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We study asymptotic charges associated with a spin-zero analog of Weinberg’s soft photon and graviton
theorems in even dimensions. Simple spacetime expressions for the charges are given, but unlike gravity or
electrodynamics, the symmetry interpretation for the charges remains elusive. This work is a higher
dimensional extension of the four-dimensional case studied by Campiglia et al. [Phys. Rev. D 97, 046002
(2018)].
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I. INTRODUCTION

Soft factorization theorems in scattering amplitudes can
be understood as conservation laws of asymptotic charges;
see [1] for a recent review. When the soft particle has spin 1
or 2, the asymptotic charges are associated with gauge
symmetries that are nontrivial at infinity [1]. For spin-zero
soft particles one can still construct conserved asymptotic
charges [2,3], but their interpretation in terms of sym-
metries remains incomplete. The factorization studied in [2]
is a “leading” soft theorem (a spin-zero analog of
Weinberg’s soft theorem [4]), whereas [3] deals with
factorization at subleading order in the soft scalar energy.
In the hope to improve the understanding of spin-zero

asymptotic charges, here we extend the results of [2] to
higher even dimensions. One of the advantages is that we
can study massless φ3 theory (which does not have a good
null-infinity description in dimension four; see Sec. III A).
This is perhaps the simplest context where to explore the
question of asymptotic symmetries associated with soft
scalars. As in [2] our discussion will be restricted to tree-
level amplitudes. The study of loop corrections would
require one to work in a theory where masslessness of the
scalar is protected (as for instance the model studied in [3]).
The organization of this paper is as follows. In Sec. II we

recall the charge associated with the soft-scalar theorem in
[2]. In Sec. III we interpret this charge in terms of
asymptotic fields at null infinity for massless φ3 theory.
In Sec. IV we extend the analysis to include massive fields
ψ coupled to the massless scalar. In Sec. V we discuss a
smeared version of the charges and give a simple

expression for a spacetime current. Some of the calcula-
tions are given in the appendices.
Our conventions are as follows. We take spacetime

dimension to be D ¼ 2mþ 2 with m ¼ 2; 3;…. We use
mostly the plus signature spacetime metric. For simplicity in
our discussion we focus on future null and time infinities; a
parallel discussion applies to the past infinities. We also omit
a discussion of fields at spacelike infinity. This shares many
features with the study of fields at time infinity, except that
differential equations become hyperbolic. In particular, it
allows one to understand the conservation of asymptotic
charges from a dynamical perspective [2,5].

II. SOFT THEOREM CHARGE

We consider a theory of a self-interacting scalar field φ
coupled to a massive scalar ψ,1

L ¼ −
1

2
ð∂φÞ2 − 1

2
ð∂ψÞ2 − 1

2
μ2ψ2 þ g

3!
φ3 þ g0

2!
ψ2φ:

ð2:1Þ

At tree level, one can obtain a “soft theorem” that relates an
(nþ 1)-particle amplitude with an n-particle amplitude,
where the (nþ 1)th particle is a soft φ. This soft theorem
can be written as matrix elements of the identity [1]

Qðq̂ÞS ¼ SQðq̂Þ; ð2:2Þ

where S is the S-Matrix, q̂ the direction of the soft φ-particle
and [2]

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We could also consider ψ ’s with nonzero spin [2] or with zero
mass (in which case the treatment will be similar to that of φ3

theory). The main reason to introduce ψ is to discuss how to deal
with massive fields.
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Qðq̂Þ ≔ lim
ω→0

ω

2
ðaðωq̂Þ þ a†ðωq̂ÞÞ

−
g
2

Z fdpa†ðp⃗Þaðp⃗Þ
p · q

−
g0

2

Z fdpb†ðp⃗Þbðp⃗Þ
p · q

: ð2:3Þ

Here a and b are the Fock operators associated with the
fieldsφ andψ respectively,fdp the standardLorentz invariant
measure and

qμ ¼ ð1; q̂Þ ð2:4Þ
a null, future pointing four-momentum associated with q̂.

