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1 Introduction

The analysis of asymptotic symmetries in gauge theories and gravity has seen a resurgence

in the last few years due to the seminal work of Strominger and collaborators [1–4]. In

particular, it was shown in [5] that the classic Weinberg’s soft photon theorem can be

understood as a Ward identity associated to an infinite dimensional symmetry group of

QED. This group is obtained by considering large gauge transformations at null infinity,

and implies an infinite number of conservation laws in the scattering processes. The anal-

ysis in [5], originally in the context of massless particles, was later extended to massive

particles [8, 9] thereby strengthening the overall picture. However, the factorization con-

straints on QED extend beyond leading order. As shown by Low [10] the factorization of

scattering amplitudes applies also to the next order in the photon energy. The theorem

takes the form [11]:

lim
ω→ 0

(1 + ω∂ω)Mn+1(k1, . . . , kn;ωq̂) = S(1)Mn(k1, . . . , kn), (1.1)
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where S(1) is a sum of differential operators acting on the external momenta ki. While S(1)

is expected to be sensitive to loop corrections [6, 7] our focus will be on the theorem at

tree level.

A natural question, first investigated by Lysov, Pasterski and Strominger [11] is

whether Low’s theorem can also be understood as Ward identities. In [11] the authors

showed that the theorem is equivalent to Ward identities of infinitely many charges that

are parametrized by vector fields on the sphere. They interpreted the charges as local gen-

eralizations of electric and magnetic dipole moments. In this paper we offer an alternative

perspective on this charges and show that in fact they are associated to certain large U(1)

gauge transformations.

This work is a precursor to [12] where we apply the same conceptual ideas to the case

of gravity and show that there exists a new class of symmetries whose Ward identities are

equivalent to the sub-subleading soft graviton theorem [13].

1.1 Summary of results

In this section we summarize the key ideas and results of the paper. We consider massless

scalar QED and work in harmonic gauge. Global symmetries can then arise from residual,

large gauge transformations which are parametrized by solutions of the wave equation

�λ = 0. (1.2)

In retarded (u, r, x̂) coordinates, one can solve this equation in an r → ∞ expansion

once the asymptotic behavior of λ is specified. Typically, the leading component in this

expansion provides “free data” in terms of which the solution is determined.

For a given large gauge parameter λ, one can associate charges of electric and magnetic

type according to:

Qλ =

∫

Σ
d3V ∂a(λE

a), Q̃λ =

∫

Σ
d3V ∂a(λB

a), (1.3)

where Ea and Ba are the electric and magnetic fields with respect to the hypersurface Σ.

These charges can be computed on any spatial slice Σ. By pushing Σ to null infinity I the

charges become functions on the radiative phase space of the theory [14, 15] and whence

especially convenient for studying conserved quantities in scattering processes.

It is the electric-type charge Qλ that has been mostly used in the studies relating soft

theorems with Ward identities. A notable exception is [16], where the magnetic-type charge

Q̃λ is used to include the effects of magnetic monopoles. Here we will show that Q̃λ plays

a key role already in the ordinary case where no magnetic monopoles are present. This can

already be seen in the large gauge transformations considered in [5]. There, in order to

establish the equivalence of (electric) Ward identities with Weinberg’s soft photon theorem,

certain condition is imposed on the fields which effectively sets to zero the magnetic-type

charges. In section 3 we reinterpret Weinberg’s soft theorem as a Ward identity of both

electric and magnetic-type charges with no such condition on the fields.

However our main interest in this paper is to relate Low’s subleading soft photon theo-

rem with large gauge transformation. A first guess based on simple Fourier space reasoning
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suggests one should look at large gauge parameters whose O(r0) component is linear in u.

It turns out that in order for this to be compatible with eq. (1.2), the gauge parameter

must have an O(r) piece. We show that such solutions exist (at least asymptotically) and

compute the corresponding charges at null infinity. These are divergent, but by certain

prescription the charges are rendered finite. The prescription is as follows: when we com-

pute the charges associated to O(r) gauge transformations, we obtain a term which diverge

linearly with r and is an integral over I. This integral is nothing but the one whose Ward

identities are equivalent to Weinberg’s soft photon theorem! Whence subtracting this di-

vergent term is a classical analog of “projecting out the soft photon pole” in the scattering

amplitude.

