
ISSN 1688-2806

Universidad de la República
Facultad de Ingenieŕıa

Deep Learning for the Analysis of
Network Traffic Measurements

Tesis presentada a la Facultad de Ingenieŕıa de la
Universidad de la República por

Gonzalo Miguel Maŕın Freire

en cumplimiento parcial de los requerimientos
para la obtención del t́ıtulo de

Maǵıster en Ingenieŕıa Eléctrica.

Directores de Tesis
Germán Capdehourat Universidad de la República
Pedro Casas AIT Austrian Institute of Technology

Tribunal
Pablo Belzarena. Universidad de la República
Alberto Castro Casales Universidad de la República
Pablo Sprechmann . Google DeepMind
Pere Barlet-Ros . UPC Barcelona Tech

Director Académico
Germán Capdehourat Universidad de la República

Montevideo
Jueves 28 de marzo de 2019

Deep Learning for the Analysis of Network Traffic Measurements, Gonzalo Miguel
Maŕın Freire.

ISSN 1688-2806

Esta tesis fue preparada en LATEX usando la clase iietesis (v1.1).
Contiene un total de 70 páginas.
Compilada el domingo 16 de junio de 2019.
http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

I believe that at the end of the century the use
of words and general educated opinion will have
altered so much that one will be able to speak of
machines thinking without expecting to be con-
tradicted.

Alan Turing
Computing Machinery and Intelligence

Oct., 1950

Acknowledgments

Este trabajo no podŕıa haber sido posible sin el apoyo de muchas personas. En
primer lugar, quiero agradecer a Xime, quién está junto a mı́ acompañándome d́ıa
a d́ıa a través de los distintos caminos que venimos transitando. Por su amor y
compañerismo, sin ella esto hubiese sido mucho más dif́ıcil.

También quiero agradecer de forma especial a mis tutores. Al “Doc” –Germán–
que fue quien me motivó desde el primer momento en continuar mis estudios ha-
cia la Maestŕıa en Ingenieŕıa Eléctrica. A Pedro, que me recibió en Viena como
si fuese parte de su familia. Por sus consejos, su motivación, su compañerismo,
su amistad y por naturalmente convertirse en mis mentores. Estoy y estaré por
siempre agradecido por ello. Este logro también es de ellos.

A Plan Ceibal, en particular a Gastón Arismendi, Enrique Lev, Ana Hernández
y Fiorella Haim, quienes me apoyaron para que pueda construir este camino.

A todos los que de alguna manera u otra me apoyaran para que haya podido
realizar la pasant́ıa en Austria: a la SCAPA-IE, al Instituto de Ingenieŕıa Eléctrica,
en particular, Leo Steinfeld, Maŕıa Misa y Fede La Rocca. A AIT, que me brindó
un lugar donde poder trabajar gran parte de esta tesis.

A mis padres, a quienes debo todo. A Ana y Peti, que sin su inspiración de
seguro no podŕıa haber llegado hasta aqúı. Por último y no menos importante, a
mis amigos. Los de siempre y los nuevos que hice durante mi pasaje por Ceibal y
AIT.

A Ximena, mis padres, Peti y Ana. Mis amigos–mi familia.

Summary

The application of machine learning models to the analysis of network traffic mea-
surements has largely increased in recent years. In the networking domain, shallow
models are usually applied, where a set of expert handcrafted features are needed
to fix the data before training. There are two main problems associated with this
approach: firstly, it requires expert domain knowledge to select the input features,
and secondly, different sets of custom-made input features are generally needed
according to the specific target (e.g., network security, anomaly detection, traffic
classification). On the other hand, the power of machine learning models us-
ing deep architectures (i.e., deep learning) for networking has not been yet highly
explored. These models have had huge success in various domains, notably in com-
puter vision, natural language processing, machine translation, and more recently
in gaming. The main goal of this work is to explore the power of deep learning
models to enhance the analysis of network traffic measurements. To this end, the
specific problem of detection and classification of network attacks is studied. As a
major advantage with respect to the state-of-the-art in the field, the evaluation of
different raw-traffic input representations, including packet and flow-level ones, is
considered. Different deep learning architectures are explored, including convolu-
tional neural networks and long short-term memory recurrent neural networks as
core layers. In addition, three different datasets are crafted from publicly available
network traffic captures and used for calibrating the considered input represen-
tations, as well as training and validating the proposed models. Different deep
learning models are compared to a random forest model – commonly accepted as
a highly accurate model for network traffic analysis, using the same raw input
representations. In the malware detection task, a detection accuracy of 77.6% and
98.5% was achieved for packet and flow input representations respectively. For
the malware classification task, an overall accuracy of 76.5% was achieved. In all
evaluation tasks, the proposed deep learning models outperform the random for-
est ones. These initial results suggest that deep learning can be used to enhance
malware detection without requiring expert domain knowledge to handcraft input
features, opening the door to a broad set of potential applications for deep learning
in networking.

Contents

Acknowledgments iii

Summary vii

1 Introduction 1

2 Deep Learning 5

2.1 Mathematical model of a single unit 7

2.2 Fully-Connected . 8

2.3 Convolutional Neural Networks . 9

2.3.1 Pooling . 9

2.4 Recurrent Neural Networks . 10

2.4.1 Long Short-Term Memory 10

2.5 Easing the training process . 11

2.5.1 Batch Normalization . 11

2.5.2 Dropout . 12

3 Related Work 13

3.1 Shallow Machine Learning . 13

3.2 Deep Learning . 14

4 Input Representations and Datasets Construction 17

4.1 Input Representations . 17

4.2 Building the Datasets . 18

4.2.1 Malware Captures . 19

4.2.2 Normal Captures . 21

4.2.3 Design Criteria . 23

5 Deep Learning Architectures for Malware Detection 27

5.1 Raw Packets deep learning architecture 27

5.2 Raw Flows deep learning architecture 29

5.3 Remarks on the number of parameters 31

5.4 Hyperparameter optimization . 32

5.4.1 Number of filters and filter size of CNNs layers 33

5.4.2 Learning rate . 33

5.4.3 Optimizer . 34

Contents

5.4.4 Regularization . 35
5.4.5 Checking the model capacity 35

6 Experiments and Results 37
6.1 Malware Detection: A First Approach Using Deep Learning 37

6.1.1 Deep learning vs. shallow models with raw inputs 38
6.1.2 Packet vs. flow representation performance 38
6.1.3 Domain knowledge vs. raw inputs 39

6.2 One Step Further: from Malware Detection to Malware Classification 40

7 Conclusions and Further Work 43

Bibliography 45

List of Tables 52

List of Figures 54

x

Chapter 1

Introduction

The popularity of Deep Learning has dramatically increased in the last few years,
due to its outstanding performance in various domains, notably in image, audio,
natural language processing, and more recently in gaming.

A major breakthrough in deep learning came in 2012 when a deep Convolu-
tional Neural Network (CNN) won for the first time the largest contest in ob-
ject recognition (ImageNet Large Scale Visual Recognition Challenge, ILSVRC).
Krizhevsky et al. [1] presented a model based on a CNN trained using Graphics
Processing Units (GPUs). The authors of the AlexNet model won the challenge
by a wide margin, bringing down the state-of-the-art top-5 error rate from 26.1%
to 15.3%. One of the most powerful characteristics of these models is their ability
to learn feature representations from raw input or basic, non-processed data. For
example, a CNN trained for image classification can learn to recognize edges and
more complex structures along the sequence of neural layers, using as input only
the image RGB pixel values (refer to [2] for a detailed example). One of the key
reasons making deep learning models widely used today is the increasing compu-
tational power and the availability of larger datasets to perform the training, as
well as several improvements in the techniques associated to train deep models [3].
Regarding this last point, it is notable the work of Hinton et al. [4] – providing a
novel training algorithm for deep networks to achieve good solutions in real practi-
cal problems. A brief introduction to the basics of Deep Learning and its most-well
used layers is presented in Chapter 2.

In the networking field, there have been many efforts over the past 20 years
applying mainly conventional, shallow-like machine learning models to network
measurements; there is a broad number of surveys [5–11] over-viewing the lit-
erature on the application of machine learning to diverse networking problems,
including traffic prediction, traffic classification, traffic routing, congestion con-
trol, network resources management, network security, anomaly detection, QoS
and QoE management. Nowadays, papers addressing more modern flavors of ma-
chine learning and their application in Networking are starting to be seen, e.g.,
with initial results on deep learning [12, 13], transfer learning [14], explainable
AI for network security [15], deep reinforcement learning for network manage-
ment [16–18], etc. A common trend that is found in the existing literature is that,

Chapter 1. Introduction

for the most part of the papers doing machine learning for networking, there is
a very strong dependence on the particular features used to represent the inputs,
these being in general network packets aggregated at different granularities, such
as flows, sessions, or even time-based aggregations. In this context, a feature vec-
tor of expert-handcrafted features is built to achieve the best results, being this
the critical step on which the success of the model relies. More details about the
related work on machine learning and deep learning applied to the analysis of
network traffic measurements are presented in Chapter 3.

In this work, three specific limitations – among other challenges, are identi-
fied when addressing network traffic measurement problems using conventional,
feature-dependent machine learning approaches. Firstly, there is a lack of stan-
dardized and well-accepted (labeled) datasets to train and test these models, and
in particular of raw, full-packet capture datasets, which could be eventually used
to build different input representations for the particular tasks. Different from
other AI-related domains, where well established, publicly available datasets are
available for testing, evaluation and benchmarking purposes (e.g., ImageNet in
image processing), it is very difficult to find appropriate public datasets to as-
sess machine learning for networking. While one of the main reasons for this
lack clearly arises from the data’s sensitive nature – including end-user privacy,
other limitations come from the efforts required to build proper and representa-
tive datasets in networking. Given the scale of Internet-like networks, the massive
volumes of data, and the multiplicity of operational conditions, building such a
representative dataset is a daunting task. Secondly, there is a systematic lack of a
consensual set of input features to tackle specific tasks, such as network security,
anomaly detection or traffic classification; each paper in the literature defines its
own set of input features for the considered application, hindering generalization
and benchmarking of different approaches. Last but not least, networking data is
very dynamic and consists of constantly occurring concept drifts – changes in the
underlying statistical properties, causing static handcrafted features to fail over
time.

To take steps in improving these limitations, this work explores the end-to-
end application of deep learning models to complement conventional approaches
for network measurements analysis, using different representations of the input
data. As a representative networking application, the specific problem of malware
traffic detection and classification through deep learning models is addressed, using
raw, bytestream-based data as input. Two different raw input representations
are considered: Raw Packets and Raw Flows. Also, three different datasets are
crafted from publicly available network traffic captures, and used to construct
the corresponding input representations and to train and validate the malware
detection and classification models. The details of the input representations and
the construction of the datasets are provided in Chapter 4, and the deep learning
architectures used to tackle each specific problem are introduced in Chapter 5.
In terms of malware detection performance, detection accuracies of 77.6% and
98.5% were achieved using the Raw Packets and Raw Flows input representations,
respectively. As for the malware classification task, an overall accuracy of 76.5%

2

was achieved. In all scenarios, the proposed deep learning models outperform a
powerful random forest model. The random forest model was chosen based on the
generally outstanding detection performance shown by the model in the literature,
using domain expert input features. The details of the different experiments and
the corresponding discussion on the obtained results are presented in Chapter 6.
Initial results of this work suggest that deep learning can be used to enhance
malware detection without requiring expert domain knowledge to handcraft input
features, opening the door to a broad set of potential applications for deep learning
in networking. Concluding remarks and future work are presented in Chapter 7.

3

Chapter 2

Deep Learning

Goodfellow et al. [3] define deep learning [19,20] as an approach to Artificial Intel-
ligence (AI). Specifically, it is a particular kind of machine learning that achieves
great power and flexibility by learning to represent the world as a nested hierarchy
of concepts, with each concept defined in relation to simpler ones, and more ab-
stract representations computed in terms of less abstract ones. Fig. 2.1 illustrates
the relationship between different AI disciplines, and shows how deep learning is a
kind of representation learning, which is in turn a kind of machine learning, which
is used for many but not all approaches to AI.

