar la restitución fotogramétrica de vuelos realizados con UAV e imágenes tomadas con cámaras no fotogramétricas, se podría decir que este software no es apto para la realización de dicho tipo de proyectos fotogramétricos.

Se debe aclarar que esos cuestionamientos que se encuentran en el foro del e-foto, respecto al uso de imágenes tomadas con UAV son muy posteriores al comienzo de esta investigación.

Ahora bien, la afirmación hecha en el párrafo anterior de que el software libre e-foto no es apto para la realización de proyectos fotogramétricos para vuelos hechos con UAV e imágenes tomadas con cámaras no fotogramétricas es una primera aproximación, dado los resultados alcanzados en esta investigación.

En este sentido, entendemos que para que esta afirmación se más robusta se deberían realizar otras pruebas con un número interesante de intentos de restituciones de diferentes vuelos con UAV, dándole así un base estadística a dicho testeo.

Por lo que, este trabajo deja la puerta abierta, o es un primer paso, para continuar en esta línea de investigación.

De todas formas, parece importante destacar que el e-foto ha resultado ser un software amigable. Lo que se puede afirmar por la experiencia adquirida durante este año. Dado que, como parte del cuerpo docente del departamento de Geomática, se ha adquirido mucha práctica sobre su uso, al haber utilizado el e-foto en el curso práctico de Fotogrametría dictado por el Instituto de Agrimensura. En dicho curso, el autor ha tenido la oportunidad de contar con un gran número de usuarios de dicho programa. Los estudiantes trabajaron en simultáneo con los mismos vuelos, utilizando imágenes tomadas con cámaras fotogramétricas en aviones volando a más de 1000 metros de altura, logrando buenos resultados y también descubriendo algunas fallas del software. Basada en esta experiencia se puede afirmar que el e-foto resultó ser un software amigable y efectivo tanto para fines educativos como profesionales, más allá de algunas limitaciones específicas.

Dicha oportunidad, de dictar nuevamente ese curso, sumado a esta investigación, abre las puertas para solicitar el apoyo voluntario de los estudiantes que ya cursaron la asignatura, para poder un número significativo de restituciones fotogramétricas de vuelos hechos con UAV el e-foto y así obtener un testeo más riguroso

Comparación entre los softwares:

Se debe recordar que en este trabajo no se quiso hacer una comparación total entre ambos softwares, sino que se pretendía comparar la calidad posicional entre dos restituciones fotogramétricas del mismo vuelo realizado con un drone. Y, aunque dicho objetivo no fue logrado, se pudo utilizar ambas estaciones fotogramétricas y utilizar muchas de sus funcionalidades destinadas a la restitución fotogramétrica. Por tal motivo pareció pertinente marcar las principales diferencias detectadas entre el e-foto y el LPS durante ambos procesos.

No se pudo hacer una comparación cuantitativa de los software pero si se hizo una comparación.

A continuación se muestra en una tabla una rápida comparación entre el e-foto y el LPS, en lo referente a ciertas funcionalidades disponibles (o no) para el proceso de restitución.

FUNCIÓN	LPS	e-foto
Determinación del sentido de vuelo	\checkmark	✓
Configuración del tipo de cámara.	\checkmark	✓
Seteo del sistema de coordenadas de los puntos de control.	\checkmark	✓
Seteo del sistema de proyección de las coordenadas de los puntos de control.	\checkmark	~
Configuración de las unidades del sistema de coordenadas para las componentes vertical y horizontal.	\checkmark	×
Configuración de las unidades angulares para omega, phi y kappa.	\checkmark	×
Seleccionar la orientación de los ejes del sistema de coordenadas	~	×
Crear capas de piramidación de imágenes	\checkmark	×
Tres ventanas por imagen para la visualización de las mismas en el marcado de los puntos.	\checkmark	~
Importar archivo de coordenadas de los puntos de control.	\checkmark	\checkmark
Definir los campos del archivo de coordenadas de los puntos de control.	✓	×
Generación manual de los puntos fotogramétricos	\checkmark	\checkmark
Generación automática de los puntos fotogramétricos	\checkmark	×
Especificación de los parámetros de Orientación Exterior	\checkmark	✓
Medición de los puntos de control en 3D.para la aerotriangulación.	\checkmark	×
Configuración del número máximo de iteraciones para el cálculo de la aerotriangulación.	✓	✓
Configuración avanzada de parámetros para la aerotriangulación.	\checkmark	×
Configuración de la máxima desviación estándar de los puntos en las imágenes.	\checkmark	×
Ingresar la desviación estándar de los coeficientes de distorsión dela cámara.	\checkmark	✓
Ingresar la matriz para el cálculo de los coeficientes de distorsión radial.	\checkmark	×

 Tabla 116- Comparación de funciones disponibles para la restitución fotogramétrica entre e-foto y LPS.

Lecciones aprendidas:

- 1. El LPS si cuenta con la posibilidad de determinar el sentido de vuelo, por lo cual no hubiera sido necesario rotar las imágenes (ver sección 14.1).
- 2. La pre señalización de los puntos en el terreno no fue la ideal. Los puntos marcados sobre las zonas con pasto debieron ser más grandes.
- 3. El tiempo que llevó este trabajo fue demasiado extenso. Los prolongados tiempos de pausa fueron contraproducentes en el proceso de investigación.

Posibilidades futuras de investigación:

Dado que se cuenta con las imágenes, certificado de calibración de la cámara, coordenadas de los puntos de control y de testeo y un estándar de cálculo de calidad posicional, se puede decir que se tiene todo listo para testear otro software fotogramétrico, o el mismo e-foto si el mismo tuviera cambios realizados que permitiera trabajar con el tipo de imágenes utilizadas en este proyecto.

16. ANEXOS

16.1. MICRODRONE MD4-1000.

El vehículo aéreo microdrone md4-1000 es un avión en miniatura del tipo VTOL (Vertical Take Off and Landing, o sea de despegue y aterrizaje vertical). Es fabricado por la empresa alemana GmBh fundada en el año 2005.

El mismo está dentro de la categoría de los vehículos aéreos conocidos drones o UAV⁴² (Unmaned Aerial Vehicle) y en este caso en particular se trata de un cuadricóptero ya que cuenta con 4 hélices.

El md4-1000 tiene un cuerpo hecho de fibra de carbono y tiene una autonomía de vuelo de alrededor de 45 minutos. El tiempo máximo de vuelo puede llegar a los 90 minutos solamente si se utiliza una configuración específica de máximo rendimiento. El md4-1000 puede cargar hasta 1200 g.

Este UAV puede volar bajo lluvia, nieve o polvo. Su cuerpo resistente y ultraliviano de fibra de carbono permite además que alcance una altura de hasta 1000 metros.

Sus 4 poderosos motores sin escobillas y específicamente diseñados para esta aeronave, han resultado muy silenciosos y confiables.

Imagen 78- microdrone md4-1000.43

⁴² UAV :Unmaned Aerial Vehicle (Vehículo aéreo no tripulado)

⁴³ Fuente:https://www.microdrones.com/fileadmin/web/Images/produkte/md4-1000/md4-1000uav_model_workhorse_01.jpg

16.1.1. CONTROL DEL MD4-1000

El mismo puede ser comandado manualmente por un control remoto o puede volar de manera automática utilizando el software de coordenadas GPS Waypoint de microdrone.

> VUELO A CONTROL REMOTO:

Se utiliza un dispositivo inalámbrico que se usa para el comando de otros equipos de su tipo. La ventaja de este sistema es la posibilidad de realizar cambios en el momento y local del vuelo.

> VUELO AUTOMÁTICO:

El vuelo es planificado y llevado a cabo siguiendo los waypoints que son ingresados en el software que controlará al drone.

Los waypoints son coordenadas tridimensionales de los puntos de un camino. Son los puntos de referencia tridimensionales utilizados en la navegación basada en GPS. Luego el recorrido que hará la aeronave serán las líneas que unen dichos puntos.

Para configurar el vuelo automático, se necesitan los siguientes insumos:

- Imagen georreferenciada (la cual será levantada del GoogleEarth, ya que este último está ligado e interactúa con el programa de control de vuelo).
- Propiedades del vuelo.
- > Indicar aproximadamente el punto inicial y final de cada línea de vuelo.
- > Indicar porcentajes de traslapes y altura del vuelo.

16.1.2. Especificaciones Técnicas:

ESPECIFICACIONES TÉCNICAS :	
Peso del vehículo:	2650 g
Carga máxima recomendada:	800 g
Carga máxima soportada:	1200 g
Peso máximo de despegue:	6000 g
Batería:	6S2P LiPo, 22.2V, 13000mAh
Velocidad de ascenso:	7.5 m/s
Velocidad crucero:	12.0 m/s
Empuje máximo:	118.0N
Autonomía de vuelo:	88 minutos (en cond. Ideales)
Radio de vuelo:	500 m control remoto, 20 km en automático.
Altitud máxima de vuelo	2000 m
Rango de temperatura:	-10 a 50°C
Humedad:	máx.: 90%
Tolerancia al viento:	21m/h para fotos fijas.
Dimensiones:	1.030 m de motor a motor opuesto, 0.495 m de alto.

 Tabla 117- Especificaciones del md4-1000.44

⁴⁴ Fuente: http://wiki.microdrones.com/index.php/md4-1000.

16.1.3. DIBUJOS TÉCNICOS.

⁴⁵ https://www.microdrones.com/fileadmin/web/PDF/technischeZeichnungen/md4-

¹⁰⁰⁰_technical_drawing.pdf

16.2. CÁMARA SONY NEX-7

La Sony NEX-7 es una cámara digital lanzada en Agosto del año 2011 por la empresa japonesa Sony. Esta es una cámara sin espejos y con lentes intercambiables y como tal tiene un cuerpo menor a una cámara réflex tradicional de un solo lente, aunque si conserva la misma dimensión del sensor y características de una APS-C⁴⁶.

Imagen 100-Cámara Sony NEX-747

⁴⁶ En fotografía digital, APS-C (Advanced Photo System, Sistema Avanzado de fotografía tipo C Clasic) hace referencia a un formato de sensor de imagen que tiene unas dimensiones aproximadamente iguales a las de un formato homónimo de negativo fotográfico.

⁴⁷ Fuente: https://en.wikipedia.org/wiki/Sony_NEX-7.

16.2.1 CARACTERÍSTICAS:

Esta cámara integra un sensor APS-C de 24.3 mega pixeles, grabadora de video de 1920p x 1080p a 60 cuadros por segundos en AVCHD (Advanced Video Coding High Definition). Está construida en una robusta aleación de magnesio y posee un visor LED de 2.4 mega píxeles de resolución.

16.2.2. ESPECIFICACIONES:

- > Sensor de imagen APS-CMOS de 24⁴⁸ megapíxeles
- ➤ ISO⁴⁹100-16000.
- > Visor LED de 2.4 megapíxeles de resolución.
- > Primer obturador electrónico. Tiempo máximo de obturación 20 ms.
- > Grabadora de video 1080p 60 HD con micrófono incorporado (estéreo).
- > Las Imágenes se almacenan en formato JPG, RAW o RA/JPG combinados.
- No presenta memoria interna. Se debe utilizar una tarjeta para tal fin. La marca Sony ofrece una tarjeta de memoria, Memory Stick PRO Duo/Pro-HG Duo/PRO-HG HX Duo, así como también SD/SDHC/SDXC.
- > Dimensiones: 119.9 x 66.9 x 42.6 mm
- La cámara puede ser adquirida con un lente de 18-55mm f/3.5-5.6 o únicamente el cuerpo.
- > Peso aproximado: 353g (cuerpo de la cámara + batería + tarjeta de memoria).

⁴⁸ El semiconductor complementario de óxido metálico o *complementary metal-oxide-semiconductor* (CMOS) es una de las familias lógicas empleadas en la fabricación de circuitos integrados . En la actualidad, la mayoría de los circuitos integrados que se fabrican usan la tecnología CMOS.

⁴⁹ ISO: En fotografía, el término sensibilidad se utiliza para referirse a la rapidez con la que reacciona el material fotosensible a la acción de la luz. Cuanto mayor sea la sensibilidad (de la película o del sensor), menos exposición se necesitará para formar la imagen.

16.2.3. IDENTIFICACIÓN DE LAS PARTES:

- 1- Flash
- 2- Iluminador AF/luz del auto disparador del captador de sonrisas.
- 3- Botón disparador.
- 4- Botón de navegación.
- 5- Interruptor ON/OFF (Alimentación).
- 6- Sensor remoto (58).
- 7- Botón de liberación del objetivo.
- 8- Zapata de accesorios de bloqueo automático.
- 9- Marca de posición del sensor.
- 10-Micrófono.
- 11-Objetivo.
- 12-Montura.
- 13-Sensor de imagen.
- 14-Contactos del objetivo.
- 15-Botón (Reproducción).
- 16-Botón (extracción de flash).
- 17-Rueda de ajuste de dioptrías.
- 18-Dial de control L.
- 19-Dial de control R.
- 20-Botón MOVIE (película).
- 21-Botón AF/MF/Botón AEL.
- 22-Palanca de conmutador AF/MF/AEL.
- 23-Rueda de control.
- 24-Tecla programable C.
- 25-Tecla programable B.
- 26-Tecla programable A.

Imagen 80- Partes de la cámara Sony NEX-7.⁵⁰

⁵⁰ Fuente: es/support/es/content/cnt-man/NEX-7/list

- 27-Sensor ocular.
- 28-Visor.
- 29- Caperuza de ocular.
- 30- Terminal HDMI.
- 31-Terminal (USB).
- 32- Conector MIC (micrófono).
- 33-Sensor de luz.
- 34- Monitor LCD.
- 35- Cubierta de la tarjeta de memoria/batería.
- 36-Gancho para la correa de bandolera.
- 37-Receptáculo para trípode.
- 38- Altavoz.
- 39-Luz de acceso.
- 40- Compartimento de la batería.
- 41- Ranura de inserción de la tarjeta de memoria.
- 42- Cubierta de la placa de conexión.

Imagen 81 - Partes de la cámara Sony NEX-7.51

⁵¹ Fuente: https://www.sony.es/support/es/content/cnt-man/NEX-7/list.

16.3 CALIBRACIÓN DE LA CÁMARA

16.3.1. INTRODUCCIÓN

Hoy en día existen en el mercado una gran variedad de cámaras digitales no-métricas, que sí son utilizadas con fines fotogramétricos además del uso amateur. Estas cámaras poseen buena calidad radiométrica, pero mala calidad geométrica, provocada por la distorsión del objetivo, que puede llegar a valores de hasta 500µm. En este trabajo se utiliza una cámara digital no métrica (la Sony NEX-7) con un fin fotogramétrico.

Debido a esa mala calidad geométrica, antes de utilizar estas cámaras en tareas fotogramétricas es necesario realizar la calibración de las mismas. Para ello, existen diversos métodos y algoritmos de calibración de cámaras. Algunos de ellos, son procesos automáticos realizados a partir de fotografías de patrones impresos.

En este caso se usa el programa "Camera Calibration Software", de la compañía TOPCON, el cual es utilizado por la empresa española que realiza la restitución de las fotos obtenidas por la máquina fotográfica colocada en el drone md4-1000. Este software se basa en tomar fotografías de un patrón impreso, desde diferentes ángulos como se detallará más adelante. Las fotografías tomadas de este patrón impreso, que consiste en una imagen con más de100 puntos pre-señalizados, son ingresadas al programa que luego determinará los elementos de la orientación interna y distorsión del objetivo. Este programa se basa en la resolución de las ecuaciones de colinearidad para obtener los parámetros buscados.

Dicho software está diseñado para obtener los datos de calibración de la cámara digital, la cual se utilizará luego para tomar imágenes aéreas del terreno, con la cámara colocada en el drone, y luego, con ellas, realizar un modelo digital del terreno relevado. Esto es posible luego de realizado el proceso de restitución fotogramétrica. Como ya lo mencionamos, es necesario conocer los parámetros de la cámara digital. Dichos parámetros se obtendrán realizando el procedimiento de calibración, el cual se deberá realizar con la cámara configurada exactamente igual a la que tendrá cuando se realicen la toma de las imágenes aéreas.

