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Resumen

En el presente articulo presentamos condiciones suficientes para la unicidad del equilibrio
walrasiano, para economias con espacios de consumo de dimensi6n infinita.

Mediante la funcién exceso de utilidad, transformamos el problema de hallar condiciones de
unicidad en un espacio de dimensién infinita, en un problema equivalente en un espacio de
dimensién finita.

Las propiedades de dicha funcién permiten usar técnicas conocidas de la topologia diferencial,
para obtener condiciones de unicidad.

La funcién exceso de utilidad aparece como una herramienta poderosa para caracterizar el

conjunto de los equilibrios, especialmente en aquellos espacios donde la funcién exceso de
demanda no surge como un resultado natural del proceso de maximizacién.




1 Introduction

Conditions for uniqueness of equilibrium in economies with finite dimensional consumption space
are well know, while uniqueness result in economies with infinite dimensional consumption space
are scarcer.

Dana (1991) was the first one to obtain an uniqueness result in infinite dimensional consump-
tion spaces. She considers the case of a pure exchange economy where the agent’s consumption
space is L% (1) and agents have additively separable utilities.

We consider a pure exchange economy with consumptions spaces that are a finite cartesian
product of measurable functions. Utility functions are additively separable (see Section 1).

The propertics of the excess utility function (see Section 2) allow us to apply degree theory
to the considered economies. We prove that the cardinality of equilibrium for these economies is
odd and we obtain suficient conditions for uniqueness of equilibrium to hold.

By means of the excess utility function, we transforming an infinite dimensional optimization
problem in a finite dimensional one.

In section 3 we illustrate the developed theory with some examples.

In the last section the proof of theorems are given.

2 The Model

Let us consider a pure exchange economy with n agents and [ at each state of the world.

The state set is a measure space (24, v).

*I wish to thank Aloisio Araujo, Paulo K. Monteiro and Ricardo Marchesini for useful comments and suggestions
and also Rose Anne Dana for sending me her preprint about Uniqueness under Gross Substitute hypothesis.




We assume that each agent k has the same consumpltion space, M = ngle where M is
the space of all nonnegative measurable functions defined on (2 A,v)

Following Mas-Colell (1990), we consider the space A of the C*(R',) utility functions U.
Utilities are strictly monotones, differentiably strictly concaves and propers.

This space is endowed with the topology of (‘2 uniform convergence in compact.

More precisely we say that {U,,} — U if for each compact A" C R,

”Un - U”K =

ess sup mealy\;_(llln(s,z) = U(s,2)| + |0Un(s,2) — U (s, 2)| + |0*Un(s, 2) — 0*U(s, 2)]
s€Ql 2

go to zero with n.
Agent k is characterized by his utility function u, and by his endowment w;.

From now on we will work with economies with the following characteristics:
a) The utility functions ug : X; — R are separable and they are represented by
u(2) = [ Uus,a(s)us) M
with z € M,
b) the Ui(s,.) belongs to a fixed compact subset of A,

c) the agents’ endowments, w; € M are bounded above and bounded away from zero in any

component, i.e. there exists € and H with e < wy; < H
The following definitions are standard.

Definition 1 An allocation of commodities is a list z = (T1,...,5) where'zj 10— R

i 3 ={1,...,n} is measurable, and °_, z,(s) < Dohe wils)
Definition 2 A commodity pricre system is a mesurable function p: Q — Rl++v and for any
z € R! we denote
(7,2) = [ p(s)x()dn(s)
Definition 3 The pair (p, ) is an equilibrium if:
i) x is an allocation,
) (p,z)) < (p,w;)) < oo Vi

1) if (p,2) < (p,w;) with 2:Q — R, ., then

/Q Ui(s, 2i(s))dv(s) > /ﬂ Ui(s, 2(s))dv(s) ¥ i.
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3 The Excess Utility Function

In order to obtain our results we introduce the excess utility function.
For all A in the (n — 1) dimensional open simplex, A"=!, and for all s in 2, there is a solution

in R’}_’+, z(s, A), of the problem

. ' max 3°; AiUi(s, zi(s)) ' 2)
subject to ¥, z;(s) < T, wi(s) and z;(s) > 0.

See Mas-Colell (1990) for more details.

For this solution, the following identities hold
AOU(s,2(s,A),w) = y(s,\,w) Vi=1,...,n and Vs € . (3)

Where )«,-g% =7y withe={l,...,n}and j = {1,...,1}

Let us now define the excess utility function.
Definition 4 We say that ¢ : R} — R™ ¢(A) = (e1(N), ..., en(N)), with
() = %[27(5,A)[wi(s,A) —wi(s)ldv(s), i =1,...,n. (4)
is the excess utility function.

