
Energy-aware scheduling in distributed
computing systems

Santiago Iturriaga

Programa de Doctorado en Informática de PEDECIBA

Facultad de Ingenieŕıa

Universidad de la República

Montevideo – Uruguay

Setiembre de 2017

Energy-aware scheduling in distributed
computing systems

Santiago Iturriaga

Tesis de Doctorado presentada al Programa de

Posgrado en Informática de PEDECIBA, Facultad

de Ingenieŕıa, Universidad de la República, como

parte de los requisitos necesarios para la obtención

del t́ıtulo de Doctor en Informática de PEDECIBA.

Directores de tesis:

Sergio Nesmachnow

Bernabé Dorronsoro

Director académico:

Sergio Nesmachnow

Montevideo – Uruguay

Setiembre de 2017

Iturriaga, Santiago

Energy-aware scheduling in distributed computing

systems / Santiago Iturriaga. - Montevideo: Universidad

de la República, Facultad de Ingenieŕıa, 2017.

XV, 162 p.: il.; 29, 7cm.

Directores de tesis:

Sergio Nesmachnow

Bernabé Dorronsoro

Director académico:

Sergio Nesmachnow

Tesis de Doctorado – Universidad de la República,

Programa en Informática de PEDECIBA, 2017.

Referencias bibliográficas: p. 141 – 162.

1. centro de datos, 2. eficiencia energética,

3. planificación de tareas.

INTEGRANTES DEL TRIBUNAL DE DEFENSA DE TESIS

Pascal Bouvry

Grégoire Danoy, revisor

Juan José Durillo, revisor

Pablo Monzón

Franco Robledo, presidente

Montevideo – Uruguay

Setiembre de 2017

iv

Agradecimientos

Agradezco a Sergio por haberme guiado durante todo mi doctorado. Su per-

manente e insistente estimulo me motivó a seguir adelante en todo momento.

Sergio ha estado fuertemente involucrado y me ha guiado en todos los detalles

de la tesis, desde la concepción de sus objetivos, pasando por la investigación

misma, y hasta la redacción de los art́ıculos resultado de esta investigación.

Sus aportes han sido invalorables.

Agradezco también a Bernabé por su confianza y apoyo. A pesar de las

distancias, Bernabé supo estar presente en instancias claves de mi doctorado

y realizó valiosos aportes a mi formación.

También agradezco al Instituto de Computación por el apoyo que me brindó

y en particular a mis compañeros por cubrirme durante mis estancias de in-

vestigación en el exterior. Agradezco a la Comisión Académica de Posgrado,

la Comisión Sectorial de Investigación Cient́ıfica, la Agencia Nacional de In-

vestigación e Innovación, y el Programa de Desarrollo de las Ciencias Básicas

por sus apoyos económicos sin los cuales no me hubiera sido posible concluir

mis estudios.

Finalmente, un agradecimiento aparte merece mi familia. Mi madre, mi

padre y mi hermano que me apoyaron en todo momento, y Caro que soportó

estos dos últimos años de trabajo y me acompañó en todo momento, aún

durante estancias de investigación en el exterior. A todos ellos dedico este

trabajo.

v

RESUMEN

Los sistemas informáticos distribuidos, como los centros de datos, son clave

para satisfacer la demanda informática moderna. Sin embargo, su consumo de

energético se ha convertido en una gran preocupación. Se estima que mundial-

mente su consumo energético rondó los 270 TWh en el año 2012, y algunos

prevén que este consumo se cuadruplicará para el año 2030. Maximizar si-

multáneamente la eficiencia energética y computacional de los centros de datos

es un desaf́ıo cŕıtico. Esta tesis aborda dicho desaf́ıo mediante la planificación

de la operativa del centro de datos considerando un enfoque multiobjetivo para

optimizar simultáneamente ambos objetivos de eficiencia.

En esta tesis se estudian múltiples variantes del problema, desde la plan-

ificación de un único centro de datos hasta la de una federación de múltiples

centros de datos geográficamente distribuidos. Para esto, se formulan modelos

matemáticos para cada variante del problema, modelado sus componentes más

relevantes, como: recursos computacionales, carga de trabajo, refrigeración, re-

des, enerǵıa verde, etc. Para resolver el problema de planificación planteado,

se diseñan un conjunto de algoritmos heuŕısticos y metaheuŕısticos. Estos son

estudiados exhaustivamente y su eficiencia es evaluada utilizando una bateŕıa

de herramientas estad́ısticas.

Los resultados experimentales muestran que los algoritmos de planificación

diseñados son capaces de aumentar significativamente la eficiencia energética

de un centros de datos en comparación con métodos tradicionales planificación.

A su vez, los métodos propuestos proporcionan un conjunto diverso de solu-

ciones con diferente nivel de compromiso respecto a la eficiencia computa-

cional del centro de datos. Estos resultados confirman la eficacia del enfoque

algoŕıtmico propuesto.

Palabras claves:

centro de datos, eficiencia energética, planificación de tareas.

vi

ABSTRACT

Distributed computing systems, such as data centers, are key for support-

ing modern computing demands. However, the energy consumption of data

centers has become a major concern over the last decade. Worldwide energy

consumption in 2012 was estimated to be around 270 TWh, and grim forecasts

predict it will quadruple by 2030. Maximizing energy efficiency while also

maximizing computing efficiency is a major challenge for modern data centers.

This work addresses this challenge by scheduling the operation of modern data

centers, considering a multi-objective approach for simultaneously optimizing

both efficiency objectives.

Multiple data center scenarios are studied, such as scheduling a single data

center and scheduling a federation of several geographically-distributed data

centers. Mathematical models are formulated for each scenario, considering

the modeling of their most relevant components such as computing resources,

computing workload, cooling system, networking, and green energy generators,

among others. A set of accurate heuristic and metaheuristic algorithms are de-

signed for addressing the scheduling problem. These scheduling algorithms are

comprehensively studied, and compared with each other, using statistical tools

to evaluate their efficacy when addressing realistic workloads and scenarios.

Experimental results show the designed scheduling algorithms are able to

significantly increase the energy efficiency of data centers when compared to

traditional scheduling methods, while providing a diverse set of trade-off so-

lutions regarding the computing efficiency of the data center. These results

confirm the effectiveness of the proposed algorithmic approaches for data cen-

ter infrastructures.

Keywords:

data centers, energy efficiency, job scheduling.

vii

Preface

The main contributions of this thesis are based on the following publications.

• Iturriaga, S., Dorronsoro, B., and Nesmachnow, S. (2017). Multiobjec-

tive evolutionary algorithms for energy and service level scheduling in

a federation of distributed datacenters. International Transactions in

Operational Research, 24(1-2):199–228.

• Iturriaga, S. and Nesmachnow, S. (2016). Scheduling energy efficient

data centers using renewable energy. Electronics, 5(4).

• Iturriaga, S., Nesmachnow, S., Tchernykh, A., and Dorronsoro, B.

(2016). Multiobjective workflow scheduling in a federation of hetero-

geneous green-powered data centers. In IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing, pages 596–599.

• Iturriaga, S. and Nesmachnow, S. (2015). Multiobjective scheduling of

green-powered datacenters considering QoS and budget objectives. In

Innovative Smart Grid Technologies Latin America, pages 570–573.

• Iturriaga, S., Garćıa, S., and Nesmachnow, S. (2014). An empirical study

of the robustness of energy-aware schedulers for high performance com-

puting systems under uncertainty. In Hernández, G., Barrios Hernández,

C. J., Dı́az, G., Garćıa Garino, C., Nesmachnow, S., Pérez-Acle, T.,

Storti, M., and Vázquez, M., editors, High Performance Computing,

volume 485 of Communications in Computer and Information Science,

pages 143–157. Springer, Berlin, Heidelberg.

viii

List of Figures

1.1 Estimated annual energy consumption of data centers in the

United States between 2000 and 2020 (Shehabi et al., 2016). . . 2

1.2 Power schema of a modern data center. 5

3.1 Data center scheme considering energy consumption and quality

of service. 41

3.2 Representation of a sample solution. 46

3.3 Example of the three point recombination operator for the Non-

dominated Sorting Genetic Algorithm, version II (NSGA-II). . . 47

3.4 Power reference profiles. (a) profile A; (b) profile B; and (c)

profile C. 52

3.5 Green power generation profiles. (a) morning profile (g1); and

(b) midday profile (g2). 52

3.6 Relative hypervolume computed by Epsilon-Variable Multi-

Objective Genetic Algorithm (ev-MOGA) and Non-dominated

Sorting Genetic Algorithm version II (NSGA-II) for each work-

load size. (a) small workload size; (b) medium workload size;

and (c) large workload size. 55

3.7 Relative hypervolume computed by Epsilon-Variable Multi-

Objective Genetic Algorithm (ev-MOGA) and Non-dominated

Sorting Genetic Algorithm version II (NSGA-II) for each green

energy profile. (a) morning profile (g1); (b) midday profile (g2);

and (c) night profile (g3). 55

3.8 Best aggregated Pareto front computed by each algorithm for

medium-sized workloads and for each green energy profile. (a)

morning profile (g1); (b) midday profile (g2); and (c) night pro-

file (g3). 56

ix

3.9 Average relative budget improvement over business-as-usual

scenario and relative deviation from power reference computed

by ev-MOGA for a relative quality of service over 95% 58

4.1 Overview of the scheduling problem in a federation of datacenters 64

4.2 Solution encoding. 79

4.3 The PMX recombination operator. 80

4.4 Workflow types used in the experimental analysis 83

4.5 Aggregated (a) left over time units of all solutions meeting the

SLA and (b) time units over the SLA for those solutions that

did not meet it. 91

4.6 Selected plots of the results provided by the heuristics and the

MOEAs. 95

5.1 Relative makespan, energy consumption and SLA violations val-

ues computed by the most accurate heuristic schedulers for all

instances. 112

5.2 Relative multiobjective metrics computed by the proposed

MOEA for all instances. 114

5.3 Sample results computed by the best heuristics and SMS-EMOA

for the large-sized scenarios . 117

6.1 Analysis of the proposed workloads. 129

6.2 Energy consumption for the three applications in the test (loop,

LINPACK, and FFT, respectively), and instant power usage

sample (loop test case) . 131

x

List of Tables

2.1 Summary of works dealing with energy efficiency of computing

elements. 33

2.2 Summary of works dealing with energy efficiency of cooling sys-

tems. 33

2.3 Summary of works dealing renewable energy sources. 34

3.1 Parameter settings for Non-dominated Sorting Genetic Algo-

rithm version II (NSGA-II), Epsilon-Variable Multi-Objective

Genetic Algorithm (ev-MOGA) and simulated annealing (SA). . 53

3.2 Average and standard deviation of the relative hypervolume

(RHV) computed by each algorithm for each workload size and

green power generation profile. 54

3.3 Average and standard deviation of the relative hypervolume

(RHV) for the best aggregated Pareto front computed by each

algorithm for each workload size and green power generation

profile. 56

3.4 Average and standard deviation for the relative budget reduc-

tion over the business-as-usual scenario (BAU), and relative de-

viation from the reference power computed by ev-MOGA for

quality of service over 95%. 57

4.1 Parameter configuration of the proposed MOEAs. 81

4.2 Characteristics of the processors considered for the DC infras-

tructures . 82

4.3 Gaps (with respect to the CP lower bound) computed by the

scheduling heuristics and the proposed MOEAs, for medium-

size problem instances . 87

xi

4.4 Results obtained with the two-level deterministic heuristic

schedulers . 89

4.5 Results of the Friedman statistical test on the studied heuristics 92

4.6 Comparison of the two multiobjective evolutionary algorithms

by means of their average value and standard deviation for three

different metrics (large problem instances) 93

5.1 Average and standard deviation gap values of the most accurate

high-level scheduling heuristics for all the problem instances. . . 111

5.2 Number of problem instances (out of 20) for which each MOEA

is the most accurate according to each metric for small- and

large-sized scenarios. 113

5.3 Average and standard deviation of improvement of the SMS-

EMOA scheduler for each objective when compared to the best

heuristic scheduler . 115

6.1 Error results and deviation from linearity for the three tests

performed . 131

6.2 Average makespan and energy deviation for the offline algorithms134

6.3 Average makespan and energy consumption improvement 135

6.4 Number of problem instances in which each of the proposed

heuristic compute the best makespan and energy consumption

value . 136

xii

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 State of situation and motivation 1

1.2 Research context . 3

1.3 Thesis contribution and organization 5

2 Towards energy efficiency in data centers: a literature review 8

2.1 Modeling approaches . 8

2.2 Efficiency of computing elements 11

2.3 Cooling efficiency . 18

2.4 Renewable energy sources . 24

2.5 Summary . 32

3 Scheduling Energy Efficient Data Centers Using Renewable

Energy 36

3.1 Introduction . 37

3.2 Related Work . 38

3.3 The Data Center Energy- and QoS-Aware Model 40

3.4 The Problem Formulation . 43

3.5 Multi-Objective Evolutionary Scheduling for Energy-Aware

Data Centers . 44

3.5.1 Solution Representation 45

3.5.2 Initial Population . 46

3.5.3 Evolutionary Operators for NSGA-II 46

3.5.4 Evolutionary Operators for ev-MOGA 47

xiii

3.5.5 Simulated Annealing for Post Hoc Optimization 48

3.6 Experimental Evaluation . 50

3.6.1 Problem Instances . 51

3.6.2 Parameter Settings . 52

3.7 Experimental Results and Discussion 53

3.7.1 NSGA-II and ev-MOGA Comparison 53

3.7.2 Comparison of ev-MOGA with the Business-as-Usual

Approach . 57

3.8 Conclusions . 58

4 Multiobjective evolutionary algorithms for energy and service

level scheduling in a federation of distributed datacenters 60

4.1 Introduction . 61

4.2 The problem: energy-aware scheduling in a federation of data-

centers . 64

4.2.1 Problem model . 64

4.2.2 Mathematical formulation 67

4.2.3 Related work . 70

4.3 Methodology and techniques . 72

4.3.1 List scheduling heuristics 72

4.3.2 Multiobjective evolutionary algorithms 73

4.3.3 Lower bounds for the problem 74

4.4 The proposed algorithms . 76

4.4.1 Heuristics . 76

4.4.2 Multiobjective Evolutionary Algorithms 78

4.5 Experimental evaluation . 81

4.5.1 Problem instances . 82

4.5.2 Experimental setup . 84

4.5.3 Development and execution platform 86

4.5.4 Numerical results . 86

4.6 Conclusions . 96

5 Energy aware multiobjective scheduling in a federation of het-

erogeneous datacenters 98

5.1 Introduction . 98

5.2 Modeling energy-aware scheduling in heterogeneous datacenters 99

xiv

5.3 The proposed two-level multiobjective evolutionary schedulers . 101

5.4 Experimental evaluation . 104

5.4.1 Problem instances . 104

5.4.2 High-level scheduling heuristics 105

5.4.3 Experimental setup . 107

5.4.4 Development and execution platform 109

5.4.5 Numerical results . 109

5.5 Conclusions . 116

6 An empirical study of the robustness of energy-aware sched-

ulers 119

6.1 Introduction . 119

6.2 Robust energy-aware scheduling under uncertainty 121

6.2.1 The energy-aware scheduling problem 122

6.2.2 Robust scheduling . 123

6.3 Related Work . 124

6.4 Robustness of energy aware scheduling heuristics 126

6.5 Modeling uncertainty . 127

6.5.1 The task execution time uncertainty model. 128

6.5.2 The energy consumption uncertainty model. 129

6.6 Experimental analysis . 132

6.6.1 Problem instances . 132

6.6.2 Results and discussion 133

6.7 Conclusions and Future Work 135

7 Conclusions and future work 137

7.1 Summary of conclusions . 137

7.2 Future work . 139

Bibliography 141

xv

Chapter 1

Introduction

This chapter introduces the motivation for the work presented in this thesis.

After that, it outlines the major contributions and the organization of this

thesis.

1.1 State of situation and motivation

Distributed computing systems are key for supporting modern computing de-

mands, currently processing billions of transactions over the internet every

day (Khan and Zomaya, 2015). These systems are comprised of many comput-

ing resources networked together and comprising a single data center, or several

data centers spanning different geographical regions. In the last decade, data

centers with thousands of computing resources have been deployed by well-

known business organizations, such as Microsoft, Amazon, and Google, among

others; and by scientific organizations, such as the National Supercomputing

Center in China, the Swiss National Supercomputing Centre in Switzerland,

the Oak Ridge National Laboratory and the Lawrence Livermore National

Laboratory in United States, and the Joint Center for Advanced High Per-

formance Computing and the RIKEN Advanced Institute for Computational

Science in Japan (Chalise et al., 2015).

The energy consumption of data centers has become a major concern for

environmental and economic reasons. Van Heddeghem et al. (2014) estimated

that the worldwide energy consumption of data centers in 2012 was around

270 TWh with an annual growth of 4.4% between 2007 and 2012. According

to Shehabi et al. (2016), data centers in the United States alone consumed

1

2000 2005 2010 2014 2020
0

10

20

30

40

50

60

70

80

Future trend

Past estimates

Year

A
nn

ua
le

ne
rg

y
co

ns
um

pt
io

n
(T

W
h)

Figure 1.1: Estimated annual energy consumption of data centers in the United
States between 2000 and 2020 (Shehabi et al., 2016).

about 61 TWh in 2006, around 1.5% of the total energy consumption of the

whole country that year. This is the amount of energy consumed by around

5.8 million average United States households. The energy consumption in-

creased to around 70 TWh in 2014, scaling to around 1.8% of the total energy

consumption of the country that year. Figure 1.1 shows the estimated annual

energy consumption of data centers in the United States from 2000 to 2020.

Figure 1.1 shows a huge leap in energy consumption from 2000 to 2005,

doubling the total energy consumption of data center in just five years. How-

ever, since 2008 energy consumption has greatly stabilized in comparison to

the first 2000-2005 period. Furthermore, energy consumption since 2008 has

stabilized while also meeting a constantly increasing computing demand for

data center services. Shehabi et al. (2016) argued this is mainly because of key

improvements on energy efficiency and because of the cloud paradigm pop-

ularization. On the one hand, the grim energy consumption predictions of

the 2000-2005 period motivated hardware manufacturers and data center de-

signers to invest into incorporating energy efficiency techniques in many areas

such as server power scaling, storage, networking, cooling systems, etc. This

greatly contributed for reducing energy consumption. On the other hand, the

increasing popularity of the cloud paradigm motivated the migration of many

small in-house data centers to huge outsourced data centers hosting cloud in-

frastructures.

2

With the cloud paradigm, efficiency is improved by simply sharing a com-

mon computing infrastructure. This paradigm provides a better utilization of

the computing resources, reducing their idle time and their energy consump-

tion.

Regarding the future trend, most studies agree energy consumption is ex-

pected to continue steadily increasing in the next few years, mainly for coping

with the annual network traffic growth expected until 2020 (Cisco Systems,

Inc., 2016). However, the accurate growth in energy consumption of data cen-

ters is difficult to predict. On the one hand, Shehabi et al. (2016) predicted

energy consumption will increase by 4% in the United States on the next few

years, reaching 73 TWh in 2020. On the other hand, Andrae and Edler (2015)

presented a much grimmer forecast predicting a 4.5% annual increase of the

worldwide energy consumption, surpassing 1000 TWh by 2030.

1.2 Research context

Much effort has been put into improving the energy efficiency of data centers.

When analyzing the energy consumption of modern data centers, studies have

shown that the most power-hungry components in a data center are central

processing units (CPUs) of the computing resources and the cooling systems.

Several studies show CPUs account for around 30% of the total energy con-

sumption of a data center and cooling systems account for around 35% (Da-

yarathna et al., 2016; Rong et al., 2016; Shuja et al., 2016a; Song et al., 2015;

Zhang et al., 2016). For this reason, many works have addressed the energy

efficiency optimization of these two components (Shuja et al., 2016a). An effec-

tive well-known approach for optimizing the energy consumption of CPUs con-

sists in intelligently applying dynamic power management (DPM) techniques.

These techniques include dynamic voltage and frequency scaling (DVFS) for

reducing energy consumption while the CPU is computing, or per-core power-

gating and power sleep states for reducing energy consumption while the CPU

is partially or totally idle (Pore et al., 2015). As for the cooling system, a

number of approaches with diverse scope have been proposed, such as novel

cooling techniques (Haywood et al., 2015), optimizing room design (Parnell

et al., 2016), optimizing hot-air recirculation (Lin and Deng, 2017), utilizing

free cooling (Kim et al., 2017), and recycling waste heat (Zachary Woodruff

et al., 2014), among others. Furthermore, in the last few years techniques

3

for addressing energy efficiency in data centers have been empowered by the

widespread dissemination of green energy sources (Deng et al., 2014). Many

modern data centers have incorporated on-site or off-site green energy genera-

tion into their infrastructures, reducing carbon footprint and operating budget

by partially or totally replacing traditional energy (Chalise et al., 2015). How-

ever, optimizing the usage of green energy sources is a major challenge itself.

Because of their unreliability, data center providers usually require error-prone

weather forecasts for predicting green energy availability (Shuja et al., 2016b).

The previously presented techniques contribute for improving the energy

efficiency of data centers. However, in order to take full advantage of most of

them, it is key to consider an accurate scheduling of the computing workload

of the data center (Dayarathna et al., 2016; Shuja et al., 2016b; Zhang et al.,

2016). Furthermore, an accurate scheduling algorithm requires a precise mod-

eling of the data center. By modeling characteristics of the data center state

(such as temperature, characteristics of computing resources, etc.) and inputs

to the data center (such as green energy availability, traditional energy pricing,

outside temperature, workload urgency, etc.), the scheduling algorithm may

operate the data center most efficiently for a given scenario. However, mod-

eling all these characteristics and the relationship between them is a complex

and error-prone matter. On top of the complexity introduced by the modeling,

the data center scheduling problem in its general form has been proved to be

NP-hard (Rodriguez and Buyya, 2017; Sun et al., 2016), turning the prob-

lem of computing an accurate schedule even more difficult when addressing

real-world scenarios. The key importance and the complexity of computing

an accurate schedule has turned this problem a major challenge to address for

modern data center infrastructures.

Figure 1.2 shows the generic schema of a modern data center infrastructure,

summarizing some of the previously presented concepts.

4

Created by Steve Morris
from the Noun Project

Created by Sarah JOY
from the Noun Project

Created by Arthur Shlain
from the Noun Project

Created by Ron Scott
from the Noun Project

Created by Adrien Coquet
from the Noun Project

Created by Gan Khoon Lay
from the Noun Project

Created by Ron Scott
from the Noun Project

Created by Veronika Krpciarova
from the Noun Project

Created by DesignBite
from the Noun Project

Off-site energy generators

Grid
distribution

network

On-site energy generators

Created by Erick Miranda Vazquez
from the Noun Project

UPS

Cooling system

Computing
resources

Scheduling
algorithm

Figure 1.2: Power schema of a modern data center.

1.3 Thesis contribution and organization

This thesis addresses the challenge of scheduling the operation of energy-

efficient data centers. It major contributions are the following:

• We present an extensive survey of the current state of the art with an

in-depth focus on the most recent works.

• We propose a model for the simultaneous optimization of computing

resources and cooling systems.

• We consider modern computing systems, modeling multicore computing

resources and renewable energy generators.

• We address several scheduling problems, considering scenarios with a

single data center and scenarios with several geographically distributed

data centers.

• We propose mathematical formulations for all the proposed problems,

simultaneously considering energy efficiency and quality of service (QoS).

• We design a data center model taking into account green energy fore-

casting, heat dissipation of its computing resources, and effectiveness of

its cooling devices.

• We approach the proposed scheduling problems using a multi-objective

methodology, computing and studying a Pareto front of schedules that

sample the trade-off between the considered objectives.

5

• We design a set of accurate multi-objective scheduling algorithms for

addressing the proposed problems.

• We construct a set realistic and diverse problem instances for evaluating

the proposed scheduling algorithms.

• Through extensive statistical analysis, we show the proposed algorithms

compute accurate schedules, adequately sampling trade-off solutions.

• We study the impact of execution time and energy consumption uncer-

tainties in the accuracy of different scheduling algorithms.

These contributions are organized in Chapters 2 to 6. Chapter 2 presents

a literature review analyzing the current state of the art.

Chapter 3 is based on article Iturriaga and Nesmachnow (2015) and article

Iturriaga and Nesmachnow (2016). In this chapter the scheduling problem of

controlling power consumption in a single data center is addressed, consider-

ing both traditional and renewable energy sources. The proposed scheduling

problem consists in simultaneously scheduling the power state of the servers

and the cooling system of the data center. The problem takes into account a

desired reference power consumption profile, the overall electricity budget, and

the QoS provided to its users. Two multi-objective evolutionary algorithms

are designed for solving the problem, both hybridized with a greedy scheduling

algorithm and a simulated annealing algorithm. Results show the proposed al-

gorithms are able to compute high QoS values and low power profile deviation

with average budget reductions ranging from 33% up to 83% when compared

to a business as usual scenario.

Chapter 4 is based on the articles Iturriaga et al. (2016) and Iturriaga et al.

(2017). This chapter addresses the multi-objective problem of scheduling a

large number of workflows in a federation of several geographically-distributed

data centers, with each data center being comprised of homogeneous comput-

ing resources. The proposed problem considers the simultaneous minimization

of three objectives: makespan, energy consumption, and number of workflows

violating a service level agreement (SLA). A two-level hierarchical scheduling

algorithm is designed for solving this problem. The hierarchical algorithm is

comprised of a high-level and a low-level algorithm. The high-level algorithm

schedules workflows to different data centers and the low-level algorithm sched-

ules each workflow to the computing resources of its assigned data center. A

constraint programming model it is also designed for finding lower bounds for

6

each objective for medium-sized instances, considering the relaxation of some

of the problem constraints.

Furthermore, five heuristics are introduced to address the online version

of the problem, and two multi-objective evolutionary algorithms (MOEAs) to

address the offline version of the problem.

Chapter 5 presents unpublished work, extending the approach presented in

Chapter 4 by considering data centers comprised of heterogeneous computing

resources and by considering networking communication. This new formula-

tion provides a more realistic modeling for nowadays data centers. It also

extends the experimental analysis by considering a total of 56 heuristic algo-

rithms for online scheduling and 3 MOEAs for offline scheduling. The accuracy

of all these newly proposed high-level schedulers is studied considering a set

of 100 diverse and realistic problem instances.

Chapter 6 is based on the article Iturriaga et al. (2014). In this chapter

a formulation for the energy-aware scheduling problem considering uncertain-

ties is presented. This formulation considers uncertainties in the execution

time of tasks and in the energy consumption of the computing infrastructure.

Real-world computing workloads are analyzed and workload generation model

considering uncertainties is proposed. Furthermore, empirical evaluations are

conducted to validate the proposed energy consumption model, and a set of

scheduling algorithms considering different strategies are evaluated. Results

show uncertainty values in real-world scenarios may significantly affect the

accuracy of the scheduling algorithm depending of its scheduling strategy.

Finally, Chapter 7 presents the overall conclusions of the work presented

in this thesis and outlines the main lines of future work.

7

Chapter 2

Towards energy efficiency in

data centers: a literature review

In the last decade, the problem of achieving energy efficiency in data centers has

become a relevant topic for the scientific community (Chalise et al., 2015). This

chapter presents and characterizes the most recent and relevant approaches for

improving energy efficiency in data centers.

The next section introduces an overview of the different modeling ap-

proaches for addressing the energy efficiency problem in data centers. Sec-

tion 2.2 presents works dealing with efficiency in computing components. Next,

Section 2.3 presents works which consider servers and cooling devices in their

model. After that, Section 2.4 presents works which consider renewable energy

sources for powering the data center. Finally, Section 2.5 summarizes all the

presented works.

2.1 Modeling approaches

Approaches for improving energy efficiency can be classified according to

whether they model energy efficiency by considering servers individually, group

of servers, whole data centers, or even federations of data centers. Arguably the

simplest model considers energy efficiency at server level. However, because of

its simplicity this level of modeling fails to properly consider the impact of non-

local aspects such as networking infrastructure and heat dissipation, among

others. A natural extension for this model consists in considering groups of

servers such as blades, racks, or whole aisles of servers.

8

Modeling a group of servers solves some of the shortcomings of the server-

level modeling by considering the interaction between a reduced number of

servers. However, it does not model the interaction between servers in dif-

ferent groups. Modeling this interaction is critical for accurately consider-

ing characteristics such as heat dissipation and air recirculation. As such,

many state-of-the-art approaches consider modeling at data-center level, de-

scribing the interactions of all energy consuming devices inside the data cen-

ter (Dayarathna et al., 2016). Recently, with the popularization of smart

grid technologies, much effort has been put to further extend the modeling

scope to consider federations of geographically-distributed data centers. This

level of modeling allows taking into account smart grid characteristics such as

location-dependent pricing schemes and renewable energy availability, among

others (Erol-Kantarci and Mouftah, 2015).

The most straightforward approach for achieving energy efficiency con-

sists in optimizing the energy consumption of computing components. Pore

et al. (2015) and Dayarathna et al. (2016) provided comprehensive surveys

on this topic by reviewing techniques for reducing the energy consumption of

the most relevant components at the server level, such as processor, memory,

disk, and network interface. Furthermore, they presented various approaches

for modeling energy consumption at group-of-servers and data-center levels by

considering cooling and networking efficiency. Most of these techniques rely on

dynamic power management (DPM) features supported by the hardware such

as dynamic voltage frequency scaling (DVFS) (Weiser et al., 1996), low-power

states (Meisner et al., 2009), per-core power gating (Leverich et al., 2010), or

even turning off servers (Lin et al., 2013). Rong et al. (2016) complemented

the works by Pore et al. (2015) and Dayarathna et al. (2016) by thoroughly

reviewing several data center efficiency metrics and discussing static and dy-

namic software techniques for energy efficiency, specifically targeting high per-

formance computing systems. Static techniques include compiler optimiza-

tion and coding ways, while dynamic techniques deal with resource schedul-

ing, workload management, and networking protocol optimization. Sun et al.

(2016) further dived into dynamic techniques and surveyed approaches for

workload prediction and allocation, studies global and local resource schedul-

ing methods, and characterizes workloads considering different types of appli-

cations. Furthermore, Sun et al. (2016) studied the impact of resource and

workload heterogeneity on scheduling strategies.

9

Finally, Shuja et al. (2016a) considered a different approach and addressed

the problem from the perspective of data center design by analyzing energy-

efficient design alternatives for the computing, storage, and communication

system.

On top of reducing energy consumption of computing components, several

works deal with optimizing energy consumption of cooling devices. This strat-

egy is most effective when considering a data-center level modeling. Fulpagare

and Bhargav (2015) and Oró et al. (2015a) presented a survey of state-of-

the-art designs for air-cooled data centers using either Computer Room Air

Conditioning (CRAC) or Computer Room Air Handle (CRAH). They also re-

viewed state-of-the-art techniques for liquid-cooled data centers. The study

analyzes the design of data centers from a thermal perspective and present op-

portunities for increasing energy efficiency, such as increasing the recommended

operational temperature of the data center and evaluating promising cooling

strategies. Zhang et al. (2014) and Oró et al. (2015a) reviewed strategies for

airside and waterside free-cooling systems, while Oró et al. (2015b) studied the

efficacy of airside free-cooling systems in relation to the geographical location

of the data center. Ebrahimi et al. (2014) studied the opportunities for waste

heat recycling in liquid-cooled data centers. This approach proposes applying

the heat dissipated by a data center to different uses, such as heating a neigh-

borhood or a greenhouse, water desalination or purification, and processing

biomass fuels, among others. Furthermore, many resource scheduling tech-

niques have been studied for optimizing thermal management. Zhang et al.

(2016) and Chaudhry et al. (2015) reviewed many thermal-aware schedulers at

group-of-servers and data-center levels. These thermal-aware schedulers aim

at minimizing the impact of the dissipated heat by preventing heat concentra-

tion in small areas (known as hotspots) in order to improve the efficacy of the

cooling mechanism.

Recently, powering data centers using renewable energy has become a key

approach when addressing energy efficiency problems. Shuja et al. (2016b)

presented several case studies of data centers powered by renewable energy,

such as Parasol (Goiri et al., 2015a), and introduced a number of open issues

and challenges regarding integrating renewable energy to data centers. In this

regard, Oró et al. (2015a) reviewed on-site and off-site integration approaches

of renewable energy generators and discuss their strengths and weaknesses.

10

One of the main challenges when considering renewable energy is the un-

certainty and the geographical dependency of energy availability. The are two

approaches for dealing with the uncertainty of energy availability, the reac-

tive and the proactive approach (Abbasi et al., 2014). A reactive system is

totally oblivious of the energy uncertainty and makes use of renewable energy

whenever is available and as much as possible. On the contrary, a proactive

system (also known as predictive system) relies on forecasting techniques for

predicting the amount of renewable energy available in the near future. A

well-known strategy for dealing with the geographical dependency of renew-

able energy is called “following the renewables” (Shuja et al., 2016b). This

strategy takes advantage of the global networking availability and considers

a federation of geographically distributed data centers. In this scenario the

computing workload is simply scheduled to data centers where renewable en-

ergy is available at each moment. The work by Rahman et al. (2014) surveyed

several resource-scheduling strategies following the geographically distributed

approach.

This thesis focuses specifically on improving energy efficiency by accurately

scheduling the data center’s operation. Several works consider this approach

and a number of scheduling strategies have been proposed considering differ-

ent characteristics of the problem. Lopes and Menasce (2016) provided an

extensive taxonomy of scheduling strategies considering the most cited papers

in the related literature. Complementing the work by Lopes and Menasce

(2016), Wu et al. (2015) and Rodriguez and Buyya (2017) presented precise

taxonomies by narrowing the scope and considering just strategies for schedul-

ing precedence-constrained jobs (known as workflows). Similarly, Guzek et al.

(2015) presented a comprehensive survey of evolutionary-based metaheuristics

for scheduling cloud infrastructures.

2.2 Efficiency of computing elements

Barroso and Hölzle (2007) showed that servers in data centers are mostly idle or

utilized for up to 50%, hence switching these idle servers to low-power states is

key when optimizing energy efficiency. Wang et al. (2011) addressed this issue

by proposing PowerSleep, a server-level online heuristic that applies several

DPM techniques to react to the computing load and efficiently switch a server

to a low-power sleep state.

11

Experimental results show PowerSleep outperforms DVFS by up to 27%.

On top of that, PowerSleep reduces power by up to 40% when compared to

PowerNap, a similar heuristic proposed by Meisner et al. (2009).

The low-power sleep state proposed by Wang et al. requires the whole

server to be idle. However, this is not always possible. Most of the time, servers

are partially used but not completely idle. For addressing these scenarios,

Leverich et al. (2010) introduced a DPM technique called core gating that

reduces the energy consumption of unused cores to almost zero. Experimental

results show average energy savings of 20% with no impact on the performance

of the system.

Many approaches rely on DPM techniques for reducing energy consump-

tion. Von Kistowski et al. (2015) studied the problem of distributing the

computing workload for minimizing energy consumption in single servers and

group of servers with multiprocessor architectures. The work states that bal-

ancing processor workload is a non-trivial problem and argues that current load

balancing approaches are based on generalized assumptions which are not true

for several hardware and workload scenarios. The authors proposed an online

hierarchical workload algorithm for distributing or consolidating workload in

processors and rely on automatic DPM features supported by the hardware

for reducing energy consumption. Experimental results show the proposed

strategy may reduce energy consumption by up to 10% when comparing with

a business as usual scenario.

Although experimental results show the efficacy of the approaches pro-

posed by Wang et al. and Von Kistowski et al., most scheduling research focus

on modeling energy efficiency at a data-center level. Such is the case of Mei

et al. (2013) who addressed the problem of minimizing makespan and energy

consumption in a heterogeneous data center. The scheduling problem con-

sists in scheduling a single job comprised of a set of precedence-constrained

heterogeneous tasks. Their work proposes a two-state energy consumption

function considering servers to be active or inactive, with servers consuming a

fixed amount of energy in either state, disregarding their workload. This is a

reasonable assumption in high performance computing (HPC) environments,

where tasks are CPU-bound. In such environments, a processor is used at its

maximum capacity or not used at all. However, this is not a realistic assump-

tion in other non-CPU-bound environments, not even in HPC environments

with multicore processors that can be partially loaded. The work proposes

12

a greedy heuristic following an offline scheduling approach and compares its

efficacy with Bansal et al. (2005) and Hagras and Janecek (2005). Experimen-

tal results show the algorithm proposed by Mei et al. (2013) reduces energy

consumption by up to 15%.

The work by Guo and Fang (2013) addressed the problem of scheduling

a set of independent tasks for minimizing energy budget constrained by av-

erage response time in a federation of data centers. These data centers are

comprised of homogeneous processors with an on-site energy storage system,

such as batteries. The problem considers a heterogeneous scheme for energy

pricing by considering data centers to be geographically distributed in differ-

ent areas with different pricing schemes. The work proposes optimizing the

charging of batteries when grid energy is cheap and taking advantage of the

stored energy when grid energy is most expensive. Energy consumption is

modeled with a linear function where each processor consumes energy pro-

portionally to its load. This energy model differs from the proposed by Mei

et al. (2013), providing a more flexible model that is suitable for a wider scope

of computing environments. The authors applied the Lyapunov optimization

technique (Neely, 2010) for designing an efficient online scheduling heuristic.

Experimental results show that the heuristic proposed by Guo and Fang (2013)

is effective, outperforming the state-of-the-art heuristics proposed by Qureshi

et al. (2009) and Rao et al. (2012a), and reducing energy budget by up to 22%

when compared to a business as usual scenario. Although experimental results

are promising, the proposed approach is profitable only in environments with

highly dynamic pricing schemes where energy cost varies significantly in the

scope of a few minutes. This is because traditional energy storage systems can

power a data center for a very limited number of minutes before running out

of energy.

Following an approach similar to the by Guo and Fang, Shi et al. (2017)

addressed the problem of minimizing the completion time of a set of indepen-

dent tasks constrained by the total energy consumption in a heterogeneous

data center. The work proposes a linear energy consumption model where

each processor consumes an amount of energy relative to its computing load.

Two scheduling heuristics are designed for solving the proposed problem, one

aiming at scheduling accuracy and the other at computing efficiency. Both

were designed using linear programming relaxation techniques and improved

by a local search. Experimental analysis is performed considering problem

13

instances of up to 200 tasks and up to 500 processors. Results show the pro-

posed algorithms reduce the scheduling completion time by at least 40% when

compared with the well-known Min-Min heuristic (Ibarra and Kim, 1977) and

two metaheuristic approaches: a genetic algorithm proposed by Kumar and

Verma (2012) and a genetic algorithm hybridized with a simulated annealing

proposed by Guo-ning et al. (2010). Furthermore, the proposed heuristic ori-

ented for computing efficiency is up to 10 times faster than the oriented on

scheduling accuracy, with a 5% loss in scheduling accuracy.

More recently, Jena (2015) considered the multi-objective problem of min-

imizing makespan and energy consumption in a federation of heterogeneous

data centers when scheduling a set of jobs comprised of many precedence-

constrained tasks. Regarding the power consumption model, Jena considered

a simple two-state linear model where processors may be active or inactive. An

active processor consumes a fixed amount of energy, while an inactive processor

does not consume energy at all (i.e. it is powered off). Jena (2015) proposed

a batch scheduling solution based on the multi-objective particle swarm opti-

mization algorithm (Coello Coello and Lechuga, 2002). Experimental analysis

considers problem instances of up to 400 processors and 360 tasks and is per-

formed using CloudSim, a cloud simulator proposed by Calheiros et al. (2011).

Results show the algorithm proposed by Jena reduces energy consumption by

30% and makespan by 25% in average, when compared with a greedy heuris-

tic. Although the work proposes a multi-objective approach, the authors fail

to thoroughly study the trade-off between energy consumption and system

performance using a Pareto-based approach. The work reports experimental

results on a per-objective basis, and does not study how these objectives relate

to each other.