We then show that these finite charges are equivalent to the charges obtained in [11].

This in turn establishes the equivalence of the (electric and magnetic) Ward identities with

Low’s subleading soft photon theorem.

At this point, a natural question arises. Can one keep going and find more Ward iden-

tities? Are there O(r2) large gauge parameters yielding novel relations for sub-subleading

photons? In section 5 we argue in the negative and provide evidence that the O(1) and

O(r) gauge parameters exhaust all possible large gauge symmetries. Once again our an-

swer here is tied to the nature of divergences that arise in the computation of asymptotic

charges. Our perspective is that, if divergent charges do not have an interpretation of

charges associated to a subgroup of the full symmetry group that we are considering, then

we can not subtract them in any meaningful way and whence such would-be symmetries

are ruled out.

2 Preliminaries

We consider a massless charged scalar field ϕ coupled to the Maxwell field Aµ satisfying

the the field equations

∇ρFµρ = Jµ, (2.1)

DµDµϕ = 0, (2.2)

where ∇µ is the spacetime covariant derivative, Fµν = ∂µAν − ∂νAµ the field strength,

Jµ = ieϕ(Dµϕ)
∗ + c.c. (2.3)

the charge current and Dµ the gauge covariant derivative, Dµϕ = ∂µϕ− ieAµϕ. Local U(1)

gauge transformations are parametrized by a scalar λ and act as

δλAµ = ∂µλ, δλϕ = ieλϕ. (2.4)

In particular, under a gauge transformation the covariant derivative transforms by δλDµϕ =

ieλDµϕ. As in [8] we work in harmonic gauge ∇µAµ = 0 so that gauge parameters to be

considered will satisfy the wave equation (1.2).

– 3 –
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As in our previous studies we follow a covariant phase space approach to compute the

charges [17, 18] . The symplectic form for the system is given by an integral over a Cauchy

slice Σ (which we eventually take its limit to null infinity):

Ω(δ, δ′) =

∫

Σ
dSµ(δθ

µ(δ′)− δ ↔ δ′), (2.5)

where θµ is the symplectic potential density

θµ(δ) =
√
g(FµνδAν + (Dµϕ)∗δϕ+ c.c.). (2.6)

The generator Qλ of the gauge transformation (2.4) is defined by the condition

δQλ = Ω(δλ, δ). (2.7)

Using the field equations (2.1) one can verify that

Qλ := −
∫

Σ
dSµ∂ν(

√
gλFµν), (2.8)

satisfies the defining condition (2.7). For λ = constant this gives the total electric charge

of the system. We will also be interested in charges that are the dual, ‘magnetic’ version

of (2.8),

Q̃λ :=

∫

Σ
dSµ∂ν(η

µναβλFαβ), (2.9)

where ηµναβ is the totally antisymmetric symbol. For λ = constant this gives the to-

tal magnetic charge of the system. Note that, unlike [16], we are not considering mag-

netic monopoles and the total magnetic charge will always be zero. However, there can

be nonzero local magnetic flux and (2.9) can be nontrivial for non-constant λ. The

charges (2.8) and (2.9) are the ‘electric-type’ and ‘magnetic-type’ charges of eq. (1.3).

In this paper we will be evaluating various charges of the type (2.8), (2.9) in the limit

where the Cauchy slice Σ approaches null infinity. The relevance of these charges will

be in their relation to soft photons theorems. An interesting question, which is outside

of the scope of the present work, is how the field equations (with appropriate boundary

conditions) imply the conservations of these charges, as for instance discussed in [5, 9] for

the λ = O(1) case.

