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1 Introduction

The role of BMS group [1, 2] for quantum gravity in asymptotically flat spacetimes was

extensively studied in the eighties by Ashtekar et al. [3–7] (see [8] for a recent review).

The subject experienced a renaissance recently due to seminal work by Strominger and

collaborators [9, 10] that relates this asymptotic symmetry group with Weinberg’s soft

graviton factorization theorem [11]. The new insight led to further developments in which

groups larger than BMS have emerged as candidate symmetries of quantum gravity. On the

scattering amplitude side, Strominger and Cachazo [12] showed how Weinberg’s theorem

can be extended to sub and sub-sub leading order in the soft graviton energy. (For beautiful

and alternative derivations of these theorems we refer the reader to [13, 14]). The subleading

factorization was identified in [15] with Ward identities of the ‘extended’ BMS group of

Barnich and Troessaert [16, 17]. In [18, 19] we proposed that the subleading relation is best

understood in terms of a different extension of BMS referred to as ‘generalized’ BMS group.

Following this line of reasoning, it appears that each factorization theorem is nothing

but a Ward identity of certain (spontaneously broken) symmetries of semi-classical grav-

ity. For tree-level quantum gravity amplitudes, three factorization theorems are known

so far (and there are good reasons to believe that even at tree level, there may not be

anymore [20]). As we have an understanding of the symmetries which give rise to the first

two of these theorems, a natural question to ask is, if the sub-subleading soft theorem is

also equivalent to certain Ward identities in tree-level quantum gravity.

Drawing on our previous work regarding symmetries associated to Low’s theorem in

massless QED [21], in this paper we provide strong evidence that such a symmetry exists

and is generated by vector fields on the conformal sphere at null infinity, which vary

linearly along the null generators. The main ideas and results were already presented

in [22]. Here we provide all the details of the analysis that were alluded to in [22]. An

outline summarizing the conceptual line of thought that we employ here is summarized in

the next section.
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2 Outline

We begin by presenting by now the well established relationship between Ward identities

of the so called generalized BMS group (henceforth denoted by G) and leading as well as

sub-leading soft theorems from a different perspective. The seminal work of Strominger et

al. [10] established the equivalence between Ward identities associated to supertranslation

symmetry and Weinberg’s soft graviton theorem using charges associated to supertransla-

tions which were (a) derived in Bondi gauge and (b) there was one charge associated to

each supertranslation generator. At the outset there are two aspects of this equivalence

which warrant further investigation. The first one being that the soft theorems are them-

selves derived in de Donder gauge and hence we can ask if it is possible to also compute

the charges associated to asymptotic symmetries in de Donder gauge. Second and perhaps

more serious issue arises from the fact that there are “2 × ∞” number of soft theorems

due to 2 polarizations of the soft gravitons (the infinity stands for the soft momentum

direction) whereas there is only one charge for each supertranslation generator. The first

issue is simply a technicality as the asymptotic charges are expected to be gauge invariant

and can be derived in any gauge (Bondi or de Donder) that one desires. The second dis-

crepancy was resolved by Strominger [9] using an ingenious idea. As far as perturbative

gravitational scattering processes are concerned, there exists a constraint which relates

positive and negative helicity soft gravitons referred to as Christodoulou-Klainerman (CK)

condition. This constraint is naturally obeyed by all asymptotically flat geometries which

are “in a neighborhood of Minkowski space”. CK condition implies that the soft theorem

for positive helicity soft graviton implies soft theorem for negative helicity graviton and

vice versa. Hence there remain 1×∞ number of independent soft theorems, in accordance

with the number of Ward identities.

In this work we first revisit these two aspects of the equivalence. Namely, we show

that one can derive the charges associated to G in de Donder gauge, there by placing

both, the Ward identities and soft theorems on an equal footing. We also show that

the so-called CK condition can be understood as the vanishing of a particular “magnetic

charge” associated to supertranslations. Thus for each generator of supertranslation there

really are two charges. One is the charge derived and used in [10] and the other is a

magnetic charge which when set equal to zero is precisely the CK condition. Our analysis

of deriving asymptotic charges in de Donder gauge is predicated upon an understanding

of BMS symmetry as residual large gauge transformations (of perturbative gravity) in de

Donder gauge. That is, we consider vector fields which satisfy

�ξa = 0, (2.1)

and which do not fall off to zero at null infinity. As we demonstrate in section 4, all the

generators of G can be understood as large diffeomorphisms with different asymptotic con-

ditions on various components of ξa at null infinity. (This idea first appeared in a paper by

Avery and Schwab [23]). In section 4 we also compute the asymptotic charges associated

to these large gauge transformations via covariant phase space methods in perturbative

gravity (reviewed in section 3) . We show how the asymptotic charges one computes using
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this method match precisely the asymptotic charges associated to G [4, 10, 15, 19]. This

resolves the first less analyzed aspect of the equivalence we mentioned above. The reason

we go through all this trouble is however not to merely recycle known results from a differ-

ent perspective. The main reason is the following: our goal is to see if the sub-subleading

theorem of perturbative gravity can be also understood as Ward identities associated to

certain symmetries. As all the charges corresponding to G generators are equivalent to the

leading and subleading theorems, it is clear that such a symmetry, if it exists has to be an

extension of G. It turns out such extensions are easier to probe in de Donder gauge. A back

of the envelope computation indicates that a charge associated to a vector field will cor-

respond to a sub-subleading soft graviton if the non-trivial sphere vector field component

at null infinity ξA is linear in u (for G generators such components are independent of u).

Hence we seek solutions to the wave equation (2.1) whose O(r0) sphere vector field compo-

nents are linear in u. We will show how there exists a class of such vector fields for which

the associated asymptotic charge, as computed through covariant phase space methods are

such that the corresponding Ward identities are precisely equivalent to the sub-subleading

soft theorem for a specific combination of positive and negative helicity gravitons. The

missing ingredient in proving a complete equivalence between sub-subleading theorem and

the asymptotic symmetries is that so far we do not have a first principle derivation of the

charges whose associated Ward identities are equivalent to the soft theorem for a graviton

of orthogonal helicity. Trying to hunt down this “missing charge” leads us to yet another

perspective on the asymptotic charges in terms of electric and magnetic parts of the Weyl

tensor. This perspective was already known and investigated by Ashtekar and Sen in [7]

in which each supertranslation generator yields two type of charges. The charge obtained

by integrating the electric part of the Weyl tensor is the supermomentum flux which was

used as asymptotic charge by Strominger et al. in [10]. The other, lesser known charge

–referred to as NUT supermomentum– is precisely the charge obtained from the magnetic

part of the Weyl tensor. In section 7 we revisit these ideas from a covariant phase space

perspective and by considering such magnetic charges for G generators and elaborating on

their roles in soft theorems, conjecture that the magnetic charges associated to the new

symmetries provide the “missing charge”.

Throughout the paper (except in section 7) we work in the context of gravity coupled

with massless scalar field. The massless scalar particles will play the role of external ‘hard’

particles in the soft theorems. The reason for this choice is that computations become

simpler. It should however be straightforward to extend the analysis to gravity coupled to

other fields or to pure perturbative gravity.

3 Linearized gravity coupled to massless scalar field

The system we will be studying in this paper is perturbative gravity coupled to a massless

scalar field ϕ. In de Donder gauge, the field equations for the metric perturbation hab are

given by,

�hab = −2Tab (3.1)

– 3 –
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where hab = hab − 1
2η

mnhmnhab, Tab the stress tensor of the scalar field and � the flat

space wave operator. hab satisfies the de Donder gauge condition

∇bh̄ab = 0. (3.2)

Indices are raised and lowered with the flat metric ηab and ∇a is the flat deriva-

tive, ∇aηbc=0.

We will study these equations in retarded coordinates (u, r, x̂) as they are most suitable

for massless fields. In these coordinates, we specify “radiative free data” at future null

infinity and solve the equations recursively in 1/r. The matter free data is given by a

function φ(u, x̂) at null infinity that specifies the leading r →∞ term of the scalar field,

ϕ(u, r, x̂) =
φ(u, x̂)

r
+O(r−2). (3.3)

The gravitational free data CAB(u, x̂) is given by the leading angular components of the

metric perturbation:

hAB(u, r, x̂) = r CAB(u, x̂) + . . . (3.4)

(capital indices denote sphere components). A solution to the wave equation (3.1) can then

be written as hab = h
(C)
ab + h

(φ)
ab where h

(C)
ab , h

(φ)
ab satisfy,

�h̄(C)
ab = 0, �h̄(φ)

ab = −2Tab. (3.5)

The metric perturbation h
(C)
ab is determined by the gravitational radiative data CAB and

the metric perturbation h
(φ)
ab is determined by the radiative matter data φ. The detailed

asymptotic form of h
(C)
ab and h

(φ)
ab are given in appendices C and E respectively.

3.1 Asymptotic charges

The symplectic potential density of gravity coupled to a scalar field is given by:

θa(δ) = θagrav(δ) + θamatt(δ) (3.6)

where

θagrav(δ) =
1

2

√
g
(
gbcδΓabc[g]− gabδΓccb[g]

)
, (3.7)

θamatt(δ) = −√ggab∂bϕδϕ. (3.8)

Given a vector field ξa, the covariant phase space charge [24, 25] at null infinity is deter-

mined by the condition:

δQξ = lim
t→∞

∫
Σt

dSa(δθ
a(δξ)− δξθa(δ)), (3.9)

where Σt is a t = constant surface that approaches null infinity as t→∞. It is understood

that in this limit the integrand of (3.9) is evaluated by keeping u = constant, as appropriate

for massless fields (see [26, 27] for how this changes in the presence of massive fields). For
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the purposes of making contact with the tree-level soft theorems, we are interested in

keeping terms in the charge that are quadratic in the scalar field radiative data φ (referred

to as ‘hard’ part) and linear in the gravitational radiative data CAB (referred to as ‘soft’

part of the charge). From the splitting (3.6) we can write

Qξ = Qgrav
ξ +Qmatt

ξ , (3.10)

where each part is defined as in (3.9) with θa replaced by θagrav or θamatt. One can verify

that the matter contribution is given by:

Qmatt
ξ = − lim

t→∞

∫
Σt

dSa
√
g T ab ξb. (3.11)

In the limit and setting of interest, the metric gab in (3.11) can be replaced by the flat

metric ηab, and Qmatt
ξ becomes quadratic in the scalar field. It thus contributes to the

‘hard’ charge.