Kaushik and Vidyarthi (2016) solved the multi-objective scheduling of a

set of jobs, each comprised of precedence-constrained tasks, for optimizing

reliability, energy consumption, and load balancing in a federation of data

centers with homogeneous processors. Energy consumption is modeled with

a linear function considering the energy consumption of active network links

and modeling the energy consumption of each processor by two states: active

or asleep. Processors are assumed to consume a fixed amount of energy in

each state, similar to the approach followed by Mei et al. (2013). Kaushik and

Vidyarthi considered the migration of jobs among data centers to address the

load balancing optimization objective. The work considers an evolutionary

14

approach and proposes a multi-objective offline scheduler based on NSGA-

II (Deb et al., 2002) and a single-objective batch scheduler based on a simple

genetic algorithm. Experimental analysis is performed considering instances

of up to 5 data centers with up to 100 processors each, and up to 3 jobs with

up to 25 tasks each. Results show that the proposed schedulers are accurate

and compute schedules with different characteristics. On the one hand, the

simple genetic algorithm outperforms the scheduler based on NSGA-II in a

single-objective basis. On the other hand, NSGA-II computes a set of trade-

off solutions that the genetic algorithm is unable to compute. Hence, the

proposed methods complement one another in exploitation and exploration.

If the scheduling goal is strongly biased towards one of the objectives, then

the genetic algorithm is the most accurate method. However, if the desired

schedule should balance both objectives, then NSGA-II is most adequate.

When dealing with precedence-constrained jobs, a well-known energy-

optimization approach consists in taking advantage of DVFS by applying a

slack reclamation technique. This strategy heavily relies in the nonlinear

energy consumption model of the complementary metal-oxide semiconductor

(CMOS) (Weiser et al., 1996; Ishihara and Yasuura, 1998). This model shows

that a linear reduction in performance translates into a quadratic reduction in

energy consumption of the processor. Hence, methods following this approach

usually consider deadlines and aim at reducing the performance of the system,

delaying the finishing time of tasks as much as possible without violating their

deadlines. Such is the case of the approaches recently proposed by Garg and

Singh (2016), Tang et al. (2016), Xie et al. (2016), Chen et al. (2016a), and

Sajid and Raza (2017).

Garg and Singh (2016) addressed the problem of minimizing energy con-

sumption when scheduling a single job comprised of precedence- and deadline-

constrained tasks in a DVFS-enabled heterogeneous data center. Garg and

Singh proposed an energy consumption model considering processor and net-

work energy consumption. Network energy consumption follows a linear model,

while the processor energy consumption follows a nonlinear function based on

the CMOS power consumption model. The authors proposed computing the

schedule in three phases, applying three offline greedy scheduling algorithms

sequentially. Experimental results show the proposed solution reduces energy

consumption up to 45% with just a 5% increase in execution time when com-

pared to previous heuristic approaches proposed by Lee and Zomaya (2009),

15

Baskiyar and Abdel-Kader (2010), and Zong et al. (2011). Garg and Singh

argue the proposed algorithm computes an accurate trade-off schedule. How-

ever, it is difficult to measure the accuracy of the proposed algorithm without a

proper multi-objective study showing how the objectives relate to one another.

Tang et al. (2016) dealt with the problem of minimizing the en-

ergy consumption of a single job comprised of precedence-constrained and

communication-aware tasks in a heterogeneous DVFS-enabled data center.

The authors addressed a problem similar to the one addressed by Garg and

Singh (2016). Also similar to Garg and Singh, Tang et al. considered a non-

linear energy consumption model based on processor energy consumption and

considered the time required for data communication among related tasks.

Furthermore, Tang et al. defined a deadline constrain on the job, i.e. a

makespan constraint on its tasks, following a slack reclamation approach. The

work proposes a simple and efficient offline DVFS-aware heuristic based on

HEFT (Topcuoglu et al., 2002). Experimental results are compared with two

state-of-the-art scheduling heuristics: HEFT and EES (Huang et al., 2012).

Several problem instances comprised by a number of tasks ranging from 20

up to 400 and a number of processors from 2 up to 48 were created for the

experimental evaluation. Results show the algorithm proposed by Tang et al.

reduces energy consumption by 7% in average and up to 10% in the best case

scenario when compared to EES. However, the proposed scheduler trades this

reduction in energy consumption with an average 2% increase in execution

time when compared with HEFT. This is an expected compromise since the

slack reclamation approach considered by Tang et al. increases energy savings

by reducing system performance as much as possible, subject to the deadline

constraint. Overall, the scheduler provides an adequate reduction in energy

consumption while meeting the job deadline.

Also in the same line, Xie et al. (2016) addressed the problem of min-

imizing the makespan of a single job comprised of precedence-constrained

communication-aware tasks in a DVFS-enabled heterogeneous data center sub-

ject to the total energy consumption. This is quite similar to the approach

proposed by Tang et al., but considering makespan as an objective and energy

consumption as a restriction instead the other way around. This work follows a

nonlinear energy consumption model based on processor energy consumption,

further considering a processor sleep state for reducing energy consumption.

Xie et al. proposed a offline HEFT-based heuristic and compared it with

16

HEFT and ECS. Experimental evaluation is performed considering 10 differ-

ent problem instances comprised by a number of tasks ranging from 39 up to

1274. Results show the proposed heuristic outperforms HEFT and ECS re-

ducing energy consumption in every problem instance by 32% in average and

reducing makespan in large-sized instances by up to 14%.

The approaches proposed by Garg and Singh, Tang et al., and Xie et al. are

accurate and computationally efficient methods, however these approaches fail

to study the relation between energy consumption and execution time. Only

one of these characteristics is optimized at a time, while the other is modeled

as a fixed constraint. Taking this into consideration, the articles by Chen et al.

(2016a) and Sajid and Raza (2017) addressed the simultaneous optimization

of makespan and energy consumption.

Chen et al. (2016a) proposed to minimize makespan and energy consump-

tion of a single job comprised of precedence-constrained and communication-

aware tasks in a DVFS-enabled data center. Chen et al. formulated two sep-

arate single-objective optimization problems: one for minimizing makespan

subject to total energy consumption of the data center, and the other for

minimizing energy consumption subject to makespan of the schedule. The

proposed model considers only the processor for computing the energy con-

sumption of the system. Like in the approach proposed by Garg and Singh

(2016), processor energy consumption is modeled using a nonlinear function

based on the CMOS power consumption model. Chen et al. proposed an

offline hyper-heuristic algorithm comprised of seven low-level heuristics for

searching feasible scheduling solutions and a high-level quantum-based heuris-

tic for guiding the search. The proposed hyper-heuristic is compared with

several state-of-the-art schedulers such as HEFT, ECS proposed by Lee and

Zomaya (2011), the genetic algorithm proposed by Bozdag et al. (2009), and

the tabu-search hyper-heuristic proposed by Burke et al. (2003). Experimen-

tal evaluation is performed considering several jobs comprised by a number of

tasks ranging from 16 up to 256. Results show the proposed hyper-heuristic

outperforms HEFT and ECS improving makespan by up to 19% and energy

consumption by 11%. On top of that, it is able to outperform the genetic al-

gorithm and the tabu-search methods in 15 of the 36 problem instances, while

it is not outperformed in any of the remaining 21 instances.

Sajid and Raza (2017) considered the problem of scheduling a batch of

stochastic jobs in a DVFS-enabled heterogeneous data center using a multi-

17

objective approach. Each job is comprised of precedence-constrained tasks

whose execution times are not precisely known beforehand. Instead, the ex-

ecution time of a task is known only after it finishes its execution. Only

the probability distribution of its execution time is known beforehand. The

goal of this work is computing robust schedules, simultaneously minimizing

the expectation and variance of both makespan and energy consumption. En-

ergy consumption is computed considering just the processor consumption and

following a nonlinear energy consumption model based on the CMOS power

consumption model. The authors proposed an online batch-oriented multi-

objective evolutionary algorithm based on the hypervolume estimation algo-

rithm for multi-objective optimization (HypE) proposed by Bader and Zitzler

(2011). Experimental evaluation is performed by comparing the computed

results of the proposed HypE-based algorithm with an algorithm based on

NSGA-II, and the heuristics SHEFT (Tang et al., 2011), HEFT, and ECS.

Results show the HypE-based method outperforms all other methods by up to

11% in terms of average turnaround time and average energy consumption.

Although all these approaches are based on slack reclamation techniques,

only the approach proposed by Sajid and Raza deals with the scenario of

a general purpose data center were a set of jobs must be scheduled. The

remaining approaches proposed by Garg and Singh, Tang et al., Xie et al., and

Chen et al. deal with the scheduling of a single job that has the entire data

center at its disposal.

2.3 Cooling efficiency

Computing servers and cooling devices are the most energy consuming compo-

nents in modern data centers (Chaudhry et al., 2015). Hence, just addressing

the efficiency of computing elements is not enough for a true energy-efficient

data center. Wang et al. (2010) studied the importance of a unified man-

agement approach by taking into account computing and cooling parameters.

Wang et al. argued thermal models are key for improving the efficiency of

data centers and must provide feedback to the scheduling algorithm. The

work by Wang et al. studies the behavior of a single CRAC-cooled 16-server

blade enclosure with the objective of minimizing the energy consumption sub-

ject to operational budget. A dynamic thermal model for the blade enclosure

is presented in this work, taking into account server disposition and cooling

18

efficiency by applying heat transfer theory for thermal resistance and energy

balance via a lumped capacitance method. On top of that, energy consump-

tion is modeled using a linear function considering the load of each processor.

Wang et al. showed the effectiveness of cooling devices is highly dependent

of the physical layout of the data center, since cooling is more effective for

processors closest to the cooling devices. This should be taken into considera-

tion, even when dealing with data centers with homogeneous processors. Even

more, highly loaded processors that are physically close generate hot spots

of dissipated heat that may be much harder to cool down because of the air

circulation flow. The authors propose to tackle these issues with an online

scheduling algorithm based on simulated annealing (Kirkpatrick et al., 1983)

for efficiently solving the workload placement problem. Experimental results

show the proposed strategy reduces cooling energy consumption by 42% when

compared with a non-thermal-aware scheduler. Furthermore, this work pro-

poses a hierarchical control architecture to extend its solution for controlling

multiple blade enclosures and even a whole data center.

Several works extend the rack-level modeling proposed by Wang et al. in

order to deal with whole data centers. The general optimization strategy con-

sists in maximizing cooling efficiency using workload placing techniques, and

reducing cooling usage as much as possible subject to a maximum operat-

ing temperature. A widely accepted thermal operating guideline is published

and regularly updated by the American Society of Heating, Refrigerating and

Air-Conditioning Engineers (ASHRAE Technical Committee, 2011).

Lee et al. (2017) tackled the problem of scheduling independent tasks for

minimizing energy consumption in a CRAC-cooled heterogeneous data center

subject to a maximum operating temperature and considering task migration.

The authors followed the heat dissipation model proposed by Chandra et al.

(2002) and the heat extraction model by Moore et al. (2005). A three-state en-

ergy consumption model is considered taking into account processors in active

state, inactive state, and off state. Processors consume the maximum supply

of energy when active, the minimum supply when inactive, and no power when

off. Lee et al. proposed a greedy online heuristic and compare its performance

against five baseline heuristics, and two state-of-the-art heuristics proposed

by Moore et al. (2005) and Lee et al. (2012). Results show the proposed al-

gorithm is the most effective method, reducing energy consumption by 12%

compared with Moore et al. (2005) and by 3% compared with Lee et al. (2012).

19

The work does not consider quality of service as a problem objective. However,

quality of service is clearly a conflicting objective because of migrating tasks

and switching off servers. This could impact negatively on the accuracy of

proposed method.

Al-Qawasmeh et al. (2015) addressed two scheduling problems: maximiz-

ing quality of service subject to energy consumption, and minimizing energy

consumption subject to quality of service. The problem model considers a set

of deadline-constrained independent tasks, and a heterogeneous CRAC-cooled

data center. The quality of service is defined as the number of tasks’ deadlines

met. Also, both problems are subject to maximum temperature operating

constraint of the data center. The considered thermal model is based on the

one proposed by Tang et al. (2006), a low-complexity linear model which uses

a cross-interference coefficient matrix to model the heat transfer ratio among

servers. The authors presented a multi-core computing model where energy

consumption is modeled using a nonlinear function based on dynamic power

states for each core of the data center. Two online heuristics are proposed–one

for each problem–, both based on a relaxed formulation using mixed-integer

nonlinear programming. Results show these techniques achieve a 17% improve-

ment in quality of service and around 9% improvement in power consumption

when compared to a greedy scheduling heuristic.

Lin and Deng (2017) solved the problem of minimizing the power con-

sumption of the cooling system in a homogeneous data center when executing

independent tasks. The problem considers a data center comprised of blade

servers organized in racks and cooled by a CRAC system. Lin and Deng pro-

posed a thermal model considering heat recirculation model for optimizing

cooling efficiency and avoiding hot spots. Two task-scheduling algorithms are

introduced: an enhanced genetic algorithm and an online greedy heuristic.

The genetic algorithm proposes to enhance the performance of the genetic

algorithm by not performing any crossover operation and just performing mu-

tations. On top of that, initial population is initialized randomly when it could

be easily initialized using the proposed greedy heuristic. These poor decisions

turn the evolutionary process close to a random walk. Experimental analysis

shows that both proposed scheduling algorithms reduce energy consumption

up to 60% when compared to a random walk scheduling algorithm. However,

the greedy heuristic outperforms the enhanced genetic algorithm, reducing the

energy consumption between 2% and 5%. This is an expected result given the

20

modifications performed to the behavior of the genetic algorithm.

The work by Manousakis et al. (2015) significantly differs from the pre-

viously presented works because it considers a free cooling system that takes

advantage of outside air for cooling the data center. The work addresses the

scheduling problem of minimizing cooling cost in homogeneous DVFS-enabled

data centers considering CRAC and free cooling, subject to quality of ser-

vice. Cooling cost refers to the CRAC system and is comprised of purchasing

cost, operating cost, and cost of replacing failed hardware. Tasks are consid-

ered to be independent and are scheduled online. Free cooling is provided to

the data center leveraging outside air when outside temperature is adequate.

Manousakis et al. argue traditional data centers commonly provision CRAC

systems for dealing with the highest peak of demand. However, these peaks are

often rare, Manousakis et al. say. Hence, they proposed to under-provision the

cooling system and make use of free cooling to cope with this deficit whenever

possible. Because of this strategy, the cooling system will not be able to satisfy

cooling demands during periods of peak demand. When cooling demands are

not satisfied, the authors propose to either reduce the performance of the sys-

tem or let the temperature to increase considering an increase in IT equipment

failure. This approach makes use of an expected usage power profile and out-

side conditions for dimensioning the CRAC system. Manousakis et al. (2015)

proposed the use of DVFS, workload deferral, and migration techniques, and

defines the quality of service as the number of times the system applies these

techniques. The energy consumption model considers two states: active and

inactive. When a processor is in active state, energy consumption is a linear

function relative to the processor load. Otherwise, when in inactive state, pro-

cessors are in sleep state and are considered to consume near-zero energy. An

online approach based on sequential quadratic programming is proposed for

solving this problem. The experimental evaluation is performed in the Parasol

data center (Goiri et al., 2015b) using an auto-regressive thermal model with

exogenous input. Results show the proposed scheduling algorithm is able to

reduce cooling costs by up to 55% when compared to business as usual sce-

nario. Although the budget reduction results are promising, this study fails

to consider the possible reduction in the fidelity of its users when tasks are

affected by reduction in performance or hardware failures.

A number of works focus on studying the relation between cooling effi-

ciency and its impact on the computing elements, which may be measured from

21

a user perspective with a quality-of-service related metric, or from a system

perspective with a resource utilization metric. Meng et al. (2015) addressed

the scheduling problem of minimizing communication cost and cooling energy

consumption of parallel jobs comprised of communication-intensive tasks in a

CRAC-cooled homogeneous data center. The problem formulation defines the

communication cost as the average network distance between all pair of tasks

in a job. Also, all tasks in a parallel job must start simultaneously and exe-

cute in parallel. Jobs follow an all-to-all homogeneous communication pattern

where each task communicates with all the other tasks in the job, such as in

the Fast-Fourier-Transform application (Kumar et al., 2008). The considered

energy consumption model follows a three-state model: computation-intensive

state, communication-intensive state, or idle; each state consuming a fixed

supply of energy. Finally, Meng et al. followed the thermal model proposed

by Tang et al. (2006). The scheduling solution proposed by Meng et al. (2015)

combines the online algorithms previously proposed by Tang et al. (2008) for

temperature minimization and by Bender et al. (2008) for communication cost

minimization. Experimental results show the scheduler proposed by Meng

et al. reduces cooling power by up to 42% with a communication cost gap of

3% when compared with Tang et al. and Bender et al.

Habibi Khalaj et al. (2015) proposed the scheduling problem of minimizing

hot spots and maximizing processor utilization in a CRAC-cooled homoge-

neous data center subject to operating thermal constraints. The work studies

the relation between both objectives, aiming for a set of accurate trade-off

schedules. Habibi Khalaj et al. proposed an accurate thermal model based on

a reduced order model of the Navier-Stokes equations, considering buoyancy

and recirculation around racks. Furthermore, this lightweight model is verified

using a precise computational fluid dynamic model. The energy consumption

model follows a linear model where energy consumption increases linearly with

the processor load. Habibi Khalaj et al. did not model the workload to be

comprised as tasks as individual units, but as a stream of processing load.

This is a reasonable simplification when dealing many short-lived tasks, such

as the ones processed by web servers. A multi-objective particle swarm opti-

mization (Coello Coello and Lechuga, 2002) for offline scheduling is proposed.

Results show the proposed method increases CRAC performance by 17% and

processor utilization by 10% when compared with a business as usual scenario.

22

Goudarzi and Pedram (2016) addressed the problem of scheduling indepen-

dent tasks for minimizing the budget of the cooling system and maximizing

the fulfillment of the service level agreement, defined by the maximum re-

sponse time. Tasks are to be scheduled in a data center consisting of a set of

thermal-isolated containers, each one comprised of homogeneous servers and

cooled by an independent CRAC system. Goudarzi and Pedram described the

energy consumption with a linear function of the server load and considers the

thermal model proposed by Tang et al. (2007). Finally, Goudarzi and Pedram

proposed a hierarchical online scheduling approach consisting of a set of greedy

heuristics improved by a local search. Experimental results show the proposed

approach reduces the budget of the cooling system by 43% in average when

compared to a scheduling algorithm based on the work by Verma et al. (2008).

Considering a cooling model introduces a geographic location challenge.

This challenge arises because the efficiency of cooling systems depend on out-

side weather conditions, mainly on temperature and humidity (Oró et al.,

2015b; Song et al., 2015). A number of articles address this challenge, in

particular the ones by Polverini et al. (2014), Rajabi et al. (2014), and Xu

et al. (2015). These articles study the scheduling of tasks in a federation of

geographically-distributed data centers.

Polverini et al. (2014) proposed to minimize energy budget and maximize

fairness when scheduling a set of independent jobs in a federation of hetero-

geneous data centers cooled by a CRAC system. The authors considered each

task to be owned by a given user and each user to have a certain weighted

importance in the system. The fairness function is defined for each moment

in time and is maximized when every user has a number of computing re-

sources assigned to its executing tasks according to its relative importance in

the system. The energy consumption of the cooling system varies among data

centers due to the efficiency of the CRAC system. For energy consumption

modeling, this work proposes a linear model relative to the processor load,

and for thermal modeling it applies the model proposed by Mukherjee et al.

(2009). Polverini et al. proposed an online algorithm based on the Lyapunov

optimization technique and compares its experimental results with the algo-

rithm proposed by Ren et al. (2012). Results show the Lyapunov algorithm

reduces budget by 10% in average, mainly due to reduction in cooling energy

consumption.

23

Rajabi et al. (2014) addressed the problem of scheduling independent

deadline-constrained tasks for minimizing CO2 emission and maximizing the

profit in a federation of heterogeneous DVFS-enabled data centers considering

a CRAC system. The energy consumed by the data center is modeled as the

energy consumed by its processors using a nonlinear CMOS power model. This

work proposes a thermal model based on a linear simplification of the model

proposed by Moore et al. (2005). Rajabi et al. proposed an online hierarchical

approach comprised of a high-level metaheuristic and a low-level greedy heuris-

tic. Experimental results show that the proposed method increases profit by

9% and reduces CO2 emission by 17% in average, when compared with the

multi-objective genetic algorithm proposed by Kessaci et al. (2013). The au-

thors focus on studying results one objective at a time and do not present a

Pareto-based comparison.

Finally, Xu et al. (2015) addressed the multi-objective scheduling prob-

lem of minimizing the energy consumption in a federation of heterogeneous

data centers, each with homogeneous processors, and cooled by CRAC and

free-cooling systems. The problem also considers the quality of service by

modeling the user tendency to leave the system as latency increases. Xu et al.

argue the efficiency of free-cooling system heavily depends in spatial and tem-

poral conditions. Hence, the formulation takes into account the geographical

distribution of the data centers in the federation. The work considers a linear

energy consumption model and an empirical regression-based thermal model.

Xu et al. proposed an analytic scheduling method based on the alternating

direction method of multipliers (Bertsekas and Tsitsiklis, 1989) to compute a

static routing scheme every hour. This method is compared with a baseline

method similar to the scheduling algorithms proposed by Lin et al. (2013) and

Rao et al. (2010), among others. Experimental evaluation shows the proposed

scheduler outperforms the baseline method reducing cooling energy consump-

tion by 17% in average.

2.4 Renewable energy sources

Deng et al. (2014) argues that renewable energy sources are increasingly pop-

ular for reducing energy-related budget and carbon footprint in data centers.

However, efficiently incorporating these energy sources is still a major chal-

lenge due to their unreliability. Because of their unreliability, renewable en-

24

ergy sources are naturally suitable for scenarios where the data center is able to

quickly adapt to energy fluctuations. Ghamkhari and Mohsenian-Rad (2013),

Abbasi et al. (2014) and Toosi et al. (2017) studied the suitability of renewable

energy source for powering data centers that exclusively execute short-lived

computing jobs, such as web requests. Most of these works show that a simple

reactive approach is sufficient for obtaining significant improvements in energy

efficiency.

Ghamkhari and Mohsenian-Rad (2013) considered the problem of schedul-

ing independent homogeneous jobs for minimizing energy-related budget in a

homogeneous data center considering two different scenarios, with and with-

out on-site renewable generation. The work considers wind turbines for on-site

energy generation. The problem model takes into account the quality of the

service in the budget equation by including a revenue factor. Ghamkhari

and Mohsenian-Rad proposed a simplified cooling model. Cooling energy con-

sumption is computed based on the power usage effectiveness (PUE) value of

the data center, where the PUE value represents the average ratio of energy

consumed by the data center that is effectively used for computation. This

approach fails to consider thermal characteristics, such as hot spots and air

circulation that are directly affected by the load distribution determined by

the scheduler. As shown by Wang et al. (2010), these thermal characteris-

tics greatly affect cooling demands that in turn contribute–by definition–to

the PUE value. Hence, approximating the energy consumption of the cooling

system with the PUE value provides a simple but potentially inaccurate ap-

proach. The formulation defines a three-state energy consumption model with

active, idle and off states. Energy consumption is fixed for each state, being

zero for the off state. The number of switched on and off processors is updated

every 15 minutes. Furthermore, Ghamkhari and Mohsenian-Rad did not deal

with prediction of renewable energy and proposed a reactive approach. The

article considers short-duration computing jobs and applies queuing theory

for modeling the problem. It shows this model to be tractable and propose

applying convex programming techniques for solving it. Experimental results

show the proposed method achieves an average of 4% optimality gap, and is

able to outperform the methods proposed by Liu et al. (2011) and Rao et al.

(2012a). On top of this, results show budget can be significantly reduced when

taking advantage of on-site renewable generation, even with a simple reactive

approach.

25

Abbasi et al. (2014) addressed the problem of minimizing the energy budget

by scheduling a set of independent homogeneous jobs in a federation of data

centers with homogeneous processors, on-site renewable energy generators, and

energy storage systems. Quality of service is modeled as a constraint consid-

ering a threshold for the response delay of each job. The authors proposed a

simple two-state energy model considering active and off states. Processors in

active state consume a fixed amount of energy, while processors in off state

consume zero energy. Renewable energy generation is predicted using a sea-

sonal auto regressive integrated moving average model (Abraham and Ledolter,

2008) calibrated using historical data. Abbasi et al. modeled the problem as

a flow constrained problem and addressed it using linear programming tech-

niques. Experimental results using real-world data show the proposed online

algorithm reduces the energy budget by 40% in average when compared with

a uniform load balancer algorithm.

Toosi et al. (2017) proposed the problem of scheduling independent jobs

for minimizing grid energy consumption in a federation of data centers with

homogeneous processors and considering on-site renewable energy generation.

The authors did not deal with energy consumption, thermal, and energy gener-

ation forecast models. Instead, they proposed an online reactive solution that

actively monitors energy consumption and energy generation for each data

center and reacts to changes in the scenario. This is a feasible approach since

the problem model considers a workload comprised of many short-lived jobs.

Experimental results dealing real-world data show the proposed online solution

outperforms the approach proposed by Le et al. (2010), increasing renewable

energy consumption by 8% and reducing operational costs by 7% in average.

The presented results show renewable energy is promising for powering data

centers executing short-lived computing jobs. However, these results are not

applicable to general purpose data centers. Scheduling general purpose data

centers usually require a proactive approach where the scheduling is based

on renewable energy generation forecasting. Next, we present several works

following such approach.

Goiri et al. (2015a) addressed the problem of scheduling precedence- and

deadline-constrained jobs for minimizing energy budget in a homogeneous data

center with on-site renewable energy generators. The work proposes an empir-

ical energy consumption model based on previous executions of the workload,

requiring test runs of the considered jobs. On top of that, this model consid-

26

ers processors to be active, idle or inactive. Inactive processors are put in a

fast-transitioning sleep mode; with transitioning in or out of this mode requir-

ing around 7 seconds. Also, processors in idle state consume around 8.6 W,

whereas in active state may consume up to 150 W. Regarding renewable energy

generation, Goiri et al. considered a realistic 2-day ahead forecasting model

based on historical data for prediction. An efficient online scheduling heuristic

is proposed using a rolling-horizon approach, with a 15 minutes time slot. Ex-

perimental workloads are constructed synthetically based on real-world jobs

with arrivals following a Poisson distribution. Experimental results show the

proposed scheduler can reduce energy budget by up to 20% when compared

to a variant of the EASY backfilling scheduler proposed by Lifka (1995).

Yu et al. (2015) tackled the problem of scheduling independent jobs for

minimizing energy budget in a federation of data centers with homogeneous

processors, an energy storage system, and both conventional and renewable

energy generators. Quality of service is modeled as a constraint, considering a

threshold for the average response delay for the jobs. Yu et al. studied a robust

scheduling solution by considering grid power outages. Energy consumption

of the processors is modeled by a linear function of the computing load, while

the energy consumption of the cooling system is approximated with the PUE

value of the data center. Regarding the renewable energy generation, the

work considers the forecasting model proposed by Damousis et al. (2004) for

approximating the energy generation. Yu et al. proposed a Lyapunov-based

online heuristic and study the explicit trade-off between operational cost and

battery investment cost. Experimental results show the proposed strategy can

reduce energy budget by up to 3% with no renewable energy generation, and

by up to 50% when considering renewable energy generation, when compared

with the method proposed by Rao et al. (2012b).

Paul et al. (2016) extended the work by Lin et al. (2013) by addressing the

problem of scheduling independent homogeneous jobs in a federation of homo-

geneous data centers with on-site renewable energy generators. The problem

proposes the minimization of the weighted linear combination of energy budget,

processor switching-on cost, response time, and carbon emissions. The energy

consumption of the cooling system is approximated by the PUE of the data

center, as proposed by Ghamkhari and Mohsenian-Rad (2013) and Yu et al.

(2015). Paul et al. proposed a linear energy consumption model where the pro-

cessor energy consumption is relative to its load, considering a base idle-state

27

energy consumption. On top of that, unused processors are turned off for fur-

ther energy saving. The model considers the switching-on cost representing the

energy consumed by the processor when powering on. However, the switching-

off cost is not considered in this work for two reasons. First, because Paul

et al. argue the switching-on cost is significantly larger than the switching-off

cost which in turn is negligible. Second, because the switching-off cost can be

incorporated into the switching-on cost simplifying the modeling. For dealing

with renewable energy generation a reactive approach was considered, hence no

forecasting model was required. Finally, response time was taken into account

by over-provisioning the data center processors by 10%. Two formulations for

this problem were constructed considering different switching-off cost models.

Both formulations are convex optimization problems and optimal solutions can

be computed in polynomial time. Paul et al. proposed two online algorithms

based on convex optimization techniques and compares them with a baseline

uniform load balancer, which Paul et al. argue is still being used by some data

centers in practice. Experimental results considering real-world data yield the

proposed algorithms reduce energy budget by up to 94% and switching cost

reduction by up to 91% when compared the baseline algorithm.

Chen et al. (2016b) addressed the problem of scheduling independent jobs

for minimizing the operational cost subject to a delay-related quality of service

in a homogeneous data center cooled by chilled water and free cooling. The

problem model considers on-site renewable energy generators, conventional

diesel generators, and energy storage units. The energy consumption models

of the chilled-water and free-cooling systems are based on heat transfer theory

and the model proposed by Patel et al. (2006). The energy consumption is

modeled using a linear function based on the processor load where idle pro-

cessors do not consume energy at all. For this to be a realistic assumption

processors should be switched off, in which case the time and energy required

for the switching must be taken into account, just like the approach proposed

by Paul et al. (2016). If processors are not switched off, then their energy

consumption and heat dissipation while idle should be considered for the en-

ergy storage and the cooling systems models. Regarding the renewable energy

generation, the work considers a reactive approach for the renewable energy

generation and a smart power grid where energy surplus is sold by injection

into the power grid. Applying a problem relaxation approach and a stochastic

subgradient solver, Chen et al. designed an online scheduling solution, three

28

baseline schedulers for comparison, and an offline exact solution. Experimen-

tal results dealing with real-world scenarios show the proposed batch scheduler

reduces operational cost by 24% in average when compared with the best base-

line scheduler, computing an average optimality gap of 10% when compared

to the exact offline scheduler.

Later, Chen et al. (2016c) considered the scheduling problem for minimizing

energy budget in a federation of homogeneous data centers with on-site energy

storage, conventional generator and renewable energy generator. Unlike the

previous work of the authors, this work mainly focuses in obtaining robust

schedules taking into account the uncertainty of renewable energy sources. The

work considers interactive and non-interactive jobs. Interactive jobs must be

attended immediately while non-interactive are deferrable but within a certain

deadline. Furthermore, non-interactive jobs provide revenue when processed in

time. Data centers in the federation are cooled using CRAC and free cooling

systems. A nonlinar power consumption model was proposed based on the

work by Wierman et al. (2012) and cooling requirements are approximated as

a polynomial function of the consumed energy. Regarding the renewable energy

generation forecasting, Chen et al. followed the work by Zhang et al. (2013)

and considered a polyhedral uncertainty set based on historical measurements

for modeling forecasting. The article shows the problem to be non-convex and

propose solving a relaxed problem formulation using the dual decomposition

method. Experimental results show the proposed online algorithm reduces the

worst-case budget by 19% when compared to a non-robust algorithm, providing

a schedule significantly more robust to errors of renewable energy forecasting.

Kiani and Ansari (2016) solved the problem of scheduling independent ho-

mogeneous jobs for maximizing profit in a federation of homogeneous data

centers with on-site renewable energy generators. In this formulation, energy

consumed from the power grid reduces the profit of the system. For modeling

this situation, Kiani and Ansari considered a linear energy consumption model

which is a function of the processor workload. The energy consumption model

takes into account the cooling system by incorporating the PUE value as a fac-

tor into the model. Renewable energy generation follows a reactive approach,

similar to the work by Ghamkhari and Mohsenian-Rad (2013). Kiani and

Ansari argues that a simple forecasting method is reasonably accurate when

using a small enough time slot. Jobs are grouped in a finite number of service

types, each type with a different SLA represented by a maximum waiting time.

29

Every job processed within its SLA produces revenue, meaning the quality of

service of the system is included in the profit equation as revenue. Kiani and

Ansari proved this problem to be convex and propose an online strategy for

solving it. Experimental results show the proposed strategy increases the profit

by up to 20% when compared to Ghamkhari and Mohsenian-Rad (2013).

Anastasopoulos et al. (2016) addressed the problem of scheduling indepen-

dent jobs for minimizing the nonrenewable energy consumed in a federation of

CRAC-cooled homogeneous data centers with on-site renewable energy gener-

ators. The model approximates the energy consumption of the data centers

considering the energy consumption of three main components: processor, net-

work interface, and cooling system. The work considers the network energy

consumption model proposed by Katrinis and Tzanakaki (2011). Regarding

the processor energy consumption, Anastasopoulos et al. proposed a linear

model based on the processor workload. Finally, cooling energy consumption

is taken into account by simply doubling the energy consumption of processors

when computing the total energy consumption of the system. This approach is

similar to the ones proposed by Yu et al. (2015), Paul et al. (2016), and Kiani

and Ansari (2016), in that it considers the PUE metric for approximating the

energy consumption of the cooling system. Prediction of renewable energy gen-

eration if performed using an auto-regressive moving average model (Wellons

et al., 2010) based on the analysis of historical data. A batch scheduling is

proposed based on sample average approximation (Kleywegt et al., 2002) and

subgradient method. Experimental results show the proposed algorithm is able

to reduce nonrenewable energy consumption by 10-60% when compared with

four simple baseline algorithms.

Peng et al. (2017) proposed the problem of scheduling independent jobs

for minimizing the energy budget in a federation of heterogeneous data cen-

ters considering on-site renewable energy generators. The authors proposed

a two-state energy consumption model considering on and off states follow-

ing the approach by Lin et al. (2013). When in on state, processor energy

consumption is modeled with a linear function of the load of the processor.

When in off state, energy consumption is zero but a state-transitioning energy

consumption is considered every time a processor switches state. Renewable

energy generation is estimated using an exponentially weighted moving average

technique (Hunter, 1986) with historical data. An evolutionary algorithm is

proposed for addressing the online scheduling problem, and two greedy heuris-

30

tics are designed for comparison. Experimental results show this approach re-

duces energy budget between 8% and 10% when compared with the designed

heuristics.

Lei et al. (2015) considered the multi-objective problem of maximizing the

utilization of renewable energy, minimizing the energy budget, and maximiz-

ing the quality of service in a homogeneous data center with on-site renewable

energy generators. The problem deals with independent jobs considering ex-

ecution priorities and deadlines. Jobs are classified as crucial or non-crucial

according to their priority, where crucial jobs have execution priority over non-

crucial jobs. Lei et al. considered a two-state model for energy consumption

where active and idle processors consume a fixed amount of power. Quality

of service is defined considering the relative number of jobs whose deadlines

are met. An error-prone short-term renewable energy prediction method was

simulated by introducing disturbances into historic solar generation records.

An online greedy heuristic was proposed for computing an efficient trade-off

solution, and three single objective heuristics were designed for comparison–

one for each problem objective–. Experimental results using real-world data

show the proposed scheduler provide an accurate trade-off when considering

all objectives simultaneously. In average, the solution computed by the pro-

posed algorithm presents a renewable energy utilization rate of 94%, deadline

satisfaction of 99%, and the second best operational budget. The proposed

algorithm is outperformed only at the operational budget objective by the

budget-oriented heuristic at the expense of a 4% renewable utilization rate.

Although the problem formulation considered multiple objectives, the pro-

posed greedy scheduling strategy does not explore the trade-off between them,

computing a single solution at a time.

Later, Lei et al. (2016) extended their previous work to study the trade-off

between renewable energy utilization, quality of service and system utilization

considering a multi-objective scheduling strategy. This work addresses the

scheduling problem of maximizing renewable energy usage and satisfaction

rate, and minimizing makespan and total energy consumption of independent

jobs in a heterogeneous federation of DVFS-enabled data centers considering

on-site renewable energy generators. Energy consumption is modeled consid-

ering just the processor and using a nonlinear function based on the CMOS

power consumption model. Like in their previous work, renewable energy

prediction is simulated introducing disturbances into historic solar generation

31

records. The most notable difference with their previous work is the pro-

posed scheduling method. Instead of the greedy approach considered in their

previous work, in this work Lei et al. proposed OL-PICEA-g, an offline multi-

objective evolutionary algorithm based on an enhanced version of the PICEA-g

algorithm (Wang et al., 2013). Experimental evaluation is performed over 10

different instances, each comprised by 1000 tasks, and the comparison is mea-

sured using the Two Set Coverage multi-objective metric (Coello Coello et al.,

2007). Results show the proposed OL-PICEA-g is accurate and outperforms

PICEA-g when addressing the proposed problem. In average, only 13% of

the solutions computed by OL-PICEA-g are dominated by the solution com-

puted by PICEA-g. However, 39% of the solutions computed by PICEA-g are

dominated by the solutions computed by OL-PICEA-g.

2.5 Summary

The main challenges for optimizing energy efficiency in data centers consist

in reducing energy consumption of computing elements and cooling systems,

and incorporating renewable energy sources. All these challenges must be

simultaneously addressed for maximizing energy efficiency.

Optimizing the energy consumption of computing elements is certainly the

most studied of the presented challenges. Most approaches for optimizing it

are based on dynamic power management features such as DVFS, low-power

state modes, and per-core gating. However, few works consider characteristics

such as networking, partial server load, or multi-core architectures. Table 2.1

presents a summary of the most recent research dealing with optimizing the

energy consumption of computing elements.

Cooling systems have proved to be the second larger energy-consuming

components in modern data centers. As such, these systems have become the

target of many different energy optimization approaches. Because of the high

complexity of accurately modeling heat dissipation and air circulation in data

centers, thermal models simplify reality aiming at reducing the computing

cost of the model. However, there is little consensus on the most appropriate

approach for thermal modeling. Hence, several thermal models for data centers

are available in the literature. Table 2.2 presents a summary of the most recent

research dealing with optimizing cooling systems.

Finally, incorporating renewable energy sources has become a major trend

32

Table 2.1: Summary of works dealing with energy efficiency of computing elements.

Work
Energy efficiency

Energy model
Scheduling

metric approach

Single server
Wang et al. (2011) Min. energy DPM Online

Group of servers
Von Kistowski et al. (2015) Min. energy DPM Online

Single data center
Mei et al. (2013) Min. energy Low-power state Offline
Shi et al. (2017) Energy constrained Server load Online
Garg and Singh (2016) Min. energy DVFS Offline
Chen et al. (2016a) Min. energy DVFS Offline
Tang et al. (2016) Min. energy DVFS Offline
Xie et al. (2016) Energy constrained DVFS Offline
Sajid and Raza (2017) Min. energy DVFS Online

Federation of data centers
Guo and Fang (2013) Min. budget Server load Online
Jena (2015) Min. energy Low-power state Offline
Kaushik and Vidyarthi (2016) Min. energy Low-power state Offline

Table 2.2: Summary of works dealing with energy efficiency of cooling systems.

Work
Energy efficiency

Thermal model
Scheduling

metric approach

Group of servers
Wang et al. (2010) Min. energy Wang et al. (2010) Online

Single data center

Al-Qawasmeh et al. (2015)
Min. energy &

Tang et al. (2006) Online
Energy constrained

Lee et al. (2017) Min. energy
Chandra et al. (2002) &

Online
Moore et al. (2005)

Meng et al. (2015) Min. energy Tang et al. (2006) Online
Habibi Khalaj et al. (2015) Min. hot spots Habibi Khalaj et al. (2015) Offline
Manousakis et al. (2015) Min. cost Regression-based Online
Goudarzi and Pedram (2016) Min. budget Tang et al. (2006) Online

Lin and Deng (2017) Min. energy Tang et al. (2006)
Online &
Offline

Federation of data centers
Polverini et al. (2014) Min. budget Mukherjee et al. (2009) Online
Rajabi et al. (2014) Max. profit Linear model Online
Xu et al. (2015) Min. energy Regression-based Online

33

Table 2.3: Summary of works dealing renewable energy sources.

