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1 Introduction

The subject of asymptotic symmetries in gravity and gauge theories has experienced re-

newed interest after the discovered [1–5] relation with so-called soft theorems [6]. In general

relativity, the occurrence of novel asymptotic symmetries originally appeared in the study

of gravitational waves [7, 8] whereas in electromagnetism, large U(1) symmetries were
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studied in relation to infrared divergences in QED [9]. There is in fact a tight connection

between asymptotic symmetries and infrared issues in both gravity and electromagnetism

as emphasized long ago [10] and more recently [11–14].

The key insight of Strominger and collaborators was the realization that the well-

established soft theorems can be understood as the existence of infinitely many conserved

charges associated to asymptotic symmetries. Here we would like to better understand

such charges and their conservation from a classical field theory perspective. In the case of

electromagnetism, the conservation statement associated to the leading soft photon theorem

can be written as the following “continuity” condition of the field strength at future and

past null infinities [15]:

−2
F ru(u = −∞, x̂) =

−2
F rv(v =∞,−x̂). (1.1)

Here
−2
F ru(u, x̂) is the leading term in an r → ∞ expansion of the field strength at future

null infinity and
−2
F rv the analogue term at past null infinity.1

Our first goal will be to show how condition (1.1) can be understood as a consequence

of Maxwell equations near spatial infinity. Here we will follow the idea [21–23] of using the

space-infinity hyperboloid as a way to link future and past null infinities.

We will then study large U(1) charges from the perspective of spatial infinity. As

reviewed below, the smeared version of the quantities (1.1) have the interpretation of

generators of large U(1) gauge transformations at future and past infinities. We will use

the expansion of the Maxwell field at spatial infinity [21, 22, 24, 25] to define large U(1)

generators at arbitrary times on the space-infinity hyperboloid. The charges will be shown

to be conserved and to interpolate between the future and past infinity charges. The end

result will be a unified description of large U(1) symmetries and charges that applies to

both spatial and future/past infinities. In this way, the present article extends the work [26]

that provides a unified picture of null and time-infinities charges.

We would like to mention that our first result, namely deriving eq. (1.1) from the field

equations (plus fall-off assumptions), is not new but was established by Herdegen long

ago [27]. Herdegen’s techniques are however quite different from the ones presented here

and we leave for the future a detailed comparison between the two approaches.2

1The quantity
−2

F ru(u, x̂) is also referred to as ‘charge aspect’ in analogy to Bondi’s ‘mass aspect’. The

conservation statement associated to the leading soft graviton theorem is a continuity condition on Bondi’s

mass aspect [1–5]. Similar continuity conditions are behind soft theorems for other spins [16–20].
2We take the opportunity to address Herdgen’s concerns [28] regarding the interpretation of the charges

as generators of large gauge transformations. Herdegen works in Lorenz gauge and concludes there are no

large residual gauge transformation. In our understanding, his conclusion may be reached as follows: in

Lorenz gauge, residual gauge transformations are given by gauge parameters satisfying the wave equation

�Λ = 0. Regular solutions to the wave equation are known to decay as 1/r in null directions (see e.g. [29]).

Hence large gauge transformations are forbidden. Indeed, the large gauge parameters considered here and

in [26, 30] are singular at r = 0. In our view, the catch in the argument is that in the discussions of large

gauge symmetries the gauge conditions are only being used asymptotically. One may envisage a modification

of the Lorenz gauge condition in the interior so as to ensure a regular gauge parameter everywhere.

– 2 –
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The outline of the paper is as follows. In section 2 we set up notation and describe

the assumed asymptotic properties of the fields at null, spatial and time infinities. Some

derivations in this section are given in appendix A. In section 3 we present the argument

for eq. (3.1). The argument rests on properties of the field equations at spatial infinity

that are described in appendix B. In section 4 we study large gauge symmetries at spatial

infinity and obtain the associated charges. The analysis requires a careful handling of the

covariant phase space which may be of interest in its own right. In section 5 we describe

how dual magnetic charges may be constructed. In the final section we summarize our

results and point out potential connections with other works.

2 Preliminaries

The system of study will be a Maxwell field Aa in four dimensional flat spacetime coupled to

massive charge fields. For definitiveness we consider a single massive charged scalar ϕ but

the discussion applies to any number and kind of massive particles. The field equations are

∇bFab = ja, (2.1)

DaDaφ−m2φ = 0, (2.2)

where ∇a is the spacetime covariant derivative, Fab = ∂aAb − ∂bAa the field strength,

ja = ieφ(Daφ)∗ + c.c., (2.3)

the charge current and Da the gauge covariant derivative, Daφ = ∂aφ− ieAaφ.

Local U(1) gauge transformations are parametrized by a scalar Λ and act as

δΛAa = ∂aΛ, δΛφ = ieΛφ. (2.4)

Large U(1) gauge parameter will be discussed in the context of Lorenz gauge

∇aAa = 0, (2.5)

in which the residual gauge parameters Λ satisfy the wave equation

∇a∇aΛ = 0. (2.6)

In the following subsections we describe expansions of the fields at null, space and time

infinities. We will assume that in a neighborhood of each infinity the system is described

by the free (linearized) theory. The scalar field being massive will only register at time-like

infinity. The Maxwell field will have nontrivial components at all infinities.

Notation: the discussion involves many spaces and notation may be confusing at first.

We here summarize the notation for coordinates, metric and derivative for each space:

• spacetime R4: xa, ηab,∇a

• sphere S2: xA, qAB, DA

– 3 –
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• spatial infinity Ho: yα = (τ, xA), hαβ , Dα

• future time-like infinity H+: yα = (ρ, xA), hαβ , Dα

• future null infinity I+: (u, xA), qAB, (∂u, DA)

x̂ denotes the unit three-vector determine by a sphere point xA. Functions f on the

sphere are denoted as f(x̂).

We warn the reader that the coordinates ρ and τ have different meaning depending on

whether we are discussing expansions at space or at time infinities.