III. CHARGES IN MASSLESS φ3 THEORY

In this section we set g0 ¼ 0 in (2.1) and restrict our
attention to massless φ3 theory. We remind the reader that
we work in even spacetime dimension grater than four:
D ¼ 2mþ 2 with m ¼ 2; 3;….

A. Field expansion near null infinity

We assume the standard 1=r expansion off null infinity,

φðr; u; x̂Þ ¼ r−m
Xm−1

n¼0

r−nϕnðu; x̂Þ þOðr−2mÞ: ð3:1Þ

As we shall see, the leading term ϕ0 represents the “free
data” in terms of which the remaining ϕn’s can be
expressed by recursively solving the field equations. The
field equation for φ is

□φþ g
2
φ2 ¼ 0 ð3:2Þ

where, in retarded coordinates, the wave operator takes
the form

□φ¼r−m½−2∂u∂rðrmφÞþ∂2
rðrmφÞ�þr−2½D2−mðm−1Þ�φ

ð3:3Þ

with D2 the Laplacian on the 2m-dimensional sphere.
Plugging the expansion (3.1) in (3.2) one finds

2n∂uϕn ¼ −½D2 − ðm − nÞðmþ n − 1Þ�ϕn−1

for n ¼ 1;…; m − 2: ð3:4Þ
For higher n one gets OðgÞ contributions from the second
term in (3.2). For n ¼ m − 1 this gives2

2ðm − 1Þ∂uϕm−1 ¼ −½D2 − 2ðm − 1Þ�ϕm−2 −
g
2
ϕ2
0: ð3:5Þ

We will see that ϕm−1 plays a role analogous to the “Bondi
mass-aspect” in gravity or the “charge aspect” in Maxwell
theory. In particular, its u → −∞ asymptotic value defines
an angular charge density σðx̂Þ,

σðx̂Þ ≔ ϕm−1ðu ¼ −∞; x̂Þ ð3:6Þ

which, as we shall see, is conserved and encodes the same
information as the charge Qðq̂Þ defined in Eq. (2.3).
Before moving on, we need to specify the u → �∞

falloffs implicitly assumed in (3.6) and consistent with
(3.5). We require

ϕnðu; x̂Þ ¼ Oðjuj−ðm−1−nþϵÞÞ
for n ¼ 0;…; m − 2;

ϕm−1ðu; x̂Þ ¼ Oð1Þ þOðjuj−ϵÞ ð3:7Þ

as u → �∞ for some ϵ > 0. These conditions may be
thought of as a real-space version of the condition that
ωaðω; q̂Þ has a well-defined ω → 0 limit [see Eq. (2.3) and
the next subsection].
With these conditions we can now use Eqs. (3.4) and

(3.5) to write ∂uϕm−1 in terms of the free-data ϕ0.
Introducing the notation

Δn ≔ D2 − ðm − nÞðmþ n − 1Þ; ð3:8Þ

one finds3

∂uϕm−1 ¼
1

ð−2Þm−1ðm − 1Þ!
Ym−1

n¼1

Δn

�Z
u

−∞
du

�
m−2

ϕ0

−
g

4ðm − 1Þϕ
2
0 ð3:9Þ

where ½R u
−∞ du�m−2ϕ0 denotes the (m − 2)th primitive

of ϕ0ðuÞ.

B. Relation between Qðq̂Þ and σðx̂Þ
In this section we use the sphere-differential operator

appearing in (3.9) to relate the charge Qðq̂Þ (2.3) with σðx̂Þ
(3.6). Define the 2ðm − 1Þth differential operator

K ≔ −
1

ð−4πÞmðm − 1Þ!
Ym−1

n¼1

Δn: ð3:10Þ

In Appendix A we show that K is invertible, with the
inverse given by the Green’s function

2In four space-time dimensions Eq. (3.5) implies ϕ0 ¼ 0 and
so the expansion is not consistent with the field equations.
Relaxing the falloffs (3.1) to include logarithmic terms (such as
log r=r) does not fix things. 3See [6,7] for analogous expressions in QED.
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K−1ðq̂; x̂Þ ≔ 2ðm − 1Þ
1 − q̂ · x̂

;