Work
Energy efficiency Renewable energy Scheduling
metric prediction model approach

Single data center
Ghamkhari and Mohsenian-Rad (2013) Min. budget Reactive Online
Lei et al. (2015) Min. budget Synthetic noise Online

Lei et al. (2016)
Max. renewable

Synthetic noise Offline
energy

Chen et al. (2016b) Min. budget Reactive Online

Federation of data centers
Abbasi et al. (2014) Min. budget Regression-based Online
Yu et al. (2015) Min. budget Damousis et al. (2004) Online

Paul et al. (2016)
Min. budget &

Reactive Online
Carbon emissions

Chen et al. (2016c) Min. budget Zhang et al. (2013) Online
Kiani and Ansari (2016) Max. profit Reactive Online

Anastasopoulos et al. (2016)
Max. renewable

Regression-based Online
energy

Peng et al. (2017) Min. budget Moving average Online
Toosi et al. (2017) Min. energy Reactive Online

in energy efficient data centers. This challenge gained popularity only recently

but rapidly became a hot topic. The major challenge in incorporating re-

newable energy sources in general purpose data centers lie in accurately and

robustly forecasting energy availability. Again, as with the thermal model,

there is little consensus on the most appropriate forecasting model. Table 2.3

presents a summary of the most recent research dealing with optimizing the

renewable energy usage.

Optimizing energy efficiency in data centers usually impacts the system

performance, hence considering a QoS-related metric in the problem formu-

lation is key for asserting the feasibility of the proposed method. Without a

doubt, energy efficiency in data centers is a complex multi-objective problem.

Many authors simplify the formulation of the energy efficiency problem by con-

sidering QoS as a problem restriction and defining a minimum QoS threshold.

However, this approach fails to depict the true relation between objectives.

A multi-objective optimization approach with a Pareto-based analysis is re-

quired for studying the relation between both objectives and harnessing the

most adequate balance between energy efficiency and performance.

This thesis proposes a multi-objective approach for dealing with the prob-

lem of energy efficiency in data centers, considering the QoS of the system.

Several problems are addressed, taking into consideration modern multi-core

34

architectures, an accurate thermal model, forecasting of renewable energy gen-

eration, and geographic location. Furthermore, results are studied using a

Pareto-based multi-objective approach, analyzing the trade-off between the

different optimization objectives.

35

Chapter 3

Scheduling Energy Efficient

Data Centers Using Renewable

Energy

Santiago Iturriaga and Sergio Nesmachnow

Abstract: This work presents a multi-objective approach for scheduling en-

ergy consumption in data centers considering traditional and green energy data

sources. This problem is addressed as a whole by simultaneously scheduling

the state of the servers and the cooling devices, and by scheduling the workload

of the data center, which is comprised of a set of independent tasks with due

dates. Its goal is to simultaneously minimize the energy consumption budget of

the data center, the energy consumption deviation from a reference profile, and

the amount of tasks whose due dates are violated. Two multi-objective evo-

lutionary algorithms hybridized with a greedy heuristic are proposed and are

enhanced by applying simulated annealing for post hoc optimization. Experi-

mental results show that these methods are able to reduce energy consumption

budget by about 60% while adequately following a power consumption profile

and providing a high quality of service. These results confirm the effective-

ness of the proposed algorithmic approach and the usefulness of green energy

sources for data center infrastructures.

36

3.1 Introduction

Energy consumption in data centers has become a critical matter, especially

to large providers like Google, Facebook, and Amazon among others. The

Internet industry requires more and bigger data centers to sustain its growth,

but the amount of energy required for their operation has become an issue

for economic and environmental reasons. In 2005, data centers accounted for

around 0.5% of the total world energy consumption, while in the year 2010, it

reached an estimate of 1.3%. With an estimated annual growth rate of more

than 16%, forecasts are grim (Koomey, 2008, 2011). By the year 2030, the

worst-case scenario estimates the electricity consumption from data centers

will reach up to 13% of the total world energy (Andrae and Edler, 2015).

Significant efforts have been made to address the aforesaid energy issues

with different approaches and techniques (Dayarathna et al., 2016; Zhang et al.,

2016). Many traditional energy saving methods focus on lowering energy con-

sumption when computing resources are idle, or reducing the system perfor-

mance when executing non-critical computing tasks, or scheduling the com-

putational load when energy is cheaper (Nesmachnow et al., 2013; Dorronsoro

et al., 2014a; Goiri et al., 2015a; Lei et al., 2016). These methods are help-

ful, but their effectiveness is limited because they usually lower the quality

of service delivered by the data center. More recently, advances in renewable

energy sources—known as green energy—have provided new ways to reduce en-

ergy consumption and the environmental impact of data centers (Wang et al.,

2013). The use of green energy sources has empowered energy saving meth-

ods, enabling the scheduling of computational workload when green energy is

available. Nevertheless, this remains a challenging approach since green energy

sources are unreliable and depend on uncontrollable external conditions such

as sun irradiation and wind velocity. Because of their unreliability, most data

centers must consider a hybrid energy approach, with green energy combined

with traditional energy—known as brown energy—to avoid energy outages.

When optimizing energy consumption in data centers, most approaches

focus on optimizing Central Processing Units (CPUs) and cooling devices that

are the most power hungry components in data centers. CPUs are, by far, the

most power hungry components, using an estimated 46% of the total power

consumption of a data center. The second most power hungry components are

cooling devices, such as air conditioning systems, which consume an estimated

37

of 15% of the total power. Despite the fact that cooling devices consume less

energy than CPUs, they are a key focus when addressing energy consumption

since they are the most inefficient components and the best candidates for

improvement (Barroso et al., 2013).

This work presents a multi-objective problem formulation for optimizing

the energy consumption of data centers that are powered by hybrid energy.

The problem formulation addresses the scheduling of computational load and

cooling devices in a data center in order to minimize its energy consumption

budget, minimize the deviation of its energy consumption from a reference con-

sumption profile, and maximize the Quality of the Service (QoS) provided to its

users. Two Multi-Objective Evolutionary Algorithms (MOEAs) are applied for

effectively solving the scheduling problem: the Non-dominated Sorting Genetic

Algorithm, version II (NSGA-II) (Deb et al., 2002) and the Epsilon-Variable

Multi-Objective Genetic Algorithm (ev-MOGA) (Herrero et al., 2014). Ex-

perimental results show the proposed approach reduces energy consumption

budget by about 60% while maintaining QoS over 95% and a deviation from a

reference power profile of about 3%, all this compared to a traditional business

as the usual data center scenario.

This work is an extension of our previous work (Iturriaga and Nesmachnow,

2015). This work further extends it by applying ev-MOGA and comparing its

accuracy with NSGA-II when addressing the proposed problem. In addition

to this, a larger and more diverse set of problem instances are evaluated and a

more thorough multi-objective experimental analysis with statistical support

is provided.

This article is organized as follows: Section 3.2 briefly reviews the most

relevant and recently published work. Section 3.3 defines the scheme of the

data center model. Section 3.4 presents the problem formulation. Section 3.5

describes the proposed MOEA designed for solving the problem. Section 3.6

reports and discusses the results of the experimental evaluation. Finally, Sec-

tion 3.8 presents conclusions and future work.

3.2 Related Work

Many articles in the literature address the energy efficiency problem in data

centers. Next, some of the latest and most relevant ones are presented.

38

Goiri et al. (2015a) propose GreenSlot, a single-objective greedy heuris-

tic for scheduling computational load in data centers powered by green and

brown energy. The aim of GreenSlot is to schedule a set of independent par-

allel computing tasks using the minimum amount of traditional energy while

also meeting all task deadlines. Although GreenSlot takes into consideration a

hybrid energy source, it uses brown energy just as a backup for when it cannot

meet all deadlines using green energy alone. Furthermore, Goiri at al. use a re-

alistic energy forecast model based on historical data to predict the availability

of green energy. Goriri et al. show GreenSlot can reduce energy cost by up to

39% when compared to conventional schedulers. The work from Goriri et al. is

different from ours mainly in that they address a single-objective problem con-

sidering QoS as a constraint, and because they do not consider cooling devices

as energy consuming components nor temperature as an operative constraint.

Lei et al. (2016) address the energy efficiency problem in data centers by

scheduling a set of independent tasks with deadlines to be executed in a system

with Dynamic Voltage Frequency Scaling (DVFS) and powered by hybrid en-

ergy. The scheduler uses DVFS for reducing energy consumption when execut-

ing tasks with loose deadlines. In this formulation, a task can be rejected when

its deadline cannot be met. Lei et al. formulate a multi-objective problem and

propose two MOEA for solving it, optimizing four objectives: (i) maximizing

green energy usage; (ii) minimizing the finishing time of the whole schedule;

(iii) minimizing the total energy consumption; and (iv) minimizing the task re-

jection rate. Then, the proposed MOEAs are compared with each other using

a simple multi-objective metric. Although Lei et al. argue that these results

confirm the effectiveness of their approach, the amount of energy consumption

saved when using it is not clear. This work is different from the work of Lei

et al. in that, in our work, the temperature of the data center is a constraint

and cooling devices are considered when computing the energy consumption.

In addition, a thorough multi-objective analysis is performed in our work and

statistical confidence results are presented.

Peng et al. (2017) deal with the scheduling of resources in multiple data

centers powered by hybrid energy. The aim of this problem is to allocate virtual

machines to physical machines in order to satisfy the computing demand while

minimizing total energy cost and considering quality of service as a constraint.

Peng et al. propose a single-objective formulation for addressing this problem

and present an evolutionary algorithm for solving it. Peng et al. report that

39

this approach reduces energy cost between 8% and 10% when compared to

traditional allocation schemes. Once more, the work from Peng et al. is

different from ours in that, in our work, a multi-objective problem is addressed

and the scheduling of cooling devices and the temperature of the data center

as a constraint are both considered.

In our previous work (Iturriaga and Nesmachnow, 2015), a data center pow-

ered by hybrid energy was modeled, considering cooling devices and internal

data center temperature. The multi-objective scheduling problem of mini-

mizing the energy budget, maximizing the QoS, and meeting a brown energy

consumption threshold is addressed, constrained to the operative temperature

of the data center. The scheduling problem consisted of scheduling a set of

independent computing tasks with due dates into a set of computing resources.

An improved scheduling algorithm is proposed by hybridizing NSGA-II with

a Local Search (LS) operator in order to exploit the most promising solutions.

Experimental results show that this approach is able to reduce the energy

budget by about 30% when compared to traditional schedulers. This work

extends our previous work by comparing evMOGA—a novel state of the art

MOEA—with NSGA-II, our previously proposed approach. The experimen-

tal analysis is improved by increasing the number and diversity of evaluated

problem instances and by performing a more thorough experimental analysis

presenting multi-objective metrics, providing statistical confidence.

3.3 The Data Center Energy- and QoS-Aware

Model

The proposed data center model is based on the one proposed by Nesmach-

now et al. (2015) and further extended by Iturriaga and Nesmachnow (2015).

Figure 3.1 shows the schema of the data center model.

This model is comprised of two main components: the Heating, Ventilation

and Air Conditioning (HVAC) component and the Computing Infrastructure

(CI) component. The HVAC component represents the cooling devices, while

the CI component represents the computing resources of the data center (i.e.,

the servers). A simple but realistic energy model is considered where each

server may be either in the executing state, in the idle state, or in the sleep

state. Every time a server executes a task, it is considered to be at peak

40

CI HVAC

Workload

schedule (st)

External

temp. (αt)

Cooling

schedule (ct)

Internal temp.

(Tt)
HVAC power

(Ct)

CI power

(It)

Quality of

Service (Qt)

D
a

ta
 c

e
n
te

r

Green power

generation (Gt)

Req. power (Pt)

Brown power

(Bt)

Figure 3.1: Data center scheme considering energy consumption and quality of
service.

performance, thus consuming the maximum amount of energy for the server.

When a server is on but not executing a task, it is considered to be idle

and consuming a lower amount of energy. Finally, a server may be in sleep

state and consuming a minimum amount of energy. Formally, the total energy

consumption of the CI component (It) is calculated as It = Smaxt +Sidlet +Ssleept ,

where Smaxt is the total energy consumption of servers that are executing a task,

Sidlet of which are in idle state, and Ssleept of which are in sleep state.

The data center is controlled by two input variables: task schedule (st) and

cooling schedule (ct). The task schedule st defines the allocation of tasks to

computing resources in the CI component for each time unit. Likewise, the

cooling schedule ct defines the cooling strategy of the HVAC component for

each time unit.

Furthermore, two non-controllable input variables are considered: exter-

nal temperature (αt) and green energy availability (Gt). These variables are

external and are not controllable by the scheduling algorithm. The external

temperature variable, αt, represents the temperature outside the data center

at each time unit. This temperature affects the effectiveness of the free cool-

ing method. While the green energy availability variable, Gt, represents the

amount of energy generated by the renewable energy source for each time unit.

Finally, three output variables are defined for the model: (i) the amount of

overdue time required for task completion (Qt); (ii) the internal temperature

41

variable (Tt) which is the temperature inside the data center; and (iii) Ct

which is the energy required by the HVAC component, and It which is the

energy required by the CI component. Hence, the total power required by

the data center (Pt) is the sum of the power required by the HVAC and the

CI components. Similarly, the total amount of traditional energy required by

the data center (Bt) is the difference between the required power (Pt) and the

amount of green power available (Gt).

The computing workload of the data center is comprised of a set of inde-

pendent tasks with due dates. For a task, its due date is its expected or desired

completion time. In this approach, the QoS of the system is measured by the

total amount of additional time, over the due date, required by the system to

complete the execution of all tasks. It is key to consider a QoS-related objec-

tive when reducing energy consumption since the latter, most likely, will affect

the QoS provided to the final users.

The variable ct schedules the HVAC while considering two cooling methods:

air conditioning and free cooling. Both of these methods are widely used

cooling methods (Barroso et al., 2013). The air conditioning mode uses the

conventional Computer Room Air Conditioning (CRAC) unit which can take

on and off values. The free cooling mode uses a fan system to inject air from

the outside into the data center, and it can take fan speed values between 1

and 100. Hence, the energy consumption of the HVAC component at time t

(Ct) is defined as shown in Equation (3.1):

Ct =


CompressorPWR, if air conditioning mode is on,

FanPWR(s), if free cooling mode is on at speed s (1 ≤ s ≤ 100),

0, if both air conditioning and ventilation are off.

(3.1)

The energy consumption of the air conditioning (CompressorPWR) is

fixed, and FanPWR(s) is between 0 and the maximum fan energy consump-

tion. Because the cooling mode directly affects the temperature Tt in the data

center, the Auto-Regressive eXogenous (ARX) model presented by Nesmach-

now et al. (2014b) is used for modeling Tt. This model estimates the internal

temperature of the data center taking into account the air conditioning, fan

speed, outside temperature, and data center load.

42

3.4 The Problem Formulation

The data center must execute N tasks in a time horizon of K time units.

The problem formulation consists of finding a schedule of computing tasks

(st) and cooling resources (ct) such that: it minimizes the difference between

the energy consumption of the data center (Pt) with respect to a predefined

reference profile (Rt), minimizes the energy budget, and minimizes the total

overdue time of the tasks. Furthermore, the problem is subject to the internal

temperature of the data center (Tt) which must be kept below its maximum

operative value (T̂).

Each task is an atomic unit which cannot be interrupted; once started, it

must be executed to completion. Moreover, each task i should be completed

before its due date D(i) for the data center to deliver the optimum QoS level.

With FT (i) representing the finishing time of task i and M b
t representing the

brown energy cost at time t, optimization goals of this problem can be formally

defined as presented in Equation (3.2):(3.3) and (3.4).

min zp =
K∑
t=1

(Pt −Rt)/max(Rt), if Pt > Rt,

0, if Pt ≤ Rt,
(3.2)

min zb =
K∑
t=1

Bt ×M b
t , (3.3)

min zq =
N∑
i=1

FT (i)−D(i), if FT (i) > D(i),

0, if FT (i) ≤ D(i).
(3.4)

Equation (3.2) defines the objective of minimizing the deviation of the

power consumption of the data center with respect to the reference power pro-

file Rt. Equation (3.3) defines the objective of minimizing the total monetary

cost of the energy consumption of the system. Finally, Equation (3.4) defines

the objective of minimizing the total overdue time required for completing the

execution of all tasks.

43

3.5 Multi-Objective Evolutionary Scheduling

for Energy-Aware Data Centers

Evolutionary algorithms are iterative stochastic optimization methods inspired

in the evolution of the species and the natural selection process (Yu and Gen,

2012). Algorithm 1 presents the general schema of an evolutionary algorithm.

At each iteration, the evolutionary algorithm stochastically applies a set of

evolutionary operators to a population of candidate solutions to the optimiza-

tion problem. These evolutionary operators combine and mutate solutions in

the population, producing new solutions that compete with each other to sur-

vive the selection process and remain in the population. The recombination

operator exploits known solutions by producing new solutions with the best

characteristics of solutions already in the population. On the other hand, the

mutation operator explores the solution landscape searching for solutions with

new characteristics by applying small perturbations to known solutions. These

methods have been successfully applied for solving optimization, search, and

learning problems in many application domains.

Multi-Objective Evolutionary Algorithms (MOEAs) are evolutionary al-

gorithms that deal with more than one simultaneous optimization objective.

Unlike single objective optimization methods, MOEAs are able to compute a

set of trade-off solutions in a single execution thanks to their population-based

approach. However, an MOEA must maintain a adequate balance between

optimizing each objective as much as possible, and sampling a diverse and

homogeneously distributed Pareto front.

In this work, NSGA-II (Deb, 2001) and ev-MOGA (Mart́ınez-Iranzo et al.,

2009) are applied for addressing the proposed scheduling problem. These

MOEA are entrusted with planning the state of servers and the cooling de-

vices. On top of these MOEA, two hybridization mechanisms are further

applied. The first mechanism consists of applying a greedy scheduling heuris-

tic during the evolutionary process for reducing the dimension of the problem

search space. This greedy heuristic receives a server and cooling schedule, and

computes a scheduling for the task workload. The second mechanism consists

of applying Simulated Annealing (SA) as a post hoc optimization procedure.

That is, once the evolutionary process has finished, the SA is applied for fur-

ther improving the accuracy of the solutions computed by the MOEAs. Next,

the proposed algorithmic approach is described in detail.

44

Algorithm 1 General schema of an evolutionary algorithm

g ← 0

P 0 ← initializePopulation() . create the initial population of parents

F 0
p ← evaluate(P 0) . evaluate population of parents

while stopping condition is not met do

λg ← selectParents(P g) . select parents to evolve

µg ← recombine(λg) . recombine parents and create offspring

µg ← mutate(µg) . mutate offspring

F g
µ ← evaluate(µg) . evaluate population of offspring

P g+1 ← createNewPopulation(P g, F g
p , µ

g, F g
µ) . new population with

the best individuals

g ← g + 1

end while

3.5.1 Solution Representation

For representing the problem solution, a time discretization approach is applied

using a time horizon of K = 150 time steps. For each time step, the solution

encodes the number of active servers and the state of the cooling devices.

The active servers are encoded directly with their total power consumption

in Watts. Hence, an integer vector of size K is used, with values ranging from

0 up to Smax, where Smax is the power consumed when all servers are active.

Similarly, the state of the cooling devices is encoded as an integer vector of size

K with each value representing three states in the interval [1, 300]. A value v

in the interval [1, 100] represents the free cooling being used with a fan speed

of v. On the other hand, a value v in the interval [101, 200] represents the

CRAC being used. Finally, a value v in the interval [201, 300] means that all

cooling devices are off.

Considering both encodings, the complete solution representation is an

integer vector of size 2K where the cooling devices are encoded in the first K

integers of the representation, and the server state is encoded in the last K

elements of the representation. This representation was previously introduced

by Nesmachnow et al. (2014b). Figure 3.2 shows the representation of a sample

solution.

45

1 2 ...K-1 K+2K+13 2KK...

70 ...014981560201...220153 200

Free cooling with fan speed at 70%
CRAC system is used

Total amount of energy
used by the servers

No cooling

Figure 3.2: Representation of a sample solution.

3.5.2 Initial Population

Each solution of the initial population is created randomly using the following

criteria. With probability p = 0.5, the new solution is created totally at

random. That is, each value of the solution encoding is chosen randomly

following a uniform distribution in the whole range of valid values. Otherwise,

the new solution is created randomly in a high energy subspace of the solution

space. For this, each value of the encoding is chosen in the upper 20% of the

range of valid values. This technique allows us to provide the MOEA with a

greater number of feasible solutions in the initial population.

3.5.3 Evolutionary Operators for NSGA-II

NSGA-II is a well-known MOEA proposed by Deb (2001). In this work, the

NSGA-II implementation previously proposed by Iturriaga and Nesmachnow

(2015) is applied for addressing the scheduling problem since it proved to be

accurate and efficient. Next, the recombination and mutation operators for

the NSGA-II are presented.

Recombination Operator

A three-point operator is defined for the recombination operator. This oper-

ator starts by selecting three points: p1, p2, p3. Point p1 is selected randomly

following a uniform distribution in the interval [1, K − 1]. Point p2 is always

K, and point p3 is K + p1. By defining p2 to always be K, it is asserted that

cooling and server power values at each time step from each parent are inher-

ited together by the offspring. For example, the value at position 1′ is always

inherited with position K+1′, each corresponding to cooling and server power

values at time step 1. Figure 3.3 shows how this operator works.

46

1' 2' ...K-1' K+2'K+1'3' 2K'K'...

p2p1 p3

1'' 2'' ...K-1'' K+2''K+1''3'' 2K''K''...

1' 2' ...K-1' K+2'K+1'3' 2K'K'...

1'' 2'' ...K-1'' K+2''K+1''3'' 2K''K''...

parent1

parent2

offspring1

offspring2

Figure 3.3: Example of the three point recombination operator for the Non-
dominated Sorting Genetic Algorithm, version II (NSGA-II).

Mutation Operator

The mutation operator is applied individually to each integer in the solution

encoding but uses two different approaches, one for the cooling state part of

the solution and another for the server power part. For the cooling state part

(i.e., the first K elements in the encoding), a differential approach is applied.

That is, for mutating an integer value v, a random value r ∈ [0, 1) is selected,

and the mutated value of v is computed as v′ = (v+r×300) mod 300. For the

server power part of the encoding (i.e., elements K+1 to 2K), a simple uniform

mutation is applied, such that the value of v′ is a random value between 0 (i.e.,

when all servers are off) and Smax (i.e., when all servers are on).

3.5.4 Evolutionary Operators for ev-MOGA

The ev-MOGA was proposed by Mart́ınez-Iranzo et al. (2009) to address the

shortcomings of many MOEAs. In this work, ev-MOGA uses the exact same

mutation operator as NSGA-II. This mutation operation proved to be useful

and adapted adequately for ev-MOGA. On the other hand, a linear recombi-

nation is used for the recombination of an operator, as recommended by the

original ev-MOGA implementation. This latter operator is detailed next.

Recombination Operator

For the recombination operation, a linear recombination method is applied

such that parents P1 and P2 are recombined to produce offspring O1 and O2

as shown in Equation (3.5) and (3.6):

47

O1 = α⊗ P1 + (1− α)⊗ P2, (3.5)

O2 = (1− α)⊗ P1 + α⊗ P2, (3.6)

where α is a random vector in the space [0, 1)2K and ⊗ is the element-wise

multiplication of two vectors. Finally, all values of O1 and O2 are rounded to

their nearest integer value to satisfy the encoding.

Fitness Functions

The fitness functions that guide the evolutionary process are identical to the

ones defined in Equation (3.2), (3.3) and (3.4). Because the MOEA solu-

tion encodes the cooling and server power, it alone is sufficient for computing

Equation (3.2) and (3.3). However, because it does not include task scheduling

information, it is not possible to compute Equation (3.4).

For computing Equation (3.4), the Best Fit Hole (BFH) algorithm is used

as a subordinate greedy scheduling heuristic for computing a task-to-server

scheduling. Next, the BFH task-scheduling heuristic is presented in detail.

Greedy Task Scheduling Heuristic

The Best Fit Hole (BFH) heuristic is applied for task scheduling (Dorronsoro

et al., 2014a). This heuristic works by applying a backfilling approach and

keeping track of holes in the schedule when servers are idle. Tasks are assigned,

one by one, to the hole that satisfies their due date and minimizes the difference

between its execution time and the hole duration (i.e., it best fits the task). If

no hole satisfies the deadline constraint of a task, then that task is scheduled

at the end of the server that can execute it faster. Algorithm 2 shows the

schema of the BFH scheduler.

3.5.5 Simulated Annealing for Post Hoc Optimization

Simulated Annealing (SA) is a metaheuristic introduced by Kirkpatrick et al.

(1983). In this work, it is applied as a post hoc optimization for further

improving the solutions computed by the MOEA. A similar post hoc approach

proved to be very effective in significantly improving QoS by Iturriaga and

Nesmachnow (2015).

48

Algorithm 2 Schema of the Best Fit Hole (BFH) scheduling heuristic

U ← tasks . queue of tasks

H ← ∅ . set of holes

while U 6= ∅ do

t← first(U) . get the first task and remove it from the set

H t ← canAcomodateTask(H, t) . get holes which may accommodate

the task

H t ← satisfiesDueDate(H t, t) . get holes which satisfy the due date

of the task

if H t 6= ∅ then

h← getSmallestHole(H t) . get hole with smallest length

assignTaskToHole(t, h)

H = (H \ h) ∪ (h \ t) . remove hole from set and update remaining

hole time

else

assignToFastestServer(t)

end if

end while

49

Since SA works with a single solution, it is executed separately from each

non-dominated solution computed by the MOEA. On top of that, SA is a single

objective optimization method and cannot deal with multiple objectives. For

this reason, it is applied multiple times (N) for each solution. Each time, the

SA randomly chooses an optimization objective to be improved. Algorithm 3

shows the schema for applying the post hoc optimization. Dominance is used

as an acceptance criterion, that is, a new solution is accepted only when it

dominates the current solution. The neighborhood for the SA is constructed

using a simple task moving operation which moves one task from its current

machine to a new machine in some arbitrary position.

Algorithm 3 Schema for post hoc optimization using Simulated Annealing
(SA)

S ← solutions . set of solutions computed by the MOEA

S∗ ← ∅ . set of improved solutions

while S 6= ∅ do

s← first(S)

for i = 1 : N do

s′ ← applySA(s) . applies simulated annealing to s

if s′ dominates s then . evaluates Pareto dominance

s← s′

end if

end for

S∗ = S∗ ∪ s
end while

3.6 Experimental Evaluation

In this section, the experimental evaluation of the proposed algorithmic solu-

tions is presented. It introduces the problem instances created for assessing

the efficacy of the proposed algorithms and the parameter setting of each al-

gorithm.

50

3.6.1 Problem Instances

A set of realistic problem instances is created to evaluate the proposed algo-

rithmic approach. For all these problem instances, a scheduling horizon of

K = 150 time steps is defined and a rescheduling policy is considered. Every

K time steps or when a new task arrives, the scheduling algorithm is executed

and all queued tasks are rescheduled. This is a realistic time horizon with

an adequate compromise of time ahead scheduling and rescheduling frequency.

An external temperature of 25 ℃is considered, an initial internal temperature

of 26.5 ℃, and a maximum operative temperature of 27 ℃. The data center

simulates the Parasol data center presented by Goiri et al. (2015a). This data

center consists of 64 low-power servers with Intel Atom processors. Each server

consumes 30 W when executing at peak performance, 22 W in idle state, and

only 3 W in sleep state. The CRAC system consumes 2.3 kW and the free

cooling system up to 410 W.

Considering all the above, small, medium, and large workloads are defined

comprised of 200, 300 and 400 tasks, respectively. Three different workload in-

stances are created for each size totaling nine different workload instances. For

the reference power profile, Rt, three different configurations are considered.

These configurations represent a fairly heterogeneous spectrum of scenarios

with varying reference profiles. Figure 3.4 shows all three reference power pro-

files. Regarding the green power generation, an array of three solar panels

are simulated, each one capable of producing up to 0.5 kW. Three different

green power profiles are considered for these solar panels. The first one, g1,

is shown in Figure 3.5a and represents a morning power generation profile.

This profile represents a scenario that starts with low energy generation and

gradually increases energy generation as midday approaches. Profile g2, which

corresponds to a midday power generation profile, is shown in Figure 3.5b.

This profile represents the maximum energy generation profile with peak solar

irradiation. Finally, profile g3 equals a null green power generation represent-

ing a nighttime environment. This profile is not even shown, as no energy is

generated during the night. All three of these power profiles were generated

using historical solar irradiation information by Goiri et al. (2015a).

In total, 81 different instances are created considering a wide range of

different scenarios.

51

50 100 150
0

2000

4000

E
ne

rg
y

(k
W

)

Timestep
50 100 150

0

2000

4000

E
ne

rg
y

(k
W

)

Timestep
50 100 150

0

2000

4000

E
ne

rg
y

(k
W

)

Timestep

Figure 3.4: Power reference profiles. (a) profile A; (b) profile B; and (c) profile C.

50 100 150
0

500

E
ne

rg
y

(k
W

)

Timestep
50 100 150

0

500

E
ne

rg
y

(k
W

)

Timestep

Figure 3.5: Green power generation profiles. (a) morning profile (g1); and (b)
midday profile (g2).

3.6.2 Parameter Settings

In this work, NSGA-II is configured with a population size of #pop = 20, a re-

combination probability of pr = 0.9, and a mutation probability of pm = 0.01.

On the other hand, ev-MOGA is configured with a P population size of

#popP = 100 and a G population size of #popG = 8. A mutation proba-

bility of pm = 0.1 and a recombination probability of pr = 0.9. These set-

tings are heavily based on the values proposed originally by Deb (2001) and

Mart́ınez-Iranzo et al. (2009). Both MOEAs were configured with a stopping

criterion (sc) of 1000 generations for keeping the algorithms within reasonable

execution times.

As for the post hoc optimization, SA is configured to be executed N = 12

times for each non-dominated MOEA solution. The initial temperature of SA

was configured as T0 = 1, the stopping temperature (st) as Ti ≤ 1 × 10−8,

and the cooling schedule (cs) as Ti+1 = Ti × 0.8. These settings are heavily

based on the values originally proposed by Kirkpatrick et al. (1983). Table 3.1

summarizes NSGA-II, ev-MOGA and SA settings.

52

Table 3.1: Parameter settings for Non-dominated Sorting Genetic Algorithm ver-
sion II (NSGA-II), Epsilon-Variable Multi-Objective Genetic Algorithm (ev-MOGA)
and simulated annealing (SA).

Algorithm Parameter Value

NSGA-II

pr 0.9
pm 0.01

#pop 20
sc 1000 generations

ev-MOGA

pr 0.9
pm 0.1

#popP 100
#popG 8

sc 1000 generations

SA

N 12
T0 1
st Ti ≤ 1× 10−8

cs Ti+1 = Ti × 0.8

3.7 Experimental Results and Discussion

This section presents and discusses the experimental results computed by both

algorithmic approaches, the one based on NSGA-II and the one based on

ev-MOGA. First, the efficacy of these approaches is studied by comparing

their accuracy at optimizing the objectives and at sampling the Pareto front.

After that, the best approach is compared with a traditional business-as-usual

scenario where no power optimization is performed and no green power source

is available. This business-as-usual scenario is a typical scenario in many small-

and medium-sized data centers.

3.7.1 NSGA-II and ev-MOGA Comparison

The hypervolume metric is applied for comparing the NSGA-II and ev-

MOGA approaches. The hypervolume metric was introduced by Zitzler and

Thiele (Zitzler and Thiele, 1998) and is the most used metric for comparing

multiobjective optimization results (Riquelme et al., 2015). This metric works

by constructing a hypercube vi for each solution i in the Pareto front Q. Each

hypercube is defined with a reference point W and solution i as corners of the

diagonal of the hypercube. The reference point W is arbitrary but may be eas-

ily constructed using the worst computed values for each objective function.

53

Table 3.2: Average and standard deviation of the relative hypervolume (RHV)
computed by each algorithm for each workload size and green power generation
profile.

Workload Green Power Average RHV
Size Profile ev-MOGA NSGA-II

small
g1 0.89 ±0.19 0.72 ± 0.12
g2 0.93 ± 0.12 0.73 ± 0.13
g3 0.84 ± 0.23 0.61 ± 0.16

medium
g1 0.91 ± 0.14 0.69 ± 0.16
g2 0.89 ± 0.16 0.76 ± 0.15
g3 0.83 ± 0.18 0.63 ± 0.13

large
g1 0.79 ± 0.13 0.62 ± 0.17
g2 0.86 ± 0.10 0.67 ± 0.15
g3 0.75 ± 0.14 0.57 ± 0.14

Note: statistical differences are shown in bold font (p ≤ 0.001).

Finally, the hypervolume (HV) is computed as the union of all hypercubes

such that a larger hypervolume is always preferable. Equation (3.7) shows

how hypervolume is calculated:

HV = volume
(
∪|Q|i=1vi

)
. (3.7)

The hypervolume metric considers both the convergence and the diversity

of a Pareto front providing an all-around quantitative value. In this work, the

relative hypervolume metric is reported for readability. The relative hypervol-

ume is computed as RHV = HV
HV ∗

, where HV ∗ is the hypervolume of the best

known approximation to the true Pareto front.

For the comparison study, a total of 30 independent executions were per-

formed for each algorithm and for each problem instance. Table 3.2 shows the

average and standard deviation of the relative hypervolume computed by each

algorithm grouped by workload size and by green power profile. The Kruskal–

Wallis test (Kruskal and Wallis, 1952) is used to provide statistical confidence

in the comparison. Statistically significant differences are presented in bold

font.

Overall results show ev-MOGA computes consistently better solutions than

NSGA-II for all scenarios. Figures 3.6 and 3.7 present box plots for RHV

results aggregated by dimension and by green power profile. For all scenarios,

ev-MOGA presents a higher median RHV and lower dispersion values.

54

ev-MOGA NSGA-II
Evolutionary algorithms

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Re

la
tiv

e
Hy

pe
rv

ol
um

e

ev-MOGA NSGA-II
Evolutionary algorithms

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Hy
pe

rv
ol

um
e

ev-MOGA NSGA-II
Evolutionary algorithms

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Figure 3.6: Relative hypervolume computed by Epsilon-Variable Multi-Objective
Genetic Algorithm (ev-MOGA) and Non-dominated Sorting Genetic Algorithm ver-
sion II (NSGA-II) for each workload size. (a) small workload size; (b) medium
workload size; and (c) large workload size.

ev-MOGA NSGA-II
Evolutionary algorithms

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Hy
pe

rv
ol

um
e

ev-MOGA NSGA-II
Evolutionary algorithms

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Hy
pe

rv
ol

um
e

ev-MOGA NSGA-II
Evolutionary algorithms

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Hy
pe

rv
ol

um
e

Figure 3.7: Relative hypervolume computed by Epsilon-Variable Multi-Objective
Genetic Algorithm (ev-MOGA) and Non-dominated Sorting Genetic Algorithm ver-
sion II (NSGA-II) for each green energy profile. (a) morning profile (g1); (b) midday
profile (g2); and (c) night profile (g3).

Next, the best aggregated results computed by each algorithm are ana-

lyzed, that is, the best approximation to the true Pareto front computed by

each algorithm. Table 3.3 presents the best aggregated RHV values for each al-

gorithm, for each workload size, and for each green power profile. Results show

ev-MOGA is significantly better than NSGA-II for all problem instances with

small- and medium-sized workloads. For small-sized workloads, ev-MOGA is

always able to compute the best approximation to the true Pareto front without

fail. Results are more contested for the large-sized workloads where ev-MOGA

is significantly better than NSGA-II in just one out of three scenarios.

Figures 3.8a–c show a sample of the best aggregated Pareto front for each

algorithm and for each green power profile for a medium-sized workload. In

summary, ev-MOGA proved to be more accurate than NSGA-II in nearly all

of the considered problem instances.

55

Table 3.3: Average and standard deviation of the relative hypervolume (RHV) for
the best aggregated Pareto front computed by each algorithm for each workload size
and green power generation profile.

Workload Green Power Average RHV
Size Profile ev-MOGA NSGA-II

small
g1 1.00 ± 0.00 0.87 ± 0.03
g2 1.00 ± 0.00 0.87 ± 0.03
g3 1.00 ± 0.00 0.82 ± 0.04

medium
g1 1.00 ± 0.00 0.89 ± 0.04
g2 0.99 ± 0.01 0.91 ± 0.04
g3 0.98 ± 0.02 0.85 ± 0.04

large
g1 0.97 ± 0.02 0.92 ± 0.06
g2 0.99 ± 0.01 0.91 ± 0.03
g3 0.93 ± 0.04 0.86 ± 0.04

Note: statistical differences are shown in bold font (p ≤ 0.001)

0
2

4x 10
4

0
2

4

x 10
5

0

2000

4000

6000

BudgetProf. deviation

T
ot

al
 v

io
la

tio
n

tim
e

ev−MOGA
NSGA−II

0
5000

10000 2
3

4

x 10
5

0

1000

2000

3000

4000

BudgetProfile deviation

T
ot

al
 v

io
la

tio
n

tim
e

ev−MOGA
NSGA−II

0
1

2x 10
4

6
8

10

x 10
5

0

1000

2000

3000

4000

BudgetProfile deviation

T
ot

al
 v

io
la

tio
n

tim
e

ev−MOGA
NSGA−II

Figure 3.8: Best aggregated Pareto front computed by each algorithm for medium-
sized workloads and for each green energy profile. (a) morning profile (g1); (b)
midday profile (g2); and (c) night profile (g3).

56

Table 3.4: Average and standard deviation for the relative budget reduction over
the business-as-usual scenario (BAU), and relative deviation from the reference
power computed by ev-MOGA for quality of service over 95%.

Workload Green Power Budget Reduction Relative Deviation
Size Profile over BAU from Ref. Power

small
g1 76% ± 5% 1% ± 2%
g2 83% ± 3% 0% ± 1%
g3 58% ± 5% 2% ± 3%

medium
g1 66% ± 4% 1% ± 2%
g2 70% ± 6% 1% ± 2%
g3 46% ± 5% 5% ± 4%

large
g1 53% ± 2% 4% ± 3%
g2 59% ± 2% 1% ± 1%
g3 33% ± 3% 11% ± 5%

3.7.2 Comparison of ev-MOGA with the Business-as-

Usual Approach

The business-as-usual scenario represents a real-world scenario where no green

power source is available and where servers are never in sleep state. For this

comparison, just solutions with a relative QoS of 95% or greater are considered.

This is a realistic scenario since providing a low QoS is not desirable for most

data centers. The relative QoS value is computed as the total amount of

overdue time relative to the sum of execution time required by all tasks. Hence,

a schedule with a relative QoS of 95% means it requires just 5% of additional

overdue time for task execution.

Table 3.4 shows the average and standard deviation for the relative budget

reduction computed by ev-MOGA over the business-as-usual scenario for each

workload size and each green power profile with QoS of over 95%. On top of

that, it also shows the average and standard deviation for the relative deviation

from the reference power profile, with the deviation from the reference power

profile being calculated as the total amount of energy required that surpasses

the reference profile, relative to the total amount of energy specified in the

reference profile.