2.1 Field expansion at null infinity

The (future) null infinity regime can be studied in outgoing coordinates in terms of which

the Minkowski line element takes the form

ds2 = −du2 − 2dudr + r2qABdx
AdxB. (2.7)

Here r =
√
x2 + y2 + z2 is the radial coordinate, u = t− r the retarded time, and xA, A =

1, 2 coordinates on the sphere. qAB is the unit sphere metric. We use the notation x̂ to

denote the unit three-vector parametrized by the point on the sphere xA. For concreteness

we focus the discussion on future null infinity. Similar considerations apply to past null

infinity with v = t+ r playing the role of u.

Future null infinity is reached by taking the limit r → ∞ with u, x̂ =const. The

abstract manifold of such limiting endpoints is denoted by I+. It has the topology of a

cylinder, parameterized by (u, x̂).

We assume the Maxwell field satisfies the standard asymptotic expansion [1–5]:

FAB(r, u, x̂) =
∞∑
n=0

r−n
−n
F AB(u, x̂) (2.8)

Fru(r, u, x̂) =
∞∑
n=2

r−n
−n
F ru(u, x̂), (2.9)

and similar expansion for the remaining components, with FAu = O(r0) and FAr = O(r−2).

Since the charged scalar field is massive, we assume Fµν satisfies the free field equations

near null infinity. To solve the equations it is convenient to fix a gauge and work with

the vector potential Aµ. Either in radial gauge Ar = 0 or in Lorenz gauge one arrives at

equations that can be recursively solved in terms of unconstrained, free data
0
AA(u, x̂) (plus

integration constants; see e.g. [31]). For instance, the leading ∇bFub = 0 equation yields:

∂u
−2
F ru = DA

0
FAu, (2.10)

with
0
FAu = −∂u

0
AA. This can be solved in terms of the free data after fixing the integration

‘constant’
−2
F ru(u = −∞, x̂). (2.11)

– 4 –
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For the free data we assume standard u→ ±∞ fall-offs:

0
AA(u, x̂) =

0
AA(x̂)± +O(|u|−ε). (2.12)

In appendix A.1 we show that the field equations together with
0
AA(u, x̂) = O(1) imply

−n
F ru(u, x̂) = O

(
|u|n−2

)
(2.13)

at u→ ±∞.

The gauge parameter Λ has a similar expansion with

Λ(r, u, x̂) = λ+(x̂) +

∞∑
n=1

(
r−n

−n
Λ (u, x̂) + r−n ln r

−n,ln
Λ (u, x̂)

)
. (2.14)

The presence of logarithmic terms is due the O(1) term [30].

2.2 Field expansion at spatial infinity

To study the fields at spatial infinity we use hyperbolic coordinates in the r > |t| region,

ρ :=
√
r2 − t2, τ :=

t√
r2 − t2

(2.15)

in terms of which the Minkowski line element reads:

ds2 = dρ2 + ρ2dσ2 (2.16)

with

dσ2 = − dτ2

1 + τ2
+
(
1 + τ2

)
qABdx

AdxB =: hαβdy
αdyβ (2.17)

the (unit-radius) three-dimensional de Sitter metric. We denote by Ho the abstract unit

de Sitter metric that represents spatial infinity. For later convenience we introduced the

notation yα = (τ, xA) for coordinates on Ho.
Following [24], we assume the Maxwell field has a ρ→∞ expansion

Fαβ(ρ, y) =
∞∑
n=0

ρ−n
−n
F αβ(y) (2.18)

Fαρ(ρ, y) =

∞∑
n=1

ρ−n
−n
F αρ(y). (2.19)

Since the charged field is massive we assume Fµν satisfies the free field equations near spatial

infinity. These equations yield evolution equations for the family of fields
−n
F αβ ,

−n
F αρ on Ho.

Free field asymptotic conditions also determine the τ → ±∞ behavior of these functions.

For instance (see appendix A.2):

−n
F τρ(τ, x̂) = O

(
|τ |n−4

)
, (2.20)

a condition that will be used when relating with the fields at null infinity.

– 5 –
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For the purposes of this paper we will only be interested in the leading equations:

Dα
−1
F αρ = 0, D[α

−1
F β]ρ = 0, (2.21)

Dβ
0
Fαβ = 0, D[α

0
F βγ] = 0, (2.22)

where Dα is the covariant derivative on Ho. Formally these equations look like electro- and

magneto-static vacuum equations on Ho, with
−1
F αρ and

0
Fαβ playing the role of electric

and magnetic fields respectively. They can be solved in terms of ‘potentials’ ψ, ψ̃ on Ho as

follows: The second equation in (2.21) implies that
−1
F αρ is a total derivative:

−1
F αρ = Dαψ (2.23)

for some function ψ on Ho defined up to an additive constant.3 The first equation in (2.21)

then implies that ψ satisfies the wave equation on Ho,

DαDαψ = 0. (2.24)

Equations (2.22) take the same form as (2.21) when written in terms of the magnetic field

1
2ε
αβγ

0
F βγ where εαβγ is the volume form on Ho. They are then similarly solved in terms

of a field ψ̃ such that
0
Fαβ = εαβγD

γψ̃, DαDαψ̃ = 0. (2.25)

The gauge parameter has a similar ρ→∞ expansion

Λ(ρ, y) = λ(y) +O
(
ρ−1
)
. (2.26)

Equation (2.6) then implies

DαDαλ = 0. (2.27)

The τ → ±∞ behavior of λ is such that (see appendix B for further details)

λ(τ, x̂) = λ±(x̂) +O
(
τ−ε
)
. (2.28)

By performing change of coordinates between (ρ, τ) to (r, u) coordinates, one can verify

that λ+(x̂) in (2.28) coincides with λ+(x̂) in (2.14) (and similar statement for λ−(x̂) at

past null infinity). See [26] for the analogous result at time-like infinity and appendix A.2

for analogous statement for the field strength.

2.3 Field expansion at time infinity

Coordinates adapted to time-like infinity are completely analogue to the space infinity

coordinates with the role of radial and time coordinates interchanged. For concreteness we

focus on future time-infinity. In the r < |t|, t > 0 region define:

τ :=
√
t2 − r2, ρ :=

r√
t2 − r2

(2.29)

3If we work with a vector potential of the form Aα = O(ρ0) and Aρ = O(ρ−1) then ψ ≡
−1

A ρ. We will

use this identification in section 4.