Deep learning
Representation

learning
Machine
learning

AI

Figure 2.1: A Venn diagram showing the relationship between AI, machine learning, represen-
tation learning and deep learning [3].

With the major advances in computational processing capacity, notably
through the massive production and adoption of Graphics Processing Units

Chapter 2. Deep Learning

(GPUs) and more recent Tensor Processing Units (TPUs)1, and the surge of data
availability over the past decade, deep learning has made it to the top of the AI
agenda. Deep learning has dramatically improved the state-of-the-art in multiple
domains, including speech recognition, visual object recognition, object detection
and many others such as genomics. Different from conventional machine learn-
ing, deep learning is extremely data-driven and somehow agnostic to the specific
type of data, requiring very big amounts of it to learn, in a completely black-box
fashion.

One of the most powerful characteristics of deep learning models is their abil-
ity to extract high-level, abstract features from raw or basic, non-processed data.
This is done by inferring representations that are expressed in terms of other, sim-
pler representations. The key behind deep learning is the so-called representation
learning paradigm [21], which offers a set of methods allowing a machine learn-
ing algorithm to automatically discover the best data representations or features
from raw data inputs. Deep learning methods are basically representation learning
methods with multiple levels of representation or abstraction, obtained by com-
posing simple but non-linear consecutive transformation steps or layers, each of
them providing a more abstract representation of the data.

Worth mentioning are two major milestones enabling a successful and massive
application of deep learning to data-driven problems, led by the dubbed “God-
father of deep learning”, Geoffrey Hinton: in 2006, Hinton et al. [4] introduced
a novel and effective way to train very deep neural networks by pre-training one
hidden layer at a time, using the unsupervised learning procedure for restricted
Boltzmann machines [22]. Later on, in 2012, one of his students, Alex Krizhevsky,
designed a deep convolutional network called the AlexNet, which strongly helped
to revolutionize the field of computer vision, by almost halving the error rate
for object recognition at the 2012 ImageNet challenge [1]. This precipitated the
rapid adoption and popularity of deep learning in computer vision problems, nat-
urally extending later on to other domains. Also worth mentioning are the recent
developments in Deep Reinforcement Learning [23], playing a critical role in to-
day’s success of deep learning, notably through the popular implementations of
AlphaGo, AlphaZero, and more recently AlphaStar, all of them by research teams
at Google DeepMind2.

When introducing these concepts, one reference that comes to mind is the
usage of artificial neural networks. Nowadays, the term deep learning appeals to
a more general principle of learning multiple levels of composition, which can be
applied in machine learning frameworks that are not necessarily neurally inspired.
Nevertheless, many of the major breakthroughs of deep learning still fall within
the scope of different kinds of deep neural networks-based models.

In the rest of this Chapter, a brief introduction to the different parts involved
in commonly used deep learning models are introduced, bringing some theoretical

1Google. Cloud TPUs - ML accelerators for TensorFlow, Google Cloud Platform,
https://cloud.google.com/tpu/

2DeepMind: the world leader in artificial intelligence research and its application for
positive impact, https://deepmind.com/

6

https://cloud.google.com/tpu/
https://deepmind.com/

2.1. Mathematical model of a single unit

background to the subject. This Chapter does not pretend to be an exhaustive
guide to the field, but to introduce some basic concepts that can help the reader
to follow up the ideas over the rest of the work. The following sections are heavily
based on [3], [24] and [25]. The interested reader is encouraged to go through them
in order to delve into more detail.

2.1 Mathematical model of a single unit
Artificial Neural Networks are a very powerful and flexible family of parametric,
differentiable functions. Fig. 2.2 shows the mathematical model of a neural network
unit. It has been primarily inspired by the goal of modeling how a neuron works,
but this model was later found to be very coarse [26]. The output of the unit is
the result of applying an activation function (or non-linearity) to a weighted sum
of the inputs plus a vector called bias:

output = f

(∑
i

wixi + b

)
(2.1)

w
0 x

0

w1x1

w 2
x 2

f

(∑
i

wixi + b

)

x0

∑
i

wixi + b f

w0

Figure 2.2: Mathematical model of a single neural network unit.

Every activation function takes a single number and performs a certain fixed
mathematical operation on it. It is in charge of deciding if the neuron has to fire
or not (using the brain analogy). Fig. 2.3 shows some commonly used activation
functions for neural networks. The ReLU activation function is one of the most
used in practice. It computes the formula f(x) = max(0, x), i.e., returns zero when
x < 0 and is linear with slope 1 when x > 0. Compared to other non-linearities
that involve expensive operations, the ReLU can be implemented by simply thresh-
olding a matrix of activations at zero.

The learning process of neural networks involves finding the best set of weights
wi (eq. 2.1) that minimizes a certain loss function. The largest difference between

7

Chapter 2. Deep Learning

Figure 2.3: Commonly used activation functions for neural networks [24].

linear models and neural networks is that the non-linearity of a neural network
causes most loss functions to become non-convex. For this reason, neural networks
are usually trained by using iterative, gradient-based optimizers that merely drive
the cost function to a very low value, being Stochastic Gradient Descent (SGD)
and its variations the most used in practice. Unlike convex optimization, where
convergence is guaranteed starting from any initial parameters, non-convex opti-
mization has no such guarantee and its very sensitive to the parameter’s initializa-
tion. For example, for fully-connected neural networks, it is important to initialize
all weights to small random values, while the biases may be initialized to zero or
to small positive values [3].

2.2 Fully-Connected
For regular neural networks, the most common layer type is the Fully-Connected
layer (FC) in which units between two adjacent layers are fully pairwise connected,
but units within a single layer share no connections. The output of each unit
is connected to the input of every unit in the following layer, with no recursive
connections present. Fig. 2.4 shows an example of a neural network topology using
a stack of fully-connected layers.

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

Figure 2.4: A 3-layer neural network with 3 inputs, 2 hidden layers of 4 units each and one
output layer.

8

2.3. Convolutional Neural Networks

2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a specialized kind of neural networks
that use the mathematical operation called convolution in place of general matrix
multiplication in at least one of their layers. CNNs are specially useful for pro-
cessing data that has a known, grid-like topology. Examples include time-series
data and image data, among others. Convolution leverages three important ideas
that can help improve a machine learning system: sparse interactions, parameter
sharing and equivariant representations.

A typical layer of a convolutional network consists of three stages (Fig. 2.5).
In the first stage, the layer performs several convolutions in parallel to produce a
set of linear activations. In the second stage, each linear activation is run through
a nonlinear activation function. In the third stage, a pooling function is used to
modify the output of the layer further.

Input to layer Convolution stage:
Affine transform

Detector stage:
Nonlinearity Pooling stage Next layer

Convolutional Layer

Figure 2.5: The components of a typical convolutional neural network layer.

2.3.1 Pooling
The main goal of the pooling function is to progressively reduce the spatial size
of the representation to reduce the amount of parameters and computation in the
network, and hence to also control overfitting. Overfitting occurs when the model
starts to memorize patterns in the training samples and in turn loses the ability
to generalize (the power of prediction over unseen data).

A pooling function replaces the output of the net at a certain location with a
summary statistic of the nearby outputs. For example, the max pooling operation
reports the maximum output within a rectangular neighborhood. Fig. 2.6 shows
an example of a max pooling operation applied to 1D data.

y

x

Single depth slice max pool with 1x4 filters
and stride 4

1 1 12 4 5 6 7 8 023 4 8 3

Figure 2.6: Max pooling operation of size 4 applied to one-dimensional data.

9

Chapter 2. Deep Learning

2.4 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a family of neural networks for processing
sequential data. The term “recurrent” is associated with the fact that the output
vector of a RNN is influenced not only by the actual input, but also on the entire
history of inputs that have fed-in in the past, allowing information to persist.

Fig. 2.7 shows a diagram of a standard –vanilla– RNN block. The block A
looks at some input xt and outputs a value ht. A loop allows information to be
passed from one step of the network to the next. Unrolling this unit shows that
the RNN consists of multiple copies of the same network, each passing a message
to a successor. This chain-like nature reveals that RNNs are intimately related to
sequences and lists. In the last few years, RNNs have been applied to a variety
of problems, including: speech recognition, language modeling, translation and
image captioning [25].

=

A

xt

ht

x0

h0

x1

h1

x2

h2

A A A A

ht

xt

Figure 2.7: An unrolled recurrent neural network.

2.4.1 Long Short-Term Memory
Standard RNNs can have some problems when leading with long-term dependen-
cies. When the existing gap between the relevant information to be used and the
point where it is needed is small, RNNs can learn to use the past information.
However, as this gap grows, RNNs become unable to learn to connect the infor-
mation. The main reason behind this behaviour is the vanishing and exploding
gradients caused by repeated matrix multiplications in the learning process of the
RNNs. Long-Short Term Memory (LSTM) networks solve this problem by re-
placing the simple update rule of the standard RNN (usually, applying the tanh
function) with a gating mechanism. The repeating module in an LSTM contains
four interacting layers. The key to LSTMs is the cell state. The cell state works
similarly to a conveyor belt: it runs straight down the entire chain, with only
some minor linear interactions. The LSTM have the ability to remove or add in-
formation to the cell state, carefully regulated by structures called gates. Gates
are a way to optionally let information through. They are composed out of a sig-
moid neural net layer and a pointwise multiplication operation. The sigmoid layer
outputs numbers between zero and one, describing how much of each component
should be let through. LSTMs has three of these gates, to protect and control the

10

2.5. Easing the training process

cell state. Fig. 2.8 pictures this process, where the differences between the simple
update rule of the standard RNN and the gating mechanism used in the update
rule of LSTMs can be seen.

(a) Update rule in a standard –vanilla– RNN.

(b) Gating mechanism in the update rule of a LSTM network.

Figure 2.8: Differences between the internal modules of standard RNNs and LSTMs.

2.5 Easing the training process
The learning process of deep learning models can be tricky. However, there are
some state-of-the-art techniques that can help to ease the training process. Specif-
ically, focus will be made on batch normalization and dropout.

2.5.1 Batch Normalization
In the training process of deep neural networks, the distribution of each layer’s
inputs changes as the parameters of the previous layers change. This behaviour
slows down the training by requiring lower learning rates and careful parameter
initialization. Batch Normalization [27] addresses this problem. The idea is as
follows: while training, the layer inputs are normalized for each mini-batch and

11

Chapter 2. Deep Learning

this is included as a part of the model architecture. As a result, much higher
learning rates can be used and the model becomes less sensitive to initialization.

2.5.2 Dropout
Dropout [28] is a technique for regularizing neural networks (i.e., controlling over-
fitting). In a nutshell, the key idea is to randomly drop units (along with their con-
nections) from the neural network during training. Under this scenario, each unit
learns to detect a feature that is generally helpful for producing the correct answer
given the combinatorially large variety of contexts in which it operates. Overfitting
can be reduced by using dropout because it prevents complex co-adaptations on
the training data. On each presentation of each training case, each hidden unit is
randomly omitted from the network with a probability p, so a hidden unit cannot
rely on other hidden units being present.

Another way to view the dropout procedure is as a very efficient way of per-
forming model averaging with neural networks. A good way to reduce the error
on the test set is to average the predictions produced by a very large number of
different networks. This is called as bootstrap aggregating or bagging. The stan-
dard way to do this is to train many separate networks and then have all of the
models vote on the output for test examples, but this is computationally expensive
during both training and testing. Dropout can be thought of as a method of mak-
ing bagging practical for ensembles of many large neural networks in a reasonable
time. Fig. 2.9, taken from the original paper, shows an ensemble of different
sub-networks trained as a consequence of using Dropout.

Figure 2.9: Ensemble of sub-networks trained as a consequence of using Dropout. Figure taken
from the original paper [28].

12

Chapter 3

Related Work

In this Chapter, a selection of papers that represent the state-of-the-art regard-
ing machine learning –and particularly deep learning– applied to the analysis of
network traffic measurements is presented.

3.1 Shallow Machine Learning
The application of machine learning models to general network measurement prob-
lems is largely extended in the literature. Traffic prediction and classification [11]
are two of the earliest machine learning applications in the networking field. In [5],
authors present a recent and very comprehensive survey on machine learning
for networking, discussing different applications and associated challenges. Simi-
larly, [29] describe basic machine learning concepts, and discuss their application in
communication networks. Other diverse surveys and papers overview the vast lit-
erature on the application of machine learning to multiple networking problems, in-
cluding traffic prediction, traffic classification [11], routing and congestion control,
network resources management, network security [8], anomaly detection [30–32],
QoS and QoE management [33,34], and more [6, 7, 9, 10,35].