Results show that ev-MOGA is able to compute a large budget reduction,

up to 83%, with a small relative deviation from the power reference profile,

lower than 5% in most scenarios. As expected, the larger reductions are com-

57

0%

10%

20%

30%

40%

50%

60%

70%

80%

Small Medium Large

R
e

la
ti
v
e

 r
e

d
u

c
ti
o

n
/d

e
v
ia

ti
o

n

Problem size

Budget reduction over BAU

Deviation from reference power

Figure 3.9: Average relative budget improvement over business-as-usual scenario
and relative deviation from power reference computed by ev-MOGA for a relative
quality of service over 95%

puted for the morning and midday green power profile (g1 and g2), with an

average reduction of 68%. Budget reduction is much lower for the nighttime

green power profile (g3), with an average reduction of 46%, which accounts for

just the server state and cooling device planning. These results show the ef-

fectiveness of considering green energy sources for data center infrastructures,

reducing the energy budget by an average of 22%. Figure 3.9 shows the aver-

age budget reduction and relative power reference deviation for the solutions

computed by ev-MOGA when compared to the business-as-usual scenario.

3.8 Conclusions

This work addresses the problem of controlling power consumption in data cen-

ters considering both traditional and renewable energy sources. This schedul-

ing problem consists of simultaneously scheduling the states of the servers and

the cooling devices of the data center, and the scheduling of tasks to be ex-

ecuted in the data center. A mathematical formulation is proposed for this

problem, taking into account a desired reference power consumption profile,

the overall electricity budget, and the QoS provided to its users.

A fully Pareto-oriented methodology is applied for solving this problem,

and two multi-objective evolutionary algorithms—NSGA-II and ev-MOEA—

are presented. Both are hybridized with a greedy scheduling algorithm and a

simulated annealing algorithm. In the proposed schema, the multi-objective

evolutionary algorithms schedule the server and cooling devices, while the

58

greedy heuristic schedules the execution of tasks. On top of that, simulated

annealing is used as a post hoc optimization mechanism and it is executed at

the very last moment.

A small low-power data center is modeled for the experimental analysis,

taking into account the heat dissipation of its servers and the effectiveness of

its cooling devices. A wide set of problem instances are constructed consider-

ing different power profiles, green power generation profiles, and workloads of

tasks. First, NSGA-II and ev-MOEA approaches are compared using a Pareto-

aware methodology to determine the best evolutionary approach. Next, the

best approach is compared with a business-as-usual scenario with no scheduling

of server or cooling devices, and with just a traditional energy source.

Results show the ev-MOGA approach is significantly more accurate than

the NSGA-II approach for all of the problem instances, improving accuracy

of the schedules by about 18% in average. When comparing ev-MOGA with

the business-as-usual scenario, only schedules with high QoS values are consid-

ered, since low QoS values are certainly not desirable for most real-world data

centers. In these high-QoS scenarios, ev-MOGA proved to be very effective,

computing average budget reductions ranging from 33% up to 83%, depending

on the workload size and green power generation profile. Furthermore, these

reductions are obtained with an average deviation from the reference power

profile of just about 3%.

These results confirm the effectiveness of the proposed approach and the

usefulness of considering renewable energy sources for data center infrastruc-

tures. The main lines of future work include extending the experimental anal-

ysis and improving the efficiency of the proposed methods. The experimental

analysis is to be improved by considering larger data center infrastructures and

a wider range of green power generation profiles. At the same time, improving

the efficiency and efficacy of the proposed methods is equally important and

is certainly necessary in order to address larger problem instances.

59

Chapter 4

Multiobjective evolutionary

algorithms for energy and

service level scheduling in a

federation of distributed

datacenters

Santiago Iturriaga, Bernabé Dorronsoro, and Sergio Nesmachnow

Abstract: This article studies the application of multiobjective evolutionary

algorithms for solving the energy-aware scheduling problem of workflows in a

distributed system that is composed by a federation of datacenters. Nowadays,

energy efficiency is of major concern when using large distributed computing

systems, including the novel grid and cloud computing facilities. Researchers

and system planners are looking for accurate methods to be used for planning

the execution of large workloads that consume large amounts of resources,

having a direct implicance in the energy consumption of the system and its

operational costs. In the approach proposed in this article, we study the ap-

plication of multiobjective evolutionary algorithms combined with low-level

backfilling heuristics for finding efficient mappings of workflows into resources

in order to maximize several metrics related to the quality of service, while

reducing the energy required for computation. The experimental evaluation is

performed considering both medium and large workloads that model realistic

high performance computing applications and nowadays distributed comput-

60

ing infrastructures. The experimental results demonstrate that the proposed

multiobjective evolutionary approaches compute accurate schedules, signifi-

cantly outperforming both traditional round-robin/load-balancing schedulers

and a set of combined list scheduling heuristics (accounting for both problem

objectives) previously applied to the problem.

4.1 Introduction

Datacenters are large supercomputing facilities hosting many computing re-

sources that provide multiple services, including computing power, network-

ing, storage, etc. Nowadays, datacenters are being used in different application

domains, most notably including science, industry and commerce (Khan and

Zomaya, 2015).

The new paradigms for computation that propose using geographically dis-

tributed infrastructures to deal with large-scale complex problems (i.e. grid

and cloud computing) have gained notorious interest due to the emergence

of modern datacenter facilities and parallel computing methodologies and li-

braries. A common infrastructure for large-scale computing is a federation

of distributed datacenters, i.e. a set of datacenters organized to work coop-

eratively as a single-image computing resource. Indeed, such a federation of

datacenters provides a significantly large amount of computing power to be

used in modern supercomputing applications. Each datacenter in a federa-

tion is typically composed by a large number of heterogeneous computational

resources, including high performance clusters, large storage systems, and/or

components of large grids or cloud systems (Zomaya and Lee, 2012).

Energy efficiency is a very relevant issue for datacenter operation and has

become a major concern when using complex computing infrastructures (Ah-

mad and Ranka, 2012). Recent surveys reveal that datacenters and high per-

formance computing facilities account for about 1.5% of the total world energy

usage (Koomey, 2011), and for each datacenter, the electricity bills represent

about 5% of the total cost of ownership (Barroso and Hölzle, 2009). As a con-

sequence, datacenters’ owners and operators are interested in maintaining the

energy consumption as low as possible, for both economic and environmental

reasons. However, the energy efficiency management is in conflict with the

performance of the system, since increasing the performance requires using

more energy, and reducing the energy consumption will negatively affect the

61

Quality of Service (QoS) that the datacenter provides to the users. This is a

complex problem that requieres a multiobjective analysis for finding accurate

solutions of the datacenter planning problem, providing different trade-offs

between energy consumption and performance.

Different techniques for reducing the energy consumption in datacenters

have been proposed, ranging from ad-hoc hardware solutions to more general

software methods for specific infrastructures (Ahmad and Ranka, 2012; Dor-

ronsoro et al., 2014a; Iturriaga and Nesmachnow, 2015; Nesmachnow et al.,

2015; Tchernykh et al., 2015; Valentini et al., 2013; Khan and Zomaya, 2015).

This article presents the application of MultiObjective Evolutionary Algo-

rithms (MOEAs) for energy-aware scheduling of workloads with deadlines into

a federation of distributed datacenters. Similar problems have been tackled by

Abrishami et al. (2013) and Schwiegelshohn and Tchernykh (2012). The com-

puting infrastructure considered in this work is composed by a number of clus-

ters that might be geographically distributed. This is indeed the architecture

of modern high performance computing systems, including supercomputers,

high performance computing centers, and cloud infrastructures, among others.

We specifically tackle scenarios with high performance computing applications

which require high computing usage and low networking and storage usage.

Thus, we approximate the energy consumed by each machine with the energy

consumed by its central processing units.

A hierarchical two-level approach is applied (Dorronsoro et al., 2014a;

Quezada-Pina et al., 2012), which divides the scheduling problem into a num-

ber of simpler and smaller sub-problems to be solved in each component of the

datacenter federation. Scheduling heuristics and MOEAs are used to assign

groups of worflows submitted by the users to each datacenter. Then, specific

ad-hoc backfilling heuristics considering makespan, energy consumption, and

QoS of solutions, are applied for scheduling within each datacenter.

This article is an extension of our previous conference paper, presented

in the VIII ALIO/EURO Workshop on Applied Combinatorial Optimization

(Montevideo, Uruguay, 2014), in which a hierarchical method was presented

for energy-aware scheduling of large workloads into a distributed computing

system (Nesmachnow et al., 2014a). That work contributed to the literature

with a novel hierarchical model that uses two levels for assigning workflows

to a number of geographically distributed resources, that allows scheduling a

large number of workflows of tasks with dependencies.

62

The contributions of this article are: (i) a reformulation of the problem,

including a user-oriented perspective by considering Service Level Agreement

(SLA) contracts with customers over a heterogeneous federated datacenter; (ii)

the resolution of the problem with versions of well-known scheduling heuristics

adapted to the problem, and two new MOEAs specifically designed and im-

plemented for the problem formulation proposed; (iii) the computation of new

lower bounds for the problem, using a Constraint Programming (CP) method-

ology for estimation; and (iv) the use of large datacenters in the experimental

analysis, the biggest one composed of over 1, 500 processing elements, a more

realistic computational infrastructure than those in the instances used in our

previous work.

We evaluated the studied schedulers with a set of 175 instances, includ-

ing 50 medium size workloads—used to compute lower bounds for the prob-

lem objectives—and 125 workloads with large workflows that model typical

high performance computing applications over realistic distributed infrastruc-

tures. As in our previous work (Dorronsoro et al., 2014a), five different classes

of workloads are considered, namely Series-Parallel, Heterogeneous-Parallel,

Homogeneous-Parallel, Single-Task, and Mix. The workloads of all problem

instances contain 1000 workflows, with up to 132 tasks each, to be sched-

uled in a federation of datacenters with around 3, 000 computational units.

Experimental results demonstrate that the MOEA schedulers compute accu-

rate solutions with more than 37 solutions that outperform the best studied

heuristic on all three objectives.

The article is organized as follows. The problem formulation and a review

of the related work are presented in Section 4.2. The scheduling approach and

the proposed multiobjective evolutionary methods are described in Section 4.3.

The specific MOEAs studied to solve the problem are introduced in Section 4.4.

The experimental evaluation is reported in Section 4.5, including a compara-

tive analysis of the proposed schedulers and a comparison against both lower

bounds computed for the problem and a traditional optimistic load balancing

round robin scheduler. Finally, Section 4.6 formulates the conclusions of the

research and the main lines for future work.

63

Lower-level 
Scheduler

Set 1

of jobs

Higher-level Scheduler

Front-end

Lower-level 
Scheduler

Lower-level 
Scheduler

Set n

of jobs

Set 2

of jobs

Datacenter 1

Federated
datacenter

Datacenter 2

Datacenter k

User 1

Contract

SLA

User 2

Contract

SLA

User p

Contract

SLA

rScheduler

dulerSchedu

eduScheduler

Figure 4.1: Overview of the scheduling problem in a federation of datacenters

4.2 The problem: energy-aware scheduling in

a federation of datacenters

This section introduces the problem model and formulation, and discusses the

related work about energy-aware scheduling in datacenters.

4.2.1 Problem model

The energy-aware scheduling problem addressed in this article is to find the

best possible allocation of resources to execute a large number of parallel ap-

plications into a geographically distributed federated datacenter. We define

the accuracy of an allocation in terms of the time required to execute all its

applications (i.e., the makespan), its energy consumption, and its service level

agreement violations. Figure 4.1 shows an overview of the problem. Our prob-

lem model is composed of the following elements:

• A distributed computing infrastructure (the federation of datacenters)

formed by k heterogeneous datacenters DC = {dc1, . . . , dck}. Each dat-

acenter DCr is comprised of a set of multi-core machines (servers) Sr =

{s1, . . . , ss}, each machine sj characterized by its number of cores cj, per-

formance in FLoating-point Operations Per Second (FLOPS) opsj, and

energy consumption of its processors at idle eidlej and peak emaxj usage.

64

• A set of n independent heterogeneous workflows Q = {q1, . . . , qn}. Each

workflow q has an associated soft deadline dq before it should be accom-

plished. Each workflow q is a parallel application that is decomposed into

a (large) set of tasks WTq = {wt1, . . . wtm} with dependencies among

them. Typically, each task has different computing requirements.

• A number p of users (owners) O = {o1, . . . , op}, each having a number

of workflows to be executed (defined by wu(ui)) and an SLA agreement,

determining the percentage of applications that should be finished before

their deadlines. We consider three realistic levels of SLA agreements for

large workload instances, i.e., SLA = {90%, 94%, 98%}.
• Each task α is characterized by two values (oα, ncα) defining its length

(number of operations), and the number of resources (cores) required for

the parallel execution, respectively.

In the problem model, each workflow is represented as a Directed Acyclic

Graph (DAG), i.e. a precedence task graph q = (V,E), where the set of nodes

V contains each task α (1 ≤ α ≤ m) of the parallel program q. The set of

(directed) edges E represents the dependencies between tasks, a partial order

α ≺ β that models the precedence constraints: an edge eαβ ∈ E means that

task β cannot start its execution before task α is completed. Communication

costs between tasks are not considered because they occur always within the

same datacenter.

We propose dealing with large workloads, so the largest problem instances

are composed of thousands of workflows (this means hundreds of thousands of

tasks) to be scheduled onto a federation of several datacenters comprised of

hundreds to thousands of processing elements.

We model this with the multiobjective problem min (fM , fE, fS), that pro-

poses the simultaneous optimization of the makespan (fM), the energy con-

sumption (fE), and the violations of SLA (fS):

• The makespan evaluates the total time to execute a set of workflows,

according to the expression in Eq. (4.1), where ~x represents an allocation,

k is the number of available datacenters, and CTr is the completion time

of datacenter r (DCr).

fM(~x) = max
0≤r≤k

CTr (4.1)

65

• The energy consumption function for a set of workflows executed in a

certain datacenter is defined in Eq. (4.2), using the energy model for

multi-core architectures by Nesmachnow et al. (2013), where f1 is the

higher-level scheduling function, and f2 is the lower-level scheduling func-

tion. The total energy consumption takes into account both the energy

required to execute the tasks assigned to each computing resource within

a datacenter, and the energy that each resource consumes in idle state.

fE(~x) =
∑
r∈DC

∑
q∈Q:

f1(q)=r

∑
wtα∈WTq :

f2(wtα)=sj

o(wtα)

ops(sj)
× emaxsj

+
∑
sj∈Sr

eidlesj
(4.2)

• The violations of SLA agreements is defined as the number of applica-

tions that violate the user’s SLA agreement, i.e., the number of appli-

cations that do not finish before their deadline, over the allowed limit

specified by the SLA (Eq. 4.3), where V iolated(q) takes value 1 when

the deadline of workflow q is violated (ftwq > dq, being ftwq the fin-

ishing time of workflow q, according to the schedule) and 0 otherwise,

SLAui = {0.9, 0.94, 0.98} (for large problem instances) and WF (ui) is

the number of workflows submitted by user ui.

fS(~x) =
∑
ui∈U

max

0,

 ∑
q∈wu(ui)

V iolated(q)− (1− SLAui)×WF (ui))


(4.3)

In this article, we study the optimization problem from the point of view

of the computing system (i.e. the infrastructure administration), thus we use

two system-related objectives in the problem formulation. Additionally, we

consider a QoS-related objective such as the number of workflow deadlines

satisfied violated, taking into account the point of view of the customer/user

in the problem formulation.

66

4.2.2 Mathematical formulation

The mathematical formulation of the Energy-aware SLA Scheduling Problem

in federated datacenters (E-SLA-SP) is presented next.

General elements and constants. The global elements in the problem

definition include:

• m tasks, α = 1 . . .m;

• n workflows, q = 1 . . . n;

• s machines, j = 1 . . . s;

• k datacenters, r = 1 . . . k;

• o users, p = 1 . . . o;

• u, the periods of time in the scheduling horizon, i = 1 . . . u;

• dcmrj, equals 1 if machine j belong to datacenter r, 0 otherwise;

• cmaxj , the number of cores available in machine j;

• eidlej , the energy consumption per period of time of machine j when in

idle state;

• emaxj , the energy consumption per period of time of machine j when in

processing state;

• dq, the deadline before workflow q should be executed;

• wtqα, equals 1 if task α comprises workflow q, 0 otherwise;

• pαα̂ equals 1 if task α must precede task α̂, 0 otherwise;

• cα, the number of cores required for executing task α;

• lenαj, the number of time periods required to execute task α in machine

j;

• wuqp, equals 1 if workflow q was submitted by user p, 0 otherwise;

• slp, the maximum acceptable number of tasks with unsatisfied deadlines

for user p.

67

Variables. Three decision variables are considered:

• wqr: workflow q is assigned to be executed by datacenter r;

• xαj: task α is assigned to be executed by machine j;

• yαji: task α is to be executed by machine j at time period i;

Four related variables are defined:

• stα, the starting time period of task α;

• ftα, the finishing time period of task α;

• ftwq, the finishing time period of workflow q;

• vq, equals 1 if workflow q violates its deadline.

Formulation. The mathematical formulation of the optimization problem

is presented in Eq. (4.4).

The problem objectives are formulated first. Eq. (4.4a) formulates the

makespan objective, fM(~x). Eq. (4.4b) presents the mathematical formulation

of the energy consumption objective, fE(~x). Finally, Eq. (4.4c) formulates the

violations of SLA objective, fS(~x).

Regarding the problem constraints, Eq. (4.4d) states that each task must

be included in one and only one workflow; Eq. (4.4e) indicates that each ma-

chine must comprise one and only one datacenter; Eq. (4.4f) states that each

workflow must be assigned to one and only one datacenter; and Eq. (4.4g)

indicates that each task must be assigned to one and only one machine.

Eq. (4.4h) guarantees that at any time period i, the number of cores re-

quired by all the tasks assigned to a machine j must be less or equal to the

number of cores available in j. The constraint in Eq. (4.4i) asserts the ex-

ecution time of task α must be zero on all machines to which it is not as-

signed. Eq. (4.4j) states stα is the first time period in which α is executed,

while Eq. (4.4k) states ftα is the last time instance in which α is executed.

Eq. (4.4l) indicates that all tasks preceding task α̂ must finish their executing

before α̂ starts. Eq. (4.4m) indicates that all tasks of a given workflow must

be assigned to the same datacenter. Eq. (4.4n) states the finishing time of

workflow q is the latest finishing time of its tasks. Eq. (4.4p) and (4.4q) assert

that vq equals 1 when the deadline of workflow q is violated, and 0 otherwise.

Finally, Eqs. (4.4r) are the integrality constraints for the variables used in the

formulation.

68

Minimize max
α=1...m

ftα (4.4a)

Minimize
s∑
j=1

(
max
α=1...m

xαj × ftα × eidlej

)
+

m∑
α=1

(
xαj × lenαj ×

(
emaxj − eidlej

))
(4.4b)

Minimize
o∑
p=1

max

{
0,

(
n∑
q=1

wuqp × vq

)
− slp

}
(4.4c)

subject to
m∑
α=1

wtqα = 1 (q = 1 . . . n) (4.4d)

s∑
j=1

dcmrj = 1 (r = 1 . . . k) (4.4e)

k∑
r=1

wqr = 1 (q = 1 . . . n) (4.4f)

s∑
j=1

xαj = 1 (α = 1 . . .m) (4.4g)

m∑
α=1

yαji × cα ≤ cmaxj (i = 1 . . . u; j = 1 . . . s) (4.4h)

u∑
i=1

yαji = xαj × lenαj (α = 1 . . .m; j = 1 . . . s) (4.4i)

stα−1∑
i=1

s∑
j=1

yαji = 0 (α = 1 . . .m) (4.4j)

u∑
i=ftα+1

s∑
j=1

yαji = 0 (α = 1 . . .m) (4.4k)

pαα̂ × ftα ≤ pαα̂ × stα̂ (α = 1 . . .m; α̂ = 1 . . .m) (4.4l)
m∑
α=1

s∑
j=1

wtqα × dcmrj × xαj = wqr ×
m∑
α=1

wtqα (q = 1 . . . n; r = 1 . . . k)

(4.4m)

ftwq = max
α=1...m

wtqα × ftα (q = 1 . . . n) (4.4n)

(4.4o)

69

ftwq × (1− vq) ≤ dq (q = 1 . . . n) (4.4p)

ftwq > dq × vq (q = 1 . . . n) (4.4q)

wqr, xαj, yαji, vq ∈ {0, 1}, stα, ftα, ftwq ≥ 0

(q = 1 . . . n; r = 1 . . . k;α = 1 . . .m; j = 1 . . . s; i = 1 . . . u) (4.4r)

4.2.3 Related work

There is a large number of works dealing with energy-aware scheduling in

computing systems that recently appeared in the literature. Mainly, we can

classify them as independent and simultaneous scheduling, according to the

way in which they deal with the optimization objectives.

In the independent approach, energy and performance are optimized as sep-

arate goals, not taking into account their relationships explicitly. Therefore,

this kind of problems can be solved using existing scheduling algorithms that

optimize classic performance metrics (i.e., makespan, flowtime, etc.) com-

bined with a slack reclamation technique to deal with energy optimization,

such as dynamic voltage scaling (DVS)/dynamic voltage and frequency scal-

ing (DVFS) (Baskiyar and Abdel-Kader, 2010; Rizvandi et al., 2011). This

approach is limited in the sense that the optimization of one of the objectives

is always restricted by the optimization process performed for the other one.

In the simultaneous approach, performance and energy are optimized at

the same time, therefore the scheduling is modeled as a multi-constrained, bi-

objective optimization problem. The algorithms are oriented to find Pareto

optimal schedules; i.e., where no scheduling decision can strictly dominate the

other ones with better performance and lower energy consumption at the same

time. This approach provides a more holistic and realistic problem solving

technique for energy-aware scheduling in datacenters. We follow the simulta-

neous approach in this work, thus we briefly review the main related works

about simultaneous optimization of energy and performance metrics next.

We can find in the literature a number of works that focus on finding

only one trade-off solution instead of a Pareto set. Following this approach,

Khan and Ahmad (2009) applied the concept of Nash Bargaining Solution

from cooperative game theory to find optimal trade-off schedules for workflows

of independent tasks, simultaneously minimizing makespan and energy on a

DVS-enabled grid system.

70

Another relevant work is the one done by Lee and Zomaya (2011), where

several DVS-based heuristics to minimize the weighted sum of makespan and

energy are studied. In order to escape from local optima, authors imple-

ment a conservative local search technique that allows slight modifications on

the schedules to enhance makespan if it does not imply increasing the energy

consumption. Later, Mezmaz et al. (2011) improved the previous work by

proposing a parallel bi-objective hybrid genetic algorithm (GA) for the same

problem, using the cooperative island/multi-start farmer-worker model, signif-

icantly reducing the execution time of the scheduling method, and reporting a

Pareto front of non-dominated solutions as a result. Pecero et al. (2011) pro-

posed a two-phase bi-objective algorithm based on the Greedy Randomized

Adaptive Search Procedure (GRASP) that applies a DVS-aware bi-objective

local search to generate a set of Pareto solutions.

Li et al. (2009) introduced a MinMin-based online dynamic power manage-

ment strategy with multiple power-saving states to reduce energy consumption

of scheduling algorithms. Pinel et al. (2013) proposed a double minimization

approach for scheduling independent tasks on grids with energy considerations,

first applying a MinMin approach to optimize the makespan, and then a local

search to minimize energy consumption. Lindberg et al. (2012) proposed six

greedy algorithms and two GAs for solving the makespan-energy scheduling

problem subject to deadline and memory requirements.

In our previous work (Nesmachnow et al., 2013), we proposed a new energy

consumption model for multi-core computing systems, not based on DVS or

other specific techniques for power/energy management. Instead, we focus

on the energy required: i) to execute tasks at full capacity, ii) when the

multi-core machines are partially used, and iii) to keep machines in idle state.

We proposed twenty fast list scheduling methods adapted to solve the bi-

objective problem of executing tasks on a single cluster node with the goals

of minimizing the time and energy required. Iturriaga et al. (2013) studied

the same problem with a parallel multiobjective local search based on Pareto

dominance, showing its superior performance versus the previously mentioned

deterministic heuristics. These works deal with the problem of scheduling

independent Bag-of-Tasks (BoT) applications.

In our recent work (Dorronsoro et al., 2014a), we considered the multiobjec-

tive problem of scheduling large workflows of applications (modeled as DAGs)

into a number of clusters. The objectives to optimize were the makespan of

71

the schedule, the energy consumption, and a Quality of Service (QoS) metric

of the solutions, computed by three cost functions that depend on the time

exceeded to complete jobs, with respect to their deadline. The problem was

solved with a two-levels approach, using deterministic schedules in every level.

In the research reported in the present article we define a more difficult,

interesting, and realistic problem variant with respect to the one presented

in our previous work (Dorronsoro et al., 2014a). Here, we consider the prob-

lem of scheduling large workflows of parallel applications on a federated cloud

infrastructure, composed by a number of datacenters that are geographically

distributed. In addition, we take into account the Service Level Agreement

(SLAs) signed between the provider and its customers. These SLAs must be

respected by the provider, whenever possible. Therefore, our problem opti-

mizes the makespan and energy consumption of the solutions, as well as the

number of SLA agreements respected by the provider. The novelty of this work

in the context of federation of distributed datacenters is that we consider QoS

as an optimization objective, and provide lower-bounds for the online heuris-

tics considering medium- and large-sized problem instances with Constraint

Programming and offline MOEAs.

4.3 Methodology and techniques

This section describes the methodology and techniques applied for solving the

scheduling problem.

4.3.1 List scheduling heuristics

List scheduling heuristics are deterministic static scheduling methods that

work by assigning priorities to tasks based on a particular ad-hoc criteria.

After that, the list of tasks is sorted by decreasing priority and each task is

assigned to a processor, regarding the task priority and the processor avail-

ability (Ibarra and Kim, 1977). Algorithm 4 presents the general schema of a

list scheduling method.

List scheduling heuristics have been applied to minimize the makespan

metric in classic works on the scheduling field (Braun et al., 2001). We have

extended this concept to multiobjective scheduling of independent tasks con-

sidering makespan and energy, in our previous work (Nesmachnow et al., 2013).

72

Algorithm 4 Schema of a list scheduling algorithm

1: while tasks left to assign do
2: determine the most suitable task according to the chosen criterion
3: for each task to assign, each machine do
4: evaluate criterion (task, machine)
5: end for
6: assign the selected task to the selected machine
7: end while
8: return task assignment

In the research reported in the present article, we apply a number of schedul-

ing heuristics specifically adapted for the two-level energy-aware scheduling

problem in a federation of datacenters (see the details in Section 4.4.1).

4.3.2 Multiobjective evolutionary algorithms

Evolutionary Algorithms (EAs) are non-deterministic metaheuristic methods

that emulate the evolution of species in nature to solve optimization, search,

and learning problems (Bäck et al., 1997). In the last thirty years, EAs have

been successfully applied for solving many high-complexity optimization prob-

lems (Chiong et al., 2011; Nesmachnow, 2014).

MultiObjective Evolutionary Algorithms (MOEAs) (Coello Coello et al.,

2007; Deb, 2001) are specific evolutionary techniques designed to solve multi-

objective optimization problems. They have been applied to solve hard opti-

mization problems, obtaining accurate results when solving real-life problems

in many research areas. Unlike many traditional methods for multiobjective

optimization, MOEAs are able to find a set with several solutions in a single

execution, since they work with a population of tentative solutions. MOEAs

must be designed taking into account two goals at the same time: i) approxi-

mating the Pareto front, usually applying a Pareto-based evolutionary search,

and ii) maintaining diversity instead of converging to a reduced section of the

Pareto front, usually accomplished by using specific techniques also used in

multimodal function optimization (sharing, crowding, etc.).

In this work, we apply two MOEAs to solve the E-SLA-SP optimization

problem:

• Non-dominated Sorting Genetic Algorithm, version II (NSGA-II) (Deb,

2001). NSGA-II is a state-of-the-art MOEA that has been success-

fully applied to solve optimization problems in many application areas.

73

NSGA-II includes features to deal with three criticized issues on its pre-

decessor NSGA, in order to improve the evolutionary search: i) an im-

proved non-dominated elitist ordering that diminishes the complexity of

the dominance check; ii) a crowding technique for diversity preservation;

and iii) a new fitness assignment method that considers the crowding

distance values.

• Multiobjective Cellular Genetic Algorithm (MOCell) (Nebro et al., 2009).

MOCell is characterized by the use of a decentralized (cellular) popula-

tion and an archive to store the non-dominated solutions found during

the search. In MOCell, individuals are arranged into a two dimensional

toroidal grid, and only those individuals that are close to each other in the

mesh are allowed to interact. The main advantage of using this popula-

tion structure, called cellular, is that individuals are isolated by distance,

and therefore good solutions will spread slowly through the population

mesh, consequently keeping the diversity of solutions for longer (Alba and

Dorronsoro, 2008). From all the studied versions of MOCell reported by

Nebro et al. (2009), we use here the so-called aMOCell4, which takes ad-

vantage of the non-dominated solutions stored in the archive by choosing

one of them as one of the parents during the breeding loop.

Next section presents the main characteristics and implementation details

of the proposed MOEAs algorithm to solve the E-SLA-SP.

4.3.3 Lower bounds for the problem

Specific lower bounds are computed for each of the problem objectives, by

solving a relaxation of the general scheduling problem. The relaxed problem

formulation considers most of the original problem variables and constraints,

but no restrictions are imposed over the computational resources where to ex-

ecute a task (i.e., all machines are considered as they are in a single large pool

of resources in the same datacenter). This assumption allows us to discard

the decision variable that associates workflows to datacenters (wqr), the bi-

nary variable that indicates if a given machine belongs to a certain datacenter

(dcmrj), as well as the constraints related to the geographical location of both

resources and workflows, formulated in Eq. (4.4e), (4.4f), and (4.4m).

For computing the lower bounds, we built a Constraint Programming (CP)

model using IBM CPLEX Optimizer version 12.5. The CP model is roughly

74

based on the mathematical model presented in Section 4.2.2, but taking into

account the previously described relaxation. In addition, the CP model takes

advantage of special scheduling constructs provided by the CPLEX engine,

such as the variables interval and sequence. In the CPLEX engine, an

interval variable represents a lapse of time described by a start and an end

value, while a sequence variable represents a total order over a set of interval

variables. In the proposed model, interval variables are used to model tasks,

and sequence variables are used to model the execution queue of each machine

core.

Listing 4.1 presents the schema of the CP model for the lower bound com-

putation on the makespan objective. The CP models for calculating the lower

bounds for the energy consumption and SLA violation objectives follow the

same general schema, but changing the objective function computation in the

minimization (line 18 in Listing 4.1).

The exact resolution method applied by the CP model is only viable to

execute in reasonable times for small-sized problem instances. Taking this

argument into consideration, a stopping condition of 14 hours was applied to

finish the execution of the CP model; if the optimal solution is not found

before the stopping condition is met, then the current best solution found is

returned. This time stopping criterion allows optimally solving the relaxed

problem version for all type of considered instances, except for the Single-

Task class, which involves a significantly larger number of tasks than the other

workflow types (see Section 4.5.1 for a description of the instance types solved

in the experimental analysis).

75

4.4 The proposed algorithms

This section presents the algorithms used in this work to solve the energy-SLA

scheduling problem in a federation of distributed datacenters.

Listing 4.1: Schema of the CP model for lower bound computation for the

makespan objective
1 nbTaskCores = . . . ; //Load workloads data from f i l e

2 range TaskCores = 1 . . nbTaskCores ;

3 nbTasks = . . . ;

4 range Tasks = 1 . . nbTasks ;

5 { int} ta sks [Tasks] = . . . ;

6 { int} precc s [TaskCores] = . . . ; //Load tasks dependenc ies

7 durat ion [TaskCores , MachineCores] = . . . ;

8 nbMachineCores = . . . ; //Load datacente r s s c ena r i o

9 range MachineCores = 1 . . nbMachineCores ;

10 int nbMachines = . . . ;

11 range Machines = 1 . . nbMachines ;

12 { int} machines [Machines] = . . . ;

13 int nbDC = . . . ;

14 range DC = 1 . . nbDC;

15 { int} dc [DC] = . . . ;

16 dvar interval task [t in TaskCores] ;

17 dvar interval opttask [t in TaskCores] [m in MachineCores]

18 optional s ize durat ion [t] [m] ;

19 dvar sequence t o o l [m in MachineCores] in a l l (t in TaskCores)

20 opttask [t] [m] ;

21 //Minimize the makespan

22 minimize max(t in TaskCores) endOf (task [t]) ;

23 subject to {
24 f o ra l l (t in TaskCores)

25 //Each job needs one unary r e sour c e o f the

26 // a l t e r n a t i v e s e t opttask

27 a l t e r n a t i v e (task [t] , a l l (m in Machines) opttask [t] [m]) ;

28 f o ra l l (tg in Tasks) {
29 // Al l co r e s o f the task s t a r t and end at the same time

30 synchron ize (task [f i r s t (ta sks [tg])] ,

31 a l l (tg2 in ta sks [tg]) task [tg2]) ;

32 // Al l co r e s o f the task are as s i gned to the same machine

33 (sum(mg in Machines)

34 ((sum(t in ta sks [tg] , m in machines [mg])

35 presenceOf (opttask [t] [m]))==card (ta sks [tg]))) == 1 ;

36 }
37 f o ra l l (j in Jobs) {
38 (sum(c in DC)

39 (card (jobTasks [j])==(sum(t in jobTasks [j] , m in dc [c])

40 presenceOf (opttask [t] [m])))) == 1 ;

41 }
42 f o ra l l (m in MachineCores)

43 noOverlap (t oo l [m]) ; //No over lap on machines

44 //Precedence c on s t r a i n t s

45 f o ra l l (t1 in TaskCores)

46 f o ra l l (t2 in precc s [t1])

47 endBeforeStart (task [t2] , task [t1]) ;

48 } ;

4.4.1 Heuristics

The heuristic schedulers we use in this work are based on those presented in

our previous work (Dorronsoro et al., 2014a), but adapted to the problem of

multiobjective scheduling in a federation of datacenters. The heuristics are

76

two-levels schedulers: i) in the first level, the front-end heuristic assigns work-

flows to the different datacenters, specifying the order in which they should be

locally scheduled; ii) in the second level, there is a multi-workflow scheduler

applying the backfilling strategy, based on the well-known HEFT heuristic.

For the first level, we study here specific variants of the four heuristics

analyzed by Dorronsoro et al. (2014a), namely round robin, load balancing,

and two versions of MaxMin heuristic: the standard one plus a multiobjective

version that considers not only execution time but energy consumption too.

We also propose a new one, based on MinMin, that takes decisions based on

both computation time and energy consumption.

A short description of the high level heuristics is given next:

1. Round Robin (RR): This classic approach iteratively assigns jobs to the

next available datacenter. Should the selected datacenter cannot satisfy

core requirements for all tasks of a job, the datacenter will be skipped;

this iterative procedure is continued until each job is assigned.

2. Load Balance (LB): This heuristic assigns jobs to balance the workloads

of the datacenters. To this end, jobs are first sorted according to their

core requirement; i.e., the maximum number of cores required by any task

of the job. Jobs with higher cores requirements are then prioritized for

assignment. Based on their order, the LB scheduler dispatches each job

to the datacenter with lowest number of assigned jobs that can execute

the job.

3. MaxMin: In this heuristic, each job is assigned to the datacenters that

can execute it faster. To this end, in each iteration of this heuristic,

the job that leads to the overall maximum completion time is selected

and assigned to a datacenter –considering its core requirement– that can

finish it earlier; this procedure continues until all jobs are assigned. As a

result of this scheduling policy, longer jobs that require more execution

time are scheduled before shorter jobs that have less effect on the overall

makespan of a system.

4. MaxMIN : Similar to MaxMin, this heuristic assigns jobs to datacen-

ters considering their already assigned jobs, however to minimize their

overall energy consumption; i.e., in MaxMIN, jobs with larger energy

consumption are selected and assigned to datacenters that can execute

them earlier considering their core requirements. Unlike MaxMin that

77

only optimize the execution time of jobs and hopes to balance their en-

ergy consumption through load balancing, MaxMIN actively selects the

jobs with larger energy consumption and prioritize their allocation with

the hope of optimizing both objectives.

5. MinMIN : Similar to MaxMIN, but in this case in each iteration of the

heuristic, the job that leads to the overall minimum completion time

(instead of the maximum) is selected and assigned to a datacenter –

considering its core requirement– that can finish it with the lowest energy

consumption.

We chose the best low-level (i.e., operating at the datacenter level) sched-

uler from our previous work, namely EFTH (Earliest Finishing Time Hole).

It schedules the workflows in the order established by the first level scheduler.

The schedule of the first workflow is performed exactly as HEFT would do.

The next workflows are scheduled in order, one by one, following the same

strategy of HEFT, but using a backfilling strategy: EFTH tries to fill all gaps

(or holes) in which the processors are idle due to dependencies between tasks.

In this sense, EFTH assigns a task to the whole that can finish it the earliest.

We use the proposed heuristics as baseline schedulers in order to com-

pare the results computed by the proposed MOEAs. The heuristics represent

a typical scenario for datacenter operation, using a load balancing/maximiz-

ing utilization method, such as the ones traditionally used in current cluster,

grid, and cloud management systems. In addition, for medium-sized problem

instances, we compare the MOEA results with the lower bounds computed

using the relaxation techniques described in Section 4.3.3.

4.4.2 Multiobjective Evolutionary Algorithms

The MOEAs used in this study are NSGA-II and MOCell. The main features

of each algorithm as generic optimization techniques were already described

in Section 4.3.2. This section presents the details of the implemented versions

of NSGA-II and MOCell to solve the scheduling problem considered in this

article.

Solution encoding. Solutions are encoded as a permutation of integer num-

bers with length n+k−1 (being n the number of workflows and k the number

of datacenters). This way, numbers 0 to n− 1 represent the n workflows and

78

!"#"$"#"%"#"&'"#"'"#"("#"&"#"&%"#")"#"*"#"+"#"&&"#","

-.&" -.%" -.(" -.!"

10 Jobs
4 Datacenters

Datacenter 1 Datacenter 2 Datacenter 3 Datacenter 4

Figure 4.2: Solution encoding.

numbers n to n + k − 1 are splitters, used to separate workflows assigned to

the different datacenters. A graphical representation of the solution encoding

can be found in Figure 4.2. We can see that those workflows that appear un-

til the first splitter in the solution are assigned to datacenter 1, the following

workflows until the next splitter are mapped into datacenter 2, and so on.

Moving one workflow from one datacenter to another is as simple as changing

its identificator to the corresponding place in the permutation. Not assign-

ing any workflow to a datacenter is possible just by putting two splitters in

consecutive positions.

The use of this permutation representation allows the genetic algorithm to

decide not only the workflows to assign to every datacenter, but also the order

in which they must be processed by the local scheduler (this important issue

is not considered by the heuristics, for which this is defined according to the

arrival order of workflows in the federated datacenter). Additionally, it allows

us the use of well known generic operators for permutation representations.

Fitness values. The three objective functions defined in Section 4.2.1 for

the optimization problem (i.e., makespan, energy consumption, and SLA vi-

olations) are taken into account to define a fitness value for each candidate

solution. Then, the quality of each solution is evaluated accordingly to the fit-

ness assignment schema proposed in each MOEA. NSGA-II applies the fitness

ranking based on non-domination sorting concept (Deb, 2001), while MOCell

uses the Strength Raw Fitness technique (SRF) (Zitzler et al., 2001).

Population initialization. The initial population is created randomly using

an uniform distribution function to create random permutations representing

the initial tentative solutions to the problem.

Selection operator. Selection is performed using the binary tourna-

ment method, considering Pareto dominance and crowding distance in the

space of the objective functions. This method randomly selects two solu-

tions from the population. If one of the selected solutions is dominated, then

79

!"#"$"#"%"#"&'"#"'"#"("#"&"#"&%"#")"#"*"#"+"#"&&"#","

$"#"'"#","#"!"#"&'"#")"#"%"#"+"#"&%"#"&"#"("#"*"#"&&"

!"#"$"#"%&"#"'"#"&"#"("#")"#"*"#"%)"#"%"#"+"#"%%"#","

$"#"&"#","#"!"#"%&"#"+"#"%"#"%)"#"("#"'"#"*"#"'"#"%%"

Parent 2

Parent 1

Offspring 2

Offspring 1

cut points cut points

Figure 4.3: The PMX recombination operator.

it is discarded and the non-dominated solution is selected. If both solutions

are non-dominated, then the solution which is in the most crowded region is

discarded and the remaining solution is selected.