– 6 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
8

in terms of which the Minkowski line element reads:

ds2 = −dτ2 + τ2dσ2 (2.30)

with

dσ2 =
dρ2

1 + ρ2
+ ρ2qABdx

AdxB =: hαβdy
αdyβ (2.31)

the unit radius hyperbolic space. We denote by H+ this abstract hyperboloid, representing

time-like infinity, with coordinates yα = (ρ, xA). Assuming free field τ → ∞ fall-offs for

the Maxwell field and scalar one has:

Fαβ(τ, y) =
∞∑
n=0

τ−n
−n
F αβ(y), Fατ (τ, y) =

∞∑
n=1

τ−n
−n
F αρ(y) (2.32)

jα(τ, y) =

∞∑
n=3

τ−n
−n
j α(y), jτ (τ, y) =

∞∑
n=3

τ−n
−n
j α(y) (2.33)

To leading order, the field equations are:

Dα
−1
F τα =

−3
j τ , D[α

−1
F β]τ = 0. (2.34)

Dβ
0
Fαβ = 0, D[α

0
F βγ] = 0 (2.35)

As in the spatial infinity case, these equations can be solved in terms of scalars ψ, ψ̃

such that

−1
F ατ = ∂αψ, −DαDαψ =

−3
j τ (2.36)

0
Fαβ = εαβγD

γψ̃, DαDαψ̃ = 0. (2.37)

They take precisely the form of electro and magneto static equations on H+ with a charge

density
−3
j τ . Solutions to these equations are described in appendix C.

For the gauge parameter we have

Λ(τ, y) = λ(y) +O
(
τ−1

)
. (2.38)

with λ satisfying Laplace equation on H+

DαDαλ = 0. (2.39)

3 I± conserved charges from spatial infinity perspective

In [15] it was argued that in a general scattering process of charged particles the following

identity holds:
−2
F ru(u = −∞, x̂) =

−2
F rv(v =∞,−x̂) (3.1)

which represents an infinity of conservations laws between past and null infinity data. If

we now smear (3.1) with sphere functions λ±(x̂) satisfying the ‘antipodal matching’ [1–5]

λ+(x̂) = λ−(−x̂), (3.2)

– 7 –
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and define:

Q+[λ+] := −
∫
S2

d2V λ+(x̂)
−2
F ru(u = −∞, x̂) (3.3)

Q−[λ−] := −
∫
S2

d2V λ−(x̂)
−2
F rv(v =∞, x̂) (3.4)

the conservation law reads [1–5]:

Q+[λ+] = Q−[λ−] (3.5)

for all λ± satisfying (3.2). The quantities Q±[λ±] have the interpretation of large U(1)

gauge charges at future/past infinities [15]: using eq. (2.10) one has,

Q+[λ+] =

∫
I+
dud2V λ+(x̂)DA

0
FAu(u, x̂)−

∫
S2

d2V λ+(x̂)
−2
F ru(u =∞, x̂). (3.6)

The first term in (3.6) is the ‘soft part’ of the charge and depends on the Maxwell field at

null infinity. The second term in (3.6) is the ‘hard part’ of the charge which, upon using

the field equations, depends on the massive field at time-like infinity. We refer the reader

to appendix C for further details, where we show that the hard part (and hence Q+[λ+])

coincides with the expression obtained from covariant phase space methods [26]. Similar

considerations apply to Q−[λ−].

We now show that the conservation laws (3.1) are a consequence of the field equations

at spatial infinity. The first task is to express each side of the equality (3.1) in terms of fields

at spatial infinity. In appendix A.3 it is shown that the fall-offs (2.9), (2.13), (2.19), (2.20)

imply:

−2
F ru(u = −∞, x̂) = lim

τ→∞
τ3
−1
F ρτ (τ, x̂) (3.7)

−2
F rv(v = +∞, x̂) = − lim

τ→−∞
τ3
−1
F ρτ (τ, x̂). (3.8)

Recall from eq. (2.23) that
−1
F αρ = Dαψ. From eq. (2.20) we then have that the τ → ±∞

asymptotic form of ψ is

ψ(τ, x̂)
τ→±∞−→ k± + τ−2ψ±(x̂) + . . . (3.9)

where k± are possible O(τ0) constants and the dots indicate subleading terms.

Eqs. (3.7), (3.8) then take the form:

−2
F ru(u = −∞, x̂) = 2ψ+(x̂) (3.10)
−2
F rv(v = +∞, x̂) = −2ψ−(x̂), (3.11)

and the conservation law (3.1) translates into

ψ+(x̂) = −ψ−(−x̂). (3.12)

This equality can now be established as a consequence of the wave equation (2.24) and the

asymptotic form (3.9). A proof is given in appendix B.

– 8 –
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4 Canonical charges at spatial infinity

The conserved charges Q±[λ±] described in the previous section can be understood as large

U(1) gauge charges at future/past infinities [15, 26]. Here we show that they can also be

understood as large U(1) gauge charges at spatial infinity.

We first construct the covariant phase space symplectic structure associated to constant

τ slices and consider large gauge U(1) symmetries at spatial infinity. We construct the

associated canonical charges Qτ [λ] and show that they are conserved. Their τ → ±∞ limit

is then shown to reproduce the charges Q±[λ±] of the previous section. In this way, the

equality eq. (3.5) appears as a consequence of the conservation of Qτ [λ].

During the analysis we will find interesting features in the asymptotics of the symplectic

structure that may be of interest in their own right. We comment on them in a final

subsection.

4.1 Symplectic current for τ = const. slicing

In the covariant phase space approach [32, 33], the symplectic product is defined as the

flux through a Cauchy slice of a conserved symplectic current ωa. For scalar QED, the

standard current is given by:

ωabulk =
√
η
(
δF ab ∧ δAb + (δDaφ)∗ ∧ δφ+ c.c.

)
(4.1)

(the wedge is in field space). The subscript ‘bulk’ is to indicate that the current may have

to be amended by a total-derivative ‘boundary’ term. A way to determine whether such

boundary term is required is to compute the ‘leakage’ of the symplectic current between

two Cauchy slices [34]. Only for zero leakage is the symplectic product well-defined (i.e.

independent of the Cauchy slice). In [34] this strategy is followed to obtain the boundary

contribution from a horizon boundary. Here we follow the same strategy with spatial

infinity as a boundary.