Each cquilibrium (p, ) can be characterized by an unique A € A ! such that e(A) = 0.

This is shown in the next proposition
Proposition 1 The pair (p, z) is an equilibrium iff p(s) = (s, A); z(s) = z(s, A) with ¢(A) = 0.

Proof: For each A € A" there corresponds an unique y{(s, A) R’++ and ‘an alocation
z(s) = 2(s, A) such that (3) follows.

If we call A an equilibrium whenever (p(s),x(s)) is an equilibrium, we have that A is an
equilibrium iff e(A) = 0.

Its convenient to introduce the following definition.

Definition 5 Let us define by E the set:

E={le A" :¢(X) =0}




that will be called, equilibrium set.

As we have that
esssup |OU(s,wi(s))] < oo
SEN i .
then E is a non empty set, see Araujo-Monteiro (1988)

Let us now consider the product space A x M of the characteristics (U, w), with the C? uniform
convergence in compact.

That is if (Un,w,) — (U, w) if for each compct K € Ry,
(U, w,) = (U, w){| i — O with n.
Where [[(U, w)llx = l(O)lIx + |lwll =
esssup max((U] + U] + 10°U] + [lu(s)l)

This is a metrizable space and the induced metric can be taken as:

R (A7 T
Il = 3 2 T

Where

U0l = Wlny + lloll = esssup max((0/]+ [0U] + 1020 + [jul)
s€QZ2EKR . .

Let T' be the set of economies with characteristics in A x M such that zéro is a regular value
of its excess utility function.

Mas-Colell (1990) proves that I is open and dense in the set of economies.

From now on we will work with economies in T'.

As for economies in T, zero is a regular value of the e(A) we have for all A € E that
J(e(A)) maps Th873! — ThSm3!. : o ’

Hence the rank of J(e(\))is n — 1.

The determinant of this map is equal to: . "

[Hpd(e(A)] = [ J(igrA)) 3}

See Mas Collel (1985) B.5.2.

Definition 6 Then we put signJ(e(A)) = (+1) — 1 according to whether det{llTJ(e(A))](>0) < 0



We are now in condition of stating our main result:

Theorem 1 Consider an economy with infinitely dinnensional consumnption set, separable utilitics

satisfying the conditions in section 1), then:
(1) The cardinality of E is finite and odd,

(2) If signd(e())) is constant in E, there ezists an unique equilibrium, where J(e(\)) denote the

Jacobian of the excess utility function.

4 Examples of Economies With Uniqueness

In this section we consider some examples with uniqueness of equilibria.

Let [J(e(A))];; be the term in the row i and column Jj of the Jacobian of the excess utility

function. p (,\)
(e = =5
J
Then , ‘ ’
[J(e(A)];; :/ a{al .'(s,zi(s,/\))[ifi(b,/\)~ ’wi(S)]}dU(s) 5)
4 Q dA;
where 9U; = (a—“, ,3—2:—1-) and z;(s,A) = (244(s, A), .., 2y(5, A)).
We have that au [a%—'/é]-’\l] d%U; with [23_-}1)] = (%—If},, %IT',L) and
02(/,-/6212 32U5/(?$18$2 02(/,'/61:1(')1‘[
U = (')2(/,'/(‘)1'231:1 (92U1'/5:I:22 cee ()2[/5/02231:1
QUi /0zdz, Ui [0midTy - 0,0

Then, we obtain

d.z,

(M) = [dluu (8, A) [2:(5,A) = wis)]" + (DUi(s, 2i(5.0))"] di(s). - (6)

4.1 Economies With Gross Substitute Property.

Following Dana (1991) we say that the excess utility function displays the Gross Substitute prop-

erty if satisfies the next definition.




Definition 7 The excess utility function displays the so called “Gross Substitute” property, if:

-‘9—(‘;‘§~;\)(>0)<o if(i=0)i# ]

Proposition 2 If the excess utility function has the Gross Substitute property, then signJ(e(A))

is constant,

Proof: Let A be (n - 1) x (n - 1) northwest submatrix of {J(e())) + [J(e(A))]}.

From Gross Substitute property we can prove that A has dominant diagonal positive. See
Lugon (1991). . " _

Let v, = (0,...,1), as rank J(e(A)) is (n = 1); then for all vetor z such that zv, = 0 we have
that zJ(e(A))z > 0. » ;

Now take v # 0 with Av = 0 and let Ve =0+ ald;ifa = —K—:’:, then v, = 0

If e(A) = 0 we have that .vo,J(e(/\))v,, = vJ(e(N)) > 0.