Crossover operator. The well-known Partially Matched Crossover (PMX)

method is used as the crossover operator. Its behavior is graphically repre-

sented in Figure 4.3. In this operator, two positions are randomly selected

from the solution as cutting points. All jobs in between these two points are

swapped. The remaining jobs are rearranged using position wise exchanges,

maintaining its original ordering information.

Mutation operator. A simple exchange method is used as the mutation

operator. This method works by randomly selecting two jobs and swapping

their positions.

Repair operator. This special operator repairs a non-feasible solution turn-

ing it into a feasible one. It is applied right after the crossover and mutation

operators in order to repair any non-feasible feature introduced by these oper-

ators. The operator checks, for every workflow, whether it can be executed in

the assigned datacenter or not. In the latter case, it is reassigned to the next

datacenter that can execute it. A workflow can be executed in a datacenter

if the number of cores of its servers is not less than the maximum number of

cores required by any task in the workflow.

External file management (MOCell). We modified the original MOCell

by using the SRF technique to manage the archive of non-dominated solutions

(therefore, the resulting algorithm is called MOCellSRF). The reason for this

change is that SRF generally provides fronts with better diversity for three

dimensional problems (Dorronsoro et al., 2014b), as the one considered in this

work.

80

Table 4.1: Parameter configuration of the proposed MOEAs.

Subpopulation size 100

Archive (MOCellSRF)

size 100

management Strength Raw Fitness

Max. evaluations 25, 000

Pop. initialization Random

Neighborhood (MOCellSRF) C9

Selection Binary tournament

Recombination PMX

Probability 0.9

Mutation Swap

Probability 1/number of variables

Independent runs 30

Parameter configuration. The configuration of the algorithms is detailed

in Table 4.1, based on a preliminary parameterization study of both MOEAs.

The population size and the external archive size (for MOCellSRF) are set

to 100 solutions. As mentioned before, the Strength Raw Fitness method is

used to manage the archive of non-dominated solutions in MOCellSRF. The

population is randomly initialized, and evolved until 25, 000 schedule evalu-

ations are performed, since neither MOEA evolved considerably after 25,000

evaluations. Parents are selected by binary tournament from the whole pop-

ulation in NSGA-II or from the eight surrounding neighbors in the case of

MOCellSRF. The recombination and mutation operators are PMX and Swap,

as explained before, and the parametrization study showed that the best results

are computed when using probabilities of 0.9 and 1/number of variables, respec-

tively. Finally, in the experimental analysis we perform 30 independent runs

of the algorithms for every problem instance.

4.5 Experimental evaluation

This section reports the experimental evaluation of the proposed MOEAs for

energy/SLA scheduling in a federation of distributed datacenters.

81

Table 4.2: Characteristics of the processors considered for the DC infrastructures

processor frequency cores GFLOPS EIDLE EMAX GFLOPS/core

Intel Celeron 430 1.80 GHz 1 7.20 75.0W 94.0W 7.20

Intel Pentium E5300 2.60 GHz 2 20.80 68.0W 109.0W 10.40

Intel Core i7 870 2.93 GHz 4 46.88 76.0W 214.0W 11.72

Intel Core i5 661 3.33 GHz 2 26.64 74.0W 131.0W 13.32

Intel Core i7 980 XE 3.33 GHz 6 107.60 102.0W 210.0W 17.93

4.5.1 Problem instances

Problem instances are defined by a workload, a computational scenario and a

list of Service Level Agreement rates.

Regarding workloads, we use five different models to consider different user

applications submitted to the system: (a) Series-Parallel (b) Heterogeneous-

Parallel, (c) Homogeneous-Parallel, (d) Single-Task, and (e) Mix. The Series-

Parallel model represents jobs that can be split into concurrent threads/pro-

cesses running in parallel. Heterogeneous-Parallel represent a generic job

composed of non-identical computational tasks with arbitrary precedences.

Homogeneous-Parallel represents jobs composed of identical computational

blocks. Single-Task represents jobs of only one task. Finally, the Mix cat-

egory combines workflows of all other categories, i.e., Series-Parallel (30% of

all workflows), Heterogeneous-Parallel (30%), Homogeneous-Parallel (30%),

and Single-Task (10%) jobs. Fig. 4.4 shows the overall shape of difference

workflow types aimed to reflect real high performance computing applications.

Here, each block represents a computational task with specific characteristics;

i.e., execution time (height of a block) and number of processors (width of a

block). All workflows used in the experimental analysis were generated using

the SchMng application (Taheri et al., 2013).

Regarding the computational infrastructure, the federation of datacenters

combines nowadays Intel processor servers with one to six cores, listed in Ta-

ble 4.2. Each datacenter is comprised of one type of processor, while different

datacenters are comprised of different type of processors.

Medium-size problem instances. A benchmark set of 9 medium-sized work-

flow batches was generated for comparing the efficacy of proposed MOEA and

scheduling heuristics with an exact method based on Constraint Programming

(CP). The workflow batches were build with a total of 600 tasks each, hence

82

(a) Series-Parallel (b) Homogeneous-Parallel (c) Heterogeneous-Parallel

(d) Single-Task

Figure 4.4: Workflow types used in the experimental analysis

the number of jobs in each workflow batch ranges from 10 up to 250. We

considered a fixed scenario with a federation of two datacenters with a total

of 80 cores. Such medium-sized problem instances are—nevertheless—realistic

and usually appear in the related literature (Goiri et al., 2013, 2014; Jayas-

inghe et al., 2011). For the SLA levels, we assigned all the jobs equitably

between three different users, and considered three values for the number of

tasks allowed to miss their deadline, one for each user: {1, 2, 3}.
Large problem instances. A benchmark set of 125 different workflow batches

was generated for the experimental evaluation of the proposed heuristics and

MOEAs over large problem instances. The number of tasks in workflows ranges

from 3 to 132, in addition to the Single-Task ones, composed of only one task.

In the benchmark set of 125 batch of workflows, 25 correspond to 1, 000

Series-Parallel workflows (25, 000 workflows altogether), 25 are composed

of 1, 000 Heterogeneous-Parallel workflows (25, 000 workflows altogether),

25 more are 1, 000 Homogeneous-Parallel workflows (25, 000 workflows alto-

gether), 25 other batches are single-task jobs, and the remaining 25 are a mix of

them, including a combination of different workflow types (300 Heterogeneous-

Parallel workflows, 300 Homogeneous-Parallel workflows, 300 Series-Parallel

workflows, and 100 Single-Task applications). A total number of 125,000

83

workflows are studied in the experimental analysis. Regarding the computa-

tional infrastructure, we consider scenarios involving a federation of five dat-

acenters, with up to 100 processors each, from the ones defined in Table 4.2.

For the SLA levels, we define three values for the number of tasks to be com-

pleted on time: {90%, 94%, 98%}. These are realistic values for QoS offered

by current datacenter and cloud computing facilities, similar to QoS values

considered in the related literature (de Assuncao et al., 2009; Kim et al., 2007;

Moon et al., 2011).

The benchmark set of workflows, scenarios, and SLA levels is publicly avail-

able, it can be accessed/downloaded by contacting the authors.

4.5.2 Experimental setup

We detail in this section the procedures we followed during our experiments. In

case of the deterministic algorithms studied (both the exact and heuristic algo-

rithms) we report the average values obtained for all 25 instances of each kind.

In the case of the non-deterministic ones (i.e., the MOEAs), we performed 30

independent runs of the algorithms for every problem instance and compare

the algorithms according to the obtained results of every independent runs for

each problem instance. Therefore the comparisons are done on 750 different

results for each problem kind. After the mentioned experiments, the following

metrics are applied to the obtained Pareto fronts in order to quantify their

quality in terms of different features as accuracy and diversity of solutions:

• Hypervolume (HV) (Zitzler and Thiele, 1999): calculates the m-

dimensional volume (in the objective space) covered by the solutions

in the evaluated Pareto front Q and a dominated reference point W .

Mathematically, for each solution i ∈ Q, a hypercube vi is constructed

with the reference point W (e.g., constructed with a vector of worst ob-

jective function values) and the solution i as the diagonal corners of the

hypercube. Thereafter, a union of all hypercubes is found and its hyper-

volume is calculated, as shown in Eq. (4.5). Algorithms with the highest

HV value perform best as this metric takes its maximum value when all

the solutions in the evaluated Pareto front belong to the optimal one.

HV = volume

 |Q|⋃
i=1

vi

 (4.5)

84

• Spread (∆) (Deb et al., 2002): this indicator measures the extent of

spread by the set of computed solutions. It is defined by Eq. (4.6),

where di is the Euclidean distance between consecutive solutions, d̄ is the

mean of these distances, and df and dl are the Euclidean distances to

the extreme solutions of the optimal Pareto front in the objective space.

This indicator takes a zero value for an ideal distribution, pointing out

a perfect spread of the solutions in the Pareto front.

∆ =
df + dl +

∑N−1
i=1

∣∣di − d̄∣∣
df + dl + (N − 1)d̄

(4.6)

• Unary Additive Epsilon (I1ε+) (Knowles et al., 2006): this indicator pro-

vides a measure of the convergence, i.e. of the distance to the optimal

Pareto front. Given an approximation set of a problem, S, the I1ε+ in-

dicator is a measure of the smallest distance needed to translate every

point in S so that it dominates the true Pareto front of the problem S∗.

More formally, given ~e1 = (e11, ..., e
1
m) and ~e2 = (e21, ..., e

2
m), where m is the

number of objectives, and ~e1 ≺ε ~e2 if and only if ∀1 ≤ i ≤ m : e1i < ε+e2i ,

as defined by Eq. (4.7).

I1ε+(S) = inf
ε∈R
{∀~e2 ∈ S∗∃~e1 ∈ S : ~e1 ≺ε ~e2} (4.7)

The previous metrics require the optimal Pareto front in order to compute

accuracy of solutions and/or normalize the results (in order to avoid any bias

due to different orders of magnitude in the objectives). Because the optimal

Pareto front is not known for the considered problem, we use a reference Pareto

front instead, as suggested by Dorronsoro et al. (2014b). This front is built by

collecting the best non-dominated solutions found in all independent runs.

In order to assess statistical confidence to our conclusions, we perform the

Wilcoxon signed rank test (Siegel, 1956), the Friedman test (Siegel, 1956) and

the Holm-Bonferroni test (Holm, 1979) to check whether the results of the

two compared algorithms follow the same distribution or not, with a 95%

confidence level (i.e., if p-value ≤ 0.05 we say there is statistical difference

between the compared distributions).

85

4.5.3 Development and execution platform

The heuristics are implemented in C, using the standard stdlib library and

the gcc compiler. Regarding the two MOEAs, NSGA-II and MOCell, we use

the implementation provided in jMetal framework (Durillo and Nebro, 2011),

implemented in Java.

The experimental analysis was performed in cluster with Bull B505 servers,

each one with six-core Intel Xeon CPU L5640 processor at 2.27GHz, 24 GB

RAM, using a CentOS Linux operative system. The experimental platform is

hosted as part of the HPC facility of the University of Luxembourg (platform

website: https://hpc.uni.lu).

4.5.4 Numerical results

This subsection reports the numerical results of the proposed methods to solve

the E-SLA-SP.

Medium-size problem instances

In this subsection we study the results computed when solving the medium-

size problem instances. We compare the results computed by the heuristics

and the MOEA with the lower bounds computed by the CP implementation.

Regarding the MOEA, a total of 30 independent executions were performed

for each medium-size problem instance. For the comparison we consider the

average of the best makespan result computed in each execution.

In order to compare the computed results we introduce the lower bound

gap metric, defined by Eq. (4.8), where result is the objective value computed

by the resolution method evaluated (heuristics or MOEAs), and LB is the

lower bound computed by the constraint programming method.

GAP =
result− LB

LB
(4.8)

Table 4.3 presents the average and standard deviation gaps—indicated by

a ± sign—to the CP lower bounds. It shows the makespan (GAPM), energy

consumption (GAPE) and violations of SLA (GAPS) gaps of the schedules

computed by the scheduling heuristics and the proposed MOEAs, for medium-

size problem instances. The best average results for every instance class are

emphasized in bold font.

86

https://hpc.uni.lu

Table 4.3: Gaps (with respect to the CP lower bound) computed by the scheduling
heuristics and the proposed MOEAs, for medium-size problem instances

Single-Task

Algorithm GAPM GAPE GAPS

RR-EFT 17.8±15.1% 26.4±10.4% 0.0±0.0%
LB-EFT 20.7±15.5% 26.1±12.9% 0.0±0.0%
MaxMin-EFT 1.3±0.9% 29.8±12.9% 0.0±0.0%
MaxMIN-EFT 1.3±5.0% 29.8±12.9% 0.0±0.0%
MinMIN-EFT 45.8±17.0% 49.0±17.8% 0.0±0.0%
NSGA-II 1.4±1.3% 7.7±5.1% 0.0±0.0%
MOCellSRF 1.3±1.2% 8.8±5.7% 0.0±0.0%

Series-Parallel

Algorithm GAPM GAPE GAPS

RR-EFT 5.6±8.5% 53.0±17.5% 0.0±0.0%
LB-EFT 5.6±8.5% 53.5±18.2% 0.0±0.0%
MaxMin-EFT 5.0±8.6% 51.6±18.4% 0.0±0.0%
MaxMIN-EFT 5.0±8.6% 51.6±18.4% 0.0±0.0%
MinMIN-EFT 9.1±19.0% 56.5±17.9% 0.0±0.0%
NSGA-II 5.0±8.6% 51.6±18.4% 0.0±0.0%
MOCellSRF 5.0±8.6% 51.6±18.4% 0.0±0.0%

Homogeneous-Parallel

Algorithm GAPM GAPE GAPS

RR-EFT 5.2±5.0% 76.8±62.2% 0.0±0.0%
LB-EFT 5.2±5.0% 77.2±61.9% 0.0±0.0%
MaxMin-EFT 3.6±2.1% 78.2±61.5% 0.0±0.0%
MaxMIN-EFT 3.6±2.1% 78.2±61.5% 0.0±0.0%
MinMIN-EFT 5.2±5.0% 76.9±61.6% 0.0±0.0%
NSGA-II 5.2±5.0% 76.2±61.8% 0.0±0.0%
MOCellSRF 3.6±2.1% 76.2±61.8% 0.0±0.0%

Heterogeneous-Parallel

Algorithm GAPM GAPE GAPS

RR-EFT 3.1±2.0% 70.8±39.5% 0.0±0.0%
LB-EFT 3.1±2.0% 68.2±40.6% 0.0±0.0%
MaxMin-EFT 3.1±2.0% 68.2±40.6% 0.0±0.0%
MaxMIN-EFT 3.1±2.0% 68.2±40.6% 0.0±0.0%
MinMIN-EFT 2.4±0.8% 65.8±38.0% 0.0±0.0%
NSGA-II 2.3±0.7% 63.4±38.9% 0.0±0.0%
MOCellSRF 2.3±0.7% 63.4±38.9% 0.0±0.0%

Mix

Algorithm GAPM GAPE GAPS

RR-EFT 3.3±2.2% 72.9±45.8% 0.0±0.0%
LB-EFT 4.4±3.6% 74.5±45.9% 0.0±0.0%
MaxMin-EFT 3.9±3.6% 73.6±45.1% 0.0±0.0%
MaxMIN-EFT 3.9±3.6% 73.6±45.1% 0.0±0.0%
MinMIN-EFT 3.3±2.2% 72.5±45.4% 0.0±0.0%
NSGA-II 2.8±1.7% 71.2±44.2% 0.0±0.0%
MOCellSRF 2.8±1.7% 71.2±44.2% 0.0±0.0%

87

The results reported in Table 4.3 show that both MOEAs compute equally

accurate schedules in terms of makespan, with an average value for GAPM of

22.0% and a GAPM value as low as 9.7% when solving instances of the class

Homogeneous-Parallel using the MOCellSRF algorithm. Results show that

Series-Parallel and Heterogeneous-Parallel are the hardest instance classes to

tackle in terms of makespan, with MOEA computing solutions with an average

value for GAPM of 36.9%. On the other hand, Single-Task, Homogeneous-

Parallel, and Mix instance classes are much easier to tackle, with MOEA

computing solutions with an average value for GAPM of 12.1%.

Regarding the energy consumption, the results show that both MOEA com-

pute very accurate schedules—with higher accuracy than for the makespan

objective—. The obtained values for GAPE are as low as 7.8% when tackling

Homogeneous-Parallel instances using MOCellSRF. Nevertheless, energy con-

sumption is also the objective for which the heuristics are the less effective,

with a value of GAPE as high as 227.6%.

Finally, when analyzing the computed values for the service-level agreement

objective, results show that all algorithms are able to compute the lower bound

on every instance class with the exception of the Single-Task instance class.

Nevertheless, when tackling this latter instance class all algorithms compute

very accurate schedules with an average value for GAPS of 1.1%.

Large problem instances

This subsection summarizes the results obtained for the large problem in-

stances, using both the heuristics and the MOEAs.

Deterministic heuristics. Table 4.4 presents the results found by the heuris-

tics described in Section 4.4.1. For makespan (fM) and energy consumption

(fE) objectives, we computed the difference of the performance of every heuris-

tic (in %) with respect to the best found result (among all studied heuristics)

for every instance. In the table, we show the average of the computed differ-

ence for the 25 instances of every instance class. It is also shown in the table

the average number of times in which the SLA was violated by the solutions

proposed by the heuristics, averaged for the 25 instances of every class. The

best results for every instance class are emphasized in bold font.

88

Table 4.4: Results obtained with the two-level deterministic heuristic schedulers

Single-Task

Algorithm fM fE fS

RR-EFT 9.6 ± 12.5 2.3 ± 2.5 0.04 ± 0.20
LB-EFT 10.4 ± 10.5 9.3 ± 2.5 0.00 ± 0.00
MaxMin-EFT 6.8 ± 10.0 1.5 ± 2.1 0.21 ± 0.41
MaxMIN-EFT 5.8 ± 8.5 1.3 ± 1.8 0.13 ± 0.33
MinMIN-EFT 7.3 ± 10.2 3.4 ± 2.7 0.08 ± 0.28

Series-Parallel

Algorithm fM fE fS

RR-EFT 5.7 ± 2.4 1.4 ± 0.5 7.64 ± 1.22
LB-EFT 3.9 ± 2.3 0.7 ± 0.5 11.80 ± 2.27
MaxMin-EFT 0.3 ± 0.8 0.1 ± 0.2 17.88 ± 1.13
MaxMIN-EFT 0.3 ± 0.8 0.3 ± 0.3 17.88 ± 1.13
MinMIN-EFT 8.6 ± 2.5 4.3 ± 0.8 0.00 ± 0.00

Homogeneous-Parallel

Algorithm fM fE fS

RR-EFT 21.0 ± 17.5 1.7 ± 2.2 4.96 ± 1.81
LB-EFT 21.6 ± 18.9 9.0 ± 2.3 5.72 ± 2.26
MaxMin-EFT 12.7 ± 16.0 3.8 ± 2.1 15.80 ± 1.78
MaxMIN-EFT 2.0 ± 4.9 0.6 ± 1.1 18.20 ± 1.08
MinMIN-EFT 12.3 ± 11.6 8.8 ± 2.0 0.00 ± 0.00

Heterogeneous-Parallel

Algorithm fM fE fS

RR-EFT 7.7 ± 3.3 1.7 ± 0.7 4.76 ± 1.33
LB-EFT 3.9 ± 3.6 0.9 ± 0.9 6.64 ± 2.29
MaxMin-EFT 0.5 ± 1.3 0.2 ± 0.4 15.84 ± 1.55
MaxMIN-EFT 0.5 ± 1.3 0.2 ± 0.4 15.84 ± 1.55
MinMIN-EFT 11.6 ± 3.8 5.3 ± 1.2 0.00 ± 0.00

Mix

Algorithm fM fE fS

RR-EFT 15.8 ± 15.6 2.5 ± 2.0 4.44 ± 1.96
LB-EFT 20.0 ± 12.5 8.5 ± 3.2 5.80 ± 1.47
MaxMin-EFT 7.3 ± 14.3 5.2 ± 2.5 15.92 ± 2.14
MaxMIN-EFT 9.7 ± 12.9 0.3 ± 0.7 17.08 ± 1.73
MinMIN-EFT 20.7 ± 15.3 7.3 ± 2.0 0.00 ± 0.00

89

From the results in Table 4.4, we conclude that the best heuristic in terms of

both makespan and energy consumption is MaxMIN-EFT, computing the best

solutions for four out of the five studied instance classes. In terms of makespan,

it is outperformed by MaxMin-EFT when tackling the Mix class of instances.

Regarding the energy consumption, MaxMIN-EFT is only outperformed when

tackling the Series-Parallel class of instances, again by MaxMin-EFT. Both

heuristics offer the same average performance for Series-Parallel class of in-

stances for these two objectives. Please, notice that due to the heterogeneity

of our federated datacenter, the energy consumption is not directly related

to the makespan of solutions. In this sense, comparing MaxMIN-EFT ver-

sus MaxMin-EFT, we can see how the former outperforms the latter in terms

of energy consumption for Mix instances despite its worse makespan; on the

contrary, MaxMIN-EFT finds worse solutions in terms of energy consumption

with the same average makespan in Series-Parallel instances.

Regarding the number of times in which the SLA is violated, we can see

that MinMIN-EFT heuristic is clearly the best algorithm, outperforming the

others in all instance classes except for Single-Task, for which its performance is

very close to the optimal value. The two best heuristics in terms of makespan

and energy consumption, namely MaxMin-EFT and MaxMIN-EFT, are the

worst ones according to the SLA agreement in every problem class.

We further analyzed the behavior of the heuristics in terms of the SLA.

Figure 4.5(a) shows how far the solutions were from violating the SLA (left

over metric), while Figure 4.5(b) reports by how much the SLAs were violated

(time exceeded metric).

Figure 4.5(a) shows that MinMIN-EFT is the algorithm providing solu-

tions with a larger margin of time units before the SLA is violated. This

means that its solutions allow bigger delays than the solutions reported by the

other heuristics without violating the SLA. Therefore, these solutions are more

robust against some uncertainties that might occur during the execution of the

workflows. Figure 4.5(b) shows that MinMIN-EFT is also the best algorithm

according to the aggregated time exceeded for those schedules violating the

SLA (its value is zero for all problem classes, except for Single-Task, for which

it is almost zero). Therefore, MinMIN-EFT is clearly the best performing

algorithm for the SLA objective.

90

9G ?99999G <999999G <?99999G 8999999G

!"#$%&'()*+G

!&,"-.*'/),)%%&%G

0-1-$&#&-.*'

/),)%%&%G

0&2&,-$&#&-.*'

/),)%%&%G

3"4G

3"#3EF'67(G 3)43EF'67(G 3)43"#'67(G BC'67(G 55'67(G

(a) Left over time of schedules that do not violate the SLA

9G <9999G 89999G @9999G >9999G ?9999G A9999G

!"#$%&'()*+G

!&,"-.*'/),)%%&%G

0-1-$&#&-.*'

/),)%%&%G

0&2&,-$&#&-.*'

/),)%%&%G

3"4G

3"#3EF'67(G 3)43EF'67(G 3)43"#'67(G BC'67(G 55'67(G

(b) Time exceeded over the SLA

Figure 4.5: Aggregated (a) left over time units of all solutions meeting the SLA
and (b) time units over the SLA for those solutions that did not meet it.

91

Table 4.5: Results of the Friedman statistical test on the studied heuristics

Algorithm Ranking

MaxMIN-EFT 2.20
MaxMin-EFT 2.60
RR-EFT 2.93
MinMIN-EFT 3.20
LB-EFT 3.53

In order to study if one single heuristic is better than the others accord-

ing to its overall performance (for the three objectives), we applied the non-

parametric Friedman statistical test to analyze the results distributions of the

heuristics for every instance class, considering all the studied objectives. The

Friedman test did not find statistical differences between the heuristics, as

pointed out by the similar ranking values reported in Table 4.5. Hence, we

applied the Holm-Bonferroni test to look for pairwise differences between the

heuristics results on all problems and, again, no statistical differences were

found in any comparison

The p-value of the comparison between MaxMIN-EFT and LB-EFT—i.e.,

the best and worst algorithms in the rank, respectively—obtained with the

Holm-Bonferroni test was 0.43308. This results were somehow expected, since

we are aggregating the results computed for all three objectives; those heuris-

tics that perform better for makespan and energy objectives are the worst ones

according to SLA, and the best ones for SLA offer the poorest results for the

other objectives. Although there is no statistical confidence about the differ-

ences on the results computed by the deterministic heuristics over all problem

instances, the results in Table 4.5 show that MaxMIN-EFT offered the best

overall performance, having an aggregated average rank of 2.20 in all instance

classes and problem objectives.

Table 4.6 reports the results of the two studied MOEAs for the different

instance classes according to the three metrics described in section 4.5.2. We

do not provide results for the instances on the SingleTask class, because the

algorithms were not able to find more than two solutions in most cases, and

the computation of the metrics is not possible in that case. A probable cause

for this behavior is that the solution space is more sparse for this class of

problem, making it difficult to the MOEAs to find a correct diversity in the

non-dominated solutions.

92

Table 4.6: Comparison of the two multiobjective evolutionary algorithms by means
of their average value and standard deviation for three different metrics (large prob-
lem instances)

workload type
HV

NSGA-II MOCellSRF

Series-Parallel 2.12×10−1±1.5×10−1 1.88×10−1±1.3×10−1

Homogeneous-Parallel 9.03×10−2±1.1×10−1 7.36×10−2±9.9×10−2

Heterogeneous-Parallel 2.12×10−2±6.7×10−2 1.44×10−2±5.2×10−2

Mix 2.03×10−1±1.4×10−1 1.57×10−1±1.3×10−1

workload type
∆

NSGA-II MOCellSRF

Series-Parallel 8.34×10−1±7.6×10−2 7.14×10−1±5.8×10−2

Homogeneous-Parallel 8.17×10−1±1.0×10−1 6.72×10−1±8.3×10−2

Heterogeneous-Parallel 9.71×10−1±1.4×10−1 6.85×10−1±7.6×10−2

Mix 7.51×10−1±8.2×10−2 6.47×10−1±6.0×10−2

workload type
I1ε+

NSGA-II MOCellSRF

Series-Parallel 4.60×102±3.7×102 4.48×102±3.7×102

Homogeneous-Parallel 1.34×103±3.8×102 1.36×103±3.9×102

Heterogeneous-Parallel 5.99×102±2.5×102 6.37×102±2.7×102

Mix 1.03×103±3.8×102 1.07×103±3.9×102

The results reported in Table 4.6 indicate that NSGA-II outperforms MO-

CellSRF in terms of HV , and there is statistical significance (according to the

Wilcoxon statistical test) for all instance classes, but Heterogeneous-Parallel.

However, MOCellSRF clearly outperforms NSGA-II in terms of diversity of

solutions (∆), with statistical significance in all cases. Finally, no statistical

differences were found between the algorithms regarding the unary additive ep-

silon metric (I1ε+), with the only exception of Heterogeneous-Parallel instance

class, for which NSGA-II outperformed its counterpart.

We conclude that both MOEAs compute accurate schedules, with MOCell-

SRF providing a more diverse set of solutions for the decision maker to choose

from.

Figure 4.6 shows the solutions provided by the studied heuristics together

with the obtained reference Pareto front for some sample instances of class

Heterogeneous-Parallel and Mix, selected as they offer results that are repre-

sentative of the ones computed for the other problem instances. The refer-

ence Pareto front for each instance is computed from all the solutions ob-

tained by the two MOEAs in the 30 independent runs for that instance.

93

Among all non-dominated solutions, 100 representative ones are kept, chosen

using the Strength Raw Fitness method. Figure 4.6 shows that the computed

Pareto front offers a wide range of solutions to the problem, all of them pro-

viding makespan values that are significantly faster than the ones computed

by the proposed heuristics.

We computed the number of solutions from the reference Pareto fronts that

dominate the solutions reported by all five heuristics (i.e., that are better or

equal in all objectives and strictly better in at least one). We call them domi-

nating reference solutions. As a result, we obtained that, in average for the 25

instances, 37.7%, 18.8%, 12.6%, 9.4%, and 7.5% solutions from the reference

Pareto front dominate all the heuristics (i.e., are dominating reference solu-

tions), for Single-Task, Series-Parallel, Homogeneous-Parallel, Heterogeneous-

Parallel, and Mixed instance classes, respectively.

We studied the improvement of the dominating reference solutions with

respect to the best value found using any heuristic for every objective, for

every problem class. We find improvements of 39.36% and 49.02% (for

makespan and energy consumption) for SingleTask, 0.45% and 3.13% for

Series-Parallel, 16.05% and 36.80% for Homogeneous-Parallel, 24.25% and

56.91% for Heterogeneous-Parallel, and 21.62% and 62.27% for Mix. With

respect to SLA, there is always some heuristic that finds a solution without

any SLA violation in some of the 25 instances, therefore, it is obviously not

possible for the MOEAs to improve that value.

The best improvements of the MOEAs were found for the SingleTask in-

stances for makespan (by 39.36%) and for the Mix problems for energy con-

sumption (by 62.27%). We also found that in all cases, the improvement was

more important for energy consumption than for makespan in all cases. The

lowest improvements were reported for the Series-Parallel instances, where

there are fewer options for building different combinations of tasks for each

workflow.

94

Energy used (KW/h)

×10
4

0.9

0.95

1.05

1

1.1

1.15
0.160.17

Makespan (hours)

0.180.190.20.210.22

0

2

4

6

8

10

12

14

V
io

la
te

d
 S

L
A

s

RR-EFT
LB-EFT
MaxMin-EFT
MaxMIN-EFT
MinMIN-EFT
MOEAs

(a) Sample problem instance, Heterogeneous-Parallel workflow type

Energy used (KW/h)

×10
4

0.5

1

1.5

2
0.15

Makespan (hours)

0.2
0.25

0.3
0.35

20

18

16

14

12

10

8

6

4

2

0

V
io

la
te

d
 S

L
A

s

RR-EFT
LB-EFT
MaxMin-EFT
MaxMIN-EFT
MinMIN-EFT
MOEAs

(b) Sample problem instance, Mix workflow type

Figure 4.6: Selected plots of the results provided by the heuristics and the MOEAs.

95

4.6 Conclusions

In this paper, we propose a novel multiobjective problem formulation to model

the scheduling of a large number of workflows in a federated datacenter consid-

ering energy consumption and QoS. The main goal of the problem formulation

is to simultaneously minimize three objectives: makespan, the energy con-

sumption, and the number of jobs that violate the SLA agreement between

the users and the service provider.

We present the design of a realistic solution based on hierarchical multiob-

jective schedulers to solve the problem. In the higher level of the hierarchy,

an algorithm assigns workflows to the different datacenters, while in the lower

level the local schedules of every assigned workflow are performed in each dat-

acenter. We studied five heuristics to tackle the online version of the problem,

and proposed two MOEAs to tackle the offline version of the problem. These

MOEA were used to evaluate the performance of the five heuristics. Addi-

tionally, a constraint programming model was used to find lower bounds of

medium-sized instances of a version of the problem with relaxed constraints.

Regarding the medium-sized instances, the numerical results obtained in

the experimental evaluation—considering a benchmark set which includes dif-

ferent workflow types—show that Heterogeneous-Parallel is one of the hardest

instance classes to tackle, but also one of the most promising in terms of

room for accuracy improvement. For this class of instances, the MOEA com-

pute solutions with an average of 40.0% makespan gap and 39.3% energy

consumption gap, while the best heuristic for each objective compute an av-

erage gap of 57.9% in makespan gap and 135.7% in energy consumption.

Regarding the large-sized instances, experimental evaluations confirms that

Heterogeneous-Parallel is one of the hardest instance class, with the offline

schedulers computing improvements of 24.2% and 56.9% in makespan and

energy consumption over the best online methods.

When analizing the online schedulers, we can see that both MaxMin-based

algorithms are able to compute the most accurate schedules for medium- and

large-sized instances when considering all objectives. Nevertheless, both algo-

rithms are also the less accurate schedulers in terms of SLA violations, with

an average SLA violation gap of 13.5% for the large-sized instances. In this

regard, the MinMIN-EFT heuristic is the most accurate scheduler, computing

an average SLA violation gap of 0.0% also for the large-sized instances.

96

The main lines for future work include a further analysis of the proposed

methods to improve both the offline and online schedulers. We propose to

improve the efficiency of the method for computing the lower bound by refor-

mulating and further relaxing the programming model. This will allow us to

tackle larger medium-sized instances and compute the objective gaps of the

MOEA solutions for larger instances. In order to improve the efficacy of the

MOEA, we propose to include heuristic knowledge to the evolutionary algo-

ritm, such as hybridizing a local search operator and using the proposed online

schedulers to initialize the MOEA poulation. Finally, we propose to improve

the efficacy of the online schedulers by hybridizing the most accurate heuristic

schedulers in a fast local search algorithm.

97

Chapter 5

Energy aware multiobjective

scheduling in a federation of

heterogeneous datacenters

Santiago Iturriaga and Sergio Nesmachnow

Abstract: This work proposes three multiobjective evolutionary algorithms

for energy aware scheduling in a federation of heterogeneous datacenters. The

proposed algorithms schedule workflows of tasks aiming at optimizing infras-

tructure usage, quality of service and energy consumption. We extend our

previous work by introducing a more realistic problem formulation and by

performing a comprehensive statistical analysis for comparing the accuracy

of three different evolutionary scheduling alternatives. We perform an exten-

sive experimental evaluation with 100 problem instances, considering a diverse

set of workflows and scenarios of diverse size. Results show that our newly

proposed evolutionary approach is able to compute accurate schedules, out-

performing our previously proposed approach as well as several traditional

heuristic schedulers.

5.1 Introduction

This work presents the application of a two-level scheduling approach that com-

bines a MultiObjective Evolutionary Algorithm (MOEA) and specific ad-hoc

backfilling heuristics for energy-aware planning of workloads into a federation

of heterogeneous distributed datacenters, taking into account task’s dependen-

98

cies and quality of service (QoS) provided by the datacenter. The reported

research extends the approach presented in Chapter 4 by considering a fully

heterogeneous approach for both workloads and computing elements, a realis-

tic assumption for nowadays high performance computing infrastructures (Ren

et al., 2015). Furthermore, we extend our experimental analysis by designing

and studying three different high-level MOEA schedulers and several high-level

heuristic schedulers. The experimental analysis is performed over a set of 100

realistic problem instances considering both small- and large-sized scenarios.

These problem instances are comprised of five different types of computing

workflows, sampling a wide range of realistic high-performance applications.

Each problem instance, disregarding its type, is comprised of 1000 computing

workflows, each of which is comprised of a number of tasks ranging from 1 up

to 132.

The main results indicate that the proposed MOEA outperforms the most

accurate greedy heuristics with a makespan improvement of 32%, energy con-

sumption improvement of 6%, and QoS improvement of 29%.

The article is organized as follows. Section 5.2 presents the problem formu-

lation and reviews related works. The scheduling approach and the proposed

MOEA to solve the problem are described in Section 5.3. The experimental

evaluation is reported in Section 5.4, including a comparative analysis of the

proposed methods and a comparison against traditional schedulers. Finally,

Section 5.5 presents the conclusions and the main lines for future work.

5.2 Modeling energy-aware scheduling in het-

erogeneous datacenters

The energy-aware scheduling problem proposes the allocation of resources to

parallel tasks that must be executed on a federation of heterogeneous data-

centers. The problem model for heterogeneous datacenters is presented next,

considering the following elements:

• A distributed federation comprised by k heterogeneous datacenters

DC = {dc1, . . . , dck}. Each datacenter DCr comprised of a set of

heterogeneous multi-core servers Sr = {s1, . . . , ss} organized in racks.

All servers inside a rack are identical but servers may be differ-

ent among racks. Each server sj is characterized by its number of cores cj,

99

its performance in FLOPS opsj, and the power consumption at idle eidlej

and peak emaxj utilization. Servers in each rack are networked together

through a top-of-the-rack (TOR) switch. This TOR switch networks to-

gether all servers in its rack allowing a communication speed of rsj, while

an aggregation switch networks all the TOR switches with a communica-

tion speed of asj. Communication between processes in the same server

are considered to be instantaneous similar to the approaches proposed

by Chen et al. (2016a); Prajapati and Shah (2014); Sharifi et al. (2013);

Wang et al. (2016); Wu et al. (2016); and Zhu et al. (2016).

• A set of n independent heterogeneous workflows Q = {q1, . . . , qn}. Each

workflow q has an associated soft deadline dq before it should be ac-

complished. Each workflow q is a parallel application decomposed into

a set of tasks WTq = {wt1, . . . wtm} with dependencies. Each task has

different computing requirements. After a task finishes its execution it

produces an output dataset that is input to all of its successor tasks. A

task wtα is eligible for execution in server sβ only after all its predeces-

sors have finished executing and the dataset generated by them has been

transferred to server sβ.

• A number p of workflow owners O = {o1, . . . , op} and a SLA that deter-

mines the percentage of applications that should be finished before their

deadlines.

• Each task wtα is characterized by the tuple (oα, ncα, dα) defining its

length (number of operations), the number of resources (cores) required

for the parallel execution, and the networking time required for transfer-

ring its output dataset.

We propose to optimize two system-related objectives that take into ac-

count the point of view of the computing system, and a QoS-related objective

that takes into account the point of view of the users. These objectives are

the same we introduced in our previous formulation (see Section 4.2) and are

described by the following functions:

• makespan evaluates the total time to execute a set of workflows, accord-

ing to the expression in Eq. (5.1), where ~x represents an allocation, k is

the number of available datacenters, and CTr is the completion time of

datacenter r (DCr).

fM (~x) = max
0≤r≤k

CTr (5.1)

100

• energy consumption for a set of workflows executed in a certain datacen-

ter, defined by Eq. (5.2), using the energy model for multi-core architec-

tures proposed by Nesmachnow et al. (2013), where f1 is the higher-level

scheduling function, and f2 is the lower-level scheduling function. The

total energy consumption takes into account both the energy required to

execute the tasks assigned to each computing resource within a datacen-

ter, and the energy that each resource consumes in idle state.

fE(~x) =
∑
r∈DC

∑
q∈Q:

f1(q)=r

∑
wtα∈WTq :

f2(wtα)=sj

oα
ops(sj)

× emaxsj +
∑
sj∈Sr

eidlesj (5.2)

• SLA violations is defined as the number of workflows that do not fin-

ish before their deadline, over the allowed limit specified by the SLA,

according to Eq. (5.3), where V (q) is 1 when the deadline of workflow

q is violated and 0 otherwise, and W (ui) is the number of workflows

submitted by user ui.

fS(~x) =
∑
ui∈U

max

0,
∑

q∈wo(ui)

V (q)− (1− SLAui)×W (ui)

 (5.3)

5.3 The proposed two-level multiobjective

evolutionary schedulers

In this section we present three different MOEA for addressing the proposed

scheduling problem. All three of them apply the low-level EFTH heuristic

scheduler presented in Chapter 4.