For the limit and setting of interest the gravitational part Qgrav
ξ can be computed by

keeping terms that are linear in the metric perturbation hab. That is, it suffices to work

with the symplectic potential θalin of linearized gravity. From (3.7) one finds it is given by

(after dropping total variation terms):

θalin =

√
η

2

(
δh̄bcΓabc +

1

2
δh̄ab∂bh̄

)
, (3.12)

where Γabc refers now to the linearized Christoffell symbols:

Γabc =
1

2
ηad
(
∇bhcd +∇chbd −∇dhbc

)
. (3.13)

When condition (3.9) is written for the linearized gravity symplectic potential, the resulting

expression is automatically the total variation of a charge given by:

Qgrav
ξ [h] = lim

t→∞

1

2

∫
Σt

dSa
√
η

(
Γabcδξh̄

bc − δξΓabch̄bc +
1

2
δξh̄

ab∂bh̄−
1

2
h̄ab∂bδξh̄

)
. (3.14)

The charge is linear in the metric perturbation hab. But from the previous section we have

that hab is a sum of two components,

hab = h
(C)
ab + h

(φ)
ab , (3.15)

with h
(C)
ab the ‘free’ metric perturbation that depends (linearly) in the gravitational data

CAB and h
(φ)
ab the ‘sourced’ metric perturbation that depends (quadratically) on the scalar

field data φ. Accordingly, the charge (3.14) takes the form of a sum:

Qgrav
ξ [h] = Qgrav

ξ [h(C)] +Qgrav
ξ [h(φ)]. (3.16)

It then follows that Qgrav
ξ [h(C)] yields the soft part of the charge, whereas Qgrav

ξ [h(φ)]

contributes to the hard part of the charge. In summary, the total charge can be written as:

Qξ = Qhard
ξ +Qsoft

ξ (3.17)

– 5 –
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with

Qsoft
ξ = Qgrav

ξ [h(C)] (3.18)

Qhard
ξ = Qmatt

ξ +Qgrav
ξ [h(φ)]. (3.19)

As we will see in section 4, Qgrav
ξ [h(φ)] is zero for G vector fields but will be non-trivial for

the symmetries which lead to sub-subleading theorem.

We conclude the section by introducing notation for later reference. Taking Σt as a

t = u+ r=constant surface, we write the total charge as

Qξ = lim
t→∞

∫
dud2x̂

√
q ρ (3.20)

where the density being integrated is a sum of five terms:

ρ = ρT + ρ1 + ρ2 + ρ3 + ρ4, (3.21)

corresponding to the terms appearing eqs. (3.11) and (3.14), namely:

ρT = −r2T taξ
a (3.22)

ρ1 =
r2

2
Γtabδξh

ab (3.23)

ρ2 = −r
2

2
δξΓ

t
abh̄

ab (3.24)

ρ3 =
r2

4
δξh̄

tb∂bh̄ (3.25)

ρ4 =
r2

2
h̄tb∂b(∇cξc) (3.26)

(above we used that ηbcΓabc = 0 and δξh̄ = −2∇cξc).

4 Generalized BMS in de Donder gauge

In this section we show how the generalized BMS group (which is naturally defined in

Bondi gauge) and its associated asymptotic charges can be analyzed from the de Donder

gauge perspective. That is, we consider certain generators of residual diffeomorphisms for

linearized gravity in de Donder gauge which are (a) asymptotically divergence-free and

(b) have the same fall-off behaviour as the G generators, and show that the corresponding

charges coincide with the known charges associated to supertranslation and Diff(S2) vector

fields of G. The analysis of BMS algebra (in arbitrary dimensions) in de Donder gauge was

first given in the seminal work of [23].

We compute the charges associated to such “large” diffeomorphisms using covariant

phase space techniques. We show that these charges contain terms that diverge logarith-

mically with r. However the fact that the vector fields satisfy the wave equation implies

that this logarithmically divergent term vanishes. The finite part of the charge turns out to

be precisely equal to the charges associated to generalized BMS algebra.

– 6 –
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The analysis in this section will set the stage for exploring a new class of symmetries

which give rise to sub-subleading theorem.

In the de Donder gauge, the residual gauge transformations are given by vector field

ξa which satisfy

�ξa = 0 (4.1)

and which do not vanish at null infinity. In order to understand G as residual symmetry in

de Donder gauge, we consider the following ansatz for ξa in retarded coordinates (u, r, x̂):

ξr = r
(1)

ξr +O(1)

ξu =
(0)

ξu +O(r−ε)

ξA =
(0)

ξA + r−1
(−1)

ξA +O(r−1−ε)

(4.2)

The leading terms of the wave equation (see appendix B.1) implies that
(1)

ξr ,
(0)

ξu and
(0)

ξA are

all u-indepedendent. Next we impose the defining condition of generalized BMS group G,

namely that ξa is asymptotically divergence free [18]:

lim
r→∞

∇aξa = 0. (4.3)

This condition implies that:

3
(1)

ξr + ∂u
(0)

ξu + DA

(0)

ξA = 0. (4.4)

On the other hand, the vanishing of �ξu at order r−1 yields (see appendix B.1):

− ∂u
(0)

ξu +
(1)

ξr +DA

(0)

ξA = 0. (4.5)

From equations (4.4) and (4.5) one finds:

∂u
(0)

ξu =
1

2
DA

(0)

ξA,
(1)

ξr = −1

2
DA

(0)

ξA. (4.6)

The first condition yields
(0)

ξu =
u

2
DA

(1)

ξA + f(x̂), (4.7)

with f an arbitrary function on the sphere that appears as an integration ‘constant’. Calling

(0)

ξA = V A, α =
1

2
DAV

A, (4.8)

the vector field takes the form:

ξa = V A∂A + (uα+ f)∂u − αr∂r + . . . , (4.9)

– 7 –
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where the dots represent subleading terms as in (4.2). This is precisely the form of the

generalized BMS vector field given in [18]. Setting V A = 0 one obtains a supertranslation

vector field and setting f = 0 one obtains the sphere vector fields associated to subleading

soft graviton theorem.

We now proceed to compute the associated charges along the lines presented in the

previous section. It will be convenient to discuss separately the supertranslation and sphere

vector field cases, particularly as they require different u→∞ fall-offs on the radiative data.

4.1 Supertranslation charges

For supertranslation charges one can use standard radiative phase space fall-offs at u →
±∞ [4]:

CAB(u, x̂) = C±AB(x̂) +O(|u|−ε), φ(u, x̂) = O(|u|−ε). (4.10)

We now consider the general charge formulae given in section 3.1 for the case of a super-

translation vector field

ξaf = f(x̂)∂u + . . . (4.11)

where ξrf = O(1) and ξAf = O(r−1). Given the r →∞ fall-offs described in the appendices,

one finds the densities (3.22) to (3.26), in the r →∞ limit, are given by:

ρT =
(0)

ξu
−2
T uu = fφ̇2 (4.12)

ρ2 = ρ3 = ρ4 = 0. (4.13)

ρ1 =
(−1)

ΓtrA

(−1)

δξh
rA +

1

2

(1)

ΓtAB

(−3)

δξh
AB =

1

2
∂u
(
CABD

A
(−1)

ξB
)
, (4.14)

where in the last equality we dropped a total sphere divergence. The component
(−1)

ξA

is determined by the preservation of the metric perturbation fall-offs. Specifically for a

supertranslation vector field one finds:

δξhAr = O(r−1) ⇐⇒
(−1)

ξA = −DAf. (4.15)

Thus the total charge is given by:

Qξf =

∫
dud2x̂

√
q

(
fφ̇2 − 1

2
DADBf∂uCAB

)
, (4.16)

which corresponds to the well known expression of supertranslation charge [4, 10].

4.2 Sphere vector field charges

For the sphere vector fields

ξaV = V A∂A + uα∂u − αr∂r + . . . , (4.17)

– 8 –
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the charges are defined on a subspace of radiative data where CAB satisfies the stronger

fall-offs [19]:

CAB(u, x̂) = O(|u|−1−ε), (4.18)

(for φ we keep the same fall offs as before). To simplify the analysis, we discuss separately

the ‘hard’ and ‘soft’ part of the charge.

4.2.1 Hard part

From the r →∞ fall-offs described in the appendices, one finds that for a vector field (4.2)

there is a potential log r divergence in the hard charge density. The divergent term arises

in the piece ρ1 (3.23) and is given by:

(ln)
ρ1 =

(−2 ln)

Γtru

(0)

δξh
ru +

1

2

(ln)

ΓtAB

(−2)

δξh
AB (4.19)

=
1

2
µ(

(1)

ξr − ∂u
(0)

ξu +DA

(0)

ξA). (4.20)

However, this term vanishes by virtue of the wave equation, eq. (4.5). Hence it turns out

that the vector fields satisfying the wave equation and having fall-offs given in eq. (4.2)

yield finite charges.