To proceed we need to specify fall-off conditions on the vector potential Aµ. We assume

a power series expansion in ρ−1 with leading terms given by:

Aα = O
(
ρ0
)
, Aρ = O

(
ρ−1
)

(4.2)

which is compatible with the fall-offs of Fµν described in section 2.2. The leakage of the

current (4.1) between two Cauchy slices τ = τ1 and τ = τ2 is then given by:

lim
ρ→∞

∫ τ2

τ1

dτ

∫
d2x̂ ωρbulk =

∫
∆
d3V hαβδ

−1
F ρα ∧ δ

0
Aβ (4.3)

where ∆ ⊂ Ho is the region bounded by the spheres τ = τ1, τ2 on Ho. Written in terms of

the vector potential, the leaking term reads:

hαβδ
−1
F ρα ∧ δ

0
Aβ = −δDα

−1
A ρ ∧ δ

0
Aα (4.4)

= −Dα

(
δ
−1
A ρ ∧ δ

0
Aα

)
+ δ
−1
A ρ ∧ δDα

0
Aα (4.5)

– 9 –
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(indices in Ho are raised with hαβ). Since the first term in (4.5) is a total derivative, it can

be cancelled by adding a boundary term to (4.1). The appropriate boundary term is

ωabdy := ∂b

(√
η δAa ∧ δAb

)
. (4.6)

The second term in (4.5) however remains. This term can be eliminated by imposing ap-

propriate gauge condition on the leading vector potential. For instance any gauge condition

of the form
−1
A ρ ∝ Dα

0
Aα (4.7)

will make the unwanted contribution to vanish. In fact, our interest is in studying large

U(1) gauge parameter in Lorenz gauge. To leading order in ρ → ∞ this gauge condition

implies

2
−1
A ρ +Dα

0
Aα = 0, (4.8)

which is a particular case of (4.7). To summarize: the symplectic structure associated to

the τ = const. foliation, with fall-off conditions (4.2) and gauge condition (4.7) is given by:

Ω =

∫
Στ

dSa
(
ωabulk + ωabdy

)
(4.9)

with ωabulk and ωabdy given in (4.1) and (4.6) respectively.4

4.2 Large U(1) gauge transformations and associated charges

We now consider large gauge transformations that are nontrivial at spatial infinity,

Λ(ρ, y) = λ(y) +O
(
ρ−1
)
. (4.10)

The associated charges Q[λ] are defined by the condition5

δQ[λ] = Ω(δΛ, δ) (4.11)

where δΛ is the action of the gauge transformation, eq. (2.4). The contribution to (4.11)

due to the ‘bulk’ symplectic current becomes, upon using the field equations, the total

derivative term

ωabulk(δΛ, δ) = −δ∂b
(√

ηΛF ab
)
. (4.12)

On the other hand, the contribution from ωabdy is a total derivative to begin with:

ωabdy(δΛ, δ) = δ∂b
√
η
(
∇aΛAb −Aa∇bΛ

)
. (4.13)

The integral over Στ thus becomes a ρ → ∞ surface integral. The fall-offs (4.2), (4.10)

imply the charge is given by:

Qτ [λ] =

∫
Cτ

dSα
√
hhαβ

(
∂βλ

−1
A ρ − λ

−1
F βρ

)
, (4.14)

4The fall-offs (4.2) imply a logarithmically divergent term in the ρ integral of (4.9). This would-be

divergence however can be shown to be zero due to properties satisfied by the fields on Ho. This and

related points are discussed in subsection 4.3.
5The charge will depend on Λ only through its asymptotic value λ hence the notation Q[λ].
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where Cτ is the τ =const. surface on Ho. For the fall-offs (4.2) we have
−1
F αρ = ∂α

−1
A ρ.

Comparing with (2.23) we see that
−1
A ρ is the field ψ of the previous sections. Thus (4.14)

can be written as:6

Qτ [λ] =

∫
Cτ

dSα
√
hhαβ (∂βλψ − λ∂βψ) . (4.15)

This has the form of a symplectic product of two scalar fields ψ and λ on Ho. In section 2.2

we saw that both ψ and λ satisfy the wave equation on Ho, (2.24) and (2.27) (the latter

arising from the Lorenz gauge condition). It thus follows that (4.15) is independent of the

slice Cτ . That is, the charges Qτ [λ] are conserved. Finally, it is easy to verify that the

τ →∞ fall-offs (2.28), (3.9) imply (see appendix B.2)

lim
τ→±∞

Qτ [λ] = Q±[λ±] (4.16)

with Q±[λ±] the charges defined in eqs. (3.3), (3.4) (just evaluate (4.14) for α = τ and use√
hhττ = −(1 + τ2)3/2). The matching condition (3.2) can be seen as a consequence of the

wave equation and fall-offs on λ, see appendix B.

4.3 Asymptotic properties of the symplectic structure

Let us denote by ΩKG
τ (δ, δ′) the Klein-Gordon (KG) symplectic product on Ho so that

eq. (4.15) takes the form

Qτ [λ] = ΩKG
τ (λ, ψ). (4.17)

As discussed in appendix B, the fields λ and ψ have different τ → ±∞ fall-off behavior,

associated to different ‘free data’ that can be prescribed in the asymptotic boundary of

Ho. This in turn implies that the KG symplectic product between λ’s or ψ’s fields vanish

ΩKG
τ (λ, λ′) = ΩKG

τ (ψ,ψ′) = 0. (4.18)

In other words, the phase space of massless KG fields on Ho has a “(q, p)” decomposition

with λ-type fields playing the role of q and ψ-type fields the role of p.7 There are two

interesting observations that follow.

The first one is in relation to the boundary phase space of gauge theories given in [38].

The authors consider gauge theories in finite spatial regions. In order to have good gluing

properties of different regions, the authors are lead to introduce a boundary phase space

consisting of a conjugate pair of normal electric field and gauge phase. Here we see the

same type of boundary phase space: if λ is regarded as a dynamical variable, it follows that

λ and ψ are canonically conjugated (with Qτ expressing their symplectic product). In the

language of [38], ψ plays the role of normal electric field and λ is the conjugated phase.