For concreteness we focus on future null infinity. We work in retarded coordinates

(u, r, x̂) in terms of which the Minkowski line element reads

ds2 = −du2 − 2dudr + r2qABdx̂
Adx̂B, (2.10)

where A = 1, 2 are sphere indices and qAB the unit sphere metric. Charges will be computed

by choosing Σ to be a t = u + r = constant slice and taking t to infinity, with u and x̂

constant. For a t =constant slice, the quantity being integrated in (2.8) is:

ρλ := −∂µ(
√
gλ(Frµ + Fuµ)) (2.11)

=
√
q[∂r(r

2λFur)− ∂u(r
2λFur))] + r2∂A(

√
qλF A

u ), (2.12)
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where we used that
√
g = r2

√
q and that the inverse Minkowski metric in retarded coor-

dinates has nonzero components grr = 1, gur = gru = −1, gAB = r−2qAB. Only the first

two terms in (2.12) contribute to the charge since the last one vanishes after integration

on the sphere. For Q̃λ (2.9) the quantity being integrated is:

ρ̃λ := ∂µ((η
rµαβ + ηuµαβ)λFαβ) (2.13)

= ∂r(η
ABλFAB)− ∂u(η

ABλFAB) + 2∂A(η
ABλ(FBr −FBu)), (2.14)

where we are using the convention that ηurAB = ηAB with ηAB the antisymmetric symbol

on the sphere. Again, only the first two terms in (2.14) contribute to charge, the last one

being a total sphere divergence.

We conclude the preliminaries by discussing the r → ∞ fall-offs of the fields. We

assume the standard power series expansion (see for instance [5]):

FAB = FAB +O(r−1), Fru =
(−2)

F ru/r
2 +

(−3)

F ru/r
3 +O(r−4)

FAr =
(−2)

F Ar/r
2 +O(r−3), FAu =

(0)

F Au +O(r−1). (2.15)

Here and in the following, it is understood that the coefficients of the 1/r expansion are

functions of u and x̂. Superscripts indicate the corresponding power of r. To simplify later

expressions, some of the leading coefficients are written with no superscripts and different

font style, e.g. FAB ≡
(0)

F AB. Fall-offs forAµ compatible with (2.15) and the gauge condition

∇µAµ = 0 are [8]:

AA = AA +O(r−1), Au = O(r−1), Ar = O(r−2), (2.16)

where AA ≡
(0)

AA plays the role of free data for the Maxwell field. For the scalar field

we have

ϕ = φ/r +O(r−2) (2.17)

with φ ≡ (−1)
ϕ playing the role of free data. These in turn imply the following fall-offs on

the charge current:

Ju = ju/r
2 +O(r−3), JA = jA/r

2 +O(r−3), Jr = jr/r
4 +O(r−5), (2.18)

with

ju = ie φ ∂uφ
∗ + c.c. (2.19)

jA = ie φ (∂A + ieAA)φ
∗ + c.c (2.20)

jr = ie φ∗
(−2)
ϕ + c.c.− 2e2|φ|2

(−2)

A r. (2.21)
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3 O(1) large gauge transformation and associated charges

In this section we review the charges associated to large gauge transformations with asymp-

totic behaviour [5],

λ(u, r, x̂) = ε(x̂) +O(r−ǫ). (3.1)

In appendix A we show that conditions (1.2), (3.1) can be satisfied to O(r−1) and determine

the asymptotic form of the subleading term in (3.1) (which turns out to go as ln r/r). The

argument given there likely extends to arbitrary order, but we leave such study for the

future. For the purposes of the present section however, it is enough to use the form (3.1).

Indeed, only the leading term ε(x̂) contributes to the charge.

After recovering the known electric and magnetic-type charges for the gauge parame-

ter (3.1), we review how their Ward identities correspond to Weinberg’s soft photon theo-

rem. This will serve as motivation for the analysis of section 4.

3.1 Electric-type charge

Substituting (3.1) in (2.12) and using the fall-offs (2.15), the electric-type charge (2.8) at

null infinity is found to be

Qε =

∫

I

d3V ε ∂u
(−2)

F ru (3.2)

where d3V = dud2x̂
√
q is the volume element on I. We now make use of the field equa-

tions (2.1) in order to express (3.2) in terms of the free data. From the leading part of the

field equation ∇bFub = Ju one finds:

∂u
(−2)

F ru = ju −DA
(0)

F uA. (3.3)

On the other hand, the fall-offs discussed section 2 imply:

ju = ie φ ∂uφ
∗ + c.c. (3.4)

(0)

F uA = ∂uAA. (3.5)

Thus, one concludes

Qε =

∫

I

d3V ε(ju − ∂uD
BAB), (3.6)

which corresponds to the charge used in [5, 19].