KK−1ðq̂; x̂Þ ¼ δð2mÞðq̂; x̂Þ: ð3:11Þ

We show below that K maps Qðx̂Þ into σðx̂Þ:
σðx̂Þ ¼ KQðx̂Þ; ð3:12Þ

with the inverse relation

Qðq̂Þ ¼
Z
S2m

d2mx̂K−1ðq̂; x̂Þσðx̂Þ: ð3:13Þ

To establish these relations we compare the “soft” and
“hard” parts ofQðq̂Þ and σðx̂Þ separately. The soft and hard
parts of Qðq̂Þ are

Qsoftðq̂Þ ¼ lim
ω→0þ

ω

2
ðaðωq̂Þ þ a†ðωq̂ÞÞ; ð3:14Þ

Qhardðq̂Þ ¼ −
g

4ð2πÞ2m
Z
S2m

d2mp̂

×
Z

∞

0

dE
2π

E2m−2a†ðEp̂ÞaðEp̂Þ
−1þ q̂ · p̂

; ð3:15Þ

where in writing Qhardðq̂Þ we expressed the momentum
integral in spherical coordinates p⃗ ¼ Ep̂. For σðx̂Þ we start
with definition (3.6) to obtain

σðx̂Þ ¼ −
Z

∞

−∞
du∂uϕm−1ðu; x̂Þ þ ϕm−1ðu ¼ ∞; x̂Þ:

ð3:16Þ
As we shall see in the next section, the term ϕm−1ðu ¼
∞; x̂Þ accounts for massive particles but is zero in the
massless theory. The term ∂uϕm−1ðu; x̂Þ can be expressed in
terms of the free-data ϕ0 by means of Eq. (3.9), yielding
soft (linear in ϕ0) and hard (quadratic in ϕ0) pieces,

σðx̂Þ ¼ σsoftðx̂Þ þ σhardðx̂Þ: ð3:17Þ

To compare with Qðq̂Þ we express σsoft=hard in terms of the
Fourier transform of ϕ0. Defining

ϕ̃nðE; x̂Þ ¼
Z

∞

−∞
ϕnðu; x̂ÞeiEudu; ð3:18Þ

one finds

σsoftðx̂Þ¼−lim
E→0

1

ð−iEÞm−2ð−2Þm−1ðm−1Þ!
Ym−1

n¼1

Δnϕ̃0ðE;x̂Þ;

ð3:19Þ

σhardðx̂Þ ¼ g
2ðm − 1Þ

Z
∞

0

dE
2π

ϕ̃0ðE; x̂Þϕ̃0ð−E; x̂Þ: ð3:20Þ

We finally express ϕ̃0ðE; x̂Þ in terms of the Fock operator
aðEp̂Þ. In the asymptotic future, φ is described by the free-
field expression

φðxÞ ≈
Z fdpaðp⃗Þeip·x þ c:c:; ð3:21Þ

where fdp≡ d2mþ1p⃗
ð2πÞ2mþ12jp⃗j. The integral over the sphere p̂ ¼

p⃗=jp⃗j can be evaluated via saddle point in the r → ∞, u ¼
const limit, yielding an expansion of the type (3.1) with

ϕ0ðu; x̂Þ¼
e−iπm=2

2ð2πÞm
Z

∞

0

dE
2π

Em−1aðEx̂Þe−iEuþ c:c: ð3:22Þ

We thus obtain

ϕ̃0ðE; x̂Þ ¼
ð−iÞmEm−1

2ð2πÞm aðEx̂Þ; for E > 0 ð3:23Þ

and the complex conjugated expression for E < 0.
Substituting (3.23) in (3.19) and comparing with (3.14)
one finds4

σsoftðx̂Þ ¼ KQsoftðx̂Þ: ð3:24Þ

We finally discuss the hard part of the charges. Substituting
(3.23) in (3.20) yields

σhardðx̂Þ¼ g
8ðm−1Þð2πÞ2m

Z
∞

0

dE
2π

E2m−2a†ðEx̂ÞaðEx̂Þ:

ð3:25Þ

Using (3.11) it is straightforward to verify

σhardðx̂Þ ¼ KQhardðx̂Þ: ð3:26Þ

This concludes the proof of Eq. (3.12). The inverse relation
(3.13) follows automatically.