The remaining contribution to the hard charge are finite. From the fall-offs described in

the appendices, one finds the following limiting expressions for ρT and (hard part of) (3.23)

to (3.26):

ρT =
(0)

ξu
−2
T uu +

(0)

ξA
−2
T uA = φ̇(

(0)

ξA∂Aφ+
(0)

ξuφ̇), (4.21)

ρ1 =
−2

Γtru
0

δξh
ru +

1

2

0

ΓtAB

−2

δξh
AB = 0 (4.22)

ρ3 =
1

4

(0)

δξh̄
tu
−2

∂uh̄ = 0 (4.23)

and

ρ2 = ρ4 = 0. (4.24)

The vanishing of ρ1 and ρ3 is due to the fact that for generalized BMS vector field
0

δξh
ru =

(0)

δξh̄
tu = 0 and qAB

−2

δξh
AB = 0, together with the fact that

0

ΓtAB ∝ qAB (see

appendices). Thus, as anticipated in the previous section, there is no hard contribution

from the gravitational part of the charge. The hard charge is then given by:

ρhard
V = ρT = φ̇(V A∂A + uαφ̇), (4.25)

which represents the scalar field contribution to the hard charge computed in [19] for

pure gravity.

– 9 –
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4.2.2 Soft part

For the soft part one finds

ρ3 = ρ4 = 0, (4.26)

ρ2 = − 1

2

(1)

δξΓ
t
AB

(−3)

hAB = −1

2
CABD

ADB
(1)

ξr , (4.27)

and

ρ1 = r
(1)
ρ1 +

(0)
ρ1 (4.28)

(1)
ρ1 =

1

2

(1)

ΓtAB

(−2)

δξh
AB =

1

2
∂uCABD

A
(0)

ξB (4.29)

(0)
ρ1 =

(−1)

ΓtrA

(−1)

δξh
rA +

1

2

(1)

ΓtAB

(−3)

δξh
AB +

1

2

(0)

ΓtAB

(−2)

δξh
AB (4.30)

=
1

2
∂u
(
CABD

A
(−1)

ξB
)
− 1

2
CABD

ADB
(1)

ξr +
1

2

(0)

∂uhABD
A

(0)

ξB (4.31)

(in the last line we discarded a total sphere divergence). To obtain the charge we write

r = t − u and take t → ∞ with u fixed. The O(t) term given by
(1)
ρ1 integrates to zero by

virtue of the fall-offs (4.18). These fall-offs also imply the part proportional to
(−1)

ξA in (4.31)

integrates to zero. Thus, the total soft charge is given by:

ρsoft = −u
(1)
ρ1 +

(0)
ρ1 +

(0)
ρ2 (4.32)

=
1

2
CAB

(
DA

(0)

ξB − 2DADB
(1)

ξr
)

+
1

2

(0)

∂uhABD
A

(0)

ξB (4.33)

where in the last line we discarded a total u-derivative terms by virtue of (4.18). Writing

the vector field as in section 4:

(0)

ξA = V A,
(1)

ξr = −1

2
DAV

A, (4.34)

and using the expression of
(0)

hAB in terms of CAB (eq. (C.4)), we arrive at (discarding total

sphere divergences)

ρsoft
V =

1

2
CAB(2DAV B +DADBDCV

C − 1

2
∆DAV B) (4.35)

=
1

2
CAB

(
1

2
DAV B +DADBDCV

C − 1

2
DA∆V B

)
(4.36)

where in the last equality we used the identity: ∆D(AV B) = 3D(AV B) + D(A∆V B). Ex-

pression (4.36) precisely coincides with the soft charge computed in [19] in Bondi gauge.

When written in stereographic coordinates (z, z̄), it takes the form of the soft charge first

presented in [15]:

ρsoft
V =

1

2
CzzD3

zV
z + c.c. (4.37)
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5 Extracting charges from the sub-subleading theorem

The sub-subleading soft theorem takes the form [12][
lim
ω→0

ω−1Mn+1(ωq̂, p1, . . . , pn)
]

finite
= S(2)Mn(p1, . . . , pn) (5.1)

where we are discarding divergent O(ω−2) and O(ω−1) terms, keeping only the finite piece.

The factor S(2) is described below. Since in Fourier space dividing by frequency amounts

to an integral over time u,

ω−1F̃ (ω) = −i
∫ ∞
−∞

dueiωu
∫ u

−∞
F (u′)du′, (5.2)

we are motivated to define the prospective soft charge corresponding to sub-subleading

theorem as follows. Given a symmetric, trace-free sphere tensor Y AB let us define the soft

charge as [22]:

Qsoft
Y :=

∫ ∞
−∞

du

∫ u

−∞
du′
∫
d2w
√
γ Y wwD4

wC
ww(u′, q̂) + c.c., (5.3)

where (w, w̄) are stereographic coordinates for q̂ and
√
γ = 2/(1 + ww̄)2 the area element.

To simplify the discussion we now take Y w̄w̄ = 0 and discuss the general case towards the

end of this section.

Using the relation between gravitational free data and Fock graviton operators [10],

C̃w̄w̄(ω, q̂) =
√
γ

2πia−(ω, q̂), and taking into account the tensorial structure of sphere deriva-

tives, the proposed charge can be written as:

Qsoft
Y = − lim

ω→0
ω−1 1

2π

∫
d2wY ww

(
∂4
w +

2w̄

1 + ww̄
∂3
w

)
a−(ω, q̂). (5.4)

The insertion of this operator in a scattering amplitude can be evaluated with the sub-

subleading soft theorem:[
lim
ω→0

ω−1〈out|a±(ω, q̂)S|in〉
]

finite
=
∑
i

S
(2)
± (q, pi)〈out|S|in〉, (5.5)

where the sub-subleading soft factor is the second order differential operator,

S
(2)
± (q, p) = (2 p · q)−1(εµ±q

νJµν)2. (5.6)

One can check that when (∂4
w + 2w̄

1+ww̄∂
3
w) acts on the soft factor (5.6) the result is pro-

portional to Dirac deltas and its derivatives. The sphere integral can then be evaluated,

resulting in:

1

2π

∫
d2wY ww

(
∂4
w +

2w̄

1 + ww̄
∂3
w

)
S

(2)
− (q, p) =

− 1

2
ED2

zY
zz∂2

E + 2DzY
zz∂E∂z − 3E−1Y zzDz∂z − 2E−1DzY

zz∂z =: YY , (5.7)
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where E = |~p| is the energy of the hard momentum p and (z, z̄) are stereographic coordi-

nates for the hard momentum direction p̂ = ~p/E.

As in [28], in order to interpret the soft theorem as a Ward identity we now seek for a

hard charge Qhard
Y that generates the action (5.7) via Poisson brackets:

{b,Qhard
Y } = iYY b, (5.8)

where b is the mode function of the external (scalar) hard particles,

b(E, x̂) = 4πi

∫ ∞
−∞

du eiEuφ(u, x̂). (5.9)

In terms of the mode functions, the symplectic product of the scalar field reads:

Ω(δ, δ′) =
2i

(4π)2

∫
d2V

∫ ∞
−∞

dE

2π
E δb δ′b∗. (5.10)

Since iYY b is homogenous in b, the candidate charge can be computed by:

Qhard
Y =

1

2
Ω(iYY b, b). (5.11)

There are three types of terms appearing in (5.11) of the form:

(4π)−2

∫ ∞
−∞

dE

2π
Ab(E) b∗(E) = −

∫ ∞
−∞

duAφ(u)φ(u) (5.12)

(4π)−2

∫ ∞
−∞

dE

2π
AE∂Eb(E)b∗(E) = −

∫ ∞
−∞

duuAφ(u)∂uφ(u) (5.13)

(4π)−2

∫ ∞
−∞

dE

2π
AE2∂2

Eb(E)b∗(E) = −
∫ ∞
−∞

duu2Aφ(u)∂2
uφ(u) (5.14)

where A denotes a sphere differential operator. Using these identities, one finds, after some

integration by parts:

Qhard
Y = −

∫
d2V

∫
du

(
3Y zz∂zφ∂zφ + 2uDzY

zz∂zφ φ̇ + D2
zY

zz

(
− φ2 +

u2

2
φ̇2

))
.

(5.15)

One can then explicitly check that the Poisson bracket between b and Qhard
Y satisfies (5.8)

as desired.

It is straightforward to extend the previous analysis to the case of a general real Y AB.

The associated hard charge is then given by expression (5.15) plus its complex conjugate.

In covariant notation, it takes the form:

Qhard
Y = −

∫
d3V

(
3Y AB∂Aφ∂Bφ + 2uDAY

AB∂Bφ φ̇ + DADBY
AB

(
− φ2 +

u2

2
φ̇2

))
(5.16)
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By the standard reasoning (see e.g. [26–28]) one concludes that the sub-subleading soft

theorem (5.1) implies the S-matrix commutes with the charge

QY = Qhard
Y +Qsoft

Y , (5.17)

with Qhard
Y given by eq. (5.16) and Qsoft

Y given by eq. (5.3). Conversely, one can read-off

from S(2)(q, p) the tensor Y AB associated to a positive or negative soft graviton insertion.

For a negative helicity soft graviton with direction (zs, z̄s) this is given by:

Y ww =
1

6

1 + ww̄

1 + zsz̄s

(w − zs)3

w̄ − z̄s
, Y w̄w̄ = 0, (5.18)

which satisfies1

1

2π
D4
wY

ww = δ(2)(w − zs). (5.19)

From relation (5.19) one can show that the Ward identity 〈out|[QY , S]in〉 = 0 associated to

the tensor (5.18) reproduces the (negative helicity) sub-subleading relation (5.1). Choosing

the complex conjugate of (5.18) leads to the positive helicity soft theorem.