3.2 Magnetic-type charge

We now consider λ as above, with free data given by a sphere function ε̃(x̂):

λ(u, r, x̂) = ε̃(x̂) +O(r−ǫ) (3.7)

Substituting (3.7) in (2.14) and using (2.15) one finds the magnetic-type charge (2.9) is

given by:

Q̃ε̃ =

∫

I

du d2x̂ ε̃ ∂u(η
ABFAB). (3.8)

– 6 –
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In terms of the free data FAB is simply the field strength of AA, FAB = ∂AAB − ∂BAA.

Defining

[FAB](x̂) := FAB(u = +∞, x̂)− FAB(u = −∞, x̂) (3.9)

the charge (3.8) may alternatively be written as:

Q̃ε̃ =

∮

S2

ε̃ ηAB[FAB]. (3.10)

3.3 Relation to leading soft theorem

Repeating the steps at past null infinity, one ends up with two pair of charges Q±
ε and

Q̃±

ε̃ associated to future (+) and past (−) null infinity. In [5, 19] it is shown that the

conservation of Qε in the S matrix sense:

Q−

ε S = SQ+
ε (3.11)

follows from Weinberg’s soft photon theorem. Conversely (3.11) was shown to imply such

theorem, provided certain condition on the asymptotic values of FAB is satisfied. In fact,

the minimal condition required to go from (3.11) to the soft theorem is to demand:

[F−

AB] = [F+
AB], (3.12)

with [F±] as defined in (3.9) for future and past null infinity respectively. Now, looking at

the expression of the magnetic charge Q̃ε̃ (3.10) it follows that (3.12) is the condition for

the conservation of such charge. In S matrix notation:

Q̃−

ε̃ S = SQ̃+
ε̃ . (3.13)

Finally, one can verify that condition (3.13) follows from Weinberg’s soft photon theorem

(see for instance discussion at the end of section 5.2 of [8]). To summarize: Weinberg’s soft

photon theorem gives two (per point on the sphere) identities associated to the two soft

photon polarizations (times each soft photon direction). These are equivalent to the two

(per point on the sphere) identities (3.11) and (3.13).

4 O(r) large gauge transformations and associated charges

We now look at gauge parameter that satisfy the wave equation (1.2) and that diverge

linearly in r as one moves to null infinity. Starting with the ansatz

λ(u, r, x̂) = r
(1)

λ (u, x̂) +
(0)

λ (u, x̂) +O(r−ǫ), (4.1)

one finds (see appendix A for details)

(1)

λ (u, x̂) = µ(x̂),
(0)

λ (u, x̂) = u(1 + ∆/2)µ(x̂). (4.2)

µ(x̂) is unconstrained and plays the role of ‘free data’ for such large gauge transformation.

∆ is the unit sphere Laplacian.

– 7 –
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4.1 Electric-type charge

Substituting (4.1) in (2.12) and using (2.15) one obtains

ρλ =
√
q[

(1)

λ
(−2)

F ur − r∂u(
(1)

λ
(−2)

F ur)− ∂u(
(1)

λ
(−3)

F ur +
(0)

λ
(−2)

F ur)] +O(r−ǫ), (4.3)

where we dropped the total divergence term in (2.12). Since the limit of interest is t → ∞
with u =constant, we set r = t− u in (4.3) and using (4.2) arrive at:

ρλ = t ρdiv + ρfinite +O(t−ǫ) (4.4)

with

ρdiv =
√
q µ ∂u

(−2)

F ru (4.5)

ρfinite =
√
q

[

µ∂u
(−3)

F ru +
∆µ

2
u∂u

(−2)

F ru +
∆µ

2

(−2)

F ru

]

. (4.6)

Comparing with (3.2), we see that ρdiv coincides with the charge density of a ‘standard’

large gauge transformation λ ∼ µ. Our prescription to obtain a finite charge amounts

to discard such contribution associated to the leading soft photons. We interpret this

prescription as a phase space counterpart of how leading soft photons are ‘projected out’

in eq. (1.1) [11].