Besides direct application of machine learning, other papers elaborate on more
holistic approaches to introduce learning into communication networks, ranging
from the seminal work of Clark et al. [36] proposing the “Knowledge Plane” for the
Internet – a pervasive, distributed system within the network that would provide
the required levels of abstraction and end-to-end visibility to realize an AI-boosted
Internet, to more recent proposals taking advantage of current network flexibility
to enable machine-learning capable networking [37,38].

Some of the most popular machine learning models used in the networking
domain include: rule-based models, such as decision trees and random forest,
feed-forward neural networks, SVM, k-Nearest Neighbours (k-NN), K-Means and
DBSCAN, but the list is as vast as the associated literature. In most cases, the
core of the learning problem falls within the design and selection of a set of features
carefully built by domain expert knowledge. In simple words, the challenge has
been so far on the feature engineering process.

Chapter 3. Related Work

3.2 Deep Learning

At the moment of writing this thesis, most of the articles presented in the literature
that mention the use of deep learning for the analysis of network traffic measure-
ments are mainly based on using the models to perform feature selection/extraction
and classification from a set of selected, carefully-built expert features. Next, the
most relevant papers are discussed.

In the cybersecurity domain, there are several works that tackle problems such
as anomaly-based network intrusion detection [12, 13, 39, 40] and impersonation
attack detection [41]. In addition, network traffic classification is the subject
of [42–45], while [46] particularly explores network protocol recognition. More
recently, the Internet of Things (IoT) has gained importance in the network traffic
measurement analysis field [47].

In [39], D. Kwon et al. reviewed seven papers about deep learning models em-
ployed for anomaly-based network intrusion detection, all of which mainly discuss
methodologies in terms of data dimensionality reduction and classification. All the
papers use either KDD-Cup 1999 dataset [48] or its successor NSL-KDD [49], which
solves some of the inherent problems of the first (e.g., huge amount of redundant
records). These datasets are widely used in the literature, they consist of 41 pre-
calculated features and several instances. However, both datasets are heavily crit-
icized for not being representative enough of existing real networks [50]. U. Fiore
et al. [40] also tackle a similar problem, but with a semi-supervised approach using
a Discriminative Restricted Boltzmann Machine (DRBM) [51], i.e., a RBM [22]
that is trained more specifically to be a good classification model. DRBMs couple
the ability to express much of the variability of the data –given by the generative
model– with the good classification accuracy derived from the discriminative clas-
sifier. The dataset used for training the DRBM was the KDD-Cup 1999, where the
authors manually selected 28 features out of 41. A different approach is carried
out by B. J. Radford et al. in [13]. Instead of using network flows/sessions data,
network traffic logs for cybersecurity monitoring are used. This is quite common
when the goal is to detect attacks that are generated not only from inside the
network, but also from commands directly inserted into a critical unit. The au-
thors used a LSTM RNN to learn ordered sequences of normal network traffic and
then evaluate the ability of this model to detect malicious activity on the same
network. They do this in an unsupervised way, without the assistance of labeled
training data. The dataset used for this research is a public dataset for intrusion
detection from the University of New Brunswick’s Canadian Institute for Cyber-
security (CIC) and the Information Security Centre of Excellence (ISCX), referred
as ISCXIDS2012 [52]. Also in the cybersecurity field, M. E. Aminanto et al. [41] fo-
cused on optimizing the impersonation attack detection over Wi-Fi networks. The
dataset used in this case is AWID (Aegean Wi-Fi Intrusion Dataset, [53]), which
consists of 154 pre-calculated features. The authors used a two-layer FC artificial
neural network for feature selection and then a Stacked Auto Encoder (SAE) as
a classifier, where the feature extraction stage is deployed in the SAE implicitly.
SAE is a neural network with multiple layers of auto encoders, i.e., an unsuper-

14

3.2. Deep Learning

vised learning model that is trained to learn a representation of the inputs, so as
to output a function x̂ that is similar to input x. Different kinds of tests are per-
formed using either all the classes or just two (whether the instance is an attack
or normal traffic), using both balanced and unbalanced splits for performing the
training.

Concerning network traffic classification, Z. Wang et al. presented in [46]
a deep neural network for feature learning using FC networks and SAE. Their
main goal is to perform network protocol recognition and anomalous protocol
detection using a dataset made up of TCP flows collected from an internal network.
Interestingly, they show that the distribution of byte-features discovered over the
payload data is consistent to traditional methods used for feature engineering. Two
different approaches are followed by W. Wang et al. in [42] and [43], using both
2D-CNN and 1D-CNN models to perform network traffic classification. Working
with raw network traffic captures, they transform network flows and sessions (bi-
direction flows) into images to fit as an input for the CNN models, using either the
information of all the layers, or only from the application layer. In [42] the authors
also presented a new dataset, named USTC-TFC2016, which they used to benchmark
the different models. Moreover, in reference [44], M. Lotfollahi et al. presented a
framework for encrypted traffic classification using CNN and SAE at the packet
level. The dataset used for this work is the VPN-nonVPN dataset from CIC and
ISCX, referred as ISCXVPN2016 [54], which consists of both encrypted and non-
encrypted traffic captures of different applications in pcap format. Before training,
some pre-processing of the pcap files is performed in order to prepare the network
traffic data so that it can be fed into the models properly. Furthermore, M. Lopez-
Martin et al. presented in [45] a flow statistics-based supervised method composed
by different deep learning models in order to classify the service being used by an
IP network flow. For each network flow –only TCP and UDP are considered– a
time-series of feature vectors is built, where each element contains the features of a
packet in the flow. For each packet, the authors extract six features: source port,
destination port, the number of bytes in packet payload, TCP window size, inter-
arrival time and direction of the packet. The authors considered the information
contained in the header packets but not the payloads. All captures were held over
the RedIRIS, the Spanish academic and research network and the service labeling
of the dataset was made using the well-known nDPI-ntop tool [55]. Three different
models were trained: a pure CNN model, a pure LSTM model and a combination
of both, being the latter the one that achieved the best performance. In the case
of the CNN model, the authors considered the matrix formed by the time-series
of feature vectors as an input image. As for the LSTM, the model is trained
with a matrix of values with two dimensions: the temporal one and the vector of
features. Finally, in the combined model, the final tensor of several CNNs chained
is reshaped into a matrix that can act as the input to the LSTM network.

Lastly, a survey of deep learning models applied to IoT is presented by M.
Mohammadi et al. in [47]. Even though this survey does not specifically address
network traffic measurement and analysis problems, it is a wide summary of the
different architectures and methods generally used in deep learning, specially those

15

Chapter 3. Related Work

in which fast/real-time data streams processing is needed.
Most of these papers use deep learning models after some pre-processing of the

data, or after building some set of handcrafted features to be used as meaningful
input for the deep learning models. References [42–44] and [46] are the only ones
that mention the usage of raw traffic, approaching the specific problem of network
traffic classification. This thesis uses some of these concepts, but explores the
power of different input representations and different architectures for the deep
learning models (including hyperparameter optimization). In addition, three dif-
ferent datasets are created from raw network traffic captures in order to train the
different models and test their performance.

16

Chapter 4

Input Representations and Datasets
Construction

There is no silver bullet to select the input representations in a networking prob-
lem. Several valid choices can be made, such as: full-packets, packet’s headers,
packet’s payloads, uni-directional flows and bi-directional flows, among others. It
is also possible to select only the information present in some specific layers, and
then choose one of the representations mentioned before. Similarly, the lack of
a consensual publicly available, labeled raw traffic, full-packet capture dataset to
train the models is a real issue when facing networking problems with machine
learning. There is no MNIST [56], ImageNet [57] or CIFAR [58] –mainstream
datasets used for image recognition– for networking. While one of the main rea-
sons for this lack clearly arises from the data’s sensitive nature – including end-user
privacy – other limitations come from the efforts required to build proper and rep-
resentative datasets in networking. For example, many datasets are forced to not
include the payloads or just anonymize them. On the other hand, datasets that
do include the payloads are usually built under controlled environments.

In this Chapter, two different input representations chosen for feeding the
deep learning models are presented: Raw Packets and Raw Flows. Also, a specific
dataset to fit each one of the input representations is created, using raw network
traffic captures. Furthermore, the process involved for building the datasets, that
includes a statistical analysis of the packets and flows of each class, is also de-
scribed.

4.1 Input Representations
The input representation of the data, as well as the network architecture, are both
key facts when building a deep learning model. To evaluate the feature representa-
tion power of the model from non-processed data, two types of raw representations
are considered: packets and flows. In both cases, decimal normalized representa-
tion of every byte of every packet as a different feature is taken into account. In
the packet approach, each packet is considered as a different instance, while in

Chapter 4. Input Representations and Datasets Construction

the flow approach a group of packets –that make up the flow– is considered as an
input for the network, i.e., a tensor made of packets that represent a flow as an
input instance is built. Both representations are depicted in Fig. 4.1. For the Raw
Packets representation, it is necessary to set the number of bytes from the packet
to consider (n), while in the Raw Flows representation it is also needed to set the
number of packets per flow to consider (m). This is because, naturally, different
packets and flows can have different sizes. In the following Section, the process
involved for choosing the value for both n and m parameters is described.

n bytes

b1,1 | b2,1 | b3,1 | b4,1 | · · · | bn,1

(a) Packet representation for the input
data. The shape of the input data is (n),
i.e., the number of steps –bytes–.

n bytes

m
 p

ac
ke

ts

b1,m–1 | b2,m–2 | b3,m–3 | b4,m–4 | · · · | bn,m–1

b1,m | b2,m | b3,m | b4,m | · · · | bn,m

b1,2 | b2,2 | b3,2 | b4,2 | · · · | bn,2

b1,1 | b2,1 | b3,1 | b4,1 | · · · | bn,1

(b) Flow representation for the input data.
A tensor of size (m,n) where m stands for
the number of channels –packets– and n for
the number of steps –bytes– represents the
input data.

Figure 4.1: Different input representations for the deep learning models.

4.2 Building the Datasets
For building the datasets, malware and normal captures performed by the Strato-
sphere IPS Project [59] of the CTU University of Prague in Czech Republic are
considered [60]. Since both malware and normal captures are gathered under con-
trolled conditions, there are some biases in the IP and transport protocol headers
that are not representative of in the wild traffic. This is the case, for example, of
fixed values for IP addresses and ports and even some of the transport protocol
flags. For this reason, the payload of every packet is considered as the key infor-
mation to analyze and to build the datasets. Afterwards, a fixed threshold for the
parameter n is set in order to trim each incoming packet to the first n bytes of
payload. All packets with size larger than n bytes are trimmed, and packets with
smaller size are zero-padded at the end. For the number of packets per flow, a
number m is fixed, taking the first m packets of the flow, discarding the rest.

Note that the problem shouldn’t be dependent on the chosen values, but are
needed in order to build the datasets that will be further used to train the different
deep learning models. To select the parameters n and m, focus will be made
on a statistical analysis performed over the network captures. One important
consideration to have in mind is that small values for both parameters will be
preferred, specifically for the number of packets per flow. This is important because
real-work applications of network security require early-classification, i.e., to be

18

4.2. Building the Datasets

able to detect and mitigate the malicious flows early in time (e.g. after 1 to
4 packets have been captured). This is known as early traffic classification or
traffic classification on the fly [61]. To select the parameters, the following three
distributions will be analyzed:

1. Distribution of the payload size in the packets.

2. Distribution of the number of packets in the flows.

3. Distribution of the mean payload size of the packets in the flows.

To perform the flow analysis, the pkt2flow tool [62] was used. This tool divides
each capture file in f different files, where f is the amount of flows detected. It
can split up the following types of flows:

1. TCP flows with the SYN flag (three-way handshake completed).

2. TCP flows without the SYN flag, or “invalid” TCP flows.

3. UDP flows.

4. Other kinds of flows (non TCP/UDP), usually ICMP.

The concept of flow is defined as every group of packets that share the same
5-tuple: transport layer protocol, source IP, destination IP, source port and des-
tination port. The timeout for the TCP flows is fixed to thirty minutes –default
value in Cisco NetFlow– but this value can be modified inside the script code. For
this analysis, the default timeout value was used and only TCP and UDP flows
were considered.