Con dicho procedimiento, se obtendrán los siguientes 7 parámetros, conocidos como parámetros intrínsecos de la cámara:

- ✓ Coordenadas del Punto Principal de la Cámara...... X_P,Y_P
- > DISTANCIA FOCAL:
La distancia focal es la distancia medida a lo largo del eje óptico desde el nodo posterior del lente al plano imagen de mejor definición. La distancia focal que se obtiene en el proceso de calibración seguramente será diferente a la indicada por la cámara. Esta distancia focal obtenida en este proceso de ajuste matemático realizado por el programa se denomina distancia focal calibrada.

DISTORSIONES GEOMÉTRICAS:

Todos los objetivos fotográficos convencionales producen en mayor o menor medida distorsiones geométricas como son la distorsión radial y la tangencial.

✓ DISTORSIÓN RADIAL

Es un tipo de aberración que origina que las líneas rectas aparezcan como curvas en la fotografía, debido a la desalineación que sufren los rayos al atravesar las distintas lentes. Los componentes simétricos de la distorsión radial ocurren a lo largo de las líneas radiales con centro en el punto principal de mejor simetría.

✓ DISTORSIÓN TANGENCIAL

Es la debida a las imperfecciones en la construcción y posicionamiento del conjunto de lentes que produce un descentrado de los centros de curvatura del lente con respecto al eje óptico.

Esta distorsión provoca un descentrado que tiene componente radial y tangencial, siendo esta última perpendicular al vector de posición del punto en cuestión.

En las lentes modernas, el efecto de la distorsión tangencial es pequeño comparado con el de la distorsión radial.

> COORDENADAS DEL PUNTO PRINCIPAL DE LA CÁMARA:

El punto principal es el punto determinado por la proyección ortogonal del centro de proyección sobre el plano del negativo. Las coordenadas de este punto serán X_P, Y_P y seguramente difieran del centro geométrico del sensor.

16.3.2. FUNCIONAMIENTO DEL SOFTWARE.

A continuación se hará una descripción del proceso que seguirá el software de Topcon para obtener los parámetros de la cámara.

16.3.2.1 PASO 1: PREPARACIÓN

El software trae una hoja patrón, que está en formato dxf. Este archivo será leído en forma automática por el software de calibración de la cámara.

Imagen 82- Modelo de marca a utilizar.⁵²

Esta hoja patrón deberá ser impresa (en una hoja A4 es suficiente) y pegada sobre una pared lisa ya que luego será fotografiada con la cámara digital que se utilizará en el vuelo.

Las fotos de la hoja patrón deberán ser tomadas exactamente con la misma configuración que tendrá la cámara al momento de tomar las fotos aéreas.

⁵² Fuente: Operation Manual Camera Calibration Software. PI Calib.

16.3.2.2. Paso 2: Toma de Imágenes.

Se deben tomar imágenes de la hoja patrón que fue pegada en la pared, desde 5 ángulos diferentes (directamente frontal, desde una posición superior, desde una posición inferior, desde el lado derecho y desde el lado izquierdo).

Es recomendable que las fotos sean tomadas con la cámara colocada sobre un trípode para obtener fotos con mejor calidad y además resulta más fácil ajustar los ángulos de toma.

Imagen 83- La imagen patrón tomada desde 5 ángulos diferentes.⁵³

> LA Hoja Patrón:

La hoja patrón de calibración contiene, como se muestra en la figura, 145 puntos y 5 cuadrados iguales:

Los puntos negros en los 4 cuadrados periféricos (excepto el central) son considerados como marcas estándar y son enumeradas de la siguiente manera: # 1, # 2, # 3, #4 (superior izquierda, superior derecha, inferior izquierda, inferior derecha).

El punto en el cuadrado central está ubicado exactamente en el centro de la hoja y se le asigna # 5.

Incluyendo estas marcas estándar, hay un total de 145 puntos identificados en el programa, con números de identificación que van desde el # 101 hasta el # 240 (los mismos no están numerados en la hoja patrón).

Durante el proceso de calibración de la cámara, los centros de cada uno de estos 145 puntos son detectado por el software y utilizados para los cálculos.

⁵³ Fuente: Operation Manual Camera Calibration Software. PI Calib.

Imagen 105- Identificación de los puntos en la hoja patrón.⁵⁴

Como se muestra en la siguiente figura, se debe pegar la hoja patrón de calibración en una pared lisa, de forma que la misma quede estirada y firme, pudiéndose utilizar una cinta scotch.

⁵⁴ Fuente: Operation Manual Camera Calibration Software. PI Calib.

Imagen 84- Colocación de la hoja patrón sobre la pared.55

Se debe elegir un lugar donde pegar la hoja patrón, que luego será fotografiada, de modo tal que las imágenes obtenidas prácticamente no tengan reflejos.

Respecto a la altura, es aconsejable que los puntos # 1, # 2 (cuadrados superiores) estén a la altura del ojo de la persona que tomará las fotografías.

> CONFIGURACIÓN DE LA CÁMARA

Al momento de tomar las fotografías de la hoja patrón, para la calibración de la cámara, la misma debe ser ajustada y configurada de forma idéntica a cómo estará cuando se tomen las fotografías aéreas.

El foco debe ser configurado en la opción manual. Y el auto foco debe estar apagado (OFF)

Nota: Si se usa lentes de zoom, se debe utilizar solamente en la posición más amplia o en la más telescópica.

CALIDAD Y TAMAÑO DE IMAGEN:

No hay restricciones para esto, pero es deseable que las imágenes tengan la mejor definición posible. Por lo cual es recomendable que las fotos sean del mayor tamaño y la menor compresión que se puedan obtener.

⁵⁵ Fuente: Operation Manual Camera Calibration Software. PI Calib.

✓ IMAGEN TOMADA DE UN ÁNGULO DIRECTAMENTE FRONTAL:

Imagen 85- Toma frontal de la hoja patrón.⁵⁶

✓ IMAGEN FRONTAL TOMADA DESDE EL LADO IZQUIERDO:

Imagen 86- Toma frontal desde un ángulo a la izquierda de la hoja patrón.⁵⁶

⁵⁶ Fuente: Operation Manual Camera Calibration Software. PI Calib.

✓ IMAGEN FRONTAL TOMADA DESDE EL LADO DERECHO:

Imagen 87- Toma frontal desde un ángulo a la derecha de la hoja patrón.⁵⁷

Al igual que la fotografía tomada desde el lado izquierdo, la imagen tomada desde el lado derecho deberá contener todos los puntos de la hoja patrón, estando la columna de puntos más a la derecha de la misma, completa dentro de la foto. Además el centro de la hoja patrón deberá estar en el centro de la fotografía tomada.

✓ IMÁGENES TOMADAS DESDE UNA POSICIÓN SUPERIOR:

Imagen 88- Toma desde un ángulo superior de la hoja patrón.⁵⁷

⁵⁷ Fuente: Operation Manual Camera Calibration Software. PI Calib.

✓ IMÁGENES TOMADAS DESDE UNA POSICIÓN INFERIOR:

Imagen 89- Toma desde un ángulo inferior de la hoja patrón.⁵⁸

✓ VISTA Y DETALLES DE UNA IMÁGEN TOMADAS DESDE UNA POSICIÓN SUPERIOR:

Imagen 90- Vista y detalles de una imagen tomadas desde una posición superior.⁵⁸

⁵⁸ Fuente: Operation Manual Camera Calibration Software. PI Calib.

Al igual que la fotografía tomada desde una posición superior, la imagen tomada desde una posición inferior deberá contener todos los puntos de la hoja patrón, estando la fila superior de puntos completa dentro de la foto. Además el centro de la hoja patrón deberá estar en el centro de la fotografía tomada.

16.3.2.3. PROCESAMIENTO DE IMÁGENES:

Se deben importar las 5 imágenes tomadas hacia el software de Calibración de la Cámara y guardarlas.

El Programa automáticamente detecta el centro de cada uno de los puntos marcados en la las fotografías tomadas de la hoja patrón y también, de manera automática, el software realiza los cálculos de calibración.

Para poder realizar los cálculos de calibración de la cámara, es necesario determinar de forma precisa las coordenadas (x,y) de los puntos impresos en la hoja patrón que fue fotografiada.

16.3.2.4. PASOS A SEGUIR EN EL SOFTWARE:

Una vez abierto el programa, la pantalla principal se despliega, y se deben seguir los siguientes pasos:

- ✓ En el menú, elegir FILE NEW PROJECT.
- La ventana "New Project" se abrirá. Se debe ingresar el Nombre del Proyecto y dar el OK.
- ✓ La ventana "Select Sheet Size" se abrirá. Seleccione el tamaño de la hoja que se eligió para imprimir a hoja patrón.
- ✓ La ventana "Open" se abrirá ahora. Seleccione las 5 imágenes tomadas y hacer click en el botón "OK ".
- La ventana "Confirmation of Initial Focal Length" se abrirá, luego se ingresa el valor de la distancia focal configurada en la cámara cuando se tomaron las fotografías. Por último se debe hacer click en el botón "OK ".

✓ Las fotografías tomadas son registradas en imágenes en miniatura y aparecerán como se muestra en pantalla:

Imagen 91- Imágenes de la hoja patrón ingresadas al programa.⁵⁹

16.3.2.4. CALIBRACIÓN TOTALMENTE AUTOMÁTICA:

- > Seleccionar en el Menu: [Process] y luego [Full Automatic Calibration]. O cliquear en el botón:
- > En el caso de gue los puntos centrales no puedan ser detectados automáticamente, se debe ejecutar la medición manual [Manual measurement].

⁵⁹ Fuente: Operation Manual Camera Calibration Software. PI Calib.

16.3.2.5. CALIBRACIÓN MANUAL:

En este programa de Calibración, las coordenadas de los centros de todos los puntos (incluyendo las marcas estándar en los cuadrados) son medidas de forma semi-automática siguiendo los pasos que se indicarán. Sin embargo es necesario conocer el diámetro de todos los puntos marcados, para que las imágenes estén compuestas por lo menos de 5 píxeles o más en las fotografías tomadas de modo de detectar correctamente el centro de los puntos.

- Inicialmente, en la hoja patrón, se tienen 5 cuadrados. El punto central de cada uno de los 4 cuadrados periféricos deberá ser detectado (4 puntos en 5 fotografías diferentes, totalizando 20puntos).
 - ✓ Confirmar que las 5 imágenes están guardadas en un proyecto.
 - ✓ Seleccionar Menu: [Process] y luego [Measure Standard Marks of All Images].
 - ✓ Se abre la ventana "Measure 4 Standard Marks of All Images".Luego cliquear OK.
- > En una segunda ventana, la imagen de la primera fotografía será visualizada.
- Si es necesario, hágale un zoom + o un zoom para ajustar el brillo de la imagen. (En Menu: [View] [Zoom In Zoom Out]).

Imagen 92- Fotografía de la hoja patrón ingresada al programa.⁶⁰

Ahora se deberán medir las 4 marcas standard periféricas colocando el cursor sobre cada una de ellas. Esto se logra haciendo un click cuando el cursor esté exactamente posicionado

⁶⁰ Fuente: Operation Manual Camera Calibration Software. PI Calib.

Sobre el punto, lo cual se deberá hacer tratando de lograr la mejor precisión posible. Se deberá medir en sentido horario, en el siguiente orden: superior izquierda (#1), superior derecha (#2), inferior derecha (#3), e inferior izquierda (#4). El centro de cada punto será detectado automáticamente y con gran precisión.

- ✓ Se aconseja utilizar el Zoom out en este procedimento.
- ✓ La ventana "Measure Standard Mark: Enter Mark N°" se abrirá.
- ✓ Si el número indicado en Standard Mark es correcto haga click en OK

blac	4.1			OK
INO:	(1-4)	200,000,00	Ca	incel
	X =	1/39/293394	1.01	202
	Y =	666.93701	i 🌮 i	2®2
			3 6 3	4

Imagen 93- Ventana "Measure Standard Marks".⁶¹

- ✓ Si el centro del punto es detectado, una marca en cruz amarilla será mostrada.
- ✓ Si el click fuera hecho sin posicionar el cursor sobre el punto, haga click en "Cancel" e intente medir nuevamente.
- ✓ Si no fue posible detectar el punto, se exhibirá el siguiente mensaje:

"Center detection was not Successsful. Re-try Measurement". Además, una marca roja aparecerá en el lugar donde se hizo el click.

Si no se logra la detección del centro después de varios intentos, seguramente el problema esté en la fotografía, la cual deber ser tomada nuevamente y reemplazada.

Este procedimiento deberá ser repetido en las 4 marcas estándar.

Luego de haber completado la medida de las 4 marcas estándar, la siguiente pantalla se abre (imagen 114):

⁶¹ Fuente:Operation Manual Camera Calibration Software. PI Calib.

Imagen 94- Resultado gráfico luego de la medida manual de las marcas.⁶²

Luego, pequeños cuadrados azules serán desplegados alrededor de todos los puntos, incluyendo las marcas estándar encerradas en los cuadrados negros.

Acá, se debe chequear que casi todos los puntos estén dentro de los cuadrados azules (se aceptarán algunas excepciones a esto). Luego cliquee en el botón: OK \rightarrow Store Image and Close, en la ventana de dialogo "Confirm Rough Location of Target Mark".

Si se llegara a tener como resultado, algo similar a la imagen que se exhibe como ejemplo a continuación, donde muchos puntos quedan afuera de los cuadrados azules, cliquear en Retry, volver hasta el paso número 3 y comience nuevamente a tomar las medidas.

⁶² Fuente: Operation Manual Camera Calibration Software. PI Calib.

Este tipo de resultado negativo seguramente ocurrirá cuando la medida de las 4 marcas estándar no fue realizada correctamente.

Imagen 95- Ejemplo de un Resultado gráfico "malo" de la medida manual de las marcas.⁶³

16.3.2.6. CÁLCULOS:

Luego de haber hecho una calibración totalmente automática o de haber medido las manualmente las marcas estándar de las 5 fotografías, los cálculos se iniciarán automáticamente. La ventana "**Result of Camera Calibration**" se desplegará:

⁶³ Operation Manual Camera Calibration Software. PI Calib.

Total Judge	ок					ОК
Camera Calib	ration is Successful					
Measureme	nt Accuracy Summary					
Residual of	image processing					
0.0443	[Pixel]					
Reference \	/alue					
Residual of	3D point coordinates					
y= 0.268	3 [mm] V= 0.1849 [mm]	7- 0.8495	- [mm]	¥¥7-	0.4342	[mm]

Imagen 118 - Ventana con el Resultado de la Calibración de la Cámara.⁶³

Si a la derecha de Total Judge se muestra un Ok, se deberá cliquear el botón OK.

Si a la derecha de Total Judge apareciera NG, es porque la calibración no se pudo completar y se deberá realizar nuevamente el procedimiento de cálculo.

Si después de eso el problema continúa, se deberán tomar las fotografías nuevamente.

> CRITERIO DE ACEPTACIÓN:

El criterio para obtener el OK en el judgment criteria es que se obtenga un residual menor a 0.25 del tamaño del píxel, en el procesamiento de imágenes de todos los puntos. Un objetivo apropiado es alcanzar un residual menor a 0.1 de pixel.

El residual de las coordenadas de los puntos 3D nos dará las variaciones producidas por el pandeo de la hoja, por no estar del todo plana la hoja patrón fotografiada.

El residual de las coordenadas 3D será el valor de referencia.

El resultado de los cálculos será exhibido en la siguiente pantalla (imagen 119). En la misma se puede ver la distorsión del lente y los parámetros de orientación interna.

Por defecto, la distorsión del lente magnifica los objetos 4 veces. Las líneas rojas, muestran la distorsión después de la corrección, las líneas blancas muestran los valores ideales.