We will later identify the tensor Y AB with a vector field XA by:

Y AB = (D(AXB))TF. (5.20)

The following identities will then be useful:

D2
zY

zz + c.c. = DADBY
AB = D ·X +

1

2
∆D ·X (5.21)

and

DzY
zz∂z + cc = DBY

AB∂A =
1

2
(∆XA +XA)∂A. (5.22)

6 Looking for new symmetries in de Donder gauge

As shown in the previous section, the charges in perturbative gravity whose Ward Identi-

ties can be derived from the sub-subleading soft theorem are parametrized by symmetric,

trace-free tensor fields Y AB on the conformal sphere. This may tempt us to associate these

charges to certain generalized symmetries arising perhaps from asymptotically Killing ten-

sor fields. This line of reasoning, while certainly intriguing is made complicated by the

fact that there is no natural method to compute charges associated to asymptotic Killing

tensors in field theory. (However there is a possibility that by carefully analyzing and

extending the methods developed by [29], one may be able to derive such charges.) There

is a natural analogue of this conundrum in QED. In that case, working backwards from

Low’s sub-leading theorem, one obtains asymptotic charges parametrized by vector fields

on the sphere [28]. However, as shown in [21], these charges could be derived from first

principle by parametrizing them by u-dependent large gauge transformations. Inspired by

this, we will now like to attempt something analogous in the current scenario.

1The tensorial structure now is such that D4
w acts as the ‘integrated by parts’ version of the differential

operator in eq. (5.4), namely: D4
wY

ww = ∂4
wY

ww − ∂3
w( 2w̄

1+ww̄
Y ww).
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That is, we would like to find vector fields whose asymptotic charges reproduce the

charges obtained in the last section. As discussed briefly in the outline section, given the

form of both hard and soft parts, one is lead to conclude that the vector fields should have

an extra power of u with respect to generalized BMS vector fields ξV , or two extra powers

of u with respect to supertranslations vector fields ξf (or both). Requiring that the vector

field satisfies the wave equation, one is lead to an ansatz of the form (see appendix B.1):

ξr = r2
(2)

ξr + r
(1)

ξr +O(r0)

ξu = r2
(2)

ξu + r
(1)

ξu +
(0)

ξu +O(r−ε) (6.1)

ξA = r
(1)

ξA +
(0)

ξA +O(r−1).

The wave equation implies the leading terms
(2)

ξr ,
(2)

ξu and
(1)

ξA are u-independent. These

leading terms play the role of ‘free data’ in terms of which subleading terms are determined

by solving the wave equation (see appendix B.1).

In general such type of vector fields will lead to divergent charges. As we will see, the

charges will have a t→∞ expansion of the form:

Qξ = t2 ln t
(2 ln)

Q ξ + t2
(2)

Qξ + t ln t
(1 ln)

Q ξ + t
(1)

Qξ + ln t
(ln)

Q ξ +
(0)

Qξ +O(t−ε). (6.2)

In order to have meaningful finite charges, we need to add counterterms to subtract the

divergent terms. Such a procedure is necessarily ambiguous. However in our case such

a “counterterm subtraction” prescription is rendered unambiguous due to the nature of

divergent terms. As we will see below, the divergent terms turn out to have definite

physical interpretation:

(2)

Qξ ∝ Supertranslation charge,
(1)

Qξ ∝ Diff (S2) charge

(2 ln)

Q ξ =
(1 ln)

Q ξ =
(ln)

Q ξ = 0

(6.3)

The first two conditions are interpreted as subtracting terms due to leading and subleading

soft gravitons, and it is inspired by an analogous procedure in the case of subleading soft

photon charges in QED [21]. The terms with logarithms have a time dependance that is not

related to such soft gravitons. We thus require them to vanish. They thus translate into

restrictions on the vector field (6.1). We will find this restricts three of the four independent

data in (6.1). The resulting vector field will be found to be given by:

ξa = rXA∂A + . . . , DAX
A = 0, (6.4)

where the dots indicate subleading terms that are determined by the ‘free data’ XA by

solving the wave equation �ξa = 0. Notice that since XA is restricted to be divergence-

free, the free data counts as one function on the sphere. Hence just like in the case of

supertranslation versus Weinberg soft theorem, we will have Ward identities associated to
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symmetries that are parametrized by one function on one hand and two sub-subleading

theorem associated to positive and negative helicities respectively on the other. We will

return to this point at the end of the section.

In the following we compute the divergent and finite contributions to the charges. We

focus on the r →∞ expansion of the charge density (3.21) which will take the form:

ρ = r2 ln r
2 ln
ρ + r2 2

ρ+ r log r
1 ln
ρ + log r

ln
ρ + r

1
ρ +

0
ρ+O(r−ε). (6.5)

Setting r = t− u yields then the desired t→∞ expansion.

We start by looking at the logarithmically divergent terms. The condition that they

vanish will yield the form of the vector field (6.4). We will then check that polynomially

divergent terms satisfy the condition (6.3), and finally study the finite charges. To simplify

expressions, the dependance on the scalar field will be parametrized in terms of the following

quantities:

µ :=
∫ u
φ̇2, φ2,

−3
T uu, TuA :=

−2
T uA, TAB := (

−2
T AB)TF (6.6)

where for the benefit of the reader we recall that φ is the free data for massless scalar field

at null infinity.

6.1 Log divergent terms

It is clear that due to the power law falls off of ϕ and ξa with r, only the gravitational hard

part contains logarithmically divergent terms. Given the general expression (3.21) and the

fall-offs described in the appendices, one finds that the most divergent term associated to

the vector field (6.1) is proportional to r2 ln r:

(2 ln)
ρ =

1

2

(−1 ln)

Γtuu

(1)

δξh
uu =

1

2
φ̇2

(2)

ξu. (6.7)

Thus, demanding this term to vanish imposes

(2)

ξu = 0. (6.8)

From now on we restrict attention to vector fields satisfying this condition.

6.1.1 r log r

The term proportional to r ln r in (3.21) are:

(1 ln)
ρ1 =

(−2 ln)

Γtru

(1)

δξh
ru +

1

2

(−1 ln)

Γtuu

(0)

δξh
uu +

(−1 ln)

ΓtuA

(0)

δξh
uA +

1

2

(ln)

ΓtAB

(−1)

δξh
AB (6.9)

(1 ln)
ρ2 = −1

2

(0)

δξΓ
t
rr

(−1 ln)

h̄rr (6.10)

(1 ln)
ρ3 =

1

4

(1)

δξh̄
tu

(−2 ln)

∂uh̄ (6.11)

(1 ln)
ρ4 =

1

2

(−1 ln)

h̄tr
(1)

∇aξa (6.12)
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Using the expressions from the appendices we get (in what follows we drop total sphere

divergences)

(1 ln)
ρ1 = −1

2
µ∂u

(1)

ξu +
1

2
φ̇2

(1)

ξu (6.13)

(1 ln)
ρ2 = −µ

(2)

ξr (6.14)

(1 ln)
ρ3 = 0 (6.15)

(1 ln)
ρ4 =

1

2
µ(4

(2)

ξr + ∂u
(1)

ξu +DA

(1)

ξA) (6.16)

Bringing all terms together, one finds:

(1 ln)
ρ = µ

(
(2)

ξr +
1

2
DA

(1)

ξA
)

+
1

2
φ̇2

(1)

ξu (6.17)

Since ∂uµ = φ̇2, one may be tempted to further simplify the expression for the correspond-

ing charge by integrations by parts in u. This however introduces a boundary term since∫ +∞
−∞φ̇

2du 6= 0. Thus, in order for (6.17) to vanish we need each term to vanish separately,

(2)

ξr +
1

2
DA

(1)

ξA = 0,
(1)

ξu = 0. (6.18)

Combining (6.8), (6.18) with �ξa = 0 one finds the vector field takes the form (see ap-

pendix B.1)

ξa =

(
rXA +

u

4
(∆ + 5)XA

)
∂A +O(r−ε) (6.19)

with XA(x̂) satisfying DAX
A = 0 playing the role of ‘free data’. The vector field (6.19)

will be the candidate vector field associated to sub-subleading charges. Below we show

that the associated divergent and finite pieces satisfy the requirements (6.3).

6.1.2 log r

Repeating a similar analysis as in the r ln r case, the terms proportional to ln r for a vector

field with leading components as in (6.19) are:

(ln)
ρ1 =

(−2 ln)

Γtru

(0)

δξh
ru +

(−2 ln)

ΓtrA

(0)

δξh
rA +

(−2 ln)

ΓtuA

(0)

δξh
uA +

1

2

(ln)

ΓtAB

(−2)

δξh
AB +

1

2

(−1 ln)

ΓtAB

(−1)

δξh
AB (6.20)

and
(ln)
ρ2 =

(ln)
ρ3 =

(ln)
ρ4 = 0 (6.21)

Using the expressions from the appendices, one finds that all terms in (6.20) are actually

zero (up to total sphere divergences) due to DAX
A = 0. Thus, there are no logarithmic

divergences associated to the vector field (6.19).
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6.2 Polynomially divergent hard terms

For the vector field (6.19) one finds there are no O(r2) terms in the charge. For the O(r)

piece the only contribution comes from the stress tensor part and is given by:

(1)
ρ T =

−2
T uAX

A. (6.22)

This has precisely the form of a Diff(S2) hard charge ρhard
X (4.25) (recall DAX

A=0), thus

satisfying the required condition (6.3).