4.2.1 Malware Captures
Before digging into the details let’s start defining the concepts of malware and
botnet. Malware is an abbreviated form of “malicious software”. This is software
that is specifically designed to gain access to or damage a digital device, usually
without the knowledge of the owner. On the other hand, a botnet is nothing more
than a string of connected computers coordinated together to perform a task1.
Malicious botnets are connected devices designed to perform a malicious activity.

The malware captures are taken from a subset of captures referred by their
authors as CTU-13. It consists of thirteen captures (named scenarios) of different
botnet samples. On each scenario, a specific malware is executed, using several
protocols (e.g., IRC, HTTP, P2P) and performing different actions (e.g., DDoS,
port scan, click fraud, spam).

1Symantec: global leader in next-generation cybersecurity, https://symantec.com/

19

https://www.symantec.com/

Chapter 4. Input Representations and Datasets Construction

Distribution of the payload size in the packets

The distribution of the payload size in the packets for the malware captures is
shown in Fig. 4.2, where a log scale was used to enhance the view. As can be seen,
there is a group of packets that contain a payload size larger than the standard
Ethernet MTU size (∼ 1500 bytes). This is a common behaviour when the traffic
is captured in the same equipment where it was generated, using the Large Send
Offload (LSO) option. Under this scenario, the packet fragmentation is performed
by the NIC card reducing CPU overhead. These packets conform the 9.3% of the
total. Limiting the histograms to those packets with payload size less and equal
than 1500 bytes (Fig. 4.2b), it can be seen that most of the packets have a payload
size between 1000 and 1100 bytes, being the median equal to 1024 bytes. It is also
noted that the 28.3% of the packets have a payload size less than 100 bytes.

0 5 10 15 20 25 30 35
Payload size (kB)

100

101

102

103

104

105

106

107

Nu
m

be
r o

f p
ac

ke
ts

 (l
og

)

(a) Whole payload size range.

0 250 500 750 1000 1250 1500
Payload size (B)

103

104

105

106

107

Nu
m

be
r o

f p
ac

ke
ts

 (l
og

)

(b) Payload size up to 1500 bytes.

Figure 4.2: Distribution of the payload size in the packets for malware captures (log scale).

TCP flows

The distribution of the number of packets in TCP flows is shown in Fig. 4.3a.
The 90% of the flows are composed of between 2 and 20 packets. In Fig. 4.3b the
distribution of the mean payload size of the packets per TCP flow (pf) is shown.
The value pf for TCP flows in the malware captures varies between 0 and 1355
bytes and most of them gather in the range 0–50 bytes (84% of the flows). It
can also be seen that the 60% of the TCP flows are composed of packets with no
payload. This means that most of the TCP attacks within these captures are built
by packets that, at first glance, contain no information (e.g., DDoS).

UDP flows

The distribution of the number of packets in UDP flows, for the range 0–20 packets
is shown in Fig. 4.4a. The 93% of the UDP flows yield into this range, sharing the
same behaviour as in the case of TCP flows. Moreover, most UDP flows have a
value of pf between 40 and 200 bytes (88.2%), as can be seen in Fig. 4.4b.

20

4.2. Building the Datasets

0 2 4 6 8 10 12 14 16 18 20
Packets

0

10

20

30

40

50

60
TC

P
Fl

ow
s (

kf
)

(a) Distribution of the number of packets
(range 0–20 packets).

0 5 10 15 20 25 30 35 40 45 50
Mean payload size (bytes)

102

103

104

105

TC
P

Fl
ow

s (
lo

g)

(b) Distribution of the mean payload size
(range 0–50 bytes, log scale).

Figure 4.3: Packets and mean payload size distributions of TCP flows for malware captures.

0 2 4 6 8 10 12 14 16 18 20
Packets

102

103

104

UD
P

Fl
ow

s (
lo

g)

(a) Distribution of the number of packets
(range 0–20 packets, log scale).

0 20 40 60 80 100 120 140 160 180 200 220
Mean payload size (bytes)

0

1

2

3

4

5

6

7
UD

P
Fl

ow
s (

kf
)

(b) Distribution of the mean payload size
(range 0–200 bytes).

Figure 4.4: Packets and mean payload size distributions of UDP flows for malware captures.

4.2.2 Normal Captures
The normal traffic consists of twenty captures in which different actions that rep-
resent normal behaviour are performed, such as browsing the internet and file
sharing over P2P.

Distribution of the payload size in the packets

For the normal captures, as can be observed in Fig. 4.5, there are no packets with
size greater than the Ethernet MTU size. Most of the packets have a payload size
between 1400 and 1500 bytes (with median equal to 1420 bytes and mean equal
to 929 bytes), while 23.8% of the packets have a payload size less than 100 bytes.

TCP flows

The packets and mean payload size distributions of TCP flows for normal captures
are shown in Fig. 4.6. The histograms view is limited to the ranges in which most

21

Chapter 4. Input Representations and Datasets Construction

0 200 400 600 800 1000 1200 1400
Payload size (B)

0

1000

2000

3000

4000

Nu
m

be
r o

f p
ac

ke
ts

 (k
p)

(a) Whole payload size range.

0 250 500 750 1000 1250 1500
Payload size (B)

105

106

Nu
m

be
r o

f p
ac

ke
ts

 (l
og

)

(b) Whole payload size range, log scale.

Figure 4.5: Distribution of the payload size in the packets for normal captures.

part of the flows are gathered. The 88.7% of the TCP flows in normal captures
are made up of between 5 and 110 packets. The range of variation of pf for most
part of the TCP flows is 0–400 bytes (83.4%). Within this range, the 27.4% of the
TCP flows have a value of pf between 0 and 50 bytes on average, while the rest
is uniformly distributed, being slightly smaller in the range 250–400 bytes. For
normal captures, the 17.4% of the TCP flows have no payload.

0 10 20 30 40 50 60 70 80 90 100 110
Packets

0

5

10

15

20

TC
P

Fl
ow

s (
kf

)

(a) Distribution of the number of packets
(range 0–110 packets).

0 50 100 150 200 250 300 350 400
Mean payload size (bytes)

0

5

10

15

20

25

30

35

40

TC
P

Fl
ow

s (
kf

)

(b) Distribution of the mean payload size
(range 0–400 bytes).

Figure 4.6: Packets and mean payload size distributions of TCP flows for normal captures.

UDP flows

The packets and mean payload size distributions of UDP flows for normal captures
are shown in Fig. 4.7. The 98.9% of the flows are composed of between 2 and 10
packets. In this case, most flows fall within the range 0–300 of bytes of payload
(99.6%), within which, the 83.71% fall within the range 50–200 bytes.

22

4.2. Building the Datasets

0 2 4 6 8 10 12 14 16 18 20
Packets

0

20

40

60

80

100

120

140
UD

P
Fl

ow
s (

kf
)

(a) Distribution of the number of packets
(range 0–20 packets).

0 50 100 150 200 250 300
Mean payload size (bytes)

0

100

200

300

400

500

UD
P

Fl
ow

s (
kf

)

(b) Distribution of the mean payload size
(range 0–300 bytes).

Figure 4.7: Packets and mean payload size distributions of UDP flows for normal captures.

4.2.3 Design Criteria
Raw Packets

In this input representation, the value of the parameter n is needed to be set. Given
the previous analysis, note that setting a wrong value for n can lead to a strong bias
in the learning model. In order to see this, let’s consider the following example.
Let’s say that the fixed payload size is set to 1450 bytes. Under this scenario,
larger payloads will be trimmed and the smaller ones zero-padded. Within this
configuration, any naive classifier will be able to correctly classify any sample, just
by looking for zeros beyond the byte number 1100. This is because the greatest
part of the malware examples have a payload size below 1100 bytes (i.e., will be
zero-padded to fill 1450 bytes), while the payload size of normal examples are
mostly between 1400 and 1450 bytes.

A summary of the payload size distribution of packets is shown in Table 4.1.

Capture type n < 50 B n ∈ [50,1024] B n > 1024 B

Malware 26.4% 60.5% 13.1%

Normal 20.0% 18.8% 61.2%

Table 4.1: Summary of the distribution of payload size of the packets (n) in bytes, for malware
and normal captures.

With the information given by the different distributions, the following con-
siderations were taken in order to build the Raw Packets version of the dataset:

1. Only the payloads of TCP, UDP and ICMP packets are considered.

23

Chapter 4. Input Representations and Datasets Construction

2. Only the packets that have at least 50 bytes of payload are taken into ac-
count, the rest is discarded. This represents most part of the packets for
each group of captures:

• 73.6% of malware packets.

• 80.0% of normal packets.

3. Since not all capture files contain the same number of packets, nor meet the
conditions of the item number (2), and to be able to get a representative
sample of each scenario, only those captures that at least have 20, 000 valid
packets (malware) and 12, 500 valid packets (normal) were chosen. This
leads to consider:

• 10 valid malware captures (out of 13)

• 16 valid normal captures (out of 20)

conforming a balanced dataset of 200, 000 samples each.

4. The value of the parameter n is set in 1024 bytes: all packets with payloads
larger than 1024 bytes are trimmed and the smaller ones are zero-padded.

Raw Flows
A summary of the statistics of the network traffic flows for the malware and nor-
mal captures is shown in Tables 4.2 and 4.3. For the Raw Flows representation,
parameters n and m are needed to be set. As was stated at the beginning of this
Section, only TCP and UDP flows are considered (other kind of flows represent
only a small proportion of the total). TCP and UDP scenarios are quite different.
For TCP, a high percentage of the flows are composed by packets with no pay-
load, which is not the case for UDP flows. For this reason, TCP flows will not be
considered, i.e., the scope of the Raw Flows approach will be only for UDP flows;
hence the chosen values for the parameters n and m will be based on the median
value of UDP flows.

Flow
type

Capture
type

Qty.
(pkt)

Med.
(pkt)

Mean
(pkt)

Std.
(pkt)

ρp (pkt) %

TCP Malware 188,548 6 17.3 129.7 [2–20] 90

UDP Malware 35,572 3 29.5 976.1 [2–20] 93

TCP Normal 140,931 25 78.3 1,498.9 [5–110] 88.7

UDP Normal 217,008 2 4.58 560.2 [2–10] 98.9

Table 4.2: Summary of the distribution of the number of packets in the flows. Most flows are
composed by a number of packets in the range ρp. The proportion of flows that fall within
this range is represented by the percentage (%).

24

4.2. Building the Datasets

Flow
type

Capture
type

Med.
(bytes)

Mean
(bytes)

Std.
(bytes)

ρb (bytes) %

TCP Malware 0 50.9 145.86 [0–50] 84.2

UDP Malware 98 121.0 98.88 [40–200] 88.2

TCP Normal 154.5 209.9 217.8 [0–400] 83.4

UDP Normal 108 114.4 55.4 [50–200] 83.7

Table 4.3: Summary of the distribution of the mean payload size of the packets in the flows.
Most flows have a pf in the range ρb. The proportion of flows that fall within this range is
represented by the percentage (%).

To summarize, two different datasets to fit each one of the considered input
representations are built. The dataset for the Raw Packets representation, after
removing duplicate instances, consists of 248, 850 instances. For the Raw Flows
representation, the dataset consists of 67, 494 instances. For the learning process,
both datasets are split according to the following schema: 80% of the samples
for training, 10% for validation and 10% for testing. In Table 4.4 the parameters
selection for each input representation is presented. Note that the chosen values
obey the initial constraint about selecting small values for both n and m, and
hence to be able to perform network traffic classification on the fly.

Representation Dataset size n (bytes) m (packets)

Raw Packets 248, 850 1024 N/A

Raw Flows 67, 494 100 2

Table 4.4: Parameters selection for building the input representation for training the deep
learning models.

25

Chapter 5

Deep Learning Architectures for
Malware Detection

In this Chapter, the different deep learning architectures designed for both Raw
Packets and Raw Flows input representations are presented. Since hyperparameter
optimization is an important step in the training stage of deep learning models, a
description of this process is also detailed.