We now focus attention in the finite charge density (4.6). From the leading field

equations ∇bFab = Ja for a = r, A one finds:

(−3)

F ru = jr +DA
(−2)

F Ar (4.7)

jA = −∂u
(−2)

F Ar +
(−1)

F Au +DBFAB (4.8)

Using the leading relation of the Bianchi identity ∂[AFru] = 0,

(−1)

F Au = −∂u
(−2)

F Ar − ∂A
(−2)

F ru (4.9)

in eq. (4.8) and solving for ∂u
(−2)

F Ar one obtains

∂u
(−2)

F Ar = −1

2
jA − 1

2
∂A

(−2)

F ru +
1

2
DBFAB. (4.10)

Now applying ∂u on (4.7) and using the divergence of relation (4.10) leads to:

∂u
(−3)

F ru = ∂ujr −
1

2
DAjA − 1

2
∆

(−2)

F ru (4.11)

where we used that DADBFAB = 0 which follows from the antisymmetry of FAB.

When (4.11) is used in (4.6) a further simplification arises: the contribution coming from

the last term in (4.11) cancels (upon integration on the sphere) the last term in (4.6).

Also, the u → ±∞ fall-offs of the fields imply that jr(u = ±∞) = 0 and hence the first

– 8 –
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term in (4.11) gives a vanishing contribution to the charge (see appendix B for details).

Collecting all these results and using (3.3), (3.5) one finds:

Qrµ :=

∫

I

ρfinite (4.12)

=
1

2

∫

I

d3V (DAµ jA + u∆µ(ju − ∂uD
BAB)). (4.13)

We now note that at leading order in perturbation theory, jA = −ie(φ∗∂Aφ − φ∂Aφ
∗)

and whence when we consider the Ward identity for Qrµ to leading order in perturbation

theory, we will use this “non-covariant” form of jA. Hence from now on we will assume

that the O(e2) term in jA (2.20) is dropped. As we see below this Ward identity leads

to Low’s soft photon theorem at tree level. It is expected that when relating Qrµ to loop

corrected soft theorems, the full jA should be taken into account.

4.2 Magnetic-type charge

We now compute ρ̃λ (2.13) with λ as in (4.1) with free data µ̃(x̂),

(1)

λ (u, x̂) = µ̃(x̂),
(0)

λ (u, x̂) = u(1 + ∆/2)µ̃(x̂). (4.14)

From (2.14) and (2.15) one finds:

ρ̃λ = ηAB[
(1)

λ
(0)

F AB − r∂u(
(1)

λ
(0)

F AB)− ∂u(
(1)

λ
(−1)

F AB +
(0)

λ
(0)

F AB)] +O(r−ǫ). (4.15)

As in the previous section we set r = t− u and use (4.14) to obtain

ρ̃λ = t ρ̃div + ρ̃finite +O(t−ǫ) (4.16)

with

ρ̃div = −ηAB µ̃ ∂uFAB (4.17)

ρ̃finite = −ηAB

[

µ̃ ∂u
(−1)

F AB +
∆µ̃

2
u∂uFAB +

∆µ̃

2
FAB

]

(4.18)

(recall that FAB ≡
(0)

F AB). Similarly to the previous section, the divergent piece (4.17)

corresponds to the ‘leading soft photon’ magnetic charge of section 3.2. It now remains to

express
(−1)

F AB in (4.18) in terms of the free data. We start with the leading relation of the

Bianchi identity ∂[rFAB] = 0:
(−1)

F AB = 2∂[A
(−2)

F B]r. (4.19)

Applying ∂u on (4.19) and using eq. (4.10) one obtains

∂u
(−1)

F AB = −∂[AjB] −
1

2
∆FAB (4.20)

– 9 –
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where we used the identity: 2D[AD
CFB]C = −∆FAB. When using (4.20) in (4.18), the

contribution coming from the last term in (4.20) cancels (upon integration on the sphere)

the last term in (4.18). The final expression for the charge reads:

Q̃rµ̃ :=

∫

I

ρ̃finite (4.21)

=

∫

I

du d2x̂ ηAB

[

− µ̃∂[AjB] +
1

2
u∆µ̃∂uFAB

]

. (4.22)

4.3 Relation to subleading soft theorem

In [11], the authors showed that Low’s subleading soft photon theorem was equivalent

to Ward identities of certain charges parametrized by sphere vector fields Y A which they

found to be:1

QY = Qhard
Y +Qsoft

Y (4.23)

Qhard
Y =

∫

I

d3V (uDAYAju + Y AjA) (4.24)