The first high-level scheduler is based on the Non-dominated Sorting Ge-

netic Algorithm, version II (NSGA-II) (Deb, 2001). NSGA-II is a popular

state-of-the-art MOEA that showed to be accurate for solving the problem

formulation presented in Chapter 4. A detailed description of the workings of

NSGA-II is presented in Section 4.3.2. The second scheduler is based on the

Indicator-Based Evolutionary Algorithm (IBEA) (Zitzler and Künzli, 2004) us-

ing an hypervolume-based indicator. Hypervolume is a well-known metric that

measures both diversity sampling and convergence to the Pareto front, pro-

viding an accurate Pareto-compliant measure. IBEA applies the hypervolume-

based indicator for computing the fitness of each candidate solution and simply

ranking solutions according to their fitness. Since fitness is computed using a

101

Pareto-compliant indicator, IBEA does not require any mechanism for preserv-

ing diversity such as fitness sharing or crowding. Finally, the third scheduler

is based on the S Metric Selection Evolutionary Multiobjective Optimisation

Algorithms (SMS-EMOA) (Beume et al., 2007). The S metric is also known

as the hypervolume metric, the same metric used for IBEA. However, SMS-

EMOA applies the hypervolume metric differently than IBEA. SMS-EMOA

uses a non-dominated ranking criterion for ranking solutions into fronts (just

like NSGA-II), and applies hypervolume as a removal criterion for preserving

diversity. That is, each generation the solution that contributes the least to

the hypervolume of the worst front is removed. Both NSGA-II and IBEA use

a generational evolutionary approach where for each generation a whole new

population of offspring solutions is created. The solutions from this new pop-

ulation compete with the solutions of the old population for surviving to the

next generation. On the contrary, SMS-EMOA uses a steady-state approach

where just one solution is created each generation, and this newly created so-

lution competes for survival with the worst solution of the current population.

Next, we present the main features of the NSGA-II, IBEA and SMS-EMOA

high-level schedulers.

Solution encoding. We use the solution encoding presented in Chapter 4.

This encoding proved to be efficient and is able encode the problem formulation

proposed in this work without any modification. In this encoding, solutions

are represented as a vector of integers ranging from 0 to n + k − 1, with n

the number of workflows and k the number of datacenters. Integers in [0,

n − 1] represent workflows while integers in [n,n + k − 1] act as a separators

of workflows assigned to each datacenter.

Fitness values. We define three objective functions, exactly as defined in

Section 5.2. NSGA-II and SMS-EMOA evaluate the quality of a solution

according to a ranking based on non-domination sorting. NSGA-II applies a

crowding distance metric for preserving diversity, while SMS-EMOA uses the

hypervolume metric. IBEA considers a different approach and defines a single

fitness value based on the hypervolume metric. Eq. 5.4 presents the fitness

function f proposed by IBEA, with IHD(x2, x1) representing the difference

between the hypervolume computed for solutions x1 and x2 in population P .

IBEA uses no diversity preserving mechanism.

102

f(x1) =
∑

x2∈P\{x1}

−e−IHD(x2,x1)/0.05 (5.4)

Population initialization. The initial population is created by applying a

set of high-level heuristic schedulers. These heuristics are applied in random

order until all initial solutions are created. In Section 5.4.2 we describe in

detail the workings of the considered high-level heuristic schedulers. This

initialization method is applied the same for all MOEA.

Selection. NSGA-II and IBEA use binary tournament as the selection op-

erator, taking into account Pareto dominance and crowding distance. This

operator works by randomly selecting two solutions from the population. If

one of the selected solution dominates the other, then that solution is selected

and the other discarded. Otherwise, one of the two solutions is randomly se-

lected. SMS-EMOA uses a simple random selection strategy where a solution

is randomly selected from the population.

Variation operators. All MOEA apply the Partially Matched Crossover

(PMX) and Exchange Mutation (EM) for combining and mutating solutions.

PMX works by selecting two random positions in the selected solutions and

swapping all values between them. The remaining values are rearranged using

position wise exchanges, maintaining the ordering information. EM operator

is much simpler than PMX and works by randomly selecting two values in a

solution vector and swapping them.

Repair operator. This heuristic operator transforms non-feasible solutions

into feasible ones. It is used by all MOEA to correct solutions after applying

variation operators. It works by checking if each workflow is assigned to a

datacenter that is capable of executing it. If not, then the solution is repaired

by reassigning unfeasible workflows to random datacenters that can execute

them.

Parameter configuration. All the MOEA were configured with a popula-

tion size of 100, stopping criterion of 25000 evaluations, crossover probability

of 0.9, and mutation probability of 1/n (with n the number of workflows).

103

5.4 Experimental evaluation

This section presents the experimental evaluation of the proposed scheduling

methods.

5.4.1 Problem instances

Each problem instance is defined by a workload of workflows and a scenario

of available computing resources. This work applies the five workflow models

presented in Chapter 4: Series-Parallel, Heterogeneous-Parallel, Homogeneous-

Parallel, Single-Task, and Mix. The SchMng method, proposed by Taheri et al.

(2013), is used for creating all workflow instances. The deadline dq of each

workflow q is randomly generated by extending the completion time of the

critical path of q by a ratio of [0.05, 0.30]. This is a realistic ratio according to

Garg and Singh (2016) and Tang et al. (2016). Following a similar approach,

networking communication time dα for each task wtα is randomly generated

as a ratio of [0.05, 0.50] of the execution time of wtα, similar to the ratios

proposed by Chen et al. (2016a) and Tang et al. (2016).

We consider each data center to be organized in racks of servers, each rack

containing between 18–42 servers, with processors in the same rack being ho-

mogeneous. However, different racks may contain different types of processors.

Processors in each rack are randomly chosen from a set of modern Intel proces-

sors ranging from 1 to 6 cores each. The candidate processors are presented in

Section 4.5.1 and detailed in Table 4.2. We define three realistic service level

agreements, SLA = {90%, 94%, 98%}. Each SLA represent the minimum ratio

of workflows per user that must meet their deadlines. These are realistic values

provided by current datacenter and cloud computing facilities as presented in

Chapter 4.

A total of 50 workflow batches were created for the experimental evaluation,

10 for each of the 5 workflow types. Each batch is comprised of a total of 1000

workflows, with the number of tasks in each workflow ranging from 3 to 132,

except for the Single-Task workflows that are comprised of just one task. In

total, 50000 workflows are studied in the experimental analysis.

For the datacenter scenario we consider small- and large-sized scenar-

ios. Both involving a federation of five datacenters with up to three racks

each. The small-sized scenario is comprised by an average of 150 processors

per datacenter, and the large-sized instance by an average of 325 processors.

104

Racks are communicated by 1GB or 10GB Ethernet networks.

Overall, 100 problem instances were evaluated, considering all workflows

and scenarios. The benchmark set of workflows, scenarios, and SLA levels is

publicly available, it can be accessed/downloaded by contacting the authors.

5.4.2 High-level scheduling heuristics

We consider seven different heuristic scheduling algorithms. These algorithms

work by iteratively applying greedy decisions until a full schedule is con-

structed. Each iteration a workflow is selected and scheduled following some

heuristic knowledge that varies for each heuristic. This process is repeated until

all workflows are scheduled. A short description of the scheduling algorithms

is presented next.

1. Round Robin (RR): Given a list of workflows and datacenters, this al-

gorithm assigns the first workflow to the first datacenter, the second

workflow to the second datacenter, and so on. Once the last datacenter

is reached, the assignment continues with the first datacenter, following

a circular strategy. If a datacenter is unable to satisfy a workflow re-

quirements, then it is skipped and the workflow is assigned to the next

datacenter suitable for it.

2. Load Balance (LB): This algorithm aims for a balanced workflow assign-

ment. To accomplish this, workflows are first sorted according to the

maximum number of cores required by any of their tasks. This way,

workflows requiring more cores are prioritized for scheduling. Workflows

are scheduled one at a time in the sorting order to the datacenter with

the lowest number of assigned workflows.

3. MaxMin: This algorithm assigns each workflow to the datacenter that

can execute it faster. In each iteration, the workflow with the maximum

estimated completion time is selected and assigned to a datacenter that

can finish it earlier, considering its core requirements. In this case, the

completion time of each workflow is estimated with the sum of the execu-

tion time of the tasks in its critical path. This procedure continues until

all workflows are assigned. As a result, longer workflows are scheduled

before shorter workflows, following the heuristic knowledge that schedul-

ing longer workflows first produce a more balanced schedule.

105

4. MaxMIN : Just like MaxMin, this algorithm schedules first the workflows

with longest completion estimation time, considering the completion es-

timation time of all the other workflows scheduled in the datacenters.

However, workflows are scheduled to the datacenter that minimizes their

overall energy consumption estimation. That is, MaxMIN schedules the

longest workflows first to the datacenter consuming the minimum amount

of energy. Again, energy consumption estimation and execution time es-

timation in this heuristic is based on the total execution time of the tasks

in its critical path.

5. MinMIN : Similar to MaxMIN, but in this case in each iteration of the

algorithm, the workflow that requires the overall minimum completion

time is selected first and assigned to a datacenter with the lowest energy

consumption.

6. Core-Aware MaxMin (CA-MaxMin): The CA-MaxMin works exactly as

MaxMin, but estimates the overall completion time with the execution

time of the tasks in its critical path multiplied by the number of cores

required by all of its tasks. This new estimator prioritizes the scheduling

of workflows with heavy processing requirements.

7. Longest First (LF): Finally, the LF is a simple algorithm based on the

LB heuristic. Both algorithm are identical, except initial workflow sort-

ing is performed differently. The LF heuristic sort workflows are sorted

considering the product of their critical path execution time, the sum

of the execution time of all of the tasks in the workflow, and the sum

of the total number of cores required by all of its tasks. This estima-

tor schedules first the most computing demanding workflows, balancing

these workflows adequately among the data centers.

The RR, LB, MaxMin, MaxMIN, and MinMIN algorithms were all intro-

duced in Chapter 4, while CA-MaxMin and LF were newly designed for this

work. Furthermore, because the EFTH low-level heuristic does not deal with

workflow ordering, we propose to combine the proposed high-level heuristics

with a workflow sorting algorithm. That is, after the scheduling algorithm

assigns each workflow to a datacenter, a sorting algorithm optimizes the or-

dering of workflows in each datacenter. The rationale for this is that the best

ordering for the assignment of workflows to datacenters may not be the same

as the best ordering for the execution of the workflows in each datacenter.

106

The considered sorting criteria are the following:

1. Unsorted (U): Applies no sorting algorithm. Workflows remain in the

order the workflow assignment process produced.

2. Average Cores per level (AC): Sorts workflows according to the average

number of total cores per level of the workflow graph.

3. Maximum Cores (MC): Sorts workflows according to the number of cores

required by the task that requires the most cores. Sorting is untied by

considering the length of the critical path of the workflow.

4. Computing Load (L): Sorting is performed based on the total execution

time of the tasks in the critical path of the workflow multiplied by the

average number of cores per level of the workflow graph.

Overall, we considered a total of 56 high-level scheduling heuristics, consid-

ering the combination of each scheduling algorithm with each sorting criterion

in ascending (ASC) and descending (DSC) direction. For simplicity, from now

on heuristics will be referred using the nomenclature: scheduling algorithm +

sorting criterion + sorting direction. For example, the heuristic comprised

by the RR algorithm, with AC sorting in ascending direction is referred as:

RR+AC+ASC.

5.4.3 Experimental setup

This section details the experimental methodology applied in this work. Be-

cause of their stochastic nature, a total of 30 independent executions of each

MOEA where performed for each of the 100 problem instances. Hence, a total

of 3000 executions were performed for each MOEA. The results of these inde-

pendent executions are compared with the following multiobjective metrics.

• Hypervolume (HV) (Zitzler and Thiele, 1999): this metric measures

the the m-dimensional volume in the objective space of the solutions

comprising the Pareto front Q relative to a reference point w. This

volume is computed as following. For each solution i ∈ Q, a hypercube

vi is constructed with the reference point w and the solution i as the

diagonal corners of the hypercube. The hypervolume is the volume of

the union of all hypercubes as shown in Eq. (5.5). This metric takes its

107

maximum value when all the solutions of the optimal Pareto front are in

Q, hence algorithms with highest HV value are preferred.

HV (Q) = volume

 |Q|⋃
i=1

vi

 (5.5)

• Unary Additive Epsilon (epsilon) (Knowles et al., 2006): this metric

measures the distance from the Pareto front Q to the optimal Pareto

front. For each solution i ∈ Q it measures the smallest distance needed

to translate it so that it dominates the optimal Pareto front Q∗. That

is, given ~i = (i1, ..., im) and ~i∗ = (i∗1, ..., i
∗
m) where m is the number of

objectives, ~i ∈ Q, and ~i∗ ∈ Q∗, we define epsilon as shown in Eq. 5.6.

epsilon(Q) = inf
ε∈R
{∀~i∗ ∈ Q∗,∃~i ∈ Q :~i+ ε �~i∗} (5.6)

• Inverted Generational Distance (IGD) (Coello Coello and Reyes Sierra,

2004): this metric is the normalized sum of the distances between a set of

uniformly distributed solutions in the optimal Pareto front i∗ ∈ Q∗ and

their closest solution in the computed Pareto front i ∈ Q. It is defined

in Eq. 5.7, where d(i∗, Q) is the Euclidean distance from solution i∗ to

the closest solution in the computed Pareto front.

IGD(Q) =
1

|Q∗|
∑
i∗∈Q∗

d(i∗, Q) (5.7)

• Spread (Deb et al., 2002): given a Pareto front Q, this metric measures

the spreading of its solutions i ∈ Q in the objective space. It is defined

by Eq. (5.8), where di is the Euclidean distance between consecutive

solutions, d̄ is the mean of all these distances, and df and dl are the

Euclidean distances to the most extreme solutions of the optimal Pareto

front. This metric takes a zero value for an ideal distribution, pointing

out a perfect spread of the solutions in Q.

spread(Q) =
df + dl +

∑
i∈Q

∣∣di − d̄∣∣
df + dl + |Q|d̄

(5.8)

All the presented metrics require some characteristic of the optimal Pareto

front of the problem. However, this Pareto front is unknown and almost im-

108

possible to compute for realistic instances. Hence, in this work we approximate

the optimal Pareto front for each problem instance with the best known Pareto

front comprised by the union of the non-dominated solutions of all executions

of all MOEA.

Regarding the statistical analysis. The Kolmogorov-Smirnov test (Sprent

and Smeeton, 2000) is applied for testing normality. If normality is rejected,

then the nonparametric Kruskal-Wallis one-way analysis of variance (Kruskal

and Wallis, 1952) is applied for finding significant differences between algo-

rithms. When significant differences are found, the nonparametric Dunn’s post

hoc test (Dunn, 1961) is used for pinpointing pairwise differences between al-

gorithms. Since normality is rejected for all samples, parametric tests are not

considered. Overall, we say there is statistical significance if p−value ≤ 0.05.

5.4.4 Development and execution platform

The proposed high-level heuristics were implemented Java. The high-level

MOEA was also implemented in Java using the jMetal framework (Durillo

and Nebro, 2011). The low-level heuristic was implemented in C and compiled

using the GNU C compiler. All the experiments were performed in Clus-

terFING, the HPC facility of Universidad de la República, Uruguay (platform

website: https://www.fing.edu.uy/cluster).

5.4.5 Numerical results

This section reports the numerical results computed by the proposed methods.

First, all high-level heuristic schedulers are studied and the most accurate

heuristic for each objective is selected for comparing with the high-level MOEA

schedulers. After that, the high-level MOEA schedulers are studied and the

most accurate MOEA is compared with the most accurate heuristics.

High-level heuristic schedulers.

This section presents a comparison between the proposed high-level scheduling

heuristics and studies the best heuristics for optimizing each objective. Since

these schedulers are single-objective algorithms, the comparison is performed

separately for each problem objective using the gap metric.

109

https://www.fing.edu.uy/cluster

The gap metric of a given objective for some scheduler is defined as the

unity-based normalization of the objective value. Eq. 5.9 presents the gap

metric for scheduler s, with vs the value for the objective computed by s,

and vw the worst value and vb the best value computed by any scheduler.

Because all considered objectives are minimization objectives, the smaller the

gap value the better the result. That is, when gap = 0 then s is the scheduler

computing the best schedule for that objective, and when gap = 1 then s is

the scheduler computing the worst schedule. We define the gapM , gapE, and

gapS for measuring the gap of the makespan, energy consumption, and SLA

violations objectives respectively.

gap =
vs − vb
vw − vb

(5.9)

We perform a statistical analysis over the results of the proposed schedul-

ing heuristics for determining the most accurate heuristics for each objective.

First, normality of the computed values is rejected with p−value ≤ 0.0077 by

applying a Kormogorov-Smirnov test for normality. After rejecting normal-

ity, the Kruskal-Wallis test is applied to test the equality of the medians of

the results. The Kruskal-Wallis test shows significant differences between the

medians with a p−value ≤ 0.0001. Hence, there are significant differences in

the accuracy of at least one of the heuristics. The Dunn’s post hoc test shows

no heuristic is significantly more accurate than all the rest for any objective.

However, a ranking of the pairwise differences (with p−value ≤ 0.05) shows

the overall best performing scheduling algorithms are CA-MaxMin and LF.

Table 5.1 presents the average and standard deviation gap computed by the

best performing scheduling heuristics for each problem objective, with the most

accurate results presented in gray. The Dunn’s test shows CA-MaxMin+U,

CA-MaxMin+AC+ASC, CA-MaxMin+MC+ASC, and CA-MaxMin+L+ASC

are all significantly more accurate than around 84% of the remaining heuris-

tics when optimizing makespan. LF+AC+DSC and LF+MC+DSC are signif-

icantly more accurate than around 87% of the remaining heuristics when opti-

mizing the energy consumption objective. And finally, CA-MaxMin+L+DSC

is significantly more accurate than around 70% of the remaining heuristics

when optimizing the SLA violations.

110

Table 5.1: Average and standard deviation gap values of the most accurate high-
level scheduling heuristics for all the problem instances.

scheduling sorting sorting
gapM gapE gapSalgorithm criterion direction

MaxMin

U none 0.10±0.09 0.67±0.07 0.69±0.13

AC
ASC 0.10±0.09 0.67±0.07 0.69±0.13
DSC 0.21±0.07 0.71±0.07 0.25±0.07

MC
ASC 0.10±0.09 0.67±0.07 0.69±0.13
DSC 0.27±0.07 0.74±0.08 0.31±0.08

L
ASC 0.10±0.09 0.67±0.07 0.69±0.13
DSC 0.23±0.08 0.78±0.06 0.06±0.04

MinMIN

U none 0.35±0.14 0.70±0.10 0.19±0.08

AC
ASC 0.35±0.14 0.70±0.10 0.19±0.08
DSC 0.39±0.12 0.66±0.11 0.23±0.06

MC
ASC 0.35±0.14 0.70±0.10 0.19±0.08
DSC 0.45±0.11 0.68±0.10 0.31±0.06

L
ASC 0.35±0.14 0.70±0.10 0.19±0.08
DSC 0.39±0.12 0.71±0.10 0.11±0.05

CA-MaxMin

U none 0.03±0.04 0.63±0.06 0.76±0.16

AC
ASC 0.03±0.04 0.63±0.06 0.76±0.16
DSC 0.09±0.04 0.65±0.06 0.23±0.07

MC
ASC 0.03±0.04 0.63±0.06 0.76±0.16
DSC 0.14±0.05 0.68±0.07 0.31±0.08

L
ASC 0.03±0.04 0.63±0.06 0.76±0.16
DSC 0.12±0.04 0.71±0.06 0.05±0.04

LF

U none 0.90±0.08 0.16±0.08 0.90±0.06

AC
ASC 0.90±0.08 0.16±0.08 0.90±0.06
DSC 0.89±0.07 0.01±0.02 0.71±0.10

MC
ASC 0.90±0.08 0.16±0.08 0.90±0.06
DSC 0.97±0.04 0.03±0.02 0.78±0.11

L
ASC 0.90±0.08 0.16±0.08 0.90±0.06
DSC 0.92±0.05 0.08±0.04 0.65±0.07

Best results for each objective are marked in gray (p−value ≤ 0.05).

Several heuristics showed to be equally accurate for optimizing the

makespan objective. Hence, following the Occam razor principle we select

CA-MaxMin+U for the comparison with the MOEAs. Again, LF+AC+DSC

and LF+MC+DSC showed no significant difference between them for optimiz-

ing energy consumption. However, LF+AC+DSC shows a better average gap

metric than LF+MC+DSC. Hence, LF+AC+DSC is selected for comparison

with the MOEAs. Finally, CA-MaxMin+L+DSC is selected for comparing of

the SLA violations objective with the MOEAs. Figure 5.1 shows the relative

111

values of each objective computed by the most accurate heuristic schedulers

for all instances. For simplicity, from now on the most accurate heuristics for

each objective will be simply referred as Makespan heuristic, Energy heuristic

and SLA heuristic respectively.

0

0.05

0.1

0.15

0.2

0.25

CAMaxMin+U CAMaxMin+NT+D CAMaxMin+NL+D
Scheduling algorithm

R
el

at
iv

e
m

ak
es

pa
n

(a) Relative makespan

0

0.05

0.1

0.15

0.2

LF+AC+D LF+MC+D LF+L+D
Scheduling algorithm

R
el

at
iv

e
en

er
gy

 c
on

su
m

pt
io

n
(b) Relative energy consumption

0.5

0.6

0.7

0.8

0.9

1

CAMaxMin+L+D MaxMin+L+D MaxMIN+L+D
Scheduling algorithm

R
el

at
iv

e
S

LA
 v

io
la

tio
ns

(c) Relative SLA violations

Figure 5.1: Relative makespan, energy consumption and SLA violations values
computed by the most accurate heuristic schedulers for all instances.

High-level MOEA schedulers.

This section summarizes the study of the proposed MOEA schedulers. The

study follows the methodology presented in the previous section. Normal-

ity is tested individually for each algorithm, each problem instance and each

metric, using the Kolmogorov-Smirnov test. Results from this test reject nor-

mality with p−value ≤ 0.0001. Hence, the Kruskal-Wallis test is applied for

comparing the proposed algorithms for each problem instance and each met-

ric. Again, the null hypothesis is rejected for the Kruskal-Wallis test with

p−value < 0.0004, implying samples do not originate from the same distribu-

tion and significant differences exist between algorithms. Finally, the Dunn’s

test is applied for the pairwise comparison of the MOEA considering all multi-

objective metrics. On the one hand, results show SMS-EMOA is able to sig-

112

nificantly outperform IBEA and NSGA-II on most problem instances when

considering the hypervolume, epsilon and IGD metrics. On the other hand,

NSGA-II is significantly more accurate than SMS-EMOA and IBEA for the

spread metric on all problem instances. Table 5.2 shows the relative number

of problem instances each algorithm is the most accurate for each metric with

the best results presented in gray.

Table 5.2: Number of problem instances (out of 20) for which each MOEA is the
most accurate according to each metric for small- and large-sized scenarios.

instance type
algorithm

NSGA-II IBEA SMS-EMOA

HV
Heterogeneous-Parallel 0 16 20
Homogeneous-Parallel 0 15 20
Series-Parallel 0 12 19
Single-Task 4 2 9
Mix 0 16 20

epsilon
Heterogeneous-Parallel 0 2 14
Homogeneous-Parallel 0 2 16
Series-Parallel 0 0 13
Single-Task 4 3 1
Mix 1 7 18

IGD
Heterogeneous-Parallel 0 0 20
Homogeneous-Parallel 5 0 20
Series-Parallel 0 0 19
Single-Task 19 0 20
Mix 8 0 20

spread
Heterogeneous-Parallel 20 0 2
Homogeneous-Parallel 20 0 0
Series-Parallel 20 0 8
Single-Task 20 0 13
Mix 20 0 0

Pairwise comparison with p−value ≤ 0.05. Best results shown in gray.

Figure 5.2 show the relative hypervolume, epsilon, IGD and spread metrics

for each MOEA considering all problem instances. Overall, these results indi-

cate SMS-EMOA is the most accurate MOEA, computing the most accurate

113

solutions and sampling the most diverse Pareto front. Even though NSGA-II

is able significantly outperform SMS-EMOA when considering the spread met-

ric, it is clearly outperformed by SMS-EMOA according to the hypervolume,

epsilon and IGD metrics.

0.3

0.4

0.5

0.6

0.7

0.8

NSGA−II SMSEMOA IBEA
Scheduling algorithm

R
el

at
iv

e
hy

pe
rv

ol
um

e

(a) Relative hypervolume (HV)

0.1

0.2

0.3

0.4

NSGA−II SMSEMOA IBEA
Scheduling algorithm

R
el

at
iv

e
ep

si
lo

n

(b) Relative epsilon (I1ε+)

0.005

0.01

0.015

0.02

0.025

0.03

NSGA−II SMSEMOA IBEA
Scheduling algorithm

R
el

at
iv

e
IG

D

(c) Relative IGD

0.4

0.6

0.8

1

1.2

NSGA−II SMSEMOA IBEA
Scheduling algorithm

R
el

at
iv

e
sp

re
ad

(d) Relative spread (∆)

Figure 5.2: Relative multiobjective metrics computed by the proposed MOEA for
all instances.

Comparison of high-level schedulers.

This section studies and compares the solutions computed by the best heuris-

tics and by SMS-EMOA. It compares the best heuristics and SMS-EMOA on

an objective basis and it presents some visual representations of sample Pareto

fronts and heuristics results.

Table 5.3 shows the average improvement and standard deviation for the

best solution computed by SMS-EMOA for each objective when compared with

the solution obtained by the best heuristic for that objective. Overall results

show the SMS-EMOA outperforms the best heuristics, improving–in average–

114

the best heuristics by up to 32% in makespan, 6% in energy consumption

and 29% in SLA violations. Nevertheless, there is significant variations in

the accuracy of the SMS-EMOA results depending on the instance type and

scenario size.

Table 5.3: Average and standard deviation of improvement of the SMS-EMOA
scheduler for each objective when compared to the best heuristic scheduler

instance type
improvement over the best heuristic

fM fE fS

small-sized scenarios
Heterogeneous-Parallel 13.0±4.5% 9.5±0.6% -1.2±1.4%
Homogeneous-Parallel 15.0±3.7% 12.0±0.6% -4.1±2.9%
Serial-Parallel 12.0±5.3% 9.2±0.3% 0.4±1.1%
Single-Task 47.0±5.2% 7.3±0.6% 87.0±7.7%
Mix 12.0±2.3% 12.0±2.9% -2.1±1.7%

large-sized scenarios
Heterogeneous-Parallel 45.0±3.0% 2.6±0.9% 4.9±2.3%
Homogeneous-Parallel 37.0±9.1% 1.3±0.4% 63.0±9.4%
Serial-Parallel 47.0±3.3% 2.1±0.7% 4.0±2.3%
Single-Task 51.0±8.9% 1.4±0.8% 99.0±1.1%
Mix 37.0±5.7% 3.2±1.2% 41.0±25.0%

For the small-sized scenarios, SMS-EMOA produces the best makespan

and SLA violations improvements when dealing with Single-Task instances,

and produces the best energy consumption improvements when dealing with

Homogeneous-Parallel instances. Furthermore, SMS-EMOA is able to consis-

tently improve makespan and energy consumption objectives for all instances.

However, although SMS-EMOA improves SLA violations by up to 87% when

dealing with Single-Task instances, it is unable to improve or even worsens

SLA violations for the remaining type of instances.

SMS-EMOA behaves differently when dealing with large-sized scenarios.

For these scenarios, it is able to improve makespan consistently, with an av-

erage improvement of 37%–51% for all instances. Furthermore, SLA viola-

tions are also consistently improved on all instances, no longer worsening the

heuristics results, and largely improving SLA violations for the Homogeneous-

Parallel instances when compared to small-sized scenarios. However, improve-

ment on energy consumption drops from 10% in average for small-sized sce-

narios to 2% in average for large-sized scenarios.

115

Overall, results show SMS-EMOA consistently improves heuristics results

for the Single-Task instances in both scenarios and for all objectives, while

the remaining type of instances present diverse results depending on the ob-

jective. On the one hand, SMS-EMOA consistently improves makespan in all

scenarios. On the other hand, improvements of energy consumption and SLA

violations are not consistent. Energy consumption is most improved for small-

sized scenarios, with little improvement for large-sized scenarios. While SLA

violations are most improved for large-sized scenarios, with negligible improve-

ments for small-sized scenarios except when dealing with Single-Task instances.

Figure 5.3 present samples of Pareto fronts computed by SMS-EMOA and

schedules computed by each of the best heuristics for the large-sized scenarios.

5.5 Conclusions

In this work we propose a multiobjective formulation for modeling the schedul-

ing of a large number of workflows in a federation of datacenters to simultane-

ously minimize three objectives: makespan, energy consumption, and number

of jobs violating a SLA threshold. This formulation extends the formulation

proposed in Chapter 4 by considering heterogeneous datacenters and network-

ing communication. This new formulation provides a more realistic modeling

for nowadays high performance computing infrastructure.

We consider a two-level hierarchical scheduling approach to address the

proposed problem. The high-level algorithm schedules workflows to datacen-

ters, while the low-level algorithm schedules the tasks of the workflows assigned

to each datacenter to the servers in that datacenter. This two-level strategy

simplifies the scheduling by dividing the whole problem into two sub-problems.

Regarding the high-level scheduler, we propose a total of 56 heuristic algo-

rithms for online scheduling, and 3 MOEAs for offline scheduling. We study

and compare the accuracy of all the proposed high-level schedulers considering

a set of 100 diverse and realistic problem instances.

The analysis of the proposed high-level heuristics shows CA-MaxMin+U,

CA-MaxMin+AC+ASC, CA-MaxMin+MC+ASC, and CA-MaxMin+L+ASC

are the most accurate heuristics for makespan optimization. LF+AC+DSC

and LF+MC+DSC are the most accurate heuristics for energy consumption

optimization, and CA-MaxMin+L+DSC is the most accurate for SLA viola-

tions optimization.

116

0

0.5

1

0.91
1.1

1.2

x 104

200

400

600

800

1000

Makespan

Energy consumption

S
LA

 v
io

la
tio

ns
Makespan heuristic
Energy heuristic
SLA heuristic
SMS−EMOA

(a) Heterogeneous-Parallel

0

0.5

1

1.5

0.811.21.41.6

x 104

0

200

400

600

800

Makespan

Energy consumption

S
LA

 v
io

la
tio

ns

Makespan heuristic
Energy heuristic
SLA heuristic
SMS−EMOA

(b) Homogeneous-Parallel

0

0.5

1

1.5

1.41.51.61.71.8

x 104

200

400

600

800

1000

Makespan

Energy consumption

S
LA

 v
io

la
tio

ns

Makespan heuristic
Energy heuristic
SLA heuristic
SMS−EMOA

(c) Series-Parallel

0

0.02

0.04

0.06

350400450500550600
0

100

200

300

400

Makespan

Energy consumption

S
LA

 v
io

la
tio

ns

Makespan heuristic
Energy heuristic
SLA heuristic
SMS−EMOA

(d) Single-Task

0

0.5

1

1.5

0.911.11.21.31.4
0

200

400

600

800

Makespan

Energy consumption

S
LA

 v
io

la
tio

ns

Makespan heuristic
Energy heuristic
SLA heuristic
SMS−EMOA

x 104

(e) Mix workflows

Figure 5.3: Sample results computed by the best heuristics and SMS-EMOA for
the large-sized scenarios

The proposed SMS-EMOA method proved to be overall the most accurate

MOEA scheduler, significantly outperforming IBEA and NSGA-II on most

multiobjective metrics for most of the problem instances. In average, SMS-

EMOA is able to improve makespan by 20%, energy consumption by 10% and

SLA violations by 16% over the best heuristics for the small-sized scenarios.

117

For the large-sized scenarios, SMS-EMOA improves makespan by 43%, energy

consumption by 2% and SLA violations by 42% in average. Furthermore, it

is able to compute a diverse set of trade-off schedules with different levels of

compromise between all three objectives.

The main line of future work consists in developing a mixed integer pro-

gramming solution for computing exact lower-bounds for studying the opti-

mality gap for each objective. Also, we propose to evaluate our proposed

method with even larger problem instances to further study the behavior of

the computed results.

118

Chapter 6

An empirical study of the

robustness of energy-aware

schedulers

Santiago Iturriaga, Sebastián Garćıa, and Sergio Nesmachnow

Abstract: This article presents an empirical evaluation of energy-aware sched-

ulers under uncertainties in both the execution time of tasks and the energy

consumption of the computing infrastructure. We address an important prob-

lem with direct application in current clusters and distributed computing sys-

tems, by analyzing how the list scheduling techniques proposed in a previous

work behave when considering errors in the execution time estimation of tasks

and realistic deviations in the power consumption. The experimental eval-

uation is performed over realistic workloads and scenarios, and validated by

in-situ measurements using a power distribution unit. Results demonstrate

that errors in real-world scenarios have a significant impact on the accuracy of

the scheduling algorithms. Different online and offline scheduling approaches

were evaluated, and online approach showed improvements of up to 32% in

computing performance and up to 18% in energy consumption over the offline

approach using the same scheduling algorithm.

6.1 Introduction

Nowadays, energy efficiency is a major concern when operating clusters, data-

centers, and grid/cloud computing infrastructures. From a global perspective,

119

all issues related to energy consumption raise several concerns for the scientific

community, including economic, environmental, and system performance (Lee

and Zomaya, 2009).

Energy consumption on computing systems does not only depend on the

energy efficiency and features of the hardware, but also on the software used

for task planning (Ahmad and Ranka, 2012). Among many different strate-

gies for reducing the energy consumption,energy-aware scheduling techniques

have emerged as useful alternatives for accurate planning and lowering the

power required for operation (Nesmachnow et al., 2013). Energy reduction

techniques are usually based on limiting the computing power of the comput-

ing elements. They are in conflict with the system performance, so applying

them has an impact on the Quality of Service (QoS) perceived by the user.

Multi-objective formulations of the scheduling problem have been formulated

to account for the specific features of the trade-off between energy utilization

and performance (Dorronsoro et al., 2010).

The main trend on the scientific community in energy-aware scheduling

is based on optimizing the energy consumption of the computing elements

since the processor is the main energy consuming element among the hardware

components. The processor also offers the most flexible options for energy

management, such as dynamic voltage and frequency scaling (DVFS), dynamic

power management, slack sharing and reclamation, and other techniques (Zhu

et al., 2003).

Many scheduling algorithms are based on assuming that the time required

to perform every task is known in advance, and the planning is performed

according to that input information. However, that assumption does not hold

true in the case of computational infrastructures, where users submit their

jobs to be executed on heterogeneous computing elements. Accurately pre-

dicting the execution time for individual tasks is a very hard problem, mainly

because the actual execution time depends on many factors including the hard-

ware features, communications and delays due to infrastructure and parallel

execution, resource availability, among others. Estimation models using task

profiling and benchmarking have been proposed since the early 1990’s (Ghafoor

and Yang, 1993; Kafil and Ahmad, 1998), but they rely on specific hardware

features and computing models that are not fully reasonable for nowadays clus-

ters and distributed computing infrastructures. Furthermore, current models

for predicting the energy consumption do include some unrealistic approxima-

120

tions about the power utilization, especially in the case of complex multicore

servers (Nesmachnow et al., 2013).

This article presents an empirical evaluation of energy-aware schedulers in

heterogeneous computing (HC) scenarios that consider uncertainties in both

the execution time of tasks and the energy consumption for a given computing

infrastructure. We propose three variants of each of the best energy-aware

list scheduling techniques proposed in our previous work (Nesmachnow et al.,

2013). Then, we analyze their behavior when addressing specific instances of

the energy-aware scheduling problem in multicore HC systems, accounting for

realistic errors in the estimation of the execution time of tasks, and specific

deviations in the power consumption calculation when using a standard energy

model for computing systems.

The main contribution of this article consists in proposing novel schedul-

ing algorithms and reporting their experimental evaluation performed over

realistic workloads and scenarios, validated by in-situ measurements using a

power distribution unit. The empirical results demonstrate that error in real-

world scenarios have a significant impact on the accuracy of the scheduling

algorithms. Different scheduling approaches were evaluated, and the online

approach showed improvements of up to 32% in computing performance and

up to 18% in energy consumption over the offline approach using the same

scheduling algorithm.

The paper is organized as follows. Section 6.2 describes the energy-aware

scheduling problem under uncertainty. A review of related work is presented

in Section 6.3. The heuristics for energy-aware scheduling in high performance

computing systems are introduced in Section 6.4, just before the description

of our model for uncertainty in Section 6.5. The experimental analysis of the

proposed heuristics is reported in Section 6.6, Finally, Section 6.7 presents the

conclusions and formulates the main lines for future work.

6.2 Robust energy-aware scheduling under

uncertainty

This section describes the robust energy-aware scheduling problem in HC sys-

tems under conditions of uncertainty.

121

6.2.1 The energy-aware scheduling problem

In this article, we consider a multi-objective version of the scheduling prob-

lem in multicore HC systems, taking into account the minimization of the

makespan and energy consumption. We call this problem the Makespan-

Energy Heterogeneous Computing Scheduling Problem (ME-HCSP). The

mathematical formulation for the problem considers the following elements:

• A HC system composed of a set of multicore machines P =

{m1, . . . ,mM}; each machine having NC(mi) processing cores and pro-

cessing speed S(mi).

• A collection of tasks T = {t1, . . . , tN} to be executed on the system, each

task arrives in time ARR(ti).

• An execution time function ET : T × P → R+, where ET (ti,mj) is the

time required to execute task ti on machine mj.

• An execution time error function ∆ET : T ×P → R+, where ∆ET (ti,mj)

is the error introduced when estimating ET (ti,mj).

• An energy consumption function EC : T ×P → R+, where EC(ti,mj) is

the energy required to execute task ti on machine mj, and ECIDLE(mj)

is the energy that machine mj consumes in idle state.

• An energy consumption error function ∆EC : T × P → R, where

∆EC(ti,mj) is the error introduced when estimating EC(ti,mj).

The goal of the ME-HCSP is to find an assignment function f : TN → PM

which simultaneously minimizes the makespan and the total energy consump-

tion metrics. The assignment function f should schedule each task ti to be

executed without preemption on some machine mj at some time ST (ti), with

ST (ti) ≥ ARR(ti). The makespan metric is defined as the maximum comple-

tion time Cmax = maxti∈T C(ti), where the completion time of task ti is C(ti)

= ST (ti) + ET (ti,mj). The energy required to execute the task ti in the

machine mj, given by EC(ti,mj), depends on the execution time of the task

ti in machine mj, ET (ti,mj), and the energy consumption of the machine mj.

The total energy consumption is defined as shown in Equation 6.1.∑
ti∈T :

f(ti)=mj

EC(ti,mj) + ∆EC(ti,mj) +
∑
mj∈P

ECIDLE(mj) (6.1)

122

Regarding the energy consumption, in this work we apply the model for

multicore computing systems introduced in our previous work (Nesmachnow

et al., 2013). In this model, the energy consumption of a task is estimated by

assuming the task is CPU-bound and approximating its energy consumption by

the energy consumption of the CPU when executing that task. This was found

to be an accurate approximation in an HPC systems where most tasks are CPU

intensive and where the CPU is the most energy consuming device. This model

states that the total energy consumption accounts for both the energy required

to execute the assigned tasks, and the energy that each machine consumes in

idle state. Therefore, we do estimations for the worst case scenarios because

in real systems idle machines can be changed to an energy saving mode (or

switched off).

In the previous formulation all tasks can be independently executed, disre-

garding the execution order. The independent task model is common in grid

and volunteer-based computing infrastructures, as well as in BoT applications.

6.2.2 Robust scheduling

Most modern High Performance Computing (HPC) systems are comprised of a

large number of distributed and heterogeneous computing elements. The exe-

cution times of tasks in these HPC systems is inherently unpredictable (Cirne

and Berman, 2001; Mu’alem and Feitelson, 2001); computing element het-

erogeneity and network communication delays contribute a great deal to task

execution time uncertainty. But arguably the major factor of uncertainty when

scheduling tasks in HPC systems is introduced by the users of the system when

specifying the Estimated Execution Time (EET), defined as EET = ET+∆ET .