That is if ¢(A) = 0 then J(e(A)) as a map from T), to T) its determinant has sign (--1)"-1,

Now the Theorem 1 guarantees the uniqueness.

4.1.1 Economies With One Good in Each State.

Economies with one good in each state of the world and utility functions with the next property,

U U
W(f—w)*f'*é;ZO, (*)

have Gross Substitute property. Sce Dana (1991)

For the following two examples the above condition is satisfied. |
Example 1 Suppose an economy with individual’s utilities -
ui(z) = /n Ui(z(s))gi(s)du(s), with g; : Q@ — RT andi = {1,...,n}.
If Ui(z) satisfy (*) then we have uniquencss.
For instance: u;(z) = Jaz(s)ge ™ du(s) withO< a < landr > 0
Example 2 Let us now consider economies with the following utilities: *

uz) = /ﬂ [ai(s) + bi(s)z(s)] ™ dps(s).

Where a;(s) > —w(s) bi(s) > 0 and0 < «; < 1

For these economies (*) is satiesfied.




Remark: The property d[zdU] > 0 is equivalent to risk aversion smaller than one.

Example 3 If the economy has one good in each state of the world ie. z: Q— R, and If each

agent has risk aversion is smaller than one, then the economy dz'splag) Gross Substitute property.
Remark: When z(s, ) : & — R, the fact that
.’Ei(b’, /\1, ceny /\k_], Yy Ak-}-]’ ceny /\71) )

is increasing for A; and decreasing if Ay, k # ¢ has economical sense because z() is a solution of
the social choice problem. ; L
If the social weight of i — th agent is increased, then the consumption bundle of the agent must

also increase.

4.2 Separable Goods Economies

Consider economies with good-separable utility functions i.e.

92U, . .
SrdaF = 0 Vhe{l,.,n}andi, k € {1,..,i},1 # k.

Proposition 3 Let U be a utility function that is both additively separable and good separable. If
O?Un(s, (8, A\))[zn(s, A) — wh($))' + [QUL(s, 2n(5, A))]'" > 0 (<« 0) (7)
Vhe {l,..,n}ands € ,

then we have uniqueness.

Proof:

From the first order conditions, (2), we have that

AMOU (s, 21(s, M) = --- = XU, (s, 2,.(5,))
that is U U
ot = 2Un
Al(’)z" =...= /\"(‘)z" vk € {1,...,1}

where

zh = (x),...zh) 1 <h <

Taking derivatives with respect to Aj (j € {1,...,n},) and recalling that 92U, /0x* 9% = 0 it follows

that . . \
oxk dzi dck
Alaxkﬁ;—'--—/\jajka—/\;*'bm—-'-—/\nunk-aTj o )
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where

92U, _ OU,
apf = azkz and bhk\—- —é—;;
Let w*(s) be the total endowment of good k. R .
From z§(s,A) + ... + z5(s, A) = w¥(s) we obtain that
()11 ().c,k, -
—= =0. 9
ax, tt ey, ®
From (8) we obtain the following equation
Ak Dk
Maw dzp _ d2f -, £ 7. (10)

/\ha;,k z‘),\,- - —5/—\;’
Replacing (10) in (9) and without loss of generality supposing that j # 1 and j # h # 1 give us

ok
.(h_l + - g:t__ 81"] Z —1— /\](l]k =0
X Aj (’)/\ A Ry Mlhk ‘

or equivalently

ok ok ) -
Osj 4 Ot {Z——'——}Am::o. (i)

() ()/\ z\haM
From (8)
oz} Oy :
- A5 , + Ajag—+ (‘)A = —bj. | (12)
Finally, replacing (12) in (11) we obtain
?ﬂ bk <0
9 Najphan Th e
k&
gi <0 ,Vkand i # j. (13)

From the fact that z()) is homogeneous of degree zero we obtain that.
Jah

14
()/\ >0 Vk and j. (14)

Then (13) and (14) are sufficient conditions to obtain (8) of Proposition 2.

The following example ilustrates this proposition.




Example 4 Economies with utility functions such that

()[.EM] >0 (15)
dz

have a unique equilibrium price.