IV. MASSIVE FIELDS

In this section we study contribution from massive fields.
We thus take g0 ≠ 0 in (2.1). For simplicity we set g ¼ 0 so
that the field equation for φ is

□φ ¼ −
g0

2
ψ2: ð4:1Þ

Our aim is to show that relations (3.12) and (3.13) still hold
in this case. The soft part of the charges is the same as
before, so we focus on the hard part of the charges. For
Qðq̂Þ this is given by the last term in (2.3),

4Here we wrote the E → 0 limit in (3.19) with the symmetric
prescription: limE→0þ

1
2
ðϕ̃0ðE; x̂Þ þ ϕ̃0ð−E; x̂ÞÞ.
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Qhardðq̂Þ ¼ −
g0

2

Z fdpb†ðp⃗Þbðp⃗Þ
p · q

; ð4:2Þ

whereas for σðx̂Þ it is given by [recall Eq. (3.16)]

σhardðx̂Þ ¼ ϕm−1ðu ¼ ∞; x̂Þ: ð4:3Þ

As in [2] we proceed by studying the field equations at
timelike infinity and then compare the null and time-
infinity expansion in their common range of validity. To
this end, we switch to hyperbolic coordinates

xμ ¼ τYμðyÞ; YμðyÞYμðyÞ ¼ −1; ð4:4Þ

where y≡ yα; α ¼ 1;…; 2mþ 1 parametrize the unit
hyperboloid H. In these coordinates the Minkowski metric
takes the form

ds2 ¼ −dτ2 þ τ2hαβdyαdyβ ð4:5Þ

with hαβ the unit hyperboloid metric. We start by studying
the τ → ∞, Yμ ¼ const behavior of the massive field ψ . At
late times the field is described by the usual Fourier
expansion

ψðxÞ ≈
Z fdpbðp⃗Þeip·x þ c:c:; ð4:6Þ

where fdp ¼ d2mþ1p⃗

ð2πÞ2mþ12
ffiffiffiffiffiffiffiffiffiffi
p⃗2þμ2

p . In the τ → ∞ limit the

momentum integral can be evaluated by a saddle-point
yielding5

ψðτYÞ ¼ μm−1=2

2ð2πτÞmþ1=2 bðμY⃗Þe−iμτ þ c:c:þ � � � : ð4:7Þ

From here we conclude that the leading τ → ∞ asymptotics
of the right-hand side term in (4.1) is given by

−
g0

2
ψ2 ¼ jðyÞ

τ2mþ1
þ � � � ð4:8Þ

with

jðyÞ ¼ −
g0μ2m−1

4ð2πÞ2mþ1
b†ðμY⃗ÞbðμY⃗Þ: ð4:9Þ

The field equation (4.1) together with (4.8) implies a τ2m−1

asymptotic falloff for φ

φðτ; yÞ ¼ φHðyÞ
τ2m−1 þ � � � ð4:10Þ

with φHðyÞ satisfying a Poisson-type equation on H:

ðD2 þ ð2m − 1ÞÞφH ¼ j: ð4:11Þ
Equation (4.11) can be solved by Green’s functions
methods,

φHðyÞ ¼
Z

d2mþ1y0
ffiffiffi
h

p
Gðy; y0Þjðy0Þ ð4:12Þ

where the relevant Green’s function is

Gðy; y0Þ ¼ −
1

ð2m − 1ÞVolðS2mÞ ½−1þ ðY · Y 0Þ2�−mþ1=2

ð4:13Þ
with

VolðS2mÞ ¼ 22mþ1πm
m!