The ET of all tasks is a very important component in order to compute an ac-

curate task schedule, but because it is unknown for the scheduling algorithm,

nowadays HPC systems relay on user estimates of tasks execution times, the

EET. This is true for most of the modern scheduling products such as Load

Leveler, Maui, Open Grid Scheduler, etc. (Tsafrir, 2010).

Studies show the EET estimates are highly inaccurate, in some cases the ET

of a significant number of jobs account for 10% or less of their EET (Bailey Lee

et al., 2005). There are a number of reasons for the high inaccuracy of the

EET estimates. The first being that a significant number of tasks fail to

execute because of task initialization errors. Though this is more related to

123

configuring errors than to inaccurate EET, it still needs be considered by the

scheduling algorithm. Another reason is that tasks that do execute correctly

are largely overestimated. This is because many systems kill an executing task

after its EET has been consumed, hence the EET estimate is not the true user

estimate, but rather the maximum amount of time the user is willing to wait

for the task execution output before it is acceptable for the task to be killed by

the system (Mu’alem and Feitelson, 2001). Real-world execution traces show

this is true even for tasks following the independent task model (Tsafrir, 2010).

Energy consumption estimation is greatly affected by execution time esti-

mation errors since energy consumption directly depends on the execution time

of the scheduled tasks. But this is not the only uncertainty source; although

the CPU is the most energy consuming device in HPC systems, certainly it is

not the only one. Energy consumption is also affected by the use of peripheral

devices (such as hard drives, network adapters, etc.) and by the use of cooling

devices (such as cooling fans, air conditioning, etc.).

Uncertainty in the energy consumption and the execution time of tasks

in HPC systems can lead to a considerable performance loss in task execu-

tion (Tsafrir, 2010). Hence, looking for scheduling solutions that are robust

against such inaccuracies may help alleviate, or even neglect, the performance

decrease they produce.

6.3 Related Work

Several works in the related literature have studied algorithms to find flexible

solutions to the scheduling problem, i.e. they are able to handle some kind of

uncertainties related to faults in the system, or they are expected to be less

affected by these uncertainties than a regular scheduler.

Ali et al. (2004) proposed a mathematical formulation of a metric for the

robustness which can be applied to various parallel and distributed systems.

The authors apply this metric to two example systems, one of them being

the independent application allocation system that we are considering in this

paper. When adopting this robustness metric, it is guaranteed that if the col-

lective difference of the actual task execution times versus the estimated times

is within a certain calculated range, then the given makespan requirement will

be met. This metric has been used in a number of related works (Dorronsoro

et al., 2010; Mehta et al., 2007).

124

Several works aim at predicting an uncertainty value in order to include

this prediction into the scheduling knowledge. All these works focus on pre-

dicting execution time uncertainty while considering a simple FCFS scheduling

approach; they do not consider the energy consumption of the system. Tsafrir

(2010) proposed a system-generated prediction system based on users’ history

and applied it to the EASY (Feitelson et al., 2005) algorithm. Using this

approach they achieved a 25% average reduction in wait time and slowdown.

Minh and Wolters (2010) presented a method for predicting task execution

time based on historical data. Using this predictor they were able to improve

accuracy by up to 32%. The CREASY scheduler by Shmueli and Feitelson

(2009) exploits knowledge on user behavior to improve QoS of the system.

Using an alternative simulation methodology called site-level simulation they

were able to improve user productivity by up to 50%. Tang et al. (2013) ana-

lyzed the impact of execution time estimates in scheduling algorithms on the

Blue Gene/P, designing and implementing a number of schemes for adjust-

ing estimates. These schemes make use of historical workload data in order to

predict the accuracy of a task estimation considering user and project informa-

tion. The analysis showed the user estimates are highly inaccurate with only

31–33% of all the considered tasks having an estimation accuracy of 80% or

more, and up to 21–28% having an accuracy of 20% or less. The experiments

showed the adjusting schemes were able to improve up to 20% the performance

of the system.

In our previous work (Nesmachnow et al., 2013), the model for multi-core

computing systems that we apply in this article was introduced. Our approach

did not apply DVFS nor other specific techniques for power/energy manage-

ment. Instead, we proposed an energy consumption model (MIN/MAX model)

based on the energy required to execute tasks at full capacity (EMAX), the en-

ergy when not all the available cores of the machine are used, and the energy

that each machine on the system consumes in idle state (EIDLE). In our pre-

vious work, we proposed twenty fast list scheduling methods adapted to solve

the bi-objective problem we also consider here, by simultaneously optimiz-

ing both makespan and energy consumption when executing independent BoT

applications on a computing system composed of multi-core computers.

In this work we propose to study the impact on real-world scenarios of

both execution time and energy consumption uncertainties when considering

system performance and energy efficiency objectives. We evaluate a set of

125

online and offline variants of scheduling algorithms proposed by Nesmachnow

et al. (2013) which simultaneously consider both objectives. To the best of our

knowledge, this is the first work to evaluate energy consumption uncertainty

in a computing scheduling problem.

6.4 Robustness of energy aware scheduling

heuristics

In this work we consider three well-known scheduling approaches which can be

classified as offline, online greedy, and online batch (Leung et al., 2004). The

offline approach assumes all tasks are known beforehand, hence the scheduling

algorithm needs only to be executed once and is able to consider all the tasks

simultaneously for the scheduling decisions. This approach is definitely the

best in an uncertainty free problem, since the scheduling algorithm is provided

with absolutely all the available information for making scheduling decision.

Unfortunately, because the scheduling algorithm is executed only once, it is

unable to dynamically adjust the scheduling to cope with uncertainty values.

On the other hand, in the online approach tasks are not known by the

scheduling algorithm until they arrive. This requires the scheduling algorithm

to be executed multiple times for completely scheduling a task workload. We

tackle the online scheduling problems using two different techniques, one is a

greedy technique and the other is a batch oriented technique. In the online

greedy approach, tasks are scheduled one at a time as soon as they arrive and

are never rescheduled. This approach is very simple and straightforward, and

is able to react to some degree to uncertainty in the data. On the downside,

the information available to the scheduler for making the scheduling decisions

is minimal.

The online batch approach tackles some of the previously presented prob-

lems. In this approach the scheduling algorithm is re-executed after a pre-

defined time step, all the tasks that arrive in a given time-step are delayed,

are grouped as a batch, and are scheduled together by the scheduling algo-

rithm. This way the online problem is treated as a succession of smaller offline

problems. We consider two further improvements to this approach. The first

being that in every scheduling batch not only the tasks that arrive in that

time step are considered by the scheduler, but also all the tasks from previous

126

batches already scheduled but which have not started their execution (i.e. are

still queued). The second improvement is that the scheduling algorithm is not

executed in every time step, it is executed only if in the current time step some

meaningful event has occurred (i.e. at least one task has finished or at least a

new task has arrived).

In this work we evaluate five different scheduling algorithms following the

previous approaches. For the offline and online batch approaches we con-

sidered three multiobjective two-phase list-scheduling algorithms proposed by

Nesmachnow et al. (2013): MaxMin, MaxMIN, and SuffMIN. Because a two-

phase approach is not applicable to the online greedy approach, two simple

single-objective algorithms were proposed: Min and MIN. The algorithms work

as follows:

• MaxMin is a traditional two-phase heuristic which considers the

makespan objective in both phases. In the first phase the task t with the

largest compute time is selected. In the second phase task t is assigned

to the machine which minimizes the makespan.

• MaxMIN is a two-phase heuristic which considers the makespan objective

in the first phase and the energy consumption in the second. In the

first phase the task t with the largest compute time is selected. In the

second phase task t is assigned to the machine which minimizes the

energy consumption.

• SuffMIN again considers the makespan objective in the first phase and

the energy consumption in the second. In the first phase the task t

which suffers the most if not assigned right away is selected. In the

second phase task t is assigned to the machine which minimizes the

energy consumption.

• Min and MIN are one-phase greedy heuristics that assign tasks as they

arrive, considering makespan (Min) and energy consumption (MIN).

6.5 Modeling uncertainty

In this work we consider two sources of uncertainty, the task execution time

(ET) and the machine energy consumption (EC). We present here the task

execution time model and the energy consumption model proposed in this

work.

127

6.5.1 The task execution time uncertainty model.

One of the most popular models for modelling execution time uncertainty is

the f -model (Mu’alem and Feitelson, 2001). This model assumes the task’s

EET is uniformly distributed within [ET, (f+1)ET], where f is some positive

factor. When f = 0 then ∆ET = 0 hence estimates are identical to execution

times, and the larger the f -value the greater the user inaccuracy in the system.

In this work we perform some empirical analysis and show the f -model does

not fit the empirical data considered in the analysis, hence we deduce some

simple model from the data in order to model task execution time uncertainty

in this work.

In order to construct a model for uncertainty in the tasks execution time

we performed an empirical study using workloads from three real-world HPC

infrastructures. The analysis is two-fold, first we studied the EET of the tasks

to characterize the user behavior when requesting execution time for their

tasks, and second we studied the ∆ET of the tasks considering their requested

EET.

The first analyzed infrastructure is the CEA Curie system, a large HPC

infrastructure with 93312 cores during the considered time span. A workload

with 773138 tasks, which spans for 20 months (Feb. 2011–Oct. 2012), was

used. We also studied the RICC infrastructure, a medium sized system with

9216 cores. A workload with 447794 tasks, which spans for 5 months (May

2010 to Sept. 2010) was used. Finally, we studied the Cluster FING system,

a small sized system which was comprised of 408 cores during the considered

time span. For the Cluster FING system a 31 months period was analyzed,

in this period dated between November 2011 and June 2014, a total of 500000

tasks were executed.

The CEA Curie and RICC task workloads are available at the Parallel

Workloads Archive http://www.cs.huji.ac.il/labs/parallel/workload

while the Cluster FING workload is available at www.fing.edu.uy/cluster.

When analyzing the EET of the tasks in the studied real-world workloads,

we found that most EETs are within either less than 20% or more than 80%

of the maximum execution time allowed in the system. Hence, we propose

grouping tasks in the workloads in 5 different groups: in the first group tasks

with EET between 0% and 20% of the maximum execution time, in the second

group tasks with EET between 20% and 40%, and so on (see Fig. 6.1).

128

http://www.cs.huji.ac.il/labs/parallel/workload
www.fing.edu.uy/cluster

relative EET percentage of tasks

[0, 20%) 50%
[20%, 40%) 2%
[40%, 60%) 2%
[60%, 80%) 1%
[80%, 100%] 45%

relative percentage of tasks

EET error ∆low
ET ∆med

ET ∆high
ET

[0, 40%) 45% 35% 25%
[40%, 75%) 30% 25% 15%
[75%, 95%) 5% 10% 20%
[95%, 100%] 20% 30% 40%

0

10

20

30

40

50

60

70

80

90

100

[0%,20%) [20%,40%) [40%,60%) [60%,80%) [80%,100%]

Ta
sk

s
in

 t
h

e
 w

o
rk

lo
ad

 (
%

)

Tasks estimated execution time

Curie

RICC

Cluster FING

0%

10%

20%

30%

40%

50%

60%

[0%,40%) [40%,75%) [75%,95%) [95%,100%]

Ta
sk

s
in

 t
h

e
 w

o
rk

lo
ad

 (
%

)

Relative execution time error

CEA Curie

RICC

Cluster FING

Figure 6.1: Analysis of the proposed workloads.

When averaging the results for the three real-world workloads, we see that

in average 50% of the tasks request less than 20% of the maximum allowed

execution time, 45% of the tasks request more than 80% of the maximum

execution time, and the remaining 5% is somewhat uniformly distributed.

Regarding ∆ET , the workload analysis showed that the estimation errors

are rather large and, again, not uniformly distributed. Further analysis showed

that a significantly large number of tasks present either a quite accurate es-

timation or a very inaccurate estimation. This is shown in Fig. 6.1. This

empirical findings are similar to the ones presented by Tsafrir (2010). Based

on this data we propose three different error scenarios for our model: ∆low
ET

with an average error of 48%, ∆med
ET with an average error of 56%, and ∆high

ET

with an average error of 67%.

6.5.2 The energy consumption uncertainty model.

We conducted a set of empirical evaluations in order to determine the uncer-

tainty model for the energy consumption.

Our starting point was the high-level theoretical linear increasing model

that we originally introduced in our previous work (Nesmachnow et al., 2013).

This model proposes a linear increase in the energy consumption (from EIDLE

to EMAX) when using an increasing number of CPU cores. However, the

model is only focused on the energy consumption of the processor; it does

129

not take into account the energy consumption due to memory utilization and

I/O devices. Thus, in this work we aim at validating the energy consumption

model and estimate deviations from the previous model due to other energy

consuming components.

In order to evaluate the model, three basic tests were executed using a

server from our HPC infrastructure at Universidad de la República. The server

is an HP Proliant DL385 G7 server with two AMD Opteron 6172 processors

with 12 cores running at 2.1 GH, and 24 GB of RAM memory.

For the energy evaluation, a specialized Power Distribution Unit (PDU) was

used: CyberPower PDU20SWHVIEC8FNET. We connected only the server

running the tests to the PDU, as it lacks the capability of per outlet mea-

surement. A specific application was developed to poll and log the energy

consumption data, due to a limitation on the granularity of the logging ca-

pabilities of the PDU, which is only able to save log data at a rate of one

measurement per minute. The logging application was executed in a sepa-

rated computer also connected to the PDU, in order to avoid adding its own

energy consumption to the measurements. Using the logging application, we

were able to log a minimum of four and a mean of six instant energy measure-

ments per second during each test.

The tests consist in executing an increasing number of applications in order

to use different number of cores, from a single core up to twenty four cores.

The applications used in the tests range from a simple mathematical operation

to a complex transformation, in order to evaluate different scenarios:

1. Single loop. The first test consists on running a simple C++ loop per-

forming a multiplication a huge number of times, this way ensuring a

fully CPU-bound test using only one CPU.

2. LINPACK. The second test is based on an open source sequential imple-

mentation of the LINPACK benchmark (Dongarra, 1988). We adjusted

the LINPACK parameters to have an acceptable execution time while

not using too much memory, to reduce the race for cache and RAM

memories when running 24 instances.

3. Fast Fourier Transform. This test is similar to the previous one, but

based on an open source implementation of the Fast Fourier Trans-

form (Brigham, 1974). In this case, the evaluation was made using only

up to 23 instances of the test.

130

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E(
W

h)

#CPU

Empirical
Least squares
Worst cases

10

15

20

25

30

35

40

45

50

55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E(
W

h)

CPU

Empirical
Least squares
Worst cases

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

E(
W

h)

CPU

Empirical
Least squares
Worst cases

120

140

160

180

200

220

240

260

280

300

0 5000 10000 15000 20000 25000

E(
W
)

t(s)

Figure 6.2: Energy consumption for the three applications in the test (loop, LIN-
PACK, and FFT, respectively), and instant power usage sample (loop test case)

Table 6.1: Error results and deviation from linearity for the three tests performed

test
error deviation from linearity relative error

maximum mean maximum mean maximum (%) mean (%)
simple loop 5.71 2.56 2.48 1.11 7.36 3.34
LINPACK 5.36 2.39 2.74 1.23 21.58 7.98
FFT 3.52 1.26 2.82 1.01 13.11 4.88

In the tests, the energy consumption was estimated from the logs obtained

using the PDU by applying an interpolation of the instant power measure-

ments. The graphics in Figure 6.2 shows the energy consumption when using

an increasing number of cores for the three applications in the test (loop, LIN-

PACK, and FFT, respectively). The fourth graphic in Figure 6.2 is an example

of the instant power usage as function of time for the loop test case, where the

execution of the tests using an increasing number of cores were performed one

after the other.

Table 6.1 reports the maximum (worst case) and mean values for the error

and the deviation from linearity in the energy consumption, along with the

relative error values for each application in the test suite.

131

The numerical results validates the linear increasing energy consumption

model, as we verify that the deviation from linearity when using real applica-

tions is below 3%; and the relative error on the energy consumption is below

8%, and about 5% in average. These results demonstrate that no significant

impact is observed when executing CPU-oriented applications, such as the ones

commonly executed in HPC facilities. Taking into account the results of the

empirical analysis, we assume that the energy consumption error for multicore

computers is in the range [-5%,5%].

6.6 Experimental analysis

This section reports the experimental analysis of the proposed heuristics for

robust energy-aware scheduling under uncertainty.

6.6.1 Problem instances

We created a number of problem instances to evaluate the scheduling algorithm

using the proposed uncertainty model. Each problem instance is defined by

the task workload, describing the tasks to be executed in the system, and the

machine scenario, describing the hardware infrastructure to execute the tasks.

The machine scenarios were created using the model for energy consump-

tion in multicore computers (Nesmachnow et al., 2013) which makes use of a

list of CPU and generates each scenario selecting machines using a uniform

probability distribution. However, in this work we propose an alternative ma-

chine selection method for constructing each scenario: the CPUs are sorted

according to their generation, the mean of the Gaussian probability distribu-

tion is uniformly selected, and two different standard deviation values are used,

σhigh and σlow. These σ values represent the machine heterogeneity in the gen-

erated scenario and they are defined as σhigh=0.25×M and σlow=0.025×M ,

where M is the number of machines in the scenario. This method models a

more realistic computing infrastructure comprised of sets of similar machines.

Scenarios of three different sizes were generated for this work following

this new approach, M ∈ {8, 12, 16}. A total of 800 scenarios were generated

for each of the considered number of machines, with the 8-machine scenarios

comprising an average of 131 cores per scenario, and the 16-machine scenarios

comprising an average of 262 cores per scenario.

132

Regarding the task workload generation, 1024 tasks were generated for

each workload using a Poisson probability distribution to model their arrival

time. The experiments were performed using the lowest and highest average

arrival rates of the three real-world workloads analyzed, λlow = 0.317 and

λhigh = 0.634. With this settings, the average simulation time of each 1024-

tasks workload is around 53 minutes when using λlow and around 26 minutes

when using λhigh.

We fixed the maximum allowed time for each task execution to be 28 hours,

which considering the proposed uncertainty model results in an average task

EET of 13.7 hours and an average task ET of 7.8 hours.

A total of 400 task workloads were generated, 50 workloads for each combi-

nation of execution time error rate (∆ET) and arrival rate (λ). Each workload is

evaluated with two machine scenarios, with high and low heterogeneity. Hence,

a total of 800 experiments were conducted with different problem instances.

6.6.2 Results and discussion

In this section we present and discuss the experimental analysis results for all

the performed experiments.

First we explore the deviation from the expected schedule when using the

offline scheduling algorithms. Table 6.2 presents the relative deviation between

the expected and the actual makespan and energy consumption for each al-

gorithm. Because of the nature of the problem the expected makespan and

energy consumption is an upper bound of the actual values of the schedule,

hence all deviation is an improvement form the expected schedule.

We can see the schedule deviation in both objectives increases as the er-

ror rate increases, and decreases as the problem dimension increases. When

comparing the scheduling algorithms, results show the MaxMIN algorithm is

the most robust for the makespan objective, while SuffMIN is the most robust

for the energy consumption objective. However, the gap between the expected

and the actual metrics of the schedules is significant for all the scenarios and

all the scheduling algorithms. The best results are marked in bold.

Table 6.3 compares the considered algorithms showing their average relative

improvement compared to the worse performing algorithm for each scenario

and objective. Results show the offline MaxMin computes the most accurate

schedules for both objectives in every scenario when the error rate (∆ET)

133

Table 6.2: Average makespan and energy deviation for the offline algorithms

num.
∆ET

offline heuristic
machines MaxMin MaxMIN SuffMIN

m
ak

es
pa

n

8
low 24.2% 16.8% 29.9%

med. 31.4% 22.2% 37.9%
high 38.4% 28.0% 46.6%

12
low 22.1% 13.1% 28.9%

med. 27.7% 16.7% 36.0%
high 34.0% 21.7% 45.0%

16
low 20.7% 11.7% 27.8%

med. 23.6% 13.1% 33.3%
high 29.2% 18.1% 42.0%

en
er

gy

8
low 33.7% 37.6% 26.8%

med. 42.0% 45.5% 35.9%
high 53.1% 54.8% 48.5%

12
low 30.6% 35.7% 15.5%

med. 38.1% 42.9% 26.5%
high 50.1% 52.5% 41.9%

16
low 28.5% 34.8% 11.3%

med. 37.0% 41.5% 20.0%
high 46.5% 50.5% 32.3%

is none, increasing its accuracy as the problem dimension increases. This was

expected as the offline algorithm is the one considering the greater amount

of scheduling information. When considering problem scenarios with higher

error rates, it can be seen that the online batch algorithms outperform the

offline algorithms. The scheduling algorithms using the online approach are

able to react to uncertainty and improve the accuracy of the schedule. The

online batch MaxMin computes the most accurate schedules for the makespan

objective, and the online batch MaxMIN computes the most accurate schedules

for the energy consumption objective. It can be seen that the accuracy of the

online batch algorithms increases with the problem dimension and the error

rate, achieving an improvement of up to 50.2% for the makespan and up to

32.0% for the energy consumption. When comparing the online batch and

offline approaches of the best algorithms, results show the online batch MaxMin

is up to 32.3% more accurate than the offline MaxMin for the makespan, and

the online batch MaxMIN is up to 18% more accurate than the offline MaxMIN

for the energy consumption.

134

Table 6.3: Average makespan and energy consumption improvement

∆ET

heuristic

offline
online

batch greedy
MaxMin MaxMIN SuffMIN MaxMin MaxMIN SuffMIN Min MIN

m
ak

es
pa

n

8
m

ac
h. none 34.7% 22.0% 0.7% 34.4% 34.0% 29.8% 27.4% 28.0%

low 23.1% 15.8% 2.4% 44.4% 44.2% 38.1% 22.7% 21.8%
med. 22.0% 16.2% 3.4% 47.2% 46.3% 40.6% 22.2% 19.9%
high 16.8% 15.0% 5.4% 49.1% 48.4% 43.2% 20.0% 19.3%

12
m

ac
h. none 43.6% 29.1% 1.3% 42.7% 40.9% 36.3% 35.1% 35.4%

low 31.0% 23.3% 1.5% 48.3% 47.5% 42.1% 28.7% 28.0%
med. 26.8% 19.9% 2.1% 49.5% 47.8% 43.2% 26.4% 25.3%
high 21.7% 18.6% 3.5% 48.6% 47.9% 43.0% 24.1% 22.2%

16
m

ac
h. none 48.4% 32.9% 1.7% 47.0% 43.3% 39.3% 39.1% 38.9%

low 33.2% 24.5% 1.2% 47.9% 46.0% 40.7% 28.9% 28.1%
med. 32.0% 25.5% 1.2% 50.2% 48.5% 43.4% 29.6% 29.1%
high 28.4% 22.7% 2.4% 49.6% 48.4% 44.5% 28.1% 27.0%

en
er

gy

8
m

ac
h. none 13.4% 8.9% 0.6% 13.2% 13.1% 11.6% 10.8% 11.0%

low 10.7% 8.0% 1.9% 21.7% 22.1% 19.1% 10.8% 10.2%
med. 10.6% 8.8% 2.7% 24.4% 24.5% 21.4% 11.1% 9.7%
high 9.0% 9.2% 4.2% 27.5% 27.8% 24.9% 11.2% 10.6%

12
m

ac
h. none 19.4% 13.9% 0.8% 19.0% 18.4% 16.5% 15.7% 15.9%

low 15.8% 13.1% 1.2% 25.8% 26.3% 23.3% 15.1% 14.6%
med. 14.4% 11.9% 1.9% 27.9% 27.8% 25.0% 14.5% 13.8%
high 12.2% 11.6% 2.8% 28.7% 29.2% 26.2% 14.5% 13.2%

16
m

ac
h. none 23.6% 17.5% 1.1% 22.9% 21.6% 19.5% 19.5% 19.4%

low 17.4% 14.2% 1.0% 26.2% 26.1% 23.0% 15.5% 14.9%
med. 17.9% 15.7% 1.0% 29.4% 29.4% 26.1% 17.1% 16.8%
high 17.6% 15.3% 2.1% 31.6% 32.0% 29.0% 18.1% 17.3%

Table 6.4 shows the number of problem instances in which each algorithm

is able to compute the most accurate schedule for each objective. It can be

seen that the previous results hold. The most accurate heuristic is the of-

fline MaxMin when no error level is considered. The online batch MaxMin

is the most accurate for the makespan objective when higher error rates are

considered, and the online batch MaxMIN is the most accurate for the energy

consumption objective also when higher error rates are considered. Although

the online greedy algorithms are able to compute competitive schedules in av-

erage, they are not able to compute the most accurate result for any problem

instance.

6.7 Conclusions and Future Work

This work presented a formulation for the energy-aware scheduling problem

considering uncertainties in the execution time of tasks and the energy con-

sumption of the infrastructure. We analysed three real-world task work-

loads and proposed a workload generation model considering uncertainties.

135

Table 6.4: Number of problem instances in which each of the proposed heuristic
compute the best makespan and energy consumption value

∆ET

heuristic

offline
online

batch greedy
MaxMin MaxMIN SuffMIN MaxMin MaxMIN SuffMIN Min MIN

m
ak

es
pa

n

8
m

ac
h. none 153 2 0 32 13 0 0 0

low 1 0 0 108 89 4 0 0
med. 2 0 0 125 70 5 0 0
high 1 0 0 102 82 16 0 0

12
m

ac
h. none 151 1 0 24 23 1 0 0

low 7 0 0 115 74 4 0 0
med. 7 2 0 122 61 12 0 0
high 4 0 0 91 89 16 0 1

16
m

ac
h. none 170 1 0 20 9 0 0 0

low 18 0 0 111 69 2 0 0
med. 11 0 0 101 85 7 0 0
high 14 1 0 96 78 13 0 0

en
er

gy

8
m

ac
h. none 47 13 2 69 58 11 0 0

low 0 0 0 73 117 10 0 0
med. 0 2 1 91 100 6 0 0
high 0 0 0 77 103 20 0 0

12
m

ac
h. none 80 10 0 53 53 4 0 0

low 5 0 0 66 119 10 0 0
med. 2 2 0 85 94 16 0 1
high 1 0 0 63 108 26 1 1

16
m

ac
h. none 93 22 3 33 46 3 0 0

low 10 3 0 76 101 10 0 0
med. 4 0 0 70 114 11 1 0
high 7 4 0 62 107 19 0 1

We also conducted empirical evaluations to validate and extend our previously

proposed energy consumption model to consider uncertainty values.

In order to analyse the impact of these uncertainty values we evaluated a

set of scheduling algorithms considering different scheduling approaches. Some

of these scheduling approaches being better fitted to cope with uncertainties

than others. Results show the uncertainty values in real-world scenarios sig-

nificantly affects the accuracy of the scheduling algorithm, hence considering

these uncertainty values may improve the accuracy of a scheduling algorithm.

In future work, we propose to extend our mathematical model to consider

parallel non-independent tasks and to characterize the energy consumption of

tasks which are not entirely CPU-bound, allowing us to model even more re-

alistic problem instances and to take advantage of technologies such as DVFS.

We will work on improving the accuracy of our proposed scheduling algo-

rithms and compare them with some well-known commercial batch scheduler,

e.g. Maui.

136

Chapter 7

Conclusions and future work

This chapter presents a summary of the major conclusions presented in this

thesis and outlines the main lines of future work.

7.1 Summary of conclusions

This thesis addresses the challenge of scheduling the operation of energy-

efficient data centers. In Chapter 2, we provide an in-depth review of the

state-of-the-art knowledge related to energy efficiency for data centers. After

that, in Chapters 3 to 6, we address the energy efficiency problem for different

data center scenarios.

In Chapter 3 we address the problem of optimizing energy efficiency in a

data center powered by traditional and renewable energy sources. This prob-

lem takes into account a desired reference power consumption profile, the over-

all electricity budget, and the QoS provided to its users. We consider a fully

Pareto-oriented methodology and designed two MOEAs based on NSGA-II

and ev-MOEA. Both MOEAs are hybridized with a greedy scheduling algo-

rithm and a SA algorithm. In our proposed approach, MOEAs schedule the

computing resources and cooling system, while the greedy heuristic schedules

the computing workload. Furthermore, the SA algorithm is used as a post

hoc optimization mechanism for further improving the computed schedules. A

diverse set of problem instances are constructed considering different power

profiles, green power generation profiles, and workloads of tasks. Results show

ev-MOGA is significantly more accurate than NSGA-II for all the considered

problem instances, improving accuracy of the schedules by 18% in average.

137

Compared to the business-as-usual scenario, ev-MOGA computed average bud-

get reductions ranging from 33% up to 83% maintaining high QoS and low

deviation from the reference power profile. These results confirm the effec-

tiveness of our proposed approach and the usefulness of considering renewable

energy sources for data center infrastructures.

In Chapter 4 we address the multi-objective problem of scheduling a large

number of workflows in a federation of several geographically-distributed data

centers, each comprised of homogeneous computing resources. The goal of

this problem is to simultaneously minimize three objectives: makespan, en-

ergy consumption, and number of workflows violating SLA. We propose a

two-level hierarchical scheduling algorithm, and we design five heuristics to

tackle the online version of the problem and two MOEAs to tackle the offline

version of the problem. Both MaxMin-based algorithms are able to compute

the most accurate schedules for medium- and large-sized instances when con-

sidering makespan and energy consumption objectives. Nevertheless, these

algorithms are also the less accurate for SLA violations. The MinMIN-EFT

heuristic is the most accurate scheduler for minimizing SLA violations, out-

performing MaxMin by 13.5% for large-sized instances. When analyzing the

MOEA, results show that Heterogeneous-Parallel is one of the hardest instance

classes to tackle, but also one of the most promising. For the medium-sized

Heterogeneous-Parallel instances, the MOEAs compute solutions with an aver-

age makespan gap of 40.0% and energy consumption gap of 39.3%, improving

the best heuristic by 17.9% in makespan and 96.4% in energy consumption.

For the large-sized instances, experimental results confirm that Heterogeneous-

Parallel is one of the hardest type of instances, with the MOEA computing

improvements of 24.2% and 56.9% in makespan and energy consumption over

the best heuristic methods.

In Chapter 5 we extend the work presented in Chapter 4 by considering

data centers comprised of heterogeneous computing resources and by consider-

ing networking communication. This new formulation provides a more realistic

modeling for nowadays data center infrastructures. We also extend the exper-

imental analysis by considering a total of 56 heuristic algorithms for online

scheduling and 3 MOEAs for offline scheduling. The analysis of the pro-

posed high-level heuristics shows CA-MaxMin+U, CA-MaxMin+AC+ASC,

CA-MaxMin+MC+ASC, and CA-MaxMin+L+ASC are the most accurate

heuristics for makespan optimization. LF+AC+DSC and LF+MC+DSC are

138

the most accurate heuristics for energy consumption optimization, and CA-

MaxMin+L+DSC is the most accurate for SLA violations optimization. The

proposed SMS-EMOA method proved to be the overall most accurate MOEA

scheduler, significantly outperforming IBEA and NSGA-II on most multi-

objective metrics for most of the problem instances. In average, SMS-EMOA

is able to improve makespan by 20%, energy consumption by 10% and SLA vi-

olations by 16% over the best heuristics for the small-sized scenarios. For the

large-sized scenarios, SMS-EMOA improves makespan by 43%, energy con-

sumption by 2% and SLA violations by 42% in average. Furthermore, it is

able to compute a diverse set of trade-off schedules with different levels of

compromise between all three objectives.

Finally, in Chapter 6 we study uncertainties in execution time and energy

consumption in data centers and their impact on several scheduling algorithms.

We analyze real-world workloads and perform experimental evaluations to val-

idate our energy consumption model. Results show the considered uncertain-

ties significantly affect the accuracy of the scheduling algorithm and should

be considered when designing scheduling algorithms in order to improve their

accuracy.

7.2 Future work

There are a number of research challenges that need to be addressed in order

to further advance with the work presented in this thesis. The main lines of

future work are the following.

Address even larger problem instances. As computing demands are

expected to keep increasing in the following few years, scheduling algorithms

are expected to deal with larger workloads every year. It is important to study

the scalability of the proposed algorithms and evaluate their accuracy when

solving increasingly larger scenarios.

Compute lower bounds for each objective for small-sized instances.

We propose to use relaxation techniques and exact methods to compute lower

bounds for each objective when addressing small-sized instances of all problem

formulations. Currently lower bounds have been computed for one problem

formulation. Computing these lower bounds for all the problem formulations

139

will allow to study the behavior of the all proposed scheduling algorithms

regarding optimality.

Integrate the proposed problem formulations. We propose to integrate

the single data center problem formulation (proposed in Chapter 3) into the

problem formulation considering a federation of heterogeneous data centers

(proposed in Chapter 5). This will provide a more precise modeling for the

low-level hierarchy scheduler by incorporating the cooling system among other

characteristics. To accomplish this, the single data center problem formula-

tion must be extended to consider heterogeneous computing resources and a

computing load comprised by workflows of tasks.

Incorporate uncertainty into the problem formulation considering

a federation of heterogeneous data centers. Incorporating the uncer-

tainty model proposed in Chapter 6 into the problem formulation considering

a federation of heterogeneous data centers (proposed in Chapter 5) will allow

to study the robustness of the proposed scheduling algorithms when dealing

with real-world uncertainties.

Consider other green energy sources and waste heat recycling. Fi-

nally, considering other green energy sources—such as wind energy—will allow

to take into account off-site green energy generators. On top of that, consid-

ering waste heat recycling will allow to heat rooms during winter, improving

the energy efficiency of the whole building hosting the data center.

140

Bibliography

Abbasi, Z., Pore, M., and Gupta, S. K. S. (2014). Impact of workload and

renewable prediction on the value of geographical workload management. In

Klingert, S., Hesselbach-Serra, X., Ortega, M. P., and Giuliani, G., editors,

Energy-Efficient Data Centers, volume 8343 of Lecture Notes in Computer

Science, pages 1–15. Springer, Berlin, Heidelberg.

Abraham, B. and Ledolter, J. (2008). Seasonal Autoregressive Integrated Mov-

ing Average Models, pages 281–321. John Wiley & Sons, Inc.

Abrishami, S., Naghibzadeh, M., and Epema, D. (2013). Deadline-constrained

workflow scheduling algorithms for infrastructure as a service clouds. Future

Generation Computer Systems, 29(1):158–169.

Ahmad, I. and Ranka, S. (2012). Handbook of Energy-Aware and Green Com-

puting. Chapman & Hall/CRC.

Al-Qawasmeh, A. M., Pasricha, S., Maciejewski, A. A., and Siegel, H. J. (2015).

Power and thermal-aware workload allocation in heterogeneous data centers.

IEEE Transactions on Computers, 64(2):477–491.

Alba, E. and Dorronsoro, B. (2008). Cellular Genetic Algorithms, volume 42

of Operations Research/Computer Science Interfaces. Springer-Verlag Hei-

delberg.

Ali, S., Maciejewski, A., Siegel, H., and Kim, J. (2004). Measuring the robust-

ness of a resource allocation. IEEE Transactions on Parallel and Distributed

Systems, 51(7):630–641.

Anastasopoulos, M., Tzanakaki, A., and Simeonidou, D. (2016). Stochastic en-

ergy efficient cloud service provisioning deploying renewable energy sources.

IEEE Journal on Selected Areas in Communications, 34(12):3927–3940.

141

Andrae, A. S. and Edler, T. (2015). On global electricity usage of communi-

cation technology: trends to 2030. Challenges, 6(1):117–157.

ASHRAE Technical Committee (2011). Thermal guidelines for data processing

environments 9.9. Technical report.

Bäck, T., Fogel, D., and Michalewicz, Z., editors (1997). Handbook of evolu-

tionary computation. Oxford University Press.

Bader, J. and Zitzler, E. (2011). HypE : An algorithm for fast optimization.

Evolutionary Computation, 19(1):45–76.

Bailey Lee, C., Schwartzman, Y., Hardy, J., and Snavely, A. (2005). Are user

runtime estimates inherently inaccurate? In Feitelson, D. G., Rudolph,

L., and Schwiegelshohn, U., editors, Job Scheduling Strategies for Parallel

Processing, volume 3277 of Lecture Notes in Computer Science, pages 253–

263. Springer, Berlin, Heidelberg.

Bansal, S., Kumar, P., and Singh, K. (2005). Dealing with heterogene-

ity through limited duplication for scheduling precedence constrained task

graphs. Journal of Parallel and Distributed Computing, 65(4):479–491.

Barroso, L. and Hölzle, U. (2009). The datacenter as a computer: An intro-

duction to the design of warehouse-scale machines. Synthesis Lectures on

Computer Architecture, 4(1):1–108.

Barroso, L. A., Clidaras, J., and Höelzle, U. (2013). The Datacenter As a

Computer: An Introduction to the Design of Warehouse-Scale Machines.

Morgan and Claypool Publishers.

Barroso, L. A. and Hölzle, U. (2007). The case for energy-proportional com-

puting. Computer, 40(12):33–37.

Baskiyar, S. and Abdel-Kader, R. (2010). Energy aware DAG scheduling on

heterogeneous systems. Cluster Computing, 13(4):373–383.

Bender, M. A., Bunde, D. P., Demaine, E. D., Fekete, S. P., Leung, V. J.,

Meijer, H., and Phillips, C. A. (2008). Communication-aware processor

allocation for supercomputers: Finding point sets of small average distance.

Algorithmica, 50(2):279–298.

142

Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and Distributed Compu-

tation: Numerical Methods. Prentice-Hall, Inc., NJ, USA.

Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA: Multiob-

jective selection based on dominated hypervolume. European Journal of

Operational Research, 181(3):1653 – 1669.

Bozdag, D., Ozguner, F., and Catalyurek, U. V. (2009). Compaction of sched-

ules and a two-stage approach for duplication-based dag scheduling. IEEE

Transactions on Parallel and Distributed Systems, 20(6):857–871.

Braun, T., Siegel, H. J., Beck, N., Bölöni, L., Maheswaran, M., Reuther, A.,

Robertson, J., Theys, M., Yao, B., Hensgen, D., and Freund, R. (2001).

A comparison of eleven static heuristics for mapping a class of independent

tasks onto heterogeneous distributed computing systems. Journal of Parallel

and Distributed Computing, 61(6):810–837.

Brigham, O. (1974). The Fast Fourier Transform. Prentice-Hall, NJ, USA.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S.

(2003). Hyper-Heuristics: An Emerging Direction in Modern Search Tech-

nology, volume 57 of International Series in Operations Research & Man-

agement Science, pages 457–474. Springer, Boston, MA.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya, R.

(2011). Cloudsim: A toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms. Software-

Practice & Experience, 41(1):23–50.

Chalise, S., Golshani, A., Awasthi, S. R., Ma, S., Shrestha, B. R., Bajracharya,

L., and Tonkoski, R. (2015). Data center energy systems: Current technology

and future direction. In IEEE Power & Energy Society General Meeting,

pages 1–5.

Chandra, G., Kapur, P., and Saraswat, K. C. (2002). Scaling trends for the on

chip power dissipation. In International Interconnect Technology Conference,

pages 170–172.

Chaudhry, M. T., Ling, T. C., Manzoor, A., Hussain, S. A., and Kim, J.

(2015). Thermal-aware scheduling in green data centers. ACM Computing

Surveys, 47(3):1–48.

143

Chen, S., Li, Z., Yang, B., and Rudolph, G. (2016a). Quantum-inspired hyper-

heuristics for energy-aware scheduling on heterogeneous computing systems.

IEEE Transactions on Parallel and Distributed Systems, 27(6):1796–1810.

Chen, T., Wang, X., and Giannakis, G. B. (2016b). Cooling-aware energy and

workload management in data centers via stochastic optimization. IEEE

Journal on Selected Topics in Signal Processing, 10(2):402–415.

Chen, T., Zhang, Y., Wang, X., and Giannakis, G. B. (2016c). Robust work-

load and energy management for sustainable data centers. IEEE Journal on

Selected Areas in Communications, 34(3):651–664.