In order to prove the proposition recall that:
1) wi(s) is positive for all i and s ¢ Q,
2) the Hessian is a diagonal matrix with negative entries

For instance, economies with the following utility functions

N

Uz) = '/Q[ijuj(ij)](llt(s)
j=0

s &y ui(r;) = 1‘;’ and 0 < p < |
Then we have Gross Substitute property.

with o = x4, . 0 < aj <1

4.3 Economies With Two Goods and Two Agents.

Let £ be an economy with two goods an two agents, (u,, wi), @ = {1,2}
From the first order condition we have that:

/\lall,‘(.’tl) = A20Uz(.’L‘2)
where 2 = (z},z}). Taking the derivative with respect to A in the above identity we obtain

. ol de? dx) dzt .
b+ a5t 4 APt = aga @ Gxe + M oy =12 (16)

where o2
iy 'k (-
U = 5 and b) =
Let wi(s) be the endowment of good i. Then

o, .
}#; la]ak=]72'

ri(s,z\)%—z;(s,/\): wi(s). (17)

Hence -

. =2 18
3/\,’ BAj ’ } ' ( )




Replacing (18) in (16); the below equations follows

u)()fl

— _ht
N b

(Mait + Agal! )d/\ + (/\1a

. oz} J )
(Mraf' + Apad! o, Lt (20?2 + Nya? ) L’ = —b3.
Then
daf _ 1| -0} Maf? + Apaf? (19)
(9/\1 - AV, —b% /\1&22 + /\3(122 : )
and
Oz _ 1| Maf' + Apal' -b] (20)
6/\] - /\1(1%‘ + )\2(1%1 —b% ]

where 7 is the determinant of a 2 x 2 hessian matrix of a convex combination of differntiably
strictly concave functions, then 7 is non negalive. We suppose that 57 > 0.

From the fact that z(A) is homogeneous of degree zero [see Property 2,( Sec 1)] we obtain that

Ozt dat : '
.sgnaj\] = —sgna;k i=1,2 and j # k. o (21)
From (17), we obtain that: .
—d = 2k = ;. 22
o, , t=1,2 and j # & o | (22)

The next proposition follows.
Proposition 4 If gi—;l V i=1,2 andj = 1,2 has the same sign and if
sgn [32(/,~.(.1:‘ - w) + B(Ji] be constant, | (23)
then uniqueness follows. |

Proof: In this conditions Gross Substitute property follows..

A suficient condition to obtain (23) is that:

, ‘ J;
[02(/,'.'411,'] < Oand(')[ M] >0
o O

Example 5 FEconomies with aL > 01 # J, and k = 1,2 salisfying (23), have uniqueness of

equzhbrzum

106




Example 6 Suppose an economny with

w(X) = /Q (a(s)z(s) + b(s)y(s))*dp(s)

w(X) = /Q(z(s)" + y(s) )y s).

Where X = (z2,y)0 < {e,83,7} <1 with a and b integrable functions : @ — R**.
The endowments are w; = {w;,, w;,} '
We oblain that

3*Ua.(z) + OU; = o*(az + by)* '{a,b} > 0
*Vw? = ala - 1)(az + by)* *aw; + bw,, bw, + awy} < 0

Then

[02U)(z ~ w)+ AUy > 0

From (19) and (20) it follows that

) b . _
. = - gatez + by hay(y = D3 > 0
91 % afazs + by ) A~ 1) > 0

(9/\1 v

Those conditions are stisfied for uy because il is a separable utility function.

Uniqueness follows.

Example 7 The same result is obtained with

w(X) = /Qtog[a(s)z(snb(s)y(s)du(s).

and u, a separable ulility function.

5 Proof of Theorems

In order to prove those theorems, we need the following lemmas:

Lemma 1 The excess wlility function is (1.




Proof:
(s, A, w) and z;(s, A, w) are C'! with with respect to A

To see that this is truth, observe that if z(s, A)is a solution for (2) then we have the following .
identity:
n . T
Zz,(s,/\,w) = Zwi(s). (21) .
i=1 i=1

Now let us consider the sistem of equations:

A,‘()U,‘(S,.’L‘(S,/\), w): ’7(51’\1'“7) (‘i)
Z?:l .’L‘,‘(S, /\,‘U)) = Z?:lwi(s)' (1)
From the implicit function theorem, taking derivatives in the above sistem, with respect to z

and v, we obtain a matrix with the following form:
A B
M = [ B 0 ]

Where A is a(nl) X (nl) matrix,

[ U}, - Ull] 0 - -2 0
: : : 0O -+ --- 0
vl Ul]l 0O - - 0

A= 0 - 0 . s .o 0
P Uy e U

0 0 0 .- Up .- Uy |

and . -
1 06 --- Q

ot .-~ 0

00 - 1

b= 1 (]