6.3 Finite hard charge

We finally come to the finite part of the hard charge. Here one finds contributions from

the stress tensor (3.22) and from the ρ1 term of the gravitational charge (3.23). It will be

convenient to express the charges in terms of

TuA :=
−2
T uA = φ̇ ∂Aφ (6.23)

TAB := (
−2
T AB)TF = (∂Aφ∂Bφ)TF. (6.24)

and of

Y AB := (D(AXB))TF. (6.25)

We start with the stress tensor part. It has a r →∞ expansion of the form

ρT = r
(1)
ρT +

(0)
ρT . (6.26)

Since the charges are defined by the limit t → ∞ with u = t − r = constant, this gives a

finite contribution of the form (see appendix D):

ρfinite
T = −u

(1)
ρT +

(0)
ρT =

−2
T uA(

0

ξA − u
1

ξA) +
−3
T uA

1

ξA. (6.27)

Up to total derivatives the last term can be evaluated as (see appendix D.1):

−3
T uA

1

ξA = D(A
1

ξB)(∂Aφ∂Bφ)TF (6.28)

and so we write ρfinite
T as

ρfinite
T = (

0

ξA − u
1

ξA)TuA + Y ABTAB. (6.29)

For ρ1 we have:

ρ1 =
−2

ΓtrA δξ

0

hrA +
−2

ΓtuA δξ

0

huA +
1

2

0

ΓtAB δξ

−2

hAB +
1

2

−1

ΓtAB δξ

−1

hAB (6.30)
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From the expressions of the sourced metric perturbation given in appendix E one finds:

−2

ΓtrA = −
∫ u
TuA +DA(. . .),

−2

ΓtrA = DA(. . .)

−1

ΓtAB = qAB(. . .)

−1

ΓtAB = −1

4
TAB +

1

2

∫ u
D(ATB)u +DADB(. . .) + qAB(. . .).

(6.31)

Due to the divergence free property of
(1)

ξA and
(0)

ξA, only the terms explicitly shown in (6.31)

give nonzero contribution (up to total sphere divergences). One then finds (after some

integration by parts in u and in the sphere):

ρ1 = (u
1

ξA −
0

ξA)TuA −
1

4
Y ABTAB +

u

2
DAY

ABTuB. (6.32)

Combining this term with the stress tensor contribution (6.29) one finds the total charge

is given by:

ρhard = (ρT )finite + ρ1 =
3

4
Y ABTAB +

u

2
DAY

ABTuB. (6.33)

Comparing with (5.16) and noting that DADBY
AB = 0 for divergence-free XA, we see

that (6.33) reproduces (-1/4 times) the charge (5.16) obtained from the soft theorem.

6.4 Soft charge

We now compute the soft charge. In the notation of eq. (3.21) it is a sum of four terms,

eqs. (3.23) to (3.26), with hab the ‘free’ linearized metric perturbation associated to CAB.

The last two terms however do not contribute: the third one vanishes because h = 0

and the fourth was already discarded since the vector field was found to be spacetime

divergence-free. Thus, only the first two terms contribute:

ρsoft = ρ1 + ρ2. (6.34)

We will find an r →∞ expansion of the charge density as:

ρsoft = r2(2)
ρ + r

(1)
ρ +

(0)
ρ +O(r−ε), (6.35)

which, upon setting r = t− u yields the expansion in t:

ρsoft = t2
(2)
ρ + t

(
− 2u

(2)
ρ +

(1)
ρ
)

+
(
u2(2)
ρ − u

(1)
ρ +

(0)
ρ
)

+O(t−ε) (6.36)

As we will see, in order for the finite charge to be well defined we will need to restrict

attention to CAB satisfying

CAB(u, x̂) = O(|u|−2−ε) (6.37)

as u→ ±∞. It will also be convenient to express the charge density in terms of:

CAB(u, x̂) :=

∫ u

−∞
CAB(u′, x̂)du′. (6.38)
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Given the fall-offs described in the appendices, for the vector field (6.19) one finds

ρ2 = 0, (6.39)

and we are only left with ρ1. The computation of ρ1 is simplified due to the radiation

gauge, the only terms contributing being:

ρsoft = ρ1 = r2

(
1

2
Γtrrδξh

rr + ΓtrAδξh
rA +

1

2
ΓtABδξh

AB

)
. (6.40)

From the expansions given in the appendices, one finds the r2 and r terms are:

(2)
ρ =

1

2
∂uCABD

A
(1)

ξB (6.41)

(1)
ρ =

1

2

(
∂u

(−1)

hrA

((1)

ξA − ∂u
(0)

ξA
)

+ ∂uCABD
A

(0)

ξB + ∂u
(0)

hABD
A

(1)

ξB
)

(6.42)

With the fall-offs (6.37) these yield vanishing contributions to the O(t2) and O(t) charges.2

Using eq. (C.4) the finite contributions of (6.41), (6.42) are found to be (discarding

total derivatives in u and in the sphere):

u2(2)
ρ − u

(1)
ρ = CAB

(
DA

(1)

ξB − 1

2
DA∂u

(0)

ξB − 1

4
∆DA

(1)

ξB
)
, (6.43)

where we used that ∂u

(1)

ξA = 0 and that
(0)

ξA is linear in u.

It remains to compute the O(r0) part of ρ. This is found to be:

(0)
ρ =

1

2

(
− ∂u

(−1)

hrA∂u

(−1)

ξA + ∂u
(−2)

hrA(
(1)

ξA − ∂u
(0)

ξA)

+∂uCABD
A

(−1)

ξB + ∂u
(0)

hABD
A

(0)

ξB + ∂u
(−1)

hABD
A

(1)

ξB
)

= CAB

(
−DA

(1)

ξB +
1

2
DA∂u

(0)

ξB +
1

4
∆DA

(1)

ξB
)

+
1

2
∂u

(−1)

hABD
A

(1)

ξB (6.44)

where in the last line we discarded total derivative terms. Here we used eq. (C.4) for all

metric components except for
(−1)

hAB. The total finite charge is then:

ρsoft = u2(2)
ρ − u

(1)
ρ +

(0)
ρ (6.45)

=
1

2
∂u

(−1)

hABD
A

(1)

ξB (6.46)

= CABs
AB, (6.47)

2It is interesting to note that with the weaker fall-offs CAB(u, x̂) = O(|u|−1−ε) one obtains a nonzero

O(t) charge that corresponds to the ‘soft’ part of the O(t) hard charge found in eq. (6.22). This is in

compatibility with the prescription of eq. (6.3).
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where

sAB =
1

16
∆2DA

(1)

ξB − 3

8
∆DA

(1)

ξB +
1

2
DA

(1)

ξB. (6.48)

In the last equality we used (C.4), DA

(1)

ξA = 0 and performed a few integrations by parts.

When (6.48) is expressed in (z, z̄) coordinates, one finds (see appendix F):

szz = −1

4
D4
zD

z
(1)

ξz . (6.49)

The soft charge can then be written as:

ρsoft = C zzszz + c.c. (6.50)

With the identification (6.25), this is precisely (-1/4 times) the soft charge proposed in

eq. (5.3).

6.5 Summary

As the previous discussion was rather dense with some tedious computations, here we

summarize the main findings. We have shown that if we consider the new class of large

diffeomorphisms (6.4) which are parametrized by sphere vector fields XA 6= 0 , DAX
A = 0,

and compute the associated (finite) charges via covariant phase space techniques, the cor-

responding Ward identities are implied by the sub-subleading soft theorem. We have thus

reproduced “one side of the equivalence” between such symmetries and the soft theorem

by showing that (sub-subleading theorem) =⇒ (new symmetries Ward identities). The

reason we do not yet have the converse (Ward identities =⇒ sub-subleading theorem) is

the following: There are two sub-subleading theorems (for each angular direction at null

infinity) associated to positive and negative helicity gravitons. However as the number

of independent generators associated to new symmetries is only one (due to XA being

divergence-free), naively we have half the required number of charges/symmetries needed

to reproduce the entire content of sub-subleading theorem.

This tension has its antecedents in the equivalence between Weinberg soft theorem

and Ward identities associated to supertranslation charges. Even in that case, one has

two Weinberg soft theorems (for two polarization of soft gravitons) but only one charge

associated to supertranslation vector fields which are parametrized by a single function.

This tension was resolved by Strominger by using a remarkable condition [9] which equated

the amplitude for emitting a positive helicity soft graviton with amplitude for emitting a

negative helicity soft graviton, thereby reducing the number of soft theorems to one. In [9]

this condition arose from the fact that the perturbative gravity scattering processes can be

thought of as weakly gravitating processes which preserve certain asymptotic conditions of

the spacetime metric (originally derived by Christodoulou and Klainerman). However this

condition only pertains to leading soft insertions and do not equate positive helicity inser-

tions with negative helicity insertion, when the gravitons are sub-leading or sub-subleading.

For the sub-leading theorems this is precisely what is desired as the associated Ward iden-

tities are generated by “sphere” vector fields which have two independent components.
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Thus the questions remains, how does one derive two independent charges associated to

the large diffeomorphisms considered in this paper which are parametrized by one function

(divergence free vector field on the sphere). We do not answer this question in this paper

but give a hint as to where the answer may lie. This hint itself presents a new perspective

on the asymptotic charges by thinking of them in terms of electric and magnetic part of

the Weyl tensor.

In a nut-shell, in the following section we show how as far as supertranslation charges

are concerned, for each supertranslation generator one has two independent charges! One

is analogous to the electric charge in QED and the other one analogous to the magnetic

charge. It is the gravitational electric charge, which is the supertranslation charge used

in [9], whereas the vanishing of the magnetic charge precisely gives the Christodoulou-

Klainerman condition that we alluded to above.

7 Electric and magnetic charges for BMS

The structure of ‘soft photon’ charges in QED [21] suggests there should be ‘magnetic’ dual

charges to the canonical charges computed above. To support this idea, in this section we

present a new way of interpreting generalized BMS charges as ‘electric’ quantities with

associated magnetic duals. We here departure from the main body of the paper in that the

analysis is performed in the context of vacuum (non-linear) gravity in Bondi gauge. Even

though we expect the results should be derivable in de Donder gauge, we do not attempt

to do so in this paper.

The analysis presented in this section, together with the structure of ‘subleading’

soft photon charges in QED suggests that the charges QY found in section 5 should be

interpretable as ‘electric’ and ‘magnetic’ charges associated to ξa ∼ rXA∂A. We hope to

be able to confirm this expectation in future investigations.