ð2mÞ! ð4:14Þ

the volume (or area) of the unit 2m sphere.
We now use (4.12) to express σhardðx̂Þ (4.3) in terms of

jðyÞ. We first choose coordinates yα ¼ ðρ; x̂Þ such that

Yμ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρ2
q

; ρx̂
�

ð4:15Þ

with ρ > 0 and x̂ a unit vector parametrizing points
on S2m. The conformal boundary of H is obtained by
taking ρ → ∞ with fixed x̂. In Appendix B it we show that
consistency of the null and time-infinity expansions for φ
implies

σhardðx̂Þ ¼ lim
ρ→∞

ρ2m−1φHðρ; x̂Þ: ð4:16Þ

The right-hand side of (4.16) can be evaluated from
expression (4.12) yielding

σhardðx̂Þ ¼ 1

ð2m − 1ÞVolðS2mÞ
×
Z

d2mþ1y
ffiffiffi
h

p
jðyÞ½Y · ð1; x̂Þ�1−2m; ð4:17Þ

where Y · ð1; x̂Þ≡ −Y0 þ Y⃗ · x̂ is the Minkowski inner
product between Yμ and the null vector ð1; x̂Þ.
We finally wish to compare (4.17) with Qhardðq̂Þ. To this

end we first express the momentum integral in (4.2) as an
integral overH by doing the change of variable p⃗ ¼ μY⃗ðyÞ,
resulting in

Qhardðq̂Þ ¼
Z

d2mþ1y
ffiffiffi
h

p jðyÞ
Y · q

: ð4:18Þ

The relation between (4.17) and (4.18) can then be
established in the “inverse” form (3.13),

Qhardðq̂Þ ¼
Z
S2m

d2mx̂K−1ðq̂; x̂Þσhardðx̂Þ ð4:19Þ
5Up to phases which play no role in the analysis.
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by means of a “shadow transform” identity6 [9] which in
our conventions reads

Z
d2mx̂ð1 − q̂ · x̂Þ−1½Y · ð1; x̂Þ�1−2m

¼ ð4πÞm
2

ðm − 2Þ!
ð2m − 2Þ!

1

Y · q
: ð4:20Þ

The converse relation σhardðx̂Þ ¼ KQhardðx̂Þ then follows
automatically.

V. SMEARED CHARGES AND
SPACETIME CURRENT

Given a function λ on the sphere

λ∶ S2m → R ð5:1Þ

we define the smeared charge by

σ½λ� ≔ −2ðm − 1Þ
Z

d2mx̂λðx̂Þσðx̂Þ: ð5:2Þ

[In particular, the smearing λðx̂Þ ¼ ð−1þ q̂ · x̂Þ−1 yields
the charge Qðq̂Þ.] As in [2], we will show that the smeared
charge can be written in terms of a spacetime current
ja ¼ ∂bkab,

kab ¼ ffiffiffi
η

p ðð∇aΛφ −∇aφΛÞXb − ða ↔ bÞÞ; ð5:3Þ

where Xa∂a ¼ xμ∂μ is the dilatation vector field and Λ a
space-time scalar determined by λ according to

ΛðxÞ ¼ cmð−x · xÞm−1
Z

d2mq̂
λðq̂Þ

ð−q · xÞ2m−1 ð5:4Þ

with

cm ¼ 2ðm − 1Þ
ð2m − 1ÞVolðS2mÞ ð5:5Þ

a normalization constant. The field (5.4) satisfies the free
wave equation

□Λ ¼ 0; ð5:6Þ

with certain falloff properties we now describe.
In the r → ∞, u ¼ const null infinity limit, one can

verify (5.4) implies

ΛðxÞ ¼
Xm−1

n¼1

r−nΛnðu; x̂Þ þOðr−mÞ ð5:7Þ

with

Λ1ðu; x̂Þ ¼ λðx̂Þ; Λnðu; x̂Þ ¼ Oðun−1Þ: ð5:8Þ

On the other hand, in hyperbolic coordinates adapted to
timelike infinity one has

Λðτ; yÞ ¼ τ−1ΛHðyÞ ð5:9Þ

with

ΛHðyÞ ¼ cm

Z
d2mq̂

λðq̂Þ
ð−q · YÞ2m−1 : ð5:10Þ

Expression (5.10) can alternatively be interpreted as the
solution to the boundary-value problem

ðD2 þ ð2m − 1ÞÞΛH ¼ 0;

ΛHðρ; x̂Þ ¼ ρ−1λðx̂Þ þOðρ−3Þ ð5:11Þ

(see Appendix C for further details).
We now show that the charge (5.2) can be understood as

arising from the spacetime current ja ¼ ∂bkab.We follow the
same strategy as in [10] in which one integrates the current
over a t ¼ const spatial slice and evaluates the integral in the
t → ∞ limit. Two contributions arise in this limit, depending
onwhether the limit is taken along null or timelike directions.
The null infinity contribution is given by