5.1 Raw Packets deep learning architecture
As was explained in Chapter 4, the key information to use in both Raw Packets
and Raw Flows input representations is included in the payload. The main goal
here is to choose core layers for the deep learning model that can exploit the
underlying characteristics of each class found in the payload. For this problem,
one-dimensional data is to be processed in a single grid-like fashion. For this reason,
and to build the feature representation of the spatial data inside the packets, a
1D-convolutional neural network (1D-CNN) layer will be considered as one of the
core layers of the deep learning model architecture. This is the cornerstone in
which it is expected the model to improve over shallow-like traditional methods.

In the early stages of training, only two 1D-CNN layers were used but this
model was quite unstable and the performance was far low than expected. Af-
terwards, and to improve the model’s performance, an LSTM recurrent layer was
added to be used together with both 1D-CNNs. This allows the model to keep
track of temporal information inside each packet supporting sequence prediction,
for example, to be able to catch the application’s protocol initialization. To deal
with the different combinations of discovered features and bring a final estimation,
two fully-connected layers are added at the end of the model’s architecture.

The final architecture of the deep learning model for the Raw Packets input
representation is shown in Fig. 5.1. It consists of:

1. Two 1D-CNN layers of 32 and 64 filters of size 5, respectively

2. A max-pooling layer of size 8

Chapter 5. Deep Learning Architectures for Malware Detection

3. A LSTM layer consisting of 200 units per LSTM cell, i.e., at every moment
the hidden state is a vector of size 200 and all hidden state outputs are
returned

4. Two fully-connected layers of 200 units each

Spatial and normal batch normalization layers are added after each 1D-CNN
and fully-connected layers to ease the training process. Dropout layers are also
used to add regularization to the model.

···

··· Output

C1: 1D-CNN layer
32 filters, size 5

Activation maps C1 Activation maps C2

Flatten
FC1:

200 units
FC2:

200 units

C2: 1D-CNN layer
64 filters, size 5

Byte vectorized
packet of size 1024

MP: Max-Pooling
1×8

Activation maps MP

LSTM: 200
units + return
full sequence

Activation maps
LSTM

Figure 5.1: Deep learning architecture for Raw Packets representation.

As usual, a binary cross-entropy is used as the loss function. The reason behind
choosing a cross-entropy loss function over others is strictly about the optimization
process performance and the problem of vanishing and exploding gradients that
can occur during the learning process of gradient-based optimization. Vanishing
gradients make it difficult to know which direction the parameters should move to
improve the cost function, while exploding gradients can make learning unstable.
Historically, mean squared error and mean absolute error were popular in the 1980s
and 1990s, but were gradually replaced by cross-entropy losses by the statistics and
machine learning community. The use of cross-entropy losses greatly improve the
performance of models with sigmoid and softmax outputs, which had previously
suffered from saturation and slow learning when using the mean squared and mean
absolute error losses. This is one reason that the cross-entropy cost function is
more popular and is usually used in practice over the mean squared error or mean
absolute error, even when it is not necessary to estimate an entire distribution
p (y|x) [3].

Table 5.1 shows the model summary, describing each one of the layers and the
number of parameters. The total number of parameters of this model is 5, 345, 081,
where 5, 344, 089 are trainable and 992 non-trainable. For the sake of completeness,
the final list of hyperparameter is shown in Table 5.2.

28

5.2. Raw Flows deep learning architecture

Layer type Output shape Nr. of params.

1D-CNN (None, 1020, 32) 192

Batch normalization (None, 1020, 32) 128

Activation (ReLU) (None, 1020, 32) 0

1D-CNN (None, 1016, 64) 10, 304

Batch normalization (None, 1016, 64) 256

Activation (ReLU) (None, 1016, 64) 0

1D-Max-Pooling (None, 127, 64) 0

Dropout (None, 127, 64) 0

LSTM (None, 127, 200) 212, 000

Flatten (None, 25400) 0

FC (None, 200) 5, 080, 200

Batch normalization (None, 200) 800

Activation (ReLU) (None, 200) 0

Dropout (None, 200) 0

FC (None, 200) 40, 200

Batch normalization (None, 200) 800

Activation (ReLU) (None, 200) 0

FC (None, 1) 201

Table 5.1: Raw Packets deep learning model summary.

5.2 Raw Flows deep learning architecture
For the Raw Flows approach, since the dataset is smaller than the Raw Packets
one (not only in number of instances, but also in the number of features), the
capacity of the model (i.e., representation power) does not have to be as high
as in the Raw Packets case. Different architectures were tested before arriving
to the final one, but this time, the knowledge gathered during the Raw Packets
design was used to build this architecture. The starting point consisted of using
the same architecture as in the Raw Packets model but removing the LSTM layer.

29

Chapter 5. Deep Learning Architectures for Malware Detection

Hyperparameter Value

Nr. filters (1D-CNN1) 32

Nr. filters (1D-CNN2) 64

Filter size 5

Max-Pooling size 8

Dropout p (1D-CNN2) 0.1

Dropout p (FC1) 0.1

Nr. LSTM/FC1/FC2 units 200

Optimizer Adam

Learning rate 0.008

Learning rate decay 0.995

Batch size 256

Nr. of epochs 100

Table 5.2: Raw Packets deep learning hyperparameters summary.

In this initial setup, the model started to overfit quickly. Then, the following step
consisted of removing one of the 1D-CNN layers and some of the hidden units in
both the fully-connected layers. Furthermore, the same number of filters and filter
size used for the Raw Packets architecture were tested for the 1D-CNN layer as a
first choice. These settings proved to give the model enough capacity as well as a
good performance during the learning process. The final Raw Flows architecture
consists of:

1. One 1D-CNN layer of 32 filters of size 5

2. Two fully-connected layers of 50 and 100 units each

Also, binary cross-entropy is used as the loss function. The architecture is
shown in Fig. 5.2. The layer summary of the model is shown in Table 5.3 and
the final hyperparameters to train the model are shown in 5.4. The total number
of parameters of this model is 86, 331, where 85, 967 are trainable and 364 non-
trainable.

30

5.3. Remarks on the number of parameters

C1: 1D-CNN layer
32 filters, size 5

Activation maps C1

Flatten

Byte vectorized flow
of size 100 1× ×2 ···

··· Output

FC1:
50 units

FC2:
100 units

Figure 5.2: Deep learning architecture for Raw Flows representation.

Layer type Output shape Nr. of params.

1D-CNN (None, 100, 32) 352

Batch normalization (None, 100, 32) 128

Activation (ReLU) (None, 100, 32) 0

1D-Max-Pooling (None, 50, 32) 0

Flatten (None, 1600) 0

FC (None, 50) 80050

Batch normalization (None, 50) 200

Activation (ReLU) (None, 50) 0

FC (None, 100) 5100

Batch normalization (None, 100) 400

Activation (ReLU) (None, 100) 0

FC (None, 1) 101

Table 5.3: Raw Flows deep learning model summary.

5.3 Remarks on the number of parameters
When training deep learning models, it is nearly always the case to have far more
parameters than training samples. This is not unrelated to this particular problem
(cf., Tables 5.1 and 5.3). In [63], Zhang et al., showed that a simple two-layer FC

31

Chapter 5. Deep Learning Architectures for Malware Detection

Hyperparameter Value

Nr. filters (1D-CNN) 32

Filter size 5

Max-Pooling size 2

Nr. FC1 units 50

Nr. FC2 units 100

Optimizer Adam

Learning rate 0.001

Batch size 1024

Nr. of epochs 10

Table 5.4: Raw Flows deep learning hyperparameters summary.

network with 2n + d parameters can perfectly fit any dataset of n samples and
d features. Nevertheless, deep neural networks can generalize very well. This is
mainly because of the role of implicit regularization presented in the optimization
process involved in the training and the usage of explicit regularization methods,
such as dropout and weight-decay. More details and discussion about this topic
can be consulted in [63].

5.4 Hyperparameter optimization

Hyperparameters are settings that are not learned by the learning algorithm itself,
and so must be determined externally. Deep learning models have several of these,
and many of them have a great impact over the performance. The hyperparameter
optimization process can be tedious and needs to be strictly neat, i.e., modifying
one parameter at a time is a must, in order to be able to discover which is the real
impact over the learning process. Think about trying to solve a Rubik cube. Some-
times it may happen that when you finish solving one of the cube sides, and move
on to solve the next one, some or several of the small cube units of the solved side
were changed as a result of trying to fix the new one. This Rubik’s cube-solving
analogy can be used to understand the hyperparameter optimization process of
deep learning models, where you have to be meticulous and organized when mod-
ifying the different settings. Next, some of the most significant considerations for
setting the different hyperparameters are described.

32

5.4. Hyperparameter optimization

5.4.1 Number of filters and filter size of CNNs layers
The number of filters and filter size are both essential to the convolutional layers.
For these, different values were tested to get a set that finally performed well. For
example, at first, a filter size of 200 was used. In this case, the model was found to
be very difficult to train. It is possible that given the huge number of parameters
to learn with a filter of such size caused the model to perform poorly. After several
tests the filter size was reduced and the model started to perform better. The final
filter size chosen for both architectures was 5.

The increasing number of filters in each layer is one of the many rules of thumb
when designing CNN-based deep learning models. The idea is that successive
layers containing two or four times the number of filters can help the network to
learn hierarchical features. For the Raw Packets architecture, 32 and 64 filters
were chosen for both 1D-CNN respectively; while in the case of the Raw Flows
architecture, the final number of filters was 32.

5.4.2 Learning rate
The learning rate is one of the hyperparameters that is the most difficult to set
because it has a significant impact on the model’s performance, thus choosing
a good learning rate candidate is very important for the learning process of the
model. This may be chosen by trial and error, but it is usually best to choose it by
monitoring learning curves that plot the objective function as a function of time.
This is more of an art than a science, and most guidance on this subject should be
regarded with some skepticism. The main question is how to set the initial learning
rate. If it is too large, the learning curve will show violent oscillations, with the
cost function often increasing significantly. Gentle oscillations are fine, especially
if training with a stochastic cost function such as the cost function arising from the
use of dropout. If the learning rate is too low, learning proceeds slowly, and if the
initial learning rate is too low, learning may become stuck with a high cost value.
Typically, the optimal initial learning rate, in terms of total training time and the
final cost value, is higher than the learning rate that yields the best performance
after the first 100 iterations or so. Therefore, it is usually best to monitor the first
several iterations and use a learning rate that is higher than the best-performing
learning rate at this time, but not so high that it causes severe instability [3].

The heuristic method for choosing a good candidate for the learning rate is
as follows. As was mentioned, the main goal is that the loss decreases within the
first iterations, so firstly, all regularization and learning rate decay is turned off.
Then, an upper bound for the learning rate is searched, increasing the learning
rate heavily until the loss explodes in the first couple of iterations. After that, the
learning rate is logarithmically dropped until finding a value that causes the loss to
go down. If using this learning rate candidate the loss function tends to decrease
within the first thousands iterations and does not plateau, a good learning rate
candidate was found and will be used for the training process.

For the Raw Packets and Raw Flows architectures, the chosen learning rates
were 0.008 and 0.001, respectively. Also, in the Raw Packets architecture, a learn-

33

Chapter 5. Deep Learning Architectures for Malware Detection

ing rate decay was added since it was noted during the learning process that the
loss function was starting to plateau.

5.4.3 Optimizer
The optimizer is the function used to perform the parameter’s update during
the learning process. Given that the learning rate is one of the most important
hyperparameters, recently a number of incremental (or mini-batch-based) methods
that adapt the learning rates over time have been introduced. AdaGrad [64],
RMSprop [65] and Adam [66] are examples of these algorithms with adaptive
learning rates that are widely used in practice.

AdaGrad

The AdaGrad algorithm individually adapts the learning rates of all model pa-
rameters by scaling them inversely proportional to the square root of the sum of
all of their historical squared values. AdaGrad is designed to converge rapidly
when applied to a convex function. Empirically, AdaGrad has been found that
when applied to a non-convex function –such as deep neural network models– the
accumulation of squared gradients from the beginning of training can result in
a premature and excessive decrease in the effective learning rate. The AdaGrad
updating rule is shown in Eq. 5.1, where g represents the gradient, ε the global
learning rate, δ is a small constant used to stabilize division by small numbers,
and ∆θ is the parameter update.