7.1 Electric charges

In electrodynamics, the covariant phase space charges that generate gauge transformations

can be written as [25]:

QΣ[λ] =

∫
Σ
∂a(λE

a), (7.1)

where Σ is a space-like Cauchy surface with normal na and Ea =
√
g F abnb the correspond-

ing electric field. In [21] we used (7.1) to obtain charges at null-infinity by taking the limit

where Σ approaches null infinity I,

QI [λ] = lim
Σ→I

QΣ[λ], (7.2)

and in this manner recovered the charges associated to the soft photon theorems. Here we

would like to find an analogue of (7.2) in gravity.

The standard definition of gravitational electric field (associated to the hypersurface

Σ) is defined in terms of the Weyl tensor as:

Eab = −√g Cacbdncnd. (7.3)
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Based on how Poincare charges are expressed at spatial infinity [30, 31], a first naive guess

that generalizes (7.2) to gravity is then:

QI [ξ]
?
= lim

Σ→I

∫
Σ
∂a(E

a
bξ
b). (7.4)

As explained below, this first guess needs two modifications in order to reproduce the

required charges.

The first modification is well known: in order to get a non-trivial limit at null infinity

one needs to rescale the Weyl tensor by an appropriate conformal factor [8]. For our

purposes, this will be achieved by including in (7.3) a factor of r. The second modification

has to do with the null signature of the limiting surface I: since we are looking at vector

fields ξa that in the limit are tangent to I, we want the index b in (7.3) to project along a

direction that is transversal to I. It is then natural to consider projections along outgoing

null directions. Thus, we will consider the contraction: Cacbdncl
d where la is an outgoing

null vector. In Bondi gauge la = ∂r and so we propose a definition of electric field that in

Bondi coordinates reads:

Eab := −r√g Catbr, (7.5)

where we are considering Σ to be a t = u+ r = constant hypersurface. One can verify (see

appendix G) that Eab = O(1) as r →∞. Thus, the ‘corrected’ proposal takes the form:

QI [ξ] := lim
t→∞

∫
Σt

∂a(Eabξb) (7.6)

=

∫
I
∂u

(
(0)

Euu
(0)

ξu +
(0)

EuA
(0)

ξA
)

(7.7)

where in the last line we discarded a total sphere divergence. We now show that indeed (7.7)

reproduces the generalized BMS group charges.

In Bondi gauge, the electric field component at null infinity are found to be (see

appendix G):

(0)

Euu =
√
q

(
− 2M +

1

4
∂uβ̊

)
(7.8)

(0)

EuA =
√
q
(
−NA + 3 ∂Aβ̊

)
(7.9)

where NA and M are the momentum and mass aspects and β̊ = − 1
32C

ABCAB. For a

supertranslation vector field ξaf = f∂u expression (7.7) becomes:

QI [ξf ] = −2

∫
I

√
qf∂uM, (7.10)

where the piece associated to the second term in (7.8) integrates to zero with the standard

fall-offs CAB(u) = C±AB + O(|u|−ε). The expression coincides with the radiative space

supertranslation charge [4]. One can also check (see appendix G.3) that for generalized

BMS vector field ξaV = V A∂A + uα∂u the charge coincides with the one obtained in [19] by

covariant phase space methods.
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7.2 Magnetic charges

In analogy to the QED case, we propose to define the magnetic ‘dual’ charges of (7.6) as

Q∗I [ξ] = lim
t→∞

∫
Σt

∂a(Babξb) (7.11)

where

Bab := −r√g ∗ Catbr (7.12)

and ∗Catbr ≡
1
2ε
atcdCcdbr (see e.g. [33] for electric and magnetic decomposition in gravity).

The leading components of the magnetic field are (see appendix G.2):

(0)

Buu =

√
q

2
εAB

(
DBD

MCAM +
1

2
ĊAMC

M
B

)
(7.13)

(0)

BuA = −ε B
A

(0)

EuB. (7.14)

Thus, for a supertranslation vector field the charge (7.11) becomes

Q∗I [ξf ] =
1

2

∫
I

√
qfεABDBD

M ĊAM (7.15)

(the contribution coming from the second term in (7.13) integrates to zero). The vanishing

of the magnetic charge corresponds to the Christodoulou-Klainerman (CK) condition [9].

Hence for each supertranslation generator, there are two charges, one arising from electric

part of Weyl tensor and the other from the magnetic part of Weyl tensor. The vanishing of

magnetic charge implies that positive and negative soft insertions are equal to each other,

and then the Ward identities associated to electric charge implies Weinberg’s Soft theorem.

In appendix G.3 we comment on the magnetic charges associated to sphere vector fields.

8 Summary and open issues

In gauge theories as well as gravity, we have a hierarchy of soft theorems, many of whom

have been interpreted as Ward identities asssociated with spontaneously broken symme-

tries. Up until this point, the sub-subleading soft graviton theorem was lacking such inter-

pretation. In this work, we have proposed just such an interpretation to the sub-subleading

soft graviton theorem.

We started by ‘reading off’ candidate charges from the soft theorem expression, fol-

lowing [10, 28]. From this analysis, given in section 5, one concludes that the sub-

subleading soft theorem is equivalent to statement that the S matrix commutes with certain

charges QY ,

[QY , S] = 0 ⇐⇒ sub-subleading CS soft theorem, (8.1)

where the charges are parametrized by symmetric, trace-free tensors on the 2-sphere Y AB.

They are the gravitational analogue of the charges found for QED in [28], which were

parametrized by vector fields on the sphere. Having found the charges from the soft

theorem, our next goal was to derive them from first principles. Based on an analogue
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derivation in QED [21], we set out to explore asymptotic charges associated to vector

fields that are more general than the so far considered generalized BMS. By demanding

IR divergences to be controlled in the way spelled out in section 6, we found a new set of

vector fields with asymptotic form

ξa ∼ rXA∂A, DAX
A = 0, (8.2)

whose associated (finite) charges QX correspond to the charges QY . Specifically, we showed

QXA = −1

4
Q(DAXB)STF . (8.3)

However, due to the divergence free condition of XA (8.2), the charges QX do not exhaust

all possible QY charges. To see what is missing, recall every symmetric, trace-free tensor

can be decomposed as

Y AB = (DAXB + εBCD
AX ′C)STF, DAX

A = DAX
′A = 0. (8.4)

From this decomposition it becomes clear that we have only recovered ‘half’ of the charges

QY . We expect that the ‘remaining half’ is associated to a ‘magnetic-dual’ charge, in

analogy to the QED case [21]. To support this idea, we showed in section 7 how there

exists a natural casting of supertranslation charges in terms of the electric part of the

Weyl tensor. We then saw how, upon dualizing the Weyl tensor, the resulting expression

yields the ‘magnetic supermomentum’ charge [7] that appears implicitly in the analysis of

asymptotic symmetries and Weinberg’s soft graviton theorem [10] (see [22] for a lengthier

discussion). However, extending this analysis to the current ‘sub-subleading’ is left for

future investigations.

There are many open issues that arise out of this current work in addition to the one

mentioned above. We outline some of them below.

(a) Perhaps the most pertinent question is the precise meaning of these large gauge

transformations. Whereas generalized BMS can be understood as a group that maps

an asymptotically flat spacetime to another asymptotically flat spacetime, here we do

not even have a group to begin with! (the vector fields (8.2) do not close under vector

field commutator). Is there any sense in which they can be thought of as (classical)

symmetries of Einstein’s equations?

(b) Is there any physical/geometrical interpretation of the charges QY ?

(c) From the scattering amplitude side, it seems that the soft graviton factorization

stops at sub-subleading order [20]. Can this be understood from the covariant phase

space perspective (as for instance argued in [21] for the absence of sub-subleading

factorization in QED)?

(d) As the fate of both the sub and sub-subleading theorems is not settled once loop

corrections are taken into account, at most the diffeomorphisms we have considered

in this paper are symmetries of tree-level (semi-classical) gravity. It is unclear what

their fate will be in quantum gravity.
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(e) Whereas we have focused on O(hab) and O(φ2) contributions to the charges, it is

important to determine terms of higher order in perturbation theory. The O(h2)

term will give the contribution associated to ‘hard gravitons’. We also expect non-

trivial cubic contributions as in the analogue QED charges [21].
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A Minkowski metric and differential operators in retarded coordinates

Minkowski metric in retarded coordinates u = t− r, r and xA, A = 1, 2 is given by

ds2 = −du2 − 2dudr + r2qABdx
AdxB (A.1)

with qAB the unit sphere metric. The nonzero Christoffel symbols are:

ΓArB = r−1δAB, ΓrAB = −rqAB, ΓuAB = rqAB. (A.2)

For sphere derivatives we use the covariant derivative DA compatible with qAB and so the

Christoffel symbols ΓABC do not appear explicitly.

The wave operator acting on a vector field takes the form:

r� ξr = ∂2
r (rξr)− 2∂u∂r(rξ

r) + r−1(∆− 2)ξr − 2DAξ
A

r� ξu = ∂2
r (rξu)− 2∂u∂r(rξ

u) + r−1∆ξu + 2r−1ξr + 2DAξ
A (A.3)

r2 � ξA = ∂2
r (r2ξA)− 2∂u∂r(r

2ξA) + (∆− 1)ξA + 2r−1DAξr

where ∆ = DAD
A is the Laplacian on the sphere.