σI ½λ� ¼ lim
t→∞

Z
dud2mx̂∂ukru ð5:12Þ

where u ¼ t − r and

kru ¼ r2m½ð∂rΛφ − ∂uΛφÞuþ ð∂rΛφÞr� − ½φ ↔ Λ�:
ð5:13Þ

To evaluate (5.12)we first substitute the1=r expansions forφ
and Λ in (5.13). This leads to a 1=r expansion for kru of the
form

kru ¼ rm
�Xm

n¼1

r−nkrun

�
þOðr−1Þ: ð5:14Þ

We note that kru diverges in the null infinity limit. However
the potentially divergent terms in (5.12) integrate to zero due
to the u → �∞ falloffs. Indeed, from (3.7) and (5.8) one
verifies

6The role of the shadow transform in the context of spin 1 and
2 soft theorems was recently discussed in [8].
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krun ¼ Oðjujn−m−ϵÞ n ¼ 1;…m − 1;

krum ¼ Oð1Þ þOðjuj−ϵÞ ð5:15Þ

and so the would-be divergent terms do not contribute to the
charge. The finite contribution comes from

krum ðu; x̂Þ ¼ 2ðm − 1Þϕm−1ðu; x̂Þλðx̂Þ þOðjuj−ϵÞ ð5:16Þ

and so

σI ½λ� ¼ 2ðm − 1Þ
Z

dud2mx̂λðx̂Þ∂uϕm−1ðu; x̂Þ: ð5:17Þ

From Eq. (3.16) we see this corresponds to the null-infinity
contribution to (5.2).
We now evaluate the contribution from time infinity. To

this end we switch to hyperbolic coordinates adapted to
time infinity. From the τ → ∞ falloffs for φ andΛ one finds

lim
τ→∞

kτα ¼
ffiffiffi
h

p
ðDαφHΛH −DαΛHφHÞ; ð5:18Þ

leading to a time-infinity contribution to the charge:

σH½λ� ¼ lim
τ→∞

Z
d2mþ1y∂αkτα ¼

Z
d2mþ1y

ffiffiffi
h

p
jðyÞΛHðyÞ

ð5:19Þ

where in the last equality we used the field equations (4.11)
and (5.11).
On the other hand, according to Eq. (4.16) the “time-

infinity” contribution to (5.2) should be given by

−2ðm − 1Þ lim
ρ→∞

ρ2m−1
Z

d2mx̂λðx̂ÞφHðρ; x̂Þ: ð5:20Þ

That (5.20) coincides with (5.19) can be verified by writing
φH in terms of j according to (4.12), noting that

lim
ρ→∞

ρ2m−1Gðρ; x̂; y0Þ ¼ −
1

2ðm − 1Þ
cm

ð−q · Y 0Þ2m−1 ; ð5:21Þ

and using Eq. (5.10). See Appendix C for further details.
To summarize, by evaluating the spacetime current ∂bkab

in a t ¼ const slice with t → ∞ one finds two contributions
at null and timelike infinity such that their sum gives the
smeared charge (5.2)

σ½λ� ¼ σI ½λ� þ σH½λ�: ð5:22Þ

VI. CONCLUSIONS

Following upon the work [2], in this paper we studied the
asymptotic charges associated with a spin-zero analog of

Weinberg’s soft theorem in higher even dimensions.
Whereas it is relatively straightforward to recast the soft
theorem as a conservation of charges Qðq̂Þ in the sense of
Eq. (2.2), it is less obvious how to interpret these charges in
terms of asymptotic fields. Here we provided such inter-
pretation, for the case of both massless and massive hard
particles.
The interpretation of Qðq̂Þ in terms of asymptotic fields

allows one to obtain a spacetime expression for smeared
charges. As in gravity and electrodynamics, these smeared
charges can be written as integrals of total-derivative cur-
rents, ja ¼ ∂bkab. But unlike those cases, there is so far no
symmetry understanding for the tensor kab: In gravity and
electrodynamics kab are Noether forms of local symmetries
[11]; but there are no local symmetries associated with
scalars. The question remains as to what is the appropriate
symmetry interpretation for the soft scalar asymptotic
charges.
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APPENDIX A: OPERATOR K AND EQ. (3.11)