1 -0

_0 0 1]

That is B is a ! x (n!) matrix
Claim There is not a vector z = (v, w) # 0 such that Mz = (.
Proof Let v such that Mz = 0, then

BYv =10 (25)
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and
Av+ Buw =0 : (26)

. Then for (4) and (5), we have that
v Av =0 (27)

N If v € ker B then
nt vyt ot Yo =0
V2t Vg2t ot Ypogyg2 =0

v + v + RS Vpt = 0
Observe that

i)i,\*’uf =
=1

Ut out Ut ot ou™

ou! n -
A 81, B

Al A R - —
{ dz,’" Oz 77" Oxy U0z, Oz, ’
:{71a721"-’71:""7117%"-77‘1"'371772’--'171}

Then

P NUYwv=y(vi+ v 4.+ Vpoayg) +o v+ v+ oot og) =00 (28)

i=1

Because 3" AU is diferentiably strictly convex, (6) and (7) we have that v = 0.
B is a injective matrix then, from (6) w = 0.
We have that z = 0. Proving our claim.

From the claim and the fact that (U/;(s,-), is in an compact set of A, the lemma follows.
Lemma 2 The excess utility function has the following properties:

1) e(A) is homogeneous of degree zero;

2) Ae(A)=0,¥YAe Ry ;

3) therc exists k € R such that e()) << k1.

4) lle(All = 00 as A; > 0 for any i€ {1,..,n};

5) de(N) : To(s)*™1 — T,(s)n~1.




Proof: To prove 1) note that z;(s, w, )} is homogeneous of degree zero Vsi € .
Properties 2, and 4 are immediate. Property 5 follows from the fact that zero is a regular

value of e.

To prove Property 3, note that from equation (2) we cau write

ei(A) = /‘)(')U,-(s,:ci(/\))[zg(s, A) — wi(s)]dv(s). -

From the concavity of U; it follows tﬂat:
Ui(s,z(s,2)) = Ui(s,w(s)) > OU;(s,z(s, A)Hzi(s, A) — w(s)).

Therefore,

e;(/\)g/n(/,‘(.s,a:,'(s,/\))—U,'(w,'(s))du(s)g/n U‘-(j;ztle(s))du(s),‘v’z\.

If we let

bi= [ U( wi()du(s) and k= sup k,
Q i=1 tgign

Property 3) follows.

We can now prove the following lemmas:

Lemma 3 : The ezcess utility function is an outward pointing vector field on the tangent space
of STt = {Ae Ry, : IINl| = 1).

Proof: With a straightforward application of Property 2 of lemma (2) we obtain that for all
A €St e(A) €ThS. l
To prove that e(A) is an outward pointing vector field, let us now define 2;
. ei()‘m)
z = lim e
) r\m—w\Eas_';Il ”e(A"l)“
By Property 3 we know that there exists k& € R such that e;(A) < k and by Property 4,
[le(A)]] = oo. Then we conclude that z; < 0.

Furthermore, 2; could be different from zero only if A\; were zero. This follows from the fact

that if A; is different from zero, then we can write

-1 k*
€,’(/\m): 3 Zej(/\m) 2 ——A "

ma J#l

Letting &' = —k*/A,,;, we have that &’ < ¢;(A,,) < k. Hence z; = 0.

14




Strictly speaking, we have proved that we have a continuous outward pointing vector field for
almost any point in the boundary of S_’;;‘. The excess utility function has similar properties to
those of the excess demand function. Mas-Colell (1985) proves that for excess demand functions
there is an homotopic inward vector field for all points of the boundary S_’;;‘. In our case, with
an analogous proof, we can obtain an homotopic outward vector field for excess utility functions.

Proof of Theorem 1

From the fact that e(A) is homogeneous of degree zero we can define the equilibrium set as
E = {X e Si7 ie()) = 0}

From property 4) in lemma (2) and from the continuity of e we have that if {A,} €
E,and A, — A, then A € F.

Then E is a compact set in R 1.

Moreover, from the fact that zero is a regular value of ¢, we have that F is a finite set.

Since S77! is homeomrphic to the (n ~ 1)-dimensional disk, its Fuler characteristic is one.

On the other hand, e() is an outward vector field on the tangent space of b';{;', then item 1)
follows, from the Poincaré-Hopf theorem.

Now item 2)is a straightforWard aplications of the Poincaré-Hopf theorem.

Because:

1= Z signdetJ(e())).
{A:ie(A=0)}

15
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