Accumulate squared gradient: r ← r + g � g (5.1)

Compute update: ∆θ ← − ε

δ +
√
r
� g

RMSProp

The RMSProp algorithm modifies AdaGrad to perform better in the non-convex
setting by changing the gradient accumulation into an exponentially weighted mov-
ing average. RMSProp uses an exponentially decaying average to discard history
from the extreme past so that it can converge rapidly after finding a convex bowl,
as if it were an instance of the AdaGrad algorithm initialized within that bowl.

Compared to AdaGrad, the use of the moving average introduces a new hyper-
parameter, ρ, that controls the length scale of the moving average. The RMSProp
updating rule is shown in Eq. 5.2.

Accumulate squared gradient: r ← ρr + (1− ρ) g � g (5.2)

Compute update: ∆θ ← − ε

δ +
√
r
� g

34

5.4. Hyperparameter optimization

Adam

Adam –short for adaptive moments– can be seen as a combination of RMSProp
and momentum, with some distinctions. To begin with, a smooth version of the
gradient is used instead of the raw (and perhaps noisy) gradient vector used by
RMSProp. Secondly, Adam includes bias corrections to the estimates of both
the first-order moments (the momentum term) and the (uncentered) second-order
moments to account for their initialization at the origin. Eq. 5.3 shows the update
rule of Adam’s algorithm, where s and r represent the first and second order
moment variables, ρ1 and ρ2 the exponential decay rates for moment estimates,
and t the time step.

Update biased first moment estimate: s← ρ1s+ (1− ρ1)g (5.3)

Update biased second moment estimate: r ← ρ2r + (1− ρ2)g � g

Correct bias in first moment: ŝ← s

1− ρt1
Correct bias in second moment: r̂ ← r

1− ρt2

Compute update: ∆θ = −ε ŝ√
r̂ + δ

Empirically, RMSProp and Adam have been shown to be effective and practi-
cal optimization algorithms for deep neural networks. They are currently two of
the go-to optimization methods being employed routinely by deep learning practi-
tioners. For this work, RMSprop and Adam were tested, being the latter the one
that showed best performance and stability.

5.4.4 Regularization
Controlling overfitting was definitely an issue, specially in the Raw Packets ar-
chitecture. L2 regularization and dropout were tested. Adding L2 regularization
showed no improvement in the performance. In the case of Dropout, the model was
found to be very sensitive to the parameter p. Choosing a high value for p showed
a really unstable model, with a bouncing validation loss. Since dropout is turned
off at validation, this suggested to try lower values for p. Also, different positions
for the dropout layers over the sequential models were tested. Finally, dropout
was used within the Raw Packets architecture after the convolutional layers and
after the first FC layer, using in both cases a value of p = 0.1.

5.4.5 Checking the model capacity
As a sanity check, after choosing a network architecture, the capacity of the chosen
model can be tested overfitting a small subset of the data, setting all regularization
to zero. In a nutshell, if it’s not possible to achieve zero cost over a small subset of
the data, it is not worth to proceed over the full dataset, since at first glance the

35

Chapter 5. Deep Learning Architectures for Malware Detection

capacity of the model is not big enough. In Fig. 5.3 an example of the model loss
and accuracy evolution after each epoch (being an epoch a single pass-through over
the complete training dataset) using 20 samples for the Raw Packets configuration
is shown.

0 10 20 30 40
Epoch

0

1

2

3

4

5

6

7

8

Lo
ss

Model loss

Train Validation

0 10 20 30 40
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Model accuracy

Train Validation

Figure 5.3: Overfit small subset of data to check model capacity. Example for Raw Packets
configuration.

36

Chapter 6

Experiments and Results

In this Chapter, the experimental evaluations and results achieved for the network
traffic malware detection problem, for both input representations are presented.
An extension of the malware detection problem to a multiclass malware classifica-
tion problem is also introduced at the end of this Chapter.

In all the experimental evaluations, some common data pre-processing is per-
formed over the datasets before training [24]. Firstly, the data is zero-centered
subtracting the mean across every individual feature. This operation has the geo-
metric interpretation of centering the cloud of data around the origin along every
dimension. Secondly, the data dimensions are normalized so that they are of ap-
proximately the same scale. In this case, standardization was performed, dividing
each dimension by its standard deviation after it has been zero-centered.

All deep learning models were built using the Keras framework [67] running
on top of TensorFlow [68], using the Big-DAMA platform [69], a big-data cluster
for analyzing network traffic data with machine learning models.

6.1 Malware Detection: A First Approach Using Deep
Learning

The focus of this section is exclusively on the problem of malware detection, posing
it as a binary classification problem: either normal or malware. To show the main
advantages of the proposed approaches, three evaluation questions are posed:

1. Is it possible to achieve high detection accuracy with low false positive rates
using the raw-input, deep learning-based models?

2. Are the proposed deep learning-based models better than the commonly
used shallow models for malware detection, when feeding them all with raw
inputs (e.g., bytestreams)?

3. How good are the raw-input, deep learning-based models as compared to a
traditional approach for malware detection, where shallow models take as
input specific handcrafted features based on domain expert knowledge?

The following sections of this Chapter aim to answer these three questions.

Chapter 6. Experiments and Results

6.1.1 Deep learning vs. shallow models with raw inputs
In order to answer the first question, a simple evaluation scenario is presented,
detecting malware at the packet level. For this problem, Raw Packets deep learning
architecture was trained using the respective dataset version consisting of roughly
250, 000 samples (cf., Chapter 4). The dataset was split using a 80/10/10 schema,
i.e., 80% of the samples for training, 10% for validation and the remaining 10%
for testing. Fig. 6.1a shows the learning process for the Raw Packets approach,
where training over mini-batches of data was used for the parameters update and
the model was trained over 100 epochs. Adam was used as the optimizer function,
annealing the learning rate over time.

The performance metric chosen was the accuracy, given that the dataset is
perfectly balanced. For the Raw Packets representation, an accuracy of 77.6%
over the test set was achieved. Fig. 6.1b presents the initial results obtained by
the Raw Packets deep learning model in the detection of malware packets, in the
form of a ROC curve. The model is compared to a random forest one, using exactly
the same input features and an internal architecture of 100 trees applying different
pruning techniques to prevent overfitting, such as maximum depth and maximum
number of instances per leaf. The random forest model was chosen based on the
generally outstanding detection performance shown by the model in [70], using
domain expert input features.

The deep learning model can detect about 60% of the malware traffic packets
with a false positive rate of 6%, with an overall out-performance of nearly 25%
as compared to the random forest. These results are highly encouraging, since
they point to the ability of the deep learning-based model to better capture the
underlying statistics of the malware, without requiring any specific handcrafted
feature set. However, the absolute detection performance results are still not good
enough so as to rely on such a deep learning model with raw packet inputs for
malware detection in practice. Also, it can be noted in the learning curve that there
is some potential overfitting for this scenario using the packet-level representation.

6.1.2 Packet vs. flow representation performance
In this Section, a step further is taken facing a similar comparison as before, but
considering the Raw Flows representations as input. The dataset for the Raw
Flows representation, after removing duplicate instances, consists of about 68, 000
instances. This dataset is split according to the same schema as before: 80% of
the samples for training, 10% for validation and 10% for testing. Also, the training
was performed using mini-batches and Adam was used as optimizer. The learning
process is described in Fig. 6.2a. The learning process was held over 10 epochs.
For the Raw Flows representation, an accuracy of 98.6% was achieved. As it was
done before, Fig. 6.2b compares the detection performance of Raw Flows model
against a random forest model using exactly the same raw input features. In this
case, the data was flattened in order to fit the input to the random forest. Once
again, a clear out-performance of the deep learning architecture can be observed as
compared to the random forest model. Using this representation the deep learning

38

6.1. Malware Detection: A First Approach Using Deep Learning

0 10 20 30 40 50 60 70 80 90 100
0.40

0.45

0.50

0.55

0.60

0.65

Lo
ss

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Ac
cu

ra
cy

Train
Validation

(a) Learning process.

0 20 40 60 80 100
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue
 P
os
iti
ve
 R
at
e
(%
)

Raw Packets (AUC = 0.84)
RF (AUC = 0.74)

(b) ROC curve.

Figure 6.1: Learning process (loss and accuracy evolution after each epoch) and ROC curve
for the Raw Packets representation.

model can detect as much as 98% of all malware flows with a false positive rate
as low as 0.2%. This suggests that, when operating at the flow level, such raw
input representation and associated deep learning architecture can actually provide
highly accurate results, applicable in practice.

1 2 3 4 5 6 7 8 9 10

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Lo
ss

1 2 3 4 5 6 7 8 9 10
Epoch

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Train
Validation

(a) Learning process.

0 20 40 60 80 100
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

Raw Flows (AUC = 0.997)
RF (AUC = 0.936)

(b) ROC curve.

Figure 6.2: Learning process (loss and accuracy evolution after each epoch) and ROC curve
for the Raw Flows representation.

6.1.3 Domain knowledge vs. raw inputs
The last step of the evaluations tries to answer the third question regarding the
goodness and advantages of the proposed approach with respect to the standard
approach for machine learning-based malware detection. In particular, studying
how good is the Raw Flows, deep learning-based model as compared to a ran-
dom forest-based one, the latter using as input specific handcrafted features based

39

Chapter 6. Experiments and Results

on domain expert knowledge. The standard approach for detection of malware
and network attacks in networking traffic is to rely on flow-level features, using
traditional in-flow packet measurements such as traffic throughput, packet sizes,
inter-arrival times, frequency of IP addresses and ports, transport protocols and
share of specific flags (e.g., SYN packets). Therefore, a set of almost 200 of these
features were built to feed a random forest model. Note that besides using tradi-
tional features such as min/avg/max values of some of the input measurements,
their empirical distribution is also considered, sampling the empirical distribution
at many different percentiles. This provides as input much richer information, as
the complete distribution is taken into account.

First results on this subject published in [71] suggest that not surprisingly,
the random forest model using expert domain features achieves highly accurate
detection performance, detecting about 97% of all the malware instances with less
than 1% of false positives. However, also under this scenario, the deep learning-
based model, using the Raw Flows representations as input, slightly outperforms
this domain expert knowledge based detector. As such, it can be concluded that
the deep learning model can perform as good as a more traditional shallow-model
based detector for detection of malware flows, without requiring any sort of expert
handcrafted inputs.

Based on the three sets of evaluations, and recalling that the random forest
model serves as performance benchmark, it can be concluded that the proposed
deep learning model, in particular using the Raw Flows representation as input,
can: (i) provide highly accurate and applicable-in-practice malware detection re-
sults, (ii) capture the underlying malware and normal traffic models better than a
shallow-like, random forest-based model, and (iii) provide results as good as those
obtained through a domain expert knowledge-based detector, without requiring
any sort of handcrafted features.

6.2 One Step Further: from Malware Detection to Mal-
ware Classification

To complement the previous malware detection results, a variation of the binary
classification problem is presented, considering now different sorts of malware at-
tacks traffic as different classes, together with a “normal” class representing benign
traffic.

To build the dataset, three different malware traffic classes are considered,
corresponding to three different types of botnets, named: Neris, Rbot and Virut.
Thus, the multiclass classification problem has four different classes: three that
represent malware attacks and one that represents normal activity. The activity
and protocols used for the scenarios chosen for building this dataset are depicted
in Table 6.1. The dataset consists of 160, 000 samples, selected in a stratified way,
i.e., the dataset is balanced with 40, 000 samples per class.

The deep learning model used for this task is quite similar to the one used for
the Raw Packets representation. The difference is that now the activation function

40

6.2. One Step Further: from Malware Detection to Malware Classification

Botnet Protocol Activity

Neris IRC spam, click fraud

Rbot IRC DDoS

Virut HTTP spam, port scan

Table 6.1: Protocols and attacks performed by different kinds of botnets.

used in the last fully connected layer is a Softmax function (a generalization of
the binary logistic regression classifier for multiple classes), instead of the sigmoid
used for the binary classification. The resulting architecture is depicted in Fig. 6.3.
The corresponding loss function is also different for the multiclass classification
problem. In this case a categorical cross-entropy was used, and the learning process
was held over 50 epochs. The evolution of the learning process, including loss and
accuracy after each epoch, is presented in Fig. 6.4. Not surprisingly, the evolution
of the learning process is very similar to the previous raw packets-based model (cf.
Fig. 6.1a), as both operate using a similar input representation.