Qsoft
Y = −2

∫

I

d3V (uDzY
z∂uD

z̄Az̄ + uDz̄Y
z̄∂uD

zAz), (4.25)

The first step to compare both sets of charges is to decompose the sphere vector field

as a sum of gradient and curl pieces:

Y A =
1

2
DAµ− ǫABDBµ̃, (4.26)

where
√
qǫAB = ηAB and ǫzz̄ = iqzz̄. A straightforward computation (see appendix C)

shows then that the charge (4.23) for the vector field (4.26) is a sum of the electric and

magnetic-type charges of the previous subsections:

QY = Qrµ + Q̃rµ̃. (4.27)

This, together with the results of [11] show that the (tree-level) subleading soft theorem

is equivalent to Ward identities of the charges associated to the O(r) large gauge transfor-

mations

Q−

rµS = SQ+
rµ (4.28)

Q̃−

rµ̃S = SQ̃+
rµ̃. (4.29)

From this perspective, the situation is completely parallel to what happens for O(1) large

gauge transformations and the leading soft theorem as discussed in section 3.3.

1Our sign convention for the current Jµ is opposite to the one in [11]. QY here is minus QY in [11].
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5 Why not O(r2) large gauge transformations?

It is intriguing and at the same time slightly worrying that the divergent gauge parameters

with asymptotic expansion

λ(u, r, x̂) = r
(1)

λ (u, x̂) +
(0)

λ (u, x̂) +O(r−ǫ) (5.1)

give rise to finite charges which are conserved in the quantum theory. A natural question

then arises. Why do we consider gauge parameters which only diverge linearly in r? What

if we take an ansatz of the form,

Λ(u, r, x̂) = r2
(2)

Λ(u, x̂) + r
(1)

Λ(u, x̂) +
(0)

Λ(u, x̂) +O(r−ǫ) (5.2)

which is quadratically divergent in r as we approach null infinity? Of course just as in

the previous case, we expect the associated charges to be divergent on the radiative phase

space. However based on our proposed prescription, it is only if the divergent terms can

be associated to charges corresponding to leading or sub-leading soft photons that we can

discard them (by projecting out the corresponding modes). If the divergent terms do not

admit such an interpretation, then we cannot allow such large gauge transformations. As

we see below, this is indeed what happens in the present case and hence gauge parameters

which diverge quadratically in r are not allowed in our scheme.

Let us consider the electric-type charge associated to the large gauge parameter of

eq. (5.2). Substituting (5.2) in (2.12) and using the fall-off conditions on Fab one finds,

after some algebra analogous to the calculations done in section 4.1,

QΛ = lim
t→∞

∫

Σt

dud2x̂
√
q(t2ρ

(2)
div + tρ

(1)
div + ρfinite) (5.3)

with

ρ
(2)
div = ∂u(

(2)

Λ
(−2)

F ru) (5.4)

ρ
(1)
div = ∂u(

(2)

Λ
(−3)

F ru +
(1)

Λ
(−2)

F ru − 2u
(2)

Λ
(−2)

F ru). (5.5)

The wave equation �Λ = 0 implies Λ(2) is independent of u. Let us choose it as Λ(2)(x̂) =

µ(x̂). It then follows (see eq. (A.3) of appendix A) that Λ(1) = u
4 (∆ + 6)µ (plus an u-

independent function on the sphere that corresponds to an O(r) gauge parameter (5.1)).

On substituting these functional forms in the above equations it is easy to see that although

ρ
(2)
div is the same as the electric-type charge associated to leading soft photons, no such

interpretation exists for ρ
(1)
div. More in detail, (5.5) takes the form

ρ
(1)
div = ∂u

(

µ
(−3)

F ru +
1

4
u(∆− 2)µ

(−2)

F ru

)

, (5.6)

which clearly differs from the (finite) λ ∼ µ electric-type charge (4.6):

ρfinite(λ ∼ µ) = ∂u

(

µ
(−3)

F ru +
1

2
u∆µ

(−2)

F ru

)

(5.7)
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associated to subleading soft photons.2 Thus, according to our prescription, we are not able

to discard the divergent piece and hence we cannot obtain a finite charge associated to (5.2).