B Vector field and related expansions

B.1 Vector field

The wave equation (A.3) applied to the ansatz (6.1) yields the equations to be satisfied by

the coefficients of the r →∞ expansion. The vanishing of the leading term yields:

∂u
(2)

ξr = 0, ∂u
(2)

ξu = 0, ∂u

(1)

ξA = 0. (B.1)

For the next terms one finds:

r� ξr = r(−4∂u
(1)

ξr + (∆ + 4)
(2)

ξr − 2DA

(1)

ξA) +O(1)

r� ξu = r(−4∂u
(1)

ξu + 2
(2)

ξr + (∆ + 6)
(2)

ξu + 2DA

(1)

ξA)

+(−2∂u
(0)

ξu + 2
(1)

ξr + (∆ + 2)
(1)

ξu + 2DA

(0)

ξA) +O(r−ε)

r2 � ξA = r(−4∂u

(0)

ξA + (∆ + 5)
(1)

ξA + 2DA
(2)

ξr) +O(1)

(B.2)
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Conditions (6.8), (6.18) together with the O(r) condition of r�ξu = 0 impily

(2)

ξr = 0, DA

(1)

ξA = 0. (B.3)

This in turn implies ∂u
(1)

ξr = 0. Let us set this ‘integration constant’ as:

(1)

ξr = −α(x̂) (B.4)

The equation for
(0)

ξA gives
(0)

ξA =
u

4
(∆ + 5)

(1)

ξA + V A(x̂) (B.5)

with V A an ‘integration constant’. Finally, the O(1) condition for r�ξu = 0 gives

(0)

ξu = u(−α+DAV
A) + f(x̂) (B.6)

with f an ‘integration constant’. f is associated to supertranslations and α and V A to

‘subleading’ vector fields. Hence for the purpose of the sub-subleading charges, we set all

these integration ‘constants’ to zero. The resulting vector field has the form given in (6.19).

B.2 δξh
ab, etc.

In retarded coordinates, δξh
ab = ∇aξb +∇bξa is given by:

δξh
rr = 2(∂r − ∂u)ξr (B.7)

δξh
ru = ∂r(ξ

u − ξr)− ∂uξu (B.8)

δξh
uu = −2∂rξ

u (B.9)

δξh
rA = (∂r − ∂u)ξA + r−2DAξr (B.10)

δξh
uA = −∂rξA + r−2DAξu (B.11)

δξh
AB = r−2(DAξB +DBξA) + 2r−3qABξr. (B.12)

For the vector field (6.1) this gives the following leading r →∞ terms:

(1)

δξh
rr = 4

(2)

ξr − 2∂u
(1)

ξr

(1)

δξh
ru = 2

(2)

ξu − 2
(2)

ξr − ∂u
(1)

ξu,
(0)

δξh
ru =

(1)

ξu −
(1)

ξr − ∂u
(0)

ξu

(1)

δξh
uu = −2

(2)

ξu,
(0)

δξh
uu = −2

(1)

ξu

(0)

δξh
rA =

(1)

ξA − ∂u
(0)

ξA +DA
(2)

ξr ,
(−1)

δξh
rA = −∂u

(−1)

ξA +DA
(1)

ξr

(0)

δξh
uA = −

(1)

ξA +DA
(2)

ξu,
(−1)

δξh
uA = DA

(1)

ξu

(−1)

δξh
AB = DA

(1)

ξB +DB
(1)

ξA + 2qAB
(2)

ξr ,
(−2)

δξh
AB = DA

(0)

ξB +DB
(0)

ξA + 2qAB
(1)

ξr

(−3)

δξh
AB = DA

(−1)

ξB +DB
(−1)

ξA + 2qAB
(0)

ξr
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The divergence of the vector field has the expansion:

∇aξa = r
(1)

∇aξa +
(0)

∇aξa +O(r−ε) (B.13)

with

(1)

∇aξa = 4
(2)

ξr + ∂u
(1)

ξu +DA

(1)

ξA (B.14)

(0)

∇aξa = 3
(1)

ξr + ∂u
(0)

ξu +DA

(0)

ξA. (B.15)

For ρ3 we need the following components of δξh̄
ab = δξh

ab −∇cξcηab:

δξh̄
tr = δξh

rr + δξh
ur (B.16)

δξh̄
tu = δξh

ru + δξh
uu +∇cξc (B.17)

δξh̄
tA = δξh

rA + δξh
uA (B.18)

B.3 δξΓ
t
ab

From the expression of the Christoffel symbols one can verify the identity δξΓ
t
ab = ∇a∇bξt.

In components this gives:

δξΓ
t
rr = ∂2

r ξ
t = 2(

(2)

ξr +
(2)

ξu) +O(r−2−ε) (B.19)

δξΓ
t
ru = ∂r∂uξ

t = ∂u(
(1)

ξr +
(1)

ξu) +O(r−1−ε) (B.20)

δξΓ
t
uu = ∂2

uξ
t = O(1) (B.21)

δξΓ
t
rA = r∂r(r

−1DAξ
t) = rDA(

(2)

ξr +
(2)

ξu) +O(r−1) (B.22)

δξΓ
t
uA = DA∂uξ

t = O(r) (B.23)

δξΓ
t
AB = DADBξ

t + rqAB(∂r − ∂u)ξt = r2(DADB

(2)

ξt + qAB(2
(2)

ξt − ∂u
(1)

ξt ) (B.24)

+r(DADB

(1)

ξt + qAB(
(1)

ξt − ∂u
(0)

ξt )) +O(1)

where we used that ξt = ξr + ξu and considered a general vector field of the type (6.1).

C Free metric perturbation

For the free metric perturbation, we seek for an asymptotic solution to the linearized vac-

uum Einstein equations with given free data CAB. After imposing de Donder gauge one can

still use residual gauge transformation to further restrict the metric components. Here we

will use ‘radiation gauge’ (see e.g. section 4.4b of [32]) which in retarded coordinates reads

hau = 0, ηabhab = 0. (C.1)
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Thus, we seek for asymptotic solutions to

�hab = 0, ∇bhab = 0 (C.2)

with metric perturbations of the form (C.1). Assuming standard 1/r expansion and im-

posing compatibility with (C.2) one is lead to the following fall-offs:

hrr = O(r−3), hrA = O(r−1), hAB = r CAB +O(1). (C.3)

Assuming a 1/rn expansion, equations (C.2) can then be solved iteratively. The leading

terms relevant for this paper are found to be:

∂u
(−1)

hAr = DBCAB ∂u
(0)

hAB =

(
− 1

2
∆ + 1

)
CAB

∂u
(−2)

hAr =
(−1)

hAr +DB
(0)

hAB ∂u
(−1)

hAB = −1

4
∆

(0)

hAB −D(A

(−1)

hB)r

∂u
(−3)

hrr = DB
(−1)

hBr

(C.4)

From these expressions one can obtain the components of the contravariant metric pertur-

bation and linearized Christoffel symbols. The nonzero components are:

hrr = huu = −hru = hrr = O(r−3),

hrA = − huA = r−2qABhrB = O(r−3), (C.5)

hAB = r−4qAMqBNhMN = O(r−3)

and

Γtrr =
1

2
∂uhrr = O(r−3)

ΓtrA =
1

2
∂uhrA = O(r−1) (C.6)

ΓtAB =
1

2
∂uhAB = O(r).

D Stress tensor expansion

The free scalar field ϕ has an expansion

ϕ = r−1φ+ r−2(−2)
ϕ +O(r−3) (D.1)

where φ is the free data. In particular from �φ = 0 the subleading term is determined

according to

∂u
(−2)
ϕ = −1

2
∆φ. (D.2)

The stress tensor

Tab = ∂aϕ∂bϕ−
1

2
ηab|∇ϕ|2. (D.3)
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is then found to have the following fall-offs

Trr = O(r−4), Tur = O(r−4), Tuu = O(r−2)

TrA = O(r−3), TuA = O(r−2)

TAB = O(r−1)

(D.4)

The leading components can then be easily computed. For instance:

−2
T uu = φ̇2 (D.5)
−2
T uA = φ̇ ∂Aφ (D.6)
−3
T uA = ∂Aφ∂u

(−2)
ϕ + ∂A

(−2)
ϕ ∂uφ (D.7)

For the most divergent vector fields used in the paper, where ξA = O(r), ξr = O(r) and

ξu = O(r0), the stress tensor contribution to the hard charge, (3.22), is given by:

ρT ≡ −r2T taξa = r
((1)

ξA
−2
T uA

)
+
((1)

ξA
−3
T uA +

(0)

ξA
−2
T uA +

(0)

ξu
−2
T uu

)
+O(r−ε) (D.8)

D.1 Eq. (6.28)

Using (D.7) and (D.2), and discarding total u and sphere derivatives one finds:

1

ξA
−3
T uA = −

1

ξADAφ∆φ− 1

2
DB

1

ξB∆φφ (D.9)

Now using the identities:

V ADA∆φ = −D(AV B)(DAφDBφ)TF +DB

(
V ADAφD

Bφ− 1

2
|Dφ|2V B

)
(D.10)

f∆φφ =
1

2
∆fφ2 − f |Dφ|2 +DA

(
fφDAφ− 1

2
DAfφ2

)
(D.11)

one can express (D.9) in terms of factors that only contain single derivatives of φ plus total

derivatives. For the case of divergence free vector field the only term that survives is the

one given in eq. (6.28).