···

··· Output

C1: 1D-CNN layer
32 filters, size 5

Activation maps C1 Activation maps C2

Flatten
FC1:

200 units
FC2:

200 units

C2: 1D-CNN layer
64 filters, size 5

Byte vectorized
packet of size 1024

MP: Max-Pooling
1×8

Activation maps MP

LSTM: 200
units + return
full sequence

Activation maps
LSTM

Figure 6.3: Deep learning architecture for multiclass classification of malware traffic, using
Raw Packets representation.

0 10 20 30 40 50
Epoch

0.50

0.55

0.60

0.65

0.70

Lo
ss

Model loss
Train
Validation

0 10 20 30 40 50
Epoch

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

Model accuracy
Train
Validation

Figure 6.4: Evolution of the learning process (loss and accuracy after each epoch) for the
multiclass malware classification problem.

For this problem, the performance of the deep learning model against a random
forest one is also compared, using the same input features for both. The Fig. 6.5
shows the normalized confusion matrices for both models (values are shown in

41

Chapter 6. Experiments and Results

percentages); the deep learning model outperforms the random forest for all classes.
As a sanity check, note that the accuracy of the multiclass problem considering a
binary approach (malware vs. normal) holds similar results as the Raw Packets
approach presented in Sec. 6.1 (77.6% vs. 76.5%). To complement, the Table
6.2 shows the performance metrics of the deep learning model for the malware
classification task. The chosen metrics are accuracy (AC), precision (PR), recall
(RC) and F1 score for each class:

AC =
TP + TN

TP + TN + FP + FN
PR =

TP

TP + FP

RC =
TP

TP + FN
F1 = 2× PR×RC

PR+RC

(6.1)

Values are computed in a one-vs-all schema, in which each class is evaluated
against the rest, as if it was a binary problem. It is interesting to note that Rbot
botnet is detected with an accuracy of 99.9% while Neris and Virut achieve 63.5%
and 54.7%, respectively. The fact that both Neris and Virut share spam as an
activity attack, could be a possible reason which makes them more difficult to
distinguish one from each other – see Table 6.1.

Normal Neris Rbot Virut
Predicted label

No
rm

al
Ne

ris
Rb

ot
Vi

ru
t

Tr
ue

 la
be

l

86.0 7.4 0.1 6.5

27.0 53.8 0.0 19.2

0.1 0.5 75.4 24.0

39.0 22.0 0.8 38.2

0

20

40

60

80

100

(a) Random forest.

Normal Neris Rbot Virut
Predicted label

No
rm

al
Ne

ris
Rb

ot
Vi

ru
t

Tr
ue

 la
be

l

87.8 1.8 0.0 10.4

21.0 63.5 0.0 15.5

0.0 0.1 99.9 0.0

32.7 12.6 0.0 54.7

0

20

40

60

80

100

(b) Deep learning Multiclass.

Figure 6.5: Normalized confusion matrices (showing percentage values) for both random forest
and deep learning models.

Class Accuracy Precision Recall F1 score

Normal 0.878 0.621 0.878 0.727

Neris 0.635 0.814 0.635 0.714

Rbot 0.999 1.000 0.999 1.000

Virut 0.547 0.679 0.547 0.606

Table 6.2: Performance metrics for the deep learning model in the malware classification task.

42

Chapter 7

Conclusions and Further Work

In this thesis, a first study of the power of deep learning models to the analysis
of network traffic measurements is presented. The focus is on the particular topic
of malware network traffic detection and classification, considering raw represen-
tations of the input network data. Three different datasets were conformed from
malware and normal captures in order to be able to train three different deep
learning models, i.e., Raw Packets and Raw Flows for malware detection and Raw
Packets for malware classification. The results presented in Chapter 6 show how
using Raw Flows as input for the deep learning models achieves better results than
using Raw Packets. Finally, a variation of the binary classification model using
a multiclass approach to discriminate between different types of malware is also
introduced. In all cases, the deep learning models outperform a strong random
forest model, using exactly the same input features. Moreover, the Raw Flows
architecture slightly outperforms a random forest model trained using expert do-
main knowledge features. This points to the power of deep learning models to
better capture the underlying statistics of malicious traffic, as compared to more
traditional, shallow-like machine learning models.

This thesis also leaves some open doors for future work. To begin with, the
exploration of the Raw Flows input representation for the multiclass problem is
of particular interest, and can possibly shed some light on the problems depicted
in Section 6.2 with respect to some of the problematic classes. Besides, since only
the payload data is being considered, there is some potentially useful information
included in the header’s packets that is not being taken into account for training
the deep learning models. Therefore, a model for detecting attacks presented in
TCP flows can take advantage of this information. Last but not least, the usage
of other datasets could also be explored in order to improve the presented models.

As a result of the research work for this thesis, the following academic papers
were published:

• Gonzalo Maŕın, Pedro Casas, and Germán Capdehourat. RawPower: Deep
Learning Based Anomaly Detection from Raw Network Traffic Measure-
ments. In Proceedings of the ACM SIGCOMM 2018 Conference on Posters,
Demos and Student Research Competition, ACM SIGCOMM 2018, pages

Chapter 7. Conclusions and Further Work

75–77, New York, NY, USA, 2018. ACM. 2nd Place SRC Undergradu-
ate Competition.

• Gonzalo Maŕın, Pedro Casas, and Germán Capdehourat. DeepSec Meets
RawPower – Deep Learning for Detection of Network Attacks Using Raw
Representations. ACM SIGMETRICS Performance Evaluation Review,
46(3):147–150, January 2019

• Gonzalo Maŕın, Pedro Casas, and Germán Capdehourat. Deep in the Dark –
Deep Learning-based Malware Traffic Detection Without Expert Knowledge.
In Proceedings of the 2019 IEEE Symposium on Security and Privacy Work-
shops (SPW), 2nd Workshop on Deep Learning and Security, San Francisco,
CA, USA, IEEE Security and Privacy, 2019

• Pedro Casas, Gonzalo Maŕın, Germán Capdehourat, and Maciej Korczynski.
MLSEC – Benchmarking Shallow and Deep Machine Learning Models for
Network Security. In Proceedings of the 2019 IEEE Symposium on Security
and Privacy Workshops (SPW), 2019 International Workshop on Traffic
Measurements for Cybersecurity (WTMC), San Francisco, CA, USA, IEEE
Security and Privacy, 2019

44

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[2] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
CoRR, abs/1312.6034, 2013.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[4] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural Comput., 18(7):1527–1554, July 2006.

[5] Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ayoubi,
Nashid Shahriar, Felipe Estrada-Solano, and Oscar M. Caicedo. A Compre-
hensive Survey on Machine Learning for Networking: Evolution, Applications
and Research Opportunities. Journal of Internet Services and Applications,
9(1):16, Jun 2018.

[6] M. A. Alsheikh, S. Lin, D. Niyato, and H. Tan. Machine Learning in Wireless
Sensor Networks: Algorithms, Strategies, and Applications. IEEE Commu-
nications Surveys Tutorials, 16(4):1996–2018, Fourthquarter 2014.

[7] M. Bkassiny, Y. Li, and S. K. Jayaweera. A Survey on Machine-Learning
Techniques in Cognitive Radios. IEEE Communications Surveys Tutorials,
15(3):1136–1159, Third 2013.

[8] Anna L. Buczak and Erhan Guven. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communica-
tions Surveys and Tutorials, 18(2):1153–1176, 2016.

[9] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizu-
tani. State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward
Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Communica-
tions Surveys Tutorials, 19(4):2432–2455, Fourthquarter 2017.

http://www.deeplearningbook.org

Bibliography

[10] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza. A Survey of Machine
Learning Techniques Applied to Self-Organizing Cellular Networks. IEEE
Communications Surveys Tutorials, 19(4):2392–2431, Fourthquarter 2017.

[11] T. T.T. Nguyen and G. Armitage. A survey of techniques for internet traffic
classification using machine learning. Commun. Surveys Tuts., 10(4):56–76,
October 2008.

[12] J. Saxe, R. Harang, C. Wild, and H. Sanders. A Deep Learning Approach to
Fast, Format-Agnostic Detection of Malicious Web Content. In 2018 IEEE
Security and Privacy Workshops (SPW), pages 8–14, 2018.

[13] B. J. Radford, L. M. Apolonio, A. J. Trias, and J. A. Simpson. Network Traffic
Anomaly Detection Using Recurrent Neural Networks. ArXiv e-prints, March
2018.

[14] J. Zhao, S. Shetty, and J. W. Pan. Feature-based Transfer Learning for
Network Security. In MILCOM 2017 - 2017 IEEE Military Communications
Conference (MILCOM), pages 17–22, 2017.

[15] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing.
LEMNA: Explaining Deep Learning Based Security Applications. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’18, pages 364–379, New York, NY, USA, 2018. ACM.

[16] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping
Wang, Ying-Chang Liang, and Dong In Kim. Applications of Deep Rein-
forcement Learning in Communications and Networking: a Survey. CoRR,
abs/1810.07862, 2018.

[17] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula.
Resource Management with Deep Reinforcement Learning. In Proceedings
of the 15th ACM Workshop on Hot Topics in Networks, HotNets ’16, pages
50–56, New York, NY, USA, 2016. ACM.

[18] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive
Video Streaming with Pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’17, pages 197–
210, New York, NY, USA, 2017. ACM.

[19] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep Learning. Nature,
521(7553):436–444, 2015.

[20] Jürgen Schmidhuber. Deep Learning in Neural Networks: an Overview. Neu-
ral Networks, 61:85–117, 2015.

[21] Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Review
and New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, Aug 2013.

46

Bibliography

[22] Asja Fischer and Christian Igel. Training Restricted Boltzmann Machines:
an Introduction. Pattern Recognition, 47(1):25–39, 2014.

[23] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare,
and Joelle Pineau. An Introduction to Deep Reinforcement Learning. CoRR,
abs/1811.12560, 2018.

[24] Stanford University. CS231n: Convolutional Neural Networks for Visual
Recognition. http://cs231n.stanford.edu/, 2018.

[25] Christopher Olah. Understanding LSTM networks. http://colah.github.

io/posts/2015-08-Understanding-LSTMs/, 2018.

[26] Nicolas Brunel, Vincent Hakim, and Magnus JE Richardson. Single neuron
dynamics and computation. Current Opinion in Neurobiology, 25:149 – 155,
2014. Theoretical and computational neuroscience.

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis R. Bach and
David M. Blei, editors, ICML, volume 37 of JMLR Workshop and Conference
Proceedings, pages 448–456. JMLR.org, 2015.

[28] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

[29] Alberto Castro, Mat́ıas Richart, Javier Baliosian, and Eduardo Gramṕın.
Opportunities for ai/ml in telecommunications networks. In Proceedings of
the 10th Latin America Networking Conference, LANC ’18, pages 89–95, New
York, NY, USA, 2018. ACM.

[30] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of
network anomaly detection techniques. J. Netw. Comput. Appl., 60(C):19–31,
January 2016.

[31] Monowar H. Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K. Kalita.
Network anomaly detection: Methods, systems and tools. IEEE Communi-
cations Surveys & Tutorials, 16:303–336, 2014.

[32] Tarem Ahmed, Boris Oreshkin, and Mark Coates. Machine learning ap-
proaches to network anomaly detection. In Proceedings of the 2Nd USENIX
Workshop on Tackling Computer Systems Problems with Machine Learning
Techniques, SYSML’07, pages 7:1–7:6, Berkeley, CA, USA, 2007. USENIX
Association.

[33] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Sto-
ica, and Hui Zhang. Developing a predictive model of quality of experience for
internet video. SIGCOMM Comput. Commun. Rev., 43(4):339–350, August
2013.