En Max of Before Correction se exhibe:

- $\checkmark~$ La mayor distorsión en la imagen en pixeles y en μ m.
- % muestra el máximo porcentaje de distorsión medida en la diagonal de la imagen del sensor.

era File Name	C:¥Dc1000-Project¥	Sample-D20	0-35mm¥Samp	200-35mm.cmr		Current Camera F
Display Sca	e (Lens Distortion)	4	•			Other Camera Fi
		1107				Print
						ОК
					-Interior Orientation Par	ameters
					6	
(Focal Length 34	.888898 [mm]
T I		-			Principal Point Xp	.124543 [mm]
					Principal Point Yp 7.	642419 [mm]
					Lens Distortion Paramet	ers
				_	Radial Distortion K1	0.0001082326
		-			Radial Distortion K2	-7.86662e-008
					Tangential Distortion P1	-1.624713e-005
					Tangential Distortion P2	6.802209e-006
					Pixel Size Xr 5.8	[um]
					Pixel Size Yr 5.8	[um]
· · · · ·					- Max of Before Correctio	n
					240.29242 [um]	29.295242 [Pixel]
					1 1	

Imagen 119- Ventana con el Resultado de las distorsiones del lente.⁶⁴

16.3.2.7. ARCHIVO:

Los resultados de estos cálculos serán guardados automáticamente en un archivo con el nombre del proyecto y con extensión cmr.

⁶⁴ Fuente: Operation Manual Camera Calibration Software. Pl Calib. http://www.terrageomatics.com/downloads/Pl-calib-manual.pdf

16.4 CERTIFICADO DE CALIBRACIÓN DE LA CÁMARA.

Certificado de calibración de la cámara, aportado por la empresa UAV-Agrimensura Birriel & González, vigente a la fecha del vuelo:

#Principal Point Offset xpoff ypoff in mm (Inpho)
XPOFF -0.18159061574000696
YPOFF 0.14447927150051479
#Principal Point Offset xpoff ypoff in mm
XPOFF 0.18159061574000696
YPOFF 0.14447927150051479
#Principal Point Offset xpoff ypoff in pixel
XPOFF 46.561696343591393
YPOFF 37.045967051413982

#How many fiducial pairs (max 8): NUM_FIDS 4

#Fiducials position DATA_STRIP_SIDE left

#Symmetrical Lens Distortion Odd-order Poly Coeffs: K0,K1,K2,K3 SYM_DIST 0 -1.6752577052970018e-005 9.4508373432617847e-008 1.2956808409416067e-011

#Decentering Lens Coeffs p1,p2,p3 DEC_DIST -4.1935812779823216e-006 2.8665000454610265e-008 0

#How many distortion pairs (max 20): NUM_DIST_PAIRS 20

> FASES DEL PROCESO DE RESTITUCIÓN FOTOGRAMÉTRICA.

16.6.3.1. ENCABEZADO O PREPARACIÓN:

El encabezado es donde se define el proyecto en el software. Se le asigna un nombre, el contexto en el cual fue realizado y otros datos de interés. También se incluyen otros datos tales como: escala media, altura de vuelo, datos de calibración de la cámara, traslape entre las imágenes, sistema de referencia, coordenadas (aproximadas) geodésicas o locales del centro del bloque fotogramétrico y las coordenadas de los puntos de control.

Luego se cargan las imágenes. A las mismas, se les puede mejorar el realce mediante técnicas de ajustes más finos que poseen algunas de las EFD. Estos ajustes permiten una mejor visualización en el monitor y así se facilitan algunos de los procesos que se ejecutarán durante la restitución.

16.6.3.2. PROCESOS DE ORIENTACIÓN:

Una vez que se han cargado las imágenes digitales en el proyecto y se haya controlado que las mismas estén en la secuencia correcta, se procede a efectuar la orientación. Se deben realizar dos procesos por separado y en el siguiente orden: orientación Interior y luego la orientación exterior.

ORIENTACIÓN INTERIOR:

Es el procedimiento por el cual se reconstruye el haz perspectivo en idénticas condiciones a como se forma en la cámara.⁶⁸

En dicho procedimiento se calculan los parámetros de transformación que permiten pasar del sistema píxeles de la imagen digital al sistema métrico de la cámara.

La Orientación Interior, en la práctica, puede ser realizada rápidamente. La misma consiste en marcar con el cursor en la pantalla del ordenador, las marcas fiduciales para cada imagen y luego ejecutarla. Esto lo hace el programa calculando los parámetros de transformación. La medida precisa de las mismas dependerá de la práctica del operador así como la definición de las imágenes y de la sensibilidad del mouse. También existen softwares con reconocimientos de formas y que pueden realizar dicho procedimiento de manera automática.⁶⁹

En este proyecto se utilizan fotografías tomadas por una cámara digital no fotogramétrica, la cual no cuenta con marcas fiduciales, y se toman como tales los 4 vértices de la imagen.

 ⁶⁸ Apuntes de fotogrametría (Bermúdez, Hebenor).
 ⁶⁹ Fotogrametría Digital (Toni Schenk, 2012).

> ORIENTACIÓN EXTERIOR:

El objetivo fundamental de la Orientación Exterior es obtener la posición y la actitud de la cámara en el momento de captura de cada imagen referido al sistema de coordenadas del espacio objeto (terreno).⁷⁰

Para ello se aplica la condición de colinealidad, exigiendo que el centro de proyección, el punto imagen y el punto terreno estén en una misma recta.

Imagen 120:- Condición de colinealidad.⁷¹

Este método (de Orientación Exterior) difiere de los utilizados en la fotogrametría analógica y analítica, que los dividen en dos procesos: orientación relativa y orientación absoluta.

La Orientación Relativa referencia cada haz de rayos en relación a su homólogo con la imagen consecutiva, reconstruyendo así la posición exacta de cada par estereoscópico en el espacio en el momento de la toma de cada imagen. Ya la Orientación Absoluta ubica cada par de haces en el sistema de coordenadas del terreno, o sea en el espacio objeto, y lo lleva a la escala correspondiente.

En la orientación exterior se calculan los parámetros de cada imagen con lo cual luego se puede reconstruir el vuelo.⁷²

 ⁷⁰ Apuntes de fotogrametría (Bermúdez, Hebenor).
 ⁷¹ Fuente: www.um.es/geograf/sigmur/sigpdf/temario_7.pdf

⁷² Apuntes de fotogrametría (Luiz Coelho, Jorge Nunes Brito, 2007).

Para ubicar un sólido en el espacio necesitamos 6 parámetros. En el caso de una fotografía aérea estos 6 parámetros son:

- ✓ La posición del centro perspectivo en el sistema de coordenadas terreno (X_0 , Y_0 , Z_0).
- ✓ Y las rotaciones que presenta el sistema de coordenadas de la cámara respecto al sistema de coordenadas del terreno (ω , ϕ , κ).

Para poder calcular dichos valores, es necesario contar con las coordenadas (X,Y,Z) de un cierto número de puntos de control.

Como el sistema no es lineal necesitamos aproximaciones a los parámetros que debemos calcular, por esto el cálculo se hará a través de iteraciones.

En la práctica, para las aproximaciones de las coordenadas iniciales del centro perspectivo podemos utilizar las coordenadas del centro del área de trabajo y la altura de vuelo. Para los ángulos podemos utilizar 0 para Φ , K y ω .

Generalmente, la Orientación Exterior en las EFD se realiza por el método de aerotriangulación.

16.6.3.3. AEROTRIANGULACIÓN:

La aerotriangulación (AT) es el procedimiento por el cual se determinan los parámetros de orientación exterior de cada imagen además de las coordenadas terreno de puntos fotogramétricos que se seleccionan en las imágenes y deben estar al menos en dos fotografías.⁷³

Con este método se pueden realizar todos los cálculos para determinar los parámetros de orientación exterior de cada imagen y las coordenadas de los puntos fotogramétricos, en un único paso, a través de una solución de mínimos cuadrados.

La AT es un proceso establecido y que demuestra el potencial de las EFD para automatizar los procesos fotogramétricos.

Este proceso comienza con el marcado y estudio previo de los fotogramas y donde se seleccionan un número adecuado de puntos de control y que estén en el mayor número posible de imágenes. Esta fase es crucial, más que nada en lo que refiere a los puntos fotogramétricos (o de enlace). Y de esta planificación de puntos dependerá la calidad final de la AT. Por esto, la medida de los puntos en la AT, solo puede iniciarse una vez que estén claramente identificados tanto los puntos fotogramétricos como los de control. La distribución de los puntos fotogramétricos, se la hace respetando la distribución de Von Grüber.

⁷³ Apuntes de fotogrametría (Luiz Coelho, Jorge Nunes Brito, 2007).

Este procedimiento de AT, que es el utilizado por las EFD, se conoce como aerotriangulación por haces perspectivos (bundle adjustment) y se puede entender como la ejecución de la resección espacial en simultáneo con la intersección espacial, de las imágenes aéreas de una o más líneas de vuelo.⁷⁴

Para que la fotogrametría nos devuelva resultados satisfactorios, se debe contar con buenos datos iniciales. Esto quiere decir que se debe contar con puntos de control bien distribuidos y relevados con la mejor precisión posible, sin que esto eleve demasiado los costos del trabajo.

+ (3)	+ (4)	
+ (1)	+ (2)	
+ (5)	+ (6)	

Imagen 121- Distribución de los puntos de Von Grüber.⁷⁴

⁷⁴ Fuente: Apuntes de fotogrametría (Luiz Coelho, Jorge Nunes Brito, 2007).

16.7. TUTORIAL E-FOTO

16.7.1. INTRODUCCIÓN

A continuación se presenta un tutorial para realizar la restitución fotogramétrica con el software e-foto, utilizando como ejemplo las imágenes analógicas escaneadas, que fueron tomadas con una cámara aérea fotogramétrica, en un vuelo a unos 1300 metros de altura, sobre la ciudad e Rio de Janeiro en el año 1997.

SOBRE EL E-FOTO:

Es una Estación Fotogramétrica Digital (EFD) educativa libre GNU/GNP de la Universidad Estadual de Río de Janeiro, (UERJ).

La última versión de este programa se la puede descargar en el siguiente link:

http://www.efoto.eng.uerj.br/download/latest-version

S-foto A free GNU/GPL educational digital photogram	metric workstation	Wednesday, May 25, 2016 A- A A+
HOME LEARN DOWNLOAD ACADEMIC PUBLICATIO		
DOWNLOAD BY SVN DOWNLOAD BY SVN File a development version. The bugs are being corrected and the data entry interface is not yet final. Only for developers and those who know programming. It can only be downloaded by SVN with the command: svn checkout https://svn.code.sf.net/p/e-foto/code/trunk e-foto-code	<text><text><text><text><text><text><text></text></text></text></text></text></text></text>	DATA AND IMAGES Figure 2015 Descriptions of ground points Descriptions of ground points D
	Josenia SEF URL: by Artio	

Imagen 122- Página web del e-foto, pestaña download.⁷⁵

⁷⁵Fuente: www.efoto.eng.uerj.br

En la fecha en que se descargó el e-foto para realizar este proyecto, estaban disponibles las siguientes versiones:

2015.09.385 version debian package Linux 64 bits.

2014.09.378 version- Windows exe- 64 bits.

Se descargó la versión para Windows.

En la misma página de "Download" del e-foto, también se descargaron los siguientes archivos:

- 1- Las 3 imágenes aéreas que se utilizan para la restitución.
- 2- Distribución de los puntos de control.
- 3- Descripción de los puntos de control.
- 4- Coordenadas de los Puntos de control.

Una vez que se instaló el programa y se descargaron los archivos antes mencionados, se creará un nuevo proyecto fotogramétrico, siguiendo, a grandes rasgos, el siguiente esquema de trabajo o diagrama de flujo que también eta indicado en la página del e-foto:

Imagen 963- Flujo de trabajo en el e-foto.⁷⁶

⁷⁶ Fuente: www.efoto.eng.uerj.br

16.7.2. PROCESO DE RESTITUCIÓN FOTOGRAMÉTRICA:

Para este tutorial se utilizará todo el material disponible en la página del e-foto. Las 3 imágenes de Rio de Janeiro y el certificado de calibración de la cámara utilizada en dicho vuelo.

16.7.2.1 PASO 1: CREACIÓN DEL PROYECTO FOTOGRAMÉTRICO.

Al abrir el e-foto, en el Menú Project se cliquea en Nuevo y luego se comienzan a cargar los datos del proyecto:

> PROJECT HEADER

La primer Ventana al abrirse es la del encabezado del Proyecto, llamada "Project Header" (Encabezado).

Acá se deben completar los siguientes campos:

- ✓ Name (nombre del proyecto).
- ✓ Description (breve descripción del proyecto).
- ✓ Owner (nombre del "dueño" o creador del proyecto).
- ✓ Goals (objetivos del proyecto).
- ✓ Context (contexto en cual se realiza).

También hay metadatos del proyecto, que se cargan automáticamente.

	Project Header
Name Mara	cana2
Description	
Owner Brun	o Silveira
Goals iniciar	con el programa e foto en el depto de geodesia
Context	
	Metadata
File path	G:/clase e foto
File name	maracana2.epp
Creation date	06/03/2015 3:57:27 PM
Modification date	20/10/2015 7:45:20 AM

Imagen 97- Encabezado del proyecto fotogramétrico en el e-foto.

TERRAIN

La segunda ventana que se debe completar es la relativa al terreno (Terrain):

Acá se deben completar los siguientes campos:

- ✓ Max Altitude (Altitud máxima).
- ✓ Min Altitude (Altitud mínima).
- ✓ Mean Altitude (Altitud promedio).
- ✓ GRS (Geodetic Reference System, el geoide).
- ✓ CPS (proyección).

Y también se deben completar los datos de las coordenadas geográficas aproximadas del centro de la zona de proyecto:

- ✓ Latitud.
- ✓ Hemisferio
- ✓ Longitud
- ✓ Este u Oeste de Greenwich.

Estas coordenadas las tomaremos del programa Googl Earth, ubicando el cursor en el centro del Estadio Maracaná, en la ciudad de Río de Janeiro.

Max Altitude	100.000 m	GRS	SIRGAS2000	*
Min Altitude	0.000 m	CPS	UTM	*
Mean Altitude	50.000 m	UTM Fuse	23	4
- Approximate	geographic coordinates of center	project area	emisphere 💌	1
Approximate	geographic coordinates of center	Southern He	emisphere 💌	
Approximate	geographic coordinates of center	Southern He	emisphere 🔻]

Imagen 98- Ventana Terreno del proyecto en el e-foto.

> Sensor

La tercera ventana se refiere al Sensor:

En esta ventana se debe cargar toda la información de la cámara fotográfica y también los parámetros de la misma, que están en el certificado de calibración:

- ✓ Sensor ID (Identidad del Sensor).
- ✓ Tipo (type)
- ✓ Certificado de calibración de la cámara (camara calibration certifacte):
- ✓ Parámetros del Sensor

Detallando los puntos anteriores:

Sensor ID: Carl Zeis RMKA15/23.

<u>Tipo</u>: Debajo de Type, hay 5 parámetros a determinar:

- o Detector. Opciones:
 - CCD (cámara digital).
 - Film (cámara analógica) (se marca Film)
- o Geometría:
 - Frame. el e-foto cuenta solo con esta opción.⁷⁷
- o Calculation Model. Opciones:
 - With Fiducials Marks. (se marca esta opción)
 - With Sensor Dimensions.
 - Fixed Parameters.

En este caso elegimos el modelo de cálculo con marcas fiduciales. Se abre un campo para la colocación de las coordenadas X e Y de las mismas, las cuales están en el certificado de calibración.

También es posible ingresar la desviación estándar de las coordenadas de las marcas fiduciales. En este caso no están disponibles.

- Plataforma: Aérea.
- Energy Source: Solar.

⁷⁷ Cuando la cámara tiene certificado de calibración, se utiliza Frame Camera (Cámara Métrica).

Certificado de Calibración de la Cámara.