E Sourced metric perturbation expansion

In this section we describe the asymptotic solution for the sourced (trace-reversed) metric

perturbation h̄ab,

�h̄ab = −2Tab, ∇bh̄ab = 0 (E.1)

with Tab as given in the previous section. By looking at these equations for r →∞ one is

led to consider the following leading nonzero orders:

h̄rr = O(r−3 ln r), h̄ru = O(r−2 ln r), h̄uu = O(r−1 ln r),

h̄rA = O(r−2 ln r), h̄uA = O(r−1 ln r), h̄AB = O(ln r)
(E.2)
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Assuming an expansion in 1/rn and log r/rn, one can solve the equations (E.1) at each

order. It is convenient to express the solution in terms of:

µ :=
∫ u

(∂uφ)2, φ2,
−3
T uu, TuA :=

−2
T uA, (TAB)TF := (

−2
T AB)TF. (E.3)

The leading terms are found to be:

−3 ln

h̄rr = 2
∫ u∫ u′

µ,
−3

h̄rr =
∫ u∫ u′(

3µ+ 2
−1

h̄uu
)
−
∫ u
φ2

−2 ln

h̄ru = −
∫ u
µ,

−2

h̄ru = −
∫ u

(µ+
−1

h̄uu),
−3 ln

h̄ru =
∫ u

∆µ

−1 ln

h̄uu = µ,
−2 ln

h̄uu = − 1

2

∫ u
∆µ

−2

h̄uu =
1

2

∫ u(
µ−∆µ−∆

−1

h̄uu−2
−3
Tuu
)

−2 ln

h̄rA = − 2
∫ u∫ u′

DAµ,
−2

h̄rA =
∫ u∫ u′(

DA(−3µ− 2
−1

h̄uu + φ̇φ) + TuA
)

−1 ln

h̄uA =
∫ u
DAµ,

−1

h̄uA =
∫ u(

DA(µ+
−1

h̄uu)− TuA
)
,

−2 ln

h̄uA = − 1

2

∫ u∫ u′
DA∆µ

−2

h̄uA =
∫ u∫ u′(1

4
(∆ + 1)TuA −

1

2

−3
TuA

)
+DA(. . .)

ln

h̄AB = − µ qAB,
0

h̄AB = qAB

(
1

2
φ2 −

∫ u(
µ+

−1

h̄uu

))
−1 ln

h̄AB =
∫ u∫ u′(

DADBµ+ qAB

(
1

2
∆µ− µ

))
−1

h̄AB = −
∫ u
D(ATB)u −

1

2
TAB + qAB(. . .) +DADB(. . .)

From here one can obtain all the relevant metric dependent quantities. For the trace

h̄ = ηabh̄ab one finds:
−2 ln

h̄ = 0,
−2

h̄ = φ2,
−3 ln

h̄ = 0 (E.4)

We note that the term
(−1)

h̄uu is undetermined by the equations and corresponds to a ‘pure

gauge’ solution. As expected, this term does not feature in the charges.

E.1 Christoffel symbols Γtab sourced metric

In terms of the traced-reversed metric perturbation h̄ab, the linearized Christoffel symbols

Γtab = Γrab + Γuab read:

Γtrr = − ∂rh̄ru +
1

2
∂uh̄rr −

1

2
∂rh̄,

Γtru = − 1

2
∂rh̄uu −

1

4
∂rh̄, Γtuu = −1

2
∂uh̄uu −

1

4
∂uh̄

ΓtrA = − 1

2
DA

(
h̄ru +

1

2
h̄

)
− 1

2
r2∂r(r

−2h̄uA) +
1

2
∂uh̄rA, (E.5)
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ΓtuA = − 1

2
DA

(
h̄uu +

1

2
h̄

)
ΓtAB = −D(Ah̄B)u +

1

2
∂uh̄AB + qAB

(
r(h̄uu − h̄ru)− 1

4
r4∂uh̄

)
.

From the metric perturbation expansion given in the previous section we find the following

leading nonvanishing terms:

−3 ln

Γtrr = −
∫ u
µ,

−3

Γtrr =
∫ u(− (−1)

h̄uu +
1

2
µ

)
+

1

2
φ2

−2 ln

Γtru =
1

2
µ,

−2

Γtru =
1

2
(
(−1)

h̄uu − µ)

−1 ln

Γtuu = − 1

2
∂uµ

−2 ln

ΓtrA =
∫ u
DAµ,

−2

ΓtrA =
∫ u

(−TuA +DA

(−1)

h̄uu)

−1 ln

ΓtuA = − 1

2
DAµ,

−2 ln

ΓtuA =
1

4

∫ u
DA∆µ,

−1

ΓtuA = −1
2DA

(−1)

h̄uu

ln

ΓtAB =
1

2
qABµ,

−1 ln

ΓtAB =
∫ u(− 1

2
DADBµ+

1

2
qAB

(
− 1

2
∆µ+ µ

))
0

ΓtAB =
1

2
qAB(

(−1)

h̄uu − µ)

(E.6)

F Eq. (6.49)

By expressing derivatives of Xz in terms of divergences and laplacians, one can show

the identity:

D4
zD

zXz = D2
z

(
1

2
∆D ·X +D ·X

)
− 1

4
∆2DzXz +

3

2
∆DzXz − 2DzXz (F.1)

for any sphere vector field XA. For divergence-free XA, the first term vanishes and the

expression corresponds with what is found in (6.48).

G Electric and Magnetic parts of Weyl tensor at infinity in Bondi gauge

G.1 Electric part of Weyl

We follow [16, 17] for the expression of the metric and Christoffel symbols in Bondi gauge.

Rearranging indices and using

√
g = r2√qe2β , gur = −e−2β (G.1)

we have

Eua := −r√g Cutar = r3√q C r
arr . (G.2)
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Given the expressions of Christoffel symbols in Bondi gauge [16, 17], one finds:

C r
urr = ∂rΓ

r
ur − ∂uΓrrr + ΓBurΓ

r
Br (G.3)

= r−3(−2M + 4∂uβ̊) +O(r−4) (G.4)

where

β̊ = − 1

32
CABCAB (G.5)

and M the Bondi mass aspect that satisfies [16, 17]:

∂uM = −1

8
ĊAB Ċ

B
A +

1

4
DADBĊ

AB (G.6)

Multiplying (G.4) by r3√q we obtain
(0)

Euu as given in eq. (7.8). For a = A one finds:

C r
Arr = r−1∂r(rΓ

r
Ar)− ∂AΓrrr + ΓBArΓ

r
rB (G.7)

= r−3(−NA + 3∂Aβ̊) +O(r−4), (G.8)

which upon multiplying by r3√q gives eq. (7.9). Here NA is the ‘angular momentum aspect’

that satisfies [16, 17]:

− ∂uNA + 3∂A∂uβ̊ = −∂AM +HA + SA (G.9)

with

HA = −1

4
∂A(ĊMNCMN ) +

1

4
ĊNMDAC

M
N +

1

4
DB(CBM Ċ

M
A − ĊBMCMA ) (G.10)

SA =
1

4
DB(DADMC

BM −DBDMC
M
A ) (G.11)

(the notation for these piece stands for ‘Hard’ and ‘Soft’).

G.2 Magnetic part of Weyl

Our starting point is the ‘dual’ of eq. (G.2),

Bua = r3√q ∗ C r
arr (G.12)

Taking a = u we find

∗C r
urr =

1

2
εurABC

AB r
r (G.13)

= r−3 1

2
εAB

(−1)

C r
ABr +O(r−4), (G.14)

where we used eq. (G.1) and εurAB = e2βr2εAB with εAB the area form of the unit sphere.

Computing C r
ABr and substituting in (G.12) one obtains (7.13).

For a = A we use εArBu = e2βr2εAB and eq. (G.1) to obtain

∗C r
Arr = −r2εABg

BMC r
Mrr (G.15)

= −r−3ε B
A

(−3)

C r
Brr +O(r−4) (G.16)

Comparing with (G.2) we arrive at eq. (7.14).
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G.3 Sphere vector field charges

For ξaV = V A∂A + uα∂u the electric charge takes the form:

QI [ξV ] =

∫
I
ρV with ρV := V A∂u

(0)

EuA + α∂u(u
(0)

Euu ). (G.17)

As in [19], the charge is only well-defined in the subspace of free data satisfying the stronger

fall-offs CAB = O(u−1−ε). Substituting (7.8), (7.9) and (G.9) in (G.17) we have (in the

following we omit multiplicative
√
q factors):

ρV = V A(−∂AM +HA + SA)− 2αM − 2αu∂uM +
α

4
∂u(u∂uβ̊) (G.18)

The first and fourth terms add up to a total sphere divergence, and the last term is a total u

derivative that does not contribute to the charge. Separating ‘hard’ and ‘soft’ contributions

we have ρV = ρhard
V + ρsoft

V with

ρhard
V = V AHA − 2αu∂uM

hard, ρhard
V = V ASA − 2αu∂uM

soft. (G.19)

where the ‘hard’ and ‘soft’ piece of ∂uM are the first and second term in (G.6) respectively.

Combining all terms and discarding total derivatives one finds

ρhard
V =

1

4
ĊAB(LV CAB + αuĊAB) (G.20)

ρsoft
V = CAB

(
DADBα−

1

4
DA∆VB +

1

4
DAVB

)
(G.21)

which exactly coincides with the charge given in [19].3

The magnetic charge has the form (G.17) with E replaced by B. Using (7.14) it is

given by:

ρ∗V = −V Bε A
B ∂u

(0)

EuA + α∂u(u
(0)

Buu) (G.22)

With the fall-offs CAB = O(u−1−ε) under consideration, the last term in (G.22) integrates

to zero. Let

WA := −V Bε A
B , (G.23)

then the ‘hard’ and ‘soft’ pieces of ρ∗V can be written as:

ρ∗hard
V = WAHA +DAW

AMhard, ρ∗soft
V = WASA +DAW

AM soft. (G.24)

where we used eq. (G.9) and discarded total sphere divergences. Comparing with (G.19)

we see that the expressions coincide up to total u derivatives. Here however we face an

obstacle: whereas the boundary term vanishes in ρ∗soft
V , for ρ∗hard it contains a divergent

term: limu→−∞ uM
hard(u). Thus, as it stands the ‘magnetic’ charges are ill-defined (except

for curl-free V A). We hope to clarify this and other aspects of ‘magnetic’ charges in

the future.

3Up to a total u derivative term − 1
4
αĊABCAB that integrates to zero with the fall-offs underlaying the

definition of these charges [19].
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