6An analogue charge is given in [35] for supertranslations in gravity. Our argument for charge conserva-

tion is the same as the one given there.
7From the point of view of the τ = 0 slice, this decomposition is related to ‘parity conditions’ given

in [36] (analogous to those in gravity [37]). See appendix B.2.C of [20] for a discussion in the context of

massless scalars.

– 11 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
8

The second observation is regarding a potential logarithmic divergence in the sym-

plectic product (4.9). Expressing the integral over Στ in (4.9) as limR→∞
∫ R

0 dρ
∫
d2x̂(. . .)

one finds

Ωτ (δ, δ′) = lim
R→∞

log(R) ΩKG
τ (δψ, δ′ψ) + finite. (4.19)

However, by virtue of (4.18) this would-be divergent piece vanishes.8

5 Magnetic charges

Dual ‘magnetic’ charges can be obtained by considering the previous charges with

F ∗ab :=
1

2
εabcdF

cd (5.1)

playing the role of Fab. From the null infinity perspective we have

−2

F ∗ru =
1

2
εAB

0
FAB (5.2)

and similarly for I−. The magnetic versions of the conservation law (3.1) and

charges (3.3), (3.4) are defined by the replacement Fab → F ∗ab. For instance, we have

Q̃+[λ] =

∫
I+
dud2V λ(x̂)∂u

−2

F ∗ru(u, x̂)−
∫
S2

d2V λ(x̂)
−2

F ∗ru(u =∞, x̂) (5.3)

as the magnetic analogue of (3.6). Using (5.2) we see that the first term in (5.3) is the

magnetic ‘soft’ charge that features in Weinberg’s soft theorem [30]. In appendix C we show

that the field equations at time-like infinity imply that the second term in (5.3) vanishes

and there is no ‘hard’ contribution to the magnetic charge.

At spatial infinity, the starred field strength is given by

0

F ∗αβ = ε γ
αβ

−1
F γρ (5.4)

−1

F ∗αρ =
1

2
ε βγ
α

0
F βγ . (5.5)

The definition of ψ̃ in (2.25) then implies

−1

F ∗αρ = Dαψ̃. (5.6)

Thus, the replacement Fµν → F ∗µν corresponds to ψ → ψ̃ (and ψ̃ → −ψ). In particular,

the conserved magnetic charges at spatial infinity are

Q̃τ [λ] =

∫
Cτ

dSα
√
hhαβ

(
∂αλψ̃ − λ∂αψ̃

)
. (5.7)

As for the electric charges, they satisfy limτ→±∞ Q̃τ [λ] = Q̃±[λ±].

8To simplify the discussion we have omitted a second logarithmic divergence proportional to

∼
∫
dSα
√
hhαβδ

0

Fαβ ∧ δ
0

Aβ . This can also be shown to be zero by entirely similar arguments.
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6 Summary and outlook

The first goal of this paper was to provide a dynamical explanation for the “conserva-

tion laws”
−2
F ru(u = −∞, x̂) =

−2
F rv(v =∞,−x̂) (6.1)

recently proposed by Strominger and collaborators in relation to Weinberg’s soft pho-

ton theorem. Our treatment was purely classical; we did not need worry about possible

subtleties in the definition of the quantum counterpart of (6.1) that is actually used in

connection with the soft photon theorem.

It has long been known [21, 22] that an appropriate way to think of spatial infinity

is as a unit time-like hyperboloid Ho parametrizing all asymptotic directions of spatial

geodesics. Information at the future end of I− is propagated along Ho and reaches the

past end of I+. In this way, condition (6.1) appears as a consequence of the field equations

at Ho. We now summarize the main ingredients that went into our proof of eq. (6.1).

We first assumed standard 1/r and 1/ρ power expansions of the field strength at null and

spatial infinity respectively. We then argued that in the absence of massless charges, the

asymptotic field at null and spatial infinity should satisfy the free-field equations. The

free-field equations at I+ fix the u → −∞ fall-off of the coefficients in the 1/r expansion

(once the ‘free data’ fall-off is specified). The free-field equations at Ho fix the τ → ∞
fall-off of the coefficients in the 1/ρ expansion up to an ambiguity that can be resolved

by demanding consistency with the null-infinity expansion. This consistency allows one to

write the l.h.s. of (6.1) as a τ →∞ limit of a field ψ on Ho. Similarly, the r.h.s. of (6.1) can

be written as the τ → −∞ limit of ψ. The dynamical equation satisfied by ψ on Ho implies

then eq. (6.1). We note that up to this point, the discussion is phrased purely in terms of

the field strength. In particular, it does not refer to any specific gauge fixing condition.

Our second goal was to explore large U(1) gauge symmetries and charges from the

perspective of Ho. At future/past infinities these charges are known to be given by a

smeared version of (1.1). In order to get ‘finite time’ versions of these charges, we considered

a spacetime foliation of hypersurfaces Στ that intersect Ho on constant τ spheres. After

imposing an asymptotic Lorenz gauge condition, we obtained the canonical charge Qτ [λ]

associated to a large gauge symmetry λ. The properties of the field equations at spatial

infinity imply that Qτ [λ] is conserved and its τ → ±∞ limit given by the known future/past

infinity charges. While deriving these charges we encountered several interesting properties

of the symplectic structure that may be of interest in their own: the need to include

a boundary term, the relation with the boundary phase space of [38], and the absence

of logarithmic divergences as a consequence of the properties of the fields on Ho. We

emphasize that in our second goal we worked with the vector potential in an asymptotic

Lorenz gauge condition.