The operator K (3.10) is proportional to the composition
of the (m − 1) differential operators:

Δn ¼ D2 − μn;

μn ¼ ðm − nÞðmþ n − 1Þ;
n ¼ 1;…; m − 1; ðA1Þ

where D2 is the Laplacian on S2m and m ≥ 2. It can be
easily checked that μn > 0 in the range (A1). Since the
eigenvalues of the Laplacian D2 are nonpositive, it then
follows that zero is not an eigenvalue of Δn. Thus Δn is
invertible and so is K.
To find the inverse of K we start by inverting Δ1. Its

Green’s function G1ðq̂; x̂Þ,

Δ1G1ðq̂; x̂Þ ¼ δð2mÞðq̂; x̂Þ ðA2Þ

is found to take the simple form7

7The reason for the simplicity of G1 is that Δ1 is conformally
equivalent to the flat Laplacian on Rd: Δ1 ¼ D2 − d−2

4ðd−1ÞR with
R ¼ dðd − 1Þ the scalar curvature on Sd. In terms of Δ1, the
operators (A1) take the simple form: Δn ¼ Δ1 þ nðn − 1Þ.
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G1ðq̂; x̂Þ ¼
−1

2mðm − 1ÞVolðS2m−1Þ ð1 − q̂ · x̂Þ1−m ðA3Þ

where

VolðS2m−1Þ ¼ 2πm

ðm − 1Þ! ðA4Þ

is the volume of the unit S2m−1 sphere. We now discuss the
m ¼ 2 and m > 2 cases separately. For m ¼ 2, K ¼
−ð4πÞ−2Δ1 and so K−1 ¼ −ð4πÞ2G1 ¼ 2ð1 − q̂ · x̂Þ−1
which coincides with expression (3.11). For m > 2 we
use the identity [6]

Δm−pð1 − q̂ · x̂Þ−p ¼ 2pðpþ 1 −mÞð1 − q̂ · x̂Þ−ðpþ1Þ

ðA5Þ

from which it follows that

Ym−1

n¼2

Δnð1 − q̂ · x̂Þ−1 ¼ ð−1Þm2m−2ðm − 2Þ!2ð1 − q̂ · x̂Þ1−m:

ðA6Þ

Finally, acting with Δ1 on (A6) and using (A2), (A3) one
arrives at the desired result

Kð1 − q̂ · x̂Þ−1 ¼ 1

2ðm − 1Þ δ
ð2mÞðq̂; x̂Þ: ðA7Þ

APPENDIX B: EQUATION (4.16)

The asymptotic properties of φ near null infinity
described in Sec. III A imply certain asymptotic properties
at time infinity which we now explore.
The idea is to consider a double r → ∞ and u → ∞

expansion of φ. The r → ∞ expansion is the one given in
(3.1) which we take to hold for all n:

φðr; u; x̂Þ ¼ r−m
X∞
n¼0

r−nϕnðu; x̂Þ: ðB1Þ

Each ϕnðu; x̂Þ has a u → ∞ behavior as in (3.7),

ϕnðu; x̂Þ ¼ ϕþ
n ðx̂Þun−ðm−1Þ−ϵ þ δnm−1σ

hardðx̂Þ for u → ∞

ðB2Þ

where we included the additional Oð1Þ term that
appears when n ¼ m − 1 [identified as the hard
charge density due to massive particles, see Eq. (4.3)].
The leading r → ∞; u → ∞ behavior of φ is thus
given by

φ ¼
X∞
n¼0

r−ðmþnÞun−ðm−1Þ−ϵϕþ
n ðx̂Þ þ r−ð2m−1Þσhardðx̂Þ þ � � � :