We are lead to conclude that large gauge transformations which diverge quadratically (or

higher) in r do not define a symmetry for massless QED.

In principle, once we allow for divergent large gauge transformations, infinitely

many possibilities open up and one can consider any number of fall-offs such that

O(r ln r), O(r3), O(r2 ln r) etc. Although not analyzed in this paper, we consider it plausible

that they will all be ruled out by our prescription given above.

6 Conclusions

Over the past few years many soft theorems have been reinterpreted as Ward identities

thereby enhancing our understanding of symmetries in gauge theories and gravity. One such

remarkable identification was given in [11], where Low’s subleading soft photon theorem

was shown to be equivalent to new symmetries of QED. The associated charges QY where

found to be parametrized by vector fields on the sphere Y A. One puzzling aspect of these

charges is that they appear to be unrelated to large gauge transformations which have

been successful in interpreting Weinberg’s soft photon theorem. In this paper we provided

an alternative perspective which resolves this puzzle. In our proposal, the vector field Y A

is just a convenient way to parametrize two functions µ and µ̃ associated to large O(r)

gauge parameters λ ∼ rµ. The charge QY is then a sum of electric and magnetic charges

associated to such large gauge parameters:

QY ∼ lim
Σ→I

∫

Σ
d3V [∂a(rµE

a) + ∂a(rµ̃B
a)], (6.1)

where Y A = DAµ − ǫABDBµ̃. In this way the leading and subleading soft photon Ward

identities are put on the same footing.

Several interesting questions remain open. Conservation of these charges in quantum

theory were shown to be equivalent to Low’s theorem, however to prove that classically

the charges are conserved in scattering processes is an interesting and challenging task.

Another open question is whether the loop corrected version of Low’s theorem can be

associated to Ward identities of large gauge transformations.

A key question which needs further investigation is an exact meaning of these large

gauge transformations. As can be easily seen, they violate the fall-offs we had imposed

on asymptotic fields in section 2. Whence it appears that they do not map a solution to

Maxwell equations with given fall-offs to a distinct solution to Maxwell equation with same

fall-offs. However the fact that these transformations gives rise to Ward identities that are

nothing but sub-leading soft theorem tells us that they are worth investigating in detail.

The ideas presented here can also be implemented in gravity. In [12] we show there

is a similar interpretation of the tree level sub-subleading soft graviton theorem as Ward

identities of large diffeomorphisms.

2The charges (5.6) and (5.7) happen to coincide if µ is an l = 1 spherical harmonic. It would be

interesting to see if there could exist a sub-subleading factorization theorem for this particular choice of µ.

We thank the referee for pointing this out.
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A Large gauge parameters

In this appendix we calculate the coefficients of the large r expansion of gauge parameters.

We start with an ansatz that includes the most divergent term used in the paper:

λ = r2
(2)

λ + r
(1)

λ +
(0)

λ +
log r

r

(log r/r)

λ +O(r−1). (A.1)

The log r/r and O(1/r) terms corresponds to ‘small’ gauge parameters. In the body of the

paper we simply took them as O(r−ǫ). Indeed, a O(r−ǫ) fall-off is enough to guarantee a

vanishing contribution to the charges. However, in order to have a solution to the wave

equation �λ = 0 we need the more specific form (A.1). We will track the coefficients up to

the order before O(r−1). O(r−1) parameters behave like regular scalar fields that satisfy

the wave equation (for instance those admitting Fourier expansion) and are associated to

small gauge parameters that have their own ‘free data’. As we will see, the log r/r is needed

for a consistent solution to the wave equation.

Applying the wave operator to (A.1) one gets:

�λ = r[−6∂u
(2)

λ ] + [(∆ + 6)
(2)

λ − 4∂u
(1)

λ ] + r−1[(∆ + 2)
(1)

λ − 2∂u
(0)

λ ]+

r−2[∆
(0)

λ − 2∂u
(log r/r)

λ ] +O(r−3 log r) (A.2)

(for the computation it is convenient to write the wave operator as �λ = r−1(∂2
r −2∂r∂u+

r−2∆)(rλ)). The general solution to �λ = 0 at the order we are working is then:

(2)

λ (u, x̂) = ν(x̂) (A.3)

(1)

λ (u, x̂) =
1

4

∫ u

0
du′((∆ + 6)