Many future directions appear in sight. Extensions of the ideas presented here to

(at least perturbative) gravity seem within reach.9 Indeed many of the ingredients can

already be found in the literature: the supertranslation charges at spatially infinity (in an

9The case of supertranslation charges in gravity was recently discussed in [39].
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asymptotic harmonic-like gauge) given in [35] are completely analogue to the charges Qτ [λ]

found here. The extensions of supertranslations and superrotations from null to time-like

infinity described in [40] have a natural counterpart in the analogue problem of going from

null to space-infinity. Finally, it would be interesting to explore possible connections to

studies in Minkowski holography [41–44].
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A More on fall-offs and asymptotic field equations

A.1 Eq. (2.13)

A convenient gauge to solve the free Maxwell equations is radial gauge Ar = 0 (see for

instance [31]). In this gauge, the equation ∇bF ub = 0 implies

∂r
(
r2Fru

)
= ∂rD

AAA, (A.1)

which gives Fru in terms of AA up to an integration ‘constant’ k(u, x̂). We assume a r−n

power expansion for AA and Au compatible with (2.9), (2.8). Eq. (2.10) then implies that

the aforementioned integration ‘constant’ is u-independent. We thus have

Fru = r−2
(
DAAA + k(x̂)

)
. (A.2)

Next, we look at the equation ∇bFAb = 0. Upon expanding in 1/r and using (A.2) it

implies:

− 2(n+ 1)∂u
−(n+1)

AA +
(
−D2 + n2 + n+ 1

)−n
AA − δn0∂Ak = 0, n = 0, 1, . . . (A.3)

This can be integrated to give
−n
AA in terms of

−(n−1)

AA (and k(x̂)). If
0
AA = O(|u|0) as in

eq. (2.12) this implies
−n
AA = O (|u|n) . (A.4)

Using (A.4) in (A.2) we obtain eq. (2.13).

A.2 Eq. (2.20)

Free field Maxwell equations at spatial infinity take simple form when written in terms of

the vector potential in Lorenz gauge. For
−n
A one finds the equation

DαDα

−n
A ρ + (n− 1)(n− 3)

−n
A ρ = 0 (A.5)
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this imply that
−n
A ρ can be O(τ1−n) or O(τn−3) at τ → ±∞, which corresponds to O(τ−n)

or O(τn−4) behavior of
−n
F ρτ . For n ≥ 2 the leading behavior is O(τn−4) which corresponds

to eq. (2.20). However for n = 1 the leading piece is the O(τ−n) one. One could say that

the demand of this leading piece to vanish corresponds to the condition of having well-

defined charges, i.e. only then eqs. (3.7), (3.8) make sense. We now provide an argument

as to how this condition (absence of O(τ−1) term in the τ →∞ asymptotic of
−1
F ρτ ) arises

from the assumed behavior at null infinity.

In the previous subsection we saw that
−k
F ru = O(|u|k−2) at u→∞. Let us assume a

1/u power expansion at u→∞ for the subleading terms so that

Fru(r, u, x̂) =
∞∑
k=2

uk−2

rk

∞∑
l=0

1

ul

(
−k
F ru

)(l)

(x̂). (A.6)

Consider now the above expression in the (ρ, τ) coordinates adapted to spatial infinity.

Substituting

r = ρ
√

1 + τ2 = ρτ
(
1 +O

(
τ−2

))
, (A.7)

u = ρ
(
τ −

√
1 + τ2

)
= − ρ

2τ

(
1 +O

(
τ−2

))
(A.8)

in (A.6) and using the change of coordinates relation

Fρτ =
ρ2

r
Fru =

ρ

τ

(
1 +O

(
τ−2

))
Fru (A.9)

one finds (after reorganizing the sums) that indeed the leading 1/τ power of each 1/ρ term

corresponds to
−n
F ρτ = O(τn−4).

A.3 Eqs. (3.7), (3.8)

The equality we wish to study deals with a priori different limits. The r.h.s. of eq. (3.7)

corresponds to:

lim
τ→∞

τ3

[
lim
ρ→∞

ρFρτ (ρ, τ, x̂)

]
=:

(
−1
F ρτ

)(−3)

(x̂) (A.10)

whereas the l.h.s. is:

lim
u→−∞

[
lim
r→∞

r2Fru(r, u, x̂)
]

=:

(
−2
F ru

)(0)

(x̂) (A.11)

The idea is to capture the above, a priori different, limits as a single limit along an appro-

priately chosen curve γ(s) in spacetime,

s 7→ γ(s) = (t(s), r(s), x̂). (A.12)

A curve that will do the jobs is:

ρ(s) = s2, τ(s) = s, (A.13)
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whose form in (r, u) coordinates can be obtained from (A.7), (A.8):

r(s) = s3 +O(s), u(s) = −s
2

+O(1/s). (A.14)

The intuitive picture of this curve is as follows. Eq. (A.10) tell us to first take ρ → ∞
before taking τ → ∞. The curve (A.13) accomplishes this goal by making ρ(s) diverge

faster than τ(s) as s→∞. Similarly eq. (A.11) tell us that ‘r should go to infinity faster

than u goes to (minus) infinity’. This is precisely the s→∞ behavior of the curve in (r, u)

coordinates (A.14).

The fall-offs described in section 2 ensure this intuitive picture is correct and that one

can replace the limits in eqs. (A.10), (A.11) by a single s→∞ limit. For (A.10), it is easy

to verify that the expansion (2.19) together with τ fall-off (2.20) imply

lim
s→∞

s5Fρτ (x = γ(s)) =

(
−1
F ρτ

)(−3)

(x̂). (A.15)

Similarly, it is easy to verify that the r → ∞ expansion (2.9) together with the u fall-

offs (2.13) imply

lim
s→∞

s6Fru(x = γ(s)) =

(
−2
F ru

)(0)

(x̂). (A.16)

Finally, the relation between Fρτ and Fru from the change of coordinates, Fρτ = ρ2

r Fru,

implies

Fρτ = (s+O(1/s))Fru (A.17)

along the γ(s) curve. Substituting (A.17) in (A.15) we see that this limit is precisely the

limit (A.16). It then follows that (
−1
F ρτ )(−3)(x̂) = (

−2
F ru)(0)(x̂). This establishes eq. (3.7).

Eq. (3.8) can be shown by an analogous argument.