- o Numero: 01/96.
- o Emitido (Dispatch): 01/02/1996.
- o Vencimiento (Expiration): 01/02/1998.

Parámetros del Sensor:

- o Distancia Focal Calibrada: 152.538mm σ = 0.043.
- o Coordenadas del Punto Principal y sus respectivas desviaciones Stándar:

Xo = - 0.063	$\sigma_{Xo} = 0.016$
Yo = -0.037	$\sigma_{\rm Yo} = 0.017$

o Coeficientes de distorsión (Distorcion Coeficients):

En el certificado de calibración vienen dados dos distorsiones diferentes. Distorsión radial y distorsión descentrada. La distorsión radial, desplaza los puntos de la imagen radialmente a partir del centro, mientras que la tangencial o descentrada los desplaza perpendicularmente a la línea radial.

o Coeficientes de Distorsión Descentrada

K ₀ =-2.667 x10 -05	$\sigma_{k0} = \cdots$
K ₁ =-1.813 x10 -09	$\sigma_{k1} = 1.217 \times 10-08$
K ₂ =-5.877x10 -14	$\sigma_{k2} = 1.092 \times 10 - 12$
K₃ =-5.909x10-18	$\sigma_{k3} = 3.009 \times 10 - 17$

o Coeficientes de Distorsión Descentrada:

<i>p</i> ₁=-6.278x10 ⁻⁰⁷	$\sigma_{P1} = 1.254 \text{ x10}^{-07}$
$p_2 = -7.172 \times 10^{-07}$	$\sigma_{P2} = 1.459 \text{ x10}^{-07}$

		Se	nsor				
ensor Id	CarlZeis RM	1KA15/23					
escription	Camara aé x 23	rea analógica Carl Zeiss	RMK A 1	5/23. Tipo	o de lentes	Pleogon A2. F	ilm 23
Туре							
	Detector	film	•	P	latform	aerial	•
	Geometry	frame	*	Energy	Source	natural	*
Calculat	ion Model	With Fiducial Marks	•				
Camera Ca	alibration Cer	tificate:					
Numbe	er 01/96	Dispatch	01/02/1	996 🔻	Expiratio	on 01/02/20	01 🔻
Sensor Par	rameters						
				Standa	ard Deviati	on Available	-
Calibrate	ed Focal L	ength (152.538	StDev	-1.00000	000e+01		
Coordina	tes of Princip	al Point (mm)					
				Standard	Deviations	Available	-
X ₀		-0.063		StDe	1.60000	000e-02	
y _o		-0.037		StDe	1.70000	000e-02	
$k_0 = \frac{1}{k_1}$ $k_1 = \frac{1}{k_2}$ $k_3 = \frac{1}{k_3}$	2.66700000e- 1.81300000e- 5.87700000e- 5.90900000e- ered	-05 -09 -14 -18	StDev StDev StDev StDev	0.000000 1.217000 1.092000 3.009000	000e+00 000e-05 000e-09 000e-14	Ausilabla	
0.000.001							
Consi	5 //¥IIIIIIII	-07			100 1 250	+0000000-04	
P ₁ -	.17200000e-	07		St	Dev -1.49	500000e-04	5
P ₁ - P ₂ 7	17200000e-	07		St	Dev -1.49	500000e-04	
P ₁ - P ₂ 7	7.17200000e- arks (mm)	07		Standa	Dev -1.49	500000e-04	ble 🔻
P ₁ - P ₂ 7	7.17200000e- arks (mm)	113.000		Standa StDev	Dev -1.49	500000e-04	ble 🔻
Fiducial Marks	7.17200000e- arks (mm)	07 113.000 0.016		Standa StDev StDev	rd Deviatio	500000e-04	ble 💌
P1 - P2 7 Fiducial Marks 4 4 marks X1 Y1 - X2 -	-17200000e- arks (mm)	07 113.000 0.016 -113.006		Standa StDev StDev StDev StDev	rd Deviatio Not Availa	500000e-04 ons Not Availa able able	ble 🔻
P1 - P2 7 Fiducial Ma 4 4 marks X1 Y1 - X2 - Y2 -	7.17200000e- arks (mm)	07 113.000 0.016 -113.006 0.018		Standa StDev StDev StDev StDev StDev	Dev -1.49 Dev -1.49 rd Deviatio Not Availa Not Availa Not Availa	500000e-04 ons Not Availa able able able	ble V
P1 - P2 7 Fiducial Marks 4 4 marks X1 - Y1 - X2 - Y2 - X3 -	-17200000e- arks (mm)	07 113.000 0.016 -113.006 0.018 0.004		Standa StDev StDev StDev StDev StDev StDev	nd Deviation Not Availa Not Availa Not Availa Not Availa	500000e-04 50000 500000 50000 500000 50000 500000 5000000 50000 500000 50000000 50	
P1 - P2 7 Fiducial Marks 4 4 marks X1	7.17200000e-	07 113.000 0.016 -113.006 0.018 0.004 113.015		Standa StDev StDev StDev StDev StDev StDev StDev	rd Deviatio Not Availa Not Availa Not Availa Not Availa Not Availa	500000e-04 500000e-04 5000 Availa able able able able able able	
P1 P2 Fiducial Ma 4 marks X1 Y1 X2 Y2 X3 Y3 X4	7.17200000e-	07 113.000 0.016 -113.006 0.018 0.004 113.015 0.007		Standa StDev StDev StDev StDev StDev StDev StDev StDev StDev	rd Deviatio Not Availa Not Availa Not Availa Not Availa Not Availa Not Availa	500000e-04 500000e-04 500000e-04 500000e-04 able able able able able able able	

Imagen 126- Ventana Sensor del e-foto

> Flight

La cuarta ventana se refiere al vuelo (Flight):

En esta ventana se cargan información y parámetros del mismo.

Información:

- ✓ Identificación del Vuelo: Flight ID: 84296.
- ✓ Descripción.
- ✓ Fecha de vuelo: 01 de Mayo de 1997.

Parámetros de Vuelo:

- ✓ Altitud de vuelo sobre el nivel del mar: 1240 m.
- ✓ Escala nominal: 1:8000.
- ✓ Traslape Longitudinal: 60%.
- ✓ Traslape Transversal: 30%.

	F	Flight
Flight Information		
Flight Id	84296	
Producer's Name		
	vuelo e	en RJ sobre zona del Maracana
Description		
Date of Flight Exec	cution 01/05	i/1997 🗸
Date of Flight Exec	cution 01/05	i/1997 -
Date of Flight Exec Flight Parameters Nominal Flight Alti	tude Above S	i/1997 ▼ Sea Level (m) 1240.00
Date of Flight Exec Flight Parameters Nominal Flight Alti Nominal Scale	tude Above S	Gea Level (m) 1240.00 1:8000
Date of Flight Exec Flight Parameters Nominal Flight Alti Nominal Scale Longitudinal Overl	tude Above S	Gea Level (m) 1240.00 1:8000 60.00

Imagen 99- Ventana Vuelo (fligth) del e-foto.

IMAGES

La quinta ventana es donde se cargan las imágenes aéreas (Images):

Se cliquea en el botón Import Images para cargar las imágenes al proyecto. Es aconsejable que el nombre de las imágenes (de cada archivo), sea corto, sin espacios, y que no contenga caracteres especiales.

Imagen 100- Ventana Images (imágenes) del e-foto.

En la imagen superior vemos que se cargaron las 3 imágenes, denominadas pic16, pic17 y pic18. Y también se observa que ya se realizaron tanto la Orientación Interior como Exterior de las 3 Imágenes como indica el "tick" verde en las columnas IO y EO.

Una vez cargadas las fotografías, podemos editar datos de cada una ellas, seleccionándola debajo de la lista de "Images".

Al seleccionarla, se abre la ventana titulada Image (imagen 127)

La misma tiene varios campos, algunos se pueden llenar, y otros se completan automáticamente al cargar la imagen.

- ✓ Image Id: Nombre de la imagen.
- Select Image Id: Se puede cambiar la imagen, abre el explorador de archivos de la computadora. Está disponible si se activa el modo Edición.
- ✓ View Image: Permite visualizar la imagen.
- ✓ Resolution: Resolución: 300 dpi en este caso. (dpi: dots per inch, puntos por pulgada).

En el caso de contar con un GPS integrado a la cámara, que pueda obtener las coordenadas del centro de perspectiva de la misma en el momento en que se toma cada fotografía, se las puede introducir en el programa. En este caso no se tienen esos datos.

Lo mismo ocurriría si se hubiera tenido un IMU en el vuelo. Es posible cargar los ángulos de Euler.

También hay un campo para los Metadatos, que se completa de manera automática, después de cargar cada imagen.

			Im	age			
nage Id	pic16	Select Image	Vie	w Image	•	Re	solution 300 dpi
Ground	Coordinates of exp	osure station centre (op	tical c	enter of	sensor)		
Type 1	nitial Value		-	Standa	rd Deviations	lot Available	
E ₀ 0.0	00 m			StDev	Not Available		
N ₀ 0.0)0 m			StDev	Not Available		
H ₀ 0.0	000 m			StDev	Not Available		
Inertial	Navigation System	data (in Decimal Degree	s)				
Type I	nitial Value		+	Standa	rd Deviations	lot Available	*
Omega	0.0000			StDev	Not Available		
Phi	0.0000			StDev	Not Available		
Kappa	0.0000			StDev	Not Available		
Metada File Pat File Nai	ta h me pic16.bmp						
Height	2838 px			Width	2895 px		
IO Para	meters						
a0: -121.9841		a1:	0.0848			a2: -0.0001	
b0: 115.9529 I		b1: -	1: -0.0002			b2: -0.0848	
	amotors (Snatial Ro	section)					
EO Para							
EO Para ω: 1.8	516°		φ: -0	.8560°			к: - <mark>1.04</mark> 17°

Imagen 129- Ventana Image, de una de las imágenes cargadas en el e-foto.

En la imagen superior, se muestran los parámetros de la Orientación Interior (IO Parameters) y de la Orientación Exterior porque las mismas ya fueron ejecutadas. De lo contrario, esos campos no aparecen.

IMÁGENES UTILIZADAS

En este vuelo, que se toma de ejemplo, realizado el 01 de Mayo de 1997 sobre la ciudad de Rio de Janeiro. Se tienen 3 imágenes, que las denominamos pic16, pic17 y pic18.

Imagen 130- Las 3 imágenes aéreas sobre zona del Maracaná, Rio de Janeiro ⁷⁸.

Primera imagen. PIC16:

Imagen 131- Fotografía aérea "pic 16".78

⁷⁸ Fuente: www.efoto.eng.uerj.br

Segunda imagen. **PIC17:**

Imagen 132-Fotografía aérea " pic 17".79

⁷⁹ Fuente: www.efoto.eng.uerj.br

> Tercera imagen. **PIC18**:

Imagen 133- Fotografía aérea " pic 18".⁸⁰

En la parte superior de cada fotografía está presente la siguiente información:

⁸⁰ Fuente: www.efoto.eng.uerj.br

> PUNTOS

Por último se cargan los puntos de control (en inglés "control Points"). Clicando en "Points", en la barra de opciones de la izquierda, se abre la siguiente ventana:

Imagen 135- Ventana para ingresar Puntos (Points) del e-foto.

El e-foto cuenta con dos opciones para ingresar los puntos. Se lo puede hacer uno a uno, o cargando un archivo con todos los puntos.
Si se opta por agregarlos uno a uno, cliqueamos en el botón New. Se abre la siguiente ventana:

Point Id		Туре	Cont	rol	
Description			Cont Chec Photo	rol king ogrammetr	ic
Spatial Coor	dinates				1112-1
	S	tandard Deviatio	ns No	t Available	-
E 0.000 m		StDev Not	Availa	ble	
N 0.000 m		StDev Not	Availa	ble	
H 0.000 m		StDev Not	Availa	ble	
Images Mea	Image	Column	Lin	e	
					11111 11111 11111

Imagen 136- Ventana para el ingreso de un punto.

Para cada punto están disponibles los siguientes campos:

- ✓ Point Id: Identificación del punto.
- ✓ Tipo de Punto: Existen 3 Opciones:
 - o Control.
 - Checking (de testeo).
 - o Photogrammetric (fotogramétrico).

La segunda opción es ingresar todos los puntos en un archivo del tipo txt. En este proyecto de ejemplo del -foto, el archivo se denomina "E-fotoGroundControlCoordinates.txt", tiene el siguiente formato: Número de punto precedido por la letra P, y luego las coordenadas E,N y h separados por espacio o tabulador, el siguiente punto pegado a la coordenada h del punto anterior

A continuación se muestra cómo deben estar las coordenadas de los puntos, en el archivo txt.:

P01	681100.209	7464305.984	12.002P02	681079.091	7464791.902	10.103
P01:	Punto 01.					
Coord	enada E: 6811 (00.209				
Coord	enada N: 74643	305.984.				
Altur	ан: 12.002.					

Imagen 137- Formato del archivo con los puntos de control a cargar en el e-foto.

Luego de haber subido el archivo de los puntos de control (en este ejemplo), se los visualiza así, bajo el ítem Puntos:

		Points		
Point Id	Туре	E	N	Н
P01	control	681100.209	7464305.984	12.002
P02	control	681079.091	7464791.902	10.103
P03	control	680114.618	7464269.661	14.941
P04	control	680262.749	7465023.964	16.250
P05	control	680377.816	7465806.099	20.306
P06	control	680888.011	7465251.245	68.268
P08	control	681875.866	7465066.854	5.980
P09	control	680626.292	7464876.497	12.075
P10	control	682031.497	7465841.798	21.146
P11	control	682134.395	7464127.842	8.656
P12	control	681361.203	7465299.251	7.796
P13	control	682208.231	7465250.939	5.913
P14	control	682912.044	7464795.162	4.595
Export to Txt				Import from txt

Imagen 138- Coordenadas de los puntos de control cargados

16.7.2.2. PASO 2: ORIENTACIÓN INTERIOR.

Una vez que el Nuevo Proyecto fue realizado, y que las imágenes y todos los datos necesarios ya fueron cargados, se procede a realizar la Orientación Interior.

Para realizar la O.I para cada una de las imágenes, se selecciona el ítem Execute, y luego Interior Orientation. Se abrirá una pequeña ventana que permite seleccionar la imagen en la cual se ejecutará la O.I, mediante la medición de las marcas fiduciales.

Luego deben localizarse las marcas fiduciales en cada imagen respetando los números y su posición correspondiente. Obsérvese que, en este caso hay 4 marcas fiduciales, y sus coordenadas, que fueron cargadas en los datos del Sensor, aparecen en la parte inferior de esta pantalla debajo de Fiducial Marks Coordinates.

Project	Execute H	lelp	
Ol Proje Terra	Interior	Orientation	Ctrl+I
	Spatial F	Resection	Ctrl+E
	Photo Triangulation		Ctrl+T
Sens	Stereo Plotter		Ctrl+P
E Imac	DSM-Ex	traction	Ctrl+D
. Point	Ortho-R	ectification	Ctrl+R
	Photo-tr	iangulation Full Report	Ctrl+F
	Project I	Report	Ctrl+J

Imagen 101- Orientación Interior en el menú Execute.

En el campo de las coordenadas, como muestra la siguiente imagen, aparece marcada la línea 1, correspondiente a la marca fiducial número 1. Para localizar en la pantalla cada marca fiducial, se debe presionar en el botón Measure Mark 🛛 y ubicarla en la imagen.

Interior Orientation			
View Execute			
× • Q •	24 %		Detalview
		CC	Overview @
1744-00 2501-02			
171100 X 2391.92			a
		ruucai naik coordinates	
X Y	Col Row		
1 113.000 0.016	2771.90536 1361.99830		
2 -113.006 0.018	1420 20250 21 1270100		
3 0.004 113.015	1439.89359 31.1070109	n	
4 0.007 -112.975	1443.30172 2696.46605	···	`

Imagen 140- Ventana de Orientación Interior.