ðB3Þ

We now wish to identify this expansion with a τ → ∞;
ρ → ∞ expansion at time infinity. The relation between the
two sets of coordinates is

r ¼ ρτ; u ¼ τ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρ2
q

− ρ
�
¼ τ

2ρ
þOðρ−3Þ: ðB4Þ

Substituting in (B3) and keeping only leading terms in
τ → ∞; ρ → ∞, one finds

φ ¼ 1

τ2m−1ρ2m−1 σ
hardðx̂Þ þO

�
1

τ2m−1þϵ

�
þ � � � : ðB5Þ

Recalling that the τ → ∞; ρ ¼ const behavior of φ is
given by

φðτ; ρ; x̂Þ ¼ φHðρ; x̂Þ
τ2m−1 þO

�
1

τ2m−1þϵ

�
ðB6Þ

we conclude from (B5) that

lim
ρ→∞

ρ2m−1φHðρ; x̂Þ ¼ σhardðx̂Þ: ðB7Þ

APPENDIX C: GREEN’S FUNCTIONS
AT TIME INFINITY

In this appendix we collect some expressions from [9,12]
in a way geared to our setup. We will be slightly more
general than in the rest of the paper and allow for arbitrary
sphere dimension d and arbitrary “conformal dimension” h.
The case of interest in the paper is h ¼ 1. (More generally
the value h ¼ 1 − s is relevant for spin-s leading soft
theorem charges; see [2] for a discussion in four spacetime
dimensions.)
We start by constructing a spacetime function ΛðxÞ out

of a function on the sphere λ∶ Sd → R and a conformal
dimension h ∈ R by [9,12]:

ΛðxÞ ≔ 2h

ð4πÞd=2
Γðd − hÞ
Γðd

2
− hÞ ð−x · xÞ

d
2
−h

Z
ddq̂

λðq̂Þ
ð−q · xÞd−h :

ðC1Þ

One can verify ΛðxÞ satisfies the free wave equation

□Λ ¼ 0 ðC2Þ

as well as the scaling property thΛðtxÞ ¼ ΛðxÞ. The role of
the overall normalization constant becomes clear below.
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In terms of hyperbolic coordinates adapted to timelike
infinity (see Sec. IV), the function takes the form

Λðτ; yÞ ¼ τ−hΛHðyÞ ðC3Þ

where

ΛHðyÞ ¼
Z

ddq̂Gðy; q̂Þλðq̂Þ ðC4Þ

with

Gðy; q̂Þ ¼ 2h

ð4πÞd=2
Γðd − hÞ
Γðd

2
− hÞ ð−q · YÞh−d: ðC5Þ

From Eqs. (C2) and (C3) it follows that ΛH satisfies

ðD2 þ hðd − hÞÞΛH ¼ 0 ðC6Þ

on H. On the other hand, Eq. (C4) implies [9,12]

lim
ρ→∞

ρhΛHðρ; x̂Þ ¼ λðq̂Þ: ðC7Þ

In other words, Gðy; q̂Þ is the Green’s function for the
boundary value problem given by Eqs. (C6) and (C7).
At time infinity there are also fields φH that capture the

contribution to charges due to massive particles [2,5,10,13].

These fields are in a sense “dual” to ΛH and satisfy
Poisson-type equations

ðD2 þ hðd − hÞÞφH ¼ j;

φHðρ; x̂Þ ¼ρ→∞
Oð1=ρd−hÞ; ðC8Þ

where j is a source term that is quadratic in the massive
particle Fock operators.
If Gðy; y0Þ is the Green’s function for the elliptic problem

(C8) then its ρ → ∞ asymptotic value is related to the
Green’s function (C5) by [14]

lim
ρ→∞

ρd−hGðρ; x̂; y0Þ ¼ −
1

ðd − 2hÞGðy
0; x̂Þ; ðC9Þ

a well-known fact in the AdS=CFT literature.
For the case of interest in the present paper we set h ¼ 1

and d ¼ 2m. In this case G is given by Eq. (4.13), G can be
read-off from Eq. (5.10) [or alternatively from Eq. (C5)],
and relation (C9) becomes

lim
ρ→∞

ρ2m−1Gðρ; x̂; y0Þ ¼ −
1

2ðm − 1ÞGðy
0; x̂Þ; ðC10Þ

which corresponds to Eq. (5.21) in the body of the paper.
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