B Wave equation on Ho

B.1 Green’s functions

In this section we describe the solutions to the wave equation

DαDαψ = 0 (B.1)

in terms of asymptotic data at one asymptotic boundary of Ho. For definitiveness we

consider data at the past asymptotic boundary, τ → −∞ but similar considerations apply

to future asymptotic boundary data. By analyzing the wave equation (B.1) in the τ → −∞
limit, one concludes there are two types of asymptotic solutions:

λ(τ, x̂) = λ−(x̂) +O(τ−2 ln |τ |) (B.2)

ψ(τ, x̂) = τ−2ψ−(x̂) +O(τ−4) (B.3)

The leading terms λ−(x̂), ψ−(x̂) are unconstrained and represent free data in terms of

which subleading terms are determined. As indicated in the notation, the first type of
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solution is relevant for large gauge parameters whereas the second type is relevant for the

leading component of the field strength.10 We wish to obtain integral expressions for the

solutions λ(y), ψ(y) in terms of the corresponding asymptotic data:

λ(y) =

∫
d2V ′ G(0)(y; x̂′)λ−(x̂′) (B.4)

ψ(y) =

∫
d2V ′ G(2)(y; x̂′)ψ−(x̂′), (B.5)

where the G’s are appropriate Green’s functions. In the following we describe these Green’s

functions. For that purpose let us introduce some notation. Given y ∈ Ho and x̂′ ∈ S2

define:

Y µ :=
(
τ,
√

1 + τ2 x̂
)

(B.6)

σ := τ +
√

1 + τ2 x̂ · x̂′, (B.7)

that is, y ∈ Ho defines a point Y µ in the unit hyperboloid of Minkowski space. x̂′ defines

the point on the past light cone: (−1, x̂′)µ. σ is then the inner product between these two

vectors.

We now study each Green’s function separately.

B.1.1 Green’s function for eq. (B.2)

The Green’s function in (B.4) is a Lorentzian version of the Green’s function used in [26]

to obtain the gauge parameter at time-like infinity.11 Taking the appropriate analytic

continuation of the expression given in [26] yields:

G(0)(y; x̂′) = − 1

4πσ2
. (B.8)

Let us verify that indeed (B.8) satisfies the desired requirements. The action of the wave

operator DαDα on a function f(σ) can be easily calculated by expressing DαDα in terms

of the Minkowski space d’Alembertian (see [46] for similar treatment at time-like infinity).

One obtains:

DαDαf(σ) = −σ2f ′′(σ)− 3σf ′(σ). (B.9)

It then follows that f(σ) = σ−2 and hence G(0)(y; x̂′) satisfies the wave equation. We now

verify the boundary condition. The τ → −∞ behavior of σ is

σ
τ→−∞−→ τ(1− x̂ · x̂′)− x̂ · x̂′

2τ
+ . . . (B.10)

From which we have

G(0)(y; x̂′)
τ→−∞−→

{
O(τ−2) if x̂ 6= x̂′

O(τ2) if x̂ = x̂′
(B.11)

10Recall ψ in eq. (2.23) is defined up to an overall constant. For the following argument we choose such

constant so that k− = 0 in eq. (3.9).
11The Green’s functions of both signatures are particular cases of the more general discussion given in [41].
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On the other hand one can verify that
∫
d2V ′G(0)(y; x̂′) = 1. It then follows that

G(0)(y; x̂′)
τ→−∞−→ δ(2)(x̂, x̂′) which then imposes the boundary condition (B.2). The so-

lution given by (B.4), (B.8) allow us to explore the τ → +∞ limiting value. In this case

σ
τ→+∞−→ τ(1 + x̂ · x̂′) +

x̂ · x̂′

2τ
+ . . . (B.12)

which now implies G(0)(y; x̂′)
τ→−∞−→ δ(2)(x̂,−x̂′). We thus recover the antipodal identifica-

tion (3.2) of the gauge parameter at plus and minus infinity.

B.1.2 Green’s function for eq. (B.3)

To express ψ in terms of given asymptotic data, we consider the Kirchhoff integral repre-

sentation (see for instance section 4.3 of [47]):

ψ(y) = −
∫
C
dS′α
√
hhαβ(y′)

(
GR(y, y′)∂′βψ(y′)− ∂′βGR(y, y′)ψ(y′)

)
(B.13)

where C is a Cauchy slice of Ho and GR(y, y′) the retarded Green’s function. The idea is

to consider (B.13) with C a τ ′ = const. surface and take the limit τ ′ → −∞. In such case

eq. (B.13) takes the form:

ψ(y) = lim
τ ′→−∞

|τ ′|3
∫
τ ′=const.

d2V ′
(
GR(y, y′)∂τ ′ψ(y′)− ∂τ ′GR(y, y′)ψ(y′)

)
. (B.14)

To proceed we need the expression for GR(y, y′). For y inside the future cone of y′, it has

to satisfy the wave equation (B.1) and be symmetric with respect to the isotropy group of

y′. The solution is easily found in terms of

P = Y µY ′µ (B.15)

(see e.g. [45]) with Y µ and Y ′µ defined in (B.6) for y and y′ respectively. One finds:

GR(y, y′) =
1

2π
θ(τ − τ ′)θ(P − 1)

P√
P 2 − 1

(B.16)

where θ is the step function that imposes y to be inside the cone of y′ and τ > τ ′. It is

easy to verify that for y → y′ (B.16) approaches the flat space retarded Green’s function.

It now remains to study the τ ′ → −∞ behaviour of GR(y, y′) in order to evaluate (B.14).

When τ ′ → −∞ one has

P = −τ ′σ +O
(
τ ′−1

)
, (B.17)

and

GR(y, y′) = θ(σ) +O
(
τ−1

)
(B.18)

with σ as defined in (B.7). Using (B.3) and (B.18) in eq. (B.14) one obtains:

ψ(y) =
1

π

∫
d2V ′θ(σ)ψ−(x̂′). (B.19)
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It is instructive to verify that (B.19) is indeed a solution to (B.1) with asymptotic condi-

tion (B.2). First notice that, as in the λ case, the dependance on y is through σ. We can

thus use (B.9) to evaluate the wave operator on (C.5):

DαDαψ(y) = − 1

π

∫
d2V ′

(
σ2δ′(σ) + 3σδ(σ)

)
ψ−(x̂′) (B.20)

with δ = θ′ the delta function. For regular data ψ−(x̂′) each term in (B.20) vanishes.

We now study the asymptotic behavior of ψ(y). Eq. (C.5) tells one is integrating

ψ−(x̂′) over the portion of the x̂′ sphere given by

x̂ · x̂′ > − τ√
1 + τ2

. (B.21)

When τ → −∞, the region (B.21) becomes a disk of radius |τ |−1 centered at x̂′ = x̂.

Thus (C.5) becomes ψ(y) ≈ 1
π (π τ−2ψ−(x̂)) and we recover the boundary condition (B.3).