Luego de medida la marca fiducial número 1, la línea seleccionada salta a la línea inmediatamente inferior. Si se quisiera volver a marcar, simplemente se posiciona sobre la línea correspondiente y se marca nuevamente en pantalla la posición deseada.

Imagen 141- Detalle de la marca fiducial número 2.

Con el botón **Fit View**, la imagen vuelve a su tamaño original. Se deben marcar las cuatro marcas fiduciales. Una vez que esto haya sido concluido, se procede a calcular la Orientación Interior para la primera imagen. Para ello se presiona el botón "Interior Orientation".

Imagen 10242- Botón para calcular la Orientación Interior

Automáticamente se despliega una ventana con los resultados de la Orientación Interior, o sea que, exhibe los parámetros de transformación ajustados del sistema pixel al sistema cámara. Es la Matriz Xa y sus respectivas Varianzas:

J Interior Orientation Repo	ort							_ • •	
Xa La V									
	Xa		MVC(Xa)						
	1		1	2	3	4	5	6	
A0	-121.98415	1	0.03093	-0.00001	-0.00001	0.00000	0.00000	0.00000	
A1	0.08479	2	-0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	
A2	-0.00011	3	-0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	
во	115.95294	4	0.00000	0.00000	0.00000	0.03093	-0.00001	-0.00001	
B1	-0.00018	5	0.00000	0.00000	0.00000	-0.00001	0.00000	0.00000	
B2	-0.08479	6	0.00000	0.00000	0.00000	-0.00001	0.00000	0.00000	
		Accept				•	4 <u></u>	·	

Imagen 143- Vector Xa para la primer imagen y su matriz de varianza (MVC).

La			MVC(La)							
	1		1	2	3	4	5	6	7	8
1	11.69921	1	0.00	0.00	0.00	0.00	-0.00	0.00	0.00	0.00
2	-7.79907	2	0.00	0.00	0.00	0.00	0.00	-0.00	0.00	0.00
3	-11.69921	3	0.00	0.00	0.00	0.00	0.00	0.00	-0.00	0.00
4	-7.79893	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	- <mark>0.0</mark> 0.
5	-11.69879	5	-0.00	0.00	0.0 <mark>0</mark>	0.00	0.00	0.00	0.00	0.00
5	7.79893	6	0.00	-0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	11.69879	7	0.00	0.00	-0.00	0.00	0.00	0.00	0.00	0.00
3	7.79907	8	0.00	0.00	0.00	-0.00	0.00	0.00	0.00	0.00

Imagen 144- Matriz La de las coordenadas de las marcas fiduciales ajustadas.

En una segunda pestaña, se tiene la Matriz de observaciones La, que son las coordenadas de las marcadas fiduciales ajustadas:

En una tercer pestaña, se tiene la Matriz de las covarianzas V. También se exhibe la varianza y la desviación estándar σ_0 .

Ø	7 Interior Orientation Report	
	Xa La V	
	V(mm)	
	1	
	1 -0.09837	
	2 -0.04177	$\sigma_0^2 = V^T P V / (n-m) = 0.022762 \text{ mm}^2$
	3 -0.09802	
	4 -0.04162	
	5 0.09812	
	6 0.04167	σ₀=0.150872 mm
	7 0.09827	
	8 0.04173	
ľ	Accept	

Imagen 145- Matriz V de los residuales de la O.I. y el σ_0

El valor del σ_0 es dado en milímetros en la O.I, pero nos interesa tenerlo en píxeles. Para ello debemos transformar el resultado. Si tenemos la definición de las imágenes, que está dada en puntos por pulgada (*d.p.i: dots per inch*), se lo puede transformar fácilmente y se espera obtener un $\sigma_0 \leq 0.3$ pixeles.

16.7.2.3. PASO 3: ORIENTACIÓN EXTERIOR.

El e-foto permite realizar la orientación Exterior de dos maneras diferentes. Estas son: La Resección Espacial y la Aeotriangulación. La primera calcula los parámetros de la Orientación Exterior de cada imagen de manera independiente. La segunda, los calcula de forma simultánea para todo el bloque y es un procedimiento clásico de la restitución fotogramétrica.

En este tutorial Explicaremos esta última solución, ya que la aertriangulación es el procedimiento clásico por excelencia d la O.E.

16.7.2.3.1. AEROTRIANGULACIÓN:

Para efectuar la aerotriangulación, previamente se debe haber realizado la O.I de todas las imágenes.

Para comenzar, se va al menú Execute y seleccionamos Photo Triangulation:

Imagen 146- Photo Triangulation (aerotriangulación) en el menú Execute.

Al hacerlo, se abre la pantalla principal de la aerotriangulación:

Imagen 147- Ventana de aerotriangulación.

En la misma, hay tres modos de visualización para cada imagen. En simultáneo se abren dos fotografías para la aerotriangulación (en la imagen anterior están las imágenes pic16 y pic17).

Esta función cuenta con 3 pantallas de visualización para cada imagen (Overview, DetailView y la pantalla principal inferior). La *Overview*, está arriba y a la izquierda, donde se muestra la imagen completa. Arriba a la derecha, se tiene el detalle al hacer zoom en la *Detailview* y bajo, está la ventana principal donde se marcan los puntos de control y los puntos de enlace. En la parte inferior de la pantalla, hay 4 tablas. Estas son:

- All Registered Points (All Points): Esta tabla contiene la lista de todos los puntos que fueron cargados en el proyecto, y los fotogramétricos, en caso que hayan sido creados, muestra su identificación (Id), su tipo (de control -Ground Control- de enlace -Photogrammetric, o de chequeo- Checking Point.) y las componentes de sus coordenadas, E,N y H.
- Puntos en la Imagen Izquierda (Left image Points): Esta tabla contiene los puntos que fueron medidos (marcados) en la imagen izquierda. Sobre esa tabla se encuentra el nombre de la fotografía y es posible cambiar la imagen del lado izquierdo (en este caso es posible seleccionar la imagen 16 o la 18, ya que la imagen 17 está abierta en a la derecha). En dicha tabla esta la identificación (Id) de cada punto marcado y sus coordenadas píxeles (Col, Lin) en la imagen.
- Puntos Imagen Derecha (Right image Points): Esta lista contiene los puntos que fueron medidos (marcados) en la imagen derecha. Sobre la tabla se encuentra el nombre de la fotografía y es posible cambiar la imagen del lado derecho (en este caso es posible seleccionar la imagen 17 o la 18, ya que la imagen 16 está abierta en a la izquierda). En dicha tabla esta la identificación (Id) y sus coordenadas en pixeles (Col, Lin) en la imagen.
- Image Measurements: Dado un punto seleccionado en algunas de las tablas previamente descriptas, esta tabla (Image Measurements) muestra la lista de imágenes donde este punto fue medido (o sea, donde el mismo aparece) y también las coordenadas pixel en cada imagen.

Para correr la aerotriangulación, se deben marcar los puntos de control y, si se los considera necesario, se marcan puntos fotogramétricos.

Cada punto de control, se los selecciona en la tabla All Registered Points, la fila de dicho punto queda de color azul y luego se lo marca con el botón 🔯 en las imágenes donde se encuentre.

Al hacerlo, el mismo aparecerá en la ventana Image Measurements.

16.7.2.3.2. PUNTOS FOTOGRAMÉTRICOS:

Los puntos fotogramétricos, se pueden generar, si se los considera necesarios, con el botón 🛛 🔯

Al hacerlo, se agrega un nuevo punto en la lista *All Registered Points*. Cada vez que se agrega un punto fotogramétrico, el mismo aparecerá como PFXX, siendo XX el número de dicho punto. Luego se lo selecciona en dicha lista y se lo marca en las imágenes donde está presente, una vez que se lo haya identificarlo, sin lugar a dudas, como si fuera un punto de control.

Para lograr una mejor visualización de las imágenes y facilitar el marcado de los puntos y otras funciones, en la pantalla de la aerotriangulación, están disponibles varios botones.

Estos son:

Ø	MARCAR PUNTOS FOTOGRAMÉTRICOS
Ð	MOVER
Q	ZOOM
N	ANTIALIAS (DESENFOCA LEVEMENTE LAS IMAGENES)
(H)	MOVIMIENTOS IGUALES EN LAS MISMAS IMÁGENES.
Q *	ZOOM IGUALES
100 % 100 %	PORCENTAJE ZOOM PARA IMAGEN IZQUIERDA PORCENTAJE ZOOM PARA IMAGEN DERECHA
	VOLVER AL ZOOM INICIAL LA IMAGEN IZQUIERDA
	VOLVER AL ZOOM INICIAL LA IMAGEN DERECHA
EE	VOLVER AL ZOOM INICIAL AMBAS IMÁGENES
	OVERVIEW (ENCIENDE/APAGA VENTANA DE OVERVIEW)
2x •	NEARVIEW (ENCIENDO O APAGA VENTANA DETAILVIEW)
42400221	

Imagen 148-"Botones" del e-foto.

En la siguiente tabla se muestran los puntos de control que fueron marcados en cada una de las imágenes:

PUNTO	PIC16	PIC17	PIC18
P01	X	Х	х
P02	X	Х	х
P03	X		
P04		х	х
P05	Х	х	
P06			
P07			
P08			
P09	Х	Х	х
P10		х	х
P11		х	х
P12	Х	Х	х
P13			
P14			X

Tabla 119- Distribución de los puntos de control en las imágenes.

También fueron marcados dos puntos fotogramétricos: PF14 y PF15.

PUNTO	PIC16	PIC17	PIC18
PF14	х	х	Х
PF15	x	х	х

Tabla 120- Distribución de los puntos fotogramétricos en las imágenes.

16.7.2.3.3. DIRECCIÓN DE VUELO.

Una vez que se ha terminado de medir los puntos de control y los fotogramétricos en las tres imágenes, se debe indicar la dirección del vuelo para cada imagen del bloque.

Este paso es necesario para el cálculo inicial por aproximación de los ángulos "κ" de cada toma fotográfica, y para proceder con el ajuste del bloque. Al marcar la dirección del vuelo en las imágenes, las mismas aparecen con un tick en verde. Se puede ajustar el ángulo de vuelo

"girando la rueda" utilizando el mouse o digitando el ángulo en el espacio a la derecha de la rueda.

Imagen 103- Ventana de determinación de la dirección de vuelo.

16.7.2.3.4. EJECUTANDO LA ORIENTACIÓN EXTERIOR:

Ahora que los puntos de control y fotogramétricos fueron marcados y que las direcciones de vuelo fueron indicadas para las tres imágenes, es posible correr la aerotriangulación aérea. Para eso se presiona el botón 🛣 . Inmediatamente se abre la ventana:

images available	>> picl3.bmp picl3.bmp	
	<	
Points available	Points selected	
	>> P01 P02 P03	
	> P04 P05 P06 P08	
	< P09 P10 P11 P12 P12 P13 P13	
	P13 D14	

Imagen 150- Ventana de selección de puntos e imágenes para la AT.

En esta ventana (imagen 150) es posible determinar qué puntos y qué fotografías serán utilizados en la fototriangulación y formarán parte del bloque. Es posible mover las fotografías del cuadro Images Selected (imágenes seleccionadas) a Images Availables (Imágenes disponibles).

Con los puntos de control y fotogramétricos ocurre lo mismo, se los puede dejar en Points Selected, para que sean utilizados en los cálculos de la Orientación Exterior o mover los que no se utilizarán, a Points Available.

Los siguientes botones pueden ser utilizados para tal fin:

>>	MUEVE TODOS A SELECTED	
>	MUEVE UN ITEM A SELECTED	
<	MUEVE UN ITEM A AVAILABLE	
<<	MUEVE TODOS A AVAILABLE	
<>	INVIERTE DE AVAILABLE A SELECTED	
		Ima

Imagen 151- Botones para selección de fotos y puntos

En este proyecto para el tutorial, se calculará la aerotriangulación utilizando las tres imágenes y todos los puntos marcados, tanto los de control como los fotogramétricos.

Por último se determina el número máximo de iteraciones que se realizaría para obtener la convergencia y la precisión que se desea lograr tanto en distancia (metros) como en ángulos (radianes). Para esto se pueden setear estos parámetros en los campos: Maximum Iterations, Metric Convergency y Angular Convergency.

Entonces, una vez que se han elegido las imágenes, los puntos de control y fotogramétricos, y seteado los parámetros de precisiones y de máximas iteraciones, se clickea el botón Run.

Inmediatamente se abre una ventana donde se ofrece la opción de calcular la fototriangulación (aerotriangulación) en un sistema topocéntrico local. Seleccionamos la opción No para nuestro ejemplo.

Imagen 152- Ventana de conversión de coordenadas a sistema topo céntrico.

Y finalmente, se obtienen los resultados de la aerotriangulación (imagen 153), que son, las coordenadas de los centros perspectivos de captura de cada imagen (X_0,Y_0,Z_0), los ángulos de Euler (ω,ϕ,κ) y sus correspondientes δX_0 , δY_0 , δZ_0 y $\delta \omega$, $\delta \phi$, $\delta \kappa$. Además indica el número de iteraciones, la convergencia y el RMSE:

- ✓ Número de iteraciones (Iterations), es el número de iteraciones que se realiza hasta que el ajuste converja según las precisiones establecidas.
- ✓ Convergencia (Converged: yes/no): Indica si el ajuste convergió o se detuvo porque se llegó al número máximo de iteraciones.
- ✓ RMSE: Indica el valor del error cuadrático medio de los residuales de los puntos de control en metros.

Ø	e-foto											[- • ×
Iterations: 4				Converged: ye	Converged: yes				RMSE: 2.2773 m				
	Image Id	ω	φ	к	X0	YO	ZO	δω	δφ	δκ	<mark>δX0</mark>	<mark>δ</mark> Υ0	δΖ0
	pic16.bmp	1.8405	-0.8478	-1.0419	680557.5635	7465043.2935	1309.3499	0.00001	-0.00002	0.00000	-0.00052	-0.00020	-0.0002
	pic17.bmp	0.7020	-0.7748	-1.7778	681276.7682	7465033.1673	1313.2551	0.00000	-0.00001	0.00000	-0.00029	-0.00007	-0.0002
	pic18.bmp	1.5868	-0.7194	-2.9499	682004.4732	7465011.9173	1311.6401	0.00000	-0.00000	0.00000	-0.00003	-0.00010	0.00001
		Acc	ept				Discard				Export coord	linates	

Imagen 153- Ventana de los resultados de la aerotriangulación.

Si se aceptan los resultados obtenidos se presiona el botón Accept, de lo contrario cliqueamos el botón Discard.

También es posible exportar las coordenadas de los de los puntos de control en un archivo de texto plano con el botón Export Coordinates.

Luego, en la Fototriangulación ya ejecutada y aceptada, es posible observar los parámetros de la misma que ya fueron calculados, presionando el botón

terations: 4			Converged: yes		RMSE: 2.		
	Image Id	ω	φ	к	X0	YO	Z 0
1	pic16.bmp	1.8405	-0.8478	-1.0419	680557.5635	7465043.2935	1309.3499
2	pic17.bmp	0.7020	-0.7748	-1.7778	681276.7682	7465033.1673	1313.2551
3	pic18.bmp	1.5868	-0.7194	-2.9499	682004.4732	7465011.9173	1311.6401

Imagen 154- Parámetros de la Orientación Exterior.

También se pueden generar un archivo kml, con las coordenadas de los puntos fotogramétricos corregidos y las huellas de las fotografías en el terreno. Cliqueando el botón "mundo" se abrirá automáticamente en el Google Earth

Imagen 155- Huellas de las imágenes y puntos de control en GoogleEarth.⁸¹

⁸¹ Fuente: Google Earth.