(2)

λ ) + µ(x̂) (A.4)

(0)

λ (u, x̂) =
1

2

∫ u

0
du′((∆ + 2)

(1)

λ ) + ε(x̂) (A.5)

(log r/r)

λ (u, x̂) =
1

2

∫ u

0
du′(∆

(0)

λ ) + η(x̂) (A.6)

At each order there appears an integration ‘constant’ that is a function on the sphere. The

O(1) large gauge parameter of section 3 correspond to ν = µ = 0. The O(r) parameter

of section 4 corresponds to ν = ε = 0 (one could have kept ε 6= 0 but that just gives a

O(1) gauge parameter). The value of η is pure gauge. The log r/r is however crucial for

otherwise one would have gotten ∆
(0)

λ = 0 which would have eliminated the O(1) large

gauge transformation.
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B u → ∞ fall-offs

In this section we explicit the assumed u → ±∞ fall-offs underlaying the analysis of

section 4. These fall-offs define a subspace of the radiative phase space of Maxwell and

matter fields on which charges which correspond to dipole moment at every angle are well

defined [11].

First, in order for the ‘soft’ charges to be well defined, we assume that

AA = O(u−1−ǫ) (B.1)

For the ‘hard’ charges, the term with slower fall-off is the one proportional to uφ∂Aφ
∗. In

order for its integral to be well defined we assume

φ = O(u−1−ǫ). (B.2)

With these fall-offs, all expressions of charges in section 4 are well defined. We finally show

that they also imply jr = O(u−1−ǫ), which implies there is no contribution from jr in the

charge (4.13). To study the fall-offs of jr (2.21) we need to express it in terms of the free

data. Looking at the O(r−3) coefficient of scalar field equation (2.2) and using the Lorenz

gauge condition one obtains the following expression for
(−2)
ϕ :

(−2)
ϕ =

(−2)
ϕ 1 − i

(−2)

A r φ (B.3)

where
(−2)
ϕ 1 = −1

2

∫ u

−∞

du′(∆φ− 2iDB(φAB)−ABABφ) + f(x̂) (B.4)

with f(x̂) an integration ‘constant’. Substituting (B.3) in (2.21) we see that the Ar term

cancels out and arrive at

jr = ie φ∗
(−2)
ϕ 1 + c.c. (B.5)

Since at most
(−2)
ϕ 1 = O(1) we conclude that jr has the same fall-offs as φ (B.2.)

C Comparison between Y
A and large O(r) charges

We first show that:

Q 1
2
DAµ = Qrµ. (C.1)

Setting

Y A =
1

2
DAµ (C.2)

in (4.24) one immediately recovers the ‘hard’ part of (4.13) (the terms proportional to

currents). To compare the soft parts, we note that for Y A as in (C.2) we have:

DzY
z = Dz̄Y

z̄ =
1

4
∆µ (C.3)

since

DzD
zµ = Dz̄D

z̄µ = ∆µ/2. (C.4)
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Using (C.3) in (4.25) one recovers the ‘soft’ part of (4.13) (the terms proportional to AA).

This establishes the equality (C.1). We now show that

QǫBA∂B µ̃ = Q̃rµ̃. (C.5)

For

Y A = ǫBA∂Bµ̃ (C.6)

we have that DAY
A = 0 and so

Qhard
ǫBA∂B µ̃ =

∫

I

d3V (ǫBA∂Bµ̃jA). (C.7)

Noting that d3V = dud2x̂
√
q and

√
qǫBA = ηBA and doing an integration by parts one sees

that (C.7) coincides with the hard part of (4.22). We now compare the soft parts. Using

that ǫzz̄ = iqzz̄, the soft part of (4.22) can be written as:

Q̃soft
rµ̃ = i

∫

I

d3V u∆µ̃ ∂u(D
z̄Az̄ −DzAz). (C.8)

Next, we note that for Y A as in (C.6) we have

∆µ̃ = 2iDzY
z = −2iDz̄Y

z̄ (C.9)

which follows from eq. (C.4) and Y z = −iDzµ̃. Using (C.9) in (C.8) one verifies that (C.8)

coincides with the soft charge (4.25). This establishes the equality (C.5). Combined

with (C.1) it gives eq. (4.27).
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