47

http://cs231n.stanford.edu/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bibliography

[34] P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind,
P. Tran-Gia, and R. Schatz. Predicting qoe in cellular networks using ma-
chine learning and in-smartphone measurements. In 2017 Ninth International
Conference on Quality of Multimedia Experience (QoMEX), pages 1–6, May
2017.

[35] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang. Machine learning for
networking: Workflow, advances and opportunities. IEEE Network, 32(2):92–
99, March 2018.

[36] David D. Clark, Craig Partridge, J. Christopher Ramming, and John T. Wro-
clawski. A Knowledge Plane for the Internet. In Proceedings of the 2003 Con-
ference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM ’03, pages 3–10, New York, NY, USA,
2003. ACM.

[37] Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-Ros,
Eduard Alarcón, Marc Solé, Victor Muntés-Mulero, David Meyer, Sharon
Barkai, Mike J. Hibbett, Giovani Estrada, Khaldun Ma’ruf, Florin Coras,
Vina Ermagan, Hugo Latapie, Chris Cassar, John Evans, Fabio Maino, Jean
Walrand, and Albert Cabellos. Knowledge-Defined Networking. SIGCOMM
Comput. Commun. Rev., 47(3):2–10, September 2017.

[38] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Unleashing the Poten-
tial of Data-Driven Networking. In Communication Systems and Networks -
9th International Conference, COMSNETS 2017, Bengaluru, India, January
4-8, 2017, Revised Selected Papers and Invited Papers, pages 110–126, 2017.

[39] Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang C. Suh, Ikkyun Kim, and
Kuinam J. Kim. A survey of deep learning-based network anomaly detection.
Cluster Computing, pages 1–13, 2017.

[40] Ugo Fiore, Francesco Palmieri, Aniello Castiglione, and Alfredo De Santis.
Network anomaly detection with the restricted boltzmann machine. Neuro-
comput., 122:13–23, December 2013.

[41] Muhamad Erza Aminanto and Kwangjo Kim. Detecting impersonation attack
in wifi networks using deep learning approach. In Dooho Choi and Sylvain
Guilley, editors, Information Security Applications, pages 136–147, Cham,
2017. Springer International Publishing.

[42] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. Mal-
ware traffic classification using convolutional neural network for representa-
tion learning. In 2017 International Conference on Information Networking
(ICOIN), pages 712–717, Jan 2017.

[43] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang. End-to-end encrypted
traffic classification with one-dimensional convolution neural networks. In

48

Bibliography

2017 IEEE International Conference on Intelligence and Security Informatics
(ISI), pages 43–48, July 2017.

[44] Mohammad Lotfollahi, Ramin Shirali Hossein Zade, Mahdi Jafari Siavoshani,
and Mohammdsadegh Saberian. Deep packet: A novel approach for encrypted
traffic classification using deep learning. CoRR, abs/1709.02656, 2017.

[45] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. Network
traffic classifier with convolutional and recurrent neural networks for internet
of things. IEEE Access, 5:18042–18050, 2017.

[46] Zhanyi Wang. The applications of deep learning on traffic identification. In
Black Hat USA, Las Vegas, 2015.

[47] Mehdi Mohammadi, Ala I. Al-Fuqaha, Sameh Sorour, and Mohsen Guizani.
Deep learning for iot big data and streaming analytics: A survey. CoRR,
abs/1712.04301, 2017.

[48] S. Hettich and S. D. Bay. The UCI KDD archive, 1999.

[49] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A de-
tailed analysis of the kdd cup 99 data set. In Proceedings of the Second IEEE
International Conference on Computational Intelligence for Security and De-
fense Applications, CISDA’09, pages 53–58, Piscataway, NJ, USA, 2009. IEEE
Press.

[50] John McHugh. Testing intrusion detection systems: A critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lincoln
laboratory. ACM Trans. Inf. Syst. Secur., 3(4):262–294, November 2000.

[51] Hugo Larochelle and Yoshua Bengio. Classification using discriminative re-
stricted boltzmann machines. In Proceedings of the 25th International Con-
ference on Machine Learning, ICML ’08, pages 536–543, New York, NY, USA,
2008. ACM.

[52] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. Toward
developing a systematic approach to generate benchmark datasets for intru-
sion detection. Comput. Secur., 31(3):357–374, May 2012.

[53] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Stefanos
Gritzalis. Intrusion detection in 802.11 networks: Empirical evaluation of
threats and a public dataset. IEEE Communications Surveys & Tutorials,
18:184–208, 2016.

[54] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,
and Ali A. Ghorbani. Characterization of encrypted and vpn traffic using
time-related features. In ICISSP, 2016.

[55] Luca Deri et al. ntop – high performance network monitoring solutions based
on open source and commodity hardware. https://www.ntop.org/. Ac-
cessed: 2018-11.

49

https://www.ntop.org/

Bibliography

[56] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. In Proceedings of the IEEE,
pages 2278–2324, 1998.

[57] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[58] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-
nical report, 2009.

[59] Sebastian Garćıa et al. Stratosphere ips. https://www.stratosphereips.

org/.

[60] S. Garćıa, M. Grill, J. Stiborek, and A. Zunino. An empirical comparison of
botnet detection methods. Comput. Secur., 45:100–123, September 2014.

[61] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and
Kave Salamatian. Traffic classification on the fly. SIGCOMM Comput. Com-
mun. Rev., 36(2):23–26, April 2006.

[62] Xiaming Chen. pkt2flow: A simple utility to classify packets into flows.
https://github.com/caesar0301/pkt2flow.

[63] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization.
2017.

[64] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. J. Mach. Learn. Res.,
12:2121–2159, July 2011.

[65] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Lecture 6b: A bag
of tricks for mini-batch gradient descent. Coursera: Neural Networks for
Machine Learning, 2012.

[66] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014.

[67] François Chollet et al. Keras. https://keras.io, 2015.

[68] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-
ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

50

https://www.stratosphereips.org/
https://www.stratosphereips.org/
https://github.com/caesar0301/pkt2flow
https://keras.io

Bibliography

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from tensorflow.org.

[69] Pedro Casas, Alessandro D’Alconzo, Tanja Zseby, and Marco Mellia. Big-
dama: Big data analytics for network traffic monitoring and analysis. In
Proceedings of the 2016 Workshop on Fostering Latin-American Research in
Data Communication Networks, LANCOMM ’16, pages 1–3, New York, NY,
USA, 2016. ACM.

[70] Pedro Casas, Alessandro D’Alconzo, Giuseppe Settanni, Pierdomenico Fi-
adino, and Florian Skopik. Poster: (semi)-supervised machine learning ap-
proaches for network security in high-dimensional network data. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’16, pages 1805–1807, New York, NY, USA, 2016. ACM.

[71] Gonzalo Maŕın, Pedro Casas, and Germán Capdehourat. Deep in the Dark –
Deep Learning-based Malware Traffic Detection Without Expert Knowledge.
In Proceedings of the 2019 IEEE Symposium on Security and Privacy Work-
shops (SPW), 2nd Workshop on Deep Learning and Security, San Francisco,
CA, USA, IEEE Security and Privacy, 2019.

[72] Gonzalo Maŕın, Pedro Casas, and Germán Capdehourat. RawPower: Deep
Learning Based Anomaly Detection from Raw Network Traffic Measurements.
In Proceedings of the ACM SIGCOMM 2018 Conference on Posters, Demos
and Student Research Competition, ACM SIGCOMM 2018, pages 75–77, New
York, NY, USA, 2018. ACM. 2nd Place SRC Undergraduate Compe-
tition.

[73] Gonzalo Maŕın, Pedro Casas, and Germán Capdehourat. DeepSec Meets
RawPower – Deep Learning for Detection of Network Attacks Using Raw
Representations. ACM SIGMETRICS Performance Evaluation Review,
46(3):147–150, January 2019.

[74] Pedro Casas, Gonzalo Maŕın, Germán Capdehourat, and Maciej Korczyn-
ski. MLSEC – Benchmarking Shallow and Deep Machine Learning Models
for Network Security. In Proceedings of the 2019 IEEE Symposium on Secu-
rity and Privacy Workshops (SPW), 2019 International Workshop on Traffic
Measurements for Cybersecurity (WTMC), San Francisco, CA, USA, IEEE
Security and Privacy, 2019.

51

List of Tables

4.1 Summary of the distribution of payload size of the packets (n) in
bytes, for malware and normal captures. 23

4.2 Summary of the distribution of the number of packets in the flows.
Most flows are composed by a number of packets in the range ρp.
The proportion of flows that fall within this range is represented by
the percentage (%). 24

4.3 Summary of the distribution of the mean payload size of the packets
in the flows. Most flows have a pf in the range ρb. The proportion
of flows that fall within this range is represented by the percentage
(%). 25

4.4 Parameters selection for building the input representation for train-
ing the deep learning models. 25

5.1 Raw Packets deep learning model summary. 29
5.2 Raw Packets deep learning hyperparameters summary. 30
5.3 Raw Flows deep learning model summary. 31
5.4 Raw Flows deep learning hyperparameters summary. 32

6.1 Protocols and attacks performed by different kinds of botnets. . . . 41
6.2 Performance metrics for the deep learning model in the malware

classification task. 42

List of Figures

2.1 A Venn diagram showing the relationship between AI, machine
learning, representation learning and deep learning [3]. 5

2.2 Mathematical model of a single neural network unit. 7

2.3 Commonly used activation functions for neural networks [24]. . . . 8

2.4 A 3-layer neural network with 3 inputs, 2 hidden layers of 4 units
each and one output layer. 8

2.5 The components of a typical convolutional neural network layer. . 9

2.6 Max pooling operation of size 4 applied to one-dimensional data. . 9

2.7 An unrolled recurrent neural network. 10

2.8 Differences between the internal modules of standard RNNs and
LSTMs. 11

2.9 Ensemble of sub-networks trained as a consequence of using Dropout.
Figure taken from the original paper [28]. 12

4.1 Different input representations for the deep learning models. 18

4.2 Distribution of the payload size in the packets for malware captures
(log scale). 20

4.3 Packets and mean payload size distributions of TCP flows for mal-
ware captures. 21

4.4 Packets and mean payload size distributions of UDP flows for mal-
ware captures. 21

4.5 Distribution of the payload size in the packets for normal captures. 22

4.6 Packets and mean payload size distributions of TCP flows for normal
captures. 22

4.7 Packets and mean payload size distributions of UDP flows for nor-
mal captures. 23

5.1 Deep learning architecture for Raw Packets representation. 28

5.2 Deep learning architecture for Raw Flows representation. 31

5.3 Overfit small subset of data to check model capacity. Example for
Raw Packets configuration. 36

6.1 Learning process (loss and accuracy evolution after each epoch) and
ROC curve for the Raw Packets representation. 39

List of Figures

6.2 Learning process (loss and accuracy evolution after each epoch) and
ROC curve for the Raw Flows representation. 39

6.3 Deep learning architecture for multiclass classification of malware
traffic, using Raw Packets representation. 41

6.4 Evolution of the learning process (loss and accuracy after each
epoch) for the multiclass malware classification problem. 41

6.5 Normalized confusion matrices (showing percentage values) for both
random forest and deep learning models. 42

56

	Acknowledgments
	Summary
	Introduction
	Deep Learning
	Mathematical model of a single unit
	Fully-Connected
	Convolutional Neural Networks
	Pooling

	Recurrent Neural Networks
	Long Short-Term Memory

	Easing the training process
	Batch Normalization
	Dropout

	Related Work
	Shallow Machine Learning
	Deep Learning

	Input Representations and Datasets Construction
	Input Representations
	Building the Datasets
	Malware Captures
	Normal Captures
	Design Criteria

	Deep Learning Architectures for Malware Detection
	Raw Packets deep learning architecture
	Raw Flows deep learning architecture
	Remarks on the number of parameters
	Hyperparameter optimization
	Number of filters and filter size of CNNs layers
	Learning rate
	Optimizer
	Regularization
	Checking the model capacity

	Experiments and Results
	Malware Detection: A First Approach Using Deep Learning
	Deep learning vs. shallow models with raw inputs
	Packet vs. flow representation performance
	Domain knowledge vs. raw inputs

	One Step Further: from Malware Detection to Malware Classification

	Conclusions and Further Work
	Bibliography
	List of Tables
	List of Figures