16.8. PLAN DE VUELO

16.8.1 DEFINICIONES RELATIVAS AL PLAN DE VUELO:

- Plan del vuelo: Son los cálculos previos al vuelo, que se realizan para proyectar la trayectoria a seguir por el drone a efectos de obtener las imágenes según lo estipulado.
- Condiciones del vuelo: Son aquellos requerimientos que debe cumplir el vuelo para obtener determinadas características en la fotografía.
- > Recubrimiento: Área en común entre dos fotografía. Existen dos tipos de recubrimientos:
 - Longitudinal: Corresponde al recubrimiento entre una imagen y la siguiente, dentro de una misma línea de vuelo.
 - Transversal: Corresponde al recubrimiento de las imágenes de dos líneas de vuelo consecutivas.

En la Imagen 154 se representa con una línea roja el recorrido que realiza el vehículo. En gris, se representan las imágenes visualizando su correspondiente recubrimiento longitudinal y transversal.

Imagen 156- Plan de vuelo de una aeronave.⁸²

⁸² Fuente: CEFOCCA-UNSJ. (s/f) Fotogrametría

16.8.2. DISEÑO DEL VUELO:

En el plan de vuelo se definen los parámetros asociados al relevamiento fotogramétrico (por ejemplo escala y número de líneas de vuelo), por lo que es importante conocer la relación entre el sensor y el terreno.

A continuación se presenta una breve reseña de los elementos determinantes de la relación sensor - terreno y por tanto determinantes del plan de vuelo.

16.8.2.1. ESCALA DE LA IMAGEN Y ALTURA DE VUELO

En la mayoría de los vuelos realizados con fines fotogramétricos, la escala media que se desea obtener en las fotografías es el dato de entrada (*input*) para la determinación de la altura de vuelo (*output*). Para el caso en estudio, la altura de vuelo promedio fue definida sin tener en cuenta la escala resultante.

En el caso ideal, donde el terreno es llano y horizontal, la fotografía perfectamente vertical, y el avión vuela con altitud constante, el plan de vuelo se justifica en el concepto matemático de semejanza de triángulos (imagen 156).

Imagen 157- Relación imagen- terreno en caso ideal⁸³

Para este caso, el cálculo de la escala se reduce a una formula muy sencilla: $E = \frac{c}{r}$

⁸³ Fuente: CEFOCCA-UNSJ. (s/f) Fotogrametría

Siendo:

- E: Escala de la fotografía.
- *H*: Altura relativa de vuelo.
- C: Distancia Focal de la Cámara.

Para el caso ideal, la imagen tiene la misma escala en toda su superficie, dado que el terreno es llano (*H* constante). En la realidad la superficie terrestre no es plana, lo que provoca que la escala sea distinta para cada punto de la superficie, calculándose por tanto una escala promedio que se corresponde con la cota media del área abarcada por la imagen.

Imagen 158- Variación de la altura relativa de vuelo según el relieve.⁸⁴

Las ecuaciones aplicables en este caso son las siguientes:

$$E_p = \frac{c}{H_m}$$
 $E_{max} = \frac{c}{H_{max}}$ $E_{min} = \frac{c}{H_{min}}$

- Ep: Escala promedio de la fotografía
- Emax: Escala máxima de la fotografía
- Emin: Escala mínima de la fotografía
- *Hm: Altura de vuelo media*
- Hmin: Altura míni vuelo.
- Hmax: Altura máxima de vuelo.

⁸⁴.Fuente: CEFOCCA-UNSJ. (s/f) Fotogrametría.

En síntesis, en el caso real la escala es puntual, o sea que para cada punto de la imagen se tiene una escala distinta, debido a que el terreno tiene variaciones en altura.

16.8.2.2. RECUBRIMIENTOS:

A la hora de realizar el plan de vuelo, es fundamental establecer los recubrimientos ya que este es condición necesaria para extraer coordenadas tridimensionales de los puntos. Por ello, es fundamental comprender la geometría que hay detrás de este concepto, tanto en longitudinal como en transversal.

Recubrimiento Longitudinal:

Primero se presenta el caso ideal, para luego analizarlo en la situación real.

Considérese el eje principal vertical, el terreno llano y horizontal y el avión volando en línea recta y en altitud constante, de esta forma se obtienen imágenes a intervalos constantes e iguales.

Imagen 159- Toma de un modelo fotogramétrico en condiciones ideales.⁸⁵

Siendo los parámetros:

- s1: Lado logitudinal de la fotografía.
- s2: Lado transversal de la fotografía.
- S₁: Lado logitudinal del terreno.
- S₂: Lado transversal del terreno.

Las relaciones entre estos parámetros están dadas por las siguientes igualdades:

$$S_1 = \frac{s_1}{E}$$
; $S_2 = \frac{s_2}{E}$ \Rightarrow $S_1 = \frac{s_{1*}H}{E}$; $S_2 = \frac{s_{2*}H}{E}$

⁸⁵ Fuente: IGN. Grupo A.2 Fotogrametría y Teledetección.

Así, sabiendo cual va a ser la altura de vuelo y las características de la cámara (distancia principal y tamaño de la imagen) se puede determinar el área que se cubrirá en una toma. Para que exista solapamiento entre dos imágenes consecutivas, la distancia recorrida por el drone entre las dos tomas (B), debe ser menor al lado longitudinal del terreno, es decir:

$\mathsf{B} \leq S_1$

En la realidad, las suposiciones antes mencionadas tienen ciertas perturbaciones, dado que la superficie que abarca una foto depende en gran medida de tres factores:

La inclinación del eje vertical:

Imagen 160- Inclinación del eje de la toma.⁸⁶

Variaciones en la altura de vuelo:

⁸⁶ Fuente: IGN. Grupo A.2 Fotogrametría y Teledetección

Relieve del terreno:

Imagen 162- Variación del relieve del terreno.87

Para que estos factores no afecten el producto que se desea obtener, es necesario que la base sea menor a la mitad del lado del terreno, es decir:

$$B < \frac{S_1}{2}$$

Para poder calcular cuál es la base necesaria para obtener un determinado recubrimiento, se emplea una simple fórmula:

$$B = S_1 * (1 - p) = \frac{S_1}{E} * (1 - p)$$

Siendo p el recubrimiento longitudinal expresado en porcentaje/100.

Y si se conoce la altura de vuelo, la ecuación es la siguiente:

$$B - \frac{s_{1*}H}{c} * (1-p)$$

⁸⁷ Fuente: IGN. Grupo A.2 Fotogrametría y Teledetección

RECUBRIMIENTO LATERAL:

Cuando con una sola banda no se puede cubrir toda el área a relevar, es necesario realizar más de una línea de vuelo. Y debe haber un recubrimiento lateral (o transversal) de dichas líneas.

Imagen 163- Recubrimiento lateral entre 2 imágenes.⁸⁸

Imagen 164- Recubrimiento lateral de entre dos líneas de vuelo.⁸⁸

Se denomina a la distancia que separa una línea de vuelo en relación a la siguiente. Es necesario que el recubrimiento lateral (q%) sea mínimo para disminuir el número de líneas. Para el caso ideal, se cumple:

$$A < S_2$$

⁸⁸ Fuente:IGN. Grupo A.2 Fotogrametría y Teledetección

Al igual que para el caso del recubrimiento longitudinal, existen variaciones en el recubrimiento, que se debe a:

- o Inclinación del eje transversal.
- o Relieve del terreno.
- o Error en el mantenimiento de la altitud.
- Error en la apreciación de la magnitud A.
- o Error en la corrección de la deriva.
- o Errores en el mantenimiento de una ruta constante.

Teniendo todo esto en cuenta, se calcula la variable aplicando la siguiente fórmula:

$$A = S_2 * (1 p)$$

> OTROS CONCEPTOS Y FÓRMULAS DE INTERÉS

El siguiente valor corresponde a la cantidad de líneas que se realizarán.

Para este cálculo, supondremos que el área a sobrevolar tiene forma rectangular de lados $L_1 y L_2$ ($L_1 > L_2$). Salvo algún caso en particular, las líneas de vuelos se definen de forma paralela al lado más largo, es decir a L_1 . Por lo tanto, la cantidad de líneas de vuelo estará determinada por el ancho a recorrer y el avance transversal, es decir:

Número de líneas de vuelo =
$$\frac{L_2}{A}$$

> SUPERFICIE ESTEREOSCÓPICA Y SUPERFICIE ÚTIL

Cuando se habla de superficie estereoscópica, se hace referencia a la superficie de superposición longitudinal de dos fotografías consecutivas, esta se calcula de la siguiente manera:

$$S_{e} = (p * s_{1} * Df) * (s_{1} * Df) = p * (s_{1} * Df)^{2}$$

Se denomina superficie útil o neta, a la parte de la superficie estereoscópica comprendida entre los puntos principales de dos fotografías consecutivas y el sector comprendido entre dos líneas de vuelo. Analíticamente, la superficie útil es:

$$S_{u} = B * A = (p * s_{1} * Df)^{2} * (1 - p) * (1 - q)$$

FACTORES INFLUYENTES EN EL VUELO

Es importante conocer cuáles son los factores que pueden afectan la toma de una imagen, ya sea por errores en el cálculo del plan de vuelo o por diferencia entre el vuelo real y el teórico.

Además de las fotografías verticales, existen las denominadas oblicuas. Se llaman oblicuas bajas, cuando el ángulo que se forma entre el eje de la cámara y la vertical del lugar se encuentra entre 10° y 30°; cuando el ángulo que se forma es mayor se denominas oblicuas altas o panorámicas.

Imagen 165-- Relación entre el eje óptico de la cámara y la vertical del lugar.⁸⁹

> Deriva, Tilt y Tip

Se definen los siguientes conceptos:

 \checkmark Cabeceo: Es el movimiento que realiza el avión sobre un eje imaginario que une los extremos de las alas.

✓ Alabeo: Es el movimiento que realiza el avión sobre un eje imaginario que se extiende desde la cabeza del avión hasta su cola.

✓ **Guiñado**: Es el movimiento que realiza el avión sobre un eje imaginario que pasa por el centro de gravedad del avión y es perpendicular a los otros dos ejes imaginarios definidos.

⁸⁹ Fuente:IGN. Grupo A.2 Fotogrametría y Teledetección.

Imagen 166- Movimientos que afectan al avión.⁹⁰

Se denomina **deriva** al ángulo de desviación que sufre la trayectoria real que describe el avión respecto a la teórica, provocada por el movimiento de guiñada. Esta desviación es consecuencia de la influencia del viento sobre el avión.

Cuando en avión está sobre la trayectoria proyectada, la cámara está ubicada de modo que uno de los costados de la película / sensor, sea paralelo al eje de vuelo del avión. Cuando existe deriva, la película se encuentra rotada con respecto a la posición deseada, véase la siguiente figura:

Imagen 167- Movimientos que afectan al avión.⁹⁰

Cuando existe deriva, es necesario corregir la misma, haciendo girar la cámara en su eje vertical, de modo que quede orientada de la forma correcta. Si no se corrige la deriva, o se corrige de forma equivocada, se verá la faja de vuelo distorsionada, como se muestra en la ilustración siguiente.

⁹⁰ Fuente:: CEFOCCA-UNSJ. (s/f) Fotogrametría

Imagen 168- Efecto de la deriva sobre las imágenes según la dirección del vuelo.⁹¹

Las consecuencias que provocan el cabeceo y el alabeo son los denominados tip y tilt respectivamente. Se puede detectar su existencia al observar un par estereoscópico y ver por ejemplo, ríos subir pendientes o visualizar lagunas no horizontales.

> FAJAS SINUOSAS.

Si no se logra una línea de vuelo continua, y se obtiene en cambio una sinuosa, puede haber zonas en las cuales el recubrimiento lateral no existiese, quedando lagunas o huecos sin cubrir, como se muestra en la siguiente ilustración.

Imagen 169- Efecto de línea de vuelo sinuoso. ⁹¹

⁹¹ Fuente: CEFOCCA-UNSJ. (s/f) Fotogrametría

> INFLUENCIA DEL RELIEVE

Si la topografía de la zona de vuelo es irregular, la escala varia de manera sensible de un punto a otro de la misma fotografía, así como de una foto a otra. Esto debe ser tenido en cuenta para establecer la cobertura fotográfica conservando los recubrimientos indispensables.

Recuérdese que cuando más cerca este el terreno de la cámara, se cubrirá menos superficie de terreno en una imagen, por lo que si para el cálculo de recubrimiento se consideran las zonas más bajas del terreno, se corre el riesgo de tener poco recubrimiento o inclusive no tener en las zonas de terreno más elevado. Para evitar este inconveniente se recomienda tomar la cota medio del terreno.

16.9. GPS

El sistema de GPS, fue concebido como un sistema de navegación, basado en la emisión de señales de radio desde satélites que conforman una constelación orbitando alrededor de la tierra.

Este sistema se comenzó a desarrollar en el año 1973 por el Departamento de Defensa de Estados Unidos.

Dicha constelación está compuesta por 24 satélites artificiales (21 regulares y 3 de respaldo) y se denomina NAVSTAR (Navigation Satellite Timing and Ranging). Este sistema está operando por completo desde el año 1995. Además de los satélites, el sistema cuenta con estaciones de apoyo y control en tierra.

16.9.1. FUNDAMENTOS:

- > Trilateración Satelital.
- > Conocimiento preciso de la órbita de los satélites (efemérides).
- Medición de distancias desde los satélites.
- > Medición precisa del tiempo (relojes atómicos).
- Corrección de errores en la propagación de la onda: Errores propios del satélite, errores por el medio de propagación, errores de recepción.

La posición del receptor se determina por la intersección de tres esferas cuyos radios son las distancias entre los satélites y el receptor.

Si medimos las distancias de al menos tres diferentes satélites a un punto sobre la tierra, o sea, al receptor, es posible determinar la posición de dicho punto por trilateración.

16.9.1.1. TRILATERACIÓN SATELITAL

Supongamos que un receptor en la Tierra capta la señal de 3 satélites determinando la distancia entre cada uno de ellos y el receptor. Esto determinará geométricamente la intersección de tres esferas de radios R1, R2 y R3 con sus respectivos centros en cada satélite.

Ese lugar geométrico serán dos puntos (sobre el perímetro del círculo determinado por la intersección de dos esferas).

Uno de estos dos puntos puede ser descartado por ser una respuesta incorrecta, bien sea por estar en el espacio o por moverse a una velocidad muy elevada.

Imagen 170- Posicionamiento básico del GPS.⁹²

16.9.1.2. LAS ÓRBITAS.

Es necesario conocer la posición de cada uno de los satélites en el momento en que el receptor guarda la información. O sea, es necesario conocer la posición del centro de cada esfera que se usará en la trilateración satelital mencionada. Las posiciones de los satélites en las órbitas (efemérides) son ajustadas en las estaciones de control en la Tierra, y los propios satélites emiten esa información, con la cual los receptores hacen los cálculos.

Los 24 satélites se distribuyen de manera irregular por los seis planos orbitales separados 60° en Longitud y con una inclinación de 55° respecto al plano del Ecuador.

Estos satélites describen órbitas casi circulares con un período de 11 horas y 58 minutos a un promedio de 20200 km de la superficie terrestre. Esta distribución garantiza que haya un mínimo de 4 satélites sobre la línea del horizonte en cualquier lugar del planeta.

Los datos de las orbitas de los satélites están referenciados en el sistema de coordenadas conocido como World Geodetic System 84 (WGS84). Y por consecuencia, la posición que se obtiene del receptor en tierra también está referenciada a este sistema de coordenadas (elipsoide WGS84).

Si se quiere tener los datos de las efemérides del sistema, con una precisión aun mayor de las que envían los propios satélites, se las pueden bajar de página web del IGS (International GPS Service).⁹³

⁹²Fuente: www.monografias.com

⁹³ IGS: http://igscb.jpl.nasa.gov.

Estas órbitas están referenciadas en un sistema de coordenadas semejante al WGS84 con precisiones del orden del centímetro y su uso es aconsejado para aquellos trabajos de altísima precisión. Este sistema se conoce como *International Terrestrial Reference Frame* (ITRF).

16.9.1.3. MEDICIÓN DE LA DISTANCIA DESDE LOS SATÉLITES

¿Cómo se mide la distancia entre el satélite y el receptor?