Chiong, R., Weise, T., and Michalewicz, Z. (2011). Variants of Evolutionary

Algorithms for Real-World Applications. Springer, Berlin, Heidelberg.

Cirne, W. and Berman, F. (2001). A comprehensive model of the supercom-

puter workload. In International Workshop on Workload Characterization,

pages 140–148.

Cisco Systems, Inc. (2016). Cisco global cloud index: Forecast and methodol-

ogy, 2015–2020. Technical report.

Coello Coello, C. A., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolu-

tionary Algorithms for Solving Multi-Objective Problems. Genetic and Evo-

lutionary Computation. Springer, NJ, USA.

Coello Coello, C. A. and Lechuga, M. S. (2002). MOPSO: A proposal for

multiple objective particle swarm optimization. Congress on Evolutionary

Computation, 2:1051–1056.

Coello Coello, C. A. and Reyes Sierra, M. (2004). A study of the paralleliza-

tion of a coevolutionary multi-objective evolutionary algorithm. In Monroy,

R., Arroyo-Figueroa, G., Sucar, L. E., and Sossa, H., editors, Advances in

Artificial Intelligence, volume 2972 of Lecture Notes in Computer Science,

pages 688–697. Springer, Berlin, Heidelberg.

Damousis, I. G., Alexiadis, M. C., Theocharis, J. B., and Dokopoulos, P. S.

(2004). A fuzzy model for wind speed prediction and power generation in

wind parks using spatial correlation. IEEE Transactions on Energy Conver-

sion, 19(2):352–361.

144

Dayarathna, M., Wen, Y., and Fan, R. (2016). Data center energy consumption

modeling: A survey. IEEE Communications Surveys Tutorials, 18(1):732–

794.

de Assuncao, M. D., di Costanzo, A., and Buyya, R. (2009). Evaluating the

cost-benefit of using cloud computing to extend the capacity of clusters.

In International Symposium on High Performance Distributed Computing,

pages 141–150.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms.

John Wiley & Sons, Inc., NY, USA.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and

elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, 6(2):182–197.

Deng, W., Liu, F., Jin, H., Li, B., and Li, D. (2014). Harnessing renewable

energy in cloud datacenters: Opportunities and challenges. IEEE Network,

28(1):48–55.

Dongarra, J. (1988). The LINPACK benchmark: An explanation. In Interna-

tional Conference on Supercomputing, pages 456–474.

Dorronsoro, B., Bouvry, P., Cañero, J., Maciejewski, A., and Siegel, H. (2010).

Multi-objective robust static mapping of independent tasks on grids. In

IEEE Congress on Evolutionary Computation, pages 3389–3396.

Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A., Talbi, E.-G., and

Bouvry, P. (2014a). A hierarchical approach for energy-efficient scheduling

of large workloads in multicore distributed systems. Sustainable Computing,

4(4):252–261.

Dorronsoro, B., Ruiz, P., Danoy, G., Pigné, Y., and Bouvry, P. (2014b). Evo-

lutionary Algorithms for Mobile Ad Hoc Networks. Wiley/IEEE Computer

Society.

Dunn, O. J. (1961). Multiple comparisons among means. Journal of the

American Statistical Association, 56(293):52–64.

Durillo, J. and Nebro, A. (2011). jMetal: A Java framework for multi-objective

optimization. Advances in Engineering Software, 42(10):760–771.

145

Ebrahimi, K., Jones, G. F., and Fleischer, A. S. (2014). A review of data

center cooling technology, operating conditions and the corresponding low-

grade waste heat recovery opportunities. Renewable and Sustainable Energy

Reviews, 31:622 – 638.

Erol-Kantarci, M. and Mouftah, H. T. (2015). Energy-efficient information and

communication infrastructures in the smart grid: A survey on interactions

and open issues. IEEE Communications Surveys & Tutorials, 17(1):179–197.

Feitelson, D. G., Rudolph, L., and Schwiegelshohn, U. (2005). Parallel job

scheduling — A status report. In Feitelson, D. G., Rudolph, L., and

Schwiegelshohn, U., editors, Job Scheduling Strategies for Parallel Pro-

cessing, volume 3277 of Lecture Notes in Computer Science, pages 1–16.

Springer, Berlin, Heidelberg.

Fulpagare, Y. and Bhargav, A. (2015). Advances in data center thermal man-

agement. Renewable and Sustainable Energy Reviews, 43:981 – 996.

Garg, R. and Singh, A. K. (2016). Energy-aware workflow scheduling in

grid under QoS constraints. Arabian Journal for Science and Engineering,

41(2):495–511.

Ghafoor, A. and Yang, J. (1993). Distributed heterogeneous supercomputing

management system. Computer, 26(6):78–86.

Ghamkhari, M. and Mohsenian-Rad, H. (2013). Energy and performance man-

agement of green data centers: A profit maximization approach. IEEE

Transactions on Smart Grid, 4(2):1017–1025.

Goiri, Í., Haque, M. E., Le, K., Beauchea, R., Nguyen, T. D., Guitart, J.,

Torres, J., and Bianchini, R. (2015a). Matching renewable energy supply

and demand in green datacenters. Ad Hoc Networks, 25:520–534.

Goiri, I., Katsak, W., Le, K., Nguyen, T., and Bianchini, R. (2013). Para-

sol and GreenSwitch: managing datacenters powered by renewable energy.

In International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 51–64.

Goiri, I., Katsak, W., Le, K., Nguyen, T., and Bianchini, R. (2014). Designing

and managing data centers powered by renewable energy. IEEE Micro,

34(3):8–16.

146

Goiri, Í., Nguyen, T. D., and Bianchini, R. (2015b). CoolAir: Temperature-

and variation-aware management for free-cooled datacenters. ACM SIG-

PLAN Notices, 50(4):253–265.

Goudarzi, H. and Pedram, M. (2016). Hierarchical SLA-driven resource man-

agement for peak power-aware and energy-efficient operation of a cloud dat-

acenter. IEEE Transactions on Cloud Computing, 4(2):222–236.

Guo, Y. and Fang, Y. (2013). Electricity cost saving strategy in data centers

by using energy storage. IEEE Transactions on Parallel and Distributed

Systems, 24(6):1149–1160.

Guo-ning, G., Ting-Iei, H., and Shuai, G. (2010). Genetic simulated annealing

algorithm for task scheduling based on cloud computing environment. In

International Conference on Intelligent Computing and Integrated Systems,

pages 60–63.

Guzek, M., Bouvry, P., and Talbi, E. G. (2015). A survey of evolutionary

computation for resource management of processing in cloud computing.

IEEE Computational Intelligence Magazine, 10(2):53–67.

Habibi Khalaj, A., Scherer, T., Siriwardana, J., and Halgamuge, S. K. (2015).

Multi-objective efficiency enhancement using workload spreading in an op-

erational data center. Applied Energy, 138:432–444.

Hagras, T. and Janecek, J. (2005). A high performance, low complexity algo-

rithm for compile-time task scheduling in heterogeneous systems. Parallel

Computing, 31(7):653 – 670.

Haywood, A. M., Sherbeck, J., Phelan, P., Varsamopoulos, G., and Gupta, S.

K. S. (2015). The relationship among CPU utilization, temperature, and

thermal power for waste heat utilization. Energy Conversion and Manage-

ment, 95:297–303.

Herrero, J. M., Reynoso-Meza, G., Mart́ınez, M., Blasco, X., and Sanchis,

J. (2014). A smart-distributed pareto front using the ev-moga evolutionary

algorithm. International Journal on Artificial Intelligence Tools, 23(2):1–22.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scan-

dinavian Journal of Statistics, 6(2):pp. 65–70.

147

Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., and Huang, X. (2012). Enhanced

energy-efficient scheduling for parallel applications in cloud. International

Symposium on Cluster, Cloud and Grid Computing, pages 781–786.

Hunter, J. S. (1986). The exponentially weighted moving average. Journal of

Quality Technology, 18(4):203–210.

Ibarra, O. H. and Kim, C. E. (1977). Heuristic algorithms for scheduling inde-

pendent tasks on nonidentical processors. Journal of the ACM, 24(2):280–

289.

Ishihara, T. and Yasuura, H. (1998). Voltage scheduling problem for dynami-

cally variable voltage processors. In International Symposium on Low Power

Electronics and Design, number February, pages 197–202.

Iturriaga, S., Dorronsoro, B., and Nesmachnow, S. (2017). Multiobjective

evolutionary algorithms for energy and service level scheduling in a feder-

ation of distributed datacenters. International Transactions in Operational

Research, 24(1-2):199–228.

Iturriaga, S., Garćıa, S., and Nesmachnow, S. (2014). An empirical study

of the robustness of energy-aware schedulers for high performance comput-

ing systems under uncertainty. In Hernández, G., Barrios Hernández, C. J.,

Dı́az, G., Garćıa Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., and

Vázquez, M., editors, High Performance Computing, volume 485 of Commu-

nications in Computer and Information Science, pages 143–157. Springer,

Berlin, Heidelberg.

Iturriaga, S. and Nesmachnow, S. (2015). Multiobjective scheduling of green-

powered datacenters considering QoS and budget objectives. In Innovative

Smart Grid Technologies Latin America, pages 570–573.

Iturriaga, S. and Nesmachnow, S. (2016). Scheduling energy efficient data

centers using renewable energy. Electronics, 5(4).

Iturriaga, S., Nesmachnow, S., Dorronsoro, B., and Bouvry, P. (2013). Energy

efficient scheduling in heterogeneous systems with a parallel multiobjective

local search. Computing and Informatics Journal, 32(2):273–294.

148

Iturriaga, S., Nesmachnow, S., Tchernykh, A., and Dorronsoro, B. (2016).

Multiobjective workflow scheduling in a federation of heterogeneous green-

powered data centers. In IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pages 596–599.

Jayasinghe, D., Pu, C., Eilam, T., Steinder, M., Whally, I., and Snible, E.

(2011). Improving performance and availability of services hosted on iaas

clouds with structural constraint-aware virtual machine placement. In In-

ternational Conference on Services Computing, pages 72–79.

Jena, R. K. (2015). Multi objective task scheduling in cloud environment using

nested PSO framework. Procedia Computer Science, 57:1219–1227.

Kafil, M. and Ahmad, I. (1998). Optimal task assignment in heterogeneous

distributed computing systems. IEEE Concurrency, 6(3):42–51.

Katrinis, K. M. and Tzanakaki, A. (2011). On the dimensioning of WDM opti-

cal networks with impairment-aware regeneration. IEEE/ACM Transactions

on Networking, 19(3):735–746.

Kaushik, A. and Vidyarthi, D. P. (2016). An energy-efficient reliable grid

scheduling model using NSGA-II. Engineering with Computers, 32(3):355–

376.

Kessaci, Y., Melab, N., and Talbi, E. G. (2013). A Pareto-based metaheuris-

tic for scheduling HPC applications on a geographically distributed cloud

federation. Cluster Computing, 16(3):451–468.

Khan, S. and Ahmad, I. (2009). A cooperative game theoretical technique

for joint optimization of energy consumption and response time in com-

putational grids. IEEE Transactions on Parallel and Distributed Systems,

20(3):346–360.

Khan, S. U. and Zomaya, A. Y. (2015). Handbook on data centers. Springer,

NY, USA.

Kiani, A. and Ansari, N. (2016). Profit maximization for geographical dis-

persed green data centers. IEEE Transactions on Smart Grid, pages 1–16.

To appear.

149

Kim, J.-Y., Chang, H.-J., Jung, Y.-H., Cho, K.-M., and Augenbroe, G. (2017).

Energy conservation effects of a multi-stage outdoor air enabled cooling sys-

tem in a data center. Energy and Buildings, 138:257–270.

Kim, K., Buyya, R., and Kim, J. (2007). Power aware scheduling of bag-of-

tasks applications with deadline constraints on DVS-enabled clusters. In

International Symposium on Cluster Computing and the Grid, pages 541–

548.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by

simulated annealing. Science, 220(4598):671–680.

Kleywegt, A. J., Shapiro, A., and Homem-de-Mello, T. (2002). The sample

average approximation method for stochastic discrete optimization. SIAM

Journal on Optimization, 12(2):479–502.

Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial on the performance

assessment of stochastic multiobjective optimizers. Report 214, Computer

Engineering and Networks Laboratory, ETH Zurich.

Koomey, J. (2008). Worldwide electricity used in data centers. Environmental

Research Letters, 3(3):1–8.

Koomey, J. (2011). Growth in data center electricity use 2005–2010. Technical

report, Analytic Press.

Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance

analysis. Journal of the American Statistical Association, 47(260):583–621.

Kumar, P. and Verma, A. (2012). Independent task scheduling in cloud com-

puting by improved genetic algorithm. International Journal of Advanced

Research in Computer Science and Software Engineering Research, 2(5):5–8.

Kumar, S., Sabharwal, Y., Garg, R., and Heidelberger, P. (2008). Optimization

of all-to-all communication on the blue gene/L supercomputer. International

Conference on Parallel Processing, pages 320–329.

Le, K., Bianchini, R., Nguyen, T. D., Bilgir, O., and Martonosi, M. (2010).

Capping the brown energy consumption of internet services at low cost.

International Conference on Green Computing, pages 3–14.

150

Lee, E. K., Viswanathan, H., and Pompili, D. (2012). VMAP: Proactive

thermal-aware virtual machine allocation in HPC cloud datacenters. In

International Conference on High Performance Computing, pages 1–10.

Lee, E. K., Viswanathan, H., and Pompili, D. (2017). Proactive thermal-

aware resource management in virtualized HPC cloud datacenters. IEEE

Transactions on Cloud Computing, 5(2):234–248.

Lee, Y. and Zomaya, A. (2009). Minimizing energy consumption for

precedence-constrained applications using dynamic voltage scaling. In In-

ternational Symposium on Cluster Computing and the Grid, pages 92–99.

Lee, Y. and Zomaya, A. (2011). Energy conscious scheduling for distributed

computing systems under different operating conditions. IEEE Transactions

on Parallel and Distributed Systems, 22(8):1374–1381.

Lei, H., Wang, R., Zhang, T., Liu, Y., and Zha, Y. (2016). A multi-objective

co-evolutionary algorithm for energy-efficient scheduling on a green data

center. Computers & Operations Research, 75:103–117.

Lei, H., Zhang, T., Liu, Y., Zha, Y., and Zhu, X. (2015). SGEESS: Smart

green energy-efficient scheduling strategy with dynamic electricity price for

data center. Journal of Systems and Software, 108:23–38.

Leung, J., Kelly, L., and Anderson, J. H. (2004). Handbook of Scheduling:

Algorithms, Models, and Performance Analysis. CRC Press, Inc., FL, USA.

Leverich, J., Monchiero, M., Talwar, V., Ranganathan, P., and Kozyrakis, C.

(2010). Power management of datacenter workloads using per-core power

gating. IEEE Computer Architecture Letters, 8(2):48–51.

Li, Y., Liu, Y., and Qian, D. (2009). A heuristic energy-aware scheduling

algorithm for heterogeneous clusters. In International Conference on Parallel

and Distributed Systems, pages 407–413.

Lifka, D. A. (1995). The ANL/IBM SP scheduling system. In Feitelson, D. G.

and Rudolph, L., editors, Job Scheduling Strategies for Parallel Processing,

volume 949 of Lecture Notes in Computer Science, pages 295–303. Springer,

Berlin, Heidelberg.

151

Lin, M., Wierman, A., Andrew, L. L. H., and Thereska, E. (2013). Dynamic

right-sizing for power-proportional data centers. IEEE/ACM Transactions

on Networking, 21(5):1378–1391.

Lin, R. and Deng, Y. (2017). Allocating workload to minimize the power

consumption of data centers. Frontiers of Computer Science, 11(1):105–118.

Lindberg, P., Leingang, J., Lysaker, D., Khan, S., and Li, J. (2012). Compari-

son and analysis of eight scheduling heuristics for the optimization of energy

consumption and makespan in large-scale distributed systems. The Journal

of Supercomputing, 59(1):323–360.

Liu, Z., Lin, M., Wierman, A., Low, S. H., and Andrew, L. L. H. (2011).

Geographical load balancing with renewables. ACM SIGMETRICS Perfor-

mance Evaluation Review, 39(3):62–66.

Lopes, R. V. and Menasce, D. (2016). A taxonomy of job scheduling on dis-

tributed computing systems. IEEE Transactions on Parallel and Distributed

Systems, 27(12):3412–3428.

Manousakis, I., Goiri, I. n., Sankar, S., Nguyen, T. D., and Bianchini, R.

(2015). CoolProvision: Underprovisioning datacenter cooling. In ACM Sym-

posium on Cloud Computing, pages 356–367.

Mart́ınez-Iranzo, M., Herrero, J. M., Sanchis, J., Blasco, X., and Garćıa-Nieto,

S. (2009). Applied pareto multi-objective optimization by stochastic solvers.

Engineering Applications of Artificial Intelligence, 22(3):455 – 465.

Mehta, A. M., Smith, J., Siegel, H. J., Maciejewski, A. A., Jayaseelan, A., and

Ye, B. (2007). Dynamic resource allocation heuristics that manage tradeoff

between makespan and robustness. Journal of Supercomputing, 42(1):33–58.

Mei, J., Li, K., and Li, K. (2013). Energy-aware task scheduling in heteroge-

neous computing environments. Cluster Computing, 17(2):537–550.

Meisner, D., Gold, B. T., and Wenisch, T. F. (2009). PowerNap: eliminating

server idle power. ACM SIGARCH Computer Architecture News, 37(1):205–

216.

152

Meng, J., McCauley, S., Kaplan, F., Leung, V. J., and Coskun, A. K. (2015).

Simulation and optimization of HPC job allocation for jointly reducing com-

munication and cooling costs. Sustainable Computing: Informatics and Sys-

tems, 6:48–57.

Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Talbi, E., Zomaya, A., and Tuyt-

tens, D. (2011). A parallel bi-objective hybrid metaheuristic for energy-aware

scheduling for cloud computing systems. Journal of Parallel Distributed

Computing, 71:1497–1508.

Minh, T. N. and Wolters, L. (2010). Using historical data to predict appli-

cation runtimes on backfilling parallel systems. In Euromicro International

Conference on Parallel, Distributed and Network-Based Processing, pages

246–252.

Moon, H., Chi, Y., and Hacigümüş, H. (2011). Performance evaluation of

scheduling algorithms for database services with soft and hard SLAs. In

International Workshop on Data Intensive Computing in the Clouds, pages

81–90.

Moore, J., Chase, J., Ranganathan, P., and Sharma, R. (2005). Making

scheduling ”cool”: Temperature-aware workload placement in data centers.

In USENIX Annual Technical Conference, pages 61–74.

Mu’alem, A. and Feitelson, D. (2001). Utilization, predictability, workloads,

and user runtime estimates in scheduling the IBM SP2 with backfilling.

IEEE Transactions on Parallel and Distributed Systems, 12(6):529–543.

Mukherjee, T., Banerjee, A., Varsamopoulos, G., Gupta, S. K. S., and Rungta,

S. (2009). Spatio-temporal thermal-aware job scheduling to minimize energy

consumption in virtualized heterogeneous data centers. Computer Networks,

53(17):2888–2904.

Nebro, A., Durillo, J., Luna, F., Dorronsoro, B., and Alba, E. (2009). MOCell:

A cellular genetic algorithm for multiobjective optimization. International

Journal of Intelligent Systems, 24(7):726–746.

Neely, M. J. (2010). Stochastic Network Optimization with Application to

Communication and Queueing Systems, volume 3 of Synthesis Lectures on

Communication Networks. Morgan and Claypool Publishers.

153

Nesmachnow, S. (2014). An overview of metaheuristics: Accurate and efficient

methods for optimisation. International Journal of Metaheuristics, 3(4):320–

347.

Nesmachnow, S., Dorronsoro, B., and Bouvry, P. (2014a). Energy-aware work-

flow scheduling in datacenters. In ALIO/EURO Workshop on Applied Com-

binatorial Optimization, pages 1–6.

Nesmachnow, S., Dorronsoro, B., Pecero, J. E., and Bouvry, P. (2013). Energy-

aware scheduling on multicore heterogeneous grid computing systems. Jour-

nal of Grid Computing, 11(4):653–680.

Nesmachnow, S., Perfumo, C., and Goiri, I. (2014b). Controlling datacenter

power consumption while maintaining temperature and QoS levels. In IEEE

International Conference on Cloud Networking, pages 242–247.

Nesmachnow, S., Perfumo, C., and Goiri, Í. (2015). Holistic multiobjective

planning of datacenters powered by renewable energy. Cluster Computing,

18(4):1379–1397.

Oró, E., Depoorter, V., Garcia, A., and Salom, J. (2015a). Energy efficiency

and renewable energy integration in data centres. Strategies and modelling

review. Renewable and Sustainable Energy Reviews, 42:429–445.

Oró, E., Depoorter, V., Pflugradt, N., and Salom, J. (2015b). Overview of

direct air free cooling and thermal energy storage potential energy savings

in data centres. Applied Thermal Engineering, 85:100–110.

Parnell, L. A., Demetriou, D. W., and Zhang, E. Y. (2016). Combining cooling

technology and facility design to improve HPC data center energy efficiency.

In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechan-

ical Phenomena in Electronic Systems (ITherm), pages 417–425. IEEE.

Patel, C. D., Sharma, R. K., Bash, C. E., and Beitelmal, M. H. (2006). Energy

flow in the information technology stack: Introducing the coefficient of per-

formance of the ensemble. In ASME International Mechanical Engineering

Congress and Exposition, pages 233–241.

Paul, D., Zhong, W. D., and Bose, S. K. (2016). Energy efficiency aware load

distribution and electricity cost volatility control for cloud service providers.

Journal of Network and Computer Applications, 59:185–197.

154

Pecero, J. E., Bouvry, P., Huacuja, H. J. F., and Khan, S. U. (2011). A multi-

objective GRASP algorithm for joint optimization of energy consumption

and schedule length of precedence-constrained applications. In IEEE In-

ternational Conference on Dependable, Autonomic and Secure Computing,

pages 510–517.

Peng, Y., Kang, D. K., Al-Hazemi, F., and Youn, C. H. (2017). Energy and

QoS aware resource allocation for heterogeneous sustainable cloud datacen-

ters. Optical Switching and Networking, 23:225–240.

Pinel, F., Dorronsoro, B., Pecero, J., Bouvry, P., and Khan, S. (2013). A

two-phase heuristic for the energy-efficient scheduling of independent tasks

on computational grids. Cluster Computing, 16(3):421–433.

Polverini, M., Cianfrani, A., Ren, S., and Vasilakos, A. V. (2014). Thermal-

aware scheduling of batch jobs in geographically distributed data centers.

IEEE Transactions on Cloud Computing, 2(1):71–84.

Pore, M., Abbasi, Z., Gupta, S. K. S., and Varsamopoulos, G. (2015). Tech-

niques to achieve energy proportionality in data centers: A survey. In Khan,

S. U. and Zomaya, A. Y., editors, Handbook on Data Centers, pages 109–162.

Springer, New York, NY.

Prajapati, H. B. and Shah, V. A. (2014). Bandwidth-aware scheduling of

workflow application on multiple grid sites. Journal of Computer Networks

and Communications, 2014:1–15.

Quezada-Pina, A., Tchernykh, A., González-Garćıa, J., Hirales-Carbajal, A.,

Ramı́rez-Alcaraz, J., Schwiegelshohn, U., Yahyapour, R., and Miranda-

López, V. (2012). Adaptive parallel job scheduling with resource admis-

sible allocation on two-level hierarchical grids. Future Generation Computer

Systems, 28(7):965–976.

Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., and Maggs, B. (2009).

Cutting the electric bill for internet-scale systems. ACM SIGCOMM Com-

puter Communication Review, 39(4):123.

Rahman, A., Liu, X., and Kong, F. (2014). A survey on geographic load bal-

ancing based data center power management in the smart grid environment.

IEEE Communications Surveys & Tutorials, 16(1):214–233.

155

Rajabi, A., Faragardi, H. R., and Nolte, T. (2014). An efficient scheduling

of hpc applications on geographically distributed cloud data centers. In

Jahangir, A. H., Movaghar, A., and Asadi, H., editors, Computer Networks

and Distributed Systems, volume 428 of Communications in Computer and

Information Science, pages 155–167. Springer International Publishing.

Rao, L., Liu, X., Ilic, M. D., and Liu, J. (2012a). Distributed coordination of

internet data centers under multiregional electricity markets. Proceedings of

the IEEE, 100(1):269–282.

Rao, L., Liu, X., Xie, L., and Liu, W. (2010). Minimizing electricity cost: Op-

timization of distributed internet data centers in a multi-electricity-market

environment. IEEE International Conference on Computer Communica-

tions, pages 1–9.

Rao, L., Liu, X., Xie, L., and Liu, W. (2012b). Coordinated energy cost man-

agement of distributed internet data centers in smart grid. IEEE Transac-

tions on Smart Grid, 3(1):50–58.

Ren, S., He, Y., and Xu, F. (2012). Provably-efficient job scheduling for en-

ergy and fairness in geographically distributed data centers. International

Conference on Distributed Computing Systems, pages 22–31.

Ren, Z., Zhang, X., and Shi, W. (2015). Resource scheduling in data-centric

systems. In Khan, S. U. and Zomaya, A. Y., editors, Handbook on Data

Centers, pages 1307–1330. Springer, NY, USA.

Riquelme, N., Lücken, C. V., and Baran, B. (2015). Performance metrics

in multi-objective optimization. In Latin American Computing Conference,

pages 1–11.

Rizvandi, N., Taheri, J., and Zomaya, A. (2011). Some observations on opti-

mal frequency selection in DVFS-based energy consumption minimization.

Journal Parallel Distributed Computing, 71(8):1154–1164.

Rodriguez, M. A. and Buyya, R. (2017). A taxonomy and survey on scheduling

algorithms for scientific workflows in IaaS cloud computing environments.

Concurrency and Computation: Practice and Experience, 29(8):1–23.

156

Rong, H., Zhang, H., Xiao, S., Li, C., and Hu, C. (2016). Optimizing energy

consumption for data centers. Renewable and Sustainable Energy Reviews,

58:674–691.

Sajid, M. and Raza, Z. (2017). Energy-aware stochastic scheduler for batch of

precedence-constrained jobs on heterogeneous computing system. Energy,

125:258–274.

Schwiegelshohn, U. and Tchernykh, A. (2012). Online scheduling for cloud

computing and different service levels. In IEEE International Parallel and

Distributed Processing Symposium Workshops PhD Forum, pages 1067–

1074.

Sharifi, M., Shahrivari, S., and Salimi, H. (2013). PASTA: a power-aware so-

lution to scheduling of precedence-constrained tasks on heterogeneous com-

puting resources. Computing, 95(1):67–88.

Shehabi, A., Smith, S., Horner, N., Azevedo, I., Brown, R., Koomey, J.,

Masanet, E., Sartor, D., Herrlin, M., and Lintner, W. (2016). United states

data center energy usage report. Technical Report LBNL-1005775, Lawrence

Berkeley National Laboratory, Berkeley, California.

Shi, L., Zhang, Z., and Robertazzi, T. (2017). Energy-aware scheduling of

embarrassingly parallel jobs and resource allocation in cloud. IEEE Trans-

actions on Parallel and Distributed Systems, 28(6):1607–1620.

Shmueli, E. and Feitelson, D. (2009). On simulation and design of parallel-

systems schedulers: Are we doing the right thing? IEEE Transactions on

Parallel and Distributed Systems, 20(7):983–996.

Shuja, J., Bilal, K., Madani, S. A., Othman, M., Ranjan, R., Balaji, P., and

Khan, S. U. (2016a). Survey of techniques and architectures for designing

energy-efficient data centers. IEEE Systems Journal, 10(2):507–519.

Shuja, J., Gani, A., Shamshirband, S., Ahmad, R. W., and Bilal, K. (2016b).

Sustainable cloud data centers: A survey of enabling techniques and tech-

nologies. Renewable and Sustainable Energy Reviews, 62:195–214.

Siegel, S. (1956). Nonparametric statistics for the behavioral sciences. McGraw-

Hill.

157

Song, Z., Zhang, X., and Eriksson, C. (2015). Data center energy and cost

saving evaluation. Energy Procedia, 75:1255–1260.

Sprent, P. and Smeeton, N. (2000). Applied Nonparametric Statistical Methods.

Texts in Statistical Science. Chapman & Hall/CRC.

Sun, X., Ansari, N., and Wang, R. (2016). Optimizing resource utilization of a

data center. IEEE Communications Surveys & Tutorials, 18(4):2822–2846.

Taheri, J., Zomaya, A., and Khan, S. (2013). Grid simulation tools for job

scheduling and datafile replication. In Khan, S. U., Zomaya, A. Y., and

Lizhe, W., editors, Scalable Computing and Communications: Theory and

Practice, chapter 35, pages 777–797. John Wiley & Sons, Inc., NJ, USA.

Tang, Q., Gupta, S. K. S., and Varsamopoulos, G. (2007). Thermal-aware task

scheduling for data centers through minimizing heat recirculation. In IEEE

International Conference on Cluster Computing, pages 129–138.

Tang, Q., Gupta, S. K. S., and Varsamopoulos, G. (2008). Energy-efficient

thermal-aware task scheduling for homogeneous high-performance comput-

ing data centers: A cyber-physical approach. IEEE Transactions on Parallel

and Distributed Systems, 19(11):1458–1472.

Tang, Q., Mukherjee, T., Gupta, S. K. S., and Cayton, P. (2006). Sensor-

based fast thermal evaluation model for energy efficient high-performance

datacenters. In International Conference on Intelligent Sensing and Infor-

mation Processing, pages 203–208.

Tang, W., Desai, N., Buettner, D., and Lan, Z. (2013). Job scheduling with ad-

justed runtime estimates on production supercomputers. Journal of Parallel

and Distributed Computing, 73(7):926 – 938.

Tang, X., Li, K., Liao, G., Fang, K., and Wu, F. (2011). A stochastic schedul-

ing algorithm for precedence constrained tasks on Grid. Future Generation

Computer Systems, 27(8):1083–1091.

Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S. U., and Li, K. (2016). An

energy-efficient task scheduling algorithm in DVFS-enabled cloud environ-

ment. Journal of Grid Computing, 14(1):55–74.

158

Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J., Nes-

machnow, S., and Drozdov, A. (2015). Online bi-objective scheduling for

IaaS clouds ensuring quality of service. Journal of Grid Computing, 14(1):5–

22.

Toosi, A. N., Qu, C., de Assunção, M. D., and Buyya, R. (2017). Renewable-

aware geographical load balancing of web applications for sustainable data

centers. Journal of Network and Computer Applications, 83:155 – 168.

Topcuoglu, H., Hariri, S., and Wu, M.-Y. W. M.-Y. (2002). Performance-

effective and low-complexity task scheduling for heterogeneous computing.

IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274.

Tsafrir, D. (2010). Using inaccurate estimates accurately. In Frachtenberg,

E. and Schwiegelshohn, U., editors, Job Scheduling Strategies for Parallel

Processing, volume 6253 of Lecture Notes in Computer Science, pages 208–

221. Springer, Berlin, Heidelberg.

Valentini, G., Lassonde, W., Khan, S., Min-Allah, N., Madani, S., Li, J.,

Zhang, L., Wang, L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A., Xu, C.-

Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J., Kliazovich, D., and Bouvry,

P. (2013). An overview of energy efficiency techniques in cluster computing

systems. Cluster Computing, 16(1):3–15.

Van Heddeghem, W., Lambert, S., Lannoo, B., Colle, D., Pickavet, M., and

Demeester, P. (2014). Trends in worldwide ict electricity consumption from

2007 to 2012. Computer Communications, 50:64 – 76.

Verma, A., Ahuja, P., and Neogi, A. (2008). pMapper: Power and migration

cost aware application placement in virtualized systems. In Issarny, V. and

Schantz, R., editors, Middleware, volume 5346 of Lecture Notes in Computer

Science, pages 243–264. Springer, Berlin, Heidelberg.

Von Kistowski, J., Beckett, J., Lange, K. D., Block, H., Arnold, J. A., and

Kounev, S. (2015). Energy efficiency of hierarchical server load distribution

strategies. In IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems, pages 75–84.

159

Wang, R., Purshouse, R. C., and Fleming, P. J. (2013). Preference-inspired

coevolutionary algorithms for many-objective optimization. IEEE Transac-

tions on Evolutionary Computation, 17(4):474–494.

Wang, S., Liu, J., Chen, J. J., and Liu, X. (2011). PowerSleep: A smart

power-saving scheme with sleep for servers under response time constraint.

IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

1(3):289–298.

Wang, Y.-R., Huang, K.-C., and Wang, F.-J. (2016). Scheduling online mixed-

parallel workflows of rigid tasks in heterogeneous multi-cluster environments.

Future Generation Computer Systems, 60:35–47.

Wang, Z., Tolia, N., and Bash, C. (2010). Opportunities and challenges to unify

workload, power, and cooling management in data centers. ACM SIGOPS

Operating Systems Review, 44(3):41.

Weiser, M., Welch, B., Demers, A., and Shenker, S. (1996). Scheduling for

Reduced CPU Energy, volume 353 of The International Series in Engineering

and Computer Science, pages 449–471. Springer, Boston, MA.

Wellons, J., Dai, L., Xue, Y., and Cui, Y. (2010). Augmenting predictive

with oblivious routing for wireless mesh networks under traffic uncertainty.

Computer Networks, 54(2):178–195.

Wierman, A., Andrew, L. L. H., and Tang, A. (2012). Power-aware speed scal-

ing in processor sharing systems: Optimality and robustness. Performance

Evaluation, 69(12):601–622.

Wu, F., Wu, Q., and Tan, Y. (2015). Workflow scheduling in cloud: a survey.

The Journal of Supercomputing, 71(9):3373–3418.

Wu, F., Wu, Q., Tan, Y., Li, R., and Wang, W. (2016). PCP-B2: Partial

critical path budget balanced scheduling algorithms for scientific workflow

applications. Future Generation Computer Systems, 60:22–34.

Xie, G., Xiao, X., Li, R., and Li, K. (2016). Schedule length minimization of

parallel applications with energy consumption constraints using heuristics on

heterogeneous distributed systems. Concurrency and Computation: Practice

and Experience, pages 1–10.

160

Xu, H., Feng, C., and Li, B. (2015). Temperature aware workload manage-

mentin geo-distributed data centers. IEEE Transactions on Parallel and

Distributed Systems, 26(6):1743–1753.

Yu, L., Jiang, T., and Cao, Y. (2015). Energy cost minimization for distributed

internet data centers in smart microgrids considering power outages. IEEE

Transactions on Parallel and Distributed Systems, 26(1):120–130.

Yu, X. and Gen, M. (2012). Introduction to Evolutionary Algorithms. Springer,

London, UK.

Zachary Woodruff, J., Brenner, P., Buccellato, A. P. C., and Go, D. B. (2014).

Environmentally opportunistic computing: A distributed waste heat reuti-

lization approach to energy-efficient buildings and data centers. Energy and

Buildings, 69:41–50.

Zhang, H., Shao, S., Xu, H., Zou, H., and Tian, C. (2014). Free cooling of data

centers: A review. Renewable and Sustainable Energy Reviews, 35:171–182.

Zhang, W., Wen, Y., Wong, Y., Toh, K., and Chen, C.-H. (2016). Towards

joint optimization over ICT and cooling systems in data centre: A survey.

IEEE Communications Surveys & Tutorials, 18(3):1596–1616.

Zhang, Y., Gatsis, N., and Giannakis, G. B. (2013). Robust energy manage-

ment for microgrids with high-penetration renewables. IEEE Transactions

on Sustainable Energy, 4(4):944–953.

Zhu, D., Melhem, R., and Childers, B. (2003). Scheduling with dynamic volt-

age/speed adjustment using slack reclamation in multiprocessor real-time

systems. IEEE Transaction on Parallel and Distributed Systems, 14(7):686–

700.

Zhu, Z., Zhang, G., Li, M., and Liu, X. (2016). Evolutionary multi-objective

workflow scheduling in cloud. IEEE Transactions on Parallel and Distributed

Systems, 27(5):1344–1357.

Zitzler, E. and Künzli, S. (2004). Indicator-based selection in multiobjective

search. In Yao, X., Burke, E. K., Lozano, J. A., Smith, J., Merelo-Guervós,

J. J., Bullinaria, J. A., Rowe, J. E., Tiňo, P., Kabán, A., and Schwefel, H.-

P., editors, Parallel Problem Solving from Nature, volume 3242 of Lecture

Notes in Computer Science, pages 832–842. Springer, Berlin, Heidelberg.

161

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the

strength pareto evolutionary algorithm. Report 103, Computer Engineering

and Networks Laboratory, ETH Zurich.

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolu-

tionary algorithms - a comparative case study. In International Confer-

ence on Parallel Problem Solving from Nature, pages 292–304, London, UK.

Springer.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A

comparative case study and the strength pareto approach. IEEE Transaction

on Evolutionary Computation, 3(4):257–271.

Zomaya, A. and Lee, Y. (2012). Energy Efficient Distributed Computing Sys-

tems. Wiley-IEEE Computer Society Press.

Zong, Z., Manzanares, A., Ruan, X., and Qin, X. (2011). EAD and PEBD:

Two energy-aware duplication scheduling algorithms for parallel tasks on

homogeneous clusters. IEEE Transactions on Computers, 60(3):360–374.

Artwork: Icons included in this thesis were created by Gan Khoon Lay, Sarah Joy, Steve

Morris, Arthur Shlain, Adrien Coquet, Ron Scott, Maurizio Fusilo, and Erick Miranda

Vazquez from the Noun Project and are freely available under Creative Commons license.

162

	List of Figures
	List of Tables
	Introduction
	State of situation and motivation
	Research context
	Thesis contribution and organization

	Towards energy efficiency in data centers: a literature review
	Modeling approaches
	Efficiency of computing elements
	Cooling efficiency
	Renewable energy sources
	Summary

	Scheduling Energy Efficient Data Centers Using Renewable Energy
	Introduction
	Related Work
	The Data Center Energy- and QoS-Aware Model
	The Problem Formulation
	Multi-Objective Evolutionary Scheduling for Energy-Aware Data Centers
	Solution Representation
	Initial Population
	Evolutionary Operators for NSGA-II
	Evolutionary Operators for ev-MOGA
	Simulated Annealing for Post Hoc Optimization

	Experimental Evaluation
	Problem Instances
	Parameter Settings

	Experimental Results and Discussion
	NSGA-II and ev-MOGA Comparison
	Comparison of ev-MOGA with the Business-as-Usual Approach

	Conclusions

	Multiobjective evolutionary algorithms for energy and service level scheduling in a federation of distributed datacenters
	Introduction
	The problem: energy-aware scheduling in a federation of datacenters
	Problem model
	Mathematical formulation
	Related work

	Methodology and techniques
	List scheduling heuristics
	Multiobjective evolutionary algorithms
	Lower bounds for the problem

	The proposed algorithms
	Heuristics
	Multiobjective Evolutionary Algorithms

	Experimental evaluation
	Problem instances
	Experimental setup
	Development and execution platform
	Numerical results

	Conclusions

	Energy aware multiobjective scheduling in a federation of heterogeneous datacenters
	Introduction
	Modeling energy-aware scheduling in heterogeneous datacenters
	The proposed two-level multiobjective evolutionary schedulers
	Experimental evaluation
	Problem instances
	High-level scheduling heuristics
	Experimental setup
	Development and execution platform
	Numerical results

	Conclusions

	An empirical study of the robustness of energy-aware schedulers
	Introduction
	Robust energy-aware scheduling under uncertainty
	The energy-aware scheduling problem
	Robust scheduling

	Related Work
	Robustness of energy aware scheduling heuristics
	Modeling uncertainty
	The task execution time uncertainty model.
	The energy consumption uncertainty model.

	Experimental analysis
	Problem instances
	Results and discussion

	Conclusions and Future Work

	Conclusions and future work
	Summary of conclusions
	Future work

	Bibliography