At the other extreme, when τ → ∞ the integration region becomes the whole sphere

minus a disk of radius τ−1 centered at x̂′ = −x̂. Thus, in this limit the solution becomes

ψ(y)
τ→+∞−→ =

1

π

(∫
S2

d2V ′ψ−(x̂′)− πτ−2ψ−(−x̂)

)
, (B.22)

which is if of the form (3.9) with a nonzero k+ and ψ+(x̂) = −ψ−(−x̂). This establishes

the relation (3.12).

B.2 Eq. (4.16)

Let us for definitiveness consider the case τ → +∞. The general τ →∞ fall-offs for λ and

ψ are

λ(τ, x̂) = λ+(x̂) +
ln τ

τ
µ+(x̂) +O

(
τ−3

)
(B.23)

ψ(τ, x̂) = k+ +
1

τ2
ψ+(x̂) +O

(
τ−4

)
. (B.24)

From the wave equation DαDαλ = 0 one finds

µ+ = −1

2
∆λ+. (B.25)

In the τ →∞ limit, the integrand of (4.15) is then given by

√
hhττ (∂τλψ − λ∂τψ) = (τ ln τ − τ)k+µ+ − 2λ+ψ+ +O

(
τ−1

)
. (B.26)

The term proportional to k+µ+ integrates to zero by virtue of eq. (B.25) and one finds

Qτ=∞ = −2

∫
S2

d2V λ+ψ+, (B.27)

which coincides with (3.3) due to eq. (3.10).

– 19 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
8

C Laplace and Poisson equations on H+

C.1 Solutions to leading order equations

In this section we study solutions to Laplace’s and Poisson’s equations on Ho:

DαDαψ̃ = 0, (C.1)

−DαDαψ =
−3
j τ . (C.2)

By similar arguments to those given in section A.2 one can show that the ρ→∞ behavior

of ψ, ψ̃ is (up to arbitrary additive constants that we set to zero)

ψ, ψ̃ = O
(
ρ−2
)
. (C.3)

On the other hand, Laplace’s equation (C.1) on Ho imply a O(ρ0) or O(ρ−2) behavior

at ρ → ∞. The second kind of behavior however yields solutions that are singular at

ρ = 0 (this can for instance be established by looking at the solutions with given spherical

harmonic angular dependance). Thus eqs. (C.1) and (C.3) imply

ψ̃ = 0. (C.4)

We not turn to Poisson’s equation (C.2). The solution for ψ can be written as

ψ(y) =

∫
d3V ′G(y; y′)

−3
j τ (y′), (C.5)

with G(y; y′) the appropriate Green’s function. This Green’s function can be found by

similar methods as those leading to eq. (B.16) resulting in,

G(y; y′) =
1

4π

(
Y · Y ′√

(Y · Y ′)2 − 1
− 1

)
(C.6)

where Y µ and Y ′µ are Minkowski vectors associated to y, y′ ∈ H+, i.e.

Y µ =
(√

1 + ρ2, ρx̂
)

(C.7)

and Y ·Y ′ their inner product with (+,−,−,−) sign convention. One can verify that (C.6)

approaches the standard flat-space Green’s function in the limit y → y′. The “−1” in (C.6)

ensures the possible additive constant on ψ is set to zero.

The solution to Laplace’s equation for λ (2.39) with given boundary value λ+(x̂) was

discussed in [26]. It is given by

λ(y) =

∫
d2V ′G(y; x̂′)λ+(x̂′), (C.8)

where the Green’s function is

G(y; x̂′) =
1

4πσ(y, x̂′)2
(C.9)

with

σ(y, x̂′) =
√

1 + ρ2 − ρx̂ · x̂′ (C.10)

the inner product between Y µ and (1, x̂′)µ.
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C.2 Time infinity contribution to charges

In this section we evaluate the boundary terms in eqs. (3.6), (5.3):

Qi
+

[λ+] := −
∫
S2

d2V λ+(x̂)
−2
F ru(u =∞, x̂), (C.11)

Q̃i
+

[λ+] := −1

2

∫
S2

d2V λ+(x̂)εAB
0
FAB(u =∞, x̂). (C.12)

By a similar argument to the one given in section A.3, one finds:

−2
F ru(u =∞, x̂) = lim

ρ→∞
ρ3
−1
F ρτ (ρ, x̂), (C.13)

1

2
εAB

0
FAB(u =∞, x̂) = lim

ρ→∞
ρ3
−1

F ∗ρτ (ρ, x̂). (C.14)

Recalling the relation with ψ, ψ̃, and using (C.3) this allow us to write the time-infinity

charges as

Qi
+

[λ+] = lim
ρ→∞

2ρ2

∫
S2

d2V λ+(x̂)ψ(ρ, x̂), (C.15)

Q̃i
+

[λ+] = lim
ρ→∞

2ρ2

∫
S2

d2V λ+(x̂)ψ̃(ρ, x̂). (C.16)

From (C.4) we immediately conclude that Q̃i
+

[λ+] = 0. We now show that Qi
+

[λ+]

coincides with the time-infinity charge obtained in [26] by covariant phase space methods.

The expression given in [26] is

QH+ [λ] =

∫
H+

d3V λ(y)
−3
j τ (y), (C.17)

with λ the gauge parameter at H+ given in eq. (C.8). To see that (C.15) and (C.17)

coincide, we consider the ρ→∞ limit of ψ(y) as given in (C.5). In this limit

Y · Y ′ = ρ σ(y′, x̂) +O
(
ρ−1
)
, (C.18)

Y · Y ′√
(Y · Y ′)2 − 1

− 1 =
1

2ρ2σ(y′, x̂)2
+O

(
ρ−4
)
, (C.19)

and so

G(y; y′) =
1

2ρ2
G(y′; x̂) +O

(
ρ−4
)

(C.20)

where G and G are the Green’s function given in eqs. (C.6) and (C.9) respectively. Using

the expansion (C.20) in (C.15), (C.5) one finds:

Qi
+

[λ+] =

∫
d2V λ+(x̂)

∫
d3V ′G(y′; x̂)

−3
j τ (y′) (C.21)

=

∫
d3V ′λ(y′)

−3
j τ (y′) (C.22)

where in the second line we used the expression (C.8) for the gauge parameter on H+. We

thus conclude that Qi
+

[λ+] coincides with QH+ [λ] given in [26].
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