Como la velocidad de las ondas de radio es casi igual a la velocidad de la luz, medir el tiempo de viaje de la señal al receptor es una actividad difícil de realizar.

Debido a la gran velocidad de las señales de radio y a que las distancias entre los satélites y la Tierra son relativamente cortas (para la velocidad de dichas señales), el tiempo promedio que una señal tarda en viajar de un satélite orbitando a unos 20.200 kilómetros de la Tierra es de 0,067 segundos. Estos tiempos tan reducidos pueden ser medidos con los relojes atómicos que portan los satélites con precisiones de un nanosegundo, pero colocar este tipo de relojes en los receptores sería muy costoso. Para solucionar este problema los receptores corrigen los errores en la medición del tiempo mediante una medición a un cuarto satélite.

El sistema utiliza la propagación de ondas de radio para medir las distancias a los satélites. Esta medición se basa en la comparación entre la señal recibida por el receptor y una réplica producida por el propio equipo que supuestamente esta sincronizada con la señal emitida por el satélite. El desfasaje entre dichas señales permite calcular el tiempo de viaje entre el receptor y

⁹⁴ Fuente: http://hyperphysics.phy-astr.gsu.edu/hbasees/gps.html

los satélites. Y al conocer la velocidad de dicha señal (cercana a la velocidad de la luz) se puede calcular la distancia entre ellos.

La sincronización entre estas señales tiene como referencia una escala de tiempo propia del sistema, conocida como "GPS Time" o GPST, y tiene como base en la tierra los relojes atómicos de las estaciones de control del sistema GPS. Estas bases son: Colorado Springs, Cabo Cañaveral, Kwajalein, Diego Garcia, Ascensión y Hawaii, y los relojes atómicos de los propios satélites.

Imagen 172- Estaciones en tierra del sistema GPS.⁹⁵

16.9.1.4. ERRORES EN LA MEDICIÓN DE LA DISTANCIA

Mencionamos anteriormente que la velocidad de las señales de GPS es cercana, pero no igual, a la velocidad de la luz. Esto ocurre por el efecto de la atmósfera terrestre sobre las señales electromagnéticas, sobre todo al pasar por la ionósfera y la tropósfera, y esto produce errores en las mediciones.

Imagen 173- Esquema de la señal del GPS al cruzar por la atmósfera.⁹⁵

⁹⁵ Fuente: http://www.inegi.org.mx/geo/contenidos/geodesia/gps.aspx?dv=c1

Los satélites transmiten los datos en dos frecuencias que se conocen como L1 y L2.

Cada satélite transmite señales en ambas frecuencias, siendo éstas, las señales de navegación (códigos), y los datos de navegación y sistema (mensaje). Los códigos que se modulan en la señal son:

- El Código C/A modula a una frecuencia de 1.023MHz (10.23/10). Tiene una duración de un milisegundo y su longitud de onda es de aproximadamente 300 m.
 El código C/A se transmite actualmente sólo por medio de la frecuencia portadora L1.
- El Código P o Código de Precisión modula a una frecuencia de 10.23MHz. La secuencia de este código es de 267 días y su longitud de onda es de 29.31 cm. Se les ha asignado, a los distintos satélites, porciones de siete días.

Imagen 174- Frecuencias Fundamentales L1 y L2.⁹⁶

Existen receptores de una sola frecuencia y receptores de frecuencia dual. Estos últimos rastrean las frecuencias L1 y L2, y al ser correlacionadas dichas frecuencias, es posible eliminar matemáticamente los errores de la ionósfera. Éste es una de las ventajas de usar un receptor de frecuencia dual; es decir, un receptor que puede rastrear L1 y L2. Los receptores de una sola frecuencia también pueden resolver los errores provocados por la ionósfera en tiempo real, pero les toma más tiempo, en algunos casos mucho más tiempo para hacerlo.

⁹⁶Fuente: http://slideplayer.com.br/slide/328783/

16.9.1.5. DETERMINACIÓN DE LA POSICIÓN DEL RECEPTOR

> Posición Absoluta:

La posición absoluta generalmente utiliza el tiempo de propagación de la señal desde el satélite, medido a través de los códigos modulados en las frecuencias portadoras. La gran mayoría de los receptores (Imagen 175, izquierda) solamente reconocen el código CA, siendo usado mayormente en el posicionamiento absoluto. El código P puede ser usado, cuando esté disponible, pero se deberán utilizar receptores topográficos (Imagen 175, derecha). El código P permite distancias con precisiones de decímetros. Ya las obtenidas por el código CA tiene precisiones de metros.

Imagen 175- Izquierda: receptor GPS "de bolsillo". Derecha: receptor GPS topográfico.⁹⁷

La posición absoluta se obtiene con un único receptor, y esto depende en gran medida de la configuración geométrica determinada por la posición de los satélites. El Factor de Dilución de la Precisión (Dilution of Precision – PDOP) es una función de la configuración geométrica dos satélites, es la razón entre a desviación de la posición (σ) y la desviación de las distancias medidas (σ_0).

PDOP = σ / σ_0

El posicionamiento puntual es más preciso cuando los satélites tienen una buena distribución espacial en el cielo

El factor PDOP es inversamente proporcional al volumen de la figura geométrica con vértices en los satélites observados y en la antena receptora (imagen 176).

⁹⁷ Fuente:www.wirelessdictionary.com

Un valor adecuado de PDOP, siendo mayor que uno, deberá ser menor a dos.

1< PDOP <2

Considerando la precisión de las distancias alrededor de doce metros, para un factor PDOP de dos, a desviación en la posición resulta cercana a los 24 metros, cuando ninguna causa de error sea corregida.

El DOP se puede expresar como un número separado de medidas:

- ✓ HDOP: Factor de Dilución de la Precisión Horizontal.
- ✓ VDOP: Factor de Dilución de la Precisión vertical.
- ✓ PDOP: Factor de Dilución de la precisión de posición (3D).
- ✓ TDOP: Factor de Dilución de precisión del Tiempo.

Imagen 104- Relación entre PDOP, VDOP y HDOP según la distribución de los satélites GPS en el cielo. El receptor se considera en el centro de la Cfa.⁹⁸

⁹⁸ Fuente:www.wirelessdictionary.com

16.9.2. GPS DIFERENCIAL

> POSICIÓN RELATIVA:

El sistema GPS ha ido evolucionando con el tiempo para lograr precisiones mayores, necesarias para diversos usos civiles. Una de esas evoluciones se logró con la implementación de la técnica de GPS Diferencial o dGPS, que redujo significativamente el error. Esta técnica está basada en la idea de utilizar correlacionar las distintas medidas de dos o más receptores GPS a los mismos satélites, ya que dos receptores que estén cercanos entre ellos, recibirán los mismos errores sistemáticos.

Para ellos, se deja a uno de los receptores en una posición estática (Estación base) del cual su posición se determina con precisión absoluta. Luego, las posiciones calculadas por el otro receptor, en cada lugar, serán corregidas por la información enviada por la Estación Base, que está recalculando su posición a todo instante.

Imagen 105- Esquema de funcionamiento del GPS diferencial.⁹⁹

El método diferencial puede ser aplicado a las coordenadas de las antenas de los receptores móviles cercanos a la base.

Para cada satélite, la diferencia entre la distancia medida y la distancia esperada contiene el efecto total del conjunto de errores externos al receptor. En receptores cercanos a la Estación base, el efecto total de estos errores es idéntico y es corregido por las estimaciones hechas por la propia estación base. Esta corrección, en la distancia entre el satélite y el receptor móvil, es realizada de modo instantáneo, cuando el receptor móvil toma la posición de cada punto, logrando así una altísima precisión.

⁹⁹ Fuente: wikipedia.

17. BIBLIOGRAFÍA:

- <u>Fotogrametría digital.</u> Luiz Coelho y Jorge Nunes Brito (2007). EdUERJ. Editora da Universidade do Estado do Rio de Janeiro.

- <u>Positional Accuracy Handbook. Using the National Standard for Spatial Data Accuracy to</u> <u>measure and report geographic data quality</u>. Minnesota Planning, Land Management Information Center. (1999).

- *Metodologías de Control Posicional: Visión General y Análisis Crítico*. Ariza López, F.J. & James Atkinson, A.D. (2006) Grupo de investigación en Ingeniería Cartográfica, Universidad de Jaen.

- Topcon, Operation Manual Camera Calibration Software, Image Master Calib. (s/f)

- Leica Photogrammetry Suite Project Manager. (2006). Leica Geosystems Geospatial Imaging, LLC.

<u>-Fotogrametría</u>. CEFOCCA-UNSJ. (s/f) Documento de Cátedra, Centro de Fotogrametría, Cartografía y Catastro. Facultad de Ingeniería – Universidad Nacional de San Juan.

-Cámara Digital de Lentes Intercambiables. Sony, (s/f), Manual ID: 4-297-558-42(1).

-*Fotogrametría y Teledetección.* IGN. (s/f) Grupo A.2 Instituto Geográfico Nacional, Centro de Información Geográfica. España.

- *Proyecto de Grado: Control Posicional de un Relevamiento Fotogramétrico con UAV*. (2014) Pampinella, Pérez.
18. ÍNDICE DE TABLAS:

Tabla 1 - Cálculo de estadístico de la NSSDA para la planimetría	16
Tabla 2- Cálculo de estadístico de la NSSDA para Z.	17
Tabla 3- Cálculo de las diferencias para el estadístico Wc	21
Tabla 4- Tabla de los coeficientes ai para el test de normalidad de Shapiro-Wilk	22
Tabla 5- Valores del estadístico W _c , para el test de Shapiro-Wilk. ¹²	23
Tabla 6- Relación entre altura de vuelo y precisión dada por la empresa.	32
Tabla 7-Depuración de los puntos de testeo (negros: mantenidos como de testeo, rojos: eliminados o cambiados a puntos de control)	34
Tabla 8- Numeración de los puntos de control y de testeo.	35
Tabla 9-Numeración y distribución por imagen de los puntos de control (rojos) y testeo (negros) utilizados	36
Tabla 10- Distribución cuantitativa de los puntos de testeo por cuadrantes	37
Tabla 11- Cambios realizados entre el plan de vuelo programado y el llevado a cabo	50
Tabla 12- Solape transversal entre imágenes	56
Tabla 13/1- Datos del relevamiento planimétrico con estación total	59
Tabla 14- Fórmulas de cálculos de cotas	66
Tabla 15- Errores de cierre de los circuitos de nivelación	66
Tabla 16- Lecturas de nivelación del circuito 1	67
Tabla 17- Lecturas de nivelación del circuito 2	67
Tabla 18- Lecturas de nivelación del circuito 3	68
Tabla 19- Lecturas de nivelación del circuito 4	68
Tabla 20- Lecturas de nivelación del circuito 5	68
Tabla 21- Lecturas de nivelación del circuito 6	69
Tabla 22- Lecturas de nivelación del circuito 7	69
Tabla 23- Lecturas de nivelación del circuito 8	69
Tabla 24- Lecturas de nivelación del circuito 9	69

Tabla 25- Lecturas de enlace entre circuitos 1 y 2	70
Tabla 26- Lecturas de enlace entre circuitos 1 y 3.	70
Tabla 27- Lecturas de enlace entre circuitos 3 y 4	70
Tabla 28- Lecturas de enlace entre circuitos 2 y 9.	70
Tabla 29- Lecturas de enlace entre circuitos 4 y 5.	70
Tabla 30- Lecturas de enlace entre circuitos 7 y 8.	70
Tabla 31- Lecturas de enlace entre circuitos 6 y 7	71
Tabla 32- Lecturas de enlace entre circuitos 2 y 6	71
Tabla 33-Cálculo de cotas del circuito 1	72
Tabla 34- Cálculo de cotas del enlace entre circuitos 1 y 2	72
Tabla 35- Cálculo de cotas del circuito 2	72
Tabla 36- Cálculo de cotas del enlace entre circuitos 1 y 3.	73
Tabla 37 Cálculo de cotas del circuito 3	73
Tabla 38- Cálculo de cotas del enlace entre circuitos 3 y 4.	73
Tabla 39- Cálculo de cotas del circuito 4	73
Tabla 40- Cálculo de cotas del enlace entre circuitos 3 y 5	74
Tabla 41- Cálculo de cotas del circuito 5.	74
Tabla 42- Cálculo de cotas del enlace entre circuitos 2 y 6	74
Tabla 43- Cálculo de cotas del circuito 6	74
Tabla 44- Cálculo de cotas del enlace entre circuitos 2 y 7	75
Tabla 45- Cálculo de cotas del circuito 7	75
Tabla 46- Cálculo de cotas del enlace entre circuitos 6 y 8	75
Tabla 47- Cálculo de cotas del circuito 8.	75
Tabla 48- Cálculo de cotas del enlace entre circuitos 8 y 9	76
Tabla 49- Cálculo de cotas del circuito 9.	
Tabla 50- RMS del relevamiento y del NSSDA.	76
Tabla 51- Coordenadas definitivas de los puntos de control y de testeo.	

Tabla 52- Coordenadas de las marcas fiduciales, píxeles (teóricas) y métricas	88
Tabla 53- Coordenadas obtenidas de las marcas fiduciales en la O. I de la fotografía 1	91
Tabla 54- Coordenadas obtenidas de las marcas fiduciales en la O. I de la fotografía 2	91
Tabla 55- Coordenadas obtenidas de las marcas fiduciales en la O. I de la fotografía 3	92
Tabla 56 - Coordenadas obtenidas de las marcas fiduciales en la O. I de la fotografía 4	92
Tabla 57- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía 1	94
Tabla 58- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía 2	94
Tabla 59- Resultados de la O. I (parámetros de transformación y σ_0) para la fotografía 3	94
Tabla 60- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía 4	94
Tabla 61- Resumen de la primera aerotriangulación	97
Tabla 62- Resumen de la segunda aerotriangulación.	98
Tabla 63- Resumen de la tercera aerotriangulación.	98
Tabla 64- Resumen de la cuarta aerotriangulación.	98
Tabla 65- Resumen de la quinta aerotriangulación.	99
Tabla 66- Resumen de la sexta aerotriangulación	99
Tabla 67- Resumen de la séptima aerotriangulación	100
Tabla 68- Resumen de la octava aerotriangulación	100
Tabla 69- Resumen de la novena aerotriangulación	101
Tabla 70- Resultado de la resección espacial.	101
Tabla 71- Resultados de la primera aerotriangulación.	102
Tabla 72- Coordenadas de los puntos de control, en sistema local, usadas en la AT1	103
Tabla 73 - Parámetros calculados en la primera aerotriangulación. (Coordenadas de los centros de perspectiva y los ángulos de Euler. Ángulo de vuelo: 90°)	103
Tabla 74- Resultados de la segunda aerotriangulación	105
Tabla 75- Coordenadas de los Puntos de Control Ilevados a UTM.	108
Tabla 76- Resultados de la tercera aerotriangulación	109
Tabla 77- Parámetros calculados en la tercera aerotriangulación	109

Tabla 78- Resultados de la cuarta aerotriangulación	111
Tabla 79- Coordenadas de los puntos de control rotados 90° y trasladados.	113
Tabla 80- Resultados de la quinta aerotriangulación	114
Tabla 81- Parámetros calculados en la quinta aerotriangulación	115
Tabla 82- Coordenadas de los puntos de control rotados 90º en sentido anti horario y llevados a UTN	Л.117
Tabla 83- Resultados de la sexta aerotriangulación.	118
Tabla 84- Parámetros calculados en la sexta aerotriangulación	119
Tabla 85- Coordenadas de las marcas fiduciales luego de la rotación de las imágenes	125
Tabla 86- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía rotada 1	125
Tabla 87- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía rotada 2	126
Tabla 88- Resultados de la O.I (parámetros de transformación y σ_0) para la fotografía rotada 3	126
Tabla 89- Resultados de la $O.I$ (parámetros de transformación y σ_0) para la fotografía rotada 4	126
Tabla 90- Resultados de la séptima aerotriangulación.	127
Tabla 91- Parámetros calculados en la séptima aerotriangulación	128
Tabla 92- Coordenadas de los puntos de control, en sistema local, usados en la AT8	130
Tabla 93 - Resultados de la octava aerotriangulación	131
Tabla 94- Resultados de la novena aerotriangulación.	133
Tabla 95- Resultados de la O.E por Resección Espacial	135
Tabla 96- Puntos de control planificados y los que fueron substituidos	138
Tabla 97- Resultado del RMSE de la Orientación Interior	148
Tabla 98- Resultados de la O.I para la fotografía 1r.	149
Tabla 99- Resultados de la O.I para la fotografía 2r.	149
Tabla 100- Resultados de la O.I para la fotografía 3r.	149
Tabla 101- Resultados de la O.I para la fotografía 4r.	149
Tabla 102- Coordenadas de los puntos de control, agregando el punto 9.	162
Tabla 103- Distribución de los puntos de control en las imágenes.	162
Tabla 104- Resultados de la primera aerotriangulación en el LPS	163
	278

Tabla 105- Resultados de la segunda aerotriangulación en el LPS. 165
Tabla 106- Resultados de la tercera aerotriangulación en el LPS. 167
Tabla 107- Resultados de la cuarta aerotriangulación en el LPS 170
Tabla 108- Resultados de la quinta aerotriangulación en el LPS. 172
Tabla 109- Resultados de la sexta aerotriangulación en el LPS. 173
Tabla 110- Resultados de la séptima aerotriangulación en el LPS
Tabla 111- Resultados de la Orientación Exterior para cada imagen 176
Tabla 112- Longitud de las bases
Tabla 113- Datos y parámetros de las Restituciones 1 y 2 184
Tabla 114- Resultados de las Restituciones 1 (en negro) y 2 (en rojo)
Tabla 115- Cálculo del estándar del NSSDA 185
Tabla 116- Comparación de funciones disponibles para la restitución fotogramétrica entre e-foto y LPS.
Tabla 117- Especificaciones del md4-1000 194
Tabla 118- Determinación del número de rachas en la muestra dX
Tabla 119- Distribución de los puntos de control en las imágenes. 249
Tabla 120- Distribución de los puntos fotogramétricos en las imágenes

19. ÍNDICE DE IMÁGENES:

Imagen 1- Distribución ideal de los puntos de control (izquierda). Separación ideal de los puntos de control (derecha)
Imagen 2- Canteras del Parque Rodó, Montevideo
Imagen 3- Estacionamiento del Estadio Centenario
Imagen 4 -Zona de vuelo. Empresa Doniral S.A
Imagen 5- Distribución de los puntos de control (rojos y verdes) y de testeo (azules). (rojos: para el vuelo a 100 m, azules: vuelo a 40 m)
Imagen 6 -Izquierda: Distribución de los puntos de control por cuadrantes. Derecha: cuadrantes del área de vuelo
Imagen 7- Tipos de marcas usadas para la preseñalización
Imagen 8- Modelo de marca a utilizar
Imagen 9- Marca pre señalizada acotada 42
Imagen 10-Señalización de un punto de testeo en el hormigón44
Imagen 11 - Señalización de un punto de control en el hormigón44
Imagen 12-Señalización de un punto de control en el campo45
Imagen 13-Circuitos de nivelación y puntos de paso
Imagen 14- Recorrido efectuado por el drone y puntos de toma de las imágenes
Imagen 15- Ubicación de los puntos de control referidos a las huellas planificadas inicialmente para el vuelo a 100 m de allIttturrra
Imagen 16- Distribución de los puntos de control en relación a las huellas delas imágenes tomadas53
Imagen 17- Diseño del plan vuelo original a 100m visualizado en el Google Earth
Imagen 18- Fotoíndice
Imagen 19- Ventana Project Header. Encabezado del proyecto fotogramétrico
Imagen 20-Ventana Terrain relativa al terreno sobrevolado
Imagen 21-Ventana Sensor del Proyecto en el e-foto
Imagen 22- Ventana Flight del Proyecto en el e-foto

Imagen 23- Ventana Imágenes de un proyecto en el e-foto
Imagen 24- Las 4 fotografías utilizadas en el proyecto
Imagen 25- Ventana de los puntos de control (Points) en el e-foto
Imagen 26- Posicionando una marca fiducial en el proceso de la Orientación Interior
Imagen 27- Detalle de una marca fiducial posicionada en la fotografía
Imagen28-Sistema de coordenadas pixel (columna, fila) para las fotografías en el e-foto
Imagen29-Sistema de coordenadas métrico (milímetros) para las fotografías en el e-foto
Imagen 30-Vector Xa para imagen 1 y la MVC(Xa)92
Imagen 31- Vector La para imagen 1 y la MVC(La)93
Imagen 32- Matriz V de los residuales y el σ_0 93
Imagen 33-Distribución de los puntos de control en las imágenes
Imagen 34-Captura de pantalla de los Resultados de la primera aerotriangulación en el e-foto 104
Imagen 35-Ubicación aproximada del punto de traslado a coordenadas UTM 107
Imagen 36-Captura de pantalla de los Resultados de la tercera aerotriangulación
Imagen 37- Resultados de la quinta aerotriangulación 116
Imagen 38-Resultados de la sexta aerotriangulación120
Imagen 39- A la izquierda: Vista en el e-foto de la fotografía rotada en ERDAS. A la derecha: misma fotografía visualizada en ERDAS. Ambas en formato tiff
Imagen 40- Las 4 imágenes rotadas 90° en sentido horario, formato JPG
Imagen 41- Transformación del sistema de coordenadas original (deducido del certificado de calibración de la cámara), luego de rotar las imágenes 90º en sentido horario
Imagen 42- Resultados de la séptima aerotriangulación129
Imagen 43- Resultados de la octava aerotriangulación
Imagen 44- Resultados de la Resección Espacial de la segunda imagen
Imagen 45- Puntos de control planificados (en verde) y sustituidos (en rojo) para la aerotriangulación. ³³
Imagen 46- Configuración del tipo de cámara en proyecto del LPS
Imagen 47- Ventana de configuración general de la cámara en el proyecto141

Imagen 48- Ventana donde se cargan las coordenadas de las marcas fiduciales	142
Imagen 49- Ventana de configuración extendida de los parámetros de la cámara.	142
Imagen 50- Ventana de configuración del sistema de referencia/ proyección	143
Imagen 51- Ventana de configuración de unidades del bloque	143
Imagen 52- Cargando las imágenes en el proyecto del LPS	144
Imagen 53- Ventana de selección de creación de pirámides	145
Imagen 54-Indicador del Status de trabajo de cada imagen	145
Imagen 55-Pestaña Sensor. Donde configurar la cámara y editar imágenes.	146
Imagen 56-Pestaña "Interior Orientation"	146
Imagen 57- Marcando marca fiducial número 1 en una de las imágenes.	147
Imagen 58- Detalle. Luego de realizar la medida de la marca fiducial Nº 1	147
Imagen 59- Opciones de los ejes del sistema de coordenadas para la O.I	147
Imagen 60- Orientación Interior calculada para la primera imagen (1r).	148
Imagen 61- Pestaña "Exterior Information"	150
Imagen 62 - Ventana de estimación inicial de la Orientación Exterior.	151
Imagen 63 selección del tipo de visualización en la herramienta Point Measurement Tool.	152
Imagen 64- Ventana donde se importa el archivo con las coordenadas de los puntos de control	152
Imagen 65- Ventana para configurar las opciones del archivo a importar con las coords. de los punt control	tos de 154
Imagen 66- Ventana de medición de puntos. Midiendo punto de control 104 en este caso	154
Imagen 67- Pestaña General en la ventana Propiedades de Generación de los Puntos Fotogramétricos	154
Imagen 68- Pestaña Strategy en la ventana Propiedades de Generación de los Puntos Fotogramétricos	154
Imagen 69- Pestaña Distribution en la ventana Propiedades de Generación de los Puntos Fotogramétricos	158

Imagen 70- Pestaña General en la ventana de aerotriangulación	172
Imagen 71- Pestaña Point en la ventana de aerotriangulación	172
Imagen 72- Pestaña Interior en la ventana de aerotriangulación	172
Imagen 73- Pestaña Exterior en la ventana de aerotriangulación	172
Imagen 74- Pestaña Advanced Options en la ventana de aerotriangulación	172
Imagen 75- Puntos de control utilizados en la aerotriangulación (en rojo) con el punto 9 agregado	172
Imagen 76- Resumen de la primera aerotriangulación	172
Imagen 77- Resultados y errores de los puntos de control de la primera aerotriangulación	172
Imagen 78- Resumen de la segunda Aerotriangulación (AT2)	172
Imagen 79- Resultados y errores de los puntos de control de la segunda aerotriangulación (AT2)	172
Imagen 80- Resumen de la tercera aerotriangulación	172
Imagen 81- Resumen de la generación automática de puntos fotogramétricos	172
Imagen 82- Resumen de la cuarta aerotriangulación	172
Imagen 83- Resultados y RMSE de los puntos de control de la cuarta aerotriangulación	172
Imagen 84- Resumen de la quinta aerotriangulación	172
Imagen 85- Resumen de la sexta aerotriangulación	173
Imagen 86- Resultados y errores de los puntos de control de la sexta aerotriangulación.	174
Imagen 87- Resumen de la séptima aerotriangulación.	175
Imagen 88- Resultado de la Orientación Exterior de la Imagen 1r	175
Imagen 89- Resultado de la Orientación Exterior de la Imagen 2r	175
Imagen 90- Resultado de la Orientación Exterior de la Imagen 3r.	178
Imagen 91- Resultado de la Orientación Exterior de la Imagen 4r.	178
Imagen 92- Reporte de los residuales de los puntos de control.	179
Imagen 93- Huellas de las imágenes en el terreno, puntos de control (triángulos) y fotogramétricos (cuadrados).	180
Imagen 94- Ubicación relativa de los puntos de control y fotogramétricos en la Imagen 1r, en el Imag Space	je 181

Imagen 95- Ubicación relativa de los puntos de control y fotogramétricos en la Imagen 2r, en o Space	el Image 181
Imagen 96- Ubicación relativa de los puntos de control y fotogramétricos en la Imagen 3r, en o Space	el Image 182
Imagen 97- Ubicación relativa de los puntos de control y fotogramétricos en la Imagen 4r, en e Space	el Image 182
Imagen 98- microdrone md4-1000	192
Imagen 99- Dibujo técnico del md4-1000	
Imagen 100- Cámara Sony NEX-7	
Imagen 101- Partes de la cámara Sony NEX-7	
Imagen 102 - Partes de la cámara Sony NEX-7	
Imagen 103- Modelo de marca a utilizar.	202
Imagen 104- La imagen patrón tomada desde 5 ángulos diferentes	
Imagen 105- Identificación de los puntos en la hoja patrón	
Imagen 106- Colocación de la hoja patrón sobre la pared	
Imagen 107- Toma frontal de la hoja patrón	
Imagen 108- Toma frontal desde un ángulo a la izquierda de la hoja patrón	
Imagen 109- Toma frontal desde un ángulo a la derecha de la hoja patrón	
Imagen 110- Toma desde un ángulo superior de la hoja patrón	
Imagen 111- Toma desde un ángulo inferior de la hoja patrón	
Imagen 112- Vista y detalles de una imagen tomadas desde una posición superior	
Imagen 113- Imágenes de la hoja patrón ingresadas al programa	210
Imagen 114- Fotografía de la hoja patrón ingresada al programa.	211
Imagen 115- Ventana "Measure Standard Marks"	212
Imagen 116- Resultado gráfico luego de la medida manual de las marcas.	213
Imagen 117- Ejemplo de un Resultado gráfico "malo" de la medida manual de las marcas	214
Imagen 118- Ventana con el Resultado de la Calibración de la Cámara	214

Imagen 119- Ventana con el Resultado de las distorsiones del lente	214
Imagen 120- Condición de colinealidad	214
Imagen 121- Distribución de los puntos de Von Grüber Condición de colinealidad	214
Imagen 122- Página web del e-foto, pestaña download	214
Imagen 123- Flujo de trabajo en el e-foto.	226
Imagen 124- Encabezado del proyecto fotogramétrico en el e-foto	227
Imagen 125- Ventana Terreno del proyecto en el e-foto	
Imagen 126- Ventana Sensor del e-foto	
Imagen 127- Ventana Vuelo (fligth) del e-foto	232
Imagen 128- Ventana Images (imágenes) del e-foto	
Imagen 129- Ventana Image, de una de las imágenes cargadas en el e-foto	
Imagen 130- Las 3 imágenes aéreas sobre zona del Maracaná, Rio de Janeiro	
Imagen 131- Fotografía aérea "pic 16"	
Imagen 132- Fotografía aérea "pic 17"	
Imagen 133- Fotografía aérea "pic 18"	
Imagen 134- Detalle de información contenida en una fotografía.	
Imagen 135- Ventana para ingresar Puntos (Points) del e-foto	228
Imagen 136- Ventana para el ingreso de un punto.	
Imagen 137- Formato del archivo con los puntos de control a cargar en el e-foto	241
Imagen 138- Coordenadas de los puntos de control cargados.	
Imagen 139- Orientación Interior en el menú Execute	241
Imagen 140- Ventana de Orientación Interior	
Imagen 141- Detalle de la marca fiducial número 2	
Imagen 142- Botón para calcular la Orientación Interior	243
Imagen 143- Vector Xa para la primer imagen y su matriz de varianza (MVC)	
Imagen 144- Matriz La de las coordenadas de las marcas fiduciales ajustadas	
Imagen 145- Matriz V de los residuales de la O.I. y el σ_0	
	200

Imagen 146- Photo Triangulation (aerotriangulación) en el menú Execute	
Imagen 147- Ventana de aerotriangulación	
Imagen 148- Botones del e-foto	
Imagen 149- Ventana de determinación de la dirección de vuelo	250
Imagen 150- Ventana de selección de puntos e imágenes para la AT.	228
Imagen 151- Botones para selección de fotos y puntos.	
Imagen 152- Ventana de conversión de coordenadas a sistema topo céntrico	
Imagen 153- Ventana de los resultados de la aerotriangulación en el e-foto	
Imagen 154- Parámetros de la Orientación Exterior	
Imagen 155- Huellas de las imágenes y puntos de control en GoogleEarth	
Imagen 156- Plan de vuelo de una aeronave	
Imagen 157- Relación imagen- terreno en caso ideal.	
Imagen 158- Variación de la altura relativa de vuelo según el relieve.	
Imagen 159- Toma de un modelo fotogramétrico en condiciones ideales	
Imagen 160- Inclinación del eje de la toma.	
Imagen 161- Variación de la altura relativa de vuelo.	228
Imagen 162- Variación del relieve del terreno	228
Imagen 163- Recubrimiento lateral entre 2 imágenes	
Imagen 164- Recubrimiento lateral de entre dos líneas de vuelo	
Imagen 165- Relación entre el eje óptico de la cámara y la vertical del lugar.	
Imagen 166- Movimientos que afectan al avión.	
Imagen 167- Movimientos que afectan al avión	
Imagen 168- Efecto de la deriva sobre las imágenes según la dirección del vuelo	228
Imagen 169- Efecto de línea de vuelo sinuoso	
Imagen 170- Posicionamiento básico del GPS	228
Imagen 171- Órbitas de satélites GPS	
Imagen 172- Estaciones en tierra del sistema GPS	
	286

Imagen 173 - Esquema de la señal del GPS al cruzar por la atmósfera.	228
Imagen 174 - Frecuencias Fundamentales L1 y L2.	228
Imagen 175 - Izquierda: receptor GPS "de bolsillo". Derecha: receptor GPS topográfico	272
Imagen 176- Relación entre PDOP, VDOP y HDOP según la distribución de los satélites GPS en el ciel receptor se considera en el centro de la Cfa	o. El 272
Imagen 177- Esquema de funcionamiento del GPS diferencial. ⁹